WorldWideScience

Sample records for large terrestrial carbon

  1. Impacts of large-scale climatic disturbances on the terrestrial carbon cycle

    Directory of Open Access Journals (Sweden)

    Lucht Wolfgang

    2006-07-01

    Full Text Available Abstract Background The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP and heterotrophic respiration (Rh during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release, was caused by the strong El Niño event of 1997/98. Results We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux. Conclusion Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events.

  2. The decadal state of the terrestrial carbon cycle : Global retrievals of terrestrial carbon allocation, pools, and residence times

    NARCIS (Netherlands)

    Bloom, A Anthony; Exbrayat, Jean-François; van der Velde, Ivar R; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  3. The decadal state of the terrestrial carbon cycle

    NARCIS (Netherlands)

    Velde, van der I.R.; Bloom, J.; Exbrayat, J.; Feng, L.; Williams, M.

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  4. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  5. The carbon balance of terrestrial ecosystems of China

    Directory of Open Access Journals (Sweden)

    Pilli R

    2009-05-01

    Full Text Available A comment is made on a recent letter published on Nature, in which different methodologies are applied to estimate the carbon balance of terrestrial ecosystems of China. A global carbon sink of 0.19-0.26 Pg per year is estimated during the 1980s and 1990s, and it is estimated that in 2006 terrestrial ecosystems have absorbed 28-37 per cent of global carbon emissions in China. Most of the carbon absorption is attributed to large-scale plantation made since the 1980s and shrub recovery. These results will certainly be valuable in the frame of the so-called “REDD” (Reducing Emissions from Deforestation forest Degradation in developing countries mechanism (UN convention on climate change UNFCCC.

  6. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  7. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    Science.gov (United States)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  8. Ancient Terrestrial Carbon: Lost and Found

    Science.gov (United States)

    Freeman, K. H.

    2017-12-01

    Carbon fluxes in terrestrial environments dominate the global carbon cycle. The fluxes of terrestrial carbon are strongly tied to regional climate due to the influences of temperature, water, and nutrient dynamics on plant productivity. However, climate also influences the destruction of terrestrial organic matter, through weathering, erosion, and biomass loss via fire and oxidative microbial processes. Organic geochemical methods enable us to interrogate past terrestrial carbon dynamics and learn how continental processes might accelerate, or mitigate carbon transfer to the atmosphere, and the associated greenhouse warming. Terrestrial soil systems represent the weathering rind of the continents, and are inherently non-depositional and erosive. The production, transport, and depositional processes affecting organics in continental settings each impart their own biases on the amount and characteristics of preserved carbon. Typically, the best archives for biomarker records are sediments in ancient lakes or subaqueous fans, which represents a preservation bias that tends to favor wetter environments. Paleosols, or ancient soils, formed under depositional conditions that, for one reason or another, truncated soil ablation, erosion, or other loss processes. In modern soils, widely ranging organic carbon abundances are almost always substantially greater than the trace amounts of carbon left behind in ancient soils. Even so, measureable amounts of organic biomarkers persist in paleosols. We have been investigating processes that preserve soil organic carbon on geologic timescales, and how these mechanisms may be sensitive to past climate change. Climate-linked changes in temperature, moisture, pH, and weathering processes can impact carbon preservation via organo-mineral sorption, soil biogeochemistry, and stability based on the physical and chemical properties of organic compounds. These will be discussed and illustrated with examples from our studies of Cenozoic

  9. Multi-model analysis of terrestrial carbon cycles in Japan: reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2009-08-01

    Terrestrial biosphere models show large uncertainties when simulating carbon and water cycles, and reducing these uncertainties is a priority for developing more accurate estimates of both terrestrial ecosystem statuses and future climate changes. To reduce uncertainties and improve the understanding of these carbon budgets, we investigated the ability of flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine-based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and an improved model (based on calibration using flux observations). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using flux observations (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs, and model calibration using flux observations significantly improved the model outputs. These results show that to reduce uncertainties among terrestrial biosphere models, we need to conduct careful validation and calibration with available flux observations. Flux observation data significantly improved terrestrial biosphere models, not only on a point scale but also on spatial scales.

  10. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Science.gov (United States)

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  11. 1km Global Terrestrial Carbon Flux: Estimations and Evaluations

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.

    2017-12-01

    very high correlations, and slight variations were showed in precipitation data. LAI data that was another large driving factor of terrestrial carbon cycle was not included in FLUXNET2015 datasets and it could not be evaluated.

  12. Terrestrial carbon storage dynamics: Chasing a moving target

    Science.gov (United States)

    Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.

    2015-12-01

    Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.

  13. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Science.gov (United States)

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon

  14. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    Science.gov (United States)

    We tested the hypothesis that diurnal changes in terrestrial CO2 exchange are driven exclusively by the direct effect of the physical environment on plant physiology. We failed to corroborate this assumption, finding instead large diurnal fluctuations in whole ecosystem carbon assimilation across a ...

  15. Terrestrial carbon turnover time constraints on future carbon cycle-climate feedback

    Science.gov (United States)

    Fan, N.; Carvalhais, N.; Reichstein, M.

    2017-12-01

    Understanding the terrestrial carbon cycle-climate feedback is essential to reduce the uncertainties resulting from the between model spread in prognostic simulations (Friedlingstein et al., 2006). One perspective is to investigate which factors control the variability of the mean residence times of carbon in the land surface, and how these may change in the future, consequently affecting the response of the terrestrial ecosystems to changes in climate as well as other environmental conditions. Carbon turnover time of the whole ecosystem is a dynamic parameter that represents how fast the carbon cycle circulates. Turnover time τ is an essential property for understanding the carbon exchange between the land and the atmosphere. Although current Earth System Models (ESMs), supported by GVMs for the description of the land surface, show a strong convergence in GPP estimates, but tend to show a wide range of simulated turnover times (Carvalhais, 2014). Thus, there is an emergent need of constraints on the projected response of the balance between terrestrial carbon fluxes and carbon stock which will give us more certainty in response of carbon cycle to climate change. However, the difficulty of obtaining such a constraint is partly due to lack of observational data on temporal change of terrestrial carbon stock. Since more new datasets of carbon stocks such as SoilGrid (Hengl, et al., 2017) and fluxes such as GPP (Jung, et al., 2017) are available, improvement in estimating turnover time can be achieved. In addition, previous study ignored certain aspects such as the relationship between τ and nutrients, fires, etc. We would like to investigate τ and its role in carbon cycle by combining observatinoal derived datasets and state-of-the-art model simulations.

  16. Terrestrial Carbon Cycle Variability [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dennis Baldocchi

    2016-09-01

    Full Text Available A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions. The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y-1 with respect to a large and uncertain background (123 +/- 4 Pg-C y-1

  17. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting.

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P; Clow, David W; Striegl, Robert G

    2016-01-05

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71-149) teragrams of carbon per year (TgC⋅y(-1)) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9-65) TgC⋅y(-1) in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36-110) TgC⋅y(-1) or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass-flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity.

  18. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P.; Clow, David W.; Striegl, Robert G.

    2016-01-01

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71–149) teragrams of carbon per year (TgC⋅y−1) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9–65) TgC⋅y−1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36–110) TgC⋅y−1 or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass–flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity. PMID:26699473

  19. Exploring global carbon turnover and radiocarbon cycling in terrestrial biosphere models

    Science.gov (United States)

    Graven, H. D.; Warren, H.

    2017-12-01

    The uptake of carbon into terrestrial ecosystems through net primary productivity (NPP) and the turnover of that carbon through various pathways are the fundamental drivers of changing carbon stocks on land, in addition to human-induced and natural disturbances. Terrestrial biosphere models use different formulations for carbon uptake and release, resulting in a range of values in NPP of 40-70 PgC/yr and biomass turnover times of about 25-40 years for the preindustrial period in current-generation models from CMIP5. Biases in carbon uptake and turnover impact simulated carbon uptake and storage in the historical period and later in the century under changing climate and CO2 concentration, however evaluating global-scale NPP and carbon turnover is challenging. Scaling up of plot-scale measurements involves uncertainty due to the large heterogeneity across ecosystems and biomass types, some of which are not well-observed. We are developing the modelling of radiocarbon in terrestrial biosphere models, with a particular focus on decadal 14C dynamics after the nuclear weapons testing in the 1950s-60s, including the impact of carbon flux trends and variability on 14C cycling. We use an estimate of the total inventory of excess 14C in the biosphere constructed by Naegler and Levin (2009) using a 14C budget approach incorporating estimates of total 14C produced by the weapons tests and atmospheric and oceanic 14C observations. By simulating radiocarbon in simple biosphere box models using carbon fluxes from the CMIP5 models, we find that carbon turnover is too rapid in many of the simple models - the models appear to take up too much 14C and release it too quickly. Therefore many CMIP5 models may also simulate carbon turnover that is too rapid. A caveat is that the simple box models we use may not adequately represent carbon dynamics in the full-scale models. Explicit simulation of radiocarbon in terrestrial biosphere models would allow more robust evaluation of biosphere

  20. Terrestrial carbon cycle affected by non-uniform climate warming

    International Nuclear Information System (INIS)

    Jianyang Xia; Yiqi Luo; Jiquan Chen; Shilong Piao; Ciais, Philippe; Shiqiang Wan

    2014-01-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30 degrees and 90 degrees N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research. (authors)

  1. Terrestrial biosphere carbon storage under alternative climate projections

    Energy Technology Data Exchange (ETDEWEB)

    Schaphoff, S.; Lucht, W.; Gerten, D.; Sitch, S.; Cramer, W. [Potsdam Institute for Climate Impact Research, P.O. Box 601203, D-14412 Potsdam (Germany); Prentice, I.C. [QUEST, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ (United Kingdom)

    2006-01-15

    This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from -106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.

  2. Terrestrial biosphere carbon storage under alternative climate projections

    International Nuclear Information System (INIS)

    Schaphoff, S.; Lucht, W.; Gerten, D.; Sitch, S.; Cramer, W.; Prentice, I.C.

    2006-01-01

    This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from -106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa

  3. Climate control of terrestrial carbon exchange across biomes and continents

    Science.gov (United States)

    Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...

  4. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  5. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    Science.gov (United States)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal

  6. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Science.gov (United States)

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  7. Evaluation of Terrestrial Carbon Cycle with the Land Use Harmonization Dataset

    Science.gov (United States)

    Sasai, T.; Nemani, R. R.

    2017-12-01

    CO2 emission by land use and land use change (LULUC) has still had a large uncertainty (±50%). We need to more accurately reveal a role of each LULUC process on terrestrial carbon cycle, and to develop more complicated land cover change model, leading to improve our understanding of the mechanism of global warming. The existing biosphere model studies do not necessarily have enough major LULUC process in the model description (e.g., clear cutting and residual soil carbon). The issue has the potential for causing an underestimation of the effect of LULUC on the global carbon exchange. In this study, the terrestrial biosphere model was modified with several LULUC processes according to the land use harmonization data set. The global mean LULUC emission from the year 1850 to 2000 was 137.2 (PgC 151year-1), and we found the noticeable trend in tropical region. As with the case of primary production in the existing studies, our results emphasized the role of tropical forest on wood productization and residual soil organic carbon by cutting. Global mean NEP was decreased by LULUC. NEP is largely affected by decreasing leaf biomass (photosynthesis) by deforestation process and increasing plant growth rate by regrowth process. We suggested that the model description related to deforestation, residual soil decomposition, wood productization and plant regrowth is important to develop a biosphere model for estimating long-term global carbon cycle.

  8. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    Directory of Open Access Journals (Sweden)

    F. Jiang

    2013-08-01

    Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.

  9. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    Science.gov (United States)

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  10. Large historical growth in global terrestrial gross primary production

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M.

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a feedback for climate change, but there is still strong disagreement on the extent to which biogeochemical processes may suppress this GPP growth at the ecosystem to continental scales. The consequent uncertainty in modeling of future carbon storage by the terrestrial biosphere constitutes one of the largest unknowns in global climate projections for the next century. Here we provide a global, measurement-based estimate of historical GPP growth using long-term atmospheric carbonyl sulfide (COS) records derived from ice core, firn, and ambient air samples. We interpret these records using a model that relates changes in the COS concentration to changes in its sources and sinks, the largest of which is proportional to GPP. The COS history was most consistent with simulations that assume a large historical GPP growth. Carbon-climate models that assume little to no GPP growth predicted trajectories of COS concentration over the anthropogenic era that differ from those observed. Continued COS monitoring may be useful for detecting ongoing changes in GPP while extending the ice core record to glacial cycles could provide further opportunities to evaluate earth system models.

  11. Data-driven diagnostics of terrestrial carbon dynamics over North America

    Science.gov (United States)

    Jingfeng Xiao; Scott V. Ollinger; Steve Frolking; George C. Hurtt; David Y. Hollinger; Kenneth J. Davis; Yude Pan; Xiaoyang Zhang; Feng Deng; Jiquan Chen; Dennis D. Baldocchi; Bevery E. Law; M. Altaf Arain; Ankur R. Desai; Andrew D. Richardson; Ge Sun; Brian Amiro; Hank Margolis; Lianhong Gu; Russell L. Scott; Peter D. Blanken; Andrew E. Suyker

    2014-01-01

    The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth's climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale...

  12. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  13. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Science.gov (United States)

    Adloff, Markus; Reick, Christian H.; Claussen, Martin

    2018-04-01

    In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment

  14. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Directory of Open Access Journals (Sweden)

    Thomas Larsen

    Full Text Available Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13C patterns among amino acids (δ(13CAA could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13CAA patterns in contrast to bulk δ(13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  15. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Science.gov (United States)

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  16. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the

  17. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-10-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  18. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Directory of Open Access Journals (Sweden)

    K. Ichii

    2010-07-01

    Full Text Available Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine – based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID, we conducted two simulations: (1 point simulations at four eddy flux sites in Japan and (2 spatial simulations for Japan with a default model (based on original settings and a modified model (based on model parameter tuning using eddy flux data. Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP, most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  19. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  20. Nonautonomous linear system of the terrestrial carbon cycle

    Science.gov (United States)

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to

  1. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Directory of Open Access Journals (Sweden)

    M. Adloff

    2018-04-01

    Full Text Available In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP-type simulations starting from climates representing the Last Glacial Maximum (LGM and pre-industrial times (PI. In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon–climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon–climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon–climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment

  2. Terrestrial carbon losses from mountaintop coal mining offset regional forest carbon sequestration in the 21st century

    International Nuclear Information System (INIS)

    Elliott Campbell, J; Fox, James F; Acton, Peter M

    2012-01-01

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for the prediction of future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates, grassland reclamation, and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025–33 with a 30%–35% loss in terrestrial carbon stocks relative to a scenario with no future mining by the year 2100. Alternatively, scenarios of forest sequestration due to the effect of CO 2 fertilization result in a 15%–24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while power plant stack emissions are the dominant life-cycle stage in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical component of regional carbon budgets. (letter)

  3. Opportunities and Challenges for Terrestrial Carbon Offsetting and Marketing, with Some Implications for Forestry in the UK

    Directory of Open Access Journals (Sweden)

    Maria Nijnik

    2010-12-01

    Full Text Available Background and Purpose: Climate change and its mitigation have become increasingly high profile issues since the late 1990s, with the potential of forestry in carbon sequestration a particular focus. The purpose of this paper is to outline the importance of socio-economic considerations in this area. Opportunities for forestry to sequester carbon and the role of terrestrial carbon uptake credits in climate change negotiations are addressed, together with the feasibility of bringing terrestrial carbon offsets into the regulatory emission trading scheme. The paper discusses whether or not significant carbon offsetting and trading will occur on a large scale in the UK or internationally. Material and Methods: The paper reviews the literature on the socio-economic aspects of climate change mitigation via forestry (including the authors’ research on this topic to assess the potential for carbon offsetting and trading, and the likely scale of action. Results and Conclusion: We conclude that the development of appropriate socio-economic framework conditions (e.g. policies, tenure rights, including forest carbon ownership, and markets and incentives for creating and trading terrestrial carbon credits are important in mitigating climate change through forestry projects, and we make suggestions for future research that would be required to support such developments.

  4. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Science.gov (United States)

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  5. Influence of multiple global change drivers on terrestrial carbon storage

    DEFF Research Database (Denmark)

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum of their indivi......The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum...... additive effects of multiple global change drivers into future assessments of the C storage ability of terrestrial ecosystems....

  6. Climate control of terrestrial carbon exchange across biomes and continents

    DEFF Research Database (Denmark)

    Yi, Chuixiang; Ricciuto, Daniel; Li, Runze

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships betwe...

  7. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Ricciuto, D.; Li, R.; Hendriks, D.M.D.; Moors, E.J.; Valentini, R.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between

  8. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Jacobs, C.M.J.; Moors, E.J.; Elbers, J.A.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between

  9. Multi-factor controls on terrestrial carbon dynamics in urbanized areas

    Science.gov (United States)

    Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.

    2014-12-01

    As urban land expands rapidly across the globe, much concern has been raised that urbanization may alter the terrestrial carbon cycle. Urbanization involves complex changes in land structure and multiple environmental factors. Little is known about the relative contribution of these individual factors and their interactions to the terrestrial carbon dynamics, however, which is essential for assessing the effectiveness of carbon sequestration policies focusing on urban development. This study developed a comprehensive analysis framework for quantifying relative contribution of individual factors (and their interactions) to terrestrial carbon dynamics in urbanized areas. We identified 15 factors belonging to five categories, and we applied a newly developed factorial analysis scheme to the southern United States (SUS), a rapidly urbanizing region. In all, 24 numeric experiments were designed to systematically isolate and quantify the relative contribution of individual factors. We found that the impact of land conversion was far larger than other factors. Urban managements and the overall interactive effects among major factors, however, created a carbon sink that compensated for 42% of the carbon loss in land conversion. Our findings provide valuable information for regional carbon management in the SUS: (1) it is preferable to preserve pre-urban carbon pools than to rely on the carbon sinks in urban ecosystems to compensate for the carbon loss in land conversion. (2) In forested areas, it is recommendable to improve landscape design (e.g., by arranging green spaces close to the city center) to maximize the urbanization-induced environmental change effect on carbon sequestration. Urbanization-induced environmental change will be less effective in shrubland regions. (3) Urban carbon sequestration can be significantly improved through changes in management practices, such as increased irrigation and fertilizer and targeted use of vehicles and machinery with least

  10. The effects of land cover and land use change on the contemporary carbon balance of the arctic and boreal terrestrial ecosystems of northern Eurasia

    Science.gov (United States)

    Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.

    2010-01-01

    Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.

  11. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  12. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    Science.gov (United States)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; van Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  13. Accelerator mass analyses of meteorites - carbon-14 terrestrial ages

    International Nuclear Information System (INIS)

    Miura, Y.; Rucklidge, J.; Beukens, R.; Fireman, E.

    1988-01-01

    Carbon-14 terrestrial ages of ten Antarctic meteorites have been measured by the IsoTrace accelerator mass spectrometry (AMS). The 14 C terrestrial age of 1 gram sample was determined from 14 C concentrations collected at melt and re-melt temperatures, compared with the 14 C concentration of the known Bruderheim chondrite. Yamato-790448 (LL3) chondrite was found to be the oldest terrestrial age of 3x10 4 years in the nine Yamato chondrites, whereas Yamato-791630 (L4) chondrite is considered to be the youngest chondrites less than thousand years. Allan Hills chondrite of ALH-77231 (L6) shows older terrestrial age than the nine Yamato chondrites. New accelerator data of the terrestrial age show higher accuracy with smaller sample than the previous counting method. (author)

  14. Do ENSO and Coastal Development Enhance Coastal Burial of Terrestrial Carbon?

    Science.gov (United States)

    Macreadie, Peter I; Rolph, Timothy C; Boyd, Ron; Schröder-Adams, Claudia J; Skilbeck, Charles G

    2015-01-01

    Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensification--both of which are predicted to increase over the coming century--can enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial-marine carbon connectivity into global carbon budgets.

  15. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    Science.gov (United States)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have

  16. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Science.gov (United States)

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  17. The Global Influence of Cloud Optical Thickness on Terrestrial Carbon Uptake

    Science.gov (United States)

    Zhu, P.; Cheng, S. J.; Keppel-Aleks, G.; Butterfield, Z.; Steiner, A. L.

    2016-12-01

    Clouds play a critical role in regulating Earth's climate. One important way is by changing the type and intensity of solar radiation reaching the Earth's surface, which impacts plant photosynthesis. Specifically, the presence of clouds modifies photosynthesis rates by influencing the amount of diffuse radiation as well as the spectral distribution of solar radiation. Satellite-derived cloud optical thickness (COT) may provide the observational constraint necessary to assess the role of clouds on ecosystems and terrestrial carbon uptake across the globe. Previous studies using ground-based observations at individual sites suggest that below a COT of 7, there is a greater increase in light use efficiency than at higher COT values, providing evidence for higher carbon uptake rates than expected given the reduction in radiation by clouds. However, the strength of the COT-terrestrial carbon uptake correlation across the globe remains unknown. In this study, we investigate the influence of COT on terrestrial carbon uptake on a global scale, which may provide insights into cloud conditions favorable for plant photosynthesis and improve our estimates of the land carbon sink. Global satellite-derived MODIS data show that tropical and subtropical regions tend to have COT values around or below the threshold during growing seasons. We find weak correlations between COT and GPP with Fluxnet MTE global GPP data, which may be due to the uncertainty of upscaling GPP from individual site measurements. Analysis with solar-induced fluorescence (SIF) as a proxy for GPP is also evaluated. Overall, this work constructs a global picture of the role of COT on terrestrial carbon uptake, including its temporal and spatial variations.

  18. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    NARCIS (Netherlands)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-01-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global

  19. Carbon Sequestration in Terrestrial Ecosystems: A Status Report on R and D Progress

    International Nuclear Information System (INIS)

    Jacobs, G.K.

    2001-01-01

    Sequestration of carbon in terrestrial ecosystems is a low-cost option that may be available in the near-term to mitigate increasing atmospheric CO(sub 2) concentrations, while providing additional benefits. Storing carbon in terrestrial ecosystems can be achieved through maintenance of standing aboveground biomass, utilization of aboveground biomass in long-lived products, or protection of carbon (organic and inorganic) compounds present in soils. There are potential co-benefits from efforts to sequester carbon in terrestrial ecosystems. For example, long-lived valuable products (wood) are produced, erosion would be reduced, soil productivity could be improved through increased capacity to retain water and nutrients, and marginal lands could be improved and riparian ecosystems restored. Another unique feature of the terrestrial sequestration option is that it is the only option that is ''reversible'' should it become desirable or permissible. For example, forests that are created are thus investments which could be harvested should CO(sub 2) emissions be reduced in other ways to acceptable levels 50-100 years from now

  20. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    Science.gov (United States)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  1. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NARCIS (Netherlands)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-01-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net

  2. Climate control of terrestrial carbon exchange across biomes and continents

    Czech Academy of Sciences Publication Activity Database

    Yi, C.; Ricciuto, D.; Marek, Michal V.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 034007 ISSN 1748-9326 Institutional research plan: CEZ:AV0Z60870520 Keywords : NEE * climate control * terrestrial carbon sequestration * temperature * dryness * eddy flux * biomes * photosynthesis * respiration * global carbon cycle Subject RIV: EH - Ecology, Behaviour Impact factor: 3.049, year: 2010

  3. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    Directory of Open Access Journals (Sweden)

    S. Q. Zhao

    2009-08-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at the local to global scales.

  4. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    Science.gov (United States)

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    compared to Cariaco where temperature and hydrologic change may have acted in concert on the rate of terrestrial carbon turnover. This study has important implications for understanding the effects of large climate change on terrestrial carbon storage, as well as applications of terrestrial biomarkers for paleoclimate records.

  5. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Méndez, M Soledad; Ballaré, Carlos L

    2016-04-19

    A mechanistic understanding of the controls on carbon storage and losses is essential for our capacity to predict and mitigate human impacts on the global carbon cycle. Plant litter decomposition is an important first step for carbon and nutrient turnover, and litter inputs and losses are essential in determining soil organic matter pools and the carbon balance in terrestrial ecosystems. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid lands; however, the global significance of this process as a control on carbon cycling in terrestrial ecosystems is not known. Here we show that, across a wide range of plant species, photodegradation enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility to plant litter carbohydrates for microbial enzymes. Photodegradation of plant litter, driven by UV radiation, and especially visible (blue-green) light, reduced the structural and chemical bottleneck imposed by lignin in secondary cell walls. In leaf litter from woody species, specific interactions with UV radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized effect of sunlight exposure on subsequent microbial activity, mediated by increased accessibility to cell wall polysaccharides, suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release, and the carbon balance in a broad range of terrestrial ecosystems.

  6. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    Science.gov (United States)

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  7. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Science.gov (United States)

    Oschlies, A.

    2009-08-01

    The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere

  8. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea

    Science.gov (United States)

    Keskitalo, Kirsi; Tesi, Tommaso; Bröder, Lisa; Andersson, August; Pearce, Christof; Sköld, Martin; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Örjan

    2017-09-01

    Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past ˜ 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with δ13C suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between ˜ 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Δ14C, δ13C) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.

  9. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  10. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  11. Simulation of carbon isotope discrimination of the terrestrial biosphere

    Science.gov (United States)

    Suits, N. S.; Denning, A. S.; Berry, J. A.; Still, C. J.; Kaduk, J.; Miller, J. B.; Baker, I. T.

    2005-03-01

    We introduce a multistage model of carbon isotope discrimination during C3 photosynthesis and global maps of C3/C4 plant ratios to an ecophysiological model of the terrestrial biosphere (SiB2) in order to predict the carbon isotope ratios of terrestrial plant carbon globally at a 1° resolution. The model is driven by observed meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), constrained by satellite-derived Normalized Difference Vegetation Index (NDVI) and run for the years 1983-1993. Modeled mean annual C3 discrimination during this period is 19.2‰; total mean annual discrimination by the terrestrial biosphere (C3 and C4 plants) is 15.9‰. We test simulation results in three ways. First, we compare the modeled response of C3 discrimination to changes in physiological stress, including daily variations in vapor pressure deficit (vpd) and monthly variations in precipitation, to observed changes in discrimination inferred from Keeling plot intercepts. Second, we compare mean δ13C ratios from selected biomes (Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal) to the observed values from Keeling plots at these biomes. Third, we compare simulated zonal δ13C ratios in the Northern Hemisphere (20°N to 60°N) to values predicted from high-frequency variations in measured atmospheric CO2 and δ13C from terrestrially dominated sites within the NOAA-Globalview flask network. The modeled response to changes in vapor pressure deficit compares favorably to observations. Simulated discrimination in tropical forests of the Amazon basin is less sensitive to changes in monthly precipitation than is suggested by some observations. Mean model δ13C ratios for Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal biomes compare well with the few measurements available; however, there is more variability in observations than in the simulation, and modeled δ13C values for tropical forests are heavy relative to observations

  12. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  13. A tree-ring perspective on the terrestrial carbon cycle

    International Nuclear Information System (INIS)

    Babst, F.; Alexander, M.R.; Szejner, P.; Trouet, V.; Alexander, M.R.; Moore, D.J.P.; Bouriaud, O.; Klesse, S.; Frank, D.; Roden, J.; Ciais, P.; Poulter, B.

    2014-01-01

    Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO 2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective. (authors)

  14. Climate control of terrestrial carbon exchange across biomes and continents

    Energy Technology Data Exchange (ETDEWEB)

    Yi Chuixiang; Wolbeck, John; Xu Xiyan [School of Earth and Environmental Sciences, Queens College, City University of New York, NY 11367 (United States); Ricciuto, Daniel [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Li Runze [Department of Statistics, Pennsylvania State University, University Park, PA 16802 (United States); Nilsson, Mats [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden); Aires, Luis [CESAM and Department of Environmental Engineering, School of Technology and Management, Polytechnic Institute of Leiria (Portugal); Albertson, John D [Department of Civil and Environmental Engineering, Duke University, Durham, NC 22708-0287 (United States); Ammann, Christof [Federal Research Station Agroscope Reckenholz-Taenikon, Reckenholzstrasse 191, 8046 Zuerich (Switzerland); Arain, M Altaf [School of Geography and Earth Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada); De Araujo, Alessandro C [Instituto Nacional de Pesquisas da Amazonia, Programa LBA, Campus-II, Manaus-Amazonas 69060 (Brazil); Aubinet, Marc [University of Liege, Gembloux Agro-Bio Tech, Unit of Biosystem Physics, 2 Passage des Deportes, 5030 Gembloux (Belgium); Aurela, Mika [Finnish Meteorological Institute, Climate Change Research, FI-00101 Helsinki (Finland); Barcza, Zoltan [Department of Meteorology, Eoetvoes Lorand University, H-1117 Budapest, Pazmany setany 1/A (Hungary); Barr, Alan [Climate Research Division, Environment Canada, Saskatoon, SK, S7N 3H5 (Canada); Berbigier, Paul [INRA, UR1263 EPHYSE, Villenave d' Ornon F-33883 (France); Beringer, Jason [School of Geography and Environmental Science, Monash University, Clayton, Victoria 3800 (Australia); Bernhofer, Christian [Institute of Hydrology and Meteorology, Dresden University of Technology, Pienner Strasse 23, D-01737, Tharandt (Germany)

    2010-07-15

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO{sub 2} exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 deg. N). The sensitivity of NEE to mean annual temperature breaks down at {approx} 16 deg. C (a threshold value of mean annual temperature), above which no further increase of CO{sub 2} uptake with temperature was observed and dryness influence overrules temperature influence.

  15. Climate control of terrestrial carbon exchange across biomes and continents

    International Nuclear Information System (INIS)

    Yi Chuixiang; Wolbeck, John; Xu Xiyan; Ricciuto, Daniel; Li Runze; Nilsson, Mats; Aires, Luis; Albertson, John D; Ammann, Christof; Arain, M Altaf; De Araujo, Alessandro C; Aubinet, Marc; Aurela, Mika; Barcza, Zoltan; Barr, Alan; Berbigier, Paul; Beringer, Jason; Bernhofer, Christian

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO 2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 deg. N). The sensitivity of NEE to mean annual temperature breaks down at ∼ 16 deg. C (a threshold value of mean annual temperature), above which no further increase of CO 2 uptake with temperature was observed and dryness influence overrules temperature influence.

  16. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

    Science.gov (United States)

    Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A.

    2018-04-01

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of {0.70}_{-0.31}^{+0.27} to {1.52}_{-0.90}^{+1.09} Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  17. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    Science.gov (United States)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  18. Global variation of carbon use efficiency in terrestrial ecosystems

    Science.gov (United States)

    Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus

    2017-04-01

    Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0

  19. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL, May 6-8, 2008

    Science.gov (United States)

    Robbins, L.L.; Coble, P.G.; Clayton, T.D.; Cai, W.J.

    2009-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. In May 2008, the Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico was held in St. Petersburg, FL, to address the information gaps of carbon fluxes associated with the Gulf of Mexico and to offer recommendations to guide future research. The meeting was attended by over 90 participants from over 50 U.S. and Mexican institutions and agencies. The Ocean Carbon and Biogeochemistry program (OCB; http://www.us-ocb.org/) sponsored this workshop with support from the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the U.S. Geological Survey, and the University of South Florida. The goal of

  20. European-wide simulations of present cropland phenology, productivity and carbon fluxes using an improved terrestrial biosphere model

    Science.gov (United States)

    Smith, P. C.; Ciais, P.; de Noblet, N.; Peylin, P.; Viovy, N.; Bondeau, A.

    2009-04-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model ORCHIDEE (for vegetation productivity, water balance, soil carbon dynamics) and the generic crop model STICS (for phenology, irrigation, nitrogen balance, harvest). The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated Leaf Area Index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favourably with remote-sensing observations (the Figure of Merit in Time doubles over Europe). Crop yield is derived from annual Net Primary Productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30-year mean simulated and reported yields remain large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced towards the observed variability (~10%) when using ORCHIDEE-STICS. The simulated 2003 anomalous carbon source from European ecosystems to the atmosphere due to the 2003 summer heat wave is in good agreement with atmospheric inversions (~0.2 GtC, from May to October). The anomaly is twice as large in the ORCHIDEE alone simulation, owing to the unrealistically high exposure of herbaceous plants to the extreme summer conditions. Overall, this study highlights the importance of accounting for the specific phonologies of crops sown both in winter and in spring and for irrigation applied to summer crops in regional/global models of the terrestrial carbon cycle. Limitations suggest accounting for temporal and spatial variability in agricultural practices for further simulation improvement.

  1. The importance of terrestrial carbon in supporting molluscs in the wetlands of Poyang Lake

    Science.gov (United States)

    Zhang, Huan; Yu, Xiubo; Wang, Yuyu; Xu, Jun

    2017-07-01

    Allochthonous organic matter plays an important role in nutrient cycling and energy mobilization in freshwater ecosystems. However, the subsidies of this carbon source in floodplain ecosystems have not yet well understood. We used a Bayesian mixing model and stable isotopes (δ13C and δ15N) of primary food resources and dominant molluscs species, to estimate the relative importance of allochthonous carbon sources for consumers in a representative sub-lake of Poyang Lake during a prolonged dry season. Our study inferred that terrestrial-derived carbon from Carex spp. could be the primary contributor to snails and mussels in Dahuchi Lake. The mean percentage of allochthonous food resources accounted for 35%-50% of the C incorporated by these consumers. Seston was another important energy sources for benthic consumers. However, during the winter and low water-level period, benthic algae and submerged vegetation contributed less carbon to benthic consumers. Our data highlighted the importance of terrestrial organic carbon to benthic consumers in the wetlands of Poyang Lake during the prolonged dry period. Further, our results provided a perspective that linkages between terrestrial and aquatic ecosystems might be facilitated by wintering geese via their droppings.

  2. Asia-MIP: Multi Model-data Synthesis of Terrestrial Carbon Cycles in Asia

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ito, A.; Kang, M.; Sasai, T.; SATO, H.; Ueyama, M.; Kobayashi, H.; Saigusa, N.; Kim, J.

    2013-12-01

    Asia, which is characterized by monsoon climate and intense human activities, is one of the prominent understudied regions in terms of terrestrial carbon budgets and mechanisms of carbon exchange. To better understand terrestrial carbon cycle in Asia, we initiated multi-model and data intercomparison project in Asia (Asia-MIP). We analyzed outputs from multiple approaches: satellite-based observations (AVHRR and MODIS) and related products, empirically upscaled estimations (Support Vector Regression) using eddy-covariance observation network in Asia (AsiaFlux, CarboEastAsia, FLUXNET), ~10 terrestrial biosphere models (e.g. BEAMS, Biome-BGC, LPJ, SEIB-DGVM, TRIFFID, VISIT models), and atmospheric inversion analysis (e.g. TransCom models). We focused on the two difference temporal coverage: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2010; data intensive period) scales. The regions of covering Siberia, Far East Asia, East Asia, Southeast Asia and South Asia (60-80E, 10S-80N), was analyzed in this study for assessing the magnitudes, interannual variability, and key driving factors of carbon cycles. We will report the progress of synthesis effort to quantify terrestrial carbon budget in Asia. First, we analyzed the recent trends in Gross Primary Productivities (GPP) using satellite-based observation (AVHRR) and multiple terrestrial biosphere models. We found both model outputs and satellite-based observation consistently show an increasing trend in GPP in most of the regions in Asia. Mechanisms of the GPP increase were analyzed using models, and changes in temperature and precipitation play dominant roles in GPP increase in boreal and temperate regions, whereas changes in atmospheric CO2 and precipitation are important in tropical regions. However, their relative contributions were different. Second, in the decadal analysis (2001-2010), we found that the negative GPP and carbon uptake anomalies in 2003 summer in Far East Asia is one of the largest

  3. The limits to global-warming mitigation by terrestrial carbon removal

    OpenAIRE

    Boysen, L.; Lucht, W.; Gerten, D.; Heck, V.; Lenton, T.; Schellnhuber, H.

    2017-01-01

    Massive near-term greenhouse gas emissions reduction is a precondition for staying "well below 2°C" global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature "overshoot" in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to "repair" delayed or insufficient emissions redu...

  4. What Drives Carbon Isotope Fractionation by the Terrestrial Biosphere?

    Science.gov (United States)

    Still, Christopher; Rastogi, Bharat

    2017-11-01

    During photosynthesis, terrestrial plants preferentially assimilate the lighter and much more abundant form of carbon, 12C, which accounts for roughly 99% of naturally occurring forms of this element. This photosynthetic preference for lighter carbon is driven principally by differences in molecular diffusion of carbon dioxide with differing 13C/12C across stomatal pores on leaves, followed by differences in carboxylation rates by the Rubisco enzyme that is central to the process of photosynthesis. As a result of these slight preferences, which work out to about a 2% difference in the fixation rates of 12CO2 versus 13CO2 by C3 vegetation, plant tissues are depleted in the heavier form of carbon (13C) relative to atmospheric CO2. This difference has been exploited in a wide range of scientific applications, as the photosynthetic isotope signature is passed to ecosystem carbon pools and through ecological food webs. What is less appreciated is the signature that terrestrial carbon exchanges leave on atmospheric CO2, as the net uptake of carbon by land plants during their growing season not only draws down the local CO2 concentration, it also leaves behind relatively more CO2 molecules containing 13C. The converse happens outside the growing season, when autotrophic and heterotrophic respiration predominate. During these periods, atmospheric CO2 concentration increases and its corresponding carbon isotope composition becomes relatively depleted in 13C as the products of photosynthesis are respired, along with some small isotope fractionation that happen downstream of the initial photosynthetic assimilation. Similar phenomena were first observed at shorter time scales by the eminent carbon cycle scientist, Charles (Dave) Keeling. Keeling collected samples of air in glass flasks from sites along the Big Sur coast that he later measured for CO2 concentration and carbon isotope composition (δ13C) in his lab (Keeling, 1998). From these samples, Keeling observed increasing

  5. The terrestrial carbon cycle on the regional and global scale : modeling, uncertainties and policy relevance

    NARCIS (Netherlands)

    Minnen, van J.G.

    2008-01-01

    Contains the chapters: The importance of three centuries of climate and land-use change for the global and regional terrestrial carbon cycle; and The terrestrial C cycle and its role in the climate change policy

  6. Implications of land use change on the national terrestrial carbon budget of Georgia

    Directory of Open Access Journals (Sweden)

    Olofsson Pontus

    2010-09-01

    Full Text Available Abstract Background Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. Results The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. Conclusions We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.

  7. Implications of land use change on the national terrestrial carbon budget of Georgia.

    Science.gov (United States)

    Olofsson, Pontus; Torchinava, Paata; Woodcock, Curtis E; Baccini, Alessandro; Houghton, Richard A; Ozdogan, Mutlu; Zhao, Feng; Yang, Xiaoyuan

    2010-09-13

    Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.

  8. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul; Loveland, Thomas R.

    2018-01-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr−1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr−1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr−1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  9. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul C.; Loveland, Thomas R.

    2018-04-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr‑1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr‑1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr‑1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  10. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  11. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  12. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    Science.gov (United States)

    Tian, H.; Melillo, J. M.; Kicklighter, D. W.; McGuire, A. D.; Helfrich, J.

    1999-04-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900 1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2Pg C) and soil organic carbon decreasing by 1.9% (1.1Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7Pg C

  13. Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview

    Directory of Open Access Journals (Sweden)

    Nicholas C. Coops

    2009-10-01

    Full Text Available Coupled terrestrial carbon (C, nitrogen (N and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc. and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers.

  14. Understanding of coupled terrestrial carbon, nitrogen and water dynamics-an overview.

    Science.gov (United States)

    Chen, Baozhang; Coops, Nicholas C

    2009-01-01

    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO(2) mixing ratio towers and chambers.

  15. Terrestrial Carbon[Environmental Pollution: Part I, Special Issue, March 2002, Part II, Special Issue Supplement to 116/3, 2002

    International Nuclear Information System (INIS)

    Mickler, Robert; McNulty, Steven

    2002-01-01

    These issues contain a total of forty-four peer reviewed science papers on terrestrial carbon presented at the Advances in Terrestrial Ecosystem Carbon Inventory, Measurements, and Monitoring Conference held in Raleigh, N.C., in October 2000

  16. Terrestrial Carbon [Environmental Pollution: Part I, Special Issue, March 2002; Part II, Special Issue Supplement to 116/3, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Mickler, Robert (ed.); McNulty, Steven (ed.)

    2002-03-01

    These issues contain a total of forty-four peer reviewed science papers on terrestrial carbon presented at the Advances in Terrestrial Ecosystem Carbon Inventory, Measurements, and Monitoring Conference held in Raleigh, N.C., in October 2000.

  17. A terrestrial Eocene stack: tying terrestrial lake ecology to marine carbon cycling through the Early Eocene Climatic Optimum

    Science.gov (United States)

    Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.

    2010-12-01

    The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.

  18. Modeling Carbon Turnover in Five Terrestrial Ecosystems in the Boreal Zone Using Multiple Criteria of Acceptance

    International Nuclear Information System (INIS)

    Karlberg, Louise; Gustafsson, David; Jansson, Per-Erik

    2006-01-01

    Estimates of carbon fluxes and turnover in ecosystems are key elements in the understanding of climate change and in predicting the accumulation of trace elements in the biosphere. In this paper we present estimates of carbon fluxes and turnover times for five terrestrial ecosystems using a modeling approach. Multiple criteria of acceptance were used to parameterize the model, thus incorporating large amounts of multi-faceted empirical data in the simulations in a standardized manner. Mean turnover times of carbon were found to be rather similar between systems with a few exceptions, even though the size of both the pools and the fluxes varied substantially. Depending on the route of the carbon through the ecosystem, turnover times varied from less than one year to more than one hundred, which may be of importance when considering trace element transport and retention. The parameterization method was useful both in the estimation of unknown parameters, and to identify variability in carbon turnover in the selected ecosystems

  19. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    Science.gov (United States)

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo

    2010-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.

  20. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  1. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks

    International Nuclear Information System (INIS)

    House, J.I.; Prentice, I.C.; Heimann, M.; Ramankutty, N.

    2003-01-01

    The magnitude and location of terrestrial carbon sources and sinks remains subject to large uncertainties. Estimates of terrestrial CO 2 fluxes from ground-based inventory measurements typically find less carbon uptake than inverse model calculations based on atmospheric CO 2 measurements, while a wide range of results have been obtained using models of different types. However, when full account is taken of the processes, pools, time scales and geographic areas being measured, the different approaches can be understood as complementary rather than inconsistent, and can provide insight as to the contribution of various processes to the terrestrial carbon budget. For example, quantitative differences between atmospheric inversion model estimates and forest inventory estimates in northern extratropical regions suggest that carbon fluxes to soils (often not accounted for in inventories), and into non-forest vegetation, may account for about half of the terrestrial uptake. A consensus of inventory and inverse methods indicates that, in the 1980s, northern extratropical land regions were a large net sink of carbon, and the tropics were approximately neutral (albeit with high uncertainty around the central estimate of zero net flux). The terrestrial flux in southern extratropical regions was small. Book-keeping model studies of the impacts of land-use change indicated a large source in the tropics and almost zero net flux for most northern extratropical regions; similar land use change impacts were also recently obtained using process-based models. The difference between book-keeping land-use change model studies and inversions or inventories was previously interpreted as a 'missing' terrestrial carbon uptake. Land-use change studies do not account for environmental or many management effects (which are implicitly included in inventory and inversion methods). Process-based model studies have quantified the impacts of CO 2 fertilisation and climate change in addition to

  2. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently

  3. Status and potential of terrestrial carbon sequestration in West Virginia

    Science.gov (United States)

    Benktesh D. Sharma; Jingxin. Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  4. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990-2100

    International Nuclear Information System (INIS)

    Zaehle, S.; Bondeau, A.; Cramer, W.; Erhard, M.; Sitch, S.; Smith, P.C.; Zaehle, S.; Smith, P.C.; Carter, T.R.; Erhard, M.; Prentice, C.; Prentice, C.; Reginster, I.; Rounsevell, M.D.A.; Sitch, S.; Smith, B.; Sykes, M

    2007-01-01

    Changes in climate and land use, caused by socio-economic changes, greenhouse gas emissions, agricultural policies and other factors, are known to affect both natural and managed ecosystems, and will likely impact on the European terrestrial carbon balance during the coming decades. This study presents a comprehensive European Union wide (EU15 plus Norway and Switzerland, EU*) assessment of potential future changes in terrestrial carbon storage considering these effects based on four illustrative IPCC-SRES story-lines (A1FI, A2, B1, B2). A process-based land vegetation model (LPJ-DGVM), adapted to include a generic representation of managed ecosystems, is forced with changing fields of land-use patterns from 1901 to 2100 to assess the effect of land-use and cover changes on the terrestrial carbon balance of Europe. The uncertainty in the future carbon balance associated with the choice of a climate change scenario is assessed by forcing LPJ-DGVM with output from four different climate models (GCMs: CGCM2, CSIRO2, HadCM3, PCM2) for the same SRES story-line. Decrease in agricultural areas and afforestation leads to simulated carbon sequestration for all land-use change scenarios with an average net uptake of 17-38 Tg C/year between 1990 and 2100, corresponding to 1.9-2.9% of the EU*s CO 2 emissions over the same period. Soil carbon losses resulting from climate warming reduce or even offset carbon sequestration resulting from growth enhancement induced by climate change and increasing atmospheric CO 2 concentrations in the second half of the twenty-first century. Differences in future climate change projections among GCMs are the main cause for uncertainty in the cumulative European terrestrial carbon uptake of 4.4-10.1 Pg C between 1990 and 2100. (authors)

  5. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea

    NARCIS (Netherlands)

    Karlsson, E. S.; Charkin, A. N.; Dudarev, O.; Semiletov, I.; Vonk, J. E.; Sánchez-García, L.; Andersson, A.

    2011-01-01

    The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC) from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating

  6. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis

    International Nuclear Information System (INIS)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A.; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. - Highlights: • Meta-analysis was used to address the effects of N addition on C cycle. • N addition caused an large decease in belowground plant C pool. • N-rich and N-limited ecosystems had different responses to N addition. - N addition caused a large decrease in below-ground plant C pool.

  7. Insights into deep-time terrestrial carbon cycle processes from modern plant isotope ecology

    Science.gov (United States)

    Sheldon, N. D.; Smith, S. Y.

    2012-12-01

    While the terrestrial biosphere and soils contain much of the readily exchangeable carbon on Earth, how those reservoirs function on long time scales and at times of higher atmospheric CO2 and higher temperatures is poorly understood, which limits our ability to make accurate future predictions of their response to anthropogenic change. Recent data compilation efforts have outlined the response of plant carbon isotope compositions to a variety of environmental factors including precipitation amount and timing, elevation, and latitude. The compilations involve numerous types of plants, typically only found at a limited number of climatic conditions. Here, we expand on those efforts by examining the isotopic response of specific plant groups found both globally and across environmental gradients including: 1) ginkgo, 2) conifers, and 3) C4 grasses. Ginkgo is presently widely distributed as a cultivated plant and the ginkgoalean fossil record spans from the Permian to the present, making it an ideal model organism to understand climatic influence on carbon cycling both in modern and ancient settings. Ginkgo leaves have been obtained from a range of precipitation conditions (400-2200 mm yr-1), including dense sampling from individuals and populations in both Mediterranean and temperate climate areas and samples of different organs and developmental stages. Ginkgo carbon isotope results plot on the global C3 plant array, are consistent among trees at single sites, among plant organs, and among development stages, making ginkgo a robust recorder of both climatic conditions and atmospheric δ13C. In contrast, a climate-carbon isotope transect in Arizona highlights that conifers (specifically, pine and juniper) record large variability between organs and have a very different δ13C slope as a function of climate than the global C3 plant array, while C4 plants have a slope with the opposite sign as a function of climate. This has a number of implications for paleo

  8. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration

    Science.gov (United States)

    E. M. Stacy; S. C. Hart; C. T. Hunsaker; D. W. Johnson; A. A. Berhe

    2015-01-01

    Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual...

  9. Terrestrial gross carbon dioxide uptake : Global distribution and covariation with climate

    NARCIS (Netherlands)

    Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M. Altaf; Baldocchi, Dennis D.; Bonan, Gordon B.; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W.; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher M.; Woodward, F. Ian; Papale, Dario

    2010-01-01

    Terrestrial gross primary production (GPP) is the largest global CO 2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year-1) using eddy covariance flux data and various diagnostic models. Tropical forests

  10. Soil carbon management in large-scale Earth system modelling

    DEFF Research Database (Denmark)

    Olin, S.; Lindeskog, M.; Pugh, T. A. M.

    2015-01-01

    , carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us...

  11. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis.

    Science.gov (United States)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-11-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Importance of vegetation dynamics for future terrestrial carbon cycling

    International Nuclear Information System (INIS)

    Ahlström, Anders; Smith, Benjamin; Xia, Jianyang; Luo, Yiqi; Arneth, Almut

    2015-01-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO 2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO 2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand

  13. Carbon-isotope stratigraphy from terrestrial organic matter through the Monterey event, Miocene, New Jersey margin (IODP Expedition 313)

    DEFF Research Database (Denmark)

    Fang, Linhao; Bjerrum, Christian J.; Hesselbo, Stephen P.

    2013-01-01

    documented from oceanic settings (i.e., lack of positive excursion of carbon-isotope values in terrestrial organic matter through the Langhian Stage). Factors that may potentially bias local terrestrial carbon-isotope records include reworking from older deposits, degradation and diagenesis, as well....../or reworking of older woody phytoclasts, but where such processes have occurred they do not readily explain the observed carbon-isotope values. It is concluded that the overall carbon-isotope signature for the exchangeable carbon reservoir is distorted, to the extent that the Monterey event excursion...... is not easily identifiable. The most likely explanation is that phytoclast reworking has indeed occurred in clinoform toe-of-slope facies, but the reason for the resulting relatively heavy carbon-isotope values in the Burdigalian remains obscure....

  14. Final Report: Fundamental Research on the Fractionation of Carbon Isotopes during Photosynthesis, New Interpretations of Terrestrial Organic Carbon within Geologic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jahren, A. Hope [Univ. of Hawaii, Honolulu, HI (United States); Schubert, Brian A. [Univ. of Louisiana, Lafayette, LA (United States)

    2017-08-02

    The goal for the current grant period (2013 – 2016) was to quantify the effect of changing atmospheric carbon dioxide concentration (pCO2) on published terrestrial carbon isotope excursion events. This work supported four scientists across multiple career stages, and resulted in 5 published papers.

  15. Patterns and controls of inter-annual variability in the terrestrial carbon budget

    Science.gov (United States)

    Marcolla, Barbara; Rödenbeck, Christian; Cescatti, Alessandro

    2017-08-01

    The terrestrial carbon fluxes show the largest variability among the components of the global carbon cycle and drive most of the temporal variations in the growth rate of atmospheric CO2. Understanding the environmental controls and trends of the terrestrial carbon budget is therefore essential to predict the future trajectories of the CO2 airborne fraction and atmospheric concentrations. In the present work, patterns and controls of the inter-annual variability (IAV) of carbon net ecosystem exchange (NEE) have been analysed using three different data streams: ecosystem-level observations from the FLUXNET database (La Thuile and 2015 releases), the MPI-MTE (model tree ensemble) bottom-up product resulting from the global upscaling of site-level fluxes, and the Jena CarboScope Inversion, a top-down estimate of surface fluxes obtained from observed CO2 concentrations and an atmospheric transport model. Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of IAV were investigated between the three data sources. Results show that the global average of IAV at FLUXNET sites, quantified as the standard deviation of annual NEE, peaks in arid ecosystems and amounts to ˜ 120 gC m-2 y-1, almost 6 times more than the values calculated from the two global products (15 and 20 gC m-2 y-1 for MPI-MTE and the Jena Inversion, respectively). Most of the temporal variability observed in the last three decades of the MPI-MTE and Jena Inversion products is due to yearly anomalies, whereas the temporal trends explain only about 15 and 20 % of the variability, respectively. Both at the site level and on a global scale, the IAV of NEE is driven by the gross primary productivity and in particular by the cumulative carbon flux during the months when land acts as a sink. Altogether these results offer a broad view on the magnitude, spatial patterns and environmental drivers of IAV from a variety of data sources that can be

  16. A New Global LAI Product and Its Use for Terrestrial Carbon Cycle Estimation

    Science.gov (United States)

    Chen, J. M.; Liu, R.; Ju, W.; Liu, Y.

    2014-12-01

    For improving the estimation of the spatio-temporal dynamics of the terrestrial carbon cycle, a new time series of the leaf area index (LAI) is generated for the global land surface at 8 km resolution from 1981 to 2012 by combining AVHRR and MODIS satellite data. This product differs from existing LAI products in the following two aspects: (1) the non-random spatial distribution of leaves with the canopy is considered, and (2) the seasonal variation of the vegetation background is included. The non-randomness of the leaf spatial distribution in the canopy is considered using the second vegetation structural parameter named clumping index (CI), which quantifies the deviation of the leaf spatial distribution from the random case. Using the MODIS Bidirectional Reflectance Distribution Function product, a global map of CI is produced at 500 m resolution. In our LAI algorithm, CI is used to convert the effective LAI obtained from mono-angle remote sensing into the true LAI, otherwise LAI would be considerably underestimated. The vegetation background is soil in crop, grass and shrub but includes soil, grass, moss, and litter in forests. Through processing a large volume of MISR data from 2000 to 2010, monthly red and near-infrared reflectances of the vegetation background is mapped globally at 1 km resolution. This new LAI product has been validated extensively using ground-based LAI measurements distributed globally. In carbon cycle modeling, the use of CI in addition to LAI allows for accurate separation of sunlit and shaded leaves as an important step in terrestrial photosynthesis and respiration modeling. Carbon flux measurements over 100 sites over the globe are used to validate an ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS). The validated model is run globally at 8 km resolution for the period from 1981 to 2012 using the LAI product and other spatial datasets. The modeled results suggest that changes in vegetation structure as quantified

  17. Final Technical Report: Fundamental Research on the Fractionation of Carbon Isotopes during Photosynthesis, New Interpretations of Terrestrial Organic Carbon within Geologic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Brian [Univ. of Louisiana, Lafayette (United States); Jahren, A. Hope [Univ. of Louisiana, Lafayette (United States)

    2017-11-30

    The goal for the current grant period (2013 – 2016) was to quantify the effect of changing atmospheric carbon dioxide concentration (pCO2) on published terrestrial carbon isotope excursion events. This work supported four scientists across multiple career stages, and resulted in 5 published papers.

  18. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Science.gov (United States)

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  19. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2

    International Nuclear Information System (INIS)

    Cao, Mingkui; Tao, B.; Li, Kerang; Prince, Stephen D.; Small, J.

    2005-01-01

    Atmospheric measurements indicate that the terrestrial carbon sink increased substantially from the 1980s to the 1990s, but which factors and regions were responsible for the increase are not well identified yet. Using process- and remote sensing-based ecosystem models, we show that changes in climate and atmospheric CO 2 in the period 1981-2000 enhanced net ecosystem production (NEP) and caused major geographical changes in the global distribution of NEP. In the 1980s the Americas accounted for almost all of the global NEP, but in the 1990s NEP in Eurasia and Africa became higher than that of the Americas. The year-to-year variation in global NEP was up to 2.5 Pg C (1 Pg = 10 15 g), in which 1.4 Pg C was attributable to the El Nino Southern Oscillation cycle (ENSO). NEP clearly decreased in El Nino and increased in La Nina in South America and Africa, but the response in North America and Eurasia was mixed. The estimated NEP increases accounted for only 30% of the global terrestrial carbon sink but can explain almost all of the increase from the 1980s to the 1990s. Because a large part of the increase in NEP was driven by the long-term trend of climate and atmospheric CO 2 , the increase in the global terrestrial carbon sink from the 1980s to the 1990s was a continuation of the trend since the middle of the twentieth century, rather than merely a consequence of short-time climate variability

  20. Sub-grid scale representation of vegetation in global land surface schemes: implications for estimation of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    J. R. Melton

    2014-02-01

    Full Text Available Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs and use their vegetation attributes in calculations of the energy and water balance as well as to investigate the terrestrial carbon cycle. Sub-grid scale variability of PFTs in these models is represented using different approaches with the "composite" and "mosaic" approaches being the two end-members. The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2 coupled to the Canadian Land Surface Scheme (CLASS v 3.6. In the composite (single-tile approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc. that are common to all PFTs. In the mosaic (multi-tile approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005 show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC effects differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same

  1. New era of satellite chlorophyll fluorescence and soil moisture observations leads to advances in the predictive understanding of global terrestrial coupled carbon-water cycles

    Science.gov (United States)

    Qiu, B.; Xue, Y.; Fisher, J.; Guo, W.

    2017-12-01

    The terrestrial carbon cycle and water cycle are coupled through a multitude of connected processes among soil, roots, leaves, and the atmosphere. The strength and sensitivity of these couplings are not yet well known at the global scale, which contributes to uncertainty in predicting the terrestrial water and carbon budgets. For the first time, we now have synchronous, high fidelity, global-scale satellite observations of critical terrestrial carbon and water cycle components: sun-induced chlorophyll fluorescence (SIF) and soil moisture. We used these observations within the framework of a well-established global terrestrial biosphere model (Simplified Simple Biosphere Model version 2.0, SSiB2) to investigate carbon-water coupling processes. We updated SSiB2 to include a mechanistic representation of SIF and tested the sensitivity of model parameters to improve the simulation of both SIF and soil moisture with the ultimate objective of improving the first-order terrestrial carbon component, gross primary production (GPP). Although several vegetation parameters, such as leaf area index (LAI) and green leaf fraction, improved the simulated SIF, and several soil parameters, such as hydraulic conductivity, improved simulated soil moisture, their effects were mainly limited to their respective cycles. One parameter emerged as the key coupler between the carbon and water cycles: the wilting point. Updates to the wilting point significantly improved the simulations for both soil moisture and SIF, as well as GPP. This study demonstrates the value of synchronous global measurements of the terrestrial carbon and water cycles in improving the understanding of coupled carbon-water cycles.

  2. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    Science.gov (United States)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  3. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  4. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  5. Current and future impacts of ultraviolet radiation on the terrestrial carbon balance

    Institute of Scientific and Technical Information of China (English)

    W. Kolby SMITH; Wei GAO; Heidi STELTZER

    2009-01-01

    One of the most documented effects of human activity on our environment is the reduction of stratospheric ozone resulting in an increase of biologically harmful ultraviolet (UV) radiation. In a less predictable manner, UV radiation incident at the surface of the earth is expected to be further modified in the future as a result of altered cloud condition, atmospheric aerosol concentration, and snow cover. Although UV radiation comprises only a small fraction of the total solar radiation that is incident at the earth's surface, it has the greatest energy per unit wavelength and, thus, the greatest potential to damage the biosphere. Recent investigations have highlighted numerous ways that UV radiation could potentially affect a variety of ecological processes, including nutrient cycling and the terrestrial carbon cycle. The objectives of the following literature review are to summarize and synthesize the available information relevant to the effects of UV radiation and other climate change factors on the terrestrial carbon balance in an effort to highlight current gaps in knowledge and future research directions for UV radiation research.

  6. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  7. Multi-Model Assessment of Trends and Variability in Terrestrial Carbon Uptake in India

    Science.gov (United States)

    Rao, A. S.; Bala, G.; Ravindranath, N. H.

    2015-12-01

    Indian terrestrial ecosystem exhibits large temporal and spatial variability in carbon sources and sinks due to its monsoon based climate system, diverse land use and land cover distribution and cultural practices. In this study, a multi-model based assessment is made to study the trends and variability in the land carbon uptake for India over the 20th century. Data from nine models which are a part of a recent land surface model intercomparison project called TRENDY is used for the study. These models are driven with common forcing data over the period of 1901-2010. Model output variables assessed include: gross primary production (GPP), heterotrophic respiration (Rh), autotrophic respiration (Ra) and net primary production (NPP). The net ecosystem productivity (NEP) for the Indian region was calculated as a difference of NPP and Rh and it was found that NEP for the region indicates an estimated increase in uptake over the century by -0.6 TgC/year per year. NPP for India also shows an increasing trend of 2.03% per decade from 1901-2010. Seasonal variation in the multimodel mean NPP is maximum during the southwest monsoon period (JJA) followed by the post monsoon period (SON) and is attributed to the maximum in rainfall for the region during the months of JJA. To attribute the changes seen in the land carbon variables, influence of climatic drivers such as precipitation, temperature and remote influences of large scale phenomenon such as ENSO on the land carbon of the region are also estimated in the study. It is found that although changes in precipitation shows a good correlation to the changes seen in NEP, remote drivers like ENSO do not have much effect on them. The Net Ecosystem Exchange is calculated with the inclusion of the land use change flux and fire flux from the models. NEE suggests that the region behaves as a small sink for carbon with an net uptake of 5 GtC over the past hundred years.

  8. The limits to global-warming mitigation by terrestrial carbon removal

    Science.gov (United States)

    Boysen, Lena R.; Lucht, Wolfgang; Gerten, Dieter; Heck, Vera; Lenton, Timothy M.; Schellnhuber, Hans Joachim

    2017-05-01

    Massive near-term greenhouse gas emissions reduction is a precondition for staying "well below 2°C" global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature "overshoot" in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to "repair" delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre-industrial level. Our results show that those tCDR measures are unable to counteract "business-as-usual" emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of >50% of natural forests. In addition, >100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160-190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable "supporting actor" for strong mitigation if sustainable schemes are established immediately.

  9. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    Science.gov (United States)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-11-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of "self-rewetting fluids", i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59-61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20-100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  10. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    International Nuclear Information System (INIS)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-01-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of “self-rewetting fluids”, i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59–61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20–100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  11. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

    Directory of Open Access Journals (Sweden)

    Y. P. Wang

    2010-07-01

    Full Text Available Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N and phosphorus (P, in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C, nitrogen (N and phosphorus (P cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise.

    This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.

  12. Changes of global terrestrial carbon budget and major drivers in recent 30 years simulated using the remote sensing driven BEPS model

    Science.gov (United States)

    Ju, W.; Chen, J.; Liu, R.; Liu, Y.

    2013-12-01

    The process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with spatially distributed leaf area index (LAI), land cover, soil, and climate data to simulate the carbon budget of global terrestrial ecosystems during the period from 1981 to 2008. The BEPS model was first calibrated and validated using gross primary productivity (GPP), net primary productivity (NPP), and net ecosystem productivity (NEP) measured in different ecosystems across the word. Then, four global simulations were conducted at daily time steps and a spatial resolution of 8 km to quantify the global terrestrial carbon budget and to identify the relative contributions of changes in climate, atmospheric CO2 concentration, and LAI to the global terrestrial carbon sink. The long term LAI data used to drive the model was generated through fusing Moderate Resolution Imaging Spectroradiometer (MODIS) and historical Advanced Very High Resolution Radiometer (AVHRR) data pixel by pixel. The meteorological fields were interpolated from the 0.5° global daily meteorological dataset produced by the land surface hydrological research group at Princeton University. The results show that the BEPS model was able to simulate carbon fluxes in different ecosystems. Simulated GPP, NPP, and NEP values and their temporal trends exhibited distinguishable spatial patterns. During the period from 1981 to 2008, global terrestrial ecosystems acted as a carbon sink. The averaged global totals of GPP NPP, and NEP were 122.70 Pg C yr-1, 56.89 Pg C yr-1, and 2.76 Pg C yr-1, respectively. The global totals of GPP and NPP increased greatly, at rates of 0.43 Pg C yr-2 (R2=0.728) and 0.26 Pg C yr-2 (R2=0.709), respectively. Global total NEP did not show an apparent increasing trend (R2= 0.036), averaged 2.26 Pg C yr-1, 3.21 Pg C yr-1, and 2.72 Pg C yr-1 for the periods from 1981 to 1989, from 1990 to 1999, and from 2000 to 2008, respectively. The magnitude and temporal trend of global

  13. Patterns and controls of inter-annual variability in the terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    B. Marcolla

    2017-08-01

    Full Text Available The terrestrial carbon fluxes show the largest variability among the components of the global carbon cycle and drive most of the temporal variations in the growth rate of atmospheric CO2. Understanding the environmental controls and trends of the terrestrial carbon budget is therefore essential to predict the future trajectories of the CO2 airborne fraction and atmospheric concentrations. In the present work, patterns and controls of the inter-annual variability (IAV of carbon net ecosystem exchange (NEE have been analysed using three different data streams: ecosystem-level observations from the FLUXNET database (La Thuile and 2015 releases, the MPI-MTE (model tree ensemble bottom–up product resulting from the global upscaling of site-level fluxes, and the Jena CarboScope Inversion, a top–down estimate of surface fluxes obtained from observed CO2 concentrations and an atmospheric transport model. Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of IAV were investigated between the three data sources. Results show that the global average of IAV at FLUXNET sites, quantified as the standard deviation of annual NEE, peaks in arid ecosystems and amounts to  ∼  120 gC m−2 y−1, almost 6 times more than the values calculated from the two global products (15 and 20 gC m−2 y−1 for MPI-MTE and the Jena Inversion, respectively. Most of the temporal variability observed in the last three decades of the MPI-MTE and Jena Inversion products is due to yearly anomalies, whereas the temporal trends explain only about 15 and 20 % of the variability, respectively. Both at the site level and on a global scale, the IAV of NEE is driven by the gross primary productivity and in particular by the cumulative carbon flux during the months when land acts as a sink. Altogether these results offer a broad view on the magnitude, spatial patterns and environmental drivers of IAV

  14. Terrestrial water fluxes dominated by transpiration.

    Science.gov (United States)

    Jasechko, Scott; Sharp, Zachary D; Gibson, John J; Birks, S Jean; Yi, Yi; Fawcett, Peter J

    2013-04-18

    Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.

  15. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  16. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    Research within the past decade has identified the roles of diverse terrestrial processes in mobilizing terrestrial carbon from bedrock, soil, and vegetation and in redistributing this carbon among the atmosphere, biota, geosphere, and oceans. Rivers are central to carbon redistribution, serving as the primary initial receptor of mobilized terrestrial carbon, as well as governing the proportions of carbon sequestered within sediment, transported to oceans, or released to the atmosphere. We use a riverine carbon budget to examine how key questions regarding carbon dynamics can be addressed across diverse spatial and temporal scales from sub-meter areas over a few hours on a single gravel bar to thousands of square kilometers over millions of years across an entire large river network. The portion of the budget applying to the active channel(s) takes the form of ,in which Cs is organic carbon storage over time t. Inputs are surface and subsurface fluxes from uplands (CIupl) and the floodplain (CIfp), including fossil, soil, and biospheric organic carbon; surface and subsurface fluxes of carbon dioxide to the channel (CICO2); and net primary productivity in the channel (CINPP). Outputs occur via respiration within the channel and carbon dioxide emissions (COgas) and fluxes of dissolved and particulate organic carbon to the floodplain and downstream portions of the river network (COriver). The analogous budget for the floodplain portion of a river corridor is .

  17. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Science.gov (United States)

    Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun

    2017-07-01

    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.

  18. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  19. Terrestrial Carbon Sequestration in National Parks: Values for the Conterminous United States

    Science.gov (United States)

    Richardson, Leslie A.; Huber, Christopher; Zhu, Zhi-Liang; Koontz, Lynne

    2015-01-01

    Lands managed by the National Park Service (NPS) provide a wide range of beneficial services to the American public. This study quantifies the ecosystem service value of carbon sequestration in terrestrial ecosystems within NPS units in the conterminous United States for which data were available. Combining annual net carbon balance data with spatially explicit NPS land unit boundaries and social cost of carbon estimates, this study calculates the net metric tons of carbon dioxide sequestered annually by park unit under baseline conditions, as well as the associated economic value to society. Results show that, in aggregate, NPS lands in the conterminous United States are a net carbon sink, sequestering more than 14.8 million metric tons of carbon dioxide annually. The associated societal value of this service is estimated at approximately $582.5 million per year. While this analysis provides a broad overview of the annual value of carbon sequestration on NPS lands averaged over a five year baseline period, it should be noted that carbon fluxes fluctuate from year to year, and there can be considerable variation in net carbon balance and its associated value within a given park unit. Future research could look in-depth at the spatial heterogeneity of carbon flux within specific NPS land units.

  20. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation

    Directory of Open Access Journals (Sweden)

    A. Bozbiyik

    2011-03-01

    Full Text Available CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation.

  1. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    International Nuclear Information System (INIS)

    Miller, John B.; Tans, Pieter P.; Conway, Thomas J.; White, James W.C.; Vaughn, Bruce W.

    2003-01-01

    The 13 C/ 12 C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in 13 C and CO 2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO 2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO 2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr

  2. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-27

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  3. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    Science.gov (United States)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  4. Estimating Large Area Forest Carbon Stocks—A Pragmatic Design Based Strategy

    Directory of Open Access Journals (Sweden)

    Andrew Haywood

    2017-03-01

    Full Text Available Reducing uncertainty in forest carbon estimates at local and regional scales has become increasingly important due to the centrality of the terrestrial carbon cycle in issues of climate change. In Victoria, Australia, public natural forests extend over 7.2 M ha and constitute a significant and important carbon stock. Recently, a wide range of approaches to estimate carbon stocks within these forests have been developed and applied. However, there are a number of data and estimation limitations associated with these studies. In response, over the last five years, the State of Victoria has implemented a pragmatic plot-based design consisting of pre-stratified permanent observational units located on a state-wide grid. Using the ground sampling grid, we estimated aboveground and belowground carbon stocks (including soil to 0.3 m depth in both National Parks and State Forests, across a wide range of bioregions. Estimates of carbon stocks and associated uncertainty were conducted using simple design based estimators. We detected significantly more carbon in total aboveground and belowground components in State Forests (408.9 t ha−1, 95% confidence interval 388.8–428.9 t ha−1 than National Parks (267.6 t ha−1, 251.9–283.3 t ha−1. We were also able to estimate forest carbon stocks (and associated uncertainty for 21 strata that represent all of Victoria’s bioregions and public tenures. It is anticipated that the lessons learnt from this study may support the discussion on planning and implementing low cost large area forest carbon stock sampling in other jurisdictions.

  5. Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design

    OpenAIRE

    Kaminski, T.; Rayner, P. J.; Vossbeck, M.; Scholze, M.; Koffi, E.

    2012-01-01

    This paper investigates the relationship between the heterogeneity of the terrestrial carbon cycle and the optimal design of observing networks to constrain it. We combine the methods of quantitative network design and carbon-cycle data assimilation to a hierarchy of increasingly heterogeneous descriptions of the European terrestrial biosphere as indicated by increasing diversity of plant functional types. We employ three types of observat...

  6. Is litter decomposition 'primed' by primary producer-release of labile carbon in terrestrial and aquatic experimental systems?

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2015-04-01

    It is possible that recalcitrant organic matter (ROM) can be 'activated' by inputs of labile organic matter (LOM) through the priming effect (PE). Investigating the PE is of major importance to fully understand the microbial use of ROM and its role on carbon (C) and nutrient cycling in both aquatic and terrestrial ecosystems. In aquatic ecosystems it is thought that the PE is triggered by periphytic algae release of LOM. Analogously, in terrestrial systems it is hypothesized that the LOM released in plant rhizospheres, or from the green crusts on the surface of agricultural soils, stimulate the activity and growth of ROM decomposers. Most previous studies on PE have utilised pulse additions of single substrates at high concentrations. However, to achieve an assessment of the true importance of the PE, it is important to simulate a realistic delivery of LOM. We investigated, in a series of 2-week laboratory experiments, how primary producer (PP)-release of LOM influence litter degradation in terrestrial and aquatic experimental systems. We used soil (terrestrial) and pond water (aquatic) microbial communities to which litter was added under light and dark conditions. In addition, glucose was added at PP delivery rates in dark treatments to test if the putative PE in light systems could be reproduced. We observed an initial peak of bacterial growth rate followed by an overall decrease over time with no treatment differences. In light treatments, periphytic algae growth and increased fungal production was stimulated when bacterial growth declined. In contrast, both fungal growth and algal production were negligible in dark treatments. This reveals a direct positive influence of photosynthesis on fungal growth. To investigate if PP LOM supplements, and the associated fungal growth, translate into a modulated litter decomposition, we are using stable isotopes to track the use of litter and algal-derived carbon by determining the δ13C in produced CO2. Fungi and bacteria

  7. The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed

    Science.gov (United States)

    Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.

    2007-03-01

    terrestrial organic carbon, our results show how hydrologic variability in smaller watersheds can reflect landscape-scale carbon dynamics in ways that cannot necessarily be measured at the outlets of large rivers due to multiple source signals and attenuated hydrology.

  8. Multiple Observation Types Jointly Constrain Terrestrial Carbon and Water Cycles

    Science.gov (United States)

    Raupach, M. R.; Haverd, V.; Briggs, P. R.; Canadell, J.; Davis, S. J.; Isaac, P. R.; Law, R.; Meyer, M.; Peters, G. P.; Pickett Heaps, C.; Roxburgh, S. H.; Sherman, B.; van Gorsel, E.; Viscarra Rossel, R.; Wang, Z.

    2012-12-01

    Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain carbon and water fluxes and stores in a land surface model, and a resulting determination of the Australian terrestrial carbon budget. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET) and net ecosystem production (NEP) from 12 eddy-flux sites, litterfall data, and data on carbon pools. The model is a version of CABLE (the Community Atmosphere-Biosphere-Land Exchange model), coupled with CASAcnp (a biogeochemical model) and SLI (Soil-Litter-Iso, a soil hydrology model including liquid and vapour water fluxes and the effects of litter). By projecting observation-prediction residuals onto model uncertainty, we find that eddy flux measurements provide a significantly tighter constraint on Australian continental net primary production (NPP) than the other data types. However, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Results emerging from the multiply-constrained model are as follows (with all values applying over 1990-2011 and all ranges denoting ±1 standard error): (1) on the Australian continent, a predominantly semi-arid region, over half (0.64±0.05) of the water loss through ET occurs through soil evaporation and bypasses plants entirely; (2) mean Australian NPP is 2200±400 TgC/y, making the NPP/precipitation ratio about the same for Australia as the global land average; (3) annually cyclic ("grassy") vegetation and persistent ("woody") vegetation respectively account for 0.56±0.14 and 0.43±0.14 of NPP across Australia; (4) the average interannual variability of Australia's NEP (±180 TgC/y) is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (149 TgCeq/y), and is dominated by variability in desert and savannah regions. The mean carbon budget over 1990

  9. Equilibration of the terrestrial water, nitrogen, and carbon cycles

    OpenAIRE

    Schimel, David S.; Braswell, B. H.; Parton, W. J.

    1997-01-01

    Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that l...

  10. Impacts of land use and cover change on terrestrial carbon stocks and the micro-climate over urban surface: a case study in Shanghai, China

    Science.gov (United States)

    Zhang, F.; Zhan, J.; Bai, Y.

    2016-12-01

    Land use and cover change is the key factor affecting terrestrial carbon stocks and micro-climate, and their dynamics not only in regional ecosystems but also in urbanized areas. Using the typical fast-growing city of Shanghai, China as a case study, this paper explored the relationships between terrestrial carbon stocks, micro-climate and land cover within an urbanized area. The main objectives were to assess variation in soil carbon stocks and local climate conditions across terrestrial land covers with different intensities of urban development, and quantify spatial distribution and dynamic variation of carbon stocks and microclimate in response to urban land use and cover change. On the basis of accurate spatial datasets derived from a series of Landsat TM images during the years 1988 to 2010 and reliable estimates of urban climate and soil carbon stocks using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, our results showed that carbon stocks per unit area in terrestrial land covers decreased and urban temperature increased with increasing intensity of urban development. Urban land use and cover change and sealing of the soil surface created hotspots for losses in carbon stocks. Total carbon stocks in Shanghai decreased by about 30%-35%, representing a 1.5% average annual decrease, and the temperature increased by about 0.23-0.4°/10a during the past 20 years. We suggested potential policy measures to mitigate negative effects of land use and cover change on carbon stocks and microclimate in urbanized areas.

  11. Towards 250 m mapping of terrestrial primary productivity over Canada

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  12. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    Science.gov (United States)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  13. Radiocarbon in particulate matter from the eastern sub-arctic Pacific Ocean: evidence of source of terrestrial carbon to the deep sea

    International Nuclear Information System (INIS)

    Druffel, E.R.M.; Honjo, S.; Griffin, S.; Wong, C.S.

    1986-01-01

    Carbon isotope ratios were measured in organic and inorganic carbon of settling particulate matter collected with a sediment trap at Ocean Station P in the Gulf of Alaska from March to October, 1983. Dissolved inorganic carbon (DIC) in surface sea water collected during two different seasons in 1984 were analyzed using large gas proportional counters and revealed a minimum seasonal Δ 14 C variation of 14 per thousand. Results show that the Δ 14 C of calcium carbonate sedimenting to the deep sea is the same as that measured in surface water DIC. In contrast, particulate organic carbon (POC) had significantly higher Δ 14 C values (by 25-70 per thousand) than that in surface water DIC. Also, the Δ 13 C of the POC was markedly lower than previously reported values from other trap stations and marine particulate matter in general. Results from this study suggest that a significant amount of the POC settling to the deep sea at this pelagic station is of terrestrial origin, not strictly of marine origin as had previously been believed

  14. Contrasting terrestrial carbon cycle responses to the 1997/98 and 2015/16 extreme El Niño events

    Science.gov (United States)

    Wang, Jun; Zeng, Ning; Wang, Meirong; Jiang, Fei; Wang, Hengmao; Jiang, Ziqiang

    2018-01-01

    Large interannual atmospheric CO2 variability is dominated by the response of the terrestrial biosphere to El Niño-Southern Oscillation (ENSO). However, the behavior of terrestrial ecosystems differs during different El Niños in terms of patterns and biological processes. Here, we comprehensively compare two extreme El Niños (2015/16 and 1997/98) in the context of a multi-event composite El Niño. We find large differences in the terrestrial carbon cycle responses, even though the two events were of similar magnitude.More specifically, we find that the global-scale land-atmosphere carbon flux (FTA) anomaly during the 1997/98 El Niño was 1.64 Pg C yr-1, but half that quantity during the 2015/16 El Niño (at 0.73 Pg C yr-1). Moreover, FTA showed no obvious lagged response during the 2015/16 El Niño, in contrast to that during 1997/98. Separating the global flux by geographical regions, we find that the fluxes in the tropics and extratropical Northern Hemisphere were 1.70 and -0.05 Pg C yr-1 during 1997/98, respectively. During 2015/16, they were 1.12 and -0.52 Pg C yr-1, respectively. Analysis of the mechanism shows that, in the tropics, the widespread drier and warmer conditions caused a decrease in gross primary productivity (GPP; -0.73 Pg C yr-1) and an increase in terrestrial ecosystem respiration (TER; 0.62 Pg C yr-1) during the 1997/98 El Niño. In contrast, anomalously wet conditions occurred in the Sahel and East Africa during 2015/16, which caused an increase in GPP, compensating for its reduction in other tropical regions. As a result, the total 2015/16 tropical GPP and TER anomalies were -0.03 and 0.95 Pg C yr-1. GPP dominance during 1997/98 and TER dominance during 2015/16 accounted for the phase difference in their FTA. In the extratropical Northern Hemisphere, the large difference occurred because temperatures over Eurasia were warmer during the 2015/16, as compared with the cooling seen during the 1997/98 and the composite El Niño. These warmer

  15. Uncertainties in carbon residence time and NPP-driven carbon uptake in terrestrial ecosystems of the conterminous USA: a Bayesian approach

    Directory of Open Access Journals (Sweden)

    Xuhui Zhou

    2012-10-01

    Full Text Available Carbon (C residence time is one of the key factors that determine the capacity of ecosystem C storage. However, its uncertainties have not been well quantified, especially at regional scales. Assessing uncertainties of C residence time is thus crucial for an improved understanding of terrestrial C sequestration. In this study, the Bayesian inversion and Markov Chain Monte Carlo (MCMC technique were applied to a regional terrestrial ecosystem (TECO-R model to quantify C residence times and net primary productivity (NPP-driven ecosystem C uptake and assess their uncertainties in the conterminous USA. The uncertainty was represented by coefficient of variation (CV. The 13 spatially distributed data sets of C pools and fluxes have been used to constrain TECO-R model for each biome (totally eight biomes. Our results showed that estimated ecosystem C residence times ranged from 16.6±1.8 (cropland to 85.9±15.3 yr (evergreen needleleaf forest with an average of 56.8±8.8 yr in the conterminous USA. The ecosystem C residence times and their CV were spatially heterogeneous and varied with vegetation types and climate conditions. Large uncertainties appeared in the southern and eastern USA. Driven by NPP changes from 1982 to 1998, terrestrial ecosystems in the conterminous USA would absorb 0.20±0.06 Pg C yr−1. Their spatial pattern was closely related to the greenness map in the summer with larger uptake in central and southeast regions. The lack of data or timescale mismatching between the available data and the estimated parameters lead to uncertainties in the estimated C residence times, which together with initial NPP resulted in the uncertainties in the estimated NPP-driven C uptake. The Bayesian approach with MCMC inversion provides an effective tool to estimate spatially distributed C residence time and assess their uncertainties in the conterminous USA.

  16. Consequences of simulating terrestrial N dynamics for projecting future terrestrial C storage

    Science.gov (United States)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2009-04-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation patterns, as well as soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. Notably, O-CN simulates realistic responses of net primary productivity, foliage area, and foliage N content to elevated atmospheric [CO2] as evidenced at free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge). We re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric [CO2], N deposition and climatic changes over the 21st century. We find that accounting for terrestrial N cycling about halves the potential to store C in response to increases in atmospheric CO2 concentrations; mainly due to a reduction of the net C uptake in temperate and boreal forests. Nitrogen deposition partially alleviates the effect of N limitation, but is by far not sufficient to compensate for the effect completely. These findings underline the importance of an accurate representation of nutrient limitations in future projections of the terrestrial net CO2 exchanges and therefore land-climate feedback studies.

  17. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models

    Science.gov (United States)

    Sun, Yan; Peng, Shushi; Goll, Daniel S.; Ciais, Philippe; Guenet, Bertrand; Guimberteau, Matthieu; Hinsinger, Philippe; Janssens, Ivan A.; Peñuelas, Josep; Piao, Shilong; Poulter, Benjamin; Violette, Aurélie; Yang, Xiaojuan; Yin, Yi; Zeng, Hui

    2017-07-01

    Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

  18. Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

    Science.gov (United States)

    S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer

    2016-01-01

    Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...

  19. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere

    DEFF Research Database (Denmark)

    Parmentier, Frans-Jan W; Christensen, Torben R; Rysgaard, Søren

    2017-01-01

    The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often...

  20. Multiple Observation Types Jointly Constrain Australian Terrestrial Carbon and Water Cycles

    Science.gov (United States)

    Haverd, Vanessa; Raupach, Michael; Briggs, Peter; Canadell, Pep; Davis, Steven; Isaac, Peter; Law, Rachel; Meyer, Mick; Peters, Glenn; Pickett-Heaps, Christopher; Roxburgh, Stephen; Sherman, Bradford; van Gorsel, Eva; Viscarra Rossel, Raphael; Wang, Ziyuan

    2013-04-01

    Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain carbon and water fluxes and stores in a land surface model, and a resulting determination of the Australian terrestrial carbon budget. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET) and net ecosystem production (NEP) from 12 eddy-flux sites, litterfall data, and data on carbon pools. The model is a version of CABLE (the Community Atmosphere-Biosphere-Land Exchange model), coupled with CASAcnp (a biogeochemical model) and SLI (Soil-Litter-Iso, a soil hydrology model including liquid and vapour water fluxes and the effects of litter). By projecting observation-prediction residuals onto model uncertainty, we find that eddy flux measurements provide a significantly tighter constraint on Australian continental net primary production (NPP) than the other data types. However, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Results emerging from the multiply-constrained model are as follows (with all values applying over 1990-2011 and all ranges denoting ±1 standard error): (1) on the Australian continent, a predominantly semi-arid region, over half (0.64±0.05) of the water loss through ET occurs through soil evaporation and bypasses plants entirely; (2) mean Australian NPP is 2200±400 TgC/y, making the NPP/precipitation ratio about the same for Australia as the global land average; (3) annually cyclic ("grassy") vegetation and persistent ("woody") vegetation respectively account for 0.56±0.14 and 0.43±0.14 of NPP across Australia; (4) the average interannual variability of Australia's NEP (±180 TgC/y) is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (149 TgCeq/y), and is dominated by variability in desert and savannah regions. The mean carbon budget over 1990

  1. Distinguishing Terrestrial Organic Carbon in Marginal Sediments of East China Sea and Northern South China Sea

    Science.gov (United States)

    Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Liu, Qianqian; Liu, Zhifei; Lou, Jiann-Yuh; Chen, Chen-Tung Arthur; Mayer, Lawrence M.

    2016-04-01

    Knowledge about the sources, transport pathways and behavior of terrestrial organic carbon in continental margins adjoining to large rivers has improved in recent decades, but uncertainties and complications still exist with human-influenced coastal regions in densely populated wet tropics and subtropics. In these regions, the monsoon and other episodic weather events exert strong climatic control on mineral and particulate organic matter delivery to the marginal seas. Here we investigate elemental (TOC, TN and bromine-Br) and stable carbon isotopic (δ13C) compositions of organic matter (OM) in surface sediments and short cores collected from active (SW Taiwan) and passive margin (East China Sea) settings to understand the sources of OM that buried in these settings. We used sedimentary bromine to total organic carbon (Br/TOC) ratios to apportion terrigenous from marine organic matter, and find that Br/TOC may serve as an additional, reliable proxy for sedimentary provenance in both settings. Variations in Br/TOC are consistent with other provenance indicators in responding to short-lived terrigenous inputs. Because diagenetic alteration of Br is insignificant on shorter time scales, applying Br/TOC ratios as a proxy to identify organic matter source along with carbon isotope mixing models may provide additional constraints on the quantity and transformation of terrigenous organics in continental margins. We apply this combination of approaches to land-derived organic matter in different depositional environments of East Asian marginal seas.

  2. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  3. Sources and Reactivity of Terrestrial Organic Carbon to the Colville River Delta, Beaufort Sea, Alaska

    Science.gov (United States)

    Schreiner, K. M.; Bianchi, T. S.; Rosenheim, B. E.

    2014-12-01

    Terrestrial particulate organic carbon (tPOC) delivery to nearshore deltaic regions is an important mechanism of OC storage and burial, and continental margins worldwide account for approximately 90% of the carbon burial in the ocean. Increasing warming in the Arctic is leading to an acceleration of the hydrologic cycle, warming of permafrost, and broad shifts in vegetation. All of these changes are likely to affect the delivery, reactivity, and burial of tPOC in nearshore Arctic regions, making the Arctic an ideal place to study the effects of climate change on tPOC delivery. However, to date, most studies of tPOC delivery from North America to the Arctic Ocean have focused on large Arctic rivers like the Mackenzie and Yukon, and a significant portion of those watersheds lie in sub-Arctic latitudes, meaning that their tPOC delivery is likely not uniquely representative of the high Arctic tundra. Here, we focus on tPOC delivery by the Colville River, the largest North American river with a watershed that does not include sub-Arctic latitudes. Sediment samples from the river delta and nearby Simpson's Lagoon were taken in August of 2010 and subsequently fractionated by density, in order to study the delivery of both discrete and sediment-sorbed tPOC. Samples were analyzed for stable carbon isotopes, bulk radiocarbon, terrestrial biomarkers (including lignin-phenols, and other CuO reaction products), and aquatic biomarkers (algal pigments), and additionally a subset of the samples were analyzed by ramped pyrolysis-14C. Results show that tPOC delivery near the river mouth is sourced from coastal plain tundra, with additional delivery of tPOC from peat released into the lagoon from the seaward limit of the tundra by coastal erosion. Ramped pyrolysis-14C analysis also shows a clear differentiation between tPOC delivered by the river and tPOC delivered by coastal retreat in the lagoon. Additionally, a significant portion of the OC released by the Colville River is

  4. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.

    Science.gov (United States)

    Zhao, Maosheng; Running, Steven W

    2010-08-20

    Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

  5. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Science.gov (United States)

    O'ishi, R.; Abe-Ouchi, A.

    2013-07-01

    When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  6. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    R. O'ishi

    2013-07-01

    Full Text Available When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm. In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ. The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM. Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  7. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  8. Chemistry in an evolving protoplanetary disk: Effects on terrestrial planet composition

    International Nuclear Information System (INIS)

    Moriarty, John; Fischer, Debra; Madhusudhan, Nikku

    2014-01-01

    The composition of planets is largely determined by the chemical and dynamical evolution of the disk during planetesimal formation and growth. To predict the diversity of exoplanet compositions, previous works modeled planetesimal composition as the equilibrium chemical composition of a protoplanetary disk at a single time. However, planetesimals form over an extended period of time, during which elements sequentially condense out of the gas as the disk cools and are accreted onto planetesimals. To account for the evolution of the disk during planetesimal formation, we couple models of disk chemistry and dynamics with a prescription for planetesimal formation. We then follow the growth of these planetesimals into terrestrial planets with N-body simulations of late-stage planet formation to evaluate the effect of sequential condensation on the bulk composition of planets. We find that our model produces results similar to those of earlier models for disks with C/O ratios close to the solar value (0.54). However, in disks with C/O ratios greater than 0.8, carbon-rich planetesimals form throughout a much larger radial range of the disk. Furthermore, our model produces carbon-rich planetesimals in disks with C/O ratios as low as ∼0.65, which is not possible in the static equilibrium chemistry case. These results suggest that (1) there may be a large population of short-period carbon-rich planets around moderately carbon-enhanced stars (0.65 < C/O < 0.8) and (2) carbon-rich planets can form throughout the terrestrial planet region around carbon-rich stars (C/O > 0.8).

  9. Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle

    Science.gov (United States)

    Quesada, Benjamin; Arneth, Almut; Robertson, Eddy; de Noblet-Ducoudré, Nathalie

    2018-06-01

    Anthropogenic land-use and land cover changes (LULCC) affect global climate and global terrestrial carbon (C) cycle. However, relatively few studies have quantified the impacts of future LULCC on terrestrial carbon cycle. Here, using Earth system model simulations performed with and without future LULCC, under the RCP8.5 scenario, we find that in response to future LULCC, the carbon cycle is substantially weakened: browning, lower ecosystem C stocks, higher C loss by disturbances and higher C turnover rates are simulated. Projected global greening and land C storage are dampened, in all models, by 22% and 24% on average and projected C loss by disturbances enhanced by ~49% when LULCC are taken into account. By contrast, global net primary productivity is found to be only slightly affected by LULCC (robust +4% relative enhancement compared to all forcings, on average). LULCC is projected to be a predominant driver of future C changes in regions like South America and the southern part of Africa. LULCC even cause some regional reversals of projected increased C sinks and greening, particularly at the edges of the Amazon and African rainforests. Finally, in most carbon cycle responses, direct removal of C dominates over the indirect CO2 fertilization due to LULCC. In consequence, projections of land C sequestration potential and Earth’s greening could be substantially overestimated just because of not fully accounting for LULCC.

  10. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  11. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Severinghaus, Jeffrey Peck [Columbia Univ., New York, NY (United States)

    1995-01-01

    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO2.

  12. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China

    DEFF Research Database (Denmark)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere Abdisa

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling...... and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle....

  13. Organic carbon burial in fjords: Terrestrial versus marine inputs

    Science.gov (United States)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.

    2016-10-01

    Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.

  14. Carbon dioxide efficiency of terrestrial enhanced weathering

    OpenAIRE

    Moosdorf, Nils; Renforth, Philip; Hartmann, Jens

    2014-01-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimi...

  15. Mexican forest inventory expands continental carbon monitoring

    Science.gov (United States)

    Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro

    2008-01-01

    The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...

  16. Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed

    Science.gov (United States)

    Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.; hide

    2017-01-01

    The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.

  17. Insights and issues with simulating terrestrial DOC loading of Arctic river networks.

    Science.gov (United States)

    Kicklighter, David W; Hayes, Daniel J; McClelland, James W; Peterson, Bruce J; McGuire, A David; Melillo, Jerry M

    2013-12-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  18. Insights and issues with simulating terrestrial DOC loading of Arctic river networks

    Science.gov (United States)

    Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.

    2013-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  19. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential.

    Science.gov (United States)

    Boysen, Lena R; Lucht, Wolfgang; Gerten, Dieter

    2017-10-01

    Large-scale biomass plantations (BPs) are a common factor in climate mitigation scenarios as they promise double benefits: extracting carbon from the atmosphere and providing a renewable energy source. However, their terrestrial carbon dioxide removal (tCDR) potentials depend on important factors such as land availability, efficiency of capturing biomass-derived carbon and the timing of operation. Land availability is restricted by the demands of future food production depending on yield increases and population growth, by requirements for nature conservation and, with respect to climate mitigation, avoiding unfavourable albedo changes. We integrate these factors in one spatially explicit biogeochemical simulation framework to explore the tCDR opportunity space on land available after these constraints are taken into account, starting either in 2020 or 2050, and lasting until 2100. We find that assumed future needs for nature protection and food production strongly limit tCDR potentials. BPs on abandoned crop and pasture areas (~1,300 Mha in scenarios of either 8.0 billion people and yield gap reductions of 25% until 2020 or 9.5 billion people and yield gap reductions of 50% until 2050) could, theoretically, sequester ~100 GtC in land carbon stocks and biomass harvest by 2100. However, this potential would be ~80% lower if only cropland was available or ~50% lower if albedo decreases were considered as a factor restricting land availability. Converting instead natural forest, shrubland or grassland into BPs could result in much larger tCDR potentials ̶ but at high environmental costs (e.g. biodiversity loss). The most promising avenue for effective tCDR seems to be improvement of efficient carbon utilization pathways, changes in dietary trends or the restoration of marginal lands for the implementation of tCDR. © 2017 John Wiley & Sons Ltd.

  20. Reciprocal subsidies and food web pathways leading to chum salmon fry in a temperate marine-terrestrial ecotone.

    Science.gov (United States)

    Romanuk, Tamara N; Levings, Colin D

    2010-04-08

    Stable isotope analysis was used to determine the relative proportions of terrestrial and marine subsidies of carbon to invertebrates along a tidal gradient (low-intertidal, mid-intertidal, high-intertidal, supralittoral) and to determine the relative importance of terrestrial carbon in food web pathways leading to chum salmon fry Oncorhynchus keta (Walbaum) in Howe Sound, British Columbia. We found a clear gradient in the proportion of terrestrially derived carbon along the tidal gradient ranging from 68% across all invertebrate taxa in the supralittoral to 25% in the high-intertidal, 20% in the mid-intertidal, and 12% in the low-intertidal. Stable isotope values of chum salmon fry indicated carbon contributions from both terrestrial and marine sources, with terrestrially derived carbon ranging from 12.8 to 61.5% in the muscle tissue of chum salmon fry (mean 30%). Our results provide evidence for reciprocal subsidies of marine and terrestrially derived carbon on beaches in the estuary and suggest that the vegetated supralittoral is an important trophic link in supplying terrestrial carbon to nearshore food webs.

  1. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    Science.gov (United States)

    Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris Maier; Karina V.R. Schafer; Heather McCarthy; George Hendrey; Steven G. McNulty; Gabriel G. Katul

    2001-01-01

    Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in...

  2. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  3. Quantifying Fast and Slow Responses of Terrestrial Carbon Exchange across a Water Availability Gradient in North American Flux Sites

    Science.gov (United States)

    Biederman, J. A.; Scott, R. L.; Goulden, M.

    2014-12-01

    Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved

  4. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    International Nuclear Information System (INIS)

    Schoeninger, M.J.; DeNiro, M.J.

    1984-01-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The delta 15 N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9 per mille more positive than those from animals that fed exclusively in the terrestrial environment: ranges for the two groups overlap by less than 1 per mille. Bone collagen delta 15 N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen delta 15 N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3 per mille difference in the delta 15 N values of their bone collagen. Results are given and discussed. (author)

  5. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    Science.gov (United States)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  6. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  7. Terrestrial dissolved organic matter distribution in the North Sea.

    Science.gov (United States)

    Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J

    2018-07-15

    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Multi model and data analysis of terrestrial carbon cycle in Asia: From 2001 to 2006

    Science.gov (United States)

    Ichii, K.; Takahashi, K.; Suzuki, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.

    2009-12-01

    Accurate monitoring and modeling of the current status and their causes of interannual variations in terrestrial carbon cycle are important. Recently, many studies analyze using multiple methods (e.g. satellite data and ecosystem models) to clarify the underlain mechanisms and recent trend since each single methodology contains its own biases. The multi-model and data ensemble approach is a powerful method to clarify the current status and their underlain mechanisms. So far, many studies using multiple sources of data and models are conducted in North America, Europe, Africa, Amazon, and Japan, however, studies in monsoon Asia are lacking. In this study, we analyzed interannual variations in terrestrial carbon cycles in monsoon Asia, and evaluated current capability of remote sensing and ecosystem model to capture them based on multiple model and data sources; flux observations, remote sensing (e.g. MODIS, AVHRR, and VGT), and ecosystem models (e.g. SVM, BEAMS, CASA, Biome-BGC, LPJ, and TRIFFID). The satellite observation and ecosystem models show clear characteristics in interannual variabilities in satellite-based NDVI and model-based GPP. These are characterized by (1) spring NDVI and modeled GPP anomalies related to temperature anomaly in mid and high latitudinal areas (positive anomalies in 2002 and 2005 and negative one in 2006), (2) NDVI and GPP anomalies in southeastern and central Asia related to precipitation (e.g. India from 2003-2006), and (3) summer NDVI and GPP anomalies in 2003 related to strong anomalies in solar radiations. NDVI anomalies related to radiation ones (2003 summer) were not accurately captured by terrestrial ecosystem models. For example, LPJ model rather shows GPP positive anomalies in Far East Asia regions probably caused by positive precipitation anomalies. Further analysis requires improvement of models to reproduce more consistent spatial patterns in NDVI anomaly, and longer term analysis (e.g. after 1982).

  9. Nitrogen-Related Constraints of Carbon Uptake by Large-Scale Forest Expansion: Simulation Study for Climate Change and Management Scenarios

    Science.gov (United States)

    Kracher, Daniela

    2017-11-01

    Increase of forest areas has the potential to increase the terrestrial carbon (C) sink. However, the efficiency for C sequestration depends on the availability of nutrients such as nitrogen (N), which is affected by climatic conditions and management practices. In this study, I analyze how N limitation affects C sequestration of afforestation and how it is influenced by individual climate variables, increased harvest, and fertilizer application. To this end, JSBACH, the land component of the Earth system model of the Max Planck Institute for Meteorology is applied in idealized simulation experiments. In those simulations, large-scale afforestation increases the terrestrial C sink in the 21st century by around 100 Pg C compared to a business as usual land-use scenario. N limitation reduces C sequestration roughly by the same amount. The relevance of compensating effects of uptake and release of carbon dioxide by plant productivity and soil decomposition, respectively, gets obvious from the simulations. N limitation of both fluxes compensates particularly in the tropics. Increased mineralization under global warming triggers forest expansion, which otherwise is restricted by N availability. Due to compensating higher plant productivity and soil respiration, the global net effect of warming for C sequestration is however rather small. Fertilizer application and increased harvest enhance C sequestration as well as boreal expansion. The additional C sequestration achieved by fertilizer application is offset to a large part by additional emissions of nitrous oxide.

  10. Amazon River carbon dioxide outgassing fuelled by wetlands.

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  11. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency.

    Science.gov (United States)

    Taipale, Sami J; Galloway, Aaron W E; Aalto, Sanni L; Kahilainen, Kimmo K; Strandberg, Ursula; Kankaala, Paula

    2016-08-11

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton.

  12. Diagnosing and Assessing Uncertainties of the Carbon Cycle in Terrestrial Ecosystem Models from a Multi-Model Ensemble Experiment

    Science.gov (United States)

    Wang, W.; Dungan, J. L.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.

    2009-12-01

    We are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to characterize structural uncertainty in carbon fluxes and stocks estimates from different ecosystem models. The experiment uses public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. A set of diagnostics is developed to characterize the behavior of the models in the climate (temperature-precipitation) space, and to evaluate the simulated carbon cycle in an integrated way. The key findings of this study include that: (relative) optimal primary production is generally found in climate regions where the relationship between annual temperature (T, oC) and precipitation (P, mm) is defined by P = 50*T+500; the ratios between NPP and GPP are close to 50% on average, yet can vary between models and in different climate regions; the allocation of carbon to leaf growth represents a positive feedback to the primary production, and different approaches to constrain this process have significant impacts on the simulated carbon cycle; substantial differences in biomass stocks may be induced by small differences in the tissue turnover rate and the plant mortality; the mean residence time of soil carbon pools is strongly influenced by schemes of temperature regulations; non-respiratory disturbances (e.g., fires) are the main driver for NEP, yet its magnitudes vary between models. Overall, these findings indicate that although the structures of the models are similar, the uncertainties among them can be large, highlighting the problem inherent in relying on only one modeling approach to map surface carbon fluxes or to assess vegetation-climate interactions.

  13. Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011

    Science.gov (United States)

    Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G.

    2014-05-01

    In recent years, China's terrestrial ecosystems have experienced frequent droughts. How these droughts have affected carbon sequestration by the terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China from 2000 to 2011. Droughts of differing severity, as indicated by a standard precipitation index (SPI), hit terrestrial ecosystems in China extensively in 2001, 2006, 2009, and 2011. The national total annual NEP exhibited the slight decline of -11.3 Tg C yr-2 during the aforementioned years of extensive droughts. The NEP reduction ranged from 61.1 Tg C yr-1 to 168.8 Tg C yr-1. National and regional total NEP anomalies were correlated with the annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. The reductions in annual NEP in 2001 and 2011 might have been caused by a larger decrease in annual gross primary productivity (GPP) than in annual ecosystem respiration (ER). The reductions experienced in 2009 might be due to a decrease in annual GPP and an increase in annual ER, while reductions in 2006 could stem from a larger increase in ER than in GPP. The effects of droughts on NEP lagged up to 3-6 months, due to different responses of GPP and ER. In eastern China, where is humid and warm, droughts have predominant and short-term lagged influences on NEP. In western regions, cold and arid, the drought effects on NEP were relatively weaker but prone to lasting longer.

  14. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada

    International Nuclear Information System (INIS)

    Aravena, R.; Dinel, H.

    1993-01-01

    Radiocarbon dating and carbon isotope analyses of deep peat and gases in a small ombrogenous peatland in northwestern Ontario reveals the presence of old gases at depth that are 1000-2000 yr younger than the enclosing peat. The authors suggest that the most likely explanation to account for this age discrepancy is the downward movement by advection of younger dissolved organic carbon for use by fermentation and methanogens bacteria. This study identifies a potentially large supply of old carbon gases in peatlands that should be considered in global carbon models of the terrestrial biosphere

  15. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0

  16. Application of a terrestrial ecosystem model (ORCHIDEE-STICS) in simulating energy and CO2 fluxes in Asian rice croplands

    Science.gov (United States)

    Wang, X.; Piao, S.; Ciais, P.; Vuichard, N.

    2012-12-01

    Process-based terrestrial ecosystem models have shown great potentials in predicting the response of managed ecosystems to environmental changes. However, the simulated water and carbon fluxes over rice ecosystems in tropical Asia are still subject to large uncertainties, partly due to poorly constrained parameters in the models. Here, a terrestrial ecosystem model incorporating a more realistic crop module (ORCHIDEE-STICS) was calibrated against in-situ flux data and observed and remotely sensed leaf area indexes over rice ecosystems in Asia. The key parameters adjusted include maximum photosynthetic carboxylation rate (Vcmax) and electron transport rate (Vjmax), temperature sensitivity of heterotrophic respiration (Q10) and a series of critical thresholds for different crop development stages. Compared with the observations, the calibrated model more realistically simulated the seasonal and year-to-year variation of the observed water and carbon fluxes with reductions in the root mean square difference and better timing in the crop development stages. Sensitivity tests further reveal that management practices like the timing of transplanting and draining could affect the seasonal and inter-annual variation of the net carbon exchange, suggesting that the absence of explicit accounting the change of management practices in the terrestrial ecosystem models may induce large uncertainties in predicting cropland ecosystem response to future climate change.

  17. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  18. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl F.

    2003-01-01

    A new biophysical model (FORFLUX) is presented to link ozone deposition with carbon and water cycles in terrestrial ecosystems. - A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO 2 - transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3 model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO 2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems

  19. How does soil erosion influence the terrestrial carbon cycle and the impacts of land use and land cover change?

    Science.gov (United States)

    Naipal, V.; Wang, Y.; Ciais, P.; Guenet, B.; Lauerwald, R.

    2017-12-01

    The onset of agriculture has accelerated soil erosion rates significantly, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use and land cover change (LULCC). However, a full understanding of the impact of soil erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods, which are compatible with earth system models (ESMs), and explicitly represent the links between soil erosion and carbon dynamics. For this we use an emulator that represents the carbon cycle of ORCHIDEE, which is the land component of the IPSL ESM, in combination with an adjusted version of the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate how soil erosion influenced the terrestrial carbon cycle in the presence of elevated CO2, regional climate change and land use change. Here, we focus on the effects of soil detachment by erosion only and do not consider sediment transport and deposition. We found that including soil erosion in the SOC dynamics-scheme resulted in two times more SOC being lost during the historical period (1850-2005 AD). LULCC is the main contributor to this SOC loss, whose impact on the SOC stocks is significantly amplified by erosion. Regionally, the influence of soil erosion varies significantly, depending on the magnitude of the perturbations to the carbon cycle and the effects of LULCC and climate change on soil erosion rates. We conclude that it is necessary to include soil erosion in assessments of LULCC, and to explicitly consider the effects of elevated CO2 and climate change on the carbon cycle and on soil erosion, for better quantification of past, present, and future LULCC carbon emissions.

  20. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Science.gov (United States)

    Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.

    2015-01-01

    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  1. European-wide simulations of croplands using an improved terrestrial biosphere model: Phenology and productivity

    Science.gov (United States)

    Smith, P. C.; de Noblet-Ducoudré, N.; Ciais, P.; Peylin, P.; Viovy, N.; Meurdesoif, Y.; Bondeau, A.

    2010-03-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE), for vegetation productivity, water balance, and soil carbon dynamics, and the generic crop model Simulateur Multidisciplinaire pour les Cultures Standard (STICS), for phenology, irrigation, nitrogen balance, and harvest. The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated leaf area index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favorably with remote-sensing observations (correlation doubles over Europe). Crop yield is derived from annual net primary productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30 year mean simulated and reported yields are large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced toward the observed variability (≈10%) when using ORCHIDEE-STICS. Overall, this study highlights the importance of accounting for the specific phenologies of crops sown both in winter and in spring and for irrigation applied to spring crops in regional/global models of the terrestrial carbon cycle. Limitations suggest to account for temporal and spatial variability in agricultural practices for further simulation improvement.

  2. Energy transfer in the Congo deep-sea fan: From terrestrially-derived organic matter to chemosynthetic food webs

    Science.gov (United States)

    Pruski, A. M.; Decker, C.; Stetten, E.; Vétion, G.; Martinez, P.; Charlier, K.; Senyarich, C.; Olu, K.

    2017-08-01

    Large amounts of recent terrestrial organic matter (OM) from the African continent are delivered to the abyssal plain by turbidity currents and accumulate in the Congo deep-sea fan. In the recent lobe complex, large clusters of vesicomyid bivalves are found all along the active channel in areas of reduced sediment. These soft-sediment communities resemble those fuelled by chemoautotrophy in cold-seep settings. The aim of this study was to elucidate feeding strategies in these macrofaunal assemblages as part of a greater effort to understand the link between the inputs of terrestrially-derived OM and the chemosynthetic habitats. The biochemical composition of the sedimentary OM was first analysed in order to evaluate how nutritious the available particulate OM is for the benthic macrofauna. The terrestrial OM is already degraded when it reaches the final depositional area. However, high biopolymeric carbon contents (proteins, carbohydrates and lipids) are found in the channel of the recent lobe complex. In addition, about one to two thirds of the nitrogen can be assigned to peptide-like material. Even if this soil-derived OM is poorly digestible, turbiditic deposits contain such high amounts of organic carbon that there is enough biopolymeric carbon and proteacinous nitrogen to support dense benthic communities that contrast with the usual depauperate abyssal plains. Stable carbon and nitrogen isotopes and fatty acid biomarkers were then used to shed light on the feeding strategies allowing the energy transfer from the terrestrial OM brought by the turbidity currents to the abyssal food web. In the non-reduced sediment, surface detritivorous holothurians and suspension-feeding poriferans rely on detritic OM, thereby depending directly on the turbiditic deposits. The sulphur-oxidising symbiont bearing vesicomyids closely depend on the reprocessing of OM with methane and sulphide as final products. Their carbon and nitrogen isotopic signatures vary greatly among sites

  3. Stable carbon isotope ratios: implications for the source of sediment carbon and for phytoplankton carbon assimilation in Lake Memphremagog, Quebec

    International Nuclear Information System (INIS)

    LaZerte, B.D.

    1983-01-01

    The stable carbon isotope (SCI) ratio of the sediment of Lake Memphremagog, Quebec is compared with that ot terrestrial sources and the phytoplankton to determine the relative proportion of allochthonous carbon incorporated into the sediments. Approximately 40-50% of the organic carbon in the main basins' pelagic sediment was terrestrial in origin, whereas up to 100% was terrestrial in littoral areas. The SCI method of determining the organic carbon source of sediments appears more reliable than the C/N method. A comparison of the SCI fractionation of the phytoplankton with laboratory cultures under different degrees of carbon limitation indicates that the phytoplankton of Lake Memphremagog are not carbon limited and fix carbon primarily by the C 3 pathway

  4. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    Science.gov (United States)

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-08-01

    Soils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter - specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change.

  5. Reconciling biodiversity and carbon conservation.

    Science.gov (United States)

    Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J

    2013-05-01

    Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.

  6. V. Terrestrial vertebrates

    Science.gov (United States)

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  7. Quantifying Standing Dead Tree Volume and Structural Loss with Voxelized Terrestrial Lidar Data

    Science.gov (United States)

    Popescu, S. C.; Putman, E.

    2017-12-01

    Standing dead trees (SDTs) are an important forest component and impact a variety of ecosystem processes, yet the carbon pool dynamics of SDTs are poorly constrained in terrestrial carbon cycling models. The ability to model wood decay and carbon cycling in relation to detectable changes in tree structure and volume over time would greatly improve such models. The overall objective of this study was to provide automated aboveground volume estimates of SDTs and automated procedures to detect, quantify, and characterize structural losses over time with terrestrial lidar data. The specific objectives of this study were: 1) develop an automated SDT volume estimation algorithm providing accurate volume estimates for trees scanned in dense forests; 2) develop an automated change detection methodology to accurately detect and quantify SDT structural loss between subsequent terrestrial lidar observations; and 3) characterize the structural loss rates of pine and oak SDTs in southeastern Texas. A voxel-based volume estimation algorithm, "TreeVolX", was developed and incorporates several methods designed to robustly process point clouds of varying quality levels. The algorithm operates on horizontal voxel slices by segmenting the slice into distinct branch or stem sections then applying an adaptive contour interpolation and interior filling process to create solid reconstructed tree models (RTMs). TreeVolX estimated large and small branch volume with an RMSE of 7.3% and 13.8%, respectively. A voxel-based change detection methodology was developed to accurately detect and quantify structural losses and incorporated several methods to mitigate the challenges presented by shifting tree and branch positions as SDT decay progresses. The volume and structural loss of 29 SDTs, composed of Pinus taeda and Quercus stellata, were successfully estimated using multitemporal terrestrial lidar observations over elapsed times ranging from 71 - 753 days. Pine and oak structural loss rates

  8. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    Science.gov (United States)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  9. Novel 3D geometry and models of the lower regions of large trees for use in carbon accounting of primary forests.

    Science.gov (United States)

    Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H

    2018-03-01

    There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress 'logs' were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours.

  10. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N; Schwalm, Christopher R; Michalak, Anna M; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-01

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO 2 ) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10 15  g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr -1 with a median value of 51 Pg C yr -1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO 2 and nitrogen deposition over intact ecosystems increased SOC stocks-even though the responses varied

  11. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M. C.; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Heltai, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; StröM, J.; Haszpra, L.; Meijer, H. A J; van Der Laan, S.; Neubert, R. E M; Jordan, A.; Rodó, X.; Morguí, J. A.; Vermeulen, A. T.; Popa, Maria Elena; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (∼70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  12. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M.C.; Werf, van der G.R.; Houweling, S.; Jones, C.D.; Hughes, J.; Schaefer, K.; Masarie, K.A.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001–2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (~70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  13. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Helta, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; Strom, J.; Haszpra, L.; Meijer, H. A. J.; van der Laan, S.; Neubert, R. E. M.; Jordan, A.; Rodo, X.; Morgui, J. -A.; Vermeulen, A. T.; Popa, E.; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P. P.; Heltai, D.; Ström, J.

    We present an estimate of net ecosystem exchange (NEE) of CO(2) in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO(2) mole fraction observations (similar to 70 000) to guide relatively simple descriptions of terrestrial and oceanic net

  14. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event

    Science.gov (United States)

    Bianchi, Thomas S.; Garcia-Tigreros, Fenix; Yvon-Lewis, Shari A.; Shields, Michael; Mills, Heath J.; Butman, David; Osburn, Christopher; Raymond, Peter A.; Shank, G. Christopher; DiMarco, Steven F.; Walker, Nan; Kiel Reese, Brandi; Mullins-Perry, Ruth; Quigg, Antonietta; Aiken, George R.; Grossman, Ethan L.

    2013-01-01

    Rising CO2 concentration in the atmosphere, global climate change, and the sustainability of the Earth's biosphere are great societal concerns for the 21st century. Global climate change has, in part, resulted in a higher frequency of flooding events, which allow for greater exchange between soil/plant litter and aquatic carbon pools. Here we demonstrate that the summer 2011 flood in the Mississippi River basin, caused by extreme precipitation events, resulted in a “flushing” of terrestrially derived dissolved organic carbon (TDOC) to the northern Gulf of Mexico. Data from the lower Atchafalaya and Mississippi rivers showed that the DOC flux to the northern Gulf of Mexico during this flood was significantly higher than in previous years. We also show that consumption of radiocarbon-modern TDOC by bacteria in floodwaters in the lower Atchafalaya River and along the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 to the atmosphere in June and August 2011. This work shows that enhanced flooding, which may or may not be caused by climate change, can result in rapid losses of stored carbon in soils to the atmosphere via processes in aquatic ecosystems.

  15. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes?

    Science.gov (United States)

    Jones, Stuart E.; Solomon, Christopher T.; Weidel, Brian C.

    2012-01-01

    Cross-ecosystem fluxes are ubiquitous in food webs and are generally thought of as subsidies to consumer populations. Yet external or allochthonous inputs may in fact have complex and habitat-specific effects on recipient ecosystems. In lakes, terrestrial inputs of organic carbon contribute to basal resource availability, but can also reduce resource availability via shading effects on phytoplankton and periphyton. Terrestrial inputs might therefore either subsidise or subtract from consumer production. We developed and parameterised a simple model to explore this idea. The model estimates basal resource supply and consumer production given lake-level characteristics including total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-level characteristics including resource preferences and growth efficiencies. Terrestrial inputs diminished primary production and total basal resource supply at the whole-lake level, except in ultra-oligotrophic systems. However, this system-level generalisation masked complex habitat-specific effects. In the pelagic zone, dissolved and particulate terrestrial carbon inputs were available to zooplankton via several food web pathways. Consequently, zooplankton production usually increased with terrestrial inputs, even as total whole-lake resource availability decreased. In contrast, in the benthic zone the dominant, dissolved portion of the terrestrial carbon load had predominantly negative effects on resource availability via shading of periphyton. Consequently, terrestrial inputs always decreased zoobenthic production except under extreme and unrealistic parameterisations of the model. Appreciating the complex and habitat-specific effects of allochthonous inputs may be essential for resolving the effects of cross-habitat fluxes on consumers in lakes and other food webs.

  16. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  17. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model.

    Science.gov (United States)

    Kuribayashi, Masatoshi; Noh, Nam-Jin; Saitoh, Taku M; Ito, Akihiko; Wakazuki, Yasutaka; Muraoka, Hiroyuki

    2017-06-01

    Accurate projection of carbon budget in forest ecosystems under future climate and atmospheric carbon dioxide (CO 2 ) concentration is important to evaluate the function of terrestrial ecosystems, which serve as a major sink of atmospheric CO 2 . In this study, we examined the effects of spatial resolution of meteorological data on the accuracies of ecosystem model simulation for canopy phenology and carbon budget such as gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) of a deciduous forest in Japan. Then, we simulated the future (around 2085) changes in canopy phenology and carbon budget of the forest by incorporating high-resolution meteorological data downscaled by a regional climate model. The ecosystem model overestimated GPP and ER when we inputted low-resolution data, which have warming biases over mountainous landscape. But, it reproduced canopy phenology and carbon budget well, when we inputted high-resolution data. Under the future climate, earlier leaf expansion and delayed leaf fall by about 10 days compared with the present state was simulated, and also, GPP, ER and NEP were estimated to increase by 25.2%, 23.7% and 35.4%, respectively. Sensitivity analysis showed that the increase of NEP in June and October would be mainly caused by rising temperature, whereas that in July and August would be largely attributable to CO 2 fertilization. This study suggests that the downscaling of future climate data enable us to project more reliable carbon budget of forest ecosystem in mountainous landscape than the low-resolution simulation due to the better predictions of leaf expansion and shedding.

  18. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O' Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  19. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Directory of Open Access Journals (Sweden)

    M. Chen

    2011-09-01

    Full Text Available Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM, should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI, Land Surface Water Index (LSWI and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and net primary production (NPP ranges from 3.81 to 4.38 Pg C yr−1 and net ecosystem production (NEP varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  20. Climate implications of including albedo effects in terrestrial carbon policy

    Science.gov (United States)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo

  1. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea

    NARCIS (Netherlands)

    Zhu, C.; Wagner, T.; Talbot, H.M.; Weijers, J.W.H.; Pan, J.-M.; Pancost, R.D.

    2013-01-01

    Terrestrial carbon transferred from the land to sea is a critical component of the global carbon cycle. A range of geochemical proxies has been developed to fingerprint the fate of terrestrial organic matter (TOM) in marine sediments. However, discrepancies among different proxies limit our ability

  2. Terrestrial and marine trophic pathways support young-of-year growth in a nearshore Arctic fish

    Science.gov (United States)

    von Biela, Vanessa R.; Zimmerman, Christian E.; Cohn, Brian R.; Welker, Jeffrey M.

    2013-01-01

    River discharge supplies nearshore communities with a terrestrial carbon source that is often reflected in invertebrate and fish consumers. Recent studies in the Beaufort Sea have documented widespread terrestrial carbon use among invertebrates, but only limited use among nearshore fish consumers. Here, we examine the carbon source and diet of rapidly growing young-of-year Arctic cisco (Coregonus autumnalis) using stable isotope values (δ13C and δ15N) from muscle and diet analysis (stomach contents) during a critical and previously unsampled life stage. Stable isotope values (δ15N and δ13C) may differentiate between terrestrial and marine sources and integrate over longer time frames (weeks). Diet analysis provides species-specific information, but only from recent foraging (days). Average δ13C for all individuals was −25.7 ‰, with the smallest individuals possessing significantly depleted δ13C values indicative of a stronger reliance of terrestrial carbon sources as compared to larger individuals. Average δ15N for all individuals was 10.4 ‰, with little variation among individuals. As fish length increased, the proportion of offshore Calanus prey and neritic Mysis prey increased. Rapid young-of-year growth in Arctic cisco appears to use terrestrial carbon sources obtained by consuming a mixture of neritic and offshore zooplankton. Shifts in the magnitude or phenology of river discharge and the delivery of terrestrial carbon may alter the ecology of nearshore fish consumers.

  3. An Analysis of Terrestrial and Aquatic Environmental Controls of Riverine Dissolved Organic Carbon in the Conterminous United States

    Directory of Open Access Journals (Sweden)

    Qichun Yang

    2017-05-01

    Full Text Available Analyses of environmental controls on riverine carbon fluxes are critical for improved understanding of the mechanisms regulating carbon cycling along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC concentration data from 1402 United States Geological Survey (USGS gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S. surface waters. DOC concentrations exhibit high spatial variability in the U.S., with an average of 6.42 ± 6.47 mg C/L (Mean ± Standard Deviation. High DOC concentrations occur in the Upper Mississippi River basin and the southeastern U.S., while low concentrations are mainly distributed in the western U.S. Soil properties such as soil organic matter, soil water content, and soil sand content mainly show positive correlations with DOC concentrations; forest and shrub land have positive correlations with DOC concentrations, but urban area and cropland demonstrate negative impacts; and total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers. In sum, our results reveal that general multi-linear regression of twenty environmental factors can partially explain (56% the DOC concentration variability. This study also highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.

  4. Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties

    Science.gov (United States)

    Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-04-01

    Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results

  5. Implications of Uncertainty in Fossil Fuel Emissions for Terrestrial Ecosystem Modeling

    Science.gov (United States)

    King, A. W.; Ricciuto, D. M.; Mao, J.; Andres, R. J.

    2017-12-01

    Given observations of the increase in atmospheric CO2, estimates of anthropogenic emissions and models of oceanic CO2 uptake, one can estimate net global CO2 exchange between the atmosphere and terrestrial ecosystems as the residual of the balanced global carbon budget. Estimates from the Global Carbon Project 2016 show that terrestrial ecosystems are a growing sink for atmospheric CO2 (averaging 2.12 Gt C y-1 for the period 1959-2015 with a growth rate of 0.03 Gt C y-1 per year) but with considerable year-to-year variability (standard deviation of 1.07 Gt C y-1). Within the uncertainty of the observations, emissions estimates and ocean modeling, this residual calculation is a robust estimate of a global terrestrial sink for CO2. A task of terrestrial ecosystem science is to explain the trend and variability in this estimate. However, "within the uncertainty" is an important caveat. The uncertainty (2σ; 95% confidence interval) in fossil fuel emissions is 8.4% (±0.8 Gt C in 2015). Combined with uncertainty in other carbon budget components, the 2σ uncertainty surrounding the global net terrestrial ecosystem CO2 exchange is ±1.6 Gt C y-1. Ignoring the uncertainty, the estimate of a general terrestrial sink includes 2 years (1987 and 1998) in which terrestrial ecosystems are a small source of CO2 to the atmosphere. However, with 2σ uncertainty, terrestrial ecosystems may have been a source in as many as 18 years. We examine how well global terrestrial biosphere models simulate the trend and interannual variability of the global-budget estimate of the terrestrial sink within the context of this uncertainty (e.g., which models fall outside the 2σ uncertainty and in what years). Models are generally capable of reproducing the trend in net terrestrial exchange, but are less able to capture interannual variability and often fall outside the 2σ uncertainty. The trend in the residual carbon budget estimate is primarily associated with the increase in atmospheric CO2

  6. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  7. Characterisation of DOC and its relation to the deep terrestrial biosphere

    Science.gov (United States)

    Vieth, Andrea; Vetter, Alexandra; Sachse, Anke; Horsfield, Brian

    2010-05-01

    The deep subsurface is populated by a large number of microorganisms playing a pivotal role in the carbon cycling. The question arises as to the origin of the potential carbon sources that support deep microbial communities and their possible interactions within the deep subsurface. As the carbon sources need to be dissolved in formation fluids to become available to microorganisms, the dissolved organic carbon (DOC) needs further characterisation as regards concentration, structural as well as molecular composition and origin. The Malm carbonates in the Molasse basin of southern Germany are of large economic potential as they are targets for both hydrocarbon and geothermal exploration (ANDREWS et al., 1987). Five locations that differ in their depth of the Malm aquifer between 220 m and 3445 m below surface have been selected for fluid sampling. The concentration and the isotopic composition of the DOC have been determined. To get a better insight into the structural composition of the DOC, we also applied size exclusion chromatography and quantified the amount of low molecular weight organic acids (LMWOA) by ion chromatography. With increasing depth of the aquifer the formation fluids show increasing salinity as chloride concentrations increase from 2 to 300 mg/l and also the composition of the DOC changes. Water samples from greater depth (>3000 m) showed that the DOC mainly consists of LMWOA (max. 83 %) and low percentages of neutral compounds (alcohols, aldehyde, ketones, amino acids) as well as "building blocks". Building blocks have been described to be the oxidation intermediates from humic substances to LMWOA. With decreasing depth of the aquifer, the DOC of the fluid becomes increasingly dominated by neutral compounds and the percentage of building blocks increases to around 27%. The fluid sample from 220 m depth still contains a small amount of humic substances. The DOC of formation fluids in some terrestrial sediments may originate from organic

  8. Changing global carbon cycle

    International Nuclear Information System (INIS)

    Canadell, Pep

    2007-01-01

    Full text: The increase in atmospheric carbon dioxide (C02) is the single largest human perturbation on the earth's radiative balance contributing to climate change. Its rate of change reflects the balance between anthropogenic carbon emissions and the dynamics of a number of terrestrial and ocean processes that remove or emit C02. It is the long term evolution of this balance that will determine to large extent the speed and magnitude of the human induced climate change and the mitigation requirements to stabilise atmospheric C02 concentrations at any given level. In this talk, we show new trends in global carbon sources and sinks, with particularly focus on major shifts occurring since 2000 when the growth rate of atmospheric C02 has reached its highest level on record. The acceleration in the C02 growth results from the combination of several changes in properties of the carbon cycle, including: acceleration of anthropogenic carbon emissions; increased carbon intensity of the global economy, and decreased efficiency of natural carbon sinks. We discuss in more detail some of the possible causes of the reduced efficiency of natural carbon sinks on land and oceans, such as the decreased net sink in the Southern Ocean and on terrestrial mid-latitudes due to world-wide occurrence of drought. All these changes reported here characterise a carbon cycle that is generating stronger than expected climate forcing, and sooner than expected

  9. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2018-02-01

    Full Text Available Carbon storage is closely connected to the productivities and climate regulation capacities of ecosystems. Assessing the effects of urban expansion on carbon storage has become increasingly important for achieving urban sustainability. This study analyzed the effects of urban expansion on terrestrial carbon storage in Xuzhou City, China during 2000–2025. The cellular automata (CA model was developed to simulate future urban expansion under three scenarios, namely, the business as usual (BAU, ecological protection (ECO, and planning strengthened (PLS scenarios. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST model was further applied to explore the consequences of urban expansion on carbon storage. The results show that urban expansion resulted in 6.099 Tg of carbon storage loss from 2000–2015. Moreover, significant differences in the effects of the urban expansion scenarios on carbon storage were identified in terms of both magnitude and spatial pattern from 2015–2025. Compared with the other scenarios, the PLS scenario could be considered as a good option that would allow future development to achieve the objectives of the lowest carbon storage losses. The findings improve the understanding of the effects of urban expansion on carbon storage and may be used to support urban planning and management.

  10. Variations and trends of terrestrial NPP and its relation to climate ...

    Indian Academy of Sciences (India)

    Using global terrestrial ecosystem net primary productivity (NPP) data, we validated the simulated multi-model ensemble ..... tion on the solar radiation at six Canadian stations; Solar ... balance have enhanced the terrestrial carbon sink in the.

  11. Large-Scale Mapping of Carbon Stocks in Riparian Forests with Self-Organizing Maps and the k-Nearest-Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    Leonhard Suchenwirth

    2014-07-01

    Full Text Available Among the machine learning tools being used in recent years for environmental applications such as forestry, self-organizing maps (SOM and the k-nearest neighbor (kNN algorithm have been used successfully. We applied both methods for the mapping of organic carbon (Corg in riparian forests due to their considerably high carbon storage capacity. Despite the importance of floodplains for carbon sequestration, a sufficient scientific foundation for creating large-scale maps showing the spatial Corg distribution is still missing. We estimated organic carbon in a test site in the Danube Floodplain based on RapidEye remote sensing data and additional geodata. Accordingly, carbon distribution maps of vegetation, soil, and total Corg stocks were derived. Results were compared and statistically evaluated with terrestrial survey data for outcomes with pure remote sensing data and for the combination with additional geodata using bias and the Root Mean Square Error (RMSE. Results show that SOM and kNN approaches enable us to reproduce spatial patterns of riparian forest Corg stocks. While vegetation Corg has very high RMSEs, outcomes for soil and total Corg stocks are less biased with a lower RMSE, especially when remote sensing and additional geodata are conjointly applied. SOMs show similar percentages of RMSE to kNN estimations.

  12. Terrestrial ecosystems in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [CSIRO Marine and Atmospheric Research, Canberra, ACT (Australia). Global Carbon Project; Pataki, D.E. [California Univ., Irvine, CA (United States). Dept. of Earth System Science]|[California Univ., Irvine, CA (United States). Dept. of Ecology and Evolutionary Biology; Pitelka, L.F. (eds.) [Maryland Univ., Frostburg, MD (United States). Appalachian Lab.

    2007-07-01

    Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including: * key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity, * ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and * sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate. The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system. (orig.)

  13. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments

    Science.gov (United States)

    Shields, Michael R.; Bianchi, Thomas S.; Gélinas, Yves; Allison, Mead A.; Twilley, Robert R.

    2016-02-01

    We examined the role of reactive iron (FeR) in preserving organic carbon (OC) across a subaerial chronosequence of the Wax Lake Delta, a prograding delta within the Mississippi River Delta complex. We found that ~15.0% of the OC was bound to FeR, and the dominant binding mechanisms varied from adsorption in the youngest subaerial region to coprecipitation at the older, vegetated sites. The δ13C of the iron-associated OC was more negative than the total OC (mean = -2.6‰), indicating greater preference for terrestrial material and/or compounds with more negative δ13C values. However, only the adsorbed OC displayed preferential binding of lignin phenols. We estimate that ~8% of the OC initially deposited in deltaic systems is bound to FeR (equivalent to 6 × 1012 gC yr-1), and this percentage increases postdepositionally, as coprecipitation of FeR and OC allows for an even greater amount of OC to be bound to FeR.

  14. Monitoring terrestrial dissolved organic carbon export at land-water interfaces using remote sensing

    Science.gov (United States)

    Yu, Q.; Li, J.; Tian, Y. Q.

    2017-12-01

    Carbon flux from land to oceans and lakes is a crucial component of carbon cycling. However, this lateral carbon flow at land-water interface is often neglected in the terrestrial carbon cycle budget, mainly because observations of the carbon dynamics are very limited. Monitoring CDOM/DOC dynamics using remote sensing and assessing DOC export from land to water remains a challenge. Current CDOM retrieval algorithms in the field of ocean color are not simply applicable to inland aquatic ecosystems since they were developed for coarse resolution ocean-viewing imagery and less complex water types in open-sea. We developed a new semi-analytical algorithm, called SBOP (Shallow water Bio-Optical Properties algorithm) to adapt to shallow inland waters. SBOP was first developed and calibrated based on in situ hyperspectral radiometer data. Then we applied it to the Landsat-8 OLI images and evaluated the effectiveness of the multispectral images on inversion of CDOM absorption based on our field sampling at the Saginaw Bay in the Lake Huron. The algorithm performances (RMSE = 0.17 and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern US lakes) is promising and we conclude the CDOM absorption can be derived from Landsat-8 OLI image in both optically deep and optically shallow waters with high accuracy. Our method addressed challenges on employing appropriate atmospheric correction, determining bottom reflectance influence for shallow waters, and improving for bio-optical properties retrieval, as well as adapting to both hyperspectral and the multispectral remote sensing imagery. Over 100 Landsat-8 images in Lake Huron, northeastern US lakes, and the Arctic major rivers were processed to understand the CDOM spatio-temporal dynamics and its associated driving factors.

  15. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  16. Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Liew, P.M.; Kuo, C.M.; Huang, S.Y.; Tseng, M.H. [Geological Department, National Taiwan Univ. 245, Chou-shan Rd., Taipei (Taiwan, Province of China)

    1998-05-01

    Last Glacial Maximum (LGM) carbon storage in eastern Asia is a key issue for understanding the sinks and sources of paleocarbon. Palynological data with good time constraint for the LGM in a peat bog from a site at 650 m above mean sea level in central Taiwan, together with data from low-lying deltaic and basin deposits of Taiwan and South China, increase our understanding about vegetational evolution and possible terrestrial carbon storage in this area and probably eastern Asia. Contrasting to today`s Machilus-Castanopsis forest zone around the peat bog, the vegetation before the LGM was dominated by Alnus, a relatively xerophytic element in Taiwan. An increase in herbs and decrease in spores during the LGM is recognized when compared with Holocene and modern assemblages. A less humid interval dominated by herbs (>50%) occurred between 21 and 15.8 ka. Basin deposits in northern Taiwan and deltaic deposits in central Taiwan show that during the LGM Artemisia, Umbelliferae and Gramineae were the main components contrasting with the Pinus or Cyclobalanopsis-dominant assemblages in the rest of the last glacial. Thus, less humid conditions lasted about 5000 to 6000 years in the LGM even on this very humid island. This may also be true in eastern Asia where a large area of the widely exposed continental shelf may have been occupied by grasslands and the uplands of South China were occupied by less dense coniferous or temperate forests during the LGM in contrast to the modern subtropical forest. This scenario improves our understanding of the terrestrial paleocarbon storage

  17. Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan

    Science.gov (United States)

    Liew, P. M.; Kuo, C. M.; Huang, S. Y.; Tseng, M. H.

    1998-05-01

    Last Glacial Maximum (LGM) carbon storage in eastern Asia is a key issue for understanding the sinks and sources of paleocarbon. Palynological data with good time constraint for the LGM in a peat bog from a site at 650 m above mean sea level in central Taiwan, together with data from low-lying deltaic and basin deposits of Taiwan and South China, increase our understanding about vegetational evolution and possible terrestrial carbon storage in this area and probably eastern Asia. Contrasting to today's Machilus-Castanopsis forest zone around the peat bog, the vegetation before the LGM was dominated by Alnus, a relatively xerophytic element in Taiwan. An increase in herbs and decrease in spores during the LGM is recognized when compared with Holocene and modern assemblages. A less humid interval dominated by herbs (>50%) occurred between 21 and 15.8 ka. Basin deposits in northern Taiwan and deltaic deposits in central Taiwan show that during the LGM Artemisia, Umbelliferae and Gramineae were the main components contrasting with the Pinus or Cyclobalanopsis-dominant assemblages in the rest of the last glacial. Thus, less humid conditions lasted about 5000 to 6000 years in the LGM even on this very humid island. This may also be true in eastern Asia where a large area of the widely exposed continental shelf may have been occupied by grasslands and the uplands of South China were occupied by less dense coniferous or temperate forests during the LGM in contrast to the modern subtropical forest. This scenario improves our understanding of the terrestrial paleocarbon storage.

  18. The Australian terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-02-01

    Full Text Available This paper reports a study of the full carbon (C-CO2 budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP; net ecosystem production (NEP; fire; land use change (LUC; riverine export; dust export; harvest (wood, crop and livestock and fossil fuel emissions (both territorial and non-territorial. Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012, a fine-spatial-resolution (0.05° offline modelling environment in which predictions of CABLE (Wang et al., 2011, a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1σ error on mean and 68 ± 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes, which caused net losses of 26 ± 4 TgC yr−1 and 18 ± 7 TgC yr−1, respectively. The resultant net biome production (NBP is 36 ± 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr−1 by 38 ± 30%. The interannual variability (IAV in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  19. Dynamical Origin and Terrestrial Impact Flux of Large Near-Earth Asteroids

    Science.gov (United States)

    Nesvorný, David; Roig, Fernando

    2018-01-01

    Dynamical models of the asteroid delivery from the main belt suggest that the current impact flux of diameter D> 10 km asteroids on the Earth is ≃0.5–1 Gyr‑1. Studies of the Near-Earth Asteroid (NEA) population find a much higher flux, with ≃ 7 D> 10 km asteroid impacts per Gyr. Here we show that this problem is rooted in the application of impact probability of small NEAs (≃1.5 Gyr‑1 per object), whose population is well characterized, to large NEAs. In reality, large NEAs evolve from the main belt by different escape routes, have a different orbital distribution, and lower impact probabilities (0.8 ± 0.3 Gyr‑1 per object) than small NEAs. In addition, we find that the current population of two D> 10 km NEAs (Ganymed and Eros) is a slight fluctuation over the long-term average of 1.1+/- 0.5 D> 10 km NEAs in a steady state. These results have important implications for our understanding of the occurrence of the K/T-scale impacts on the terrestrial worlds.

  20. Mitigation of greenhouse gases emissions impact and their influence on terrestrial ecosystem.

    Science.gov (United States)

    Wójcik Oliveira, K.; Niedbała, G.

    2018-05-01

    Nowadays, one of the most important challenges faced by the humanity in the current century is the increasing temperature on Earth, caused by a growing emission of greenhouse gases into the atmosphere. Terrestrial ecosystems, as an important component of the carbon cycle, play an important role in the sequestration of carbon, which is a chance to improve the balance of greenhouse gases. Increasing CO2 absorption by terrestrial ecosystems is one way to reduce the atmospheric CO2 emissions. Sequestration of CO2 by terrestrial ecosystems is not yet fully utilized method of mitigating CO2 emission to the atmosphere. Terrestrial ecosystems, especially forests, are essential for the regulation of CO2 content in the atmosphere and more attention should be paid to seeking the natural processes of CO2 sequestration.

  1. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    Science.gov (United States)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved

  2. Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching

    Directory of Open Access Journals (Sweden)

    S. Olin

    2015-11-01

    levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land-use-enabled dynamic vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator. Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us to investigate trade-offs between these ecosystem services that can be provided from agricultural fields. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP (Representative Concentration Pathway 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till management and cover crops proposed in previous studies is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C–N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles.

  3. Carbon exchange in Western Siberian watershed mires and implication for the greenhouse effect : A spatial temporal modeling approach

    NARCIS (Netherlands)

    Borren, W.

    2007-01-01

    The vast watershed mires of Western Siberia formed a significant sink of carbon during the Holocene. Because of their large area these mires might play an important role in the carbon exchange between terrestrial ecosystems and the atmosphere. However, estimation of the Holocene and future carbon

  4. Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics

    Science.gov (United States)

    Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul

    2017-10-01

    The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on

  5. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics

    Directory of Open Access Journals (Sweden)

    T. Davies-Barnard

    2017-10-01

    Full Text Available The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial–interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere–ocean–vegetation general circulation model (GCM to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional −0.91 °C global mean cooling, with regional cooling as large as −5 °C, but with considerable variability across the glacial–interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial baseline atmospheric CO2 mixing ratio. In contrast to shorter (century timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a −0.26 °C effect on temperature, with −0.58 °C at the

  6. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    Science.gov (United States)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  7. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  8. Development of Large Concrete Object Geometrical Model Based on Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Zaczek-Peplinska Janina

    2015-02-01

    Full Text Available The paper presents control periodic measurements of movements and survey of concrete dam on Dunajec River in Rożnów, Poland. Topographical survey was conducted using laser scanning technique. The goal of survey was data collection and creation of a geometrical model. Acquired cross- and horizontal sections were utilised to create a numerical model of object behaviour at various load depending of changing level of water in reservoir. Modelling was accomplished using finite elements technique. During the project an assessment was conducted to terrestrial laser scanning techniques for such type of research of large hydrotechnical objects such as gravitational water dams. Developed model can be used to define deformations and displacement prognosis.

  9. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  10. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    Science.gov (United States)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  11. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    Science.gov (United States)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    Soil erosion by water is a key process of soil and land degradation. In addition, significant amounts of nutrients and organic Carbon are moved from eroding source areas to landscape sinks. As a consequence, areas affected by erosion suffer a loss of fertility, while sinks experience the development of a stockpile of the deposited sediment, including soil organic matter and nutrients. The deposited nutrients are largely unavailable for the plants growing in these landscape sediment sinks once the thickness of the deposited layer is greater than the rooting depth of the plants. In addition, the deposited organic matter is decomposed slowly through the pack of sediment. At sites of erosion, nutrients have to be replaced and organic matter content of the soil declines due to a destruction of the A horizon. Over time, the risk of a significant reduction in productivity, for example caused by a loss of top soil with a sufficient water storage capacity for maximum plant growth, leads to a decline in CO2 uptake by photosynthesis. Soil organic matter at eroding sites therefore declines and consequently the sediment that is moved to landscape sinks also has a smaller organic matter content than sediment generated from the non-degraded soil. The sediment sinks, on the other hand, emit an increasing amount of greenhouse gases as a consequence of the increasing amount of organic matter deposited while the upslope area is eroded. Over time, the perceived sink effect of soil erosion for greenhouse gases is therefore replaced with a neutral or positive emission balance of erosion in agricultural landscapes. Such a switch from none or a negative emission balance of agricultural landscapes to a positive balance carries the risk of accelerating climate change. In this study, we tried to estimate the risk associated with ongoing soil degradation and closing landscape soil organic matter sinks. Currently observed global erosion rates were linked to known limitations of soil

  12. MODIS-derived terrestrial primary production [chapter 28

    Science.gov (United States)

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  13. A diagnostic study of temperature controls on global terrestrial carbon exchange

    International Nuclear Information System (INIS)

    Vukicevic, Tomislava; Schimel, David

    2001-01-01

    The observed interannual variability of atmospheric CO 2 reflects short-term variability in sources and sinks of CO 2 . Analyses using 13 C and O 2 suggest that much of the observed interannual variability is due to changes in terrestrial CO 2 exchange. First principles, empirical correlations and process models suggest a link between climate variation and net ecosystem exchange, but the scaling of ecological process studies to the globe is notoriously difficult. We sought to identify a component of global CO 2 exchange that varied coherently with land temperature anomalies using an inverse modeling approach. We developed a family of simplified spatially aggregated ecosystem models (designated K-model versions) consisting of five compartments: atmospheric CO 2 , live vegetation, litter, and two soil pools that differ in turnover times. The pools represent cumulative differences from mean storage due to temperature variability and can thus have positive or negative values. Uptake and respiration of CO 2 are assumed to be linearly dependent on temperature. One model version includes a simple representation of the nitrogen cycle in which changes in the litter and soil carbon pools result in stoichiometric release of plant-available nitrogen, the other omits the nitrogen feedback. The model parameters were estimated by inversion of the model against global temperature and CO 2 anomaly data using the variational method. We found that the temperature sensitivity of carbon uptake (NPP) was less than that of respiration in all model versions. Analyses of model and data also showed that temperature anomalies trigger ecosystem changes on multiple, lagged time-scales. Other recent studies have suggested a more active land biosphere at Northern latitudes in response to warming and longer growing seasons. Our results indicate that warming should increase NPP, consistent with this theory, but that respiration should increase more than NPP, leading to decreased or negative NEP. A

  14. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [Global Carbon Project, CSIRO Marine and Atmospheric Research, GPO Box 3023, Canberra, ACT 2601 (Australia); Kirschbaum, M.U.F. [Environmental Biology Group, RSBS, Australian National University, GPO Box 475, Canberra, ACT 2601 (Australia); Kurz, W.A. [Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, BC V8Z 1M5 (Canada); Sanz, M.J. [Fundacion CEAM, Parque Tecnologico, Charles H. Darwin 14, 46980 Paterna, Valencia (Spain); Schlamadinger, B. [Joanneum Research, Elisabethstrasse 11, Graz A-8010 (Austria); Yamagata, Y. [Center for Global Environmental Research, National Institute of Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan)

    2007-06-15

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system.

  15. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    International Nuclear Information System (INIS)

    Canadell, J.G.; Kirschbaum, M.U.F.; Kurz, W.A.; Sanz, M.J.; Schlamadinger, B.; Yamagata, Y.

    2007-01-01

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system

  16. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  17. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa; hide

    2016-01-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  18. Non-terrestrial food source for Fiordland brachiopods

    International Nuclear Information System (INIS)

    Lyon, G.L.; Richardson, Joyce

    1983-05-01

    Carbon-13 analyses were determined for brachiopods and particulate organic matter from Fiordland waters. Brachiopod delta 13 $ 0 C are about -18 per mille which is significantly enriched in 13 C relative to the particulate matter (about -23 per mille) and different from local terrestrial matter (about -28 per mille). There is no carbon-13 evidence for non-marine food in the diet of brachiopods

  19. Modeling Carbon Exchange

    Science.gov (United States)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  20. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  1. Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models

    Science.gov (United States)

    Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.

    2018-03-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure

  2. Terrestrial ecosystem responses to global change: A research strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere.

  3. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Science.gov (United States)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16

  4. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Directory of Open Access Journals (Sweden)

    A. Joesoef

    2017-11-01

    Full Text Available Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC, total alkalinity (TA, and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3− concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11 during high discharge and low (0.94 during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2, most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3− inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2

  5. The Climate Potentials and Side-Effects of Large-Scale terrestrial CO2 Removal - Insights from Quantitative Model Assessments

    Science.gov (United States)

    Boysen, L.; Heck, V.; Lucht, W.; Gerten, D.

    2015-12-01

    Terrestrial carbon dioxide removal (tCDR) through dedicated biomass plantations is considered as one climate engineering (CE) option if implemented at large-scale. While the risks and costs are supposed to be small, the effectiveness depends strongly on spatial and temporal scales of implementation. Based on simulations with a dynamic global vegetation model (LPJmL) we comprehensively assess the effectiveness, biogeochemical side-effects and tradeoffs from an earth system-analytic perspective. We analyzed systematic land-use scenarios in which all, 25%, or 10% of natural and/or agricultural areas are converted to tCDR plantations including the assumption that biomass plantations are established once the 2°C target is crossed in a business-as-usual climate change trajectory. The resulting tCDR potentials in year 2100 include the net accumulated annual biomass harvests and changes in all land carbon pools. We find that only the most spatially excessive, and thus undesirable, scenario would be capable to restore the 2° target by 2100 under continuing high emissions (with a cooling of 3.02°C). Large-scale biomass plantations covering areas between 1.1 - 4.2 Gha would produce a climate reduction potential of 0.8 - 1.4°C. tCDR plantations at smaller scales do not build up enough biomass over this considered period and the potentials to achieve global warming reductions are substantially lowered to no more than 0.5-0.6°C. Finally, we demonstrate that the (non-economic) costs for the Earth system include negative impacts on the water cycle and on ecosystems, which are already under pressure due to both land use change and climate change. Overall, tCDR may lead to a further transgression of land- and water-related planetary boundaries while not being able to set back the crossing of the planetary boundary for climate change. tCDR could still be considered in the near-future mitigation portfolio if implemented on small scales on wisely chosen areas.

  6. Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network

    International Nuclear Information System (INIS)

    Balzarolo, M.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Maignan, F.; Chevallier, F.; Poulter, B.

    2014-01-01

    This paper reports a comparison between large scale simulations of three different land surface models (LSMs), ORCHIDEE, ISBA-A-gs and CTESSEL, forced with the same meteorological data, and compared with the carbon fluxes measured at 32 eddy covariance (EC) flux tower sites in Europe. The results show that the three simulations have the best performance for forest sites and the poorest performance for cropland and grassland sites. In addition, the three simulations have difficulties capturing the seasonality of Mediterranean and sub-tropical biomes, characterized by dry summers. This reduced simulation performance is also reflected in deficiencies in diagnosed light-use efficiency (LUE) and vapour pressure deficit (VPD) dependencies compared to observations. Shortcomings in the forcing data may also play a role. These results indicate that more research is needed on the LUE and VPD functions for Mediterranean and sub-tropical biomes. Finally, this study highlights the importance of correctly representing phenology (i.e. leaf area evolution) and management (i.e. rotation-irrigation for cropland, and grazing-harvesting for grassland) to simulate the carbon dynamics of European ecosystems and the importance of ecosystem-level observations in model development and validation. (authors)

  7. The importance of rapid, disturbance-induced losses in carbon management and sequestration

    Science.gov (United States)

    Breshears, D.D.; Allen, Craig D.

    2002-01-01

    Management of terrestrial carbon fluxes is being proposed as a means of increasing the amount of carbon sequestered in the terrestrial biosphere. This approach is generally viewed only as an interim strategy for the coming decades while other longer-term strategies are developed and implemented — the most important being the direct reduction of carbon emissions. We are concerned that the potential for rapid, disturbance-induced losses may be much greater than is currently appreciated, especially by the decision-making community. Here we wish to: (1) highlight the complex and threshold-like nature of disturbances — such as fire and drought, as well as the erosion associated with each — that could lead to carbon losses; (2) note the global extent of ecosystems that are at risk of such disturbance-induced carbon losses; and (3) call for increased consideration of and research on the mechanisms by which large, rapid disturbance-induced losses of terrestrial carbon could occur. Our lack of ability as a scientific community to predict such ecosystem dynamics is precluding the effective consideration of these processes into strategies and policies related to carbon management and sequestration. Consequently, scientists need to do more to improve quantification of these potential losses and to integrate them into sound, sustainable policy options.

  8. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    Science.gov (United States)

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  9. Amazon River carbon dioxide outgassing fuelled by wetlands

    NARCIS (Netherlands)

    Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.-H.; Bernardes, M.C.; Savoye, N.; Deborde, J.; Souza, E.L.; Alberic, P.; de Souza, M.F.L.; Roland, F.

    2014-01-01

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial

  10. The Economics of Carbon Dioxide Removal: The Case against Free Disposal

    Science.gov (United States)

    Keller, D. P.; Rickels, W.; Quaas, M.; Oschlies, A.; Reith, F.

    2016-12-01

    Facing the challenge to keep the average global temperature increase below 2°C and to limit long-term climate change, removing carbon dioxide from the atmosphere (Carbon Dioxide Removal, CDR) and disposing of it in non-atmospheric carbon reservoirs is becoming increasingly necessary. The social cost of removing carbon into the terrestrial biosphere (e.g. by afforestation) or the ocean (e.g. by spreading olivine in coastal areas) arises from carbon-cycle feedbacks and saturation effects. Yet they are ignored in existing economic studies on CDR. Neglecting non-atmospheric social cost results in inconsistent estimates with regard to the share and timing of CDR measures in climate policy. Here, we use an intermediate-complexity earth system model, the University of Victoria (UVic) model, to calibrate a dynamic economic model, capturing the temperature feedback and saturation effect of terrestrial carbon uptake and the saturation effect of oceanic carbon uptake to obtain an improved understanding of the net social carbon value of terrestrial and oceanic CDR. We show that planning horizons beyond the year 2100 are required to properly reflect long-term scarcity issues of non-atmospheric carbon reservoirs in current carbon prices and that neglecting non-atmospheric social cost results in too low abatement efforts and in turn in too large and earlier application of CDR measures than if applied optimally. The figure shows the carbon prices for the different carbon reservoirs in the year 2100 in dependence of the planning horizon (for a climate policy aiming to limit global mean temperature increase to 2°C). The difference between the atmospheric and the non-atmospheric carbon prices indicates the benefits of the different CDR options.

  11. How costly are carbon offsets : a meta-analysis of forest carbon sinks

    International Nuclear Information System (INIS)

    Van Kooten, G.C.; Eagle, A.J.; Manley, J.; Smolak, T.M.

    2004-01-01

    Carbon terrestrial sinks are one of the many proposed mitigation responses to climate change. Carbon sinks are considered to be a low-cost alternative to fuel switching and reduced fossil fuel consumption for reducing atmospheric carbon dioxide emissions. This study examined the costs of sequestering carbon in terrestrial ecosystems via forestry activities. A meta-regression analysis was used to determine which factors influence the costs of carbon sequestration via forest activities. Important concerns about how the Kyoto Protocol may be implemented were also addressed. The meta-regression analysis was used to examine 981 estimates from 55 studies on the cost of creating carbon offsets using forestry. Baseline cost estimates are US$46.62 to 260.29 per tC. Tree planting and agroforestry increases costs by more than 200 per cent. Costs are lowest when post-harvest storage of carbon in wood products is considered, or when biomass is substituted for fossil fuels in energy production. The meta-analysis also considered land use, land-use change and forestry (LULUCF) policies that increase the carbon sink functions of terrestrial ecosystems. The main motive for using sinks in the accounting process is that they avoid the use of expensive controls for the emission of carbon dioxide and other greenhouse gases. refs., tabs

  12. Studying dissolved organic carbon export from the Penobscot Watershed in to Gulf of Maine using Regional Hydro-Ecological Simulation System (RHESSys)

    Science.gov (United States)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Choate, J. S.; Yang, Y.; Kim, J.

    2014-12-01

    The movement of Dissolved Organic Carbon (DOC) from terrestrial system into aquatic system plays an important role for carbon sequestration in ecosystems and affects the formation of soil organic matters.Carbon cycling, storage, and transport to marine systems have become critical issues in global-change science, especially with regard to northern latitudes (Freeman et al., 2001; Benner et al., 2004). DOC, as an important composition of the carbon cycling, leaches from the terrestrial watersheds is a large source of marine DOC. The Penobscot River basin in north-central Maine is the second largest watershed in New England, which drains in to Gulf of Maine. Approximately 89% of the watershed is forested (Griffith and Alerich, 1996).Studying temporal and spatial changes in DOC export can help us to understand terrestrial carbon cycling and to detect any shifts from carbon sink to carbon source or visa versa in northern latitude forested ecosystems.Despite for the importance of understanding carbon cycling in terrestrial and aquatic biogeochemistry, the Doc export, especially the combination of DOC production from bio-system and DOC transportation from the terrestrial in to stream has been lightly discussed in most conceptual or numerical models. The Regional Hydro-Ecological Simulation System (RHESSys), which has been successfully applied in many study sites, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The focus of this study is on simulating the DOC concentration and flux from the land to the water using RHESSys in the Penobscot watershed. The simulated results will be compared with field measurement of DOC from the watershed to explore the spatial and temporal DOC export pattern. This study will also enhance our knowledge to select sampling locations properly and also improve our understanding on DOC production and transportation in

  13. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  14. Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin

    International Nuclear Information System (INIS)

    Zhao Mu; Song Huaihe; Chen Xiaohong; Lian Wentao

    2007-01-01

    Onion-like carbon nanoparticles have been synthesized on a large scale by carbonization of phenolic-formaldehyde resin at 1000 o C with the aid of ferric nitrate (FN). The effects of FN loading content on the yield, morphology and structure of carbonized products were investigated using transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction. It was found that the onion-like carbon nanoparticles, which had a narrow size distribution ranging from 30 to 50 nm, were composed mainly of quasi-spherically concentric shells of well-aligned graphene layers with interlayer spacing of 0.336 nm. Based on the results of the investigation, the formation mechanism of onion-like carbon nanoparticles was also discussed

  15. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hopmans, E.C.; Weijers, J.W.H.; Schefuß, E.; Herfort, L.; Schouten, S.

    2004-01-01

    We propose a novel tracer for terrestrial organic carbon in sediments based on the analysis of tetraether lipids using high-performance liquid chromatography/mass spectrometry (HPLC/MS). Analysis of terrestrial soil and peats shows that branched tetraether lipids are predominant in terrestrial

  16. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization

    Science.gov (United States)

    Smith, W. Kolby; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y; Running, Steven W.

    2015-01-01

    Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 ± 1.50%) less than half of ESM-derived increases (7.6  ±  1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle–climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.

  17. Changes in terrestrial CO2 budget in Siberia in the past three decades

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Ito, A.; Kobayashi, H.; Maksyutov, S. S.; Maki, T.; Nakamura, T.; Niwa, Y.; Patra, P. K.; Saeki, T.; Sato, H.; Sasai, T.; Saigusa, N.; Tian, H.; Yanagi, Y.; Zhang, B.

    2015-12-01

    Siberia is one of the regions where significant warming is proceeding, and the warming might cause changes in terrestrial carbon cycle. We analyzed interannual and decadal changes in terrestrial CO2 fluxes in the regions using multiple data sets, such as empirically estimated carbon fluxes based on multiple eddy-covariance sites (empirical upscaling; Support Vector Regression with AsiaFlux data), satellite-based vegetation index data, multiple terrestrial carbon cycle models from Asia-MIP (e.g. BEAMS, Biome-BGC, SEIB-DGVM, and VISIT), and atmospheric inverse models (e.g. ACTM, JMA, NICAM-TM) for the past 3 decades (1980s, 1990s, and 2000s). First, we checked the consistency in interannual variation of net carbon exchange between empirical upscaling and Asia-MIP model for 2001-2011 period, and found these two estimations show overall consistent interannual variation. Second, we analyzed net carbon exchange form Asia-MIP models and atmospheric inversions for the past three decades, and found persistent increases in terrestrial CO2 sink from two estimates. Magnitudes of estimated terrestrial CO2 sinks are also consistent (e.g. Asia-MIP: 0.2 PgC yr-1 in 1980s and 0.3 PgC yr-1 in 2000s and Inversions: 0.2 PgC yr-1 in 1980s and 0.5 PgC/yr in 2000s). We further analyzed the cause of persistent increases in CO2 uptake in the region using Asia-MIP model outputs, and climate changes (both warming and increases in water availability) and CO2 fertilization plays almost equivalent roles in sink increases. In addition, both gross primary productivity (GPP) and ecosystem respiration (RE) were increased, but increase in GPP was larger than that in RE.

  18. Stable isotopic constraints on global soil organic carbon turnover

    Science.gov (United States)

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  19. Regional carbon cycle responses to 25 years of variation in climate and disturbance in the US Pacific Northwest

    Science.gov (United States)

    David P. Turner; William D. Ritts; Robert E. Kennedy; Andrew N. Gray; Zhiqiang Yang

    2016-01-01

    Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state...

  20. Research Needs for Carbon Management in Agriculture, Forestry and Other Land Uses

    Science.gov (United States)

    Negra, C.; Lovejoy, T.; Ojima, D. S.; Ashton, R.; Havemann, T.; Eaton, J.

    2009-12-01

    Improved management of terrestrial carbon in agriculture, forestry, and other land use sectors is a necessary part of climate change mitigation. It is likely that governments will agree in Copenhagen in December 2009 to incentives for improved management of some forms of terrestrial carbon, including maintaining existing terrestrial carbon (e.g., avoiding deforestation) and creating new terrestrial carbon (e.g., afforestation, soil management). To translate incentives into changes in land management and terrestrial carbon stocks, a robust technical and scientific information base is required. All terrestrial carbon pools (and other greenhouse gases from the terrestrial system) that interact with the atmosphere at timescales less than centuries, and all land uses, have documented mitigation potential, however, most activity has focused on above-ground forest biomass. Despite research advances in understanding emissions reduction and sequestration associated with different land management techniques, there has not yet been broad-scale implementation of land-based mitigation activity in croplands, peatlands, grasslands and other land uses. To maximize long-term global terrestrial carbon volumes, further development of relevant data, methodologies and technologies are needed to complement policy and financial incentives. The Terrestrial Carbon Group, in partnership with UN-REDD agencies, the World Bank and CGIAR institutions, is reviewing literature, convening leading experts and surveying key research institutions to develop a Roadmap for Terrestrial Carbon: Research Needs for Implementation of Carbon Management in Agriculture, Forestry and Other Land Uses. This work will summarize the existing knowledge base for emissions reductions and sequestration through land management as well as the current availability of tools and methods for measurement and monitoring of terrestrial carbon. Preliminary findings indicate a number of areas for future work. Enhanced information

  1. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set

    NARCIS (Netherlands)

    Verma, M.; Friedl, M.A.; Richardson, A.D.; Kiely, G.; Cescatti, A.; Law, B.E.; Wohlfahrt, G.; Gielen, G.; Roupsard, O.; Moors, E.J.

    2014-01-01

    Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency

  2. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

    Directory of Open Access Journals (Sweden)

    Akihiko Ito

    2016-05-01

    Full Text Available The seasonal-cycle amplitude (SCA of the atmosphere–ecosystem carbon dioxide (CO2 exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP, we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr−1. In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their

  3. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment

    Directory of Open Access Journals (Sweden)

    V. Brüchert

    2018-01-01

    Full Text Available The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC; δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC ∕ NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr−1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3

  4. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  5. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    Science.gov (United States)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help

  6. Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain

    Science.gov (United States)

    Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.

    2016-07-01

    Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20 % in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin

  7. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    International Nuclear Information System (INIS)

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced

  8. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Brinza, Loredana [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom); Schofield, Paul F. [Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Hodson, Mark E. [University of York, York YO10 5DD (United Kingdom); Weller, Sophie [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W., E-mail: fred.mosselmans@diamond.ac.uk [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom)

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  9. Integrating terrestrial through aquatic processing of water, carbon and nitrogen over hot, cold and lukewarm moments in mixed land use catchments

    Science.gov (United States)

    Band, L. E.; Lin, L.; Duncan, J. M.

    2017-12-01

    A major challenge in understanding and managing freshwater volumes and quality in mixed land use catchments is the detailed heterogeneity of topography, soils, canopy, and inputs of water and biogeochemicals. The short space and time scale dynamics of sources, transport and processing of water, carbon and nitrogen in natural and built environments can have a strong influence on the timing and magnitude of watershed runoff and nutrient production, ecosystem cycling and export. Hydroclimate variability induces a functional interchange of terrestrial and aquatic environments across their transition zone with the temporal and spatial expansion and contraction of soil wetness, standing and flowing water over seasonal, diurnal and storm event time scales. Variation in sources and retention of nutrients at these scales need to be understood and represented to design optimal mitigation strategies. This paper discusses the conceptual framework used to design both simulation and measurement approaches, and explores these dynamics using an integrated terrestrial-aquatic watershed model of coupled water-carbon-nitrogen processes at resolutions necessary to resolve "hot spot/hot moment" phenomena in two well studied catchments in Long Term Ecological Research sites. The potential utility of this approach for design and assessment of urban green infrastructure and stream restoration strategies is illustrated.

  10. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    NARCIS (Netherlands)

    Wisser, D.; Marchenko, S.; Talbot, J.; Treat, C.; Frolking, S.

    2011-01-01

    Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth’s carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result

  11. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Science.gov (United States)

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-10-01

    Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by `methanogenesis' on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

  12. The D3-D5 region of large subunit ribosomal DNA provides good resolution of German limnic and terrestrial nematode communities

    NARCIS (Netherlands)

    Schenk, Janina; Hohberg, Karin; Helder, Hans; Ristau, Kai; Traunspurger, Walter

    2017-01-01

    Reliable and well-developed DNA barcode databases are indispensable for the identification of microscopic life. However, effectiveness of molecular barcoding in identifying terrestrial specimens, and nematodes in particular, has received little attention. In this study, ca 600 ribosomal large

  13. Potentials, consequences and trade-offs of terrestrial carbon dioxide removal. Strategies for climate engineering and their limitations

    Energy Technology Data Exchange (ETDEWEB)

    Boysen, Lena R.

    2017-01-17

    For hundreds of years, humans have engineered the planet to fulfil their need for increasing energy consumption and production. Since the industrial revolution, one consequence are rising global mean temperatures which could change by 2 C to 4.5 C until 2100 if mitigation enforcement of CO{sub 2} emissions fails.To counteract this projected global warming, climate engineering techniques aim at intendedly cooling Earth's climate for example through terrestrial carbon dioxide removal (tCDR) which is commonly perceived as environmentally friendly. Here, tCDR refers to the establishment of large-scale biomass plantations (BPs) in combination with the production of long-lasting carbon products such as bioenergy with carbon capture and storage or biochar. This thesis examines the potentials and possible consequences of tCDR by analysing land-use scenarios with different spatial and temporal scales of BPs using an advanced biosphere model forced by varying climate projections. These scenario simulations were evaluated with focus on their carbon sequestration potentials, trade-offs with food production and impacts on natural ecosystems and climate itself. Synthesised, the potential of tCDR to permanently extract CO{sub 2} out of the atmosphere is found to be small, regardless of the emission scenario, the point of onset or the spatial extent. On the contrary, the aforementioned trade-offs and impacts are shown to be unfavourable in most cases. In a high emission scenario with a late onset of BPs (i.e. around 2050), even unlimited area availability for tCDR could not reverse past emissions sufficiently, e.g. BPs covering 25% of all agricultural or natural land could delay 2100's carbon budget by no more than two or three decades (equivalent to ∼550 or 800 GtC tCDR), respectively. However, simultaneous emission reductions and an earlier establishment of BPs (i.e. around 2035) could result in strong carbon extractions reversing past emissions (e.g. six or eight

  14. Potentials, consequences and trade-offs of terrestrial carbon dioxide removal. Strategies for climate engineering and their limitations

    International Nuclear Information System (INIS)

    Boysen, Lena R.

    2017-01-01

    For hundreds of years, humans have engineered the planet to fulfil their need for increasing energy consumption and production. Since the industrial revolution, one consequence are rising global mean temperatures which could change by 2 C to 4.5 C until 2100 if mitigation enforcement of CO_2 emissions fails.To counteract this projected global warming, climate engineering techniques aim at intendedly cooling Earth's climate for example through terrestrial carbon dioxide removal (tCDR) which is commonly perceived as environmentally friendly. Here, tCDR refers to the establishment of large-scale biomass plantations (BPs) in combination with the production of long-lasting carbon products such as bioenergy with carbon capture and storage or biochar. This thesis examines the potentials and possible consequences of tCDR by analysing land-use scenarios with different spatial and temporal scales of BPs using an advanced biosphere model forced by varying climate projections. These scenario simulations were evaluated with focus on their carbon sequestration potentials, trade-offs with food production and impacts on natural ecosystems and climate itself. Synthesised, the potential of tCDR to permanently extract CO_2 out of the atmosphere is found to be small, regardless of the emission scenario, the point of onset or the spatial extent. On the contrary, the aforementioned trade-offs and impacts are shown to be unfavourable in most cases. In a high emission scenario with a late onset of BPs (i.e. around 2050), even unlimited area availability for tCDR could not reverse past emissions sufficiently, e.g. BPs covering 25% of all agricultural or natural land could delay 2100's carbon budget by no more than two or three decades (equivalent to ∼550 or 800 GtC tCDR), respectively. However, simultaneous emission reductions and an earlier establishment of BPs (i.e. around 2035) could result in strong carbon extractions reversing past emissions (e.g. six or eight decades or ∼500 or

  15. Assessing Historical and Projected Carbon Balance of Alaska: A Synthesis of Results and Policy/Management Implications.

    Science.gov (United States)

    McGuire, A David; Genet, Hélène; Lyu, Zhou; Pastick, Neal; Stackpoole, Sarah; Birdsey, Richard; D'Amore, David; He, Yujie; Rupp, T Scott; Striegl, Robert; Wylie, Bruce K; Zhou, Xiaoping; Zhuang, Qianlai; Zhu, Zhiliang

    2018-06-20

    We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950-2009) and a projection period (2010-2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the State gained 0.4 Tg C yr -1 (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 x 10 -3 W m -2 . The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland aquatic ecosystems of Alaska was estimated to be 41.3 Tg C yr -1 (17% of terrestrial NPP). During the projection period (2010-2099), carbon storage of terrestrial ecosystems of Alaska was projected to increase (22.5 to 70.0 Tg C yr -1 ), primarily because of NPP increases of 10 to 30% associated with responses to rising atmospheric CO 2 , increased nitrogen cycling, and longer growing seasons. Although carbon emissions to the atmosphere from wildfire and wetland CH 4 were projected to increase for all of the climate projections, the increases in NPP more than compensated for those losses at the statewide level. Carbon dynamics of terrestrial ecosystems continue to warm the climate for four of the six future projections, and cool the climate for only one of the projections. The attribution analyses we conducted indicated that the response of NPP in terrestrial ecosystems to rising atmospheric CO 2 (~5% per 100 ppmv CO 2 ) saturates as CO 2 increases (between approximately +150 and +450 ppmv among projections). This response, along with the expectation that permafrost thaw would be much greater and release large quantities of permafrost carbon after 2100, suggests that projected carbon gains in terrestrial ecosystems of Alaska may not be sustained

  16. Significance of large Neptune-crossing objects for terrestrial catastrophism

    Science.gov (United States)

    Steel, D.

    2014-07-01

    Over the past few decades a substantial number of objects have been discovered on orbits beyond Neptune (i.e. transneptunian objects, in various sub-classes), crossing Neptune's orbit (here: the Neptune-crossers of interest), and also others crossing the orbits of any or all of the jovian planets (i.e. Centaurs). These range in size from tens of kilometres across to hundreds of kilometres and more. Although formally classified as minor planets/asteroids, plus a few dwarf planets, the physical reality of these objects is that they are giant comets. That is, they seem to be composed largely of ices and if they were to enter the inner solar system then they would demonstrate the commonly-observed behaviour of comets such as outgassing, and the formation of ion and dust tails. Commonly-observed cometary behaviour, however, also includes fragmentation events and sometimes complete disintegration for no apparent cause (such as tidal disruption or thermal stresses). One might therefore wonder what the implications would be for life on Earth and terrestrial catastrophism if and when one of these objects, say 100 to 500 kilometres in size, dropped into a short-period orbit with perihelion distance (q) less than 1 au; or even q ˜ 5 au, given what Jupiter's gravity might do to it. How often might such events occur? One way to address that question would be to conduct numerical integrations of suitable test orbits and identify how often small-q orbits result, but this comes up against the problem of identifying very-infrequent events (with annual probabilities per object perhaps of order 10^{-12}-10^{-10}. For example, Emel'yanenko et al. [1] recently followed test orbits for approximately 5 × 10^{14} particle-years (8,925 objects with 200 clones of each, for 300 Myr) but because these were selected on the basis of initial values of q only below 36 (rather than ˜30) au many were not immediately Neptune-crossers; however, many test particles did eventually migrate into small

  17. Water extraction of coals - potential for estimating low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vieth, A.; Mangelsdorf, K.; Sykes, R.; Horsfield, B. [Geoforschungszentrum Potsdam, Potsdam (Germany)

    2008-08-15

    With the recent increasing interest in the deep biosphere, the question arises as to where the carbon sources that support deep microbial communities are derived from. Our research was focussed on the water-soluble, low molecular weight (LMW) organic acids that are potentially available from different sedimentary lithologies to serve as a carbon source to feed the deep biosphere. A series of Eocene-Pleistocene coals, mudstones and sandstones of varying rank (maturity) and total organic carbon (TOC) content from the Waikato Basin, New Zealand, has been Soxhlet-extracted using water. The combined concentration of recovered formate, acetate and oxalate range from 366 to 2499 {mu} g/g sediment and appear to be dependent on rank, organofacies and TOC. The yields indicate the potential of carbonaceous sediments to feed the local deep terrestrial biosphere over geological periods of time. The existence of living microbial organisms in the mudstones and sandstones was proved by the identification of intact phospholipids (PLs).

  18. The terrestrial biosphere in the SFR region

    Energy Technology Data Exchange (ETDEWEB)

    Jerling, L; Isaeus, M [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T; Schueldt, R [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m{sup 2} for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results in a

  19. The terrestrial biosphere in the SFR region

    International Nuclear Information System (INIS)

    Jerling, L.; Isaeus, M.

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m 2 for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results in a coarse

  20. The terrestrial biosphere in the SFR region

    Energy Technology Data Exchange (ETDEWEB)

    Jerling, L.; Isaeus, M. [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J. [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T.; Schueldt, R. [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m{sup 2} for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results

  1. Role of volcanic forcing on future global carbon cycle

    Directory of Open Access Journals (Sweden)

    J. F. Tjiputra

    2011-06-01

    Full Text Available Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even

  2. Coastal niches for terrestrial predators: a stable isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Mellbrand, K.; Hamback, P.A., E-mail: peter.hamback@botan.su.se [Stockholm Univ., Dept. of Botany, Stockholm (Sweden)

    2010-12-15

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  3. Coastal niches for terrestrial predators: a stable isotope study

    International Nuclear Information System (INIS)

    Mellbrand, K.; Hamback, P.A.

    2010-01-01

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  4. Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments

    Science.gov (United States)

    Magin, Katrin; Somlai-Haase, Celia; Schäfer, Ralf B.; Lorke, Andreas

    2017-11-01

    Inland waters play an important role in regional to global-scale carbon cycling by transporting, processing and emitting substantial amounts of carbon, which originate mainly from their catchments. In this study, we analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from the catchments in a temperate stream network. The analysis included more than 200 catchment areas in southwest Germany, ranging in size from 0.8 to 889 km2 for which CO2 evasion from stream surfaces and downstream transport with stream discharge were estimated from water quality monitoring data, while NPP in the catchments was obtained from a global data set based on remote sensing. We found that on average 13.9 g C m-2 yr-1 (corresponding to 2.7 % of terrestrial NPP) are exported from the catchments by streams and rivers, in which both CO2 evasion and downstream transport contributed about equally to this flux. The average carbon fluxes in the catchments of the study area resembled global and large-scale zonal mean values in many respects, including NPP, stream evasion and the carbon export per catchment area in the fluvial network. A review of existing studies on aquatic-terrestrial coupling in the carbon cycle suggests that the carbon export per catchment area varies in a relatively narrow range, despite a broad range of different spatial scales and hydrological characteristics of the study regions.

  5. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    Science.gov (United States)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  6. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American Carbon...

  7. Plans for an Enhanced Terrestrial and Freshwater Environmental Observation Network in South Africa

    Science.gov (United States)

    Everson, C. S.; Bond, W. J.; Moncrieff, G. R.; Everson, T. M.

    2015-12-01

    There is currently little information in South Africa concerning the influence of terrestrial ecosystems on biosphere-atmosphere interactions and their impact on the earth system. Climate modellers require data on energy exchanges between the soil-plant-atmosphere continuum to develop surface models of carbon, energy and water to scale up from the different biomes in South Africa, to regional and, ultimately, global scales. Atmospheric exchanges of South African biomes (ecosystems) are important due to the large and varied pant diversity they represent. The important ecosystem services (including water) delivered by these natural systems and their potential role in the long-term CO2 uptake from the atmosphere and carbon storage is a key gap in South African research. South Africa is already a water-scarce country so the predicted impacts of climate change on water resources are likely to have devastating effects. It is against this diminishing water supply that the South African government must develop innovative investments in water technologies and infrastructure to mitigate the impacts of growing water shortages due to climate change. The Department of Science and Technology of South Africa is planning a multi-million rand investment in long-term ecological infrastructure with a focus on carbon, water and energy. The terrestrial programme will comprise six to seven landscape-scale 'climate change observatories', some in urban and agricultural situations, with eddy covariance flux towers for carbon water and energy measurements, regular remote sensing, for the long-term collection of environmental, ecological and social data. The South African flux network measurement programme aims to become a key role player in the assessment of the consequences of rapid land use change and future impacts of climate change both regionally and internationally. Key words: flux towers, eddy co-variance, carbon, water and energy

  8. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems

    Science.gov (United States)

    Angst, D.; Lécuyer, C.; Amiot, R.; Buffetaut, E.; Fourel, F.; Martineau, F.; Legendre, S.; Abourachid, A.; Herrel, A.

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.

  9. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    Directory of Open Access Journals (Sweden)

    Jianzhu Wang

    Full Text Available Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish at an upstream constricted-channel site (Luoqi, a midstream estuarine site (Huanghua and a near dam limnetic site (Maoping of the TGD were collected for stable isotope (δ13C and δ15N and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping, particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  10. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    Science.gov (United States)

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  11. Unifying Dynamic Prognostic Phenology, Heterogeneous Soil and Vegetation Fluxes, and Ecosystem Biomass and Carbon Stocks To Predict the Terrestrial Carbon Cycle and Land-Atmosphere Exchanges in the Simple Biosphere Model (SiB4)

    Science.gov (United States)

    Haynes, K. D.; Baker, I. T.; Denning, S.

    2016-12-01

    Future climate projections require process-based models that incorporate the mechanisms and feedbacks controlling the carbon cycle. Over the past three decades, land surface models have been key contributors to Earth system models, evolving from predicting latent (LE) and sensible (SH) heat fluxes to energy and water budgets, momentum transfer, and terrestrial carbon exchange and storage. This study presents the latest version of the Simple Biosphere Model (SiB4), which builds on a compilation of previous versions and adds a new mechanistic-based scheme that fully predicts the terrestrial carbon cycle. The main SiB4 updates can be summarized as follows: (i) Incorporation of carbon pools that use new respiration and transfer methods, (ii) Creation of a new dynamic phenology scheme that uses mechanistic-based seasonal stages, and (iii) Unification of carbon pools, phenology and disturbance to close the carbon cycle. SiB4 removes the dependence on satellite-based vegetation indices, and instead uses a single mathematical framework to prognose self-consistent land-atmosphere exchanges of carbon, water, energy, radiation, and momentum, as well as carbon storage. Since grasslands cover 30% of land and are highly seasonal, we investigated forty grass sites. Diurnal cycles of gross primary productivity (GPP), ecosystem respiration (RE), net ecosystem exchange (NEE), LE and SH have third-quartile root mean squared (RMS) errors less than 2.0 µmol m-2 s-1, 1.9 µmol m-2 s-1, 2.0 µmol m-2 s-1, 42 W m-2, and 78 W m-2, respectively. On the synoptic timeframe, all sites have significant LE correlation coefficients of non-seasonal daily data; and all but one have significant SH correlations. Mean seasonal cycles for leaf area index (LAI), GPP, RE, LE, and SH have third-quartile normalized RMS errors less than 32%, 25%, 28%, 16%, and 48%, respectively. On multi-year timescales, daily correlations of LAI, GPP, RE, and LE are all statistically significant, with third-quartile RMS

  12. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  13. Revised budget for the oceanic uptake of anthropogenic carbon dioxide

    Science.gov (United States)

    Sarmiento, J.L.; Sundquist, E.T.

    1992-01-01

    TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.

  14. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Biome-BGC is a computer program that estimates fluxes and storage of energy, water, carbon, and nitrogen for the vegetation and soil components of terrestrial...

  15. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    Science.gov (United States)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  16. FeedbackBetweenHumanActivitiesAndTerrestrialCarbonCyclesInSystemsOfShadeCoffeePro ductionInMexico

    Science.gov (United States)

    Pena Del Valle, A. E.; Perez-Samayoa, I. A.

    2007-12-01

    Coffee production in Mexico is carried out within a strong natural context. Coffee is grown under a canopy of several native and introduced tree species. This fact ensures a greater diversity of natural resources and environmental services available for local inhabitants to sustain their livelihoods. However, the lack of opportunities for coffee farmers is increasing the demand over the remaining forest areas by exacerbating non- sustainable timber extraction practices and promoting conversion of forests to pasture lands. This situation hampers the landscapes equilibrium and threatens the wellbeing of rural livelihoods. To understand the interactions between human activities and ecological functions associated with shaded coffee systems, this research has explored the extent to which socio-economic and cultural factors have influenced the use and management of natural resources sustaining coffee livelihoods. At the same time, it examines how customary patterns of resource use have induced changes in the terrestrial carbon cycle at the local level. The empirical study was carried out in a coffee-growing region in Mexico. It involved substantial fieldwork, use of satellite imagery, and participatory research methods in order to gauge a variety of biophysical and socio- economic factors, including forest cover, land use, and carbon balances, as well as, farming practices and off- farming strategies. In addition, a livelihood perspective was applied to approach the linkages between the management of natural resources, the environmental goods and services, and the socio-economic conditions in the coffee-growing region. The empirical evidence from the research marks out shade coffee systems as important supporters for broader natural systems as suppliers of environmental services. However, it also suggests that non-climatic factors might have significant impacts on the local environment and therefore on the terrestrial carbon cycle. According to the research estimations

  17. Soil Carbon Residence Time in the Arctic - Potential Drivers of Past and Future Change

    Science.gov (United States)

    Huntzinger, D. N.; Fisher, J.; Schwalm, C. R.; Hayes, D. J.; Stofferahn, E.; Hantson, W.; Schaefer, K. M.; Fang, Y.; Michalak, A. M.; Wei, Y.

    2017-12-01

    Carbon residence time is one of the most important factors controlling carbon cycling in ecosystems. Residence time depends on carbon allocation and conversion among various carbon pools and the rate of organic matter decomposition; all of which rely on environmental conditions, primarily temperature and soil moisture. As a result, residence time is an emergent property of models and a strong determinant of terrestrial carbon storage capacity. However, residence time is poorly constrained in process-based models due, in part, to the lack of data with which to benchmark global-scale models in order to guide model improvements and, ultimately, reduce uncertainty in model projections. Here we focus on improving the understanding of the drivers to observed and simulated carbon residence time in the Arctic-Boreal region (ABR). Carbon-cycling in the ABR represents one of the largest sources of uncertainty in historical and future projections of land-atmosphere carbon dynamics. This uncertainty is depicted in the large spread of terrestrial biospheric model (TBM) estimates of carbon flux and ecosystem carbon pool size in this region. Recent efforts, such as the Arctic-Boreal Vulnerability Experiment (ABoVE), have increased the availability of spatially explicit in-situ and remotely sensed carbon and ecosystem focused data products in the ABR. Together with simulations from Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we use these observations to evaluate the ability of models to capture soil carbon stocks and changes in the ABR. Specifically, we compare simulated versus observed soil carbon residence times in order to evaluate the functional response and sensitivity of modeled soil carbon stocks to changes in key environmental drivers. Understanding how simulated carbon residence time compares with observations and what drives these differences is critical for improving projections of changing carbon dynamics in the ABR and globally.

  18. Large-scale solvothermal synthesis of fluorescent carbon nanoparticles

    International Nuclear Information System (INIS)

    Ku, Kahoe; Park, Jinwoo; Kim, Nayon; Kim, Woong; Lee, Seung-Wook; Chung, Haegeun; Han, Chi-Hwan

    2014-01-01

    The large-scale production of high-quality carbon nanomaterials is highly desirable for a variety of applications. We demonstrate a novel synthetic route to the production of fluorescent carbon nanoparticles (CNPs) in large quantities via a single-step reaction. The simple heating of a mixture of benzaldehyde, ethanol and graphite oxide (GO) with residual sulfuric acid in an autoclave produced 7 g of CNPs with a quantum yield of 20%. The CNPs can be dispersed in various organic solvents; hence, they are easily incorporated into polymer composites in forms such as nanofibers and thin films. Additionally, we observed that the GO present during the CNP synthesis was reduced. The reduced GO (RGO) was sufficiently conductive (σ ≈ 282 S m −1 ) such that it could be used as an electrode material in a supercapacitor; in addition, it can provide excellent capacitive behavior and high-rate capability. This work will contribute greatly to the development of efficient synthetic routes to diverse carbon nanomaterials, including CNPs and RGO, that are suitable for a wide range of applications. (paper)

  19. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  20. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity.

    Science.gov (United States)

    Vavrek, Matthew J

    2016-09-01

    During the Mesozoic (242-66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species-area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. © 2016 The Author(s).

  1. The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets.

    Science.gov (United States)

    Edson, Adam R; Kasting, James F; Pollard, David; Lee, Sukyoung; Bannon, Peter R

    2012-06-01

    Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ∼30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ∼55% of the surface habitable.

  2. Global Carbon Budget 2017

    NARCIS (Netherlands)

    Le Quere, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frederic; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Goldewijk, Kees Klein; Koertzinger, Arne; Landschuetzer, Peter; Lefevre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Roedenbeck, Christian; Schwinger, Jorg; Seferian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Soenke; Zhu, Dan

    2018-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project

  3. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Ivar Korsbakken, Jan; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian A; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M S; Munro, David R.; Nabel, Julia E M S; Nakaoka, Shin Ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Van Der Laan-Luijkx, Ingrid T.; Van Der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future

  4. Estimation of Pre-industrial Nitrous Oxide Emission from the Terrestrial Biosphere

    Science.gov (United States)

    Xu, R.; Tian, H.; Lu, C.; Zhang, B.; Pan, S.; Yang, J.

    2015-12-01

    Nitrous oxide (N2O) is currently the third most important greenhouse gases (GHG) after methane (CH4) and carbon dioxide (CO2). Global N2O emission increased substantially primarily due to reactive nitrogen (N) enrichment through fossil fuel combustion, fertilizer production, and legume crop cultivation etc. In order to understand how climate system is perturbed by anthropogenic N2O emissions from the terrestrial biosphere, it is necessary to better estimate the pre-industrial N2O emissions. Previous estimations of natural N2O emissions from the terrestrial biosphere range from 3.3-9.0 Tg N2O-N yr-1. This large uncertainty in the estimation of pre-industrial N2O emissions from the terrestrial biosphere may be caused by uncertainty associated with key parameters such as maximum nitrification and denitrification rates, half-saturation coefficients of soil ammonium and nitrate, N fixation rate, and maximum N uptake rate. In addition to the large estimation range, previous studies did not provide an estimate on preindustrial N2O emissions at regional and biome levels. In this study, we applied a process-based coupled biogeochemical model to estimate the magnitude and spatial patterns of pre-industrial N2O fluxes at biome and continental scales as driven by multiple input data, including pre-industrial climate data, atmospheric CO2 concentration, N deposition, N fixation, and land cover types and distributions. Uncertainty associated with key parameters is also evaluated. Finally, we generate sector-based estimates of pre-industrial N2O emission, which provides a reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere.

  5. An evaluation of Mesodon and other larger terrestrial gastropod shells for dating late Holocene and historic alluvium in the Midwestern USA

    Science.gov (United States)

    Rakovan, Monica T.; Rech, Jason A.; Pigati, Jeffery S.; Nekola, Jeffery C.; Wiles, Gregory C.

    2013-01-01

    Understanding the history of stream erosion and changes in channel morphology is important for managing and restoring unstable streams. One of the significant challenges in this type of research is establishing accurate dating of late Holocene and historic alluvium. Here we evaluate the potential of using 14C dating and amino acid racemization (AAR) to date large terrestrial gastropod shells that are often preserved within alluvial sediments. Many terrestrial gastropods incorporate old carbon from limestone or other carbonate rocks into their shells and therefore are unsuitable for radiocarbon dating. Recent studies, however, have shown that some taxa avoid this ‘limestone problem’ and can yield reliable 14C ages. In this study, we measured the 14C activity of specimens for the genera Mesodon, Ventridens, and Allogona collected live and from alluvial sequences dated independently by dendrochronology, 14C dating of wood, and/or 137Cs analyses. Mesodon zaletus contained old carbon in similar concentrations (up to ~ 30%) found in previous studies of other large taxa and should be avoided for 14C dating when possible. In contrast, shells of Ventridens ligera and Allogona profunda showed minimal limestone effects and therefore may be suitable for dating late Holocene alluvium. These results highlight the importance of taxonomic identification of gastropod taxa prior to their use for 14C dating and demonstrate that shell fragments that are not identifiable should be avoided. We also measured d/l ratios (n = 17) of aspartic and glutamic acid from eight different taxa of terrestrial gastropods recovered from four late Holocene and historic stratigraphic sequences. Average d/l ratios of aspartic and glutamic acid from historic sediments < 300 years old are lower in shells from younger stratigraphic units, indicating that AAR can be used to differentiate between multiple historic stratigraphic units.

  6. Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments

    Science.gov (United States)

    Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine

    2017-05-01

    The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon

  7. Quantifying and predicting historical and future patterns of carbon fluxes from the North American Continent to Ocean

    Science.gov (United States)

    Tian, H.; Zhang, B.; Xu, R.; Yang, J.; Yao, Y.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Najjar, R. G.; Friedrichs, M. A. M.; Hofmann, E. E.

    2017-12-01

    Carbon export through river channels to coastal waters is a fundamental component of the global carbon cycle. Changes in the terrestrial environment, both natural (e.g., climatic change, enriched CO2 concentration, and elevated ozone concentration) and anthropogenic (e.g, deforestation, cropland expansion, and urbanization) have greatly altered carbon production, stocks, decomposition, movement and export from land to river and ocean systems. However, the magnitude and spatiotemporal patterns of lateral carbon fluxes from land to oceans and the underlying mechanisms responsible for these fluxes remain far from certain. Here we applied a process-based land model with explicit representation of carbon processes in stream and rivers (Dynamic Land Ecosystem Model: DLEM 2.0) to examine how changes in climate, land use, atmospheric CO2, and nitrogen deposition have affected the carbon fluxes from North American continent to Ocean during 1980-2015. Our simulated results indicated that terrestrial carbon export shows substantially spatial and temporal variability. Of the five sub-regions (Arctic coast, Pacific coast, Gulf of Mexico, Atlantic coast, and Great lakes), the Arctic sub-region provides the highest DOC flux, whereas the Gulf of Mexico sub-region provided the highest DIC flux. However, terrestrial carbon export to the arctic oceans showed increasing trends for both DOC and DIC, whereas DOC and DIC export to the Gulf of Mexico decreased in the recent decades. Future pattern of riverine carbon fluxes would be largely dependent on the climate change and land use scenarios.

  8. Origin and evolution of life on terrestrial planets.

    Science.gov (United States)

    Brack, A; Horneck, G; Cockell, C S; Bérces, A; Belisheva, N K; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.

  9. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Quéré, Le Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M.S.; Munro, David R.; Nabel, Julia E.M.S.; Nakaoka, S.; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Laan-Luijkx, van der Ingrid T.; Werf, van der Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project

  10. Model predictions of long-lived storage of organic carbon in river deposits

    Directory of Open Access Journals (Sweden)

    M. A. Torres

    2017-11-01

    Full Text Available The mass of carbon stored as organic matter in terrestrial systems is sufficiently large to play an important role in the global biogeochemical cycling of CO2 and O2. Field measurements of radiocarbon-depleted particulate organic carbon (POC in rivers suggest that terrestrial organic matter persists in surface environments over millennial (or greater timescales, but the exact mechanisms behind these long storage times remain poorly understood. To address this knowledge gap, we developed a numerical model for the radiocarbon content of riverine POC that accounts for both the duration of sediment storage in river deposits and the effects of POC cycling. We specifically target rivers because sediment transport influences the maximum amount of time organic matter can persist in the terrestrial realm and river catchment areas are large relative to the spatial scale of variability in biogeochemical processes.Our results show that rivers preferentially erode young deposits, which, at steady state, requires that the oldest river deposits are stored for longer than expected for a well-mixed sedimentary reservoir. This geometric relationship can be described by an exponentially tempered power-law distribution of sediment storage durations, which allows for significant aging of biospheric POC. While OC cycling partially limits the effects of sediment storage, the consistency between our model predictions and a compilation of field data highlights the important role of storage in setting the radiocarbon content of riverine POC. The results of this study imply that the controls on the terrestrial OC cycle are not limited to the factors that affect rates of primary productivity and respiration but also include the dynamics of terrestrial sedimentary systems.

  11. An Ocean Basin of Dirt? Using Molecular Biomarkers and Radiocarbon to Identify Organic Carbon Sources and their Preservation in the Arctic Ocean

    Science.gov (United States)

    Harvey, H.; Belicka, L. L.

    2005-12-01

    In the modern Arctic Ocean, primary production in waters over the broad continental shelves and under ice contributes an estimated 250 Mt/yr of POC to Arctic waters. The delivery of terrestrial material from large rivers, ice transport and through coastal erosion adds at least an additional 12 Mt/yr of POC. Although the marine organic carbon signal in Arctic Ocean exceeds that of terrestrial carbon by an order or magnitude or more, recent evidence suggests that this balance is not maintained and significant fractions of terrestrial carbon is preserved in sediments. Using an integrated approach combining lipid biomarkers and radiocarbon dating in particles and sediments, the process of organic carbon recycling and historical changes in its sources and preservation has been examined. A suite of lipid biomarkers in particles and sediments of western Arctic shelves and basins were measured and principle components analysis (PCA) used to allow a robust comparison among the 120+ individual compounds to assign organic sources and relative inputs. Offshore particles from the chlorophyll maximum contained abundant algal markers (e.g. 20:5 and 22:6 FAMEs), low concentrations of terrestrial markers (amyrins and 24-ethylcholest-5-en-3b-ol), and reflected modern 14C values. Particles present in deeper halocline waters also reflect marine production, but a portion of older, terrestrial carbon accompanies the sinking of the spring bloom. Surface and deeper sediments of basins contain older organic carbon and low concentrations of algal biomarkers, suggesting that marine carbon produced in surface waters is rapidly recycled. Taken together, these observations suggest that marine derived organic matter produced in shallow waters fuels carbon cycling, but relatively small amounts are preserved in sediments. As a result, the organic carbon preserved in sediments contrasts sharply to that typically observed in lower latitudes, with an increasing terrestrial signature with distance

  12. Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA

    International Nuclear Information System (INIS)

    Failey, Elisabeth L; Dilling, Lisa

    2010-01-01

    Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'-that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

  13. Microbial carbon pump and its significance for carbon sequestration in soils

    Science.gov (United States)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  14. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    Science.gov (United States)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  15. Aerospace gas/liquid separator for terrestrial applications

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1996-01-01

    The space gas/liquid separator, a key component in the heat transport subsystem of a space reactor power system, was developed to remove helium gas from liquid lithium in zero gravity. Helium is generated from lithium irradiation in the reactor core and would reach saturation in lithium after 48 hours of full power operations. The gas/liquid separator is also applicable for large commercial powerplants to deaerate the water before and after the feedwater heaters. Another terrestrial application is for industrial companies to use the gas/liquid separator and wet chemistry to remove all the gases from the air and only discharge clean air to the atmosphere. An additional application that resulted from this gas/liquid separator technology, was separating liquid carbon dioxide from nitrogen. This application is opposite from the space application in that it is removing a liquid from a gas rather than a gas from a liquid

  16. Estimation Terrestrial Net Primary Productivity Based on CASA Model: a Case Study in Minnan Urban Agglomeration, China

    International Nuclear Information System (INIS)

    Hua, L Z; Liu, H; Zhang, X L; Zheng, Y; Man, W; Yin, K

    2014-01-01

    Net Primary Productivity (NPP) is a key component of the terrestrial carbon cycle. The research of net primary productivity will help in understanding the amount of carbon fixed by terrestrial vegetation and its influencing factors. Model simulation is considered as a cost-effective and time-efficient method for the estimation of regional and global NPP. In the paper, a terrestrial biosphere model, CASA (Carnegie Ames Stanford Approach), was applied to estimate monthly NPP in Minnan urban agglomeration (i.e. Xiamen, Zhangzhou and Quanzhou cities) of Fujian province, China, in 2009 and 2010, by incorporating satellite observation of SPOT Vegetation NDVI data together with other climatic parameters and landuse map. The model estimates average annual terrestrial NPP of Minnan area as 16.3 million Mg C. NPP decreased from southwest to the northeast. The higher NPP values exceeding 720 gC·m − 2 ·a −1 showed in North Zhangzhou city and lower values under 500 gC·m − 2 ·a −1 showed in the some areas of northeast Quanzhou city. Seasonal variations of NPP were large. It was about 45% of the total annual NPP in the three months in summer, and the NPP values were very low in winter. From 2009 to 2010, the value of annual NPP showed a slightly decrease trend, approximately 7.8% because the annual temperature for 2010 decline 13.6% compared with 2009 in despite of an increase in rainfall of about 34.3%. The results indicate that temperature was a main limiting factor on vegetation growth, but water is not a limiting factor in the rainy area

  17. Isotopic tracers for net primary productivity for a terrestrial ecosystem: a case study of the Volta River basin

    International Nuclear Information System (INIS)

    Hayford, E.K.; Odamtten, G.T.; Enu-Kwesi, L.

    2006-01-01

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water and carbon balance of the River Volta watershed. These are 1) stable isotopes of hydrogen and oxygen, 2) long-term data on precipitation and evapotranspiration, and 3) stoichiometric relations of water and carbon. Results indicate that soils in the watershed annually respire 0.199 Pg C, and that the NPP is +0.029 Pg C yr-1. This implies an annual change in CO2 to the atmosphere within the watershed. Annually, River Volta watershed receives about 380 km3 of rainfall; approximately 50 per cent of which is returned to the atmosphere through plant transpiration. Associated with annual transpiration flux is a carbon flux of 0.170 x 1015 g C yr-1 or 428 g C m-2 yr-1 from the terrestrial ecosystem. Modeled estimates of heterotrophic soil respiration exceeds slightly the estimated NPP values, implying that carbon flux to and from the Volta river watershed is close to being in balance. In other words, the watershed releases annually more carbon dioxide to the atmosphere than it takes. Apart from the terrestrial carbon flux, the balance of photosynthesis and respiration in the Volta lake was also examined. The lake was found to release carbon dioxide to the atmosphere although the magnitude of the flux is smaller than that of the terrestrial ecosystem. (au)

  18. Sedimentary evidence for enhanced hydrological cycling in response to rapid carbon release during the early Toarcian oceanic anoxic event

    Science.gov (United States)

    Izumi, Kentaro; Kemp, David B.; Itamiya, Shoma; Inui, Mutsuko

    2018-01-01

    A pronounced excursion in the carbon-isotope composition of biospheric carbon and coeval seawater warming during the early Toarcian (∼183 Ma) has been linked to the large-scale transfer of 12C-enriched carbon to the oceans and atmosphere. A European bias in the distribution of available data means that the precise pattern, tempo and global expression of this carbon cycle perturbation, and the associated environmental responses, remain uncertain. Here, we present a new cm-scale terrestrial-dominated carbon-isotope record through an expanded lower Toarcian section from Japan that displays a negative excursion pattern similar to marine and terrestrial carbon-isotope records documented from Europe. These new data suggest that 12C-enriched carbon was added to the biosphere in at least one rapid, millennial-scale pulse. Sedimentological analysis indicates a close association between the carbon-isotope excursion and high-energy sediment transport and enhanced fluvial discharge. Together, these data support the hypothesis that a sudden strengthening of the global hydrological cycle occurred in direct and immediate response to rapid carbon release and atmospheric warming.

  19. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  20. Biogeochemical signals from deep microbial life in terrestrial crust.

    Directory of Open Access Journals (Sweden)

    Yohey Suzuki

    Full Text Available In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan. A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰ is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM, H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.

  1. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    Science.gov (United States)

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. © 2013 John Wiley & Sons Ltd.

  2. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  3. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that

  4. Riverine transport of terrestrial organic matter to the North Catalan margin, NW Mediterranean Sea

    Science.gov (United States)

    Sanchez-Vidal, Anna; Higueras, Marina; Martí, Eugènia; Liquete, Camino; Calafat, Antoni; Kerhervé, Philippe; Canals, Miquel

    2013-11-01

    Rivers are the primary pathway for organic matter transport from the terrestrial to the marine environment and, thus, river fluxes are critical in regulating the quantity of terrestrial organic matter that reaches the coastal ecosystems. Hydrodynamic processes typical of the coastal zone can lead to the transport of terrestrial organic matter across the continental shelf and beyond. Such organic matter can eventually reach the deep margin and basin ecosystems. Riverine inputs of organic matter to the sea can be a significant food source to marine ecosystems contributing to carbon cycling in these ecosystems. In order to assess the marine carbon cycle it is essential to know the biogeochemical characteristics and temporal dynamics of the fluvial organic matter input discharged by rivers to the coastal zone. In this study we present a one and a half year long (November 2008 to May 2010) assessment on organic carbon (OC) and nitrogen (N) inputs from the three main rivers discharging into the North Catalan margin (Tordera, Ter and Fluvià, from south to north). Furthermore, we investigate the characteristics of the particulate organic matter discharged by these rivers by means of stable isotopic (δ13C and δ15N) and grain size analyses. We found that the hydrological regime of the rivers is a relevant factor in regulating the quantity and mediating the quality of organic matter inputs to the North Catalan margin. Overall, the three main rivers discharging into the study area deliver 1266 and 159 tonnes of terrestrial OC and N per year, respectively, to the coastal zone. Most of the OC and N load is transported during floods, which indicates that the Mediterranean climate of the area, with a strong seasonal contrast in precipitation, determines the timing of the main inputs of OC and N to the sea. Therefore, the annual OC and N load experiences a high temporal variability associated to the number and magnitude of floods with in each hydrological year. In addition, we

  5. Comparision of the Martian Gullies With Terrestrial Ones

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2005-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried to explained its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We present the characteristics of some terrestrial gullies formed at cold enviroment, sited at the Nevado de Toluca volcanoe near Toluca City, Mexico. We compare them with Martian gullies, choisen from four different areas, to recognize possible processes evolved in its formation. Also, we measured the lenghts of those Martian gullies and their range was from 24 m 1775 m.

  6. Carbon dioxide effects research and assessment program. Measurement of changes in terrestrial carbon using remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Woodwell, G M [ed.

    1980-09-01

    Changes in the area of forests as well as changes in the storage of carbon within forest stands have large potential effects on atmospheric CO/sub 2/. This conference addressed the challenge of measuring changes in the area of forests globally through use of satellite remote sensing. The conclusion of the approximately seventy participants from around the world was that a program based on LANDSAT imagery supplemented by aerial photography is both possible and appropriate.

  7. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    Science.gov (United States)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-09-01

    Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

  8. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest

    Science.gov (United States)

    Leslie A. Boby; Edward A.G. Schuur; Michelle C. Mack; David Verbyla; Jill F. Johnstone

    2010-01-01

    The boreal region stores a large proportion of the world's terrestrial carbon (C) and is subject to high-intensity, stand-replacing wildfires that release C and nitrogen (N) stored in biomass and soils through combustion. While severity and extent of fires drives overall emissions, methods for accurately estimating fire severity are poorly tested in this unique...

  9. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. II. The Atmospheric constraint

    International Nuclear Information System (INIS)

    Ying Ping Wang; McGregor, John L.

    2003-01-01

    Bayesian synthesis inversion was applied to in-situ hourly CO 2 concentrations measured at Cape Grim, Australia to refine the estimates of monthly mean gross photosynthesis, total ecosystem respiration and net ecosystem production by the CSIRO Biospheric Model (CBM) for eight regions in Australia for the period 1990-1998. It was found that in-situ measurements of hourly CO 2 concentrations at Cape Grim could provide significant information about the carbon fluxes from Tasmania, central-south and south-east Australia only. The process-based model, CBM, overestimates the ecosystem respiration during summer in south-east Australia, but underestimates ecosystem respiration in Tasmania and central-south Australia. It was concluded that the respiration sub model of CBM should be improved to account for the seasonal variation in the plant and soil respiration parameters in south-east Australia. For the whole period of 1990 to 1998, the mean net ecosystem productions of terrestrial ecosystems in Tasmania, central-south Australia and south-east Australia were estimated to be, respectively, 6 ± 10, 7 ± 27 and 64 ± 18 Mt C/yr. The yearly uptake rate (being negative) of the terrestrial ecosystems in south-east Australia was smallest (42 ± 55 Mt C/yr) in 1998 and largest (91 ± 52 Mt C/yr) in 1992

  10. Role of a productive lake in carbon sequestration within a calcareous catchment

    International Nuclear Information System (INIS)

    Nõges, Peeter; Cremona, Fabien; Laas, Alo; Martma, Tõnu; Rõõm, Eva-Ingrid; Toming, Kaire; Viik, Malle; Vilbaste, Sirje; Nõges, Tiina

    2016-01-01

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO_2 and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO_2 sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. - Highlights: • Terrestrial carbonate weathering is considered a temporary sink for CO_2_. • Alkaline lakes precipitate calcite reverting chemical weathering reactions. • Algal uptake increased δ"1"3C of dissolved inorganic C while passing through the lake. • 40–70% of sediment organic C originated from catchment alkalinity export. • Biological uptake of released CO_2 counteracts emissions from reversed weathering.

  11. Role of a productive lake in carbon sequestration within a calcareous catchment

    Energy Technology Data Exchange (ETDEWEB)

    Nõges, Peeter, E-mail: peeter.noges@emu.ee [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Cremona, Fabien; Laas, Alo [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Martma, Tõnu [Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Rõõm, Eva-Ingrid [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Toming, Kaire [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn (Estonia); Viik, Malle; Vilbaste, Sirje; Nõges, Tiina [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia)

    2016-04-15

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO{sub 2} and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO{sub 2} sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. - Highlights: • Terrestrial carbonate weathering is considered a temporary sink for CO{sub 2.} • Alkaline lakes precipitate calcite reverting chemical weathering reactions. • Algal uptake increased δ{sup 13}C of dissolved inorganic C while passing through the lake. • 40–70% of sediment organic C originated from catchment alkalinity export. • Biological uptake of released CO{sub 2} counteracts emissions from reversed weathering.

  12. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    Science.gov (United States)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  13. A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasai, Takahiro

    2006-01-01

    This study addressed how different climate data sets influence simulations of the global terrestrial carbon cycle. For the period 1982-2001, we compared the results of simulations based on three climate data sets (NCEP/NCAR, NCEP/DOE AMIP-II and ERA40) employed in meteorological, ecological and biogeochemical studies and two different models (BEAMS and Sim-CYCLE). The models differed in their parameterizations of photosynthetic and phenological processes but used the same surface climate (e.g. shortwave radiation, temperature and precipitation), vegetation, soil and topography data. The three data sets give different climatic conditions, especially for shortwave radiation, in terms of long-term means, linear trends and interannual variability. Consequently, the simulation results for global net primary productivity varied by 16%-43% only from differences in the climate data sets, especially in these regions where the shortwave radiation data differed markedly: differences in the climate data set can strongly influence simulation results. The differences among the climate data set and between the two models resulted in slightly different spatial distribution and interannual variability in the net ecosystem carbon budget. To minimize uncertainty, we should pay attention to the specific climate data used. We recommend developing an accurate standard climate data set for simulation studies

  14. Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes

    Science.gov (United States)

    Liu, Chao; Yu, Meihua; Li, Yang; Li, Jiansheng; Wang, Jing; Yu, Chengzhong; Wang, Lianjun

    2015-07-01

    Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and small particle sizes may have excellent potential in drug/gene delivery.Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and

  15. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature

    International Nuclear Information System (INIS)

    Jones, Chris D.; Cox, Peter; Huntingford, Chris

    2003-01-01

    Carbon-cycle feedbacks have been shown to be very important in predicting climate change over the next century, with a potentially large positive feedback coming from the release of carbon from soils as global temperatures increase. The magnitude of this feedback and whether or not it drives the terrestrial carbon cycle to become a net source of carbon dioxide during the next century depends particularly on the response of soil respiration to temperature. Observed global atmospheric CO 2 concentration, and its response to naturally occurring climate anomalies, is used to constrain the behaviour of soil respiration in our coupled climate-carbon-cycle GCM. This constraint is used to quantify some of the uncertainties in predictions of future CO 2 levels. The uncertainty is large, emphasizing the importance of carbon-cycle research with respect to future climate change predictions

  16. Continental Scale research of the coupled carbon and water cycles in Australia

    Science.gov (United States)

    Cleugh, Helen; van Gorsel, Eva; Held, Alex; Huete, Alfredo; Karan, Mirko; Liddell, Michael; Phinn, Stuart; Prentice, Colin

    2013-04-01

    It is essential to understand the drivers and processes that regulate uptake and release of carbon and water by the terrestrial biosphere to quantify the sink and source strengths under current climatic conditions. In addition, understanding the consequences of a changing climate on the capacity of the biosphere to sequester carbon by using a certain amount of water and the impacts of disturbances on resilience and thresholds of the terrestrial biosphere is critical. Recently there has been increasing general interest in how human activities may be affecting Australia's natural carbon cycles. Quantification of carbon and water exchanges requires process understanding over long temporal and large spatial scales, but at fine levels of detail. This requires integration of long term, high frequency observations, models and information from process studies and can only be achieved through research infrastructure that can provide easy access to meta-data and data that have been collected in a systematic and standardized way. The Australian Terrestrial Ecosystem Research Network (TERN) provides such nationally networked infrastructure, along with multi-disciplinary capabilities and end-user-focused products to deliver better ways of measuring and estimating Australia's current and future environmental carbon stocks and flows. Multiple Facilities in TERN are studying carbon and water dynamics across a range of distance and time scales. OzFlux, the Australasian arm of the global initiative Fluxnet, is the most obvious deployment of field hardware in TERN with close to 30 flux towers and their associated micrometeorological instrumentation in place around the country, from Central Australia to the Alps, covering ecosystems ranging from rainforest to alpine grasslands to mulga. Intensive monitoring is carried out at the 10 TERN Supersites which carry a suite of environmental instrumentation and perform standardised vegetation, faunal, soil and water monitoring.TERN Aus

  17. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  18. Carbon Cycling in Wetland Forest Soils

    Science.gov (United States)

    Carl C. Trettin; Martin F. Jurgensen

    2003-01-01

    Wetlands comprise a small proportion (i.e., 2 to 3%) of earth's terrestrial surface, yet they contain a significant proportion of the terrestrial carbon (C) pool. Soils comprise the largest terrestrial C pool (ca. 1550 Pg C in upper 100 cm; Eswaran et al., 1993; Batjes, 1996), and wetlands contain the single largest component, with estimates ranging between 18...

  19. Land use and carbon dynamics in the southeastern United States from 1992 to 2050

    International Nuclear Information System (INIS)

    Zhao, Shuqing; Liu, Shuguang; Sohl, Terry; Werner, Jeremy; Young, Claudia

    2013-01-01

    Land use and land cover change (LUCC) plays an important role in determining the spatial distribution, magnitude, and temporal change of terrestrial carbon sources and sinks. However, the impacts of LUCC are not well understood and quantified over large areas. The goal of this study was to quantify the spatial and temporal patterns of carbon dynamics in various terrestrial ecosystems in the southeastern United States from 1992 to 2050 using a process-based modeling system and then to investigate the impacts of LUCC. Spatial LUCC information was reconstructed and projected using the FOREcasting SCEnarios of future land cover (FORE-SCE) model according to information derived from Landsat observations and other sources. Results indicated that urban expansion (from 3.7% in 1992 to 9.2% in 2050) was expected to be the primary driver for other land cover changes in the region, leading to various declines in forest, cropland, and hay/pasture. The region was projected to be a carbon sink of 60.4 gC m −2  yr −1 on average during the study period, primarily due to the legacy impacts of large-scale conversion of cropland to forest that happened since the 1950s. Nevertheless, the regional carbon sequestration rate was expected to decline because of the slowing down of carbon accumulation in aging forests and the decline of forest area. (letter)

  20. Spatiotemporal distribution and national measurement of the global carbonate carbon sink.

    Science.gov (United States)

    Li, Huiwen; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tang, Hong; Cao, Yue; Wu, Luhua; Chen, Fei; Li, Qin; Zeng, Cheng; Wang, Mingming

    2018-06-21

    The magnitudes, spatial distributions and contributions to global carbon budget of the global carbonate carbon sink (CCS) still remain uncertain, allowing the problem of national measurement of CCS remain unresolved which will directly influence the fairness of global carbon markets and emission trading. Here, based on high spatiotemporal resolution ecological, meteorological raster data and chemical field monitoring data, combining highly reliable machine learning algorithm with the thermodynamic dissolution equilibrium model, we estimated the new CCS of 0.89 ± 0.23 petagrams of carbon per year (Pg C yr -1 ), amounting to 74.50% of global net forest sink and accounting for 28.75% of terrestrial sinks or 46.81% of the missing sink. Our measurement for 142 nations of CCS showed that Russia, Canada, China and the USA contribute over half of the global CCS. We also presented the first global fluxes maps of the CCS with spatial resolution of 0.05°, exhibiting two peaks in equatorial regions (10°S to 10°N) and low latitudes (10°N to 35°N) in Northern Hemisphere. By contrast, there are no peaks in Southern Hemisphere. The greatest average carbon sink flux (CCSF), i.e., 2.12 tC ha -1  yr -1 , for 2000 to 2014 was contributed by tropical rainforest climate near the equator, and the smallest average CCSF was presented in tropical arid zones, showing a magnitude of 0.26 tC ha -1  yr -1 . This research estimated the magnitudes, spatial distributions, variations and contributions to the global carbon budget of the CCS in a higher spatiotemporal representativeness and expandability way, which, via multiple mechanisms, introduced an important sink in the terrestrial carbon sink system and the global missing sink and that can help us further reveal and support our understanding of global rock weathering carbon sequestration, terrestrial carbon sink system and global carbon cycle dynamics which make our understanding of global change more comprehensive

  1. An economical device for carbon supplement in large-scale micro-algae production.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2008-10-01

    One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly.

  2. Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes: OC Oxidation Processes Across Vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B. [Pacific Northwest National Laboratory, Richland WA USA; Tfaily, Malak M. [Environmental Molecular Sciences Laboratory, Richland WA USA; Crump, Alex R. [Pacific Northwest National Laboratory, Richland WA USA; Goldman, Amy E. [Pacific Northwest National Laboratory, Richland WA USA; Bramer, Lisa M. [Pacific Northwest National Laboratory, Richland WA USA; Arntzen, Evan [Pacific Northwest National Laboratory, Richland WA USA; Romero, Elvira [Pacific Northwest National Laboratory, Richland WA USA; Resch, C. Tom [Pacific Northwest National Laboratory, Richland WA USA; Kennedy, David W. [Pacific Northwest National Laboratory, Richland WA USA; Stegen, James C. [Pacific Northwest National Laboratory, Richland WA USA

    2017-12-01

    In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here, we investigate biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically-bound (i.e., mineral and microbial) OC at terrestrial-aquatic interfaces. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the concept of ‘priming’—that inputs of water-soluble and thermodynamically-favorable terrestrial OC protects bound-OC from oxidation. Based on our results, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

  3. Facile synthesis and application of a carbon foam with large mesopores

    KAUST Repository

    Fu, Liling

    2013-01-01

    By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries. © 2013 the Owner Societies.

  4. Large impacts around a solar-analog star in the era of terrestrial planet formation.

    Science.gov (United States)

    Meng, Huan Y A; Su, Kate Y L; Rieke, George H; Stevenson, David J; Plavchan, Peter; Rujopakarn, Wiphu; Lisse, Carey M; Poshyachinda, Saran; Reichart, Daniel E

    2014-08-29

    The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million-year-old solar-analog star. We observed a substantial brightening of the debris disk at a wavelength of 3 to 5 micrometers, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were then ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation. Copyright © 2014, American Association for the Advancement of Science.

  5. Using remote-sensing and the Simple Biosphere model (SiB4) to analyze the seasonality and productivity of the terrestrial biosphere.

    Science.gov (United States)

    Cheeseman, M.; Denning, S.; Baker, I. T.

    2017-12-01

    Understanding the variability and seasonality of carbon fluxes from the terrestrial biosphere is integral to understanding the mechanisms and drivers of the global carbon cycle. However, there are many regions across the globe where in situ observations are sparse, such as the Amazon rainforest and the African Sahel. The latest version of the Simple-Biosphere model (SiB4) predicts a suite of biophysical variables such as terrestrial carbon flux (GPP), solar induced fluorescence (SIF), fraction of photosynthetically active radiation (FPAR), and leaf area index (LAI). By comparing modeled values to a suite of satellite and in situ observations we produce a robust analysis of the seasonality and productivity of the terrestrial biosphere in a variety of biome types across the globe.

  6. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations.

    Science.gov (United States)

    Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D

    2015-01-01

    There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.

  7. Quantifying regional changes in terrestrial carbon storage by extrapolation from local ecosystem models

    Energy Technology Data Exchange (ETDEWEB)

    King, A W

    1991-12-31

    A general procedure for quantifying regional carbon dynamics by spatial extrapolation of local ecosystem models is presented Monte Carlo simulation to calculate the expected value of one or more local models, explicitly integrating the spatial heterogeneity of variables that influence ecosystem carbon flux and storage. These variables are described by empirically derived probability distributions that are input to the Monte Carlo process. The procedure provides large-scale regional estimates based explicitly on information and understanding acquired at smaller and more accessible scales.Results are presented from an earlier application to seasonal atmosphere-biosphere CO{sub 2} exchange for circumpolar ``subarctic`` latitudes (64{degree}N-90{degree}N). Results suggest that, under certain climatic conditions, these high northern ecosystems could collectively release 0.2 Gt of carbon per year to the atmosphere. I interpret these results with respect to questions about global biospheric sinks for atmospheric CO{sub 2} .

  8. Beyond the principle of plentitude: a review of terrestrial planet habitability.

    Science.gov (United States)

    Gaidos, E; Deschenes, B; Dundon, L; Fagan, K; Menviel-Hessler, L; Moskovitz, N; Workman, M

    2005-04-01

    We review recent work that directly or indirectly addresses the habitability of terrestrial (rocky) planets like the Earth. Habitability has been traditionally defined in terms of an orbital semimajor axis within a range known as the habitable zone, but it is also well known that the habitability of Earth is due to many other astrophysical, geological, and geochemical factors. We focus this review on (1) recent refinements to habitable zone calculations; (2) the formation and orbital stability of terrestrial planets; (3) the tempo and mode of geologic activity (e.g., plate tectonics) on terrestrial planets; (4) the delivery of water to terrestrial planets in the habitable zone; and (5) the acquisition and loss of terrestrial planet carbon and nitrogen, elements that constitute important atmospheric gases responsible for habitable conditions on Earth's surface as well as being the building blocks of the biosphere itself. Finally, we consider recent work on evidence for the earliest habitable environments and the appearance of life itself on our planet. Such evidence provides us with an important, if nominal, calibration point for our search for other habitable worlds.

  9. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries

    Science.gov (United States)

    Bianchi, Thomas S.; Wysocki, Laura A.; Stewart, Mike; Filley, Timothy R.; McKee, Brent A.

    2007-09-01

    In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries. A lack of correlation between POC and lignin phenol abundances ( Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ 13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C 4 in addition to C 3 source materials. A strong correlation between δ 13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C 3 and C 4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ 13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 10 8 kg y -1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 10 5 kg y -1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 10 9 kg y -1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 10 9 kg y -1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 10 11 kg).

  10. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-01-01

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO 3 template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO 3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g −1 at a current load of 0.1 A g −1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors

  11. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan; Xu, Bin; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-30

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO{sub 3} template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO{sub 3} templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g{sup −1} at a current load of 0.1 A g{sup −1} with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  12. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Science.gov (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  13. A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem.

    Science.gov (United States)

    Bhattacharya, Satya Sundar; Kim, Ki-Hyun; Das, Subhasish; Uchimiya, Minori; Jeon, Byong Hun; Kwon, Eilhann; Szulejko, Jan E

    2016-02-01

    Among the numerous sources of greenhouse gases, emissions of CO2 are considerably affected by changes in the extent and type of land use, e.g., intensive agriculture, deforestation, urbanization, soil erosion, or wetland drainage. As a feasible option to control emissions from the terrestrial ecosystems, the scientific community has explored the possibility of enhancing soil carbon (C) storage capacity. Thus, restoration of damaged lands through conservation tillage, crop rotation, cover cropping, reforestation, sub-soiling of compacted lands, sustainable water management practices, and organic manuring are the major antidotes against attenuation of soil organic C (SOC) stocks. In this research, we focused on the effect of various man-made activities on soil biotic organics (e.g., green-, farm-yard manure, and composts) to understand how C fluxes from various sources contribute to the establishment of a new equilibrium in the terrestrial ecosystems. Although such inputs substitute a portion of chemical fertilizers, they all undergo activities that augment the rate and extent of decay to deplete the SOC bank. Here, we provide perspectives on the balancing factors that control the mineralization rate of organic matter. Our arguments are placed in the background of different land use types and their impacts on forests, agriculture, urbanization, soil erosion, and wetland destruction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated carbon dioxide

    Science.gov (United States)

    A major goal of climate change research is to understand whether and how terrestrial ecosystems can sequester more carbon to mitigate rising atmospheric carbon dioxide (CO2) levels. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric CO2 has been assumed to be a major mecha...

  15. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation modelORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    Science.gov (United States)

    C. Yue; P. Ciais; P. Cadule; K. Thonicke; S. Archibald; B. Poulter; W. M. Hao; S. Hantson; F. Mouillot; P. Friedlingstein; F. Maignan; N. Viovy

    2014-01-01

    Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE...

  16. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    Science.gov (United States)

    F.D.B. Espirito-Santo; M. Gloor; M. Keller; Y. Malhi; S. Saatchi; B. Nelson; R.C. Oliveira Junior; C. Pereira; J. Lloyd; S. Frolking; M. Palace; Y.E. Shimabukuro; V. Duarte; A. Monteagudo Mendoza; G. Lopez-Gonzalez; T.R. Baker; T.R. Feldpausch; R.J.W. Brienen; G.P. Asner; D.S. Boyd; O.L. Phillips

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel...

  17. Reforestation can sequester two petagrams of carbon in US topsoils in a century

    Science.gov (United States)

    Lucas E. Nave; Grant M. Domke; Kathryn L. Hofmeister; Umakant Mishra; Charles H. Perry; Brian F. Walters; Christopher W. Swanston

    2018-01-01

    Soils are Earth’s largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from...

  18. Diet induced differences in carbon isotope fractionation between sirenians and terrestrial ungulates

    Science.gov (United States)

    Clementz, M.T.; Koch, P.L.; Beck, C.A.

    2007-01-01

    Carbon isotope differences (??13C) between bioapatite and diet, collagen and diet, and bioapatite and collagen were calculated for four species of sirenians, Dugong dugon (Mu??ller), Trichechus manatus (Linnaeus), Trichechus inunguis (Natterer), and the extinct Hydrodamalis gigas (Zimmerman). Bone and tooth samples were taken from archived materials collected from populations during the mid eighteenth century (H. gigas), between 1978 and 1984 (T. manatus, T. inunguis), and between 1997 and 1999 (D. dugon). Mean ??13C values were compared with those for terrestrial ungulates, carnivores, and six species of carnivorous marine mammals (cetaceans = 1; pinnipeds = 4; mustelids = 1). Significant differences in mean ??13C values among species for all tissue types were detected that separated species or populations foraging on freshwater plants or attached marine macroalgae (??13C values -4???; ??13Cbioapatite-diet ???11???). Likewise, ??13Cbioapatite-collagen values for freshwater and algal-foraging species (???7???) were greater than those for seagrass-foraging species (???5???). Variation in ??13C values calculated between tissues and between tissues and diet among species may relate to the nutritional composition of a species' diet and the extent and type of microbial fermentation that occurs during digestion of different types of plants. These results highlight the complications that can arise when making dietary interpretations without having first determined species-specific ??13Ctissue-diet values. ?? 2007 Springer-Verlag.

  19. Mercury anomalies as a proxy for large igneous province volicanism and effects on the carbon cycle in a U-Pb age-constrained section spanning the end-Triassic mass extinction, Levanto, Peru

    Science.gov (United States)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Rosas, S.; Bottjer, D. J.

    2017-12-01

    Understanding the causes of the end-Triassic extinction and their potential relationship to Central Atlantic Magmatic Province (CAMP) volcanism necessitates careful correlation of carbon cycle records (largely from marine sections) and volcanism (largely from terrestrial successions) in a robust chronological framework. Here, we report stable carbon isotopes and mercury concentrations and isotopes from the Levanto section in Northern Peru as a putative proxy for CAMP (a large igneous province) in a marine section. Levanto represents deposition well below storm wave base and is lithologically homogenous before, during, and after the end-Triassic extinction interval, making it ideal for detailed chemostratigraphy. Furthermore, abundant intercalated ash beds allow us to correlate mercury concentrations in the marine record directly with CAMP basalt ages, providing a test of the correspondence of mercury anomalies with the eruption of CAMP volcanics. Age dating and C isotope analyses provide an opportunity to explore orbital tuning of the carbon isotope record and ground truth it with existing U-Pb ages from the section, a feature not available in any other marine sections examined to date. The abundance of U-Pb dated ashes in the Levanto section allows us to correlate orbital tuning with other basins, which lack absolute age control, providing a better understanding for the C cycle changes associated with the Triassic-Jurassic boundary.

  20. Species richness and conservation status of medium and large terrestrial mammals from four Sky Islands in Sonora, northwestern Mexico

    OpenAIRE

    Coronel-Arellano, Helí; Lara-Díaz, Nalleli; Jiménez-Maldonado, Rosa; López-González, Carlos

    2016-01-01

    We present the first systematic checklist of medium and large terrestrial mammals on four mountain ranges known as Sky Islands, in northeastern Sonora, Mexico. We used camera traps for recording mammals, with which we documented 25 wild species. Two of the native species are in the IUCN Red List and four are threatened at the national level. We did not document seven wild species with potential distribution at study sites, probably due to limited availability of habitat and/or local extirpati...

  1. A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-08-01

    Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.

  2. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  3. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations

    Science.gov (United States)

    Menviel, L.; Joos, F.

    2012-03-01

    The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.

  4. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, A. David; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  5. Nitrogen Availability Dampens the Positive Impacts of CO2 Fertilization on Terrestrial Ecosystem Carbon and Water Cycles

    Science.gov (United States)

    He, Liming; Chen, Jing M.; Croft, Holly; Gonsamo, Alemu; Luo, Xiangzhong; Liu, Jane; Zheng, Ting; Liu, Ronggao; Liu, Yang

    2017-11-01

    The magnitude and variability of the terrestrial CO2 sink remain uncertain, partly due to limited global information on ecosystem nitrogen (N) and its cycle. Without N constraint in ecosystem models, the simulated benefits from CO2 fertilization and CO2-induced increases in water use efficiency (WUE) may be overestimated. In this study, satellite observations of a relative measure of chlorophyll content are used as a proxy for leaf photosynthetic N content globally for 2003-2011. Global gross primary productivity (GPP) and evapotranspiration are estimated under elevated CO2 and N-constrained model scenarios. Results suggest that the rate of global GPP increase is overestimated by 85% during 2000-2015 without N limitation. This limitation is found to occur in many tropical and boreal forests, where a negative leaf N trend indicates a reduction in photosynthetic capacity, thereby suppressing the positive vegetation response to enhanced CO2 fertilization. Based on our carbon-water coupled simulations, enhanced CO2 concentration decreased stomatal conductance and hence increased WUE by 10% globally over the 1982 to 2015 time frame. Due to increased anthropogenic N application, GPP in croplands continues to grow and offset the weak negative trend in forests due to N limitation. Our results also show that the improved WUE is unlikely to ease regional droughts in croplands because of increases in evapotranspiration, which are associated with the enhanced GPP. Although the N limitation on GPP increase is large, its associated confidence interval is still wide, suggesting an urgent need for better understanding and quantification of N limitation from satellite observations.

  6. Microplastics as an emerging threat to terrestrial ecosystems.

    Science.gov (United States)

    de Souza Machado, Anderson Abel; Kloas, Werner; Zarfl, Christiane; Hempel, Stefan; Rillig, Matthias C

    2018-04-01

    Microplastics (plastics plastic litter or from direct environmental emission. Their potential impacts in terrestrial ecosystems remain largely unexplored despite numerous reported effects on marine organisms. Most plastics arriving in the oceans were produced, used, and often disposed on land. Hence, it is within terrestrial systems that microplastics might first interact with biota eliciting ecologically relevant impacts. This article introduces the pervasive microplastic contamination as a potential agent of global change in terrestrial systems, highlights the physical and chemical nature of the respective observed effects, and discusses the broad toxicity of nanoplastics derived from plastic breakdown. Making relevant links to the fate of microplastics in aquatic continental systems, we here present new insights into the mechanisms of impacts on terrestrial geochemistry, the biophysical environment, and ecotoxicology. Broad changes in continental environments are possible even in particle-rich habitats such as soils. Furthermore, there is a growing body of evidence indicating that microplastics interact with terrestrial organisms that mediate essential ecosystem services and functions, such as soil dwelling invertebrates, terrestrial fungi, and plant-pollinators. Therefore, research is needed to clarify the terrestrial fate and effects of microplastics. We suggest that due to the widespread presence, environmental persistence, and various interactions with continental biota, microplastic pollution might represent an emerging global change threat to terrestrial ecosystems. © 2017 John Wiley & Sons Ltd.

  7. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    Science.gov (United States)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of

  8. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    Science.gov (United States)

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  9. Carbon nanofiber supercapacitors with large areal capacitances

    KAUST Repository

    McDonough, James R.

    2009-01-01

    We develop supercapacitor (SC) devices with large per-area capacitances by utilizing three-dimensional (3D) porous substrates. Carbon nanofibers (CNFs) functioning as active SC electrodes are grown on 3D nickel foam. The 3D porous substrates facilitate a mass loading of active electrodes and per-area capacitance as large as 60 mg/ cm2 and 1.2 F/ cm2, respectively. We optimize SC performance by developing an annealing-free CNF growth process that minimizes undesirable nickel carbide formation. Superior per-area capacitances described here suggest that 3D porous substrates are useful in various energy storage devices in which per-area performance is critical. © 2009 American Institute of Physics.

  10. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  11. Function of Wildfire-Deposited Pyrogenic Carbon in Terrestrial Ecosystems

    Directory of Open Access Journals (Sweden)

    Melissa R. A. Pingree

    2017-08-01

    Full Text Available Fire is an important driver of change in most forest, savannah, and prairie ecosystems and fire-altered organic matter, or pyrogenic carbon (PyC, conveys numerous functions in soils of fire-maintained terrestrial ecosystems. Although an exceptional number of recent review articles and books have addressed agricultural soil application of charcoal or biochar, few reviews have addressed the functional role of naturally formed PyC in fire-maintained ecosystems. Recent advances in molecular spectroscopic techniques have helped strengthen our understanding of PyC as a ubiquitous, complex material that is capable of altering soil chemical, physical, and biological properties and processes. The uniquely recalcitrant nature of PyC in soils is partly a result of its stable C = C double-bonded, graphene-like structure and C-rich, N-poor composition. This attribute allows it to persist in soils for hundreds to thousands of years and represent net ecosystem C sequestration in fire-maintained ecosystems. The rapid formation of PyC during wildfire or anthropogenic fire events short-circuits the normally tortuous pathway of recalcitrant soil C formation. Existing literature also suggests that PyC provides an essential role in the cycling of certain nutrients, greatly extending the timeframe by which fires influence soil processes and facilitating recovery in ecosystems where organic matter inputs are low and post-fire surface soil bacterial and fungal activity is reduced. The high surface area of PyC allows for the adsorption a broad spectrum of organic compounds that directly or indirectly influence microbial processes after fire events. Adsorption capacity and microsite conditions created by PyC yields a “charosphere” effect in soil with heightened microbial activity in the vicinity of PyC. In this mini-review, we explore the function of PyC in natural and semi-natural settings, provide a mechanistic approach to understanding these functions, and examine

  12. How costly are carbon offsets? A meta-analysis of carbon forest sinks

    NARCIS (Netherlands)

    Kooten, van G.C.; Eagle, A.J.; Manley, J.; Smolak, T.

    2004-01-01

    Carbon terrestrial sinks are seen as a low-cost alternative to fuel switching and reduced fossil fuel use for lowering atmospheric CO2. As a result of agreements reached at Bonn and Marrakech, carbon offsets have taken on much greater importance in meeting Kyoto targets for the first commitment

  13. Dissolved Organic Carbon and Natural Terrestrial Sequestration Potential in Volcanic Terrain, San Juan Mountains, Colorado

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.; Kugel, M.; Aiken, G.; Dick, R.

    2009-12-01

    The need to reduce atmospheric CO2 levels has stimulated studies to understand and quantify carbon sinks and sources. Soils represent a potentially significant natural terrestrial carbon sequestration (NTS) reservoir. This project is part of a collaborative effort to characterize carbon (C) stability in temperate soils. To examine the potential for dissolved organic carbon (DOC) values as a qualitative indicator of C-stability, peak-flow (1500 ft3/s) and low-flow (200 ft3/s) samples from surface and ground waters were measured for DOC. DOC concentrations are generally low. Median peak-flow values from all sample sites (mg/L) were: streams (0.9); seeps (1.2); wells (0.45). Median low-flow values were: streams (0.7); seeps (0.75); wells (0.5). Median DOC values decrease between June and September 0.45 mg/L for seeps, and 0.2 mg/L for streams. Elevated DOC in some ground waters as compared to surface waters indicates increased contact time with soil organic matter. Elevated peak-flow DOC in areas with propylitically-altered bedrocks, composed of a secondary acid neutralizing assemblage of calcite-chlorite-epidote, reflects increased microbial and vegetation activity as compared to reduced organic matter accumulation in highly-altered terrain composed of an acid generating assemblage with abundant pyrite. Waters sampled in propylitically-altered bedrock terrain exhibit the lowest values during low-flow and suggest bedrock alteration type may influence DOC. Previous studies revealed undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global averages. Forest soils underlain by intermediate to mafic volcanic bedrock have the highest C (34.15 wt%), C: N (43) and arylsulfatase enzyme activity (ave. 278, high 461 µg p-nitrophenol/g/h). Unreclaimed mine sites have the lowest C (0 to 0.78 wt%), and arylsulfatase enzyme activity (0 to 41). Radiocarbon dates on charcoal collected from paleo-burn horizons illustrate Rocky Mountain soils may

  14. Pyrogenic carbon emission from a large wildfire in Oregon, United States.

    Science.gov (United States)

    J. Campbell; D. Donato; D. Azuma; B. Law

    2007-01-01

    We used a ground-based approach to compute the pyrogenic carbon emissions from the Biscuit Fire, an exceptionally large wildfire, which in 2002 burned over 200,000 ha of mixed conifer forest in southwestern Oregon. A combination of federal inventory data and supplementary ground measurements afforded the estimation of preburn densities for 25 separate carbon pools at...

  15. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  16. Multi-factor controls on terrestrial carbon dynamics in urbanised areas

    Science.gov (United States)

    Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.

    2013-11-01

    As urban land cover and populations continue rapidly increasing across the globe, much concern has been raised that urbanization may significantly alter terrestrial carbon dynamics that affects atmospheric CO2 concentration and climate. Urbanization involves complex changes in land structure and multiple environmental factors. Relative contribution of these and their interactive effects need be quantified to better understand urbanization effects on regional C dynamics as well as assess the effectiveness of C sequestration policies focusing on urban green space development. In this study, we analyzed the factors that may control the urbanization effect on ecosystem C dynamics, and proposed a numeric experimental scheme, i.e. scenarios design, to conduct factorial analysis on the effects of different factors. Then as a case study, a dynamic land ecosystem model (DLEM) was applied to quantify the urbanization effect on the C dynamics of the Southern US (SUS) from 1945-2007, and to analyze the relative contributions from each environmental factor and their interactive effects. We found the effect of urban land conversion dominated the C dynamics in the SUS, resulting in about 0.37 Pg C lost from 1945-2007. However, urban ecosystem management and urban-induced environmental changes enhanced C sequestration by 0.12 Pg and 0.03 Pg, respectively. Their C sequestration effects, which amounted to 40% of the magnitude of land conversion effect, partially compensated for the C loss during urbanization. Numeric experiments and factorial analyses indicated complex interactive effects among different factors and between various land covers and environmental controls, findings need to be further confirmed by field studies. The proposed numeric experimental scheme provides a quantitative approach for understanding the complex mechanisms controlling C dynamics, and defining best development practices in urbanised areas.

  17. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion

    Directory of Open Access Journals (Sweden)

    I. P. Semiletov

    2011-09-01

    Full Text Available The Lena River integrates biogeochemical signals from its vast drainage basin, and the integrated signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon (OC into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered to be quasi-steady-state processes. An increase in Lena discharge exerts opposite effects on total organic (TOC and total inorganic (TCO2 carbon: TOC concentration increases, while TCO2 concentration decreases. Significant inter-annual variability in mean values of TCO2, TOC, and their sum (total carbon, TC has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge. There is a negative correlation in the Lena River between TC in September and its mean discharge in August; a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea. Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C yr−1. The annual Lena River discharge of particulate organic carbon (POC can be as high as 0.38 Tg (moderate to high estimate. If we instead accept Lisytsin's (1994 statement that 85–95 % of total particulate matter (PM (and POC precipitates on the marginal "filter", then only about 0.03–0.04 Tg of Lena River POC reaches the Laptev Sea. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is estimated to be about 4 Tg. Observations support the hypothesis of a dominant role for coastal erosion (Semiletov, 1999a, b in East Siberian Arctic Shelf (ESAS sedimentation and the dynamics of the carbon/carbonate system. The Lena River is characterized by relatively high concentrations of the primary greenhouse gases, dissolved carbon dioxide (CO2 and methane (CH

  18. A framework for assessing global change risks to forest carbon stocks in the United States

    Science.gov (United States)

    Christopher W. Woodall; Grant M. Domke; Karin L. Riley; Christopher M. Oswalt; Susan J. Crocker; Gary W. Yohe

    2013-01-01

    Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C), but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and...

  19. Terrestrial Carbon Sequestration: Analysis of Terrestrial Carbon Sequestration at Three Contaminated Sites Remediated and Revitalized with Soil Amendments

    Science.gov (United States)

    This paper provides EPA's analysis of the data to determine carbon sequestration rates at three diverse sites that differ in geography/location, weather, soil properties, type of contamination, and age.

  20. Preservation of terrestrial plant biomarkers from Nachukui Formation sediments and their viability for stable isotope analysis

    Science.gov (United States)

    Kahle, E.; Uno, K. T.; Polissar, P. J.; Lepre, C. J.; deMenocal, P. B.

    2013-12-01

    Plio-Pleistocene sedimentary records from the Turkana Basin in eastern Africa provide a unique opportunity to compare a high-resolution record of climate and terrestrial vegetation with important changes in the record of human evolution. Molecular biomarkers from terrestrial vegetation can yield stable isotope ratios of hydrogen and carbon that reflect ancient climate and vegetation. However, the preservation of long-chain plant wax biomarkers in these paleosol, fluvial, and lacustrine sediments is not known, and this preservation must be studied to establish their utility for molecular stable isotope studies. We investigated leaf wax biomarkers in Nachukui Formation sediments deposited between 2.3 and 1.7 Ma to assess biomarker preservation. We analyzed n alkane and n alkanoic acid concentrations and, where suitable, molecular carbon and hydrogen isotope ratios. Molecular abundance distributions show a great deal of variance in biomarker preservation and plant-type source as indicated by the carbon preference index and average chain length. This variation suggests that some samples are suitable for isotopic analysis, while other samples lack primary terrestrial plant biomarker signatures. The biomarker signal in many samples contains significant additional material from unidentified sources. For example, the n-alkane distributions contain an unresolved complex mixture underlying the short and mid-chain n-alkanes. Samples from lacustrine intervals include long-chain diacids, hydroxy acids and (ω-1) ketoacids that suggest degradation of the original acids. Degradation of poorly preserved samples and the addition of non-terrestrial plant biomarkers may originate from a number of processes including forest fire or microbial alteration. Isotopic analysis of well-preserved terrestrial plant biomarkers will be presented along with examples where the original biomarker distribution has been altered.

  1. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-01-01

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g −1 . • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m 2 g −1 ) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g −1 at 0.5 A g −1 and still 120 F g −1 at a high rate of 30 A g −1 . There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg −1 and 4.03 Wh kg −1 with the corresponding power densities of 108 W kg −1 and 6.49 kW kg −1 , respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  2. Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes

    Science.gov (United States)

    Graham, Emily B.; Tfaily, Malak M.; Crump, Alex R.; Goldman, Amy E.; Bramer, Lisa M.; Arntzen, Evan; Romero, Elvira; Resch, C. Tom; Kennedy, David W.; Stegen, James C.

    2017-12-01

    In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here we investigate the biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor using ultrahigh-resolution C characterization. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically bound OC. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the "priming" concept—that inputs of water-soluble and thermodynamically favorable terrestrial OC protect bound-OC from oxidation. In both environments, the most thermodynamically favorable compounds appear to be preferentially oxidized regardless of which OC pool microbiomes metabolize. In turn, we suggest that the extent of riparian vegetation causes sediment microbiomes to locally adapt to oxidize a particular pool of OC but that common thermodynamic principles govern the oxidation of each pool (i.e., water-soluble or physically bound). Finally, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

  3. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass

    Energy Technology Data Exchange (ETDEWEB)

    Bush, P. Siegal, M.P.; Huang, Z.P.; Provencio, P.N.; Ren, Z.F.; Wang, J.H.; Xu, J.W.

    1998-11-10

    Free-standing aligned carbon nanotubes have previously been grown above 7000C on mesoporous silica embedded with iron nanoparticles. Here, carbon nanotubes aligned over areas up to several square centimeters were grown on nickel-coated glass below 666oC by plasma-enhanced hot filament chemical vapor deposition. Acetylene (C2H2) gas was used as the carbon source and ammonia (NH3) gas was used as a catalyst and dilution gas. Nanotubes with controllable diameters from 20 to 400 nanometers and lengths from 0.1 to 50 micrometers were obtained. Using this method, large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication.

  4. Terrestrial cycling of 13CO2 by photosynthesis, respiration, and biomass burning in SiBCASA

    Science.gov (United States)

    van der Velde, I. R.; Miller, J. B.; Schaefer, K.; van der Werf, G. R.; Krol, M. C.; Peters, W.

    2014-12-01

    We present an enhanced version of the SiBCASA terrestrial biosphere model that is extended with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from the Global Fire Emissions Database (GFED), (b) an isotopic discrimination scheme that calculates 13C signatures of photosynthesis and autotrophic respiration, and (c) a separate set of 13C pools to carry isotope ratios into heterotrophic respiration. We quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. The implementation of biomass burning yields similar fluxes as CASA-GFED both in magnitude and spatial patterns. The implementation of isotope exchange gives a global mean discrimination value of 15.2‰, ranges between 4 and 20‰ depending on the photosynthetic pathway in the plant, and compares favorably (annually and seasonally) with other published values. Similarly, the isotopic disequilibrium is similar to other studies that include a small effect of biomass burning as it shortens the turnover of carbon. In comparison to measurements, a newly modified starch/sugar storage pool propagates the isotopic discrimination anomalies to respiration much better. In addition, the amplitude of the drought response by SiBCASA is lower than suggested by the measured isotope ratios. We show that a slight increase in the stomatal closure for large vapor pressure deficit would amplify the respired isotope ratio variability. Our study highlights the importance of isotope ratio observations of 13C to assess and improve biochemical models like SiBCASA, especially with regard to the allocation and turnover of carbon and the responses to drought.

  5. The Role of Terrestrial Inputs of Organic Matter in Arctic Lagoons: Comparative Studies from Open-Water and Ice-Covered Periods

    Science.gov (United States)

    Dunton, K. H.; McClelland, J. W.; Connelly, T.; Linn, S.; Khosh, M.

    2012-12-01

    Coastal ecosystems of the Arctic receive extraordinarily large quantities of terrestrial organic matter through river discharge and shoreline erosion. This organic matter, both in dissolved and particulate form, may provide an important carbon and energy subsidy that supports and maintains heterotrophic activity and food webs in coastal waters, especially in the lagoons. Recent food web studies using stable isotopes confirm the significant assimilation of terrestrial organic matter, based on the depletion in both 13C and 15N content of invertebrate and vertebrate consumers collected in eastern Beaufort Sea lagoons vs. offshore waters. Our current work specifically focuses on a set of 12 field sites along the eastern Alaskan Beaufort Sea coast, from Barter Island to Demarcation Bay. To examine linkages between biological communities and organic matter inputs from land, we compared sites ranging from lagoons to open coastal systems that receive differing amounts of freshwater runoff and also differ markedly in their exchange characteristics with shelf waters. Our temporal and spatial effort included field sampling during the ice covered period in a number of lagoons characterized by differences in their exchange characteristics with the nearshore shelf. Our preliminary chemical and biological measurements, the first of their kind in arctic coastal lagoons, reveal that lagoon benthos can become hypersaline (43) and net heterotrophic (values to 30% oxygen saturation) during winter, before rebounding during the period of ice break-up to net autotrophic (>100% saturation) under continued hypersaline conditions. Measurements of water and sediment chemistry, benthic and water column community characteristics, and natural abundance isotopic tracers promise to reveal the dynamic nature of these productive lagoon ecosystems under different hydrologic conditions. The possible role of terrestrially derived carbon to arctic estuarine food webs is especially important in view of

  6. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Gao, Jihui, E-mail: gaojh@hit.edu.cn; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-11-30

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g{sup −1}. • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m{sup 2} g{sup −1}) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g{sup −1} at 0.5 A g{sup −1} and still 120 F g{sup −1} at a high rate of 30 A g{sup −1}. There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg{sup −1} and 4.03 Wh kg{sup −1} with the corresponding power densities of 108 W kg{sup −1} and 6.49 kW kg{sup −1}, respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  7. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Directory of Open Access Journals (Sweden)

    H. Graven

    2017-12-01

    Full Text Available The isotopic composition of carbon (Δ14C and δ13C in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6 for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  8. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Science.gov (United States)

    Graven, Heather; Allison, Colin E.; Etheridge, David M.; Hammer, Samuel; Keeling, Ralph F.; Levin, Ingeborg; Meijer, Harro A. J.; Rubino, Mauro; Tans, Pieter P.; Trudinger, Cathy M.; Vaughn, Bruce H.; White, James W. C.

    2017-12-01

    The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  9. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    Science.gov (United States)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  10. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  11. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings.

    Science.gov (United States)

    Saintilan, Neil; Rogers, Kerrylee

    2015-02-01

    A global trend of woody plant encroachment of terrestrial grasslands is co-incident with woody plant encroachment of wetland in freshwater and saline intertidal settings. There are several arguments for considering tree encroachment of wetlands in the context of woody shrub encroachment of grassland biomes. In both cases, delimitation of woody shrubs at regional scales is set by temperature thresholds for poleward extent, and by aridity within temperature limits. Latitudinal expansion has been observed for terrestrial woody shrubs and mangroves, following recent warming, but most expansion and thickening has been due to the occupation of previously water-limited grassland/saltmarsh environments. Increases in atmospheric CO₂, may facilitate the recruitment of trees in terrestrial and wetland settings. Improved water relations, a mechanism that would predict higher soil moisture in grasslands and saltmarshes, and also an enhanced capacity to survive arid conditions, reinforces local mechanisms of change. The expansion of woody shrubs and mangroves provides a negative feedback on elevated atmospheric CO₂ by increasing carbon sequestration in grassland and saltmarsh, and is a significant carbon sink globally. These broad-scale vegetation shifts may represent a new stable state, reinforced by positive feedbacks between global change drivers and endogenic mechanisms of persistence in the landscape.

  12. The global carbon cycle

    International Nuclear Information System (INIS)

    Maier-Reimer, E.

    1991-01-01

    Basic concepts of the global carbon cycle on earth are described; by careful analyses of isotopic ratios, emission history and oceanic ventilation rates are derived, which provide crucial tests for constraining and calibrating models. Effects of deforestation, fertilizing, fossil fuel burning, soil erosion, etc. are quantified and compared, and the oceanic carbon process is evaluated. Oceanic and terrestrial biosphere modifications are discussed and a carbon cycle model is proposed

  13. The oceanic response to carbon emissions over the next century: investigation using three ocean carbon cycle models

    International Nuclear Information System (INIS)

    Chuck, A.; Tyrrell, T.; Holligan, P.M.; Totterdell, I.J.

    2005-01-01

    A recent study of coupled atmospheric carbon dioxide and the biosphere found alarming sensitivity of next-century atmospheric pCO 2 (and hence planetary temperature) to uncertainties in terrestrial processes. Here we investigate whether there is similar sensitivity associated with uncertainties in the behaviour of the ocean carbon cycle. We investigate this important question using three models of the ocean carbon cycle of varying complexity: (1) a new three-box oceanic carbon cycle model; (2) the HILDA multibox model with high vertical resolution at low latitudes; (3) the Hadley Centre ocean general circulation model (HadOCC). These models were used in combination to assess the quantitative significance (to year 2100 pCO 2 ) of potential changes to the ocean stimulated by global warming and other anthropogenic activities over the period 2000-2100. It was found that an increase in sea surface temperature and a decrease in the mixing rate due to stratification give rise to the greatest relative changes in pCO 2 , both being positive feedbacks. We failed to find any comparable large sensitivity due to the ocean

  14. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  15. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    NARCIS (Netherlands)

    Xia, J.; Niu, S.; Ciais, P.; Janssens, I.A.; Chen, J.; Ammann, C.; Arain, A.; Blanken, P.D.; Cescatti, A.; Moors, E.J.

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of

  16. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles

    Science.gov (United States)

    Tjiputra, J. F.; Grini, A.; Lee, H.

    2016-01-01

    Using an Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In the aggressive scenario, the model projects a cooling trend toward 2100 despite warming that persists in the high latitudes. Following SAI termination in 2100, a rapid global warming of 0.35 K yr-1 is simulated in the subsequent 10 years, and the global mean temperature returns to levels close to the reference state, though roughly 0.5 K cooler. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. In the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area.

  17. Dual role of lignin in plant litter decomposition in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Ballaré, Carlos L

    2010-03-09

    Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems.

  18. Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium

    Energy Technology Data Exchange (ETDEWEB)

    Brovkin, Victor; Lorenz, Stephan J.; Jungclaus, Johann; Raddatz, Thomas; Timmreck, Claudia; Reick, Christian H.; Segschneider, Joachim; Six, Katharina (Max Planck Inst. for Meteorology Hamburg (Germany))

    2010-11-15

    The sensitivity of the climate-biogeochemistry system to volcanic eruptions is investigated using the comprehensive Earth System Model developed at the Max Planck Institute for Meteorology. The model includes an interactive carbon cycle with modules for terrestrial biosphere as well as ocean biogeochemistry. The volcanic forcing is based on a recent reconstruction for the last 1200 yr. An ensemble of five simulations is performed and the averaged response of the system is analysed in particular for the largest eruption of the last millennium in the year 1258. After this eruption, the global annual mean temperature drops by 1 K and recovers slowly during 10 yr. Atmospheric CO{sub 2} concentration declines during 4 yr after the eruption by ca. 2 ppmv to its minimum value and then starts to increase towards the pre-eruption level. This CO{sub 2} decrease is explained mainly by reduced heterotrophic respiration on land in response to the surface cooling, which leads to increased carbon storage in soils, mostly in tropical and subtropical regions. The ocean acts as a weak carbon sink, which is primarily due to temperature-induced solubility. This sink saturates 2 yr after the eruption, earlier than the land uptake.

  19. Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium

    International Nuclear Information System (INIS)

    Brovkin, Victor; Lorenz, Stephan J.; Jungclaus, Johann; Raddatz, Thomas; Timmreck, Claudia; Reick, Christian H.; Segschneider, Joachim; Six, Katharina

    2010-01-01

    The sensitivity of the climate-biogeochemistry system to volcanic eruptions is investigated using the comprehensive Earth System Model developed at the Max Planck Institute for Meteorology. The model includes an interactive carbon cycle with modules for terrestrial biosphere as well as ocean biogeochemistry. The volcanic forcing is based on a recent reconstruction for the last 1200 yr. An ensemble of five simulations is performed and the averaged response of the system is analysed in particular for the largest eruption of the last millennium in the year 1258. After this eruption, the global annual mean temperature drops by 1 K and recovers slowly during 10 yr. Atmospheric CO 2 concentration declines during 4 yr after the eruption by ca. 2 ppmv to its minimum value and then starts to increase towards the pre-eruption level. This CO 2 decrease is explained mainly by reduced heterotrophic respiration on land in response to the surface cooling, which leads to increased carbon storage in soils, mostly in tropical and subtropical regions. The ocean acts as a weak carbon sink, which is primarily due to temperature-induced solubility. This sink saturates 2 yr after the eruption, earlier than the land uptake.

  20. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  1. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  2. Land use related silica dynamics in terrestrial ecosystems.

    OpenAIRE

    Clymans, Wim

    2012-01-01

    Silicon (Si) provides the base component for well-balanced food-webs in aquatic systems. Here, together with nitrogen and phosphorous Si determines phytoplankton composition, and plays a major role in eutrophication problems and carbon sequestration. Rivers are the primary source of Si for the oceans, and is ultimately derived from mineral weathering. However there is growing evidence illustrating the importance of biological Si cycling in terrestrial ecosystems. Riverine Si fluxes will be af...

  3. Historical carbon emissions and uptake from the agricultural frontier of the Brazilian Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Mustard, John F; Cronin, Timothy W; Cerri, Carlos E P; Cerri, Carlos C

    2011-04-01

    Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO2 to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO2. Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state's 925 225 km2, 221 092 km2 have been converted to pastures and 89 533 km2 have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil's fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region's carbon

  4. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes

    NARCIS (Netherlands)

    Van der Wal, A.; Geydan, T.D.; Kuyper, T.W.; De Boer, W.

    2013-01-01

    Filamentous fungi are critical to the decomposition of terrestrial organic matter and, consequently, in the global carbon cycle. In particular, their contribution to degradation of recalcitrant lignocellulose complexes has been widely studied. In this review, we focus on the functioning of

  5. Dynamics of carbon 14 in soils: a review

    International Nuclear Information System (INIS)

    Tamponnet, C.

    2004-01-01

    In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial eco-sphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. (author)

  6. Terrestrial floral change during the ETM2 hyperthermal

    Science.gov (United States)

    Wing, S. L.; Currano, E. D.

    2017-12-01

    Hyperthermal events during the Eocene are defined by negative shifts in carbon isotope composition, global temperature increase and carbonate dissolution in marine settings. These features suggest repeated releases of large amounts of carbon followed by increasing concentration of CO2in the atmosphere and ocean, climate change, and biotic responses such as rapid evolution and changes in geographic range and trophic relationships. The Paleocene-Eocene Thermal Maximum (PETM, 56.0 Ma) is the largest Eocene hyperthermal in terms of carbon cycle, climate and biotic effects, including dwarfing of mammalian lineages. Terrestrial floral turnover at the PETM documented in the Bighorn Basin, Wyoming, USA, is very high. Almost all late Paleocene species, most belonging to mesic, warm-temperate lineages, disappeared during the PETM. The PETM flora was composed of species belonging to dry tropical lineages present only during the body of the PETM. Most mesic, warm-temperate species returned to the area immediately after the PETM. Such extreme change in floral composition makes it difficult to assess how much floral turnover is associated with how much change in temperature. The ETM2 hyperthermal event ( 53.7 Ma) is characterized by a carbon isotope excursion and warming about half as great as during the PETM, and by half as much mammalian dwarfing. Here we report on a new fossil flora from ETM2 that demonstrates the magnitude of floral change was also less than during the PETM. Some characteristic PETM plant species reappeared in the Bighorn Basin during ETM2, including species of Fabaceae that dominate PETM assemblages but are less common during ETM2. Many stratigraphically long-ranging plant species that preferred mesic climates remain common in the ETM2 flora. We conclude that warm climate during ETM2 shifted ranges of plant species such that some PETM species returned to northern Wyoming, but was not so severe as to cause local extirpation of species preferring 'background

  7. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    DEFF Research Database (Denmark)

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of b...

  8. Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems

    Science.gov (United States)

    Nicholas A. Sutfin; Ellen E. Wohl; Kathleen A. Dwire

    2016-01-01

    Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long-term (> 102 years) storage. Research in ecosystem processing emphasizes the...

  9. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    Science.gov (United States)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  10. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    Science.gov (United States)

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  11. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.

    Science.gov (United States)

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E L

    2012-04-01

    Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.

  12. The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences

    Science.gov (United States)

    Chapin, F. S.; McFarland, J.; McGuire, David A.; Euskirchen, E.S.; Ruess, Roger W.; Kielland, K.

    2009-01-01

    Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition).

  13. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    Science.gov (United States)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  14. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    Science.gov (United States)

    Victor Resco de Dios; Michael L. Goulden; Kiona Ogle; Andrew D. Richardson; David Y. Hollinger; Eric A. Davidson; Josu G. Alday; Greg A. Barron-Gafford; Arnaud Carrara; Andrew S. Kowalski; Walt C. Oechel; Borja R. Reverter; Russell L. Scott; Ruth K. Varner; Ruben Diaz-Sierra; Jose M. Moreno

    2012-01-01

    It is often assumed that daytime patterns of ecosystem carbon assimilation are mostly driven by direct physiological responses to exogenous environmental cues. Under limited environmental variability, little variation in carbon assimilation should thus be expected unless endogenous plant controls on carbon assimilation, which regulate photosynthesis in time, are active...

  15. Southwest Regional Partnership on Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners

  16. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    Science.gov (United States)

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-04-16

    Carbon captured by marine organisms helps sequester atmospheric CO 2 , especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air-sea CO 2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10-30. Phytoplankton-derived POC dominated the water column POC (65-95%) within this salinity range; however, it was minor in the sediments (3-29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49-78% and 19-36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15-30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO 2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters. They

  17. Role of a productive lake in carbon sequestration within a calcareous catchment.

    Science.gov (United States)

    Nõges, Peeter; Cremona, Fabien; Laas, Alo; Martma, Tõnu; Rõõm, Eva-Ingrid; Toming, Kaire; Viik, Malle; Vilbaste, Sirje; Nõges, Tiina

    2016-04-15

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO2 and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO2 sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Land to ocean transfer of erosion-related organic carbon, Waipaoa sedimentary system, East Coast, New Zealand

    International Nuclear Information System (INIS)

    Brackley, H.L.

    2006-01-01

    Mountainous islands of the Pacific Rim (such as New Zealand) purportedly deliver up to 40% of the suspended sediment load and up to 35% of the riverine particulate organic carbon (POC) load to the world's oceans. On the east coast of New Zealand's North Island, the Waipaoa River drains a steep, 2205 km 2 catchment located on the active collisional East Coast Continental Margin. It has an annual suspended sediment load of 15 Tg (15 x 10 1 2 g), making up ∼ 7% of New Zealand's total yield to the Pacific Ocean, and a mean annual POC discharge to the Pacific Ocean of 86.7 Gg (86.7 x 10 9 g). The annual loss of OC to the floodplain is ∼ 9% of this annual POC discharge (∼ 7.8 Gg). A range of analyses (including organic carbon content (%OC), stable carbon isotopes (δ 1 3C), radiocarbon ( 1 4C), carbon to nitrogen ratios (C/N)a and carbon loadings (OC:SA)) were performed on correlative sediments from a transect of 7 cores from depositional sites located on the Waipaoa River floodplain and adjacent continental shelf and slope. Results were used to determine biogeochemical characteristics of organic carbon (OC) at a range of depositional sites during its transfer from terrestrial source to marine sink, and how large floods impact OC transfer to the marine environment. The high temporal variability in OC content (0.2 to 3.5%) and different source signatures (δ 1 3C of -26.7 to -20.6 permille) of Waipaoa River floodplain deposits prevented the establishment of a clear benchmark signature for flood deposits that may be recognisable in the marine sedimentary record. The high spatial and temporal variability of floodplain sediment OC, combined with the areal extent of floodplains within the catchment, indicates the appreciable modulating effect the floodplain has on OC transfers to the ocean. Since extensive stopbanks were constructed on the main floodplain since the 1940's, sequestration of OC in floodplain sediments has reduced by about half, increasing the overall

  19. Ontogenetic shifts in terrestrial reliance of stream-dwelling brown trout

    Directory of Open Access Journals (Sweden)

    Javier Sánchez-Hernández

    2016-07-01

    Full Text Available This study focuses on terrestrial reliance of brown trout (Salmo trutta and compared it to the potential prey available (macrozoobenthos and drifting invertebrates in three temperate rivers (Galicia, NW Spain, with special emphasis on variations in terrestrial energy intake through the ontogeny of brown trout. Additionally, we paid particular attention to individual variation of terrestrial resource use within and between age classes. Prey items were grouped in four categories: i aquatic invertebrates; ii imagoes of aquatic invertebrates; iii terrestrial invertebrates; and iv fish prey. Next, energy composition was measured according to dry weight-energy equations for each individual in line with above-mentioned prey categories. Our findings illustrate that terrestrial invertebrates appeared to be scarce in the environment, whereas aquatic food resources were rather abundant and accessible. The use of terrestrial invertebrates tended to increase with age, but with a high degree of inter-individual variation in resource use. In fact, the individual reliance of brown trout on terrestrial invertebrates may vary considerably (between 0% and 76.9%. Besides, the frequency of terrestrial foragers, i.e., individuals with terrestrial invertebrates in their stomachs, increased with age, except in one population which had the maximum value in the age-2 class. The acquisition of terrestrial invertebrates thus appears to be a process strongly dependent upon the actual food availability in the environment, but with a high degree of individual variance in resource use within the same age class. Finally, we discuss that terrestrial invertebrates may largely contribute to cover the energy intake of the species, highlighting the interface between terrestrial and aquatic ecosystems, and thereby the importance of riparian canopy cover as a key factor for food supply of stream-dwelling salmonids species.

  20. Modeling long-term carbon residue in the ocean-atmosphere system following large CO2 emissions

    Science.gov (United States)

    Towles, N. J.; Olson, P.; Gnanadesikan, A.

    2013-12-01

    We use the LOSCAR carbon cycle model (Zeebe et al., 2009; Zeebe, 2012) to calculate the residual carbon in the ocean and atmosphere following large CO2 emissions. We consider the system response to CO2 emissions ranging from 100 to 20000 PgC, and emission durations from 100 yr to 100 kyr, subject to a wide range of system parameters such as the strengths of silicate weathering and the oceanic biological carbon pump. We define the carbon gain factor as the ratio of residual carbon in the ocean-atmosphere to the total emitted carbon. For moderate sized emissions shorter than about 50 kyr, we find that the carbon gain factor grows during the emission and peaks at about 1.7, primarily due to the erosion of carbonate marine sediments. In contrast, for longer emissions, the carbon gain factor peaks at a smaller value, and for very large emissions (more than 5000 PgC), the gain factor decreases with emission size due to carbonate sediment exhaustion. This gain factor is sensitive to model parameters such as low latitude efficiency of the biological pump. The timescale for removal of the residual carbon (reducing the carbon gain factor to zero) depends strongly on the assumed sensitivity of silicate weathering to atmospheric pCO2, and ranges from less than one million years to several million years.

  1. The role of ecosystem memory in predicting inter-annual variations of the tropical carbon balance.

    Science.gov (United States)

    Bloom, A. A.; Liu, J.; Bowman, K. W.; Konings, A. G.; Saatchi, S.; Worden, J. R.; Worden, H. M.; Jiang, Z.; Parazoo, N.; Williams, M. D.; Schimel, D.

    2017-12-01

    Understanding the trajectory of the tropical carbon balance remains challenging, in part due to large uncertainties in the integrated response of carbon cycle processes to climate variability. Satellite observations atmospheric CO2 from GOSAT and OCO-2, together with ancillary satellite measurements, provide crucial constraints on continental-scale terrestrial carbon fluxes. However, an integrated understanding of both climate forcings and legacy effects (or "ecosystem memory") on the terrestrial carbon balance is ultimately needed to reduce uncertainty on its future trajectory. Here we use the CARbon DAta-MOdel fraMework (CARDAMOM) diagnostic model-data fusion approach - constrained by an array of C cycle satellite surface observations, including MODIS leaf area, biomass, GOSAT solar-induced fluorescence, as well as "top-down" atmospheric inversion estimates of CO2 and CO surface fluxes from the NASA Carbon Monitoring System Flux (CMS-Flux) - to constrain and predict spatially-explicit tropical carbon state variables during 2010-2015. We find that the combined assimilation of land surface and atmospheric datasets places key constraints on the temperature sensitivity and first order carbon-water feedbacks throughout the tropics and combustion factors within biomass burning regions. By varying the duration of the assimilation period, we find that the prediction skill on inter-annual net biospheric exchange is primarily limited by record length rather than model structure and process representation. We show that across all tropical biomes, quantitative knowledge of memory effects - which account for 30-50% of interannual variations across the tropics - is critical for understanding and ultimately predicting the inter-annual tropical carbon balance.

  2. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  3. Evaluation of carbon-14 (C14) levels of terrestrial and marine food products of the environment of the site of Cogema La Hague

    International Nuclear Information System (INIS)

    2006-04-01

    This evaluation has for object to inform about the levels in carbon 14 in the environment of the factories of La Hague. Two sectors were differentiated on one hand the terrestrial environment, and on the other hand the marine environment. The investigations concerned first and foremost food products stemming as the vegetable culture (vegetables) or individual breeding (milk, eggs) but also foodstuffs stemming from the local agriculture (cereal). In touch with the second sector, the marine environment, the sampling concerned the accessible products of the sea by all and those locally marketed (fishes, molluscs, shellfishes). The different results are presented in tables. (N.C.)

  4. Connecting above and below: the impacts of large wildlife loss and pastoralism on savanna carbon dynamics

    Science.gov (United States)

    Forbes, E. S.; Young, H. S.; Young, T.; Schimel, J.

    2016-12-01

    There is widespread evidence that large wildlife species contribute to ecosystem carbon efflux; however, their influence is not incorporated into traditional carbon models. As large wildlife loss continues in the Anthropocene and in the face of climate change, it becomes increasingly important to understand the impacts of their loss on ecosystem carbon. The charismatic, threatened wildlife in central Kenya's savanna provide an ideal framework for these questions. We compared differences in carbon efflux in the presence or absence of native herbivores and/or cattle, as a proxy for wildlife loss and the interaction of pastoralism. We measured carbon dynamics in situ with a closed-chamber system and microbial respiration rates in lab by incubating sampled soil. We discovered a significant effect of herbivore presence/absence on carbon efflux: incubated soils collected from plots with cattle only exhibit greater carbon accumulation and faster initial respiration rates than soils collected from plots with native herbivores and no cattle, native herbivores and cattle, and neither native herbivores nor cattle. When measured in situ, plots with no herbivores show higher efflux than plots with only native herbivores, and plots with both. The data also suggest that grazing pressure results in successively lower efflux. The differences in these studies imply that the impacts of large wildlife loss differ on microbial respiration as an isolated mechanism in ecosystem carbon exchange, and total carbon efflux. This is most likely because in situ efflux measurements encompass environmental variables as well as soil microbial respiration. The lab data suggest that cattle as the only herbivore causes greater soil microbial efflux compared to native herbivores alone, native herbivores with cattle, or no herbivores. The in situ data show that no herbivores results in increased carbon efflux, and suggest that increasing numbers of herbivores lowers efflux.These studies demonstrate

  5. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  6. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  7. Gaseous elemental mercury emissions and CO2 respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions

    International Nuclear Information System (INIS)

    Obrist, Daniel; Fain, Xavier; Berger, Carsen

    2010-01-01

    Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO 2 ) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r 2 = 0.49) between Hg and CO 2 emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks. We induced changes in CO 2 respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N 2 /O 2 (80% and 20%, respectively) to pure N 2 . Unexpectedly, Hg emissions almost quadrupled after O 2 deprivation while oxidative mineralization (i.e., CO 2 emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg 2+ by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg 2+ reduction, is related to O 2 availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O 2 levels and possibly low soil redox potentials lead to increased Hg volatilization from soils.

  8. Plant functional traits and soil carbon sequestration in contrasting biomes.

    NARCIS (Netherlands)

    De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D.

    2008-01-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its

  9. Mechanisms of carbon storage in mountainous headwater rivers

    Science.gov (United States)

    Ellen Wohl; Kathleen Dwire; Nicholas Sutfin; Lina Polvi; Roberto Bazan

    2012-01-01

    Published research emphasizes rapid downstream export of terrestrial carbon from mountainous headwater rivers, but little work focuses on mechanisms that create carbon storage along these rivers, or on the volume of carbon storage. Here we estimate organic carbon stored in diverse valley types of headwater rivers in Rocky Mountain National Park, CO, USA. We show that...

  10. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen

    Science.gov (United States)

    Cole, J.J.; Carpenter, S.R.; Kitchell, J.; Pace, M.L.; Solomon, C.T.; Weidel, B.

    2011-01-01

    Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ???20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic 13C content of these lakes to augment the small, natural contrast in 13C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread.

  11. Terrestrial and exposure histories of Antarctic meteorites

    International Nuclear Information System (INIS)

    Nishiizumi, K.

    1986-01-01

    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40

  12. Terrestrial and exposure histories of Antarctic meteorites

    Science.gov (United States)

    Nishiizumi, K.

    1986-01-01

    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40.

  13. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea

    Science.gov (United States)

    Zhu, Chun; Wagner, Thomas; Talbot, Helen M.; Weijers, Johan W. H.; Pan, Jian-Ming; Pancost, Richard D.

    2013-09-01

    Terrestrial carbon transferred from the land to sea is a critical component of the global carbon cycle. A range of geochemical proxies has been developed to fingerprint the fate of terrestrial organic matter (TOM) in marine sediments. However, discrepancies among different proxies limit our ability to quantify and interpret the terrestrial signals in marine sediments, with consequences for the investigation of both the modern carbon cycle and past environmental change. To mechanistically understand these discrepancies, we examined the distributions of a range of terrestrial proxies and their aquatic counterparts (i.e. marine proxies) in the Yangtze river-East China Sea (YR-ECS) shelf system, where TOM experiences extensive modification during transport and burial. TOM proxies in the YR-ECS system collectively fit a power-law model but with distinct attenuation rates (the a∗ values) for individual molecular proxy groups. Among a range of TOM proxies, the modeled a∗ values decrease in the order: soil-marker BHPs > triterpenols > lignin > HMW n-alkanols > branched GDGTs > HMW n-alkanes for biomarkers; and Rsoil > BIT > %TOMiso for proxies tracing %TOM. Rapid loss of TOM components through dissociation in the narrow estuary, followed by oxidation over the wide open shelf, are best described by power curves. Inherent chemical reactivity (i.e. the number of functional groups), responses to hydraulic sorting, and in situ production regulate the individual attenuation rates. Of them, chemical reactivity plays the most important role on proxy behavior, supported by a strong correlation between a∗ values and standard molal Gibbs energies. Both, physical protection and chemical reactivity fundamentally control the overall behavior of TOM components, with the relative importance being setting-dependant: The former is relatively important in the estuary, whereas the later is the primary control over the open shelf. Moreover, regional variation of different marine

  14. Factors influencing aquatic-to-terrestrial contaminant transport to terrestrial arthropod consumers in a multiuse river system.

    Science.gov (United States)

    Alberts, Jeremy M; Sullivan, S Mažeika P

    2016-06-01

    Emerging aquatic insects are important vectors of contaminant transfer from aquatic to terrestrial food webs. However, the environmental factors that regulate contaminant body burdens in nearshore terrestrial consumers remain largely unexplored. We investigated the relative influences of riparian landscape composition (i.e., land use and nearshore vegetation structure) and contaminant flux via the emergent aquatic insect subsidy on selenium (Se) and mercury (Hg) body burdens of riparian ants (Formica subsericea) and spiders of the family Tetragnathidae along 11 river reaches spanning an urban-rural land-use gradient in Ohio, USA. Model-selection results indicated that fine-scale land cover (e.g., riparian zone width, shrub cover) in the riparian zone was positively associated with reach-wide body burdens of Se and Hg in both riparian F. subsericea and tetragnathid spiders (i.e., total magnitude of Hg and Se concentrations in ant and spider populations, respectively, for each reach). River distance downstream of Columbus, Ohio - where study reaches were impounded and flow through a large urban center - was also implicated as an important factor. Although stable-isotope analysis suggested that emergent aquatic insects were likely vectors of Se and Hg to tetragnathid spiders (but not to F. subsericea), emergent insect contaminant flux did not emerge as a significant predictor for either reach-wide body burdens of spider Hg or Se. Improved understanding of the pathways and influences that control aquatic-to-terrestrial contaminant transport will be critical for effective risk management and remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Shifts in nitrogen acquisition strategies enable enhanced terrestrial carbon storage under elevated CO2 in a global model

    Science.gov (United States)

    Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.

    2017-12-01

    Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.

  16. Carbon storage and late Holocene chronostratigraphy of a Mississippi River deltaic marsh, St. Bernard Parish, Louisiana

    Science.gov (United States)

    Markewich, H. W.

    1998-01-01

    Today, the causes, results, and time scale(s) of climate change, past and potential, are the focus of much research, news coverage, and pundit speculation. Many of the US government scientific agencies have some funds earmarked for research into past and (or) future climate change (National Science and Technology Council, 1997). The Mississippi Basin Carbon Project (MBCP) is part of the U.S. Geological Survey (USGS) effort in global change research . The project is motivated by the need to increase our understanding of the role of terrestrial carbon in the global carbon cycle, particularly in the temperate latitudes of North America. The global land area between 30 O and 60 O N is thought to be a large sink for atmospheric CO2 (IPCC, 1996). The identity of this sink is unknown, but is in part the soil and sediment that makes up the upper several meters of the Earth's surface. The MBCP focuses on the Mississippi River basin, the third largest river system in the world (fig. 1), that drains an area of 3.3 x 10 6 km 2 (1.27 x 10 6 mi 2 ). The Mississippi River basin includes more than 40 percent of the land surface, and is the home of more than one-third of the population, of the conterminous United States. Because climate, vegetation, and land use vary greatly within the Mississippi River basin, the primary terrestrial sinks for carbon need to be identified and quantified for representative parts of the basin. The primary goal of the MBCP is to quantify the interactive effects of land-use, erosion, sedimentation, and soil development on carbon storage and nutrient cycles within the Mississippi River basin. The project includes spatial analysis of a wide variety of geographic data, estimation of whole-basin and sub-basin carbon and sediment budgets, development and implementation of terrestrial carbon-cycle models, and site-specific field studies of relevant processes. Areas can be studied and compared, and estimates can be made for whole-basin carbon storage and flux.

  17. Studying Antarctic Ordinary Chondrite (OC) and Miller Range (MIL) Nakhlite Meteorites to Assess Carbonate Formation on Earth and Mars

    Science.gov (United States)

    Evans, Michael Ellis

    Carbonates are found in meteorites collected from Antarctica. The stable isotope composition of these carbonates records their formation environment on either Earth or Mars. The first research objective of this dissertation is to characterize the delta18O and delta 13C values of terrestrial carbonates formed on Ordinary Chondrites (OCs) collected in regions near known martian meteorites. The second objective is to characterize the delta18O and delta13C values of martian carbonates from Nakhlites collected from the Miller Range (MIL). The third objective is to assess environmental changes on Mars since the Noachian period. The OCs selected had no pre-terrestrial carbonates so any carbonates detected are presumed terrestrial in origin. The study methodology is stepped extraction of CO2 created from phosphoric acid reaction with meteorite carbonate. Stable isotope results show that two distinct terrestrial carbonate species (Ca-rich and Fe/Mg-rich) formed in Antarctica on OCs from a thin-film of meltwater containing dissolved CO2. Carbon isotope data suggests the terrestrial carbonates formed in equilibrium with atmospheric CO2 delta 13C = -7.5‰ at >15°C. The wide variation in delta 18O suggests the carbonates did not form in equilibrium with meteoric water alone, but possibly formed from an exchange of oxygen isotopes in both water and dissolved CO2. Antarctica provides a model for carbonate formation in a low water/rock ratio, near 0°C environment like modern Mars. Nakhlite parent basalt formed on Mars 1.3 billion years ago and the meteorites were ejected by a single impact approximately 11 million years ago. They traveled thru space before eventually falling to the Earth surface 10,000-40,000 years ago. Nakhlite samples for this research were all collected from the Miller Range (MIL) in Antarctica. The Nakhlite stable isotope results show two carbonate species (Ca-rich and Fe/Mg-rich) with a range of delta18O values that are similar to the terrestrial OC

  18. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    International Nuclear Information System (INIS)

    F Gaslain; J Parmentier; V Valtchev; J Patarin; C Vix Guterl

    2005-01-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter ≤ 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite β (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N 2 and CO 2 adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and compared to those

  19. Competitiveness of terrestrial greenhouse gas offsets. Are they a bridge to the future?

    International Nuclear Information System (INIS)

    McCarl, B.A.; Sands, R.D.

    2007-01-01

    Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions

  20. Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar

    NARCIS (Netherlands)

    Grove, C.A.; Zinke, J.; Scheufen, T.; Maina, J.; Epping, E.; Boer, W.; Randriamanantsoa, B.; Brummer, G.-J.A.

    2012-01-01

    Coral cores provide vital climate reconstructions for site-specific temporal variability in river flow and sediment load. Yet, their ability to record spatial differences across multiple catchments is relatively unknown. Here, we investigate spatial linkages between four coral proxies of terrestrial

  1. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    Science.gov (United States)

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  2. Tracking Organic Carbon Transport From the Stordalen Mire to Glacial Lake Tornetrask, Abisko, Sweden

    Science.gov (United States)

    Beck, M. A.; Hamilton, B. T.; Spry, E.; Johnson, J. E.; Palace, M. W.; McCalley, C. K.; Varner, R. K.; Bothner, W. A.

    2016-12-01

    In subarctic regions, labile organic carbon from thawing permafrost and productivity of terrestrial and aquatic vegetation are sources of carbon to lake sediments. Methane is produced in lake sediments from the decomposition of organic carbon at rates affected by vegetation presence and type as well as sediment temperature. Recent research in the Stordalen Mire in northern Sweden has suggested that labile organic carbon sources in young, shallow lake sediments yield the highest in situ sediment methane concentrations. Ebullition (or bubbling) of this methane is predominantly controlled by seasonal warming. In this project we sampled stream, glacial and post-glacial lake sediments along a drainage transect through the Stordalen Mire into the large glacial Lake Torneträsk. Our results indicate that the highest methane and total organic carbon (TOC) concentrations were observed in lake and stream sediments in the upper 25 centimeters, consistent with previous studies. C/N ratios range from 8 to 32, and suggest that a mix of aquatic and terrestrial vegetation sources dominate the sedimentary record. Although water transport occurs throughout the mire, major depositional centers for sediments and organic carbon occur within the lakes and prohibit young, labile TOC from entering the larger glacial Lake Torneträsk. The lack of an observed sediment fan at the outlet of the Mire to the lake is consistent with this observation. Our results suggest that carbon produced in the mire stays in the mire, allowing methane production to be greater in the mire bound lakes and streams than in the larger adjacent glacial lake.

  3. European-wide simulations of croplands using an improved terrestrial biosphere model: 2. Interannual yields and anomalous CO2 fluxes in 2003

    Science.gov (United States)

    Smith, P. C.; Ciais, P.; Peylin, P.; de Noblet-Ducoudré, N.; Viovy, N.; Meurdesoif, Y.; Bondeau, A.

    2010-12-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work uses the ORCHIDEE-STICS terrestrial biosphere model including a more realistic representation of croplands, described in part 1 (Smith et al., 2010). Crop yield is derived from annual Net Primary Productivity and compared with wheat and grain maize harvest data for five European countries. Over a 34 year period, the best correlation coefficient obtained between observed and simulated yield time series is for irrigated maize in Italy (R = 0.73). In the data as well as in the model, 1976 and 2003 appear as climate anomalies causing a ≈40% yield drop in the most affected regions. Simulated interannual yield anomalies and the spatial pattern of the yield drop in 2003 are found to be more realistic than the results from ORCHIDEE with no representation of croplands. The simulated 2003 anomalous carbon source from European ecosystems to the atmosphere due to the 2003 summer heat wave is in good agreement with atmospheric inversions (0.20GtC, from May to October). The anomaly is twice too large in the ORCHIDEE alone simulation, owing to the unrealistically high exposure of herbaceous plants to the extreme summer conditions. The mechanisms linking abnormally high summer temperatures, the crop productivity drop, and significant carbon source from European ecosystems in 2003 are discussed. Overall, this study highlights the importance of accounting for the specific phenologies of crops sown both in winter and in spring and for irrigation applied to summer crops in regional/global models of the terrestrial carbon cycle.

  4. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    Energy Technology Data Exchange (ETDEWEB)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  5. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  6. Gaseous elemental mercury emissions and CO{sub 2} respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Obrist, Daniel, E-mail: daniel.obrist@dri.edu [Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, Nevada, 89512 (United States); Fain, Xavier; Berger, Carsen [Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, Nevada, 89512 (United States)

    2010-03-01

    Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO{sub 2}) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r{sup 2} = 0.49) between Hg and CO{sub 2} emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks. We induced changes in CO{sub 2} respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N{sub 2}/O{sub 2} (80% and 20%, respectively) to pure N{sub 2}. Unexpectedly, Hg emissions almost quadrupled after O{sub 2} deprivation while oxidative mineralization (i.e., CO{sub 2} emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg{sup 2+} by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg{sup 2+} reduction, is related to O{sub 2} availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O{sub 2} levels and possibly low soil redox

  7. Estimating ecosystem carbon change in the Conterminous United States based on 40 years of land-use change and disturbance

    Science.gov (United States)

    Sleeter, B. M.; Rayfield, B.; Liu, J.; Sherba, J.; Daniel, C.; Frid, L.; Wilson, T. S.; Zhu, Z.

    2016-12-01

    Since 1970, the combined changes in land use, land management, climate, and natural disturbances have dramatically altered land cover in the United States, resulting in the potential for significant changes in terrestrial carbon storage and flux between ecosystems and the atmosphere. Processes including urbanization, agricultural expansion and contraction, and forest management have had impacts - both positive and negative - on the amount of natural vegetation, the age structure of forests, and the amount of impervious cover. Anthropogenic change coupled with climate-driven changes in natural disturbance regimes, particularly the frequency and severity of wildfire, together determine the spatio-temporal patterns of land change and contribute to changing ecosystem carbon dynamics. Quantifying this effect and its associated uncertainties is fundamental to developing a rigorous and transparent carbon monitoring and assessment programs. However, large-scale systematic inventories of historical land change and their associated uncertainties are sparse. To address this need, we present a newly developed modeling framework, the Land Use and Carbon Scenario Simulator (LUCAS). The LUCAS model integrates readily available high quality, empirical land-change data into a stochastic space-time simulation model representing land change feedbacks on carbon cycling in terrestrial ecosystems. We applied the LUCAS model to estimate regional scale changes in carbon storage, atmospheric flux, and net biome production in 84 ecological regions of the conterminous United States for the period 1970-2015. The model was parameterized using a newly available set of high resolution (30 m) land-change data, compiled from Landsat remote sensing imagery, including estimates of uncertainty. Carbon flux parameters for each ecological region were derived from the IBIS dynamic global vegetation model with full carbon cycle accounting. This paper presents our initial findings describing regional and

  8. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    International Nuclear Information System (INIS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-01-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  9. Carbon Burial at the Land Ocean Interface: Climate vs Human Drivers

    Science.gov (United States)

    Bianchi, T. S.; Smeaton, C.; Cui, X.; Howe, J. A.; Austin, W.

    2017-12-01

    Fjords are connectors between the terrestrial and marine systems and are known as globally significant hotspots for the burial (Smith et al., 2014) and long-term storage (Smeaton et al., 2016) of carbon (C). The glacial geomorphology of fjords and their catchment results in the terrestrial and marine environments being strongly coupled more so than other estuary types. The clearest example of this is the terrestrial C subsidy to these sediment, it is estimated that globally 55-62% of C held in fjord sediments are terrestrially derived (Cui et al., 2016). Yet it is largely unknown how climatic and human forcing drives the transfer of terrestrial C to marine sediments. Here we, examine the role of late Holocene climate and human activity on the transfer of C from the terrestrial to marine environment along the North Atlantic Margin. Loch Sunart a Scottish fjord sits at the land ocean interface of the North Atlantic. The catchment of the fjord has been shown to be sensitive to local and regional climatic change (Gillibrand et al., 2005) and the fjord sediments have been able to record these changes in Climate (Cage and Austin, 2010). Using a long (22 m) sedimentary record we discuss our understanding of mid to late Holocene regional climate and its impact on terrestrial C transfer to the coastal ocean. Alongside this we examine the role of humans on the landscape and their impact on the transfer of terrestrial C on the coastal ocean. The results from this study will further our understanding of the long-term drivers of terrestrial C transfer to the coastal ocean. Potentially this research provides insights on future C transfers under a changing future climate allowing the importance of fjords as a climate regulation service to be reassessed.

  10. The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution

    Directory of Open Access Journals (Sweden)

    K. Trusilova

    2008-11-01

    Full Text Available Although urban areas occupy a relatively small fraction of land, they produce major disturbances of the carbon cycle through land use change, climate modification, and atmospheric pollution. In this study we quantify effects of urban areas on the carbon cycle in Europe. Among urbanization-driven environmental changes, which influence carbon sequestration in the terrestrial biosphere, we account for: (1 proportion of land covered by impervious materials, (2 local urban meteorological conditions, (3 urban high CO2 concentrations, and (4 elevated atmospheric nitrogen deposition. We use the terrestrial ecosystem model BIOME-BGC to estimate fluxes of carbon exchange between the biosphere and the atmosphere in response to these urban factors.

    We analysed four urbanization-driven changes individually, setting up our model in such a way that only one of the four was active at a time. From these model simulations we found that fertilization effects from the elevated CO2 and the atmospheric nitrogen deposition made the strongest positive contributions to the carbon uptake (0.023 Pg C year−1 and 0.039 Pg C year−1, respectively, whereas, the impervious urban land and local urban meteorological conditions resulted in a reduction of carbon uptake (−0.005 Pg C year−1 and −0.007 Pg C year−1, respectively. The synergetic effect of the four urbanization-induced changes was an increase of the carbon sequestration in Europe of 0.058 Pg C year−1.

  11. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    Science.gov (United States)

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  12. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    Science.gov (United States)

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  13. Collaborative Research: Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry [Marine Biological Lab., Woods Hole, MA (United States)

    2017-12-12

    Our overall goal in this research was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal was motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we tested the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming. In collaboration with our Purdue and MIT colleagues, we have attempted to quantify global climate warming effects on land-atmosphere interactions, land-river network interactions, permafrost degradation, vegetation shifts, and land use influence water, carbon, and nitrogen fluxes to and from terrestrial ecosystems in the pan-arctic along with their

  14. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    Science.gov (United States)

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John

  15. Dissolved Carbon Fluxes During the 2017 Mississippi River Flood

    Science.gov (United States)

    Reiman, J. H.; Xu, Y. J.

    2017-12-01

    The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.

  16. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    Lyn, M. Elizabeth; He Jibao; Koplitz, Brent

    2005-01-01

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C 60 , 22% C 70 ). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  17. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    Science.gov (United States)

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  18. Development and validation of a testing protocol for carbon sequestration using a controlled environment.

    Science.gov (United States)

    2012-05-01

    Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...

  19. High biolability of ancient permafrost carbon upon thaw

    NARCIS (Netherlands)

    Vonk, J.E.; Mann, P.J.; Davydov, S.; Davydova, A.; Spencer, R.G.M.; Schade, J.; Sobczak, W.V.; Zimov, S.; Bulygina, E.; Eglinton, T.I.; Holmes, R.M.

    2013-01-01

    Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial organic carbon (OC) pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and

  20. Global Ocean Carbon and Biogeochemistry Coordination

    Science.gov (United States)

    Telszewski, Maciej; Tanhua, Toste; Palacz, Artur

    2016-04-01

    The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the

  1. Terrestrial N Cycling And C Storage: Some Insights From A Process-based Land Surface Model

    Science.gov (United States)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2008-12-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation, and soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. O-CN is run for three free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge, Aspen), and reproduces observed magnitudes of changes in net primary productivity, foliage area and foliage N content. Several alternative hypotheses concerning the control of N on vegetation growth and decomposition, including effects of diluting foliage N concentrations, down-regulation of photosynthesis and respiration, acclimation of C allocation patterns and biological N fixation, are tested with respect to their effect on long- term C sequestration estimate. Differences in initial N availability, small transient changes in N inputs and the assumed plasticity of C:N stoichiometry can lead to substantial differences in the simulated long-term changes in productivity and C sequestration. We discuss the capacity of observations obtained at FACE sites to evaluate these alternative hypotheses, and investigate implications of a transient versus instantaneous increase in atmospheric carbon dioxide for the magnitude of the simulated limiting effect of N on C cycling. Finally, we re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric CO2, N deposition and climatic changes over the 21st century.

  2. Carbon dynamics in wetland restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, K.; Ciborowski, J.; Gardner-Costa, J.; Slama, C. [Windsor Univ., ON (Canada); Daly, C.; Hornung, J. [Suncor Energy, Calgary, AB (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Frederick, K.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Liber, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Smits, J. [Calgary Univ., AB (Canada); Wytrykush, C. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This study focused on the reclamation of wetland ecosystems impacted by oil sands development in the boreal wetlands. Although these wetlands play an important role in global carbon balance, their ecosystem function is compromised by direct and regional anthropogenic disturbance and climate change. Large oil sand mining areas that require reclamation generate substantial quantities of extraction process-affected materials. In order to determine if the reclaimed wetlands were restored to equivalent ecosystem function, this study evaluated carbon flows and food web structure in oil sands-affected wetlands. The purpose was to determine whether a prescribed reclamation strategy or topsoil amendment accelerates reclaimed wetland development to produce self-sustaining peatlands. In addition to determining carbon fluxes, this study measured compartment standing stocks for residual hydrocarbons, organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, detritus, zoobenthos and aquatic-terrestrial exports. Most biotic 28 compartments differed between oil-sands-affected and reference wetlands, but the difference lessened with age. Macroinvertebrate trophic diversity was lower in oil sands-affected wetlands. Peat amendment seemed to speed convergence for some compartments but not others. These results were discussed in the context of restoration of ecosystem function and optimization of reclamation strategies.

  3. Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry

    Science.gov (United States)

    Roland, M.; Serrano-Ortiz, P.; Kowalski, A. S.; Goddéris, Y.; Sánchez-Cañete, E. P.; Ciais, P.; Domingo, F.; Cuezva, S.; Sanchez-Moral, S.; Longdoz, B.; Yakir, D.; Van Grieken, R.; Schott, J.; Cardell, C.; Janssens, I. A.

    2013-07-01

    CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during the daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange pattern of a semi-arid ecosystem. We found that by rapidly depleting soil CO2 during the daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.

  4. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees - A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems

    Science.gov (United States)

    Rachel A. Loehman; Elizabeth Reinhardt; Karin L. Riley

    2014-01-01

    Wildfires are an important component of the terrestrial carbon cycle and one of the main pathways for movement of carbon from the land surface to the atmosphere. Fires have received much attention in recent years as potential catalysts for shifting landscapes from carbon sinks to carbon sources. Unless structural or functional ecosystem shifts occur, net carbon balance...

  5. Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback

    Science.gov (United States)

    Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.

    2015-10-01

    Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.

  6. Generation of terrestrial radiation database in the Larsemann Hills, Antarctica

    International Nuclear Information System (INIS)

    Pal, Rupali; Dhabekar, Bhushan; Jose, Jis Romal; Chinnaesakki, S.; Bakshi, A.K.; Datta, D.; Pradeepkumar, K.S.

    2018-01-01

    Natural background radiation in the environment includes terrestrial radiation, cosmic radiation from space and air activity due to radon/thoron. It is known that cosmic contribution increases near the poles. The terrestrial component is largely due to 232 Th and 238 U series and 40 K. BARC under the cosmic ray dosimetry project with National Centre for Antarctic and Ocean Research (NCAOR) has taken up measurement of natural background radiation at Larsemann Hills, Antarctica. The project includes generation of baseline data on terrestrial radioactivity in water, soil and rock and estimation of cosmic ray doses. Extensive radiation surveys were carried out by the BARC team in the 35 th and 36 th expedition in and around Larsemann hills in East Antarctica where the third Indian station 'Bharati' is situated. This paper presents mapping of terrestrial radiation levels in Antarctica which will help in strengthening the background radiation database and develop a Radiation Informatics System (RIS)

  7. Carbonate Mineral Formation on Mars: Clues from Stable Isotope Variation Seen in Cryogenic Laboratory Studies of Carbonate Salts

    Science.gov (United States)

    Socki, Richard; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K.

    2013-01-01

    The geologic history of water on the planet Mars is intimately connected to the formation of carbonate minerals through atmospheric CO2 and its control of the climate history of Mars. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms readily when a rise in pH occurs as a result of carbon dioxide degassing quickly from freezing Ca-bicarbonate-rich water solutions. This is a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lakebeds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. We report here the results of a series of laboratory experiments that were conducted to simulate potential cryogenic carbonate formation on the planet Mars. These results indicate that carbonates grown under martian conditions (controlled atmospheric pressure and temperature) show enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values with average delta13C(DIC-CARB) values of 20.5%0 which exceed the expected equilibrium fractionation factor of [10(sup 3) ln alpha = 13%0] at 0 degC. Oxygen isotopes showed a smaller enrichment with delta18O(H2O-CARB) values of 35.5%0, slightly exceeding the equilibrium fractionation factor of [10(sup 3) ln alpha = 34%0 ] at 0degC. Large kinetic carbon isotope effects during carbonate precipitation could substantially affect the carbon isotope evolution of CO2 on Mars allowing for more efficient removal of 13C from the Noachian atmosphere enriched by atmospheric loss. This mechanism would be consistent with the observations of large carbon isotope variations in martian materials despite the

  8. Automatic Matching of Large Scale Images and Terrestrial LIDAR Based on App Synergy of Mobile Phone

    Science.gov (United States)

    Xia, G.; Hu, C.

    2018-04-01

    The digitalization of Cultural Heritage based on ground laser scanning technology has been widely applied. High-precision scanning and high-resolution photography of cultural relics are the main methods of data acquisition. The reconstruction with the complete point cloud and high-resolution image requires the matching of image and point cloud, the acquisition of the homonym feature points, the data registration, etc. However, the one-to-one correspondence between image and corresponding point cloud depends on inefficient manual search. The effective classify and management of a large number of image and the matching of large image and corresponding point cloud will be the focus of the research. In this paper, we propose automatic matching of large scale images and terrestrial LiDAR based on APP synergy of mobile phone. Firstly, we develop an APP based on Android, take pictures and record related information of classification. Secondly, all the images are automatically grouped with the recorded information. Thirdly, the matching algorithm is used to match the global and local image. According to the one-to-one correspondence between the global image and the point cloud reflection intensity image, the automatic matching of the image and its corresponding laser radar point cloud is realized. Finally, the mapping relationship between global image, local image and intensity image is established according to homonym feature point. So we can establish the data structure of the global image, the local image in the global image, the local image corresponding point cloud, and carry on the visualization management and query of image.

  9. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Fitzgerald, J.D.; Chadderton, L.; Williams, J.S.; Campbell, S.J.

    2002-01-01

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  10. Multiyear high-resolution carbon exchange over European croplands from the integration of observed crop yields into CarbonTracker Europe

    Science.gov (United States)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; de Wit, Allard; Peters, Wouter

    2016-04-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily-to-seasonal time scales. Not only do crops occupy one fourth of the European land area, but their photosynthesis and respiration are large and affect CO2 mole fractions at nearly every atmospheric CO2 monitoring site. A better description of this crop carbon exchange in our CarbonTracker Europe data assimilation system - which currently treats crops as unmanaged grasslands - could strongly improve its ability to constrain terrestrial carbon fluxes. Available long-term observations of crop yield, harvest, and cultivated area allow such improvements, when combined with the new crop-modeling framework we present. This framework can model the carbon fluxes of 10 major European crops at high spatial and temporal resolution, on a 12x12 km grid and 3-hourly time-step. The development of this framework is threefold: firstly, we optimize crop growth using the process-based WOrld FOod STudies (WOFOST) agricultural crop growth model. Simulated yields are downscaled to match regional crop yield observations from the Statistical Office of the European Union (EUROSTAT) by estimating a yearly regional parameter for each crop species: the yield gap factor. This step allows us to better represent crop phenology, to reproduce the observed multiannual European crop yields, and to construct realistic time series of the crop carbon fluxes (gross primary production, GPP, and autotrophic respiration, Raut) on a fine spatial and temporal resolution. Secondly, we combine these GPP and Raut fluxes with a simple soil respiration model to obtain the total ecosystem respiration (TER) and net ecosystem exchange (NEE). And thirdly, we represent the horizontal transport of carbon that follows crop harvest and its back-respiration into the atmosphere during harvest consumption. We distribute this carbon using observations of the density of human and ruminant populations from EUROSTAT. We assess the model

  11. Controlled growth of well-aligned carbon nanotubes with large diameters

    Science.gov (United States)

    Wang, Xianbao; Liu, Yunqi; Zhu, Daoben

    2001-06-01

    Well-aligned carbon nanotubes (CNTs) with large diameters (25-200 nm) were synthesized by pyrolysis of iron(II) phthalocyanine. The outer diameter up to 218.5 nm and the length of the well-aligned CNTs can be systematically controlled by varying the growth time. A tube-in-tube nano-structure with large and small diameters of 176 and 16.7 nm, respectively, was found. The grain sizes of the iron catalyst play an important role in controlling the CNT diameters. These results are of great importance to design new aligned CNT-based electron field emitters in the potential application of panel displays.

  12. Debris disks as signposts of terrestrial planet formation

    Science.gov (United States)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by

  13. Tracing the sources of organic carbon in freshwater systems

    Science.gov (United States)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    Quantifying the lateral fluxes of carbon from land to inland waters is critical for the understanding of the global carbon cycle and climate change mitigation. However, the crucial role of rivers in receiving, transporting and processing the equivalent of terrestrial net primary production in their watersheds has only recently been recognised. In addition, the fluxes of carbon from land to ocean, and the impact of anthropogenic perturbation, are poorly quantified. Therefore, a mechanistic understanding of the processes involved in the loss and preservation of C along the terrestrial-aquatic continuum is required to predict the present and future contribution of aquatic C fluxes to the global C budget. This pilot study examines the effect of land use on the fate of organic matter within two headwater catchments in Cornwall (UK) in order to develop a methodological framework for investigating C-cycling across the entire terrestrial-aquatic continuum. To this end, we aim to characterise the spatial heterogeneity of soil erosion driven lateral fluxes of SOC to identify areas of erosion and deposition using 137Cs radio-isotope and trace the terrestrial versus aquatic origin of C along the river reaches and in lake sediments at the catchment outlet. The 3D spatial distribution of SOC has been investigated by sampling three depth increments (i.e. 0-15cm, 15-30cm and 30-50cm) along 14 hillslope transects within two sub-catchments of ˜km2 each. In total, 80 terrestrial sites were monitored and analysed for total C and N, and bulk stable 13C/15N isotope values, while 137Cs was used to obtain a detailed understanding of the spatial - temporal variability in erosion driven lateral fluxes of SOC within the catchments. The relative contribution of terrestrial and aquatic C was examined along the river reaches as well as in lake sediments at the catchment outlet by considering n-alkane signatures. By linking the C accumulation rates in lake sediments over decadal timescales from

  14. High biolability of ancient permafrost carbon upon thaw

    NARCIS (Netherlands)

    Vonk, Jorien E.; Mann, Paul J.; Davydov, Sergey; Davydova, Anna; Spencer, Robert G. M.; Schade, John; Sobczak, William V.; Zimov, Nikita; Zimov, Sergei; Bulygina, Ekaterina; Eglinton, Timothy I.; Holmes, Robert M.

    2013-01-01

    Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial organic carbon (OC) pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and fate of

  15. Ecosystem carbon storage does not vary with increasing mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Paul Selmants; Creighton Litton; Christian P. Giardina; Greg P. Asner

    2014-01-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem...

  16. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations.

    Science.gov (United States)

    Wu, Xiaofen; Holmfeldt, Karin; Hubalek, Valerie; Lundin, Daniel; Åström, Mats; Bertilsson, Stefan; Dopson, Mark

    2016-05-01

    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from 86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.

  17. Temporal Patterns in Dissolved Organic Carbon Composition in an Urban Lake

    Science.gov (United States)

    Hartnett, H. E.; Palta, M. M.; Grimm, N. B.; Ruhi, A.; van Shaijik, M.

    2017-12-01

    Tempe Town Lake (TTL) is a hydrologically-regulated reservoir in Tempe, Arizona. The lake has high primary production and receives dissolved organic carbon (DOC) from rainfall, storm flow, and upstream river discharge. We applied an ARIMA time-series model to a three-year period for which we have high-frequency chemistry, meteorology, and streamflow data and analyzed external (rainfall, stream flow) and internal (dissolved O2) drivers of DOC content and composition. DOC composition was represented by fluorescence-based indices (fluorescence index, humification index, freshness) related to DOC source (microbially- vs. terrestrially-derived) and reactivity DOC. Patterns in DOC concentration and composition suggest carbon cycling in the lake responds to both meteorological events and to anthropogenic activity. The fluorescence-derived DOC composition is consistent with seasonally-distinct inputs of algal- and terrestrially-derived carbon. For example, Tempe Town Lake is supersaturated in O2 over 70% of the time, suggesting the system is autotrophic and primary productivity (i.e., O2 saturation state) was the strongest driver of DOC concentration. In contrast, external drivers (rainfall pattern, streamflow) were the strongest determinants of DOC composition. Biological processes (e.g., algal growth) generate carbon in the lake during spring and summer, and high Fluorescence Index and Freshness values at this time are indicative of algal-derived material; these parameters generally decrease with rain or flow suggesting algal-derived carbon is diluted by external water inputs. During dry periods, carbon builds up on the land surface and subsequent rainfall events deliver terrestrial carbon to the lake. Further evidence that rain and streamflow deliver land-derived material are increases in the Humification Index (an indicator of terrestrial material) following rain/flow events. Our results indicate that Tempe Town Lake generates autochthonous carbon and has the capacity

  18. Contaminant exposure in terrestrial vertebrates

    International Nuclear Information System (INIS)

    Smith, Philip N.; Cobb, George P.; Godard-Codding, Celine; Hoff, Dale; McMurry, Scott T.; Rainwater, Thomas R.; Reynolds, Kevin D.

    2007-01-01

    Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. - Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates

  19. The Limits of Acclimation of land plants in a Terrestrial Ecosystems Model

    Science.gov (United States)

    Kothavala, Zavareh

    2014-05-01

    In this study, we examine the role of the terrestrial carbon cycle and the ability of different plant types to acclimate to a changing climate at the centennial scale using a global ecosystems model with updated biogeochemical processes related to moisture, carbon, and nitrogen. Elevated level of atmospheric carbon dioxide (CO2) increases CO2 fertilization, resulting in more CO2 uptake by vegetation, whereas the concomitant warming increases autotrophic and heterotrophic respiration, releasing CO2 to the atmosphere. Additionally, warming will enhance photosynthesis if current temperatures are below the optimal temperature for plant growth, while it will reduce photosynthesis if current temperatures are above the optimal temperature for plant growth. We present a series of ensemble simulations to evaluate the ability of plants to acclimate to changing conditions over the last century and how this affects the terrestrial carbon sink. A set of experiments related to (a) the varying relationship between CO2 fertilization and the half saturation constant, (b) the factors related to gross primary productivity and maintenance respiration, and (c) the variables related to heterotrophic respiration, were conducted with thirteen plant functional types. The experiments were performed using the Terrestrial Ecosystem Model (TEM) with a present-day vegetation distribution without the effects of natural or human disturbance, and a closed Nitrogen cycle, at a half-degree resolution over the globe. The experiment design consisted of eight scenarios that are consistent with past and future ecosystem conditions, presented in other scientific studies. The significance of model trends related to runoff, soil moisture, soil carbon, Net Primary Productivity (NPP), crop yield, and Net Ecosystem Productivity (NEP) for different seasons, as well as surface temperature, precipitation, vapor pressure, and photosynthetically active radiation are analyzed for various ecosystems at the global

  20. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods

    International Nuclear Information System (INIS)

    Kleinschmidt, R.; Watson, D.

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km 2 ), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h −1 (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. - Highlights: • A baseline terrestrial air kerma map of Queensland, Australia was developed using geochemical data from a major drainage catchment ultra-low density sampling program