Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems
International Nuclear Information System (INIS)
Scott, D.S.; Ward, R.C.
1981-01-01
Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices
Sparse-matrix factorizations for fast symmetric Fourier transforms
International Nuclear Information System (INIS)
Sequel, J.
1987-01-01
This work proposes new fast algorithms computing the discrete Fourier transform of certain families of symmetric sequences. Sequences commonly found in problems of structure determination by x-ray crystallography and in numerical solutions of boundary-value problems in partial differential equations are dealt with. In the algorithms presented, the redundancies in the input and output data, due to the presence of symmetries in the input data sequence, were eliminated. Using ring-theoretical methods a matrix representation is obtained for the remaining calculations; which factors as the product of a complex block-diagonal matrix times as integral matrix. A basic two-step algorithm scheme arises from this factorization with a first step consisting of pre-additions and a second step containing the calculations involved in computing with the blocks in the block-diagonal factor. These blocks are structured as block-Hankel matrices, and two sparse-matrix factoring formulas are developed in order to diminish their arithmetic complexity
Numerical solution of large sparse linear systems
International Nuclear Information System (INIS)
Meurant, Gerard; Golub, Gene.
1982-02-01
This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr
SLAP, Large Sparse Linear System Solution Package
International Nuclear Information System (INIS)
Greenbaum, A.
1987-01-01
1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration
Sparse symmetric preconditioners for dense linear systems in electromagnetism
Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu
2004-01-01
We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent
Modern algorithms for large sparse eigenvalue problems
International Nuclear Information System (INIS)
Meyer, A.
1987-01-01
The volume is written for mathematicians interested in (numerical) linear algebra and in the solution of large sparse eigenvalue problems, as well as for specialists in engineering, who use the considered algorithms in the investigation of eigenoscillations of structures, in reactor physics, etc. Some variants of the algorithms based on the idea of a gradient-type direction of movement are presented and their convergence properties are discussed. From this, a general strategy for the direct use of preconditionings for the eigenvalue problem is derived. In this new approach the necessity of the solution of large linear systems is entirely avoided. Hence, these methods represent a new alternative to some other modern eigenvalue algorithms, as they show a slightly slower convergence on the one hand but essentially lower numerical and data processing problems on the other hand. A brief description and comparison of some well-known methods (i.e. simultaneous iteration, Lanczos algorithm) completes this volume. (author)
Cavity approach to the first eigenvalue problem in a family of symmetric random sparse matrices
International Nuclear Information System (INIS)
Kabashima, Yoshiyuki; Takahashi, Hisanao; Watanabe, Osamu
2010-01-01
A methodology to analyze the properties of the first (largest) eigenvalue and its eigenvector is developed for large symmetric random sparse matrices utilizing the cavity method of statistical mechanics. Under a tree approximation, which is plausible for infinitely large systems, in conjunction with the introduction of a Lagrange multiplier for constraining the length of the eigenvector, the eigenvalue problem is reduced to a bunch of optimization problems of a quadratic function of a single variable, and the coefficients of the first and the second order terms of the functions act as cavity fields that are handled in cavity analysis. We show that the first eigenvalue is determined in such a way that the distribution of the cavity fields has a finite value for the second order moment with respect to the cavity fields of the first order coefficient. The validity and utility of the developed methodology are examined by applying it to two analytically solvable and one simple but non-trivial examples in conjunction with numerical justification.
Directory of Open Access Journals (Sweden)
Jen-Yuan Chen
2014-01-01
Full Text Available Continuing from the works of Li et al. (2014, Li (2007, and Kincaid et al. (2000, we present more generalizations and modifications of iterative methods for solving large sparse symmetric and nonsymmetric indefinite systems of linear equations. We discuss a variety of iterative methods such as GMRES, MGMRES, MINRES, LQ-MINRES, QR MINRES, MMINRES, MGRES, and others.
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
Energy Technology Data Exchange (ETDEWEB)
Vary, James P; Maris, Pieter [Department of Physics, Iowa State University, Ames, IA, 50011 (United States); Ng, Esmond; Yang, Chao [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sosonkina, Masha, E-mail: jvary@iastate.ed [Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames, IA, 50011 (United States)
2009-07-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10{sup 10} and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
International Nuclear Information System (INIS)
Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Symmetric large momentum transfer for atom interferometry with BECs
Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration
2017-04-01
We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).
Energy Technology Data Exchange (ETDEWEB)
Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)
1996-12-31
In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.
Iterative solution of large sparse systems of equations
Hackbusch, Wolfgang
2016-01-01
In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.
Sparse Machine Learning Methods for Understanding Large Text Corpora
National Aeronautics and Space Administration — Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional data with high degree of interpretability, at low computational...
Iterative algorithms for large sparse linear systems on parallel computers
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
FACES WITH LARGE DIAMETER ON THE SYMMETRICAL TRAVELING SALESMAN POLYTOPE
SIERKSMA, G; TIJSSEN, GA
This paper deals with the symmetric traveling salesman polytope and contains three main theorems. The first one gives a new characterization of (non)adjacency. Based on this characterization a new upper bound for the diameter of the symmetric traveling salesman polytope (conjectured to be 2 by M.
Sparse direct solver for large finite element problems based on the minimum degree algorithm
Czech Academy of Sciences Publication Activity Database
Pařík, Petr; Plešek, Jiří
2017-01-01
Roč. 113, November (2017), s. 2-6 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GA15-20666S; GA MŠk(CZ) EF15_003/0000493 Institutional support: RVO:61388998 Keywords : sparse direct solution * finite element method * large sparse Linear systems Subject RIV: JR - Other Machinery OBOR OECD: Mechanical engineering Impact factor: 3.000, year: 2016 https://www.sciencedirect.com/science/article/pii/S0965997817302582
Sampling of finite elements for sparse recovery in large scale 3D electrical impedance tomography
International Nuclear Information System (INIS)
Javaherian, Ashkan; Moeller, Knut; Soleimani, Manuchehr
2015-01-01
This study proposes a method to improve performance of sparse recovery inverse solvers in 3D electrical impedance tomography (3D EIT), especially when the volume under study contains small-sized inclusions, e.g. 3D imaging of breast tumours. Initially, a quadratic regularized inverse solver is applied in a fast manner with a stopping threshold much greater than the optimum. Based on assuming a fixed level of sparsity for the conductivity field, finite elements are then sampled via applying a compressive sensing (CS) algorithm to the rough blurred estimation previously made by the quadratic solver. Finally, a sparse inverse solver is applied solely to the sampled finite elements, with the solution to the CS as its initial guess. The results show the great potential of the proposed CS-based sparse recovery in improving accuracy of sparse solution to the large-size 3D EIT. (paper)
Primal Interior-Point Method for Large Sparse Minimax Optimization
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2009-01-01
Roč. 45, č. 5 (2009), s. 841-864 ISSN 0023-5954 R&D Projects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : unconstrained optimization * large-scale optimization * minimax optimization * nonsmooth optimization * interior-point methods * modified Newton methods * variable metric methods * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.445, year: 2009 http://dml.cz/handle/10338.dmlcz/140034
Sparse kernel orthonormalized PLS for feature extraction in large datasets
DEFF Research Database (Denmark)
Arenas-García, Jerónimo; Petersen, Kaare Brandt; Hansen, Lars Kai
2006-01-01
In this paper we are presenting a novel multivariate analysis method for large scale problems. Our scheme is based on a novel kernel orthonormalized partial least squares (PLS) variant for feature extraction, imposing sparsity constrains in the solution to improve scalability. The algorithm...... is tested on a benchmark of UCI data sets, and on the analysis of integrated short-time music features for genre prediction. The upshot is that the method has strong expressive power even with rather few features, is clearly outperforming the ordinary kernel PLS, and therefore is an appealing method...
Solving sparse linear least squares problems on some supercomputers by using large dense blocks
DEFF Research Database (Denmark)
Hansen, Per Christian; Ostromsky, T; Sameh, A
1997-01-01
technique is preferable to sparse matrix technique when the matrices are not large, because the high computational speed compensates fully the disadvantages of using more arithmetic operations and more storage. For very large matrices the computations must be organized as a sequence of tasks in each......Efficient subroutines for dense matrix computations have recently been developed and are available on many high-speed computers. On some computers the speed of many dense matrix operations is near to the peak-performance. For sparse matrices storage and operations can be saved by operating only...... and storing only nonzero elements. However, the price is a great degradation of the speed of computations on supercomputers (due to the use of indirect addresses, to the need to insert new nonzeros in the sparse storage scheme, to the lack of data locality, etc.). On many high-speed computers a dense matrix...
International Nuclear Information System (INIS)
Gene Golub; Kwok Ko
2009-01-01
The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.
Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction
Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng
2017-01-01
Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.
Large-region acoustic source mapping using a movable array and sparse covariance fitting.
Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L
2017-01-01
Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].
SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering
Hadwiger, Markus
2017-08-28
Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.
SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering
Hadwiger, Markus; Al-Awami, Ali K.; Beyer, Johanna; Agus, Marco; Pfister, Hanspeter
2017-01-01
Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.
The Roles of Sparse Direct Methods in Large-scale Simulations
International Nuclear Information System (INIS)
Li, Xiaoye S.; Gao, Weiguo; Husbands, Parry J.R.; Yang, Chao; Ng, Esmond G.
2005-01-01
Sparse systems of linear equations and eigen-equations arise at the heart of many large-scale, vital simulations in DOE. Examples include the Accelerator Science and Technology SciDAC (Omega3P code, electromagnetic problem), the Center for Extended Magnetohydrodynamic Modeling SciDAC(NIMROD and M3D-C1 codes, fusion plasma simulation). The Terascale Optimal PDE Simulations (TOPS)is providing high-performance sparse direct solvers, which have had significant impacts on these applications. Over the past several years, we have been working closely with the other SciDAC teams to solve their large, sparse matrix problems arising from discretization of the partial differential equations. Most of these systems are very ill-conditioned, resulting in extremely poor convergence deployed our direct methods techniques in these applications, which achieved significant scientific results as well as performance gains. These successes were made possible through the SciDAC model of computer scientists and application scientists working together to take full advantage of terascale computing systems and new algorithms research
The Roles of Sparse Direct Methods in Large-scale Simulations
Energy Technology Data Exchange (ETDEWEB)
Li, Xiaoye S.; Gao, Weiguo; Husbands, Parry J.R.; Yang, Chao; Ng, Esmond G.
2005-06-27
Sparse systems of linear equations and eigen-equations arise at the heart of many large-scale, vital simulations in DOE. Examples include the Accelerator Science and Technology SciDAC (Omega3P code, electromagnetic problem), the Center for Extended Magnetohydrodynamic Modeling SciDAC(NIMROD and M3D-C1 codes, fusion plasma simulation). The Terascale Optimal PDE Simulations (TOPS)is providing high-performance sparse direct solvers, which have had significant impacts on these applications. Over the past several years, we have been working closely with the other SciDAC teams to solve their large, sparse matrix problems arising from discretization of the partial differential equations. Most of these systems are very ill-conditioned, resulting in extremely poor convergence deployed our direct methods techniques in these applications, which achieved significant scientific results as well as performance gains. These successes were made possible through the SciDAC model of computer scientists and application scientists working together to take full advantage of terascale computing systems and new algorithms research.
Non-parametric co-clustering of large scale sparse bipartite networks on the GPU
DEFF Research Database (Denmark)
Hansen, Toke Jansen; Mørup, Morten; Hansen, Lars Kai
2011-01-01
of row and column clusters from a hypothesis space of an infinite number of clusters. To reach large scale applications of co-clustering we exploit that parameter inference for co-clustering is well suited for parallel computing. We develop a generic GPU framework for efficient inference on large scale...... sparse bipartite networks and achieve a speedup of two orders of magnitude compared to estimation based on conventional CPUs. In terms of scalability we find for networks with more than 100 million links that reliable inference can be achieved in less than an hour on a single GPU. To efficiently manage...
Universality of sparse d>2 conformal field theory at large N
Energy Technology Data Exchange (ETDEWEB)
Belin, Alexandre; Boer, Jan de; Kruthoff, Jorrit [Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,University of Amsterdam, Science Park 904, Amsterdam, 1098 XH The (Netherlands); Michel, Ben; Shaghoulian, Edgar; Shyani, Milind [Department of Physics, University of California,Santa Barbara, CA, 93106 (United States)
2017-03-13
We derive necessary and sufficient conditions for large N conformal field theories to have a universal free energy and an extended range of validity of the higher-dimensional Cardy formula. These constraints are much tighter than in two dimensions and must be satisfied by any conformal field theory dual to Einstein gravity. We construct and analyze symmetric product orbifold theories on T{sup d} and show that they only realize the necessary phase structure and extended range of validity if the seed theory is assumed to have a universal vacuum energy.
Tensor-GMRES method for large sparse systems of nonlinear equations
Feng, Dan; Pulliam, Thomas H.
1994-01-01
This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Vlček, Jan
1998-01-01
Roč. 5, č. 3 (1998), s. 219-247 ISSN 1070-5325 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear programming * sparse problems * equality constraints * truncated Newton method * augmented Lagrangian function * indefinite systems * indefinite preconditioners * conjugate gradient method * residual smoothing Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 1998
Using a grid platform for solving large sparse linear systems over GF(2)
Kleinjung , Thorsten; Nussbaum , Lucas; Thomé , Emmanuel
2010-01-01
International audience; In Fall 2009, the final step of the factorization of rsa768 was carried out on several clusters of the Grid'5000 platform, leading to a new record in integer factorization. This step involves solving a huge sparse linear system defined over the binary field GF(2). This article aims at describing the algorithm used, the difficulties encountered, and the methodology which led to success. In particular, we illustrate how our use of the block Wiedemann algorithm led to a m...
SparseM: A Sparse Matrix Package for R *
Directory of Open Access Journals (Sweden)
Roger Koenker
2003-02-01
Full Text Available SparseM provides some basic R functionality for linear algebra with sparse matrices. Use of the package is illustrated by a family of linear model fitting functions that implement least squares methods for problems with sparse design matrices. Significant performance improvements in memory utilization and computational speed are possible for applications involving large sparse matrices.
Characterization of the large area plane-symmetric low-pressure DC glow discharge
Avtaeva, S.; Gorokhovsky, V.; Myers, S.; Robertson, S.; Shunko, E.; Zembower, Z.
2016-10-01
Electron density and temperature as well as nitrogen dissociation degree in the low-pressure (10-50 mTorr) large area plane-symmetric DC glow discharge in Ar-N2 mixtures are studied by probes and spectral methods. Electron density measured by a hairpin probe is in good agreement with that derived from the intensity ratio of the N2 2nd positive system bands IC, 1 - 3/IC, 0 - 2 and from the intensity ratio of argon ions and atom lines IArII/IArI, while Langmuir probe data provides slightly higher values of electron density. Electron density in the low-pressure DC glow discharge varies with the discharge conditions in the limits of 108-1010 cm- 3. The concept of electron temperature can be used in low-pressure glow discharges with reservations. The intensity ratio of (0-0) vibrational bands of N2 1st negative and 2nd positive systems I391.4/I337.1 exhibits the electron temperature of 1.5-2.5 eV when argon fraction in the mixture is higher than nitrogen fraction and this ratio quickly increases with nitrogen fraction up to 10 eV in pure nitrogen. The electron temperature calculated from Langmuir probe I-V characteristics assuming a Maxwellian EEDF, gives Te 0.3-0.4 eV. In-depth analysis of the EEDF using the second derivative of Langmuir probe I-V characteristics shows that in a low-pressure glow discharge the EEDF is non-Maxwellian. The EEDF has two populations of electrons: the main background non-Maxwellian population of ;cold; electrons with the mean electron energy of 0.3-0.4 eV and the small Maxwellian population of ;hot; electrons with the mean electron energy of 1.0-2.5 eV. Estimations show that with electron temperature lower than 1 eV the rate of the direct electron impact ionization of N2 is low and the main mechanism of N2 ionization becomes most likely Penning and associative ionization. In this case, assumptions of the intensity ratio IN2+, 391/IN2, 337 method are violated. In the glow discharge, N2 dissociation degree reaches about 7% with the argon
Sparse distributed representation of odors in a large-scale olfactory bulb circuit.
Directory of Open Access Journals (Sweden)
Yuguo Yu
Full Text Available In the olfactory bulb, lateral inhibition mediated by granule cells has been suggested to modulate the timing of mitral cell firing, thereby shaping the representation of input odorants. Current experimental techniques, however, do not enable a clear study of how the mitral-granule cell network sculpts odor inputs to represent odor information spatially and temporally. To address this critical step in the neural basis of odor recognition, we built a biophysical network model of mitral and granule cells, corresponding to 1/100th of the real system in the rat, and used direct experimental imaging data of glomeruli activated by various odors. The model allows the systematic investigation and generation of testable hypotheses of the functional mechanisms underlying odor representation in the olfactory bulb circuit. Specifically, we demonstrate that lateral inhibition emerges within the olfactory bulb network through recurrent dendrodendritic synapses when constrained by a range of balanced excitatory and inhibitory conductances. We find that the spatio-temporal dynamics of lateral inhibition plays a critical role in building the glomerular-related cell clusters observed in experiments, through the modulation of synaptic weights during odor training. Lateral inhibition also mediates the development of sparse and synchronized spiking patterns of mitral cells related to odor inputs within the network, with the frequency of these synchronized spiking patterns also modulated by the sniff cycle.
GPU-Accelerated Sparse Matrix Solvers for Large-Scale Simulations, Phase I
National Aeronautics and Space Administration — Many large-scale numerical simulations can be broken down into common mathematical routines. While the applications may differ, the need to perform functions such as...
Breaking symmetry in the structure determination of (large) symmetric protein dimers
Energy Technology Data Exchange (ETDEWEB)
Gaponenko, Vadim; Altieri, Amanda S.; Li, Jess; Byrd, R. Andrew [National Cancer Institute, Structural Biophysics Laboratory (United States)], E-mail: rabyrd@ncifcrf.gov
2002-10-15
We demonstrate a novel methodology to disrupt the symmetry in the NMR spectra of homodimers. A paramagnetic probe is introduced sub-stoichiometrically to create an asymmetric system with the paramagnetic probe residing on only one monomer within the dimer. This creates sufficient magnetic anisotropy for resolution of symmetry-related overlapped resonances and, consequently, detection of pseudocontact shifts and residual dipolar couplings specific to each monomeric component. These pseudocontact shifts can be readily incorporated into existing structure refinement calculations and enable determination of monomer orientation within the dimeric protein. This methodology can be widely used for solution structure determination of symmetric dimers.
Large scale tracking of stem cells using sparse coding and coupled graphs
DEFF Research Database (Denmark)
Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter
Stem cell tracking is an inherently large scale problem. The challenge is to identify and track hundreds or thousands of cells over a time period of several weeks. This requires robust methods that can leverage the knowledge of specialists on the field. The tracking pipeline presented here consists...
Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi
2017-10-10
We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.
How Symmetric Are Real-World Graphs? A Large-Scale Study
Directory of Open Access Journals (Sweden)
Fabian Ball
2018-01-01
Full Text Available The analysis of symmetry is a main principle in natural sciences, especially physics. For network sciences, for example, in social sciences, computer science and data science, only a few small-scale studies of the symmetry of complex real-world graphs exist. Graph symmetry is a topic rooted in mathematics and is not yet well-received and applied in practice. This article underlines the importance of analyzing symmetry by showing the existence of symmetry in real-world graphs. An analysis of over 1500 graph datasets from the meta-repository networkrepository.com is carried out and a normalized version of the “network redundancy” measure is presented. It quantifies graph symmetry in terms of the number of orbits of the symmetry group from zero (no symmetries to one (completely symmetric, and improves the recognition of asymmetric graphs. Over 70% of the analyzed graphs contain symmetries (i.e., graph automorphisms, independent of size and modularity. Therefore, we conclude that real-world graphs are likely to contain symmetries. This contribution is the first larger-scale study of symmetry in graphs and it shows the necessity of handling symmetry in data analysis: The existence of symmetries in graphs is the cause of two problems in graph clustering we are aware of, namely, the existence of multiple equivalent solutions with the same value of the clustering criterion and, secondly, the inability of all standard partition-comparison measures of cluster analysis to identify automorphic partitions as equivalent.
International Nuclear Information System (INIS)
Yang, C L; Wei, H Y; Soleimani, M; Adler, A
2013-01-01
Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current–voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results. (paper)
Yang, C L; Wei, H Y; Adler, A; Soleimani, M
2013-06-01
Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results.
Luo, Xin; Zhou, MengChu; Li, Shuai; You, Zhuhong; Xia, Yunni; Zhu, Qingsheng
2016-03-01
Nonnegative matrix factorization (NMF)-based models possess fine representativeness of a target matrix, which is critically important in collaborative filtering (CF)-based recommender systems. However, current NMF-based CF recommenders suffer from the problem of high computational and storage complexity, as well as slow convergence rate, which prevents them from industrial usage in context of big data. To address these issues, this paper proposes an alternating direction method (ADM)-based nonnegative latent factor (ANLF) model. The main idea is to implement the ADM-based optimization with regard to each single feature, to obtain high convergence rate as well as low complexity. Both computational and storage costs of ANLF are linear with the size of given data in the target matrix, which ensures high efficiency when dealing with extremely sparse matrices usually seen in CF problems. As demonstrated by the experiments on large, real data sets, ANLF also ensures fast convergence and high prediction accuracy, as well as the maintenance of nonnegativity constraints. Moreover, it is simple and easy to implement for real applications of learning systems.
Huang, Tsung-Ming; Lin, Wen-Wei; Tian, Heng; Chen, Guan-Hua
2018-03-01
Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener-Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000 × 4000 at the density functional tight binding level, corresponding to a 8 × 8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.
Spectra of sparse random matrices
International Nuclear Information System (INIS)
Kuehn, Reimer
2008-01-01
We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices
Energy Technology Data Exchange (ETDEWEB)
Wathen, A. [Oxford Univ. (United Kingdom); Golub, G. [Stanford Univ., CA (United States)
1996-12-31
A simple fixed point linearisation of the Navier-Stokes equations leads to the Oseen problem which after appropriate discretisation yields large sparse linear systems with coefficient matrices of the form (A B{sup T} B -C). Here A is non-symmetric but its symmetric part is positive definite, and C is symmetric and positive semi-definite. Such systems arise in other situations. In this talk we will describe and present some analysis for an iteration based on an indefinite and symmetric preconditioner of the form (D B{sup T} B -C).
Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii
International Nuclear Information System (INIS)
Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Peterson, D.L.; Mosher, D.; Roderick, N.F.
1998-01-01
A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh - Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ∼40 TW and energy of ∼325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ∼8 TW and energy of ∼70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh - Taylor instability observed in small-wire-number imploding loads. copyright 1998 American Institute of Physics
Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii
Energy Technology Data Exchange (ETDEWEB)
Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0010 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, DC 20375 (United States); Roderick, N.F. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)
1998-10-01
A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. {bold 77}, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh{endash}Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of {approximately}40 TW and energy of {approximately}325 kJ show little change outside of a {plus_minus}15{percent} shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak {ital K}-shell (lines plus continuum) power of {approximately}8 TW and energy of {approximately}70 kJ show little change with radius. The minimal change in {ital K}-shell yield is in agreement with simple {ital K}-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh{endash}Taylor instability observed in small-wire-number imploding loads. {copyright} {ital 1998 American Institute of Physics.}
Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii
Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.
1998-10-01
A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.
A Projected Conjugate Gradient Method for Sparse Minimax Problems
DEFF Research Database (Denmark)
Madsen, Kaj; Jonasson, Kristjan
1993-01-01
A new method for nonlinear minimax problems is presented. The method is of the trust region type and based on sequential linear programming. It is a first order method that only uses first derivatives and does not approximate Hessians. The new method is well suited for large sparse problems...... as it only requires that software for sparse linear programming and a sparse symmetric positive definite equation solver are available. On each iteration a special linear/quadratic model of the function is minimized, but contrary to the usual practice in trust region methods the quadratic model is only...... with the method are presented. In fact, we find that the number of iterations required is comparable to that of state-of-the-art quasi-Newton codes....
Massively parallel sparse matrix function calculations with NTPoly
Dawson, William; Nakajima, Takahito
2018-04-01
We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.
On large N fixed points of a U(N) symmetric (phisup(*)xphi)3sub(D=3) model coupled to fermions
International Nuclear Information System (INIS)
Nissimov, E.R.; Pacheva, S.J.
1984-01-01
The three-dimensional U(N) symmetric eta(phisup(*) x phi) 3 model coupled to N component fermions is considered within the 1/N expansion. In contrast to the purely bosonic case, here we find in the large N limit only a (nonperturbative) ultraviolet fixed point at eta=etasup(*) approx.= 179, whereas infrared fixed points are absent. (orig.)
International Nuclear Information System (INIS)
Pilipchuk, L. A.; Pilipchuk, A. S.
2015-01-01
In this paper we propose the theory of decomposition, methods, technologies, applications and implementation in Wol-fram Mathematica for the constructing the solutions of the sparse linear systems. One of the applications is the Sensor Location Problem for the symmetric graph in the case when split ratios of some arc flows can be zeros. The objective of that application is to minimize the number of sensors that are assigned to the nodes. We obtain a sparse system of linear algebraic equations and research its matrix rank. Sparse systems of these types appear in generalized network flow programming problems in the form of restrictions and can be characterized as systems with a large sparse sub-matrix representing the embedded network structure
Energy Technology Data Exchange (ETDEWEB)
Pilipchuk, L. A., E-mail: pilipchik@bsu.by [Belarussian State University, 220030 Minsk, 4, Nezavisimosti avenue, Republic of Belarus (Belarus); Pilipchuk, A. S., E-mail: an.pilipchuk@gmail.com [The Natural Resources and Environmental Protestion Ministry of the Republic of Belarus, 220004 Minsk, 10 Kollektornaya Street, Republic of Belarus (Belarus)
2015-11-30
In this paper we propose the theory of decomposition, methods, technologies, applications and implementation in Wol-fram Mathematica for the constructing the solutions of the sparse linear systems. One of the applications is the Sensor Location Problem for the symmetric graph in the case when split ratios of some arc flows can be zeros. The objective of that application is to minimize the number of sensors that are assigned to the nodes. We obtain a sparse system of linear algebraic equations and research its matrix rank. Sparse systems of these types appear in generalized network flow programming problems in the form of restrictions and can be characterized as systems with a large sparse sub-matrix representing the embedded network structure.
Sparse distributed memory overview
Raugh, Mike
1990-01-01
The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.
Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi
2016-01-01
Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283
International Nuclear Information System (INIS)
Ramond, P.
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures
A soil map of a large watershed in China: applying digital soil mapping in a data sparse region
Barthold, F.; Blank, B.; Wiesmeier, M.; Breuer, L.; Frede, H.-G.
2009-04-01
Prediction of soil classes in data sparse regions is a major research challenge. With the advent of machine learning the possibilities to spatially predict soil classes have increased tremendously and given birth to new possibilities in soil mapping. Digital soil mapping is a research field that has been established during the last decades and has been accepted widely. We now need to develop tools to reduce the uncertainty in soil predictions. This is especially challenging in data sparse regions. One approach to do this is to implement soil taxonomic distance as a classification error criterion in classification and regression trees (CART) as suggested by Minasny et al. (Geoderma 142 (2007) 285-293). This approach assumes that the classification error should be larger between soils that are more dissimilar, i.e. differ in a larger number of soil properties, and smaller between more similar soils. Our study area is the Xilin River Basin, which is located in central Inner Mongolia in China. It is characterized by semi arid climate conditions and is representative for the natural occurring steppe ecosystem. The study area comprises 3600 km2. We applied a random, stratified sampling design after McKenzie and Ryan (Geoderma 89 (1999) 67-94) with landuse and topography as stratifying variables. We defined 10 sampling classes, from each class 14 replicates were randomly drawn and sampled. The dataset was split into 100 soil profiles for training and 40 soil profiles for validation. We then applied classification and regression trees (CART) to quantify the relationships between soil classes and environmental covariates. The classification tree explained 75.5% of the variance with land use and geology as most important predictor variables. Among the 8 soil classes that we predicted, the Kastanozems cover most of the area. They are predominantly found in steppe areas. However, even some of the soils at sand dune sites, which were thought to show only little soil formation
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
Fast sparsely synchronized brain rhythms in a scale-free neural network.
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D
Fast sparsely synchronized brain rhythms in a scale-free neural network
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D . For small D , full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp> ( : ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D
Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.;
2016-01-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
Threshold partitioning of sparse matrices and applications to Markov chains
Energy Technology Data Exchange (ETDEWEB)
Choi, Hwajeong; Szyld, D.B. [Temple Univ., Philadelphia, PA (United States)
1996-12-31
It is well known that the order of the variables and equations of a large, sparse linear system influences the performance of classical iterative methods. In particular if, after a symmetric permutation, the blocks in the diagonal have more nonzeros, classical block methods have a faster asymptotic rate of convergence. In this paper, different ordering and partitioning algorithms for sparse matrices are presented. They are modifications of PABLO. In the new algorithms, in addition to the location of the nonzeros, the values of the entries are taken into account. The matrix resulting after the symmetric permutation has dense blocks along the diagonal, and small entries in the off-diagonal blocks. Parameters can be easily adjusted to obtain, for example, denser blocks, or blocks with elements of larger magnitude. In particular, when the matrices represent Markov chains, the permuted matrices are well suited for block iterative methods that find the corresponding probability distribution. Applications to three types of methods are explored: (1) Classical block methods, such as Block Gauss Seidel. (2) Preconditioned GMRES, where a block diagonal preconditioner is used. (3) Iterative aggregation method (also called aggregation/disaggregation) where the partition obtained from the ordering algorithm with certain parameters is used as an aggregation scheme. In all three cases, experiments are presented which illustrate the performance of the methods with the new orderings. The complexity of the new algorithms is linear in the number of nonzeros and the order of the matrix, and thus adding little computational effort to the overall solution.
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
Directory of Open Access Journals (Sweden)
Giuseppe Mazzarella
2012-01-01
Full Text Available In this paper we propose a new holographic procedure for the diagnostic of large reflector antennas, based on the direct use of the Fresnel-field pattern. The relation leading from the Fresnel field to the current on the reflector surface is formulated in the least-squares sense as a discrete data inverse problem and then regularized by using a singular value decomposition approach. A detailed theoretical analysis of the problem and full assessment of the presented technique are provided. Simulations are carried out by using the radiative near-field pattern generated with a commercial software. Results show good accuracy and robustness to noise for the retrieval of the panel-to-panel misalignment of a reflector antenna.
Partitioning sparse rectangular matrices for parallel processing
Energy Technology Data Exchange (ETDEWEB)
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices
Freund, Roland
1989-01-01
We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Galiatsatos, P. G.; Tennyson, J.
2012-11-01
The most time consuming step within the framework of the UK R-matrix molecular codes is that of the diagonalization of the inner region Hamiltonian matrix (IRHM). Here we present the method that we follow to speed up this step. We use shared memory machines (SMM), distributed memory machines (DMM), the OpenMP directive based parallel language, the MPI function based parallel language, the sparse matrix diagonalizers ARPACK and PARPACK, a variation for real symmetric matrices of the official coordinate sparse matrix format and finally a parallel sparse matrix-vector product (PSMV). The efficient application of the previous techniques rely on two important facts: the sparsity of the matrix is large enough (more than 98%) and in order to get back converged results we need a small only part of the matrix spectrum.
Denning, Peter J.
1989-01-01
Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
Karama, Sherif; Armony, Jorge; Beauregard, Mario
2011-01-01
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.
Directory of Open Access Journals (Sweden)
Sherif Karama
Full Text Available While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.
Mesotherapy for benign symmetric lipomatosis.
Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku
2010-04-01
Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.
Zhang, Tianzhu
2015-06-01
Sparse representation has been applied to visual tracking by finding the best target candidate with minimal reconstruction error by use of target templates. However, most sparse representation based trackers only consider holistic or local representations and do not make full use of the intrinsic structure among and inside target candidates, thereby making the representation less effective when similar objects appear or under occlusion. In this paper, we propose a novel Structural Sparse Tracking (SST) algorithm, which not only exploits the intrinsic relationship among target candidates and their local patches to learn their sparse representations jointly, but also preserves the spatial layout structure among the local patches inside each target candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs favorably against several state-of-the-art methods.
Olafsson, Gestur; Helgason, Sigurdur
1996-01-01
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Diagrams for symmetric product orbifolds
International Nuclear Information System (INIS)
Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.
2009-01-01
We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.
Enhancing Scalability of Sparse Direct Methods
International Nuclear Information System (INIS)
Li, Xiaoye S.; Demmel, James; Grigori, Laura; Gu, Ming; Xia, Jianlin; Jardin, Steve; Sovinec, Carl; Lee, Lie-Quan
2007-01-01
TOPS is providing high-performance, scalable sparse direct solvers, which have had significant impacts on the SciDAC applications, including fusion simulation (CEMM), accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE and elsewhere. Our recent developments have been focusing on new techniques to overcome scalability bottleneck of direct methods, in both time and memory. These include parallelizing symbolic analysis phase and developing linear-complexity sparse factorization methods. The new techniques will make sparse direct methods more widely usable in large 3D simulations on highly-parallel petascale computers
Sparse adaptive filters for echo cancellation
Paleologu, Constantin
2011-01-01
Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellati
Massive Asynchronous Parallelization of Sparse Matrix Factorizations
Energy Technology Data Exchange (ETDEWEB)
Chow, Edmond [Georgia Inst. of Technology, Atlanta, GA (United States)
2018-01-08
Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.
Consensus Convolutional Sparse Coding
Choudhury, Biswarup
2017-12-01
Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.
Consensus Convolutional Sparse Coding
Choudhury, Biswarup
2017-04-11
Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaickingand 4D light field view synthesis.
Consensus Convolutional Sparse Coding
Choudhury, Biswarup; Swanson, Robin; Heide, Felix; Wetzstein, Gordon; Heidrich, Wolfgang
2017-01-01
Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
Zhang, Tianzhu; Yang, Ming-Hsuan; Ahuja, Narendra; Ghanem, Bernard; Yan, Shuicheng; Xu, Changsheng; Liu, Si
2015-01-01
candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs
Jiang, Haiyong
2016-04-11
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng
2016-01-01
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng
2016-01-01
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong
2016-02-26
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Efficient convolutional sparse coding
Wohlberg, Brendt
2017-06-20
Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Supervised Convolutional Sparse Coding
Affara, Lama Ahmed
2018-04-08
Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.
Diffusion Indexes with Sparse Loadings
DEFF Research Database (Denmark)
Kristensen, Johannes Tang
The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...... to the problem by using the LASSO as a variable selection method to choose between the possible variables and thus obtain sparse loadings from which factors or diffusion indexes can be formed. This allows us to build a more parsimonious factor model which is better suited for forecasting compared...... it to be an important alternative to PC....
Programming for Sparse Minimax Optimization
DEFF Research Database (Denmark)
Jonasson, K.; Madsen, Kaj
1994-01-01
We present an algorithm for nonlinear minimax optimization which is well suited for large and sparse problems. The method is based on trust regions and sequential linear programming. On each iteration, a linear minimax problem is solved for a basic step. If necessary, this is followed...... by the determination of a minimum norm corrective step based on a first-order Taylor approximation. No Hessian information needs to be stored. Global convergence is proved. This new method has been extensively tested and compared with other methods, including two well known codes for nonlinear programming...
Dynamic Representations of Sparse Graphs
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf
1999-01-01
We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....
Golden, Ryan; Cho, Ilwoo
2015-01-01
In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...
Supervised Transfer Sparse Coding
Al-Shedivat, Maruan
2014-07-27
A combination of the sparse coding and transfer learn- ing techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from differ- ent underlying distributions, i.e., belong to different do- mains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small num- ber of them. In this paper, we explore such possibil- ity and show how a small number of labeled data in the target domain can significantly leverage classifica- tion accuracy of the state-of-the-art transfer sparse cod- ing methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.
A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems
Czech Academy of Sciences Publication Activity Database
Benzi, M.; Tůma, Miroslav
1998-01-01
Roč. 19, č. 3 (1998), s. 968-994 ISSN 1064-8275 R&D Projects: GA ČR GA201/93/0067; GA AV ČR IAA230401 Keywords : large sparse systems * interative methods * preconditioning * approximate inverse * sparse linear systems * sparse matrices * incomplete factorizations * conjugate gradient -type methods Subject RIV: BA - General Mathematics Impact factor: 1.378, year: 1998
Symmetric cryptographic protocols
Ramkumar, Mahalingam
2014-01-01
This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees. • Provides detailed coverage of symmetric key protocols • Describes various applications of symmetric building blocks • Includes strategies for constructing compact and efficient digests of dynamic databases
Sparse inpainting and isotropy
Energy Technology Data Exchange (ETDEWEB)
Feeney, Stephen M.; McEwen, Jason D.; Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Marinucci, Domenico; Cammarota, Valentina [Department of Mathematics, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Roma, 00133 (Italy); Wandelt, Benjamin D., E-mail: s.feeney@imperial.ac.uk, E-mail: marinucc@axp.mat.uniroma2.it, E-mail: jason.mcewen@ucl.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: wandelt@iap.fr, E-mail: cammarot@axp.mat.uniroma2.it [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, 552 University Road, Santa Barbara, CA, 93106 (United States)
2014-01-01
Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.
Factored Facade Acquisition using Symmetric Line Arrangements
Ceylan, Duygu
2012-05-01
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.
Sparse matrix test collections
Energy Technology Data Exchange (ETDEWEB)
Duff, I.
1996-12-31
This workshop will discuss plans for coordinating and developing sets of test matrices for the comparison and testing of sparse linear algebra software. We will talk of plans for the next release (Release 2) of the Harwell-Boeing Collection and recent work on improving the accessibility of this Collection and others through the World Wide Web. There will only be three talks of about 15 to 20 minutes followed by a discussion from the floor.
Conformally symmetric traversable wormholes
International Nuclear Information System (INIS)
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-01-01
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced
Centrioles in Symmetric Spaces
Quast, Peter
2011-01-01
We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.
A symmetrical rail accelerator
International Nuclear Information System (INIS)
Igenbergs, E.
1991-01-01
This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator
International Nuclear Information System (INIS)
Matsuki, Takayuki
1976-01-01
Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)
Compressed sensing & sparse filtering
Carmi, Avishy Y; Godsill, Simon J
2013-01-01
This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.Â Apart from compressed sensing this book contains other related app
Wang, Jim Jing-Yan; Gao, Xin
2014-01-01
Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets.
Wang, Jim Jing-Yan
2014-07-06
Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets.
Neural Network for Sparse Reconstruction
Directory of Open Access Journals (Sweden)
Qingfa Li
2014-01-01
Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.
Diffusion Indexes With Sparse Loadings
DEFF Research Database (Denmark)
Kristensen, Johannes Tang
2017-01-01
The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...... to the problem by using the least absolute shrinkage and selection operator (LASSO) as a variable selection method to choose between the possible variables and thus obtain sparse loadings from which factors or diffusion indexes can be formed. This allows us to build a more parsimonious factor model...... in forecasting accuracy and thus find it to be an important alternative to PC. Supplementary materials for this article are available online....
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....
Evaluation of generalized degrees of freedom for sparse estimation by replica method
Sakata, A.
2016-12-01
We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.
Multiparty symmetric sum types
DEFF Research Database (Denmark)
Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei
2010-01-01
This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...
Counting with symmetric functions
Mendes, Anthony
2015-01-01
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....
Occlusion detection via structured sparse learning for robust object tracking
Zhang, Tianzhu; Ghanem, Bernard; Xu, Changsheng; Ahuja, Narendra
2014-01-01
occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Extensive experimental results show that our
Object tracking by occlusion detection via structured sparse learning
Zhang, Tianzhu; Ghanem, Bernard; Xu, Changsheng; Ahuja, Narendra
2013-01-01
occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our tracker
Parallel Sparse Matrix - Vector Product
DEFF Research Database (Denmark)
Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd
This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...
Sparse decompositions in 'incoherent' dictionaries
DEFF Research Database (Denmark)
Gribonval, R.; Nielsen, Morten
2003-01-01
a unique sparse representation in such a dictionary. In particular, it is proved that the result of Donoho and Huo, concerning the replacement of a combinatorial optimization problem with a linear programming problem when searching for sparse representations, has an analog for dictionaries that may...
Robust Face Recognition Via Gabor Feature and Sparse Representation
Directory of Open Access Journals (Sweden)
Hao Yu-Juan
2016-01-01
Full Text Available Sparse representation based on compressed sensing theory has been widely used in the field of face recognition, and has achieved good recognition results. but the face feature extraction based on sparse representation is too simple, and the sparse coefficient is not sparse. In this paper, we improve the classification algorithm based on the fusion of sparse representation and Gabor feature, and then improved algorithm for Gabor feature which overcomes the problem of large dimension of the vector dimension, reduces the computation and storage cost, and enhances the robustness of the algorithm to the changes of the environment.The classification efficiency of sparse representation is determined by the collaborative representation,we simplify the sparse constraint based on L1 norm to the least square constraint, which makes the sparse coefficients both positive and reduce the complexity of the algorithm. Experimental results show that the proposed method is robust to illumination, facial expression and pose variations of face recognition, and the recognition rate of the algorithm is improved.
Distributed Searchable Symmetric Encryption
Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem
Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes
Turbulent flows over sparse canopies
Sharma, Akshath; García-Mayoral, Ricardo
2018-04-01
Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.
Sparse Regression by Projection and Sparse Discriminant Analysis
Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu
2015-01-01
predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths
In Defense of Sparse Tracking: Circulant Sparse Tracker
Zhang, Tianzhu; Bibi, Adel Aamer; Ghanem, Bernard
2016-01-01
Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.
In Defense of Sparse Tracking: Circulant Sparse Tracker
Zhang, Tianzhu
2016-12-13
Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Symmetric vectors and algebraic classification
International Nuclear Information System (INIS)
Leibowitz, E.
1980-01-01
The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed
Representations of locally symmetric spaces
International Nuclear Information System (INIS)
Rahman, M.S.
1995-09-01
Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs
Language Recognition via Sparse Coding
2016-09-08
explanation is that sparse coding can achieve a near-optimal approximation of much complicated nonlinear relationship through local and piecewise linear...training examples, where x(i) ∈ RN is the ith example in the batch. Optionally, X can be normalized and whitened before sparse coding for better result...normalized input vectors are then ZCA- whitened [20]. Em- pirically, we choose ZCA- whitening over PCA- whitening , and there is no dimensionality reduction
In-Storage Embedded Accelerator for Sparse Pattern Processing
Jun, Sang-Woo; Nguyen, Huy T.; Gadepally, Vijay N.; Arvind
2016-01-01
We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable of handling up to 1TB of data, and experiments show that it can outperform C/C++ software solutions on a 16-core system at a fracti...
Process Knowledge Discovery Using Sparse Principal Component Analysis
DEFF Research Database (Denmark)
Gao, Huihui; Gajjar, Shriram; Kulahci, Murat
2016-01-01
As the goals of ensuring process safety and energy efficiency become ever more challenging, engineers increasingly rely on data collected from such processes for informed decision making. During recent decades, extracting and interpreting valuable process information from large historical data sets...... SPCA approach that helps uncover the underlying process knowledge regarding variable relations. This approach systematically determines the optimal sparse loadings for each sparse PC while improving interpretability and minimizing information loss. The salient features of the proposed approach...
Object tracking by occlusion detection via structured sparse learning
Zhang, Tianzhu
2013-06-01
Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object\\'s track. This is the case when significant occlusion occurs. To accommodate for non-sparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our tracker consistently outperforms the state-of-the-art. © 2013 IEEE.
Manifold regularization for sparse unmixing of hyperspectral images.
Liu, Junmin; Zhang, Chunxia; Zhang, Jiangshe; Li, Huirong; Gao, Yuelin
2016-01-01
Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a very large spectral library, which is cast into the framework of sparse regression. However, traditional sparse regression models, such as collaborative sparse regression , ignore the intrinsic geometric structure in the hyperspectral data. In this paper, we propose a novel model, called manifold regularized collaborative sparse regression , by introducing a manifold regularization to the collaborative sparse regression model. The manifold regularization utilizes a graph Laplacian to incorporate the locally geometrical structure of the hyperspectral data. An algorithm based on alternating direction method of multipliers has been developed for the manifold regularized collaborative sparse regression model. Experimental results on both the simulated and real hyperspectral data sets have demonstrated the effectiveness of our proposed model.
The Axially Symmetric One-Monopole
International Nuclear Information System (INIS)
Wong, K.-M.; Teh, Rosy
2009-01-01
We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
DEFF Research Database (Denmark)
Clemmensen, Line Katrine Harder; Hastie, Trevor; Witten, Daniela
2011-01-01
We consider the problem of performing interpretable classification in the high-dimensional setting, in which the number of features is very large and the number of observations is limited. This setting has been studied extensively in the chemometrics literature, and more recently has become commo...
Shearlets and Optimally Sparse Approximations
DEFF Research Database (Denmark)
Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q
2012-01-01
Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....
Sparse Representations of Hyperspectral Images
Swanson, Robin J.
2015-01-01
Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.
Sparse Representations of Hyperspectral Images
Swanson, Robin J.
2015-11-23
Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.
Image understanding using sparse representations
Thiagarajan, Jayaraman J; Turaga, Pavan; Spanias, Andreas
2014-01-01
Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blin
Directory of Open Access Journals (Sweden)
Feuerriegel Stefan
2015-12-01
Full Text Available The Lanczos algorithm is among the most frequently used iterative techniques for computing a few dominant eigenvalues of a large sparse non-symmetric matrix. At the same time, it serves as a building block within biconjugate gradient (BiCG and quasi-minimal residual (QMR methods for solving large sparse non-symmetric systems of linear equations. It is well known that, when implemented on distributed-memory computers with a huge number of processes, the synchronization time spent on computing dot products increasingly limits the parallel scalability. Therefore, we propose synchronization-reducing variants of the Lanczos, as well as BiCG and QMR methods, in an attempt to mitigate these negative performance effects. These so-called s-step algorithms are based on grouping dot products for joint execution and replacing time-consuming matrix operations by efficient vector recurrences. The purpose of this paper is to provide a rigorous derivation of the recurrences for the s-step Lanczos algorithm, introduce s-step BiCG and QMR variants, and compare the parallel performance of these new s-step versions with previous algorithms.
Symmetric extendibility of quantum states
Nowakowski, Marcin L.
2015-01-01
Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...
International Nuclear Information System (INIS)
Burtraw, Dallas; Palmer, Karen; Kahn, Danny
2010-01-01
How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.
Directory of Open Access Journals (Sweden)
Giuseppe Dattoli
1996-05-01
Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.
Consensus Convolutional Sparse Coding
Choudhury, Biswarup; Swanson, Robin; Heide, Felix; Wetzstein, Gordon; Heidrich, Wolfgang
2017-01-01
In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaickingand 4D light field view synthesis.
Abnormal Event Detection Using Local Sparse Representation
DEFF Research Database (Denmark)
Ren, Huamin; Moeslund, Thomas B.
2014-01-01
We propose to detect abnormal events via a sparse subspace clustering algorithm. Unlike most existing approaches, which search for optimized normal bases and detect abnormality based on least square error or reconstruction error from the learned normal patterns, we propose an abnormality measurem...... is found that satisfies: the distance between its local space and the normal space is large. We evaluate our method on two public benchmark datasets: UCSD and Subway Entrance datasets. The comparison to the state-of-the-art methods validate our method's effectiveness....
Functional fixedness in a technologically sparse culture.
German, Tim P; Barrett, H Clark
2005-01-01
Problem solving can be inefficient when the solution requires subjects to generate an atypical function for an object and the object's typical function has been primed. Subjects become "fixed" on the design function of the object, and problem solving suffers relative to control conditions in which the object's function is not demonstrated. In the current study, such functional fixedness was demonstrated in a sample of adolescents (mean age of 16 years) among the Shuar of Ecuadorian Amazonia, whose technologically sparse culture provides limited access to large numbers of artifacts with highly specialized functions. This result suggests that design function may universally be the core property of artifact concepts in human semantic memory.
Parallel preconditioning techniques for sparse CG solvers
Energy Technology Data Exchange (ETDEWEB)
Basermann, A.; Reichel, B.; Schelthoff, C. [Central Institute for Applied Mathematics, Juelich (Germany)
1996-12-31
Conjugate gradient (CG) methods to solve sparse systems of linear equations play an important role in numerical methods for solving discretized partial differential equations. The large size and the condition of many technical or physical applications in this area result in the need for efficient parallelization and preconditioning techniques of the CG method. In particular for very ill-conditioned matrices, sophisticated preconditioner are necessary to obtain both acceptable convergence and accuracy of CG. Here, we investigate variants of polynomial and incomplete Cholesky preconditioners that markedly reduce the iterations of the simply diagonally scaled CG and are shown to be well suited for massively parallel machines.
Occlusion detection via structured sparse learning for robust object tracking
Zhang, Tianzhu
2014-01-01
Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios, these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object’s track. This is the case when significant occlusion occurs. To accommodate for nonsparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Extensive experimental results show that our proposed tracker consistently outperforms the state-of-the-art trackers.
Exhaustive Search for Sparse Variable Selection in Linear Regression
Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato
2018-04-01
We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.
Atmospheric inverse modeling via sparse reconstruction
Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten
2017-10-01
Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
Sparse PCA with Oracle Property.
Gu, Quanquan; Wang, Zhaoran; Liu, Han
In this paper, we study the estimation of the k -dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank- k , and attains a [Formula: see text] statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets.
Sparse Regression by Projection and Sparse Discriminant Analysis
Qi, Xin
2015-04-03
© 2015, © American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high-dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross-validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares, and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared with the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplementary materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.
Relaxations to Sparse Optimization Problems and Applications
Skau, Erik West
Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we
Noniterative MAP reconstruction using sparse matrix representations.
Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J
2009-09-01
We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.
Galaxy redshift surveys with sparse sampling
International Nuclear Information System (INIS)
Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro; Jee, Inh; Jeong, Donghui; Blanc, Guillermo A.; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Schneider, Donald P.; Drory, Niv; Fabricius, Maximilian; Landriau, Martin; Finkelstein, Steven; Jogee, Shardha; Cooper, Erin Mentuch; Tuttle, Sarah; Gebhardt, Karl; Hill, Gary J.
2013-01-01
Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V survey ∼ 10Gpc 3 ) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V survey , we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V survey (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V survey (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Substring-Searchable Symmetric Encryption
Directory of Open Access Journals (Sweden)
Chase Melissa
2015-06-01
Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.
Is the Universe matter-antimatter symmetric
International Nuclear Information System (INIS)
Alfven, H.
1976-09-01
According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation
Looking for symmetric Bell inequalities
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-01-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...
A sparse matrix based full-configuration interaction algorithm
International Nuclear Information System (INIS)
Rolik, Zoltan; Szabados, Agnes; Surjan, Peter R.
2008-01-01
We present an algorithm related to the full-configuration interaction (FCI) method that makes complete use of the sparse nature of the coefficient vector representing the many-electron wave function in a determinantal basis. Main achievements of the presented sparse FCI (SFCI) algorithm are (i) development of an iteration procedure that avoids the storage of FCI size vectors; (ii) development of an efficient algorithm to evaluate the effect of the Hamiltonian when both the initial and the product vectors are sparse. As a result of point (i) large disk operations can be skipped which otherwise may be a bottleneck of the procedure. At point (ii) we progress by adopting the implementation of the linear transformation by Olsen et al. [J. Chem Phys. 89, 2185 (1988)] for the sparse case, getting the algorithm applicable to larger systems and faster at the same time. The error of a SFCI calculation depends only on the dropout thresholds for the sparse vectors, and can be tuned by controlling the amount of system memory passed to the procedure. The algorithm permits to perform FCI calculations on single node workstations for systems previously accessible only by supercomputers
Symmetric configurations highlighted by collective quantum coherence
Energy Technology Data Exchange (ETDEWEB)
Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)
2017-11-15
Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)
Recursive nearest neighbor search in a sparse and multiscale domain for comparing audio signals
DEFF Research Database (Denmark)
Sturm, Bob L.; Daudet, Laurent
2011-01-01
We investigate recursive nearest neighbor search in a sparse domain at the scale of audio signals. Essentially, to approximate the cosine distance between the signals we make pairwise comparisons between the elements of localized sparse models built from large and redundant multiscale dictionaries...
Czech Academy of Sciences Publication Activity Database
Scott, J.; Tůma, Miroslav
2017-01-01
Roč. 24, č. 5 (2017), č. článku e2099. ISSN 1070-5325 Grant - others:GA ČR(CZ) GC17-04150J; GA ČR(CZ) GC17-04150J; EPSRC(GB) EP/I013067/1 Institutional support: RVO:67985807 Keywords : incomplete factorizations * indefinite symmetric systems * iterative solvers * pivoting * preconditioning * sparse linear systems * sparse matrices Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.303, year: 2016
Sparse Matrices in Frame Theory
DEFF Research Database (Denmark)
Lemvig, Jakob; Krahmer, Felix; Kutyniok, Gitta
2014-01-01
Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames...... yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices...
Sparse Linear Identifiable Multivariate Modeling
DEFF Research Database (Denmark)
Henao, Ricardo; Winther, Ole
2011-01-01
and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...
Sparse random matrices: The eigenvalue spectrum revisited
International Nuclear Information System (INIS)
Semerjian, Guilhem; Cugliandolo, Leticia F.
2003-08-01
We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of states expected to hold exactly in the opposite limit of large but finite concentration. The combination of the two methods yields a very simple geometric interpretation of the tails of the spectrum. We test the analytic results with numerical simulations and we suggest an indirect numerical method to explore the tails of the spectrum. (author)
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.
Symmetric scrolled packings of multilayered carbon nanoribbons
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Dose-shaping using targeted sparse optimization
Energy Technology Data Exchange (ETDEWEB)
Sayre, George A.; Ruan, Dan [Department of Radiation Oncology, University of California - Los Angeles School of Medicine, 200 Medical Plaza, Los Angeles, California 90095 (United States)
2013-07-15
Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot
Dose-shaping using targeted sparse optimization
International Nuclear Information System (INIS)
Sayre, George A.; Ruan, Dan
2013-01-01
Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E tot sparse ), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L 1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot sparse improves
Dose-shaping using targeted sparse optimization.
Sayre, George A; Ruan, Dan
2013-07-01
Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method. In designing the energy minimization objective (E tot (sparse)), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot (sparse) improves tradeoff between
A Spectral Algorithm for Envelope Reduction of Sparse Matrices
Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.
1993-01-01
The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.
Bayesian Inference Methods for Sparse Channel Estimation
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand
2013-01-01
This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...
Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.
2018-04-01
The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.
Efficient coordinated recovery of sparse channels in massive MIMO
Masood, Mudassir
2015-01-01
This paper addresses the problem of estimating sparse channels in massive MIMO-OFDM systems. Most wireless channels are sparse in nature with large delay spread. In addition, these channels as observed by multiple antennas in a neighborhood have approximately common support. The sparsity and common support properties are attractive when it comes to the efficient estimation of large number of channels in massive MIMO systems. Moreover, to avoid pilot contamination and to achieve better spectral efficiency, it is important to use a small number of pilots. We present a novel channel estimation approach which utilizes the sparsity and common support properties to estimate sparse channels and requires a small number of pilots. Two algorithms based on this approach have been developed that perform Bayesian estimates of sparse channels even when the prior is non-Gaussian or unknown. Neighboring antennas share among each other their beliefs about the locations of active channel taps to perform estimation. The coordinated approach improves channel estimates and also reduces the required number of pilots. Further improvement is achieved by the data-aided version of the algorithm. Extensive simulation results are provided to demonstrate the performance of the proposed algorithms.
Harmonic analysis on symmetric spaces
Terras, Audrey
This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.
Image fusion using sparse overcomplete feature dictionaries
Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt
2015-10-06
Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.
Sparse Image Reconstruction in Computed Tomography
DEFF Research Database (Denmark)
Jørgensen, Jakob Sauer
In recent years, increased focus on the potentially harmful effects of x-ray computed tomography (CT) scans, such as radiation-induced cancer, has motivated research on new low-dose imaging techniques. Sparse image reconstruction methods, as studied for instance in the field of compressed sensing...... applications. This thesis takes a systematic approach toward establishing quantitative understanding of conditions for sparse reconstruction to work well in CT. A general framework for analyzing sparse reconstruction methods in CT is introduced and two sets of computational tools are proposed: 1...... contributions to a general set of computational characterization tools. Thus, the thesis contributions help advance sparse reconstruction methods toward routine use in...
Deformable segmentation via sparse representation and dictionary learning.
Zhang, Shaoting; Zhan, Yiqiang; Metaxas, Dimitris N
2012-10-01
"Shape" and "appearance", the two pillars of a deformable model, complement each other in object segmentation. In many medical imaging applications, while the low-level appearance information is weak or mis-leading, shape priors play a more important role to guide a correct segmentation, thanks to the strong shape characteristics of biological structures. Recently a novel shape prior modeling method has been proposed based on sparse learning theory. Instead of learning a generative shape model, shape priors are incorporated on-the-fly through the sparse shape composition (SSC). SSC is robust to non-Gaussian errors and still preserves individual shape characteristics even when such characteristics is not statistically significant. Although it seems straightforward to incorporate SSC into a deformable segmentation framework as shape priors, the large-scale sparse optimization of SSC has low runtime efficiency, which cannot satisfy clinical requirements. In this paper, we design two strategies to decrease the computational complexity of SSC, making a robust, accurate and efficient deformable segmentation system. (1) When the shape repository contains a large number of instances, which is often the case in 2D problems, K-SVD is used to learn a more compact but still informative shape dictionary. (2) If the derived shape instance has a large number of vertices, which often appears in 3D problems, an affinity propagation method is used to partition the surface into small sub-regions, on which the sparse shape composition is performed locally. Both strategies dramatically decrease the scale of the sparse optimization problem and hence speed up the algorithm. Our method is applied on a diverse set of biomedical image analysis problems. Compared to the original SSC, these two newly-proposed modules not only significant reduce the computational complexity, but also improve the overall accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.
Looking for symmetric Bell inequalities
International Nuclear Information System (INIS)
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-01-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Symmetric normalisation for intuitionistic logic
DEFF Research Database (Denmark)
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...
Looking for symmetric Bell inequalities
Energy Technology Data Exchange (ETDEWEB)
Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)
2010-09-24
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Symmetric autocompensating quantum key distribution
Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.
2004-08-01
We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.
When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores
Wang, Jim Jing-Yan; Cui, Xuefeng; Yu, Ge; Guo, Lili; Gao, Xin
2017-01-01
Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays
Sparse and stable Markowitz portfolios.
Brodie, Joshua; Daubechies, Ingrid; De Mol, Christine; Giannone, Domenico; Loris, Ignace
2009-07-28
We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naïve evenly weighted portfolio.
SPARSE FARADAY ROTATION MEASURE SYNTHESIS
International Nuclear Information System (INIS)
Andrecut, M.; Stil, J. M.; Taylor, A. R.
2012-01-01
Faraday rotation measure synthesis is a method for analyzing multichannel polarized radio emissions, and it has emerged as an important tool in the study of Galactic and extragalactic magnetic fields. The method requires the recovery of the Faraday dispersion function from measurements restricted to limited wavelength ranges, which is an ill-conditioned deconvolution problem. Here, we discuss a recovery method that assumes a sparse approximation of the Faraday dispersion function in an overcomplete dictionary of functions. We discuss the general case when both thin and thick components are included in the model, and we present the implementation of a greedy deconvolution algorithm. We illustrate the method with several numerical simulations that emphasize the effect of the covered range and sampling resolution in the Faraday depth space, and the effect of noise on the observed data.
Spherically symmetric self-similar universe
Energy Technology Data Exchange (ETDEWEB)
Dyer, C C [Toronto Univ., Ontario (Canada)
1979-10-01
A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.
Soft theorems for shift-symmetric cosmologies
Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca
2018-03-01
We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.
Miniature Laboratory for Detecting Sparse Biomolecules
Lin, Ying; Yu, Nan
2005-01-01
A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.
Symmetric relations of finite negativity
Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H
2006-01-01
We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Symmetric group representations and Z
Adve, Anshul; Yong, Alexander
2017-01-01
We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.
Symmetric Key Authentication Services Revisited
Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.
2004-01-01
Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area
Quantum systems and symmetric spaces
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1978-01-01
Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained
The symmetric longest queue system
van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan
1997-01-01
We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue
Symmetric imaging findings in neuroradiology
International Nuclear Information System (INIS)
Zlatareva, D.
2015-01-01
Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in
A performance study of sparse Cholesky factorization on INTEL iPSC/860
Zubair, M.; Ghose, M.
1992-01-01
The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices. However, there is a lack of such efficient codes on parallel machines in general, and distributed machines in particular. Some of the issues that are critical to the implementation of sparse Cholesky factorization on a distributed memory parallel machine are ordering, partitioning and mapping, load balancing, and ordering of various tasks within a processor. Here, we focus on the effect of various partitioning schemes on the performance of sparse Cholesky factorization on the Intel iPSC/860. Also, a new partitioning heuristic for structured as well as unstructured sparse matrices is proposed, and its performance is compared with other schemes.
Sparse seismic imaging using variable projection
Aravkin, Aleksandr Y.; Tu, Ning; van Leeuwen, Tristan
2013-01-01
We consider an important class of signal processing problems where the signal of interest is known to be sparse, and can be recovered from data given auxiliary information about how the data was generated. For example, a sparse Green's function may be recovered from seismic experimental data using
Inference algorithms and learning theory for Bayesian sparse factor analysis
International Nuclear Information System (INIS)
Rattray, Magnus; Sharp, Kevin; Stegle, Oliver; Winn, John
2009-01-01
Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.
Inference algorithms and learning theory for Bayesian sparse factor analysis
Energy Technology Data Exchange (ETDEWEB)
Rattray, Magnus; Sharp, Kevin [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Stegle, Oliver [Max-Planck-Institute for Biological Cybernetics, Tuebingen (Germany); Winn, John, E-mail: magnus.rattray@manchester.ac.u [Microsoft Research Cambridge, Roger Needham Building, Cambridge, CB3 0FB (United Kingdom)
2009-12-01
Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.
Multiple instance learning tracking method with local sparse representation
Xie, Chengjun
2013-10-01
When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this study, the authors propose an online algorithm by combining multiple instance learning (MIL) and local sparse representation for tracking an object in a video system. The key idea in our method is to model the appearance of an object by local sparse codes that can be formed as training data for the MIL framework. First, local image patches of a target object are represented as sparse codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in object tracking. Then MIL learns the sparse codes by a classifier to discriminate the target from the background. Finally, results from the trained classifier are input into a particle filter framework to sequentially estimate the target state over time in visual tracking. In addition, to decrease the visual drift because of the accumulative errors when updating the dictionary and classifier, a two-step object tracking method combining a static MIL classifier with a dynamical MIL classifier is proposed. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others. © The Institution of Engineering and Technology 2013.
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering
Sicat, Ronell Barrera
2014-12-31
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.
Orthogonal sparse linear discriminant analysis
Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun
2018-03-01
Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.
Parity-Time Symmetric Photonics
Zhao, Han
2018-01-17
The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.
Homotheties of cylindrically symmetric static spacetimes
International Nuclear Information System (INIS)
Qadir, A.; Ziad, M.; Sharif, M.
1998-08-01
In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)
Discriminative sparse coding on multi-manifolds
Wang, J.J.-Y.; Bensmail, H.; Yao, N.; Gao, Xin
2013-01-01
Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.
Discriminative sparse coding on multi-manifolds
Wang, J.J.-Y.
2013-09-26
Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.
Maximally Symmetric Composite Higgs Models.
Csáki, Csaba; Ma, Teng; Shu, Jing
2017-09-29
Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.
On symmetric structures of order two
Directory of Open Access Journals (Sweden)
Michel Bousquet
2008-04-01
Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.
Regression with Sparse Approximations of Data
DEFF Research Database (Denmark)
Noorzad, Pardis; Sturm, Bob L.
2012-01-01
We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...
Technique detection software for Sparse Matrices
Directory of Open Access Journals (Sweden)
KHAN Muhammad Taimoor
2009-12-01
Full Text Available Sparse storage formats are techniques for storing and processing the sparse matrix data efficiently. The performance of these storage formats depend upon the distribution of non-zeros, within the matrix in different dimensions. In order to have better results we need a technique that suits best the organization of data in a particular matrix. So the decision of selecting a better technique is the main step towards improving the system's results otherwise the efficiency can be decreased. The purpose of this research is to help identify the best storage format in case of reduced storage size and high processing efficiency for a sparse matrix.
Electroweak Baryogenesis in R-symmetric Supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
Structure-based bayesian sparse reconstruction
Quadeer, Ahmed Abdul; Al-Naffouri, Tareq Y.
2012-01-01
Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical
Biclustering via Sparse Singular Value Decomposition
Lee, Mihee
2010-02-16
Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.
Tunable Sparse Network Coding for Multicast Networks
DEFF Research Database (Denmark)
Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant
2014-01-01
This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity...... a mechanism to perform efficient Gaussian elimination over sparse matrices going beyond belief propagation but maintaining low decoding complexity. Supporting simulation results are provided showing the trade-off between decoding complexity and completion time....
SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS
Desmal, Abdulla; Bagci, Hakan
2015-01-01
minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two
Learning sparse generative models of audiovisual signals
Monaci, Gianluca; Sommer, Friedrich T.; Vandergheynst, Pierre
2008-01-01
This paper presents a novel framework to learn sparse represen- tations for audiovisual signals. An audiovisual signal is modeled as a sparse sum of audiovisual kernels. The kernels are bimodal functions made of synchronous audio and video components that can be positioned independently and arbitrarily in space and time. We design an algorithm capable of learning sets of such audiovi- sual, synchronous, shift-invariant functions by alternatingly solving a coding and a learning pr...
Multi scales based sparse matrix spectral clustering image segmentation
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
Hyperspectral Unmixing with Robust Collaborative Sparse Regression
Directory of Open Access Journals (Sweden)
Chang Li
2016-07-01
Full Text Available Recently, sparse unmixing (SU of hyperspectral data has received particular attention for analyzing remote sensing images. However, most SU methods are based on the commonly admitted linear mixing model (LMM, which ignores the possible nonlinear effects (i.e., nonlinearity. In this paper, we propose a new method named robust collaborative sparse regression (RCSR based on the robust LMM (rLMM for hyperspectral unmixing. The rLMM takes the nonlinearity into consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse property. The RCSR simultaneously takes the collaborative sparse property of the abundance and sparsely distributed additive property of the outlier into consideration, which can be formed as a robust joint sparse regression problem. The inexact augmented Lagrangian method (IALM is used to optimize the proposed RCSR. The qualitative and quantitative experiments on synthetic datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the hyperspectral SU problem compared with the other four state-of-the-art algorithms.
Shape prior modeling using sparse representation and online dictionary learning.
Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N
2012-01-01
The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.
Baryon symmetric big bang cosmology
International Nuclear Information System (INIS)
Stecker, F.W.
1978-01-01
It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)
Symmetric functions and orthogonal polynomials
Macdonald, I G
1997-01-01
One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.
Immanant Conversion on Symmetric Matrices
Directory of Open Access Journals (Sweden)
Purificação Coelho M.
2014-01-01
Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.
Solution of generalized shifted linear systems with complex symmetric matrices
International Nuclear Information System (INIS)
Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo
2012-01-01
We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.
A new scheduling algorithm for parallel sparse LU factorization with static pivoting
Energy Technology Data Exchange (ETDEWEB)
Grigori, Laura; Li, Xiaoye S.
2002-08-20
In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.
Fast Solution in Sparse LDA for Binary Classification
Moghaddam, Baback
2010-01-01
An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic
Superresolving Black Hole Images with Full-Closure Sparse Modeling
Crowley, Chelsea; Akiyama, Kazunori; Fish, Vincent
2018-01-01
It is believed that almost all galaxies have black holes at their centers. Imaging a black hole is a primary objective to answer scientific questions relating to relativistic accretion and jet formation. The Event Horizon Telescope (EHT) is set to capture images of two nearby black holes, Sagittarius A* at the center of the Milky Way galaxy roughly 26,000 light years away and the other M87 which is in Virgo A, a large elliptical galaxy that is 50 million light years away. Sparse imaging techniques have shown great promise for reconstructing high-fidelity superresolved images of black holes from simulated data. Previous work has included the effects of atmospheric phase errors and thermal noise, but not systematic amplitude errors that arise due to miscalibration. We explore a full-closure imaging technique with sparse modeling that uses closure amplitudes and closure phases to improve the imaging process. This new technique can successfully handle data with systematic amplitude errors. Applying our technique to synthetic EHT data of M87, we find that full-closure sparse modeling can reconstruct images better than traditional methods and recover key structural information on the source, such as the shape and size of the predicted photon ring. These results suggest that our new approach will provide superior imaging performance for data from the EHT and other interferometric arrays.
Robust visual tracking via multiscale deep sparse networks
Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo
2017-04-01
In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.
Feasibility of Very Large Sparse Aperture Deployable Antennas
2014-03-27
25 Figure 7: 3D Reflector Box Truss...mesh surface seen in Figure 7. 27 Figure 7: 3D Reflector Box Truss 4.2 Inducing Errors in Truss Members With the ideal structure solved for...deviation can be thought of as a Zernike Polynomial 35 with a Noll index of 1 [16]. This piston error assumes all energy is radiated back towards the
When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores
Wang, Jim Jing-Yan
2017-06-28
Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays an important role. Up to now, these two problems have always been considered separately, assuming that data coding and ranking are two independent and irrelevant problems. However, is there any internal relationship between sparse coding and ranking score learning? If yes, how to explore and make use of this internal relationship? In this paper, we try to answer these questions by developing the first joint sparse coding and ranking score learning algorithm. To explore the local distribution in the sparse code space, and also to bridge coding and ranking problems, we assume that in the neighborhood of each data point, the ranking scores can be approximated from the corresponding sparse codes by a local linear function. By considering the local approximation error of ranking scores, the reconstruction error and sparsity of sparse coding, and the query information provided by the user, we construct a unified objective function for learning of sparse codes, the dictionary and ranking scores. We further develop an iterative algorithm to solve this optimization problem.
A novel method to design sparse linear arrays for ultrasonic phased array.
Yang, Ping; Chen, Bin; Shi, Ke-Ren
2006-12-22
In ultrasonic phased array testing, a sparse array can increase the resolution by enlarging the aperture without adding system complexity. Designing a sparse array involves choosing the best or a better configuration from a large number of candidate arrays. We firstly designed sparse arrays by using a genetic algorithm, but found that the arrays have poor performance and poor consistency. So, a method based on the Minimum Redundancy Linear Array was then adopted. Some elements are determined by the minimum-redundancy array firstly in order to ensure spatial resolution and then a genetic algorithm is used to optimize the remaining elements. Sparse arrays designed by this method have much better performance and consistency compared to the arrays designed only by a genetic algorithm. Both simulation and experiment confirm the effectiveness.
Sparse Learning with Stochastic Composite Optimization.
Zhang, Weizhong; Zhang, Lijun; Jin, Zhongming; Jin, Rong; Cai, Deng; Li, Xuelong; Liang, Ronghua; He, Xiaofei
2017-06-01
In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rate O(1/λT), but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization (SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability bounds can only attain O(√{log(1/δ)/T}) with δ is the failure probability, which is much worse than the expected convergence rate. To address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of sparse learning and at the meantime we can improve the high probability bound to approximately O(log(log(T)/δ)/λT).
In-place sparse suffix sorting
DEFF Research Database (Denmark)
Prezza, Nicola
2018-01-01
information regarding the lexicographical order of a size-b subset of all n text suffixes is often needed. Such information can be stored space-efficiently (in b words) in the sparse suffix array (SSA). The SSA and its relative sparse LCP array (SLCP) can be used as a space-efficient substitute of the sparse...... suffix tree. Very recently, Gawrychowski and Kociumaka [11] showed that the sparse suffix tree (and therefore SSA and SLCP) can be built in asymptotically optimal O(b) space with a Monte Carlo algorithm running in O(n) time. The main reason for using the SSA and SLCP arrays in place of the sparse suffix...... tree is, however, their reduced space of b words each. This leads naturally to the quest for in-place algorithms building these arrays. Franceschini and Muthukrishnan [8] showed that the full suffix array can be built in-place and in optimal running time. On the other hand, finding sub-quadratic in...
JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure
Labschutz, Matthias
2015-08-12
Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.
JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure
Labschutz, Matthias; Bruckner, Stefan; Groller, M. Eduard; Hadwiger, Markus; Rautek, Peter
2015-01-01
Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.
JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure.
Labschütz, Matthias; Bruckner, Stefan; Gröller, M Eduard; Hadwiger, Markus; Rautek, Peter
2016-01-01
Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.
Probabilistic cloning of three symmetric states
International Nuclear Information System (INIS)
Jimenez, O.; Bergou, J.; Delgado, A.
2010-01-01
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
Sparse and Robust Factor Modelling
C. Croux (Christophe); P. Exterkate (Peter)
2011-01-01
textabstractFactor construction methods are widely used to summarize a large panel of variables by means of a relatively small number of representative factors. We propose a novel factor construction procedure that enjoys the properties of robustness to outliers and of sparsity; that is, having
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Nonlinear PT-symmetric plaquettes
International Nuclear Information System (INIS)
Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe
2012-01-01
We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Confining but chirally symmetric dense and cold matter
International Nuclear Information System (INIS)
Glozman, L. Ya.
2012-01-01
The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.
Relativistic fluids in spherically symmetric space
International Nuclear Information System (INIS)
Dipankar, R.
1977-12-01
Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat
Scalable group level probabilistic sparse factor analysis
DEFF Research Database (Denmark)
Hinrich, Jesper Løve; Nielsen, Søren Føns Vind; Riis, Nicolai Andre Brogaard
2017-01-01
Many data-driven approaches exist to extract neural representations of functional magnetic resonance imaging (fMRI) data, but most of them lack a proper probabilistic formulation. We propose a scalable group level probabilistic sparse factor analysis (psFA) allowing spatially sparse maps, component...... pruning using automatic relevance determination (ARD) and subject specific heteroscedastic spatial noise modeling. For task-based and resting state fMRI, we show that the sparsity constraint gives rise to components similar to those obtained by group independent component analysis. The noise modeling...... shows that noise is reduced in areas typically associated with activation by the experimental design. The psFA model identifies sparse components and the probabilistic setting provides a natural way to handle parameter uncertainties. The variational Bayesian framework easily extends to more complex...
SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS
Desmal, Abdulla
2015-07-29
A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.
Fast wavelet based sparse approximate inverse preconditioner
Energy Technology Data Exchange (ETDEWEB)
Wan, W.L. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Point-source reconstruction with a sparse light-sensor array for optical TPC readout
International Nuclear Information System (INIS)
Rutter, G; Richards, M; Bennieston, A J; Ramachers, Y A
2011-01-01
A reconstruction technique for sparse array optical signal readout is introduced and applied to the generic challenge of large-area readout of a large number of point light sources. This challenge finds a prominent example in future, large volume neutrino detector studies based on liquid argon. It is concluded that the sparse array option may be ruled out for reasons of required number of channels when compared to a benchmark derived from charge readout on wire-planes. Smaller-scale detectors, however, could benefit from this technology.
Sparse regularization for force identification using dictionaries
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
Symmetric Topological Phases and Tensor Network States
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
Analog system for computing sparse codes
Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell
2010-08-24
A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.
Parallel transposition of sparse data structures
DEFF Research Database (Denmark)
Wang, Hao; Liu, Weifeng; Hou, Kaixi
2016-01-01
Many applications in computational sciences and social sciences exploit sparsity and connectivity of acquired data. Even though many parallel sparse primitives such as sparse matrix-vector (SpMV) multiplication have been extensively studied, some other important building blocks, e.g., parallel tr...... transposition in the latest vendor-supplied library on an Intel multicore CPU platform, and the MergeTrans approach achieves on average of 3.4-fold (up to 11.7-fold) speedup on an Intel Xeon Phi many-core processor....
Structure-based bayesian sparse reconstruction
Quadeer, Ahmed Abdul
2012-12-01
Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity. © 1991-2012 IEEE.
Binary Sparse Phase Retrieval via Simulated Annealing
Directory of Open Access Journals (Sweden)
Wei Peng
2016-01-01
Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.
Ordering schemes for sparse matrices using modern programming paradigms
International Nuclear Information System (INIS)
Oliker, Leonid; Li, Xiaoye; Husbands, Parry; Biswas, Rupak
2000-01-01
The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. In previous work, we investigated the effects of various ordering and partitioning strategies on the performance of CG using different programming paradigms and architectures. This paper makes several extensions to our prior research. First, we present a hybrid(MPI+OpenMP) implementation of the CG algorithm on the IBM SP and show that the hybrid paradigm increases programming complexity with little performance gains compared to a pure MPI implementation. For ill-conditioned linear systems, it is often necessary to use a preconditioning technique. We present MPI results for ILU(0) preconditioned CG (PCG) using the BlockSolve95 library, and show that the initial ordering of the input matrix dramatically affect PCG's performance. Finally, a multithreaded version of the PCG is developed on the Cray (Tera) MTA. Unlike the message-passing version, this implementation did not require the complexities of special orderings or graph dependency analysis. However, only limited scalability was achieved due to the lack of available thread level parallelism
Robust and Sparse Factor Modelling
DEFF Research Database (Denmark)
Croux, Christophe; Exterkate, Peter
Factor construction methods are widely used to summarize a large panel of variables by means of a relatively small number of representative factors. We propose a novel factor construction procedure that enjoys the properties of robustness to outliers and of sparsity; that is, having relatively few...... nonzero factor loadings. Compared to the traditional factor construction method, we find that this procedure leads to a favorable forecasting performance in the presence of outliers and to better interpretable factors. We investigate the performance of the method in a Monte Carlo experiment...
Comprehensive asynchronous symmetric rendezvous algorithm in ...
Indian Academy of Sciences (India)
Meenu Chawla
2017-11-10
Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.
Subspace Based Blind Sparse Channel Estimation
DEFF Research Database (Denmark)
Hayashi, Kazunori; Matsushima, Hiroki; Sakai, Hideaki
2012-01-01
The paper proposes a subspace based blind sparse channel estimation method using 1–2 optimization by replacing the 2–norm minimization in the conventional subspace based method by the 1–norm minimization problem. Numerical results confirm that the proposed method can significantly improve...
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
Continuous speech recognition with sparse coding
CSIR Research Space (South Africa)
Smit, WJ
2009-04-01
Full Text Available generative model. The spike train is classified by making use of a spike train model and dynamic programming. It is computationally expensive to find a sparse code. We use an iterative subset selection algorithm with quadratic programming for this process...
Multisnapshot Sparse Bayesian Learning for DOA
DEFF Research Database (Denmark)
Gerstoft, Peter; Mecklenbrauker, Christoph F.; Xenaki, Angeliki
2016-01-01
The directions of arrival (DOA) of plane waves are estimated from multisnapshot sensor array data using sparse Bayesian learning (SBL). The prior for the source amplitudes is assumed independent zero-mean complex Gaussian distributed with hyperparameters, the unknown variances (i.e., the source...
Better Size Estimation for Sparse Matrix Products
DEFF Research Database (Denmark)
Amossen, Rasmus Resen; Campagna, Andrea; Pagh, Rasmus
2010-01-01
We consider the problem of doing fast and reliable estimation of the number of non-zero entries in a sparse Boolean matrix product. Let n denote the total number of non-zero entries in the input matrices. We show how to compute a 1 ± ε approximation (with small probability of error) in expected t...
Rotational image deblurring with sparse matrices
DEFF Research Database (Denmark)
Hansen, Per Christian; Nagy, James G.; Tigkos, Konstantinos
2014-01-01
We describe iterative deblurring algorithms that can handle blur caused by a rotation along an arbitrary axis (including the common case of pure rotation). Our algorithms use a sparse-matrix representation of the blurring operation, which allows us to easily handle several different boundary...
Feature based omnidirectional sparse visual path following
Goedemé, Toon; Tuytelaars, Tinne; Van Gool, Luc; Vanacker, Gerolf; Nuttin, Marnix
2005-01-01
Goedemé T., Tuytelaars T., Van Gool L., Vanacker G., Nuttin M., ''Feature based omnidirectional sparse visual path following'', Proceedings IEEE/RSJ international conference on intelligent robots and systems - IROS2005, pp. 1003-1008, August 2-6, 2005, Edmonton, Alberta, Canada.
Comparison of sparse point distribution models
DEFF Research Database (Denmark)
Erbou, Søren Gylling Hemmingsen; Vester-Christensen, Martin; Larsen, Rasmus
2010-01-01
This paper compares several methods for obtaining sparse and compact point distribution models suited for data sets containing many variables. These are evaluated on a database consisting of 3D surfaces of a section of the pelvic bone obtained from CT scans of 33 porcine carcasses. The superior m...
A sparse-grid isogeometric solver
Beck, Joakim
2018-02-28
Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90’s in the context of the approximation of high-dimensional PDEs.The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.
A sparse version of IGA solvers
Beck, Joakim
2017-07-30
Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse grids construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.
A sparse-grid isogeometric solver
Beck, Joakim; Sangalli, Giancarlo; Tamellini, Lorenzo
2018-01-01
Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90’s in the context of the approximation of high-dimensional PDEs.The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.
A sparse version of IGA solvers
Beck, Joakim; Sangalli, Giancarlo; Tamellini, Lorenzo
2017-01-01
Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse grids construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.
New methods for sampling sparse populations
Anna Ringvall
2007-01-01
To improve surveys of sparse objects, methods that use auxiliary information have been suggested. Guided transect sampling uses prior information, e.g., from aerial photographs, for the layout of survey strips. Instead of being laid out straight, the strips will wind between potentially more interesting areas. 3P sampling (probability proportional to prediction) uses...
Symmetric splitting of very light systems
International Nuclear Information System (INIS)
Grotowski, K.; Majka, Z.; Planeta, R.
1985-01-01
Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV
Helically symmetric experiment, (HSX) goals, design and status
International Nuclear Information System (INIS)
Anderson, F.S.B.; Almagri, A.F.; Anderson, D.T.; Matthews, P.G.; Talmadge, J.N.; Shohet, J.L.
1995-01-01
HSX is a quasi-helically symmetric (QHS) stellarator currently under construction at the Torsatron-Stellarator Laboratory of the University of Wisconsin-Madison. This device is unique in its magnetic design in that the magnetic field spectrum possesses only a single dominant (helical) component. This design avoids the large direct orbit losses and the low-collisionality neoclassical losses associated with conventional stellarators. The restoration of symmetry to the confining magnetic field makes the neoclassical confinement in this device analogous to an axisymmetric q=1/3 tokamak. The HSX device has been designed with a clear set of primary physics goals: demonstrate the feasibility of construction of a QHS device, examine single particle confinement of injected ions with regard to magnetic field symmetry breaking, compare density and temperature profiles in this helically symmetric system to those for axisymmetric tokamaks and conventional stellarators, examine electric fields and plasma rotation with edge biasing in relation to L-H transitions in symmetric versus non-symmetric stellarator systems, investigate QHS effects on 1/v regime electron confinement, and examine how greatly-reduced neoclassical electron thermal conductivity compares to the experimental χ e profile. 3 refs., 4 figs., 1 tab
Spherically symmetric charged compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)
2015-08-15
In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)
Exact axially symmetric galactic dynamos
Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.
2018-05-01
We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Beig, Robert; Siddiqui, Azad A.
2007-11-01
It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.
Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang
2018-05-06
Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.
${ \\mathcal P }{ \\mathcal T }$-symmetric interpretation of unstable effective potentials
Bender, Carl M.; Mavromatos, Nick E.; Sarkar, Sarben
2016-01-01
The conventional interpretation of the one-loop effective potentials of the Higgs field in the Standard Model and the gravitino condensate in dynamically broken supergravity is that these theories are unstable at large field values. A ${ \\mathcal P }{ \\mathcal T }$-symmetric reinterpretation of these models at a quantum-mechanical level eliminates these instabilities and suggests that these instabilities may also be tamed at the quantum-field-theory level.
New Classes of Quasi-helically Symmetric Stellarators
International Nuclear Information System (INIS)
Ku, L.P.; Boozer, A.H.
2010-01-01
New classes of quasi-helically symmetric stellarators with aspect ratios (le) 10 have been found which are stable to the perturbation of magnetohydrodynamic modes at plasma pressures of practical interest. These configurations have large rotational transform and good quality of flux surfaces. Characteristics of some selected examples are discussed in detail. The feasibility of using modular coils for these stellarators has been investigated. It is shown that practical designs for modular coils can be achieved.
Visual recognition and inference using dynamic overcomplete sparse learning.
Murray, Joseph F; Kreutz-Delgado, Kenneth
2007-09-01
We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.
Robust sparse image reconstruction of radio interferometric observations with PURIFY
Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves
2018-01-01
Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.
The symmetric extendibility of quantum states
International Nuclear Information System (INIS)
Nowakowski, Marcin L
2016-01-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)
Averaging in spherically symmetric cosmology
International Nuclear Information System (INIS)
Coley, A. A.; Pelavas, N.
2007-01-01
The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis
A sparse electromagnetic imaging scheme using nonlinear landweber iterations
Desmal, Abdulla; Bagci, Hakan
2015-01-01
Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting
Efficient Pseudorecursive Evaluation Schemes for Non-adaptive Sparse Grids
Buse, Gerrit; Pflü ger, Dirk; Jacob, Riko
2014-01-01
In this work we propose novel algorithms for storing and evaluating sparse grid functions, operating on regular (not spatially adaptive), yet potentially dimensionally adaptive grid types. Besides regular sparse grids our approach includes truncated
Improved Sparse Channel Estimation for Cooperative Communication Systems
Directory of Open Access Journals (Sweden)
Guan Gui
2012-01-01
Full Text Available Accurate channel state information (CSI is necessary at receiver for coherent detection in amplify-and-forward (AF cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS and least absolute shrinkage and selection operator (LASSO, are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse channel estimation methods.
Sparse reconstruction using distribution agnostic bayesian matching pursuit
Masood, Mudassir; Al-Naffouri, Tareq Y.
2013-01-01
A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery. This method performs Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or unknown. It is agnostic on signal statistics
SuperLU{_}DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems
Energy Technology Data Exchange (ETDEWEB)
Li, Xiaoye S.; Demmel, James W.
2002-03-27
In this paper, we present the main algorithmic features in the software package SuperLU{_}DIST, a distributed-memory sparse direct solver for large sets of linear equations. We give in detail our parallelization strategies, with focus on scalability issues, and demonstrate the parallel performance and scalability on current machines. The solver is based on sparse Gaussian elimination, with an innovative static pivoting strategy proposed earlier by the authors. The main advantage of static pivoting over classical partial pivoting is that it permits a priori determination of data structures and communication pattern for sparse Gaussian elimination, which makes it more scalable on distributed memory machines. Based on this a priori knowledge, we designed highly parallel and scalable algorithms for both LU decomposition and triangular solve and we show that they are suitable for large-scale distributed memory machines.
Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.
Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C
2012-10-01
A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.
Linac design algorithm with symmetric segments
International Nuclear Information System (INIS)
Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.
1996-01-01
The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design
Parallel RFSAI-BFGS Preconditioners for Large Symmetric Eigenproblems
Directory of Open Access Journals (Sweden)
L. Bergamaschi
2013-01-01
the linearized Newton system to solve Au=q(uu, q(u being the Rayleigh quotient. In a previous work (Bergamaschi and Martínez, 2013 the sequence of preconditioned Jacobians is proven to remain close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to 1.5 million unknowns account for the efficiency and the scalability of the proposed low rank update of the RFSAI preconditioner. The overall RFSAI-BFGS preconditioned Newton algorithm has shown comparable efficiencies with a well-established eigenvalue solver on all the test problems.
Sparse DOA estimation with polynomial rooting
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren
2015-01-01
Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresol......Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...
Sparse learning of stochastic dynamical equations
Boninsegna, Lorenzo; Nüske, Feliks; Clementi, Cecilia
2018-06-01
With the rapid increase of available data for complex systems, there is great interest in the extraction of physically relevant information from massive datasets. Recently, a framework called Sparse Identification of Nonlinear Dynamics (SINDy) has been introduced to identify the governing equations of dynamical systems from simulation data. In this study, we extend SINDy to stochastic dynamical systems which are frequently used to model biophysical processes. We prove the asymptotic correctness of stochastic SINDy in the infinite data limit, both in the original and projected variables. We discuss algorithms to solve the sparse regression problem arising from the practical implementation of SINDy and show that cross validation is an essential tool to determine the right level of sparsity. We demonstrate the proposed methodology on two test systems, namely, the diffusion in a one-dimensional potential and the projected dynamics of a two-dimensional diffusion process.
Sparseness- and continuity-constrained seismic imaging
Herrmann, Felix J.
2005-04-01
Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.
A density functional for sparse matter
DEFF Research Database (Denmark)
Langreth, D.C.; Lundqvist, Bengt; Chakarova-Kack, S.D.
2009-01-01
forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators......Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density-functional...... theory (DFT), long since proven successful for dense matter, seems now to have come to a point, where useful extensions to sparse matter are available. In particular, a functional form, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401; Thonhauser et al 2007 Phys. Rev. B 76 125112), has been proposed...
Robust Fringe Projection Profilometry via Sparse Representation.
Budianto; Lun, Daniel P K
2016-04-01
In this paper, a robust fringe projection profilometry (FPP) algorithm using the sparse dictionary learning and sparse coding techniques is proposed. When reconstructing the 3D model of objects, traditional FPP systems often fail to perform if the captured fringe images have a complex scene, such as having multiple and occluded objects. It introduces great difficulty to the phase unwrapping process of an FPP system that can result in serious distortion in the final reconstructed 3D model. For the proposed algorithm, it encodes the period order information, which is essential to phase unwrapping, into some texture patterns and embeds them to the projected fringe patterns. When the encoded fringe image is captured, a modified morphological component analysis and a sparse classification procedure are performed to decode and identify the embedded period order information. It is then used to assist the phase unwrapping process to deal with the different artifacts in the fringe images. Experimental results show that the proposed algorithm can significantly improve the robustness of an FPP system. It performs equally well no matter the fringe images have a simple or complex scene, or are affected due to the ambient lighting of the working environment.
Symmetric nuclear matter with Skyrme interaction
International Nuclear Information System (INIS)
Manisa, K.; Bicer, A.; Atav, U.
2010-01-01
The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.
Performance limitations of translationally symmetric nonimaging devices
Bortz, John C.; Shatz, Narkis E.; Winston, Roland
2001-11-01
The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.
Symmetrical parahiliar infiltrated, cough and dyspnoea
International Nuclear Information System (INIS)
Giraldo Estrada, Horacio; Escalante, Hector
2004-01-01
It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated
Introduction to left-right symmetric models
International Nuclear Information System (INIS)
Grimus, W.
1993-01-01
We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)
A cosmological problem for maximally symmetric supergravity
International Nuclear Information System (INIS)
German, G.; Ross, G.G.
1986-01-01
Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)
Theorem on axially symmetric gravitational vacuum configurations
Energy Technology Data Exchange (ETDEWEB)
Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare
1977-01-24
A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.
Sparse canonical methods for biological data integration: application to a cross-platform study
Directory of Open Access Journals (Sweden)
Robert-Granié Christèle
2009-01-01
Full Text Available Abstract Background In the context of systems biology, few sparse approaches have been proposed so far to integrate several data sets. It is however an important and fundamental issue that will be widely encountered in post genomic studies, when simultaneously analyzing transcriptomics, proteomics and metabolomics data using different platforms, so as to understand the mutual interactions between the different data sets. In this high dimensional setting, variable selection is crucial to give interpretable results. We focus on a sparse Partial Least Squares approach (sPLS to handle two-block data sets, where the relationship between the two types of variables is known to be symmetric. Sparse PLS has been developed either for a regression or a canonical correlation framework and includes a built-in procedure to select variables while integrating data. To illustrate the canonical mode approach, we analyzed the NCI60 data sets, where two different platforms (cDNA and Affymetrix chips were used to study the transcriptome of sixty cancer cell lines. Results We compare the results obtained with two other sparse or related canonical correlation approaches: CCA with Elastic Net penalization (CCA-EN and Co-Inertia Analysis (CIA. The latter does not include a built-in procedure for variable selection and requires a two-step analysis. We stress the lack of statistical criteria to evaluate canonical correlation methods, which makes biological interpretation absolutely necessary to compare the different gene selections. We also propose comprehensive graphical representations of both samples and variables to facilitate the interpretation of the results. Conclusion sPLS and CCA-EN selected highly relevant genes and complementary findings from the two data sets, which enabled a detailed understanding of the molecular characteristics of several groups of cell lines. These two approaches were found to bring similar results, although they highlighted the same
Symmetric Imidazolium-Based Paramagnetic Ionic Liquids
2017-11-29
Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Kabir, K.; Saha, S.; Nath, L.M.
1987-09-01
Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs
Pion condensation in symmetric nuclear matter
Kabir, K.; Saha, S.; Nath, L. M.
1988-01-01
Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.
Marandi, Ahmadreza; de Klerk, Etienne; Dahl, Joachim
The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser, Lasserre and Toh [arXiv:1607.01151,2016] constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proven by the authors that the sequence converges to the optimal
Integrative analysis of multiple diverse omics datasets by sparse group multitask regression
Directory of Open Access Journals (Sweden)
Dongdong eLin
2014-10-01
Full Text Available A variety of high throughput genome-wide assays enable the exploration of genetic risk factors underlying complex traits. Although these studies have remarkable impact on identifying susceptible biomarkers, they suffer from issues such as limited sample size and low reproducibility. Combining individual studies of different genetic levels/platforms has the promise to improve the power and consistency of biomarker identification. In this paper, we propose a novel integrative method, namely sparse group multitask regression, for integrating diverse omics datasets, platforms and populations to identify risk genes/factors of complex diseases. This method combines multitask learning with sparse group regularization, which will: 1 treat the biomarker identification in each single study as a task and then combine them by multitask learning; 2 group variables from all studies for identifying significant genes; 3 enforce sparse constraint on groups of variables to overcome the ‘small sample, but large variables’ problem. We introduce two sparse group penalties: sparse group lasso and sparse group ridge in our multitask model, and provide an effective algorithm for each model. In addition, we propose a significance test for the identification of potential risk genes. Two simulation studies are performed to evaluate the performance of our integrative method by comparing it with conventional meta-analysis method. The results show that our sparse group multitask method outperforms meta-analysis method significantly. In an application to our osteoporosis studies, 7 genes are identified as significant genes by our method and are found to have significant effects in other three independent studies for validation. The most significant gene SOD2 has been identified in our previous osteoporosis study involving the same expression dataset. Several other genes such as TREML2, HTR1E and GLO1 are shown to be novel susceptible genes for osteoporosis, as confirmed
Dynamic Stochastic Superresolution of sparsely observed turbulent systems
International Nuclear Information System (INIS)
Branicki, M.; Majda, A.J.
2013-01-01
Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum
A fast sparse reconstruction algorithm for electrical tomography
International Nuclear Information System (INIS)
Zhao, Jia; Xu, Yanbin; Tan, Chao; Dong, Feng
2014-01-01
Electrical tomography (ET) has been widely investigated due to its advantages of being non-radiative, low-cost and high-speed. However, the image reconstruction of ET is a nonlinear and ill-posed inverse problem and the imaging results are easily affected by measurement noise. A sparse reconstruction algorithm based on L 1 regularization is robust to noise and consequently provides a high quality of reconstructed images. In this paper, a sparse reconstruction by separable approximation algorithm (SpaRSA) is extended to solve the ET inverse problem. The algorithm is competitive with the fastest state-of-the-art algorithms in solving the standard L 2 −L 1 problem. However, it is computationally expensive when the dimension of the matrix is large. To further improve the calculation speed of solving inverse problems, a projection method based on the Krylov subspace is employed and combined with the SpaRSA algorithm. The proposed algorithm is tested with image reconstruction of electrical resistance tomography (ERT). Both simulation and experimental results demonstrate that the proposed method can reduce the computational time and improve the noise robustness for the image reconstruction. (paper)
Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification
Ozer, Ekin; Feng, Maria Q.
2016-08-01
Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.
Pairwise Constraint-Guided Sparse Learning for Feature Selection.
Liu, Mingxia; Zhang, Daoqiang
2016-01-01
Feature selection aims to identify the most informative features for a compact and accurate data representation. As typical supervised feature selection methods, Lasso and its variants using L1-norm-based regularization terms have received much attention in recent studies, most of which use class labels as supervised information. Besides class labels, there are other types of supervised information, e.g., pairwise constraints that specify whether a pair of data samples belong to the same class (must-link constraint) or different classes (cannot-link constraint). However, most of existing L1-norm-based sparse learning methods do not take advantage of the pairwise constraints that provide us weak and more general supervised information. For addressing that problem, we propose a pairwise constraint-guided sparse (CGS) learning method for feature selection, where the must-link and the cannot-link constraints are used as discriminative regularization terms that directly concentrate on the local discriminative structure of data. Furthermore, we develop two variants of CGS, including: 1) semi-supervised CGS that utilizes labeled data, pairwise constraints, and unlabeled data and 2) ensemble CGS that uses the ensemble of pairwise constraint sets. We conduct a series of experiments on a number of data sets from University of California-Irvine machine learning repository, a gene expression data set, two real-world neuroimaging-based classification tasks, and two large-scale attribute classification tasks. Experimental results demonstrate the efficacy of our proposed methods, compared with several established feature selection methods.
Decentralized modal identification using sparse blind source separation
International Nuclear Information System (INIS)
Sadhu, A; Hazra, B; Narasimhan, S; Pandey, M D
2011-01-01
Popular ambient vibration-based system identification methods process information collected from a dense array of sensors centrally to yield the modal properties. In such methods, the need for a centralized processing unit capable of satisfying large memory and processing demands is unavoidable. With the advent of wireless smart sensor networks, it is now possible to process information locally at the sensor level, instead. The information at the individual sensor level can then be concatenated to obtain the global structure characteristics. A novel decentralized algorithm based on wavelet transforms to infer global structure mode information using measurements obtained using a small group of sensors at a time is proposed in this paper. The focus of the paper is on algorithmic development, while the actual hardware and software implementation is not pursued here. The problem of identification is cast within the framework of under-determined blind source separation invoking transformations of measurements to the time–frequency domain resulting in a sparse representation. The partial mode shape coefficients so identified are then combined to yield complete modal information. The transformations are undertaken using stationary wavelet packet transform (SWPT), yielding a sparse representation in the wavelet domain. Principal component analysis (PCA) is then performed on the resulting wavelet coefficients, yielding the partial mixing matrix coefficients from a few measurement channels at a time. This process is repeated using measurements obtained from multiple sensor groups, and the results so obtained from each group are concatenated to obtain the global modal characteristics of the structure
Decentralized modal identification using sparse blind source separation
Sadhu, A.; Hazra, B.; Narasimhan, S.; Pandey, M. D.
2011-12-01
Popular ambient vibration-based system identification methods process information collected from a dense array of sensors centrally to yield the modal properties. In such methods, the need for a centralized processing unit capable of satisfying large memory and processing demands is unavoidable. With the advent of wireless smart sensor networks, it is now possible to process information locally at the sensor level, instead. The information at the individual sensor level can then be concatenated to obtain the global structure characteristics. A novel decentralized algorithm based on wavelet transforms to infer global structure mode information using measurements obtained using a small group of sensors at a time is proposed in this paper. The focus of the paper is on algorithmic development, while the actual hardware and software implementation is not pursued here. The problem of identification is cast within the framework of under-determined blind source separation invoking transformations of measurements to the time-frequency domain resulting in a sparse representation. The partial mode shape coefficients so identified are then combined to yield complete modal information. The transformations are undertaken using stationary wavelet packet transform (SWPT), yielding a sparse representation in the wavelet domain. Principal component analysis (PCA) is then performed on the resulting wavelet coefficients, yielding the partial mixing matrix coefficients from a few measurement channels at a time. This process is repeated using measurements obtained from multiple sensor groups, and the results so obtained from each group are concatenated to obtain the global modal characteristics of the structure.
Slowness and sparseness have diverging effects on complex cell learning.
Directory of Open Access Journals (Sweden)
Jörn-Philipp Lies
2014-03-01
Full Text Available Following earlier studies which showed that a sparse coding principle may explain the receptive field properties of complex cells in primary visual cortex, it has been concluded that the same properties may be equally derived from a slowness principle. In contrast to this claim, we here show that slowness and sparsity drive the representations towards substantially different receptive field properties. To do so, we present complete sets of basis functions learned with slow subspace analysis (SSA in case of natural movies as well as translations, rotations, and scalings of natural images. SSA directly parallels independent subspace analysis (ISA with the only difference that SSA maximizes slowness instead of sparsity. We find a large discrepancy between the filter shapes learned with SSA and ISA. We argue that SSA can be understood as a generalization of the Fourier transform where the power spectrum corresponds to the maximally slow subspace energies in SSA. Finally, we investigate the trade-off between slowness and sparseness when combined in one objective function.
Derek B. Van Berkel; Bronwyn Rayfield; Sebastián Martinuzzi; Martin J. Lechowicz; Eric White; Kathleen P. Bell; Chris R. Colocousis; Kent F. Kovacs; Anita T. Morzillo; Darla K. Munroe; Benoit Parmentier; Volker C. Radeloff; Brian J. McGill
2018-01-01
Sparsely settled forests (SSF) are poorly studied, coupled natural and human systems involving rural communities in forest ecosystems that are neither largely uninhabited wildland nor forests on the edges of urban areas. We developed and applied a multidisciplinary approach to define, map, and examine changes in the spatial extent and structure of both the landscapes...
Finding column depedencies in sparse matrices over $ F_ 2 $ by block Wiedemann
O. Penninga
1998-01-01
textabstractLarge systems of linear equations over $mathbb{F_2$ with sparse coefficient matrices have to be solved as a part of integer factorization with sieve-based methods such as in the Number Field Sieve algorithm. In this report, we first discuss the Wiedemann algorithm to solve these systems
Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations
Directory of Open Access Journals (Sweden)
Huiping Cao
2014-01-01
Full Text Available Schubert’s method is an extension of Broyden’s method for solving sparse nonlinear equations, which can preserve the zero-nonzero structure defined by the sparse Jacobian matrix and can retain many good properties of Broyden’s method. In particular, Schubert’s method has been proved to be locally and q-superlinearly convergent. In this paper, we globalize Schubert’s method by using a nonmonotone line search. Under appropriate conditions, we show that the proposed algorithm converges globally and superlinearly. Some preliminary numerical experiments are presented, which demonstrate that our algorithm is effective for large-scale problems.
A modified sparse reconstruction method for three-dimensional synthetic aperture radar image
Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin
2018-03-01
There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.
Natural image sequences constrain dynamic receptive fields and imply a sparse code.
Häusler, Chris; Susemihl, Alex; Nawrot, Martin P
2013-11-06
In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.
Energy Technology Data Exchange (ETDEWEB)
Deveci, Mehmet [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trott, Christian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-01-01
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.
A view of Kanerva's sparse distributed memory
Denning, P. J.
1986-01-01
Pentti Kanerva is working on a new class of computers, which are called pattern computers. Pattern computers may close the gap between capabilities of biological organisms to recognize and act on patterns (visual, auditory, tactile, or olfactory) and capabilities of modern computers. Combinations of numeric, symbolic, and pattern computers may one day be capable of sustaining robots. The overview of the requirements for a pattern computer, a summary of Kanerva's Sparse Distributed Memory (SDM), and examples of tasks this computer can be expected to perform well are given.
Wavelets for Sparse Representation of Music
DEFF Research Database (Denmark)
Endelt, Line Ørtoft; Harbo, Anders La-Cour
2004-01-01
We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...
Sparse dynamics for partial differential equations.
Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley
2013-04-23
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.
Symmetric and asymmetric nuclear matter in the relativistic approach
International Nuclear Information System (INIS)
Huber, H.; Weber, F.; Weigel, M.K.
1995-01-01
Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations
The critical current of point symmetric Josephson tunnel junctions
International Nuclear Information System (INIS)
Monaco, Roberto
2016-01-01
Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.
Comparison of eigensolvers for symmetric band matrices.
Moldaschl, Michael; Gansterer, Wilfried N
2014-09-15
We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) method on the other hand. The BD&C algorithm does not require tridiagonalization of the original band matrix at all, and the current version of the BTF method tridiagonalizes the original band matrix only for computing the eigenvalues. Avoiding the tridiagonalization process sidesteps the cost of backtransformation of the eigenvectors. Beyond that, we discovered another disadvantage of the backtransformation process for band matrices: In several scenarios, a lot of gradual underflow is observed in the (optional) accumulation of the transformation matrix and in the (obligatory) backtransformation step. According to the IEEE 754 standard for floating-point arithmetic, this implies many operations with subnormal (denormalized) numbers, which causes severe slowdowns compared to the other algorithms without backtransformation of the eigenvectors. We illustrate that in these cases the performance of existing methods from Lapack and Plasma reaches a competitive level only if subnormal numbers are disabled (and thus the IEEE standard is violated). Overall, our performance studies illustrate that if the problem size is large enough relative to the bandwidth, BD&C tends to achieve the highest performance of all methods if the spectrum to be computed is clustered. For test problems with well separated eigenvalues, the BTF method tends to become the fastest algorithm with growing problem size.
Survival and transmission of symmetrical chromosomal aberrations
International Nuclear Information System (INIS)
Savage, J.R.K.
1979-01-01
The interaction between the lesions to produce chromosomal structural changes may be either asymmetrical (A) or symmetrical (S). In A, one or more acentric fragments are always produced, and there may also be the mechanical separation problems resulting from bridges at anaphase, while S-changes never produce fragment, and pose no mechanical problem in cell division. If A and S events occur with equal frequency, it might be an indication that they are truly the alternative modes of lesion interaction. Unstimulated lymphocytes were irradiated with 2.68 Gy 250 kV X-ray, and metaphases were sampled at 50 h after the stimulation. Preparations were complete diploid cells, and any obvious second division cells were rejected. So far as dermal repair and fibroblast functions are concerned, aberration burden seems to have little consequence from the view-point of the long-term survival in vivo. Large numbers of aberrations (mainly S translocation and terminal deletion) were found in the samples taken up to 60 years after therapy. Skin biopsies were removed 1 day and 6 months after irradiation and cultured. In irradiated cells, reciprocal translocations dominated, followed by terminal deletions, then inversions, while no chromosome-type aberration was seen in the control cells. a) The relative occurrence of A : S changes, b) long-term survival in vivo, c) the possibility of in vivo repair, and d) some unusual features of translocation found in Syrian hamsters are reviewed. The relevance or importance of major S events is clearly dependent upon the cells, the tissues or the organisms in which they occur. (Yamashita, S.)
Factored Facade Acquisition using Symmetric Line Arrangements
Ceylan, Duygu; Mitra, Niloy J.; Li, Hao; Weise, Thibaut; Pauly, Mark
2012-01-01
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used
Automated identification of crystallographic ligands using sparse-density representations
International Nuclear Information System (INIS)
Carolan, C. G.; Lamzin, V. S.
2014-01-01
A novel procedure for identifying ligands in macromolecular crystallographic electron-density maps is introduced. Density clusters in such maps can be rapidly attributed to one of 82 different ligands in an automated manner. A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental data derived from the Protein Data Bank, the procedure could quickly identify the deposited ligand within the top-ranked compounds from a database of candidates. This indicates the suitability of the method for the identification of binding entities in fragment-based drug screening and in model completion in macromolecular structure determination
DEFF Research Database (Denmark)
Han, Xixuan; Clemmensen, Line Katrine Harder
2015-01-01
We propose a general technique for obtaining sparse solutions to generalized eigenvalue problems, and call it Regularized Generalized Eigen-Decomposition (RGED). For decades, Fisher's discriminant criterion has been applied in supervised feature extraction and discriminant analysis, and it is for...
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint
Directory of Open Access Journals (Sweden)
Zhi Gao
2018-05-01
Full Text Available Light detection and ranging (LiDAR sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs and unmanned aerial vehicles (UAVs to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.
Interferometric interpolation of sparse marine data
Hanafy, Sherif M.
2013-10-11
We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green\\'s function and a model-based Green\\'s function for a water-layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up- and downgoing separation of both recorded and model-based Green\\'s functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non-stationary 1D multi-channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f-k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method. © 2013 European Association of Geoscientists & Engineers.
Balanced and sparse Tamo-Barg codes
Halbawi, Wael; Duursma, Iwan; Dau, Hoang; Hassibi, Babak
2017-01-01
We construct balanced and sparse generator matrices for Tamo and Barg's Locally Recoverable Codes (LRCs). More specifically, for a cyclic Tamo-Barg code of length n, dimension k and locality r, we show how to deterministically construct a generator matrix where the number of nonzeros in any two columns differs by at most one, and where the weight of every row is d + r - 1, where d is the minimum distance of the code. Since LRCs are designed mainly for distributed storage systems, the results presented in this work provide a computationally balanced and efficient encoding scheme for these codes. The balanced property ensures that the computational effort exerted by any storage node is essentially the same, whilst the sparse property ensures that this effort is minimal. The work presented in this paper extends a similar result previously established for Reed-Solomon (RS) codes, where it is now known that any cyclic RS code possesses a generator matrix that is balanced as described, but is sparsest, meaning that each row has d nonzeros.
Balanced and sparse Tamo-Barg codes
Halbawi, Wael
2017-08-29
We construct balanced and sparse generator matrices for Tamo and Barg\\'s Locally Recoverable Codes (LRCs). More specifically, for a cyclic Tamo-Barg code of length n, dimension k and locality r, we show how to deterministically construct a generator matrix where the number of nonzeros in any two columns differs by at most one, and where the weight of every row is d + r - 1, where d is the minimum distance of the code. Since LRCs are designed mainly for distributed storage systems, the results presented in this work provide a computationally balanced and efficient encoding scheme for these codes. The balanced property ensures that the computational effort exerted by any storage node is essentially the same, whilst the sparse property ensures that this effort is minimal. The work presented in this paper extends a similar result previously established for Reed-Solomon (RS) codes, where it is now known that any cyclic RS code possesses a generator matrix that is balanced as described, but is sparsest, meaning that each row has d nonzeros.
Crossing-symmetric solutions to low equations
International Nuclear Information System (INIS)
McLeod, R.J.; Ernst, D.J.
1985-01-01
Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)
Revisiting the Optical PT-Symmetric Dimer
Directory of Open Access Journals (Sweden)
José Delfino Huerta Morales
2016-08-01
Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.
PT symmetric Aubry–Andre model
International Nuclear Information System (INIS)
Yuce, C.
2014-01-01
PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists
PT symmetric Aubry–Andre model
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2014-06-13
PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.
All-optical symmetric ternary logic gate
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
Symmetry theorems via the continuous steiner symmetrization
Directory of Open Access Journals (Sweden)
L. Ragoub
2000-06-01
Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.
Symmetric splitting of very light systems
International Nuclear Information System (INIS)
Grotowski, K.; Majka, Z.; Planeta, R.
1984-01-01
Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics
Parallel sparse direct solver for integrated circuit simulation
Chen, Xiaoming; Yang, Huazhong
2017-01-01
This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques. · Introduces complicated algorithms of sparse linear solvers, using concise principles and simple examples, without complex theory or lengthy derivations; · Describes a parallel sparse direct solver that can be adopted to accelerate any SPICE-like integrated circuit simulato...
Noise from Propellers with Symmetrical Sections at Zero Blade Angle
Deming, A F
1937-01-01
A theory has been deduced for the "rotation noise" from a propeller with blades of symmetrical section about the chord line and set at zero blade angle. Owing to the limitation of the theory, the equations give without appreciable error only the sound pressure for cases where the wave lengths are large compared with the blade lengths. With the aid of experimental data obtained from a two-blade arrangement, an empirical relation was introduced that permitted calculation of higher harmonics. The generality of the final relation given is indicated by the fundamental and second harmonic of a four-blade arrangement.
Data analysis in high-dimensional sparse spaces
DEFF Research Database (Denmark)
Clemmensen, Line Katrine Harder
classification techniques for high-dimensional problems are presented: Sparse discriminant analysis, sparse mixture discriminant analysis and orthogonality constrained support vector machines. The first two introduces sparseness to the well known linear and mixture discriminant analysis and thereby provide low...... are applied to classifications of fish species, ear canal impressions used in the hearing aid industry, microbiological fungi species, and various cancerous tissues and healthy tissues. In addition, novel applications of sparse regressions (also called the elastic net) to the medical, concrete, and food...
Greedy vs. L1 convex optimization in sparse coding
DEFF Research Database (Denmark)
Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor
2015-01-01
Sparse representation has been applied successfully in many image analysis applications, including abnormal event detection, in which a baseline is to learn a dictionary from the training data and detect anomalies from its sparse codes. During this procedure, sparse codes which can be achieved...... solutions. Considering the property of abnormal event detection, i.e., only normal videos are used as training data due to practical reasons, effective codes in classification application may not perform well in abnormality detection. Therefore, we compare the sparse codes and comprehensively evaluate...... their performance from various aspects to better understand their applicability, including computation time, reconstruction error, sparsity, detection...
Improved image registration by sparse patch-based deformation estimation.
Kim, Minjeong; Wu, Guorong; Wang, Qian; Lee, Seong-Whan; Shen, Dinggang
2015-01-15
Despite intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation toward the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) for each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) a small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients; and (4) we
Small diameter symmetric networks from linear groups
Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.
1992-01-01
In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.
Sobolev spaces on bounded symmetric domains
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
Roč. 60, č. 12 ( 2015 ), s. 1712-1726 ISSN 1747-6933 Institutional support: RVO:67985840 Keywords : bounded symmetric domain * Sobolev space * Bergman space Subject RIV: BA - General Mathematics Impact factor: 0.466, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/17476933. 2015 .1043910
Cuspidal discrete series for semisimple symmetric spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik
2012-01-01
We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...
Exact solutions of the spherically symmetric multidimensional ...
African Journals Online (AJOL)
The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...
Super-symmetric informationally complete measurements
Energy Technology Data Exchange (ETDEWEB)
Zhu, Huangjun, E-mail: hzhu@pitp.ca
2015-11-15
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
Harmonic maps of the bounded symmetric domains
International Nuclear Information System (INIS)
Xin, Y.L.
1994-06-01
A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs
On isotropic cylindrically symmetric stellar models
International Nuclear Information System (INIS)
Nolan, Brien C; Nolan, Louise V
2004-01-01
We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model
The Mathematics of Symmetrical Factorial Designs
Indian Academy of Sciences (India)
The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.
Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...
African Journals Online (AJOL)
In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...
Fourier inversion on a reductive symmetric space
Ban, E.P. van den
1999-01-01
Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we
A viewpoint on nearly conformally symmetric manifold
International Nuclear Information System (INIS)
Rahman, M.S.
1990-06-01
Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs
Harmonic analysis on reductive symmetric spaces
Ban, E.P. van den; Schlichtkrull, H.
2000-01-01
We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported
Fourier transforms on a semisimple symmetric space
Ban, E.P. van den; Schlichtkrull, H.
1994-01-01
Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation
Fourier transforms on a semisimple symmetric space
Ban, E.P. van den; Carmona, J.; Delorme, P.
1997-01-01
Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation
Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation.
Yuan, Shasha; Zhou, Weidong; Wu, Qi; Zhang, Yanli
2016-05-01
Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods.
Sparse Bayesian Learning for Nonstationary Data Sources
Fujimaki, Ryohei; Yairi, Takehisa; Machida, Kazuo
This paper proposes an online Sparse Bayesian Learning (SBL) algorithm for modeling nonstationary data sources. Although most learning algorithms implicitly assume that a data source does not change over time (stationary), one in the real world usually does due to such various factors as dynamically changing environments, device degradation, sudden failures, etc (nonstationary). The proposed algorithm can be made useable for stationary online SBL by setting time decay parameters to zero, and as such it can be interpreted as a single unified framework for online SBL for use with stationary and nonstationary data sources. Tests both on four types of benchmark problems and on actual stock price data have shown it to perform well.
Narrowband interference parameterization for sparse Bayesian recovery
Ali, Anum
2015-09-11
This paper addresses the problem of narrowband interference (NBI) in SC-FDMA systems by using tools from compressed sensing and stochastic geometry. The proposed NBI cancellation scheme exploits the frequency domain sparsity of the unknown signal and adopts a Bayesian sparse recovery procedure. This is done by keeping a few randomly chosen sub-carriers data free to sense the NBI signal at the receiver. As Bayesian recovery requires knowledge of some NBI parameters (i.e., mean, variance and sparsity rate), we use tools from stochastic geometry to obtain analytical expressions for the required parameters. Our simulation results validate the analysis and depict suitability of the proposed recovery method for NBI mitigation. © 2015 IEEE.
Reconstruction of sparse connectivity in neural networks from spike train covariances
International Nuclear Information System (INIS)
Pernice, Volker; Rotter, Stefan
2013-01-01
The inference of causation from correlation is in general highly problematic. Correspondingly, it is difficult to infer the existence of physical synaptic connections between neurons from correlations in their activity. Covariances in neural spike trains and their relation to network structure have been the subject of intense research, both experimentally and theoretically. The influence of recurrent connections on covariances can be characterized directly in linear models, where connectivity in the network is described by a matrix of linear coupling kernels. However, as indirect connections also give rise to covariances, the inverse problem of inferring network structure from covariances can generally not be solved unambiguously. Here we study to what degree this ambiguity can be resolved if the sparseness of neural networks is taken into account. To reconstruct a sparse network, we determine the minimal set of linear couplings consistent with the measured covariances by minimizing the L 1 norm of the coupling matrix under appropriate constraints. Contrary to intuition, after stochastic optimization of the coupling matrix, the resulting estimate of the underlying network is directed, despite the fact that a symmetric matrix of count covariances is used for inference. The performance of the new method is best if connections are neither exceedingly sparse, nor too dense, and it is easily applicable for networks of a few hundred nodes. Full coupling kernels can be obtained from the matrix of full covariance functions. We apply our method to networks of leaky integrate-and-fire neurons in an asynchronous–irregular state, where spike train covariances are well described by a linear model. (paper)
Robust visual tracking via structured multi-task sparse learning
Zhang, Tianzhu
2012-11-09
In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing lp,q mixed norms (specifically p∈2,∞ and q=1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L1 tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259-2272, 2011) is a special case of our MTT formulation (denoted as the L11 tracker) when p=q=1. Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers. © 2012 Springer Science+Business Media New York.
Novel calibration system with sparse wires for CMB polarization receivers
Energy Technology Data Exchange (ETDEWEB)
Tajima, O.; /KEK, Tsukuba /Chicago U., KICP; Nguyen, H.; /Fermilab; Bischoff, C.; /Chicago U., KICP /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP
2011-07-01
B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.
Novel calibration system with sparse wires for CMB polarization receivers
International Nuclear Information System (INIS)
Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.
2011-01-01
B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature (∼10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.
Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.
We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.
Moody, Daniela; Wohlberg, Brendt
2018-01-02
An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.
Sparse Source EEG Imaging with the Variational Garrote
DEFF Research Database (Denmark)
Hansen, Sofie Therese; Stahlhut, Carsten; Hansen, Lars Kai
2013-01-01
EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions...
Support agnostic Bayesian matching pursuit for block sparse signals
Masood, Mudassir; Al-Naffouri, Tareq Y.
2013-01-01
priori knowledge of block partition and utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean square error (MMSE) estimate of the block-sparse signal
Local posterior concentration rate for multilevel sparse sequences
Belitser, E.N.; Nurushev, N.
2017-01-01
We consider empirical Bayesian inference in the many normal means model in the situation when the high-dimensional mean vector is multilevel sparse, that is,most of the entries of the parameter vector are some fixed values. For instance, the traditional sparse signal is a particular case (with one
Joint Group Sparse PCA for Compressed Hyperspectral Imaging.
Khan, Zohaib; Shafait, Faisal; Mian, Ajmal
2015-12-01
A sparse principal component analysis (PCA) seeks a sparse linear combination of input features (variables), so that the derived features still explain most of the variations in the data. A group sparse PCA introduces structural constraints on the features in seeking such a linear combination. Collectively, the derived principal components may still require measuring all the input features. We present a joint group sparse PCA (JGSPCA) algorithm, which forces the basic coefficients corresponding to a group of features to be jointly sparse. Joint sparsity ensures that the complete basis involves only a sparse set of input features, whereas the group sparsity ensures that the structural integrity of the features is maximally preserved. We evaluate the JGSPCA algorithm on the problems of compressed hyperspectral imaging and face recognition. Compressed sensing results show that the proposed method consistently outperforms sparse PCA and group sparse PCA in reconstructing the hyperspectral scenes of natural and man-made objects. The efficacy of the proposed compressed sensing method is further demonstrated in band selection for face recognition.
Confidence of model based shape reconstruction from sparse data
DEFF Research Database (Denmark)
Baka, N.; de Bruijne, Marleen; Reiber, J. H. C.
2010-01-01
Statistical shape models (SSM) are commonly applied for plausible interpolation of missing data in medical imaging. However, when fitting a shape model to sparse information, many solutions may fit the available data. In this paper we derive a constrained SSM to fit noisy sparse input landmarks...
Comparison of Methods for Sparse Representation of Musical Signals
DEFF Research Database (Denmark)
Endelt, Line Ørtoft; la Cour-Harbo, Anders
2005-01-01
by a number of sparseness measures and results are shown on the ℓ1 norm of the coefficients, using a dictionary containing a Dirac basis, a Discrete Cosine Transform, and a Wavelet Packet. Evaluated only on the sparseness Matching Pursuit is the best method, and it is also relatively fast....
Conservation laws in baroclinic inertial-symmetric instabilities
Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder
2017-04-01
Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.
Directory of Open Access Journals (Sweden)
Vibha Tiwari
2015-12-01
Full Text Available Compressive sensing theory enables faithful reconstruction of signals, sparse in domain $ \\Psi $, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix $ \\Phi $ which satisfies restricted isometric property. The role played by sensing matrix $ \\Phi $ and sparsity matrix $ \\Psi $ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads to high computational cost. In this paper, effort is made to design sparse sensing matrix with least incurred computational cost while maintaining quality of reconstructed image. The design approach followed is based on sparse block circulant matrix (SBCM with few modifications. The other used sparse sensing matrix consists of 15 ones in each column. The medical images used are acquired from US, MRI and CT modalities. The image quality measurement parameters are used to compare the performance of reconstructed medical images using various sensing matrices. It is observed that, since Gram matrix of dictionary matrix ($ \\Phi \\Psi \\mathrm{} $ is closed to identity matrix in case of proposed modified SBCM, therefore, it helps to reconstruct the medical images of very good quality.
Energy Technology Data Exchange (ETDEWEB)
Aktulga, Hasan Metin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2014-08-14
Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and the transpose of that matrix) with multiple vectors (SpMM and SpMM-T). Existing implementations of SpMM and SpMM-T significantly underperform expectations. Thus, in this paper, we present and analyze optimized implementations of SpMM and SpMM-T. We base our implementation on the compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We develop a performance model that allows us to understand and estimate the performance characteristics of our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite operations over good implementations based on the commonly used compressed sparse row (CSR) matrix format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the overall execution time of the block Eigen solver used in MFDn.
Visual properties and memorising scenes: Effects of image-space sparseness and uniformity.
Lukavský, Jiří; Děchtěrenko, Filip
2017-10-01
Previous studies have demonstrated that humans have a remarkable capacity to memorise a large number of scenes. The research on memorability has shown that memory performance can be predicted by the content of an image. We explored how remembering an image is affected by the image properties within the context of the reference set, including the extent to which it is different from its neighbours (image-space sparseness) and if it belongs to the same category as its neighbours (uniformity). We used a reference set of 2,048 scenes (64 categories), evaluated pairwise scene similarity using deep features from a pretrained convolutional neural network (CNN), and calculated the image-space sparseness and uniformity for each image. We ran three memory experiments, varying the memory workload with experiment length and colour/greyscale presentation. We measured the sensitivity and criterion value changes as a function of image-space sparseness and uniformity. Across all three experiments, we found separate effects of 1) sparseness on memory sensitivity, and 2) uniformity on the recognition criterion. People better remembered (and correctly rejected) images that were more separated from others. People tended to make more false alarms and fewer miss errors in images from categorically uniform portions of the image-space. We propose that both image-space properties affect human decisions when recognising images. Additionally, we found that colour presentation did not yield better memory performance over grayscale images.
SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation
Directory of Open Access Journals (Sweden)
Wu Yiquan
2017-08-01
Full Text Available To investigate the problems of the large grayscale difference between infrared and Synthetic Aperture Radar (SAR images and their fusion image not being fit for human visual perception, we propose a fusion method for SAR and infrared images in the complex contourlet domain based on joint sparse representation. First, we perform complex contourlet decomposition of the infrared and SAR images. Then, we employ the KSingular Value Decomposition (K-SVD method to obtain an over-complete dictionary of the low-frequency components of the two source images. Using a joint sparse representation model, we then generate a joint dictionary. We obtain the sparse representation coefficients of the low-frequency components of the source images in the joint dictionary by the Orthogonal Matching Pursuit (OMP method and select them using the selection maximization strategy. We then reconstruct these components to obtain the fused low-frequency components and fuse the high-frequency components using two criteria——the coefficient of visual sensitivity and the degree of energy matching. Finally, we obtain the fusion image by the inverse complex contourlet transform. Compared with the three classical fusion methods and recently presented fusion methods, e.g., that based on the Non-Subsampled Contourlet Transform (NSCT and another based on sparse representation, the method we propose in this paper can effectively highlight the salient features of the two source images and inherit their information to the greatest extent.
Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data
Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924
Abdelfattah, Ahmad
2016-05-23
Simulations of many multi-component PDE-based applications, such as petroleum reservoirs or reacting flows, are dominated by the solution, on each time step and within each Newton step, of large sparse linear systems. The standard solver is a preconditioned Krylov method. Along with application of the preconditioner, memory-bound Sparse Matrix-Vector Multiplication (SpMV) is the most time-consuming operation in such solvers. Multi-species models produce Jacobians with a dense block structure, where the block size can be as large as a few dozen. Failing to exploit this dense block structure vastly underutilizes hardware capable of delivering high performance on dense BLAS operations. This paper presents a GPU-accelerated SpMV kernel for block-sparse matrices. Dense matrix-vector multiplications within the sparse-block structure leverage optimization techniques from the KBLAS library, a high performance library for dense BLAS kernels. The design ideas of KBLAS can be applied to block-sparse matrices. Furthermore, a technique is proposed to balance the workload among thread blocks when there are large variations in the lengths of nonzero rows. Multi-GPU performance is highlighted. The proposed SpMV kernel outperforms existing state-of-the-art implementations using matrices with real structures from different applications. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Abdelfattah, Ahmad; Ltaief, Hatem; Keyes, David E.; Dongarra, Jack
2016-01-01
Simulations of many multi-component PDE-based applications, such as petroleum reservoirs or reacting flows, are dominated by the solution, on each time step and within each Newton step, of large sparse linear systems. The standard solver is a preconditioned Krylov method. Along with application of the preconditioner, memory-bound Sparse Matrix-Vector Multiplication (SpMV) is the most time-consuming operation in such solvers. Multi-species models produce Jacobians with a dense block structure, where the block size can be as large as a few dozen. Failing to exploit this dense block structure vastly underutilizes hardware capable of delivering high performance on dense BLAS operations. This paper presents a GPU-accelerated SpMV kernel for block-sparse matrices. Dense matrix-vector multiplications within the sparse-block structure leverage optimization techniques from the KBLAS library, a high performance library for dense BLAS kernels. The design ideas of KBLAS can be applied to block-sparse matrices. Furthermore, a technique is proposed to balance the workload among thread blocks when there are large variations in the lengths of nonzero rows. Multi-GPU performance is highlighted. The proposed SpMV kernel outperforms existing state-of-the-art implementations using matrices with real structures from different applications. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Sparse Frequency Waveform Design for Radar-Embedded Communication
Directory of Open Access Journals (Sweden)
Chaoyun Mai
2016-01-01
Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.
Representations of the infinite symmetric group
Borodin, Alexei
2016-01-01
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
Symmetric, discrete fractional splines and Gabor systems
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2006-01-01
In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....
Overlap-free symmetric D 0 Lwords
Directory of Open Access Journals (Sweden)
Anna Frid
2001-12-01
Full Text Available A D0L word on an alphabet Σ={0,1,…,q-1} is called symmetric if it is a fixed point w=φ(w of a morphism φ:Σ * → Σ * defined by φ(i= t 1 + i t 2 + i … t m + i for some word t 1 t 2 … t m (equal to φ(0 and every i ∈ Σ; here a means a mod q. We prove a result conjectured by J. Shallit: if all the symbols in φ(0 are distinct (i.e., if t i ≠ t j for i ≠ j, then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any x ∈ Σ * and a ∈ Σ.
Young—Capelli symmetrizers in superalgebras†
Brini, Andrea; Teolis, Antonio G. B.
1989-01-01
Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014
Commutative curvature operators over four-dimensional generalized symmetric
Directory of Open Access Journals (Sweden)
Ali Haji-Badali
2014-12-01
Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
New sparse matrix solver in the KIKO3D 3-dimensional reactor dynamics code
International Nuclear Information System (INIS)
Panka, I.; Kereszturi, A.; Hegedus, C.
2005-01-01
The goal of this paper is to present a more effective method Bi-CGSTAB for accelerating the large sparse matrix equation solution in the KIKO3D code. This equation system is obtained by using the factorization of the improved quasi static (IQS) method for the time dependent nodal kinetic equations. In the old methodology standard large sparse matrix techniques were considered, where Gauss-Seidel preconditioning and a GMRES-type solver were applied. The validation of KIKO3D using Bi-CGSTAB has been performed by solving of a VVER-1000 kinetic benchmark problem. Additionally, the convergence characteristics were investigated in given macro time steps of Control Rod Ejection transients. The results have been obtained by the old GMRES and new Bi-CGSTAB methods are compared. (author)
Irreducible complexity of iterated symmetric bimodal maps
Directory of Open Access Journals (Sweden)
J. P. Lampreia
2005-01-01
Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.
A symmetric Roos bound for linear codes
Duursma, I.M.; Pellikaan, G.R.
2006-01-01
The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound
Symmetric voltage-controlled variable resistance
Vanelli, J. C.
1978-01-01
Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.
Resistor Networks based on Symmetrical Polytopes
Directory of Open Access Journals (Sweden)
Jeremy Moody
2015-03-01
Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.
Symmetric vs. asymmetric punishment regimes for bribery
Engel, Christoph; Goerg, Sebastian J.; Yu, Gaoneng
2012-01-01
In major legal orders such as UK, the U.S., Germany, and France, bribers and recipients face equally severe criminal sanctions. In contrast, countries like China, Russia, and Japan treat the briber more mildly. Given these differences between symmetric and asymmetric punishment regimes for bribery, one may wonder which punishment strategy is more effective in curbing corruption. For this purpose, we designed and ran a lab experiment in Bonn (Germany) and Shanghai (China) with exactly the same...
PAM4 based symmetrical 112-Gbps long-reach TWDM-PON
Wu, Liyu; Gao, Fan; Zhang, Minming; Fu, Songnian; Deng, Lei; Choi, Michael; Chang, Donald; Lei, Gordon K. P.; Liu, Deming
2018-02-01
We experimentally demonstrate cost effective symmetrical 112-Gbps long-reach passive optical network (LR-PON) over 70-km standard signal mode fiber (SSMF), based on pulse amplitude modulation (PAM)-4. Four 10G-class directly modulated lasers (DMLs) at C-band are used for achieving 4 × 28-Gbps downstream transmission, while two 18G-class DMLs at O-band are used to realize 2 × 56-Gbps upstream transmission, without any optical amplification in optical distributed network (ODN). Both dispersion compensation fiber (DCF) for downstream signal and praseodymium-doped fiber amplifier (PDFA) for upstream signal are equipped at optical line terminal (OLT). Meanwhile, sparse Volterra filter (SVF) equalizer is proposed to mitigate the transmission impairments with substantial reduction of computation complexity. Finally, we can successfully provide a loss budget of 33 dB per downstream wavelength channel, indicating of 64 optical network units (ONUs) with more than 1.25 Gbps per ONU.
Design of a polynomial ring based symmetric homomorphic encryption scheme
Directory of Open Access Journals (Sweden)
Smaranika Dasgupta
2016-09-01
Full Text Available Security of data, especially in clouds, has become immensely essential for present-day applications. Fully homomorphic encryption (FHE is a great way to secure data which is used and manipulated by untrusted applications or systems. In this paper, we propose a symmetric FHE scheme based on polynomial over ring of integers. This scheme is somewhat homomorphic due to accumulation of noise after few operations, which is made fully homomorphic using a refresh procedure. After certain amount of homomorphic computations, large ciphertexts are refreshed for proper decryption. The hardness of the scheme is based on the difficulty of factorizing large integers. Also, it requires polynomial addition which is computationally cost effective. Experimental results are shown to support our claim.
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.
Regression analysis of sparse asynchronous longitudinal data.
Cao, Hongyuan; Zeng, Donglin; Fine, Jason P
2015-09-01
We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.
Duplex scanning using sparse data sequences
DEFF Research Database (Denmark)
Møllenbach, S. K.; Jensen, Jørgen Arendt
2008-01-01
reconstruction of the missing samples possible. The periodic pattern has the length T = M + A samples, where M are for B-mode and A for velocity estimation. The missing samples can now be reconstructed using a filter bank. One filter bank reconstructs one missing sample, so the number of filter banks corresponds...... to M. The number of sub filters in every filter bank is the same as A. Every sub filter contains fractional delay (FD) filter and an interpolation function. Many different sequences can be selected to adapt the B-mode frame rate needed. The drawback of the method is that the maximum velocity detectable......, the fprf and the resolution are 15 MHz, 3.5 kHz, and 12 bit sample (8 kHz and 16 bit for the Carotid artery). The resulting data contains 8000 RF lines with 128 samples at a depth of 45 mm for the vein and 50 mm for Aorta. Sparse sequences are constructed from the full data sequences to have both...
Transformer fault diagnosis using continuous sparse autoencoder.
Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou
2016-01-01
This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.
Joint Sparse Recovery With Semisupervised MUSIC
Wen, Zaidao; Hou, Biao; Jiao, Licheng
2017-05-01
Discrete multiple signal classification (MUSIC) with its low computational cost and mild condition requirement becomes a significant noniterative algorithm for joint sparse recovery (JSR). However, it fails in rank defective problem caused by coherent or limited amount of multiple measurement vectors (MMVs). In this letter, we provide a novel sight to address this problem by interpreting JSR as a binary classification problem with respect to atoms. Meanwhile, MUSIC essentially constructs a supervised classifier based on the labeled MMVs so that its performance will heavily depend on the quality and quantity of these training samples. From this viewpoint, we develop a semisupervised MUSIC (SS-MUSIC) in the spirit of machine learning, which declares that the insufficient supervised information in the training samples can be compensated from those unlabeled atoms. Instead of constructing a classifier in a fully supervised manner, we iteratively refine a semisupervised classifier by exploiting the labeled MMVs and some reliable unlabeled atoms simultaneously. Through this way, the required conditions and iterations can be greatly relaxed and reduced. Numerical experimental results demonstrate that SS-MUSIC can achieve much better recovery performances than other MUSIC extended algorithms as well as some typical greedy algorithms for JSR in terms of iterations and recovery probability.
The application of sparse estimation of covariance matrix to quadratic discriminant analysis
Sun, Jiehuan; Zhao, Hongyu
2015-01-01
Background Although Linear Discriminant Analysis (LDA) is commonly used for classification, it may not be directly applied in genomics studies due to the large p, small n problem in these studies. Different versions of sparse LDA have been proposed to address this significant challenge. One implicit assumption of various LDA-based methods is that the covariance matrices are the same across different classes. However, rewiring of genetic networks (therefore different covariance matrices) acros...
On the harmonic starlike functions with respect to symmetric ...
African Journals Online (AJOL)
In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...
Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane
Vanichchapongjaroen, Pichet
2018-02-01
We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.
WKB analysis of PT-symmetric Sturm–Liouville problems
International Nuclear Information System (INIS)
Bender, Carl M; Jones, Hugh F
2012-01-01
Most studies of PT-symmetric quantum-mechanical Hamiltonians have considered the Schrödinger eigenvalue problem on an infinite domain. This paper examines the consequences of imposing the boundary conditions on a finite domain. As is the case with regular Hermitian Sturm–Liouville problems, the eigenvalues of the PT-symmetric Sturm–Liouville problem grow like n 2 for large n. However, the novelty is that a PT eigenvalue problem on a finite domain typically exhibits a sequence of critical points at which pairs of eigenvalues cease to be real and become complex conjugates of one another. For the potentials considered here this sequence of critical points is associated with a turning point on the imaginary axis in the complex plane. WKB analysis is used to calculate the asymptotic behaviours of the real eigenvalues and the locations of the critical points. The method turns out to be surprisingly accurate even at low energies. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Mixed dark matter in left-right symmetric models
Energy Technology Data Exchange (ETDEWEB)
Berlin, Asher [Department of Physics, University of Chicago,Chicago, Illinois 60637 (United States); Fox, Patrick J. [Theoretical Physics Department, Fermilab,Batavia, Illinois 60510 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago,Chicago, Illinois 60637 (United States); Mohlabeng, Gopolang [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Physics and Astronomy, University of Kansas,Lawrence, Kansas 66045 (United States)
2016-06-08
Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W{sup ′} boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g{sub R}=g{sub L}. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.
A comprehensive study of sparse codes on abnormality detection
DEFF Research Database (Denmark)
Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor
2017-01-01
Sparse representation has been applied successfully in abnor-mal event detection, in which the baseline is to learn a dic-tionary accompanied by sparse codes. While much empha-sis is put on discriminative dictionary construction, there areno comparative studies of sparse codes regarding abnormal-ity...... detection. We comprehensively study two types of sparsecodes solutions - greedy algorithms and convex L1-norm so-lutions - and their impact on abnormality detection perfor-mance. We also propose our framework of combining sparsecodes with different detection methods. Our comparative ex-periments are carried...
Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays
Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.
2004-01-01
Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.
Sparse Principal Component Analysis in Medical Shape Modeling
DEFF Research Database (Denmark)
Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus
2006-01-01
Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of sufficiently small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA...
Bistable states of TM polarized non-linear waves guided by symmetric layered structures
International Nuclear Information System (INIS)
Mihalache, D.
1985-04-01
Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)
A fast algorithm for sparse matrix computations related to inversion
International Nuclear Information System (INIS)
Li, S.; Wu, W.; Darve, E.
2013-01-01
We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G r and G for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round-off errors
Estimating mobility using sparse data: Application to human genetic variation.
Loog, Liisa; Mirazón Lahr, Marta; Kovacevic, Mirna; Manica, Andrea; Eriksson, Anders; Thomas, Mark G
2017-11-14
Mobility is one of the most important processes shaping spatiotemporal patterns of variation in genetic, morphological, and cultural traits. However, current approaches for inferring past migration episodes in the fields of archaeology and population genetics lack either temporal resolution or formal quantification of the underlying mobility, are poorly suited to spatially and temporally sparsely sampled data, and permit only limited systematic comparison between different time periods or geographic regions. Here we present an estimator of past mobility that addresses these issues by explicitly linking trait differentiation in space and time. We demonstrate the efficacy of this estimator using spatiotemporally explicit simulations and apply it to a large set of ancient genomic data from Western Eurasia. We identify a sequence of changes in human mobility from the Late Pleistocene to the Iron Age. We find that mobility among European Holocene farmers was significantly higher than among European hunter-gatherers both pre- and postdating the Last Glacial Maximum. We also infer that this Holocene rise in mobility occurred in at least three distinct stages: the first centering on the well-known population expansion at the beginning of the Neolithic, and the second and third centering on the beginning of the Bronze Age and the late Iron Age, respectively. These findings suggest a strong link between technological change and human mobility in Holocene Western Eurasia and demonstrate the utility of this framework for exploring changes in mobility through space and time. Copyright © 2017 the Author(s). Published by PNAS.
Optimization Techniques for Dimensionally Truncated Sparse Grids on Heterogeneous Systems
Deftu, A.
2013-02-01
Given the existing heterogeneous processor landscape dominated by CPUs and GPUs, topics such as programming productivity and performance portability have become increasingly important. In this context, an important question refers to how can we develop optimization strategies that cover both CPUs and GPUs. We answer this for fastsg, a library that provides functionality for handling efficiently high-dimensional functions. As it can be employed for compressing and decompressing large-scale simulation data, it finds itself at the core of a computational steering application which serves us as test case. We describe our experience with implementing fastsg\\'s time critical routines for Intel CPUs and Nvidia Fermi GPUs. We show the differences and especially the similarities between our optimization strategies for the two architectures. With regard to our test case for which achieving high speedups is a "must" for real-time visualization, we report a speedup of up to 6.2x times compared to the state-of-the-art implementation of the sparse grid technique for GPUs. © 2013 IEEE.
Robust visual tracking via multi-task sparse learning
Zhang, Tianzhu
2012-06-01
In this paper, we formulate object tracking in a particle filter framework as a multi-task sparse learning problem, which we denote as Multi-Task Tracking (MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in MTT. By employing popular sparsity-inducing p, q mixed norms (p D; 1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L 1 tracker [15] is a special case of our MTT formulation (denoted as the L 11 tracker) when p q 1. The learning problem can be efficiently solved using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, MTT is computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that MTT methods consistently outperform state-of-the-art trackers. © 2012 IEEE.
Sparse Group Penalized Integrative Analysis of Multiple Cancer Prognosis Datasets
Liu, Jin; Huang, Jian; Xie, Yang; Ma, Shuangge
2014-01-01
SUMMARY In cancer research, high-throughput profiling studies have been extensively conducted, searching for markers associated with prognosis. Because of the “large d, small n” characteristic, results generated from the analysis of a single dataset can be unsatisfactory. Recent studies have shown that integrative analysis, which simultaneously analyzes multiple datasets, can be more effective than single-dataset analysis and classic meta-analysis. In most of existing integrative analysis, the homogeneity model has been assumed, which postulates that different datasets share the same set of markers. Several approaches have been designed to reinforce this assumption. In practice, different datasets may differ in terms of patient selection criteria, profiling techniques, and many other aspects. Such differences may make the homogeneity model too restricted. In this study, we assume the heterogeneity model, under which different datasets are allowed to have different sets of markers. With multiple cancer prognosis datasets, we adopt the AFT (accelerated failure time) model to describe survival. This model may have the lowest computational cost among popular semiparametric survival models. For marker selection, we adopt a sparse group MCP (minimax concave penalty) approach. This approach has an intuitive formulation and can be computed using an effective group coordinate descent algorithm. Simulation study shows that it outperforms the existing approaches under both the homogeneity and heterogeneity models. Data analysis further demonstrates the merit of heterogeneity model and proposed approach. PMID:23938111
Dijet rates with symmetric Et cuts
International Nuclear Information System (INIS)
Banfi, Andrea; Dasgupta, Mrinal
2004-01-01
We consider dijet production in the region where symmetric cuts on the transverse energy, E t , are applied to the jets. In this region next-to-leading order calculations are unreliable and an all-order resummation of soft gluon effects is needed, which we carry out. Although, for illustrative purposes, we choose dijets produced in deep inelastic scattering, our general ideas apply additionally to dijets produced in photoproduction or gamma-gamma processes and should be relevant also to the study of prompt di-photon E t spectra in association with a recoiling jet, in hadron-hadron processes. (author)
Covariant, chirally symmetric, confining model of mesons
International Nuclear Information System (INIS)
Gross, F.; Milana, J.
1991-01-01
We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented
Symmetric Logic Synthesis with Phase Assignment
Benschop, N. F.
2001-01-01
Decomposition of any Boolean Function BF_n of n binary inputs into an optimal inverter coupled network of Symmetric Boolean functions SF_k (k \\leq n) is described. Each SF component is implemented by Threshold Logic Cells, forming a complete and compact T-Cell Library. Optimal phase assignment of input polarities maximizes local symmetries. The "rank spectrum" is a new BF_n description independent of input ordering, obtained by mapping its minterms onto an othogonal n \\times n grid of (transi...
Elastic energy for reflection-symmetric topologies
International Nuclear Information System (INIS)
Majumdar, A; Robbins, J M; Zyskin, M
2006-01-01
Nematic liquid crystals in a polyhedral domain, a prototype for bistable displays, may be described by a unit-vector field subject to tangent boundary conditions. Here we consider the case of a rectangular prism. For configurations with reflection-symmetric topologies, we derive a new lower bound for the one-constant elastic energy. For certain topologies, called conformal and anticonformal, the lower bound agrees with a previous result. For the remaining topologies, called nonconformal, the new bound is an improvement. For nonconformal topologies we derive an upper bound, which differs from the lower bound by a factor depending only on the aspect ratios of the prism
Nanotribology of Symmetric and Asymmetric Liquid Lubricants
Directory of Open Access Journals (Sweden)
Shinji Yamada
2010-03-01
Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.
Unary self-verifying symmetric difference automata
CSIR Research Space (South Africa)
Marais, Laurette
2016-07-01
Full Text Available stream_source_info Marais_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 796 Content-Encoding ISO-8859-1 stream_name Marais_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 18th... International Workshop on Descriptional Complexity of Formal Systems, 5 - 8 July 2016, Bucharest, Romania Unary self-verifying symmetric difference automata Laurette Marais1,2 and Lynette van Zijl1(B) 1 Department of Computer Science, Stellenbosch...
Characterisation of an AGATA symmetric prototype detector
International Nuclear Information System (INIS)
Nelson, L.; Dimmock, M.R.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Nolan, P.J.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.
2007-01-01
The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A 137 Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented
How Symmetrical Assumptions Advance Strategic Management Research
DEFF Research Database (Denmark)
Foss, Nicolai Juul; Hallberg, Hallberg
2014-01-01
We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other...... application domains of the theory. We argue that assumptional symmetry leads to theoretical advancement by promoting the development of theory with greater falsifiability and stronger ontological grounding. Thus, strategic management theory may be advanced by systematically searching for asymmetrical...
Characterisation of an AGATA symmetric prototype detector
Energy Technology Data Exchange (ETDEWEB)
Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ln@ns.ph.liv.ac.uk; Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: mrd@ns.ph.liv.ac.uk; Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajb@ns.ph.liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)
2007-04-01
The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A {sup 137}Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented.
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.
1991-01-01
We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)
Baryon symmetric big-bang cosmology
Energy Technology Data Exchange (ETDEWEB)
Stecker, F.W.
1978-04-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.
Baryon symmetric big-bang cosmology
International Nuclear Information System (INIS)
Stecker, F.W.
1978-04-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation
Geometrodynamics of spherically symmetric Lovelock gravity
International Nuclear Information System (INIS)
Kunstatter, Gabor; Taves, Tim; Maeda, Hideki
2012-01-01
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)
High Order Tensor Formulation for Convolutional Sparse Coding
Bibi, Adel Aamer; Ghanem, Bernard
2017-01-01
Convolutional sparse coding (CSC) has gained attention for its successful role as a reconstruction and a classification tool in the computer vision and machine learning community. Current CSC methods can only reconstruct singlefeature 2D images
Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging
Desmal, Abdulla; Bagci, Hakan
2014-01-01
with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm
Multiple instance learning tracking method with local sparse representation
Xie, Chengjun; Tan, Jieqing; Chen, Peng; Zhang, Jie; Helg, Lei
2013-01-01
as training data for the MIL framework. First, local image patches of a target object are represented as sparse codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in object tracking. Then MIL
Low-rank sparse learning for robust visual tracking
Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Ahuja, Narendra
2012-01-01
In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm
Robust visual tracking via multi-task sparse learning
Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Ahuja, Narendra
2012-01-01
In this paper, we formulate object tracking in a particle filter framework as a multi-task sparse learning problem, which we denote as Multi-Task Tracking (MTT). Since we model particles as linear combinations of dictionary templates
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering
Sicat, Ronell Barrera; Kruger, Jens; Moller, Torsten; Hadwiger, Markus
2014-01-01
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined
Sparse Linear Solver for Power System Analysis Using FPGA
National Research Council Canada - National Science Library
Johnson, J. R; Nagvajara, P; Nwankpa, C
2005-01-01
.... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...
Support agnostic Bayesian matching pursuit for block sparse signals
Masood, Mudassir
2013-05-01
A fast matching pursuit method using a Bayesian approach is introduced for block-sparse signal recovery. This method performs Bayesian estimates of block-sparse signals even when the distribution of active blocks is non-Gaussian or unknown. It is agnostic to the distribution of active blocks in the signal and utilizes a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data and no user intervention is required. The method requires a priori knowledge of block partition and utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean square error (MMSE) estimate of the block-sparse signal. Simulation results demonstrate the power and robustness of our proposed estimator. © 2013 IEEE.
Detection of Pitting in Gears Using a Deep Sparse Autoencoder
Directory of Open Access Journals (Sweden)
Yongzhi Qu
2017-05-01
Full Text Available In this paper; a new method for gear pitting fault detection is presented. The presented method is developed based on a deep sparse autoencoder. The method integrates dictionary learning in sparse coding into a stacked autoencoder network. Sparse coding with dictionary learning is viewed as an adaptive feature extraction method for machinery fault diagnosis. An autoencoder is an unsupervised machine learning technique. A stacked autoencoder network with multiple hidden layers is considered to be a deep learning network. The presented method uses a stacked autoencoder network to perform the dictionary learning in sparse coding and extract features from raw vibration data automatically. These features are then used to perform gear pitting fault detection. The presented method is validated with vibration data collected from gear tests with pitting faults in a gearbox test rig and compared with an existing deep learning-based approach.
Sparse logistic principal components analysis for binary data
Lee, Seokho; Huang, Jianhua Z.; Hu, Jianhua
2010-01-01
with a criterion function motivated from a penalized Bernoulli likelihood. A Majorization-Minimization algorithm is developed to efficiently solve the optimization problem. The effectiveness of the proposed sparse logistic PCA method is illustrated
Sparse reconstruction using distribution agnostic bayesian matching pursuit
Masood, Mudassir
2013-11-01
A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery. This method performs Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or unknown. It is agnostic on signal statistics and utilizes a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data if not available. The method utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean-square error (MMSE) estimate of the sparse signal. Simulation results demonstrate the power and robustness of our proposed estimator. © 2013 IEEE.
Sparse Vector Distributions and Recovery from Compressed Sensing
DEFF Research Database (Denmark)
Sturm, Bob L.
It is well known that the performance of sparse vector recovery algorithms from compressive measurements can depend on the distribution underlying the non-zero elements of a sparse vector. However, the extent of these effects has yet to be explored, and formally presented. In this paper, I...... empirically investigate this dependence for seven distributions and fifteen recovery algorithms. The two morals of this work are: 1) any judgement of the recovery performance of one algorithm over that of another must be prefaced by the conditions for which this is observed to be true, including sparse vector...... distributions, and the criterion for exact recovery; and 2) a recovery algorithm must be selected carefully based on what distribution one expects to underlie the sensed sparse signal....
Sparse encoding of automatic visual association in hippocampal networks
DEFF Research Database (Denmark)
Hulme, Oliver J; Skov, Martin; Chadwick, Martin J
2014-01-01
Intelligent action entails exploiting predictions about associations between elements of ones environment. The hippocampus and mediotemporal cortex are endowed with the network topology, physiology, and neurochemistry to automatically and sparsely code sensori-cognitive associations that can...
Renormalization of period doubling in symmetric four-dimensional volume-preserving maps
International Nuclear Information System (INIS)
Mao, J.; Greene, J.M.
1987-01-01
We have determined three maps (truncated at quadratic terms) that are fixed under the renormalization operator of pitchfork period doubling in symmetric four-dimensional volume-preserving maps. Each of these contains the previously known two-dimensional area-preserving map that is fixed under the period-doubling operator. One of these three fixed maps consists of two uncoupled two-dimensional (nonlinear) area-preserving fixed maps. The other two contain also the two-dimensional area-preserving fixed map coupled (in general) with a linear two-dimensional map. The renormalization calculation recovers all numerical results for the pitchfork period doubling in the symmetric four-dimensional volume-preserving maps, reported by Mao and Helleman [Phys. Rev. A 35, 1847 (1987)]. For a large class of nonsymmetric four-dimensional volume-preserving maps, we found that the fixed maps are the same as those for the symmetric maps
Efficient collaborative sparse channel estimation in massive MIMO
Masood, Mudassir; Afify, Laila H.; Al-Naffouri, Tareq Y.
2015-01-01
We propose a method for estimation of sparse frequency selective channels within MIMO-OFDM systems. These channels are independently sparse and share a common support. The method estimates the impulse response for each channel observed by the antennas at the receiver. Estimation is performed in a coordinated manner by sharing minimal information among neighboring antennas to achieve results better than many contemporary methods. Simulations demonstrate the superior performance of the proposed method.
Fast convolutional sparse coding using matrix inversion lemma
Czech Academy of Sciences Publication Activity Database
Šorel, Michal; Šroubek, Filip
2016-01-01
Roč. 55, č. 1 (2016), s. 44-51 ISSN 1051-2004 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Convolutional sparse coding * Feature learning * Deconvolution networks * Shift-invariant sparse coding Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.337, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/sorel-0459332.pdf
Discussion of CoSA: Clustering of Sparse Approximations
Energy Technology Data Exchange (ETDEWEB)
Armstrong, Derek Elswick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-07
The purpose of this talk is to discuss the possible applications of CoSA (Clustering of Sparse Approximations) to the exploitation of HSI (HyperSpectral Imagery) data. CoSA is presented by Moody et al. in the Journal of Applied Remote Sensing (“Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries”, Vol. 8, 2014) and is based on machine learning techniques.
Efficient collaborative sparse channel estimation in massive MIMO
Masood, Mudassir
2015-08-12
We propose a method for estimation of sparse frequency selective channels within MIMO-OFDM systems. These channels are independently sparse and share a common support. The method estimates the impulse response for each channel observed by the antennas at the receiver. Estimation is performed in a coordinated manner by sharing minimal information among neighboring antennas to achieve results better than many contemporary methods. Simulations demonstrate the superior performance of the proposed method.
A flexible framework for sparse simultaneous component based data integration
Directory of Open Access Journals (Sweden)
Van Deun Katrijn
2011-11-01
Full Text Available Abstract 1 Background High throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins have to be taken into account. 2 Results We propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks. 3 Conclusion Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such
A flexible framework for sparse simultaneous component based data integration.
Van Deun, Katrijn; Wilderjans, Tom F; van den Berg, Robert A; Antoniadis, Anestis; Van Mechelen, Iven
2011-11-15
High throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics) that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins) have to be taken into account. We propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks. Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such, structures can be found that are exclusively tied to one data platform
An NoC Traffic Compiler for Efficient FPGA Implementation of Sparse Graph-Oriented Workloads
Directory of Open Access Journals (Sweden)
Nachiket Kapre
2011-01-01
synchronization to optimize our workloads for large networks up to 2025 parallel elements for BSP model and 25 parallel elements for Token Dataflow. This allows us to demonstrate speedups between 1.2× and 22× (3.5× mean, area reductions (number of Processing Elements between 3× and 15× (9× mean and dynamic energy savings between 2× and 3.5× (2.7× mean over a range of real-world graph applications in the BSP compute model. We deliver speedups of 0.5–13× (geomean 3.6× for Sparse Direct Matrix Solve (Token Dataflow compute model applied to a range of sparse matrices when using a high-quality placement algorithm. We expect such traffic optimization tools and techniques to become an essential part of the NoC application-mapping flow.
A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary
Gillis, Nicolas; Luce, Robert
2018-01-01
A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.
Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.
Anzt, H; Quintana-Ortí, E S
2014-06-28
While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
A distributed-memory hierarchical solver for general sparse linear systems
Energy Technology Data Exchange (ETDEWEB)
Chen, Chao [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering; Pouransari, Hadi [Stanford Univ., CA (United States). Dept. of Mechanical Engineering; Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Boman, Erik G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Darve, Eric [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering and Dept. of Mechanical Engineering
2017-12-20
We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.
Sparse approximation of multilinear problems with applications to kernel-based methods in UQ
Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren
2017-01-01
We provide a framework for the sparse approximation of multilinear problems and show that several problems in uncertainty quantification fit within this framework. In these problems, the value of a multilinear map has to be approximated using approximations of different accuracy and computational work of the arguments of this map. We propose and analyze a generalized version of Smolyak’s algorithm, which provides sparse approximation formulas with convergence rates that mitigate the curse of dimension that appears in multilinear approximation problems with a large number of arguments. We apply the general framework to response surface approximation and optimization under uncertainty for parametric partial differential equations using kernel-based approximation. The theoretical results are supplemented by numerical experiments.
Sparse approximation of multilinear problems with applications to kernel-based methods in UQ
Nobile, Fabio
2017-11-16
We provide a framework for the sparse approximation of multilinear problems and show that several problems in uncertainty quantification fit within this framework. In these problems, the value of a multilinear map has to be approximated using approximations of different accuracy and computational work of the arguments of this map. We propose and analyze a generalized version of Smolyak’s algorithm, which provides sparse approximation formulas with convergence rates that mitigate the curse of dimension that appears in multilinear approximation problems with a large number of arguments. We apply the general framework to response surface approximation and optimization under uncertainty for parametric partial differential equations using kernel-based approximation. The theoretical results are supplemented by numerical experiments.
Iterative solution of general sparse linear systems on clusters of workstations
Energy Technology Data Exchange (ETDEWEB)
Lo, Gen-Ching; Saad, Y. [Univ. of Minnesota, Minneapolis, MN (United States)
1996-12-31
Solving sparse irregularly structured linear systems on parallel platforms poses several challenges. First, sparsity makes it difficult to exploit data locality, whether in a distributed or shared memory environment. A second, perhaps more serious challenge, is to find efficient ways to precondition the system. Preconditioning techniques which have a large degree of parallelism, such as multicolor SSOR, often have a slower rate of convergence than their sequential counterparts. Finally, a number of other computational kernels such as inner products could ruin any gains gained from parallel speed-ups, and this is especially true on workstation clusters where start-up times may be high. In this paper we discuss these issues and report on our experience with PSPARSLIB, an on-going project for building a library of parallel iterative sparse matrix solvers.
Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle
Directory of Open Access Journals (Sweden)
Xiangwei Xing
2014-01-01
Full Text Available As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC has attracted much attention in synthetic aperture radar (SAR automatic target recognition (ATR recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA, in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.
Structure-aware Local Sparse Coding for Visual Tracking
Qi, Yuankai
2018-01-24
Sparse coding has been applied to visual tracking and related vision problems with demonstrated success in recent years. Existing tracking methods based on local sparse coding sample patches from a target candidate and sparsely encode these using a dictionary consisting of patches sampled from target template images. The discriminative strength of existing methods based on local sparse coding is limited as spatial structure constraints among the template patches are not exploited. To address this problem, we propose a structure-aware local sparse coding algorithm which encodes a target candidate using templates with both global and local sparsity constraints. For robust tracking, we show local regions of a candidate region should be encoded only with the corresponding local regions of the target templates that are the most similar from the global view. Thus, a more precise and discriminative sparse representation is obtained to account for appearance changes. To alleviate the issues with tracking drifts, we design an effective template update scheme. Extensive experiments on challenging image sequences demonstrate the effectiveness of the proposed algorithm against numerous stateof- the-art methods.
Vector sparse representation of color image using quaternion matrix analysis.
Xu, Yi; Yu, Licheng; Xu, Hongteng; Zhang, Hao; Nguyen, Truong
2015-04-01
Traditional sparse image models treat color image pixel as a scalar, which represents color channels separately or concatenate color channels as a monochrome image. In this paper, we propose a vector sparse representation model for color images using quaternion matrix analysis. As a new tool for color image representation, its potential applications in several image-processing tasks are presented, including color image reconstruction, denoising, inpainting, and super-resolution. The proposed model represents the color image as a quaternion matrix, where a quaternion-based dictionary learning algorithm is presented using the K-quaternion singular value decomposition (QSVD) (generalized K-means clustering for QSVD) method. It conducts the sparse basis selection in quaternion space, which uniformly transforms the channel images to an orthogonal color space. In this new color space, it is significant that the inherent color structures can be completely preserved during vector reconstruction. Moreover, the proposed sparse model is more efficient comparing with the current sparse models for image restoration tasks due to lower redundancy between the atoms of different color channels. The experimental results demonstrate that the proposed sparse image model avoids the hue bias issue successfully and shows its potential as a general and powerful tool in color image analysis and processing domain.
Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging
Desmal, Abdulla
2016-03-01
synthetically generated or actually measured scattered fields, show that the images recovered by these sparsity-regularized methods are sharper and more accurate than those produced by existing methods. The methods developed in this work have potential application areas ranging from oil/gas reservoir engineering to biological imaging where sparse domains naturally exist.
Symmetric-bounce quantum state of the universe
Energy Technology Data Exchange (ETDEWEB)
Page, Don N., E-mail: don@phys.ualberta.ca [Theoretical Physics Institute, Department of Physics, University of Alberta, Room 238 CEB, 11322 – 89 Avenue, Edmonton, Alberta T6G 2G7 (Canada)
2009-09-01
A proposal is made for the quantum state of the universe that has an initial state that is macroscopically time symmetric about a homogeneous, isotropic bounce of extremal volume and that at that bounce is microscopically in the ground state for inhomogeneous and/or anisotropic perturbation modes. The coarse-grained entropy is minimum at the bounce and then grows during inflation as the modes become excited away from the bounce and interact (assuming the presence of an inflaton, and in the part of the quantum state in which the inflaton is initially large enough to drive inflation). The part of this pure quantum state that dominates for observations is well approximated by quantum processes occurring within a Lorentzian expanding macroscopic universe. Because this part of the quantum state has no negative Euclidean action, one can avoid the early-time Boltzmann brains and Boltzmann solar systems that appear to dominate observations in the Hartle-Hawking no-boundary wavefunction.
Symmetric-bounce quantum state of the universe
International Nuclear Information System (INIS)
Page, Don N.
2009-01-01
A proposal is made for the quantum state of the universe that has an initial state that is macroscopically time symmetric about a homogeneous, isotropic bounce of extremal volume and that at that bounce is microscopically in the ground state for inhomogeneous and/or anisotropic perturbation modes. The coarse-grained entropy is minimum at the bounce and then grows during inflation as the modes become excited away from the bounce and interact (assuming the presence of an inflaton, and in the part of the quantum state in which the inflaton is initially large enough to drive inflation). The part of this pure quantum state that dominates for observations is well approximated by quantum processes occurring within a Lorentzian expanding macroscopic universe. Because this part of the quantum state has no negative Euclidean action, one can avoid the early-time Boltzmann brains and Boltzmann solar systems that appear to dominate observations in the Hartle-Hawking no-boundary wavefunction
Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds
International Nuclear Information System (INIS)
Thompson, J.M.; Poston, J.W.
1999-01-01
If a large radioactive cloud is produced, sampling may require that an airplane traverse the cloud. A method to predict the absorbed dose to the aircrew from penetrating the radioactive cloud is needed. Dose rates throughout spherically symmetric Gaussian clouds of various sizes, and the absorbed doses from traversing the clouds, were calculated. Cloud size is a dominant parameter causing dose to vary by orders of magnitude for a given dose rate measured at some distance. A method to determine cloud size, based on dose rate readings at two or more distances from the cloud center, was developed. This method, however, failed to resolve the smallest cloud sizes from measurements made at 1,000 m to 2,000 m from the cloud center
Elsheikh, Ahmed H.
2013-06-01
We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.
Ma, N.; Zhang, Y.; Szilagyi, J.; Xu, C. Y.
2015-12-01
While the land surface latent and sensible heat release in the Tibetan Plateau (TP) could greatly influence the Asian monsoon circulation, the actual evapotranspiration (ETa) information in the TP has been largely hindered by its extremely sparse ground observation network. Thus the complementary relationship (CR) theory lends great potential in estimating the ETa since it relies on solely routine meteorological observations. With the in-situ energy/water flux observation over the highest semiarid alpine steppe in the TP, the modifications of specific components within the CR were first implemented. We found that the symmetry of the CR could be achieved for dry regions of TP when (i) the Priestley-Taylor coefficient, (ii) the slope of the saturation vapor pressure curve and (iii) the wind function were locally calibrated by using the ETa observations in wet days, an estimate of the wet surface temperature and the Monin-Obukhov Similarity (MOS) theory, respectively. In this way, the error of the simulated ETa by the symmetric AA model could be decreased to a large extent. Besides, the asymmetric CR was confirmed in TP when the D20 above-ground and/or E601B sunken pan evaporation (Epan) were used as a proxy of the ETp. Thus daily ETa could also be estimated by coupling D20 above-ground and/or E601B sunken pans through CR. Additionally, to overcome the modification of the specific components in the CR, we also evaluated the Nonlinear-CR model and the Morton's CRAE model. The former does not need the pre-determination of the asymmetry of CR, while the latter does not require the wind speed data as input. We found that both models are also able to simulate the daily ETa well provided their parameter values have been locally calibrated. The sensitivity analysis shows that, if the measured ETa data are absence to calibrate the models' parameter values, the Nonlinear-CR model may be a particularly good way for estimating ETabecause of its mild sensitivity to the parameter
MEASURING X-RAY VARIABILITY IN FAINT/SPARSELY SAMPLED ACTIVE GALACTIC NUCLEI
Energy Technology Data Exchange (ETDEWEB)
Allevato, V. [Department of Physics, University of Helsinki, Gustaf Haellstroemin katu 2a, FI-00014 Helsinki (Finland); Paolillo, M. [Department of Physical Sciences, University Federico II, via Cinthia 6, I-80126 Naples (Italy); Papadakis, I. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, 71003 Heraklion (Greece); Pinto, C. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584-CA Utrecht (Netherlands)
2013-07-01
We study the statistical properties of the normalized excess variance of variability process characterized by a ''red-noise'' power spectral density (PSD), as in the case of active galactic nuclei (AGNs). We perform Monte Carlo simulations of light curves, assuming both a continuous and a sparse sampling pattern and various signal-to-noise ratios (S/Ns). We show that the normalized excess variance is a biased estimate of the variance even in the case of continuously sampled light curves. The bias depends on the PSD slope and on the sampling pattern, but not on the S/N. We provide a simple formula to account for the bias, which yields unbiased estimates with an accuracy better than 15%. We show that the normalized excess variance estimates based on single light curves (especially for sparse sampling and S/N < 3) are highly uncertain (even if corrected for bias) and we propose instead the use of an ''ensemble estimate'', based on multiple light curves of the same object, or on the use of light curves of many objects. These estimates have symmetric distributions, known errors, and can also be corrected for biases. We use our results to estimate the ability to measure the intrinsic source variability in current data, and show that they could also be useful in the planning of the observing strategy of future surveys such as those provided by X-ray missions studying distant and/or faint AGN populations and, more in general, in the estimation of the variability amplitude of sources that will result from future surveys such as Pan-STARRS and LSST.
Inferential backbone assignment for sparse data
International Nuclear Information System (INIS)
Vitek, Olga; Bailey-Kellogg, Chris; Craig, Bruce; Vitek, Jan
2006-01-01
This paper develops an approach to protein backbone NMR assignment that effectively assigns large proteins while using limited sets of triple-resonance experiments. Our approach handles proteins with large fractions of missing data and many ambiguous pairs of pseudoresidues, and provides a statistical assessment of confidence in global and position-specific assignments. The approach is tested on an extensive set of experimental and synthetic data of up to 723 residues, with match tolerances of up to 0.5 ppm for C α and C β resonance types. The tests show that the approach is particularly helpful when data contain experimental noise and require large match tolerances. The keys to the approach are an empirical Bayesian probability model that rigorously accounts for uncertainty in the data at all stages in the analysis, and a hybrid stochastic tree-based search algorithm that effectively explores the large space of possible assignments
Large-scale DCMs for resting-state fMRI
Directory of Open Access Journals (Sweden)
Adeel Razi
2017-01-01
Full Text Available This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity. This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI. We use spectral dynamic causal modeling (DCM to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of Bayesian model reduction to discover the most likely sparse graph (or model from a parent (e.g., fully connected graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM—with functional connectivity priors—is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.
Geometric inequalities for axially symmetric black holes
International Nuclear Information System (INIS)
Dain, Sergio
2012-01-01
A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)
A symmetric bipolar nebula around MWC 922.
Tuthill, P G; Lloyd, J P
2007-04-13
We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.
Minimal Left-Right Symmetric Dark Matter.
Heeck, Julian; Patra, Sudhanwa
2015-09-18
We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.
Design and Analysis of Symmetric Primitives
DEFF Research Database (Denmark)
Lauridsen, Martin Mehl
. In the second part, we delve into the matter of the various aspects of designing a symmetric cryptographic primitive. We start by considering generalizations of the widely acclaimed Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component operation in the cipher which permutes...... analyze and implement modes recommended by the National Institute of Standards and Technology (NIST), as well as authenticated encryption modes from the CAESAR competition, when instantiated with the AES. The data processed in our benchmarking has sizes representative to that of typical Internet traffic...... linear cryptanalysis. We apply this model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that can be leveraged to fully recover the secret key with very low complexity...
Quasiaxially symmetric stellarators with three field periods
International Nuclear Information System (INIS)
Garabedian, P.; Ku, L.
1999-01-01
Compact hybrid configurations with two field periods have been studied recently as candidates for a proof of principle experiment at the Princeton Plasma Physics Laboratory. This project has led us to the discovery of a family of quasiaxially symmetric stellarators with three field periods that have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit will be at least as high as 4% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. copyright 1999 American Institute of Physics
Primordial two-component maximally symmetric inflation
Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.
1985-12-01
We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3)×SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.
Lovelock black holes with maximally symmetric horizons
Energy Technology Data Exchange (ETDEWEB)
Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)
2011-08-21
We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.
Polyhomogeneous expansions from time symmetric initial data
Gasperín, E.; Valiente Kroon, J. A.
2017-10-01
We make use of Friedrich’s construction of the cylinder at spatial infinity to relate the logarithmic terms appearing in asymptotic expansions of components of the Weyl tensor to the freely specifiable parts of time symmetric initial data sets for the Einstein field equations. Our analysis is based on the assumption that a particular type of formal expansions near the cylinder at spatial infinity corresponds to the leading terms of actual solutions to the Einstein field equations. In particular, we show that if the Bach tensor of the initial conformal metric does not vanish at the point at infinity then the most singular component of the Weyl tensor decays near null infinity as O(\\tilde{r}-3\\ln \\tilde{r}) so that spacetime will not peel. We also provide necessary conditions on the initial data which should lead to a peeling spacetime. Finally, we show how to construct global spacetimes which are candidates for non-peeling (polyhomogeneous) asymptotics.
From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins
Directory of Open Access Journals (Sweden)
Gemma Villorbina
2011-03-01
Full Text Available The anticipated worldwide increase in biodiesel production will result in an accumulation of glycerol for which there are insufficient conventional uses. The surplus of this by-product has increased rapidly during the last decade, prompting a search for new glycerol applications. We describe here the synthesis of dissymmetric chlorohydrin esters from symmetric 1,3-dichloro-2-propyl esters obtained from glycerol. We studied the influence of two solvents: 1,4-dioxane and 1-butanol and two bases: sodium carbonate and 1-butylimidazole, on the synthesis of dissymmetric chlorohydrin esters. In addition, we studied the influence of other bases (potassium and lithium carbonates in the reaction using 1,4-dioxane as the solvent. The highest yield was obtained using 1,4-dioxane and sodium carbonate.
Bidding behavior in a symmetric Chinese auction
Directory of Open Access Journals (Sweden)
Mauricio Benegas
2015-01-01
Full Text Available This paper purposes a symmetric all-pay auction where the bidders compete neither for an object nor the object itself but for a lottery on receive. That lottery is determined endogenously through the bids. This auction is known as chance auction or more popularly as Chinese auction. The model considers the possibility that for some bidders the optimal strategy is to bid zero and to rely on luck. It showed that bidders become less aggressive when the lottery satisfies a variational condition. It was also shown that luck factor is decisive to determine if the expected payoff in Chinese auction is bigger or smaller than expected payoff in standard all-pay auction.
Canonical quantization of static spherically symmetric geometries
International Nuclear Information System (INIS)
Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A
2013-01-01
The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''
Cryptanalysis of Some Lightweight Symmetric Ciphers
DEFF Research Database (Denmark)
Abdelraheem, Mohamed Ahmed Awadelkareem Mohamed Ahmed
In recent years, the need for lightweight encryption systems has been increasing as many applications use RFID and sensor networks which have a very low computational power and thus incapable of performing standard cryptographic operations. In response to this problem, the cryptographic community...... on a variant of PRESENT with identical round keys. We propose a new attack named the Invariant Subspace Attack that was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore, we mount several attacks on a recently proposed stream cipher called A2U2....... of the international standards in lightweight cryptography. This thesis aims at analyzing and evaluating the security of some the recently proposed lightweight symmetric ciphers with a focus on PRESENT-like ciphers, namely, the block cipher PRESENT and the block cipher PRINTcipher. We provide an approach to estimate...
Cosmic ray antimatter and baryon symmetric cosmology
Stecker, F. W.; Protheroe, R. J.; Kazanas, D.
1982-01-01
The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.
2D sparse array transducer optimization for 3D ultrasound imaging
International Nuclear Information System (INIS)
Choi, Jae Hoon; Park, Kwan Kyu
2014-01-01
A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.
Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT.
Han, Yoseob; Ye, Jong Chul
2018-06-01
X-ray computed tomography (CT) using sparse projection views is a recent approach to reduce the radiation dose. However, due to the insufficient projection views, an analytic reconstruction approach using the filtered back projection (FBP) produces severe streaking artifacts. Recently, deep learning approaches using large receptive field neural networks such as U-Net have demonstrated impressive performance for sparse-view CT reconstruction. However, theoretical justification is still lacking. Inspired by the recent theory of deep convolutional framelets, the main goal of this paper is, therefore, to reveal the limitation of U-Net and propose new multi-resolution deep learning schemes. In particular, we show that the alternative U-Net variants such as dual frame and tight frame U-Nets satisfy the so-called frame condition which makes them better for effective recovery of high frequency edges in sparse-view CT. Using extensive experiments with real patient data set, we demonstrate that the new network architectures provide better reconstruction performance.
Robust Single Image Super-Resolution via Deep Networks With Sparse Prior.
Liu, Ding; Wang, Zhaowen; Wen, Bihan; Yang, Jianchao; Han, Wei; Huang, Thomas S
2016-07-01
Single image super-resolution (SR) is an ill-posed problem, which tries to recover a high-resolution image from its low-resolution observation. To regularize the solution of the problem, previous methods have focused on designing good priors for natural images, such as sparse representation, or directly learning the priors from a large data set with models, such as deep neural networks. In this paper, we argue that domain expertise from the conventional sparse coding model can be combined with the key ingredients of deep learning to achieve further improved results. We demonstrate that a sparse coding model particularly designed for SR can be incarnated as a neural network with the merit of end-to-end optimization over training data. The network has a cascaded structure, which boosts the SR performance for both fixed and incremental scaling factors. The proposed training and testing schemes can be extended for robust handling of images with additional degradation, such as noise and blurring. A subjective assessment is conducted and analyzed in order to thoroughly evaluate various SR techniques. Our proposed model is tested on a wide range of images, and it significantly outperforms the existing state-of-the-art methods for various scaling factors both quantitatively and perceptually.
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe
2013-01-01
Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764
Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin
2017-01-01
We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.
International Nuclear Information System (INIS)
Brown, Kristen A.; Harlim, John
2013-01-01
In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the deterministic piecewise linear interpolation scheme and the ordinary kriging scheme in interpolating irregularly spaced raw data to regularly spaced processed data and the importance of dynamical constraint (through MSM) in filtering the processed data on a numerically stiff state estimation problem. In particular, we test this approach on a two-layer quasi-geostrophic model in a two-dimensional domain with a small radius of deformation to mimic ocean turbulence. Our numerical results suggest that the dynamical constraint becomes important when the observation noise variance is large. Second, we find that the filtered estimates with ordinary kriging are superior to those with linear interpolation when observation networks are not too sparse; such robust results are found from numerical simulations with many randomly simulated irregularly spaced observation networks, various observation time intervals, and observation error variances. Third, when the observation network is very sparse, we find that both the kriging and linear interpolations are comparable
Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data
Directory of Open Access Journals (Sweden)
Alexander P. Kartun-Giles
2018-04-01
Full Text Available A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing and equilibrium (static sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem. Here we propose a network process with hidden variables which is projective and can generate sparse power-law networks. Despite the model not being exchangeable, it can be closely related to exchangeable uncorrelated networks as indicated by its information theory characterization and its network entropy. The use of the proposed network process as a null model is here tested on real data, indicating that the model offers a promising avenue for statistical network modelling.
The radiation chemistry of symmetric aliphatic polyesters
International Nuclear Information System (INIS)
Babanalbandi, A.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.
1996-01-01
Full text: Naturally occurring, symmetric polyesters, including polyglycolic acid, polylactic acid and polyhydroxybutyrate, have found biomedical applications in areas as diverse as the controlled release of pharmaceuticals and the manufacture of surgical sutures. As biomedical products, the materials require sterilization by high energy radiation. This has provided the motivation for the present work. D'Alelio et al. have reported that linear, asymmetric polyesters undergo scission on irradiation, but that branched polyesters containing a methyl group in the diol segments undergo crosslinking. However, for the symmetric polyhydroxybutyrate, Carswell-Pomerantz et al. have reported that only scission occurs on radiolysis, with the evolution of CO and CO 2 as a result of the loss of ester linkages. These workers also found that G(CO + CO 2 ) was approximately equal to G(S) for this polyester. By contrast, Collett et al. have reported that G(S) = 1.26 and G(X) = 0.53 for polylactic acid, which indicates that the polymer undergoes nett crosslinking on radiolysis to form a gel. They have also reported that poly(lactic-co-glycolic acid) should form a gel on radiolysis, since G(S) = 1.66 and G(X) = 0.65 for a 1:1 copolymer composition. In the present work the radiolysis of polylactic acid and poly(lactic-co-glycolic acid) have been reinvestigated in order to resolve the differences between the work of Collett et al. and that of Carswell-Pomerantz et al. In these studies, ESR has been used to study the radicals formed, GPC has been used to investigate scission and crosslinking, GC has been used to study the small molecule volatile products and NMR spectroscopy has been used to identify and measure the new chemical structures formed in the polymers
FFLP problem with symmetric trapezoidal fuzzy numbers
Directory of Open Access Journals (Sweden)
Reza Daneshrad
2015-04-01
Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.
Axially symmetric Lorentzian wormholes in general relativity
International Nuclear Information System (INIS)
Schein, F.
1997-11-01
The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.
Guo, Yanrong; Gao, Yaozong; Shen, Dinggang
2016-04-01
Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods.
Image fusion via nonlocal sparse K-SVD dictionary learning.
Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang
2016-03-01
Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.
Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.
Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang
2017-07-01
It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.
X-ray computed tomography using curvelet sparse regularization.
Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias
2015-04-01
Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.
Selectivity and sparseness in randomly connected balanced networks.
Directory of Open Access Journals (Sweden)
Cengiz Pehlevan
Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.
Low-count PET image restoration using sparse representation
Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli
2018-04-01
In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.
Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.
She, Huajun; Chen, Rong-Rong; Liang, Dong; DiBella, Edward V R; Ying, Leslie
2014-02-01
To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods. Copyright © 2013 Wiley Periodicals, Inc.