WorldWideScience

Sample records for large space vehicles

  1. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  2. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles

    International Nuclear Information System (INIS)

    Surzhikov, S.

    2012-01-01

    Graphical abstract: It has been shown that different coupled vibrational dissociation models, being applied for solving coupled radiative gasdynamic problems for large size space vehicles, exert noticeable effect on radiative heating of its surface at orbital entry on high altitudes (h ⩾ 70 km). This influence decreases with decreasing the space vehicles sizes. Figure shows translational (solid lines) and vibrational (dashed lines) temperatures in shock layer with (circle markers) and without (triangles markers) radiative-gasdynamic interaction for one trajectory point of entering space vehicle. Highlights: ► Nonequilibrium dissociation processes exert effect on radiation heating of space vehicles (SV). ► The radiation gas dynamic interaction enhances this influence. ► This influence increases with increasing the SV sizes. - Abstract: Radiative aerothermodynamics of large-scale space vehicles is considered for Earth orbital entry at zero angle of attack. Brief description of used radiative gasdynamic model of physically and chemically nonequilibrium, viscous, heat conductive and radiative gas of complex chemical composition is presented. Radiation gasdynamic (RadGD) interaction in high temperature shock layer is studied by means of numerical experiment. It is shown that radiation–gasdynamic coupling for orbital space vehicles of large size is important for high altitude part of entering trajectory. It is demonstrated that the use of different models of coupled vibrational dissociation (CVD) in conditions of RadGD interaction gives rise temperature variation in shock layer and, as a result, leads to significant variation of radiative heating of space vehicle.

  3. Space vehicle chassis

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  4. Analyzing Damping Vibration Methods of Large-Size Space Vehicles in the Earth's Magnetic Field

    Directory of Open Access Journals (Sweden)

    G. A. Shcheglov

    2016-01-01

    Full Text Available It is known that most of today's space vehicles comprise large antennas, which are bracket-attached to the vehicle body. Dimensions of reflector antennas may be of 30 ... 50 m. The weight of such constructions can reach approximately 200 kg.Since the antenna dimensions are significantly larger than the size of the vehicle body and the points to attach the brackets to the space vehicles have a low stiffness, conventional dampers may be inefficient. The paper proposes to consider the damping antenna in terms of its interaction with the Earth's magnetic field.A simple dynamic model of the space vehicle equipped with a large-size structure is built. The space vehicle is a parallelepiped to which the antenna is attached through a beam.To solve the model problems, was used a simplified model of Earth's magnetic field: uniform, with intensity lines parallel to each other and perpendicular to the plane of the antenna.The paper considers two layouts of coils with respect to the antenna, namely: a vertical one in which an axis of magnetic dipole is perpendicular to the antenna plane, and a horizontal layout in which an axis of magnetic dipole lies in the antenna plane. It also explores two ways for magnetic damping of oscillations: through the controlled current that is supplied from the power supply system of the space vehicle, and by the self-induction current in the coil. Thus, four objectives were formulated.In each task was formulated an oscillation equation. Then a ratio of oscillation amplitudes and their decay time were estimated. It was found that each task requires the certain parameters either of the antenna itself, its dimensions and moment of inertia, or of the coil and, respectively, the current, which is supplied from the space vehicle. In each task for these parameters were found the ranges, which allow us to tell of efficient damping vibrations.The conclusion can be drawn based on the analysis of tasks that a specialized control system

  5. Comparison and Validation of FLUKA and HZETRN as Tools for Investigating the Secondary Neutron Production in Large Space Vehicles

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2015-01-01

    NASA's exploration goals are focused on deep space travel and Mars surface operations. To accomplish these goals, large structures will be necessary to transport crew and logistics in the initial stages, and NASA will need to keep the crew and the vehicle safe during transport and any surface activities. One of the major challenges of deep space travel is the space radiation environment and its impacts on the crew, the electronics, and the vehicle materials. The primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle. These interactions lead to some of the primary radiation being absorbed, being modified, or producing secondary radiation (primarily neutrons). With all vehicles, the high energy primary radiation is of most concern. However, with larger vehicles that have large shielding masses, there is more opportunity for secondary radiation production, and this secondary radiation can be significant enough to cause concern. When considering surface operations, there is also a secondary radiation source from the surface of the planet, known as albedo, with neutrons being one of the most significant species. Given new vehicle designs for deep space and Mars missions, the secondary radiation environment and the implications of that environment is currently not well understood. Thus, several studies are necessary to fill the knowledge gaps of this secondary radiation environment. In this paper, we put forth the initial steps to increasing our understanding of neutron production from large vehicles by comparing the neutron production resulting from our radiation transport codes and providing a preliminary validation of our results against flight data. This paper will review the details of these results and discuss the finer points of the analysis.

  6. Distributed Model Predictive Control over Multiple Groups of Vehicles in Highway Intelligent Space for Large Scale System

    Directory of Open Access Journals (Sweden)

    Tang Xiaofeng

    2014-01-01

    Full Text Available The paper presents the three time warning distances for solving the large scale system of multiple groups of vehicles safety driving characteristics towards highway tunnel environment based on distributed model prediction control approach. Generally speaking, the system includes two parts. First, multiple vehicles are divided into multiple groups. Meanwhile, the distributed model predictive control approach is proposed to calculate the information framework of each group. Each group of optimization performance considers the local optimization and the neighboring subgroup of optimization characteristics, which could ensure the global optimization performance. Second, the three time warning distances are studied based on the basic principles used for highway intelligent space (HIS and the information framework concept is proposed according to the multiple groups of vehicles. The math model is built to avoid the chain avoidance of vehicles. The results demonstrate that the proposed highway intelligent space method could effectively ensure driving safety of multiple groups of vehicles under the environment of fog, rain, or snow.

  7. Large size space construction for space exploitation

    Science.gov (United States)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  8. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  9. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  10. Development of a large scale Chimera grid system for the Space Shuttle Launch Vehicle

    Science.gov (United States)

    Pearce, Daniel G.; Stanley, Scott A.; Martin, Fred W., Jr.; Gomez, Ray J.; Le Beau, Gerald J.; Buning, Pieter G.; Chan, William M.; Chiu, Ing-Tsau; Wulf, Armin; Akdag, Vedat

    1993-01-01

    The application of CFD techniques to large problems has dictated the need for large team efforts. This paper offers an opportunity to examine the motivations, goals, needs, problems, as well as the methods, tools, and constraints that defined NASA's development of a 111 grid/16 million point grid system model for the Space Shuttle Launch Vehicle. The Chimera approach used for domain decomposition encouraged separation of the complex geometry into several major components each of which was modeled by an autonomous team. ICEM-CFD, a CAD based grid generation package, simplified the geometry and grid topology definition by provoding mature CAD tools and patch independent meshing. The resulting grid system has, on average, a four inch resolution along the surface.

  11. Space robot simulator vehicle

    Science.gov (United States)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  12. Space Vehicle Reliability Modeling in DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  13. Potential large missions enabled by NASA's space launch system

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.

    2016-07-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  14. Features of the Gravity Probe B Space Vehicle

    Science.gov (United States)

    Reeve, William; Green, Gaylord

    2007-04-01

    Space vehicle performance enabled successful relativity data collection throughout the Gravity Probe B mission. Precision pointing and drag-free translation control was maintained using proportional helium micro-thrusters. Electrical power was provided by rigid, double sided solar arrays. The 1.8 kelvin science instrument temperature was maintained using the largest cryogenic liquid helium dewar ever flown in space. The flight software successfully performed autonomous operations and safemode protection. Features of the Gravity Probe B Space Vehicle mechanisms include: 1) sixteen helium micro-thrusters, the first proportional thrusters flown in space, and large-orifice thruster isolation valves, 2) seven precision and high-authority mass trim mechanisms, 3) four non-pyrotechnic, highly reliable solar array deployment and release mechanism sets. Early incremental prototyping was used extensively to reduce spacecraft development risk. All spacecraft systems were redundant and provided multiple failure tolerance in critical systems. Lockheed Martin performed the spacecraft design, systems engineering, hardware and software integration, environmental testing and launch base operations, as well as on-orbit operations support for the Gravity Probe B space science experiment.

  15. Space vehicle with customizable payload and docking station

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin; Seitz, Daniel

    2018-01-30

    A "black box" space vehicle solution may allow a payload developer to define the mission space and provide mission hardware within a predetermined volume and with predetermined connectivity. Components such as the power module, radios and boards, attitude determination and control system (ADCS), command and data handling (C&DH), etc. may all be provided as part of a "stock" (i.e., core) space vehicle. The payload provided by the payload developer may be plugged into the space vehicle payload section, tested, and launched without custom development of core space vehicle components by the payload developer. A docking station may facilitate convenient development and testing of the space vehicle while reducing handling thereof.

  16. Carbon composites in space vehicle structures

    Science.gov (United States)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  17. Potential Large Decadal Missions Enabled by Nasas Space Launch System

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-01-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  18. Environmental effects and large space systems

    Science.gov (United States)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  19. 46 CFR 116.940 - Guards in vehicle spaces.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Guards in vehicle spaces. 116.940 Section 116.940... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or more vehicles, suitable chains, cables, or other barriers must be installed at the end of each vehicle runway...

  20. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  1. Large Scale System Safety Integration for Human Rated Space Vehicles

    Science.gov (United States)

    Massie, Michael J.

    2005-12-01

    Since the 1960s man has searched for ways to establish a human presence in space. Unfortunately, the development and operation of human spaceflight vehicles carry significant safety risks that are not always well understood. As a result, the countries with human space programs have felt the pain of loss of lives in the attempt to develop human space travel systems. Integrated System Safety is a process developed through years of experience (since before Apollo and Soyuz) as a way to assess risks involved in space travel and prevent such losses. The intent of Integrated System Safety is to take a look at an entire program and put together all the pieces in such a way that the risks can be identified, understood and dispositioned by program management. This process has many inherent challenges and they need to be explored, understood and addressed.In order to prepare truly integrated analysis safety professionals must gain a level of technical understanding of all of the project's pieces and how they interact. Next, they must find a way to present the analysis so the customer can understand the risks and make decisions about managing them. However, every organization in a large-scale project can have different ideas about what is or is not a hazard, what is or is not an appropriate hazard control, and what is or is not adequate hazard control verification. NASA provides some direction on these topics, but interpretations of those instructions can vary widely.Even more challenging is the fact that every individual/organization involved in a project has different levels of risk tolerance. When the discrete hazard controls of the contracts and agreements cannot be met, additional risk must be accepted. However, when one has left the arena of compliance with the known rules, there can be no longer be specific ground rules on which to base a decision as to what is acceptable and what is not. The integrator must find common grounds between all parties to achieve

  2. Lightning Protection for the Orion Space Vehicle

    Science.gov (United States)

    Scully, Robert

    2015-01-01

    The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.

  3. 46 CFR 177.940 - Guards in vehicle spaces.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Guards in vehicle spaces. 177.940 Section 177.940... TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a vessel authorized to carry one or more vehicles, suitable chains, cables, or other barriers must be installed at the...

  4. Crewed Space Vehicle Battery Safety Requirements

    Science.gov (United States)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  5. Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles

    Science.gov (United States)

    Aldridge, Edward; Curry, Bruce; Scully, Robert

    2015-01-01

    Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!

  6. Designing interior space for drivers of passenger vehicle

    Directory of Open Access Journals (Sweden)

    Spasojević-Brkić Vesna K.

    2014-01-01

    Full Text Available The current study is a review of our previous papers with certain improvements, so it proves the hypothesis that passenger vehicles are still not sufficiently adapted to man in terms of ergonomics, especially from the aspect of interior space. In the ergonomic adjustment of passenger vehicles, the limits of anthropomeasures and technical limitations, are the most important. The methodology mainly uses operative investigations, and the 'man-vehicle' system is optimized within existing limitations. Here, we also explain original methodology for modeling that space. The fact that there is a point '0' as the origin point of a coordinate system with x, y and z axes of the man-vehicle system, which can be considered to be more or less fixed, enabled us to determine more accurately the mechanical and mathematical codependence in this system. The paper also proves that the anthropomeasures of length have mechanical and mathematical functions which also determine the width, i.e. all three dimensions and provides the design of the space behind the windscreen glass, the position of the steering wheel and the position of the foot commands with space for feet and knees determined, as well as the total space which the driver occupies. It is proved that the floor-ceiling height of a vehicle is primarily affected by the anthropomeasures of seating height and lower leg, while width is affected by the anthropomeasures of lower and upper leg and only then by shoulder width, so that the interior space for the driver of a passenger vehicle is 1250 mm and the width for knees spread at seat level is 926 mm maximum.

  7. Electric Vehicles at Kennedy Space Center

    Science.gov (United States)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  8. Wooden Spaceships: Human-Centered Vehicle Design for Space

    Science.gov (United States)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  9. Spacesuit and Space Vehicle Comparative Ergonomic Evaluation

    Science.gov (United States)

    England, Scott; Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2011-01-01

    With the advent of the latest manned spaceflight objectives, a series of prototype launch and reentry spacesuit architectures were evaluated for eventual down selection by NASA based on the performance of a set of designated tasks. A consolidated approach was taken to testing, concurrently collecting suit mobility data, seat-suit-vehicle interface clearances and movement strategies within the volume of a Multi-Purpose Crew Vehicle mockup. To achieve the objectives of the test, a requirement was set forth to maintain high mockup fidelity while using advanced motion capture technologies. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The mockup was constructed such that it could be dimensionally validated rapidly with the motion capture system. This paper will describe the method used to create a motion capture compatible space vehicle mockup, the consolidated approach for evaluating spacesuits in action, as well as the various methods for generating hardware requirements for an entire population from the resulting complex data set using a limited number of test subjects. Kinematics, hardware clearance, suited anthropometry, and subjective feedback data were recorded on fifteen unsuited and five suited subjects. Unsuited subjects were selected chiefly by anthropometry, in an attempt to find subjects who fell within predefined criteria for medium male, large male and small female subjects. The suited subjects were selected as a subset of the unsuited subjects and tested in both unpressurized and pressurized conditions. Since the prototype spacesuits were fabricated in a single size to accommodate an approximately average sized male, the findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first performing population analysis through a comparison of suited

  10. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  11. Modular space vehicle boards, control software, reprogramming, and failure recovery

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin; Delapp, Jerry; Prichard, Dean; Proicou, Michael; Seitz, Daniel; Stein, Paul; Michel, John; Tripp, Justin; Palmer, Joseph; Storms, Steven

    2017-09-12

    A space vehicle may have a modular board configuration that commonly uses some or all components and a common operating system for at least some of the boards. Each modular board may have its own dedicated processing, and processing loads may be distributed. The space vehicle may be reprogrammable, and may be launched without code that enables all functionality and/or components. Code errors may be detected and the space vehicle may be reset to a working code version to prevent system failure.

  12. Ares Launch Vehicles Overview: Space Access Society

    Science.gov (United States)

    Cook, Steve

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  13. Design optimization of space launch vehicles using a genetic algorithm

    Science.gov (United States)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  14. Fatal crashes involving large numbers of vehicles and weather.

    Science.gov (United States)

    Wang, Ying; Liang, Liming; Evans, Leonard

    2017-12-01

    Adverse weather has been recognized as a significant threat to traffic safety. However, relationships between fatal crashes involving large numbers of vehicles and weather are rarely studied according to the low occurrence of crashes involving large numbers of vehicles. By using all 1,513,792 fatal crashes in the Fatality Analysis Reporting System (FARS) data, 1975-2014, we successfully described these relationships. We found: (a) fatal crashes involving more than 35 vehicles are most likely to occur in snow or fog; (b) fatal crashes in rain are three times as likely to involve 10 or more vehicles as fatal crashes in good weather; (c) fatal crashes in snow [or fog] are 24 times [35 times] as likely to involve 10 or more vehicles as fatal crashes in good weather. If the example had used 20 vehicles, the risk ratios would be 6 for rain, 158 for snow, and 171 for fog. To reduce the risk of involvement in fatal crashes with large numbers of vehicles, drivers should slow down more than they currently do under adverse weather conditions. Driver deaths per fatal crash increase slowly with increasing numbers of involved vehicles when it is snowing or raining, but more steeply when clear or foggy. We conclude that in order to reduce risk of involvement in crashes involving large numbers of vehicles, drivers must reduce speed in fog, and in snow or rain, reduce speed by even more than they already do. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  15. Space and Missile Systems Center Standard: Technical Requirements for Electronic Parts, Materials, and Processes used in Space Vehicles

    Science.gov (United States)

    2013-04-12

    glass or oxide passivation over junctions . 4.3 Screening (100 percent). Screening (100 percent) shall be in accordance with section 1400 for the JAN...75 VCE = 75 IC = 75 VCE = 75 IC = 75 Hetero - junction Bipolar Transistor Gallium Arsenide 3/ 105 125 N/A N/A 75 75 Current...HDBK-339 Custom Large Scale Integrated Circuit Development and Acquisition for Space Vehicles MIL-STD-403C Preparation for and Installation of

  16. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    Science.gov (United States)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  17. Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

    OpenAIRE

    Shiuh-Jer Huang; Yu-Sheng Hsu

    2017-01-01

    On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be u...

  18. Design Optimization of Space Launch Vehicles Using a Genetic Algorithm

    National Research Council Canada - National Science Library

    Bayley, Douglas J

    2007-01-01

    .... A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost...

  19. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  20. Analysis for Large Scale Integration of Electric Vehicles into Power Grids

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Xiaoru

    2011-01-01

    Electric Vehicles (EVs) provide a significant opportunity for reducing the consumption of fossil energies and the emission of carbon dioxide. With more and more electric vehicles integrated in the power systems, it becomes important to study the effects of EV integration on the power systems......, especially the low and middle voltage level networks. In the paper, the basic structure and characteristics of the electric vehicles are introduced. The possible impacts of large scale integration of electric vehicles on the power systems especially the advantage to the integration of the renewable energies...... are discussed. Finally, the research projects related to the large scale integration of electric vehicles into the power systems are introduced, it will provide reference for large scale integration of Electric Vehicles into power grids....

  1. Space commercialization: Launch vehicles and programs; Symposium on Space Commercialization: Roles of Developing Countries, Nashville, TN, Mar. 5-10, 1989, Technical Papers

    International Nuclear Information System (INIS)

    Shahrokhi, F.; Greenberg, J.S.; Al-saud, Turki.

    1990-01-01

    The present volume on progress in astronautics and aeronautics discusses the advent of commercial space, broad-based space education as a prerequisite for space commercialization, and obstacles to space commercialization in the developing world. Attention is given to NASA directions in space propulsion for the year 2000 and beyond, possible uses of the external tank in orbit, power from the space shuttle and from space for use on earth, Long-March Launch Vehicles in the 1990s, the establishment of a center for advanced space propulsion, Pegasus as a key to low-cost space applications, legal problems of developing countries' access to space launch vehicles, and international law of responsibility for remote sensing. Also discussed are low-cost satellites and satellite launch vehicles, satellite launch systems of China; Raumkurier, the German recovery program; and the Ariane transfer vehicle as logistic support to Space Station Freedom

  2. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  3. Ariane transfer vehicle scenario

    Science.gov (United States)

    Deutscher, Norbert; Cougnet, Claude

    1990-10-01

    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  4. An investigation of the double layers caused by space vehicles moving through the ionosphere

    International Nuclear Information System (INIS)

    Liu Sanqiu; Liao Jingjing

    2010-01-01

    On the basis of non-steady-state nonlinear coupling equations of high-frequency field, density disturbance and potential, the evolution of double layers in the wake region of space vehicles moving through the ionosphere is numerically simulated in the non-static limit case. The results show that the interactions among plasmas, the vehicle and high-frequency electromagnetic waves radiated from the antenna system of the vehicle can lead to the formation of double layers. It is shown that the double layer is a nonlinear entity-caviton. Potential disturbance far away from the vehicle and the peak value of potential near the vehicle in the double layer are obvious. This is very important for detecting space vehicles with a stealth characteristic and preventing space vehicles from being harmed by double layers.

  5. Robust on-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  6. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design

    Science.gov (United States)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2012-01-01

    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes

  7. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    Science.gov (United States)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  8. Cyber threat impact assessment and analysis for space vehicle architectures

    Science.gov (United States)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  9. Investigation of Vehicle Requirements and Options for Future Space Tourism

    Science.gov (United States)

    Olds, John R.

    2001-01-01

    The research in support of this grant was performed by the PI, Dr. John Olds, and graduate students in the Space Systems Design Lab (SSDL) at Georgia Tech over the period December 1999 to December 2000. The work was sponsored by Dr. Ted Talay, branch chief of the Vehicle Analysis Branch at the NASA Langley Research Center. The objective of the project was to examine the characteristics of future space tourism markets and to identify the vehicle requirements that are necessary to enable this emerging new business segment.

  10. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    Science.gov (United States)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  11. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  12. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  13. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    Science.gov (United States)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  14. A more accurate modeling of the effects of actuators in large space structures

    Science.gov (United States)

    Hablani, H. B.

    1981-01-01

    The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.

  15. Some Problems of Rocket-Space Vehicles' Characteristics co- ordination

    Science.gov (United States)

    Sergienko, Alexander A.

    2002-01-01

    of the XX century suffered a reverse. The designers of the United States' firms and enterprises of aviation and rocket-space industry (Boeing, Rocketdyne, Lockheed Martin, McDonnell Douglas, Rockwell, etc.) and NASA (Marshall Space Flight Center, Johnson Space Center, Langley Research Center and Lewis Research Center and others) could not correctly co-ordinate the characteristics of a propulsion system and a space vehicle for elaboration of the "Single-Stage-To-Orbit" reusable vehicle (SSTO) as an integral whole system, which is would able to inject a payload into an orbit and to return back on the Earth. jet nozzle design as well as the choice of propulsion system characteristics, ensuring the high ballistic efficiency, are considered in the present report. The efficiency criterions for the engine and launch system parameters optimization are discussed. The new methods of the nozzle block optimal parameters' choice for the satisfaction of the object task of flight are suggested. The family of SSTO with a payload mass from 5 to 20 ton and initial weight under 800 ton is considered.

  16. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  17. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    Science.gov (United States)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  18. Gravity Probe B Space Vehicle

    Science.gov (United States)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  19. Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study

    Directory of Open Access Journals (Sweden)

    Sina Nordhoff

    2018-01-01

    Full Text Available Shuttles that operate without an onboard driver are currently being developed and tested in various projects worldwide. However, there is a paucity of knowledge on the determinants of acceptance of driverless shuttles in large cross-national samples. In the present study, we surveyed 10,000 respondents on the acceptance of driverless vehicles and sociodemographic characteristics, using a 94-item online questionnaire. After data filtering, data of 7,755 respondents from 116 countries were retained. Respondents reported that they would enjoy taking a ride in a driverless vehicle (mean = 4.90 on a scale from 1 = disagree strongly to 6 = agree strongly. We further found that the scores on the questionnaire items were most appropriately explained through a general acceptance component, which had loadings of about 0.7 for items pertaining to the usefulness of driverless vehicles and loadings between 0.5 and 0.6 for items concerning the intention to use, ease of use, pleasure, and trust in driverless vehicles, as well as knowledge of mobility-related developments. Additional components were identified as thrill seeking, wanting to be in control manually, supporting a car-free environment, and being comfortable with technology. Correlations between sociodemographic characteristics and general acceptance scores were small (<0.20, yet interpretable (e.g., people who reported difficulty with finding a parking space were more accepting towards driverless vehicles. Finally, we found that the GDP per capita of the respondents’ country was predictive of countries’ mean general acceptance score (ρ=-0.48 across 43 countries with 25 or more respondents. In conclusion, self-reported acceptance of driverless vehicles is more strongly determined by domain-specific attitudes than by sociodemographic characteristics. We recommend further research, using objective measures, into the hypothesis that national characteristics are a predictor of the acceptance of

  20. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  1. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    Science.gov (United States)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  2. The study of field and density cavity in the near wake region of a space vehicle

    International Nuclear Information System (INIS)

    Luo Qing; Wang Jing; Hu Taoping

    2011-01-01

    Under the static limit,using the method of Fourier transformation, the non-steady, nonlinear interactions between plasma and field in the near wake region of a space vehicle are investigated. Numerical calculations are performed and the results show that there are the formation of the electromagnetic soliton and density caviton in the near wake region of the space vehicle, which can be detected due to the collapse of electric field. Therefore, we can trace out the space vehicle by means of observing the structure and intensity of the density caviton and electromagnetic soliton although the space vehicle may be have a disguised characteristic. (authors)

  3. A future large-aperture UVOIR space observatory: reference designs

    Science.gov (United States)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  4. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.

    Science.gov (United States)

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.

  5. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  6. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  7. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  8. Advanced Mirror Technology Development for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  9. Space vehicle electromechanical system and helical antenna winding fixture

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  10. The Space Station as a Construction Base for Large Space Structures

    Science.gov (United States)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  11. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  12. Advanced Data Mining and Deployment for Integrated Vehicle Health Management and the Space Vehicle Lifecycle, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In a successful Phase 1 project for NASA SBIR topic A1.05, "Data Mining for Integrated Vehicle Health Management," Michigan Aerospace Corporation (MAC) demonstrated...

  13. Numerical study for flame deflector design of a space launch vehicle

    Science.gov (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil

    2017-04-01

    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  14. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  15. TP-Space RRT – Kinematic Path Planning of Non-Holonomic Any-Shape Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Blanco

    2015-05-01

    Full Text Available The autonomous navigation of vehicles typically combines two kinds of methods: a path is first planned, and then the robot is driven by a local obstacle-avoidance controller. The present work, which focuses on path planning, proposes an extension to the well-known rapidly-exploring random tree (RRT algorithm to allow its integration with a trajectory parameter-space (TP-space as an efficient method to detect collision-free, kinematically-feasible paths for arbitrarily-shaped vehicles. In contrast to original RRT, this proposal generates navigation trees, with poses as nodes, whose edges are all kinematically-feasible paths, suitable to being accurately followed by vehicles driven by pure reactive algorithms. Initial experiments demonstrate the suitability of the method with an Ackermann-steering vehicle model whose severe kinematic constraints cannot be obviated. An important result that sets this work apart from previous research is the finding that employing several families of potential trajectories to expand the tree, which can be done efficiently under the TP-space formalism, improves the optimality of the planned trajectories. A reference C++ implementation has been released as open-source.

  16. A Novel Spatial-Temporal Voronoi Diagram-Based Heuristic Approach for Large-Scale Vehicle Routing Optimization with Time Constraints

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2015-10-01

    Full Text Available Vehicle routing optimization (VRO designs the best routes to reduce travel cost, energy consumption, and carbon emission. Due to non-deterministic polynomial-time hard (NP-hard complexity, many VROs involved in real-world applications require too much computing effort. Shortening computing time for VRO is a great challenge for state-of-the-art spatial optimization algorithms. From a spatial-temporal perspective, this paper presents a spatial-temporal Voronoi diagram-based heuristic approach for large-scale vehicle routing problems with time windows (VRPTW. Considering time constraints, a spatial-temporal Voronoi distance is derived from the spatial-temporal Voronoi diagram to find near neighbors in the space-time searching context. A Voronoi distance decay strategy that integrates a time warp operation is proposed to accelerate local search procedures. A spatial-temporal feature-guided search is developed to improve unpromising micro route structures. Experiments on VRPTW benchmarks and real-world instances are conducted to verify performance. The results demonstrate that the proposed approach is competitive with state-of-the-art heuristics and achieves high-quality solutions for large-scale instances of VRPTWs in a short time. This novel approach will contribute to spatial decision support community by developing an effective vehicle routing optimization method for large transportation applications in both public and private sectors.

  17. Complex Formation Control of Large-Scale Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2012-01-01

    Full Text Available A new formation framework of large-scale intelligent autonomous vehicles is developed, which can realize complex formations while reducing data exchange. Using the proposed hierarchy formation method and the automatic dividing algorithm, vehicles are automatically divided into leaders and followers by exchanging information via wireless network at initial time. Then, leaders form formation geometric shape by global formation information and followers track their own virtual leaders to form line formation by local information. The formation control laws of leaders and followers are designed based on consensus algorithms. Moreover, collision-avoiding problems are considered and solved using artificial potential functions. Finally, a simulation example that consists of 25 vehicles shows the effectiveness of theory.

  18. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    Science.gov (United States)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  19. Navigation simulator for the Space Tug vehicle

    Science.gov (United States)

    Colburn, B. K.; Boland, J. S., III; Peters, E. G.

    1977-01-01

    A general simulation program (GSP) for state estimation of a nonlinear space vehicle flight navigation system is developed and used as a basis for evaluating the performance of a Space Tug navigation system. An explanation of the iterative guidance mode (IGM) guidance law, derivation of the dynamics, coordinate frames and state estimation routines are given in order to clarify the assumptions and approximations made. A number of simulation and analytical studies are used to demonstrate the operation of the Tug system. Included in the simulation studies are (1) initial offset vector parameter study; (2) propagation time vs accuracy; (3) measurement noise parametric study and (4) reduction in computational burden of an on-board implementable scheme. From the results of these studies, conclusions and recommendations concerning future areas of practical and theoretical work are presented.

  20. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design

    Science.gov (United States)

    Joosten, B. Kent

    2007-01-01

    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as an initial step to try to understand the implications of and potential solutions to incorporating artificial gravity in the design of human deep-space exploration vehicles. Of prime interest will be the mass penalties incurred by incorporating AG, along with any mission performance degradation.

  1. An Analytical Solution for Yaw Maneuver Optimization on the International Space Station and Other Orbiting Space Vehicles

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2015-01-01

    This paper suggests a new method for optimizing yaw maneuvers on the International Space Station (ISS). Yaw rotations are the most common large maneuvers on the ISS often used for docking and undocking operations, as well as for other activities. When maneuver optimization is used, large maneuvers, which were performed on thrusters, could be performed either using control moment gyroscopes (CMG), or with significantly reduced thruster firings. Maneuver optimization helps to save expensive propellant and reduce structural loads - an important factor for the ISS service life. In addition, optimized maneuvers reduce contamination of the critical elements of the vehicle structure, such as solar arrays. This paper presents an analytical solution for optimizing yaw attitude maneuvers. Equations describing pitch and roll motion needed to counteract the major torques during a yaw maneuver are obtained. A yaw rate profile is proposed. Also the paper describes the physical basis of the suggested optimization approach. In the obtained optimized case, the torques are significantly reduced. This torque reduction was compared to the existing optimization method which utilizes the computational solution. It was shown that the attitude profiles and the torque reduction have a good match for these two methods of optimization. The simulations using the ISS flight software showed similar propellant consumption for both methods. The analytical solution proposed in this paper has major benefits with respect to computational approach. In contrast to the current computational solution, which only can be calculated on the ground, the analytical solution does not require extensive computational resources, and can be implemented in the onboard software, thus, making the maneuver execution automatic. The automatic maneuver significantly simplifies the operations and, if necessary, allows to perform a maneuver without communication with the ground. It also reduces the probability of command

  2. Multiple Model-Based Synchronization Approaches for Time Delayed Slaving Data in a Space Launch Vehicle Tracking System

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2016-01-01

    Full Text Available Due to the inherent characteristics of the flight mission of a space launch vehicle (SLV, which is required to fly over very large distances and have very high fault tolerances, in general, SLV tracking systems (TSs comprise multiple heterogeneous sensors such as radars, GPS, INS, and electrooptical targeting systems installed over widespread areas. To track an SLV without interruption and to hand over the measurement coverage between TSs properly, the mission control system (MCS transfers slaving data to each TS through mission networks. When serious network delays occur, however, the slaving data from the MCS can lead to the failure of the TS. To address this problem, in this paper, we propose multiple model-based synchronization (MMS approaches, which take advantage of the multiple motion models of an SLV. Cubic spline extrapolation, prediction through an α-β-γ filter, and a single model Kalman filter are presented as benchmark approaches. We demonstrate the synchronization accuracy and effectiveness of the proposed MMS approaches using the Monte Carlo simulation with the nominal trajectory data of Korea Space Launch Vehicle-I.

  3. Prospects for the use of thermionic nuclear power plants for interorbital transfers of space vehicles in near space

    International Nuclear Information System (INIS)

    Andreev, P.V.; Zhabotinskii, E.E.; Nikonov, A.M.

    1993-01-01

    In a previous study the authors considered the use of thermionic nuclear power plants with a thermal reactor for interorbital transfers of space vehicles by electrojet propulsion systems (EJPSs), opening up broad prospects for putting payloads into a high orbit with relatively inexpensive means for a launch into a reference orbit, e.g., the Proton launch vehicle. This is of major importance for the commercial use of space technology, in particular, for erecting technological platforms for the production of various materials. In the work reported here the authors continue the study of interorbital transfers and explore the potentialities of thermionic NPPs with a thermal reactor and with a fast reactor. In boosted operation the electrical power of the latter may reach several hundred kilowatts. What type of NPP is desirable for testing an electrojet propulsion system in interorbital transfers from a reference orbit to a high orbit, providing that the time is limited, depends on the class of the launch vehicle characterized by the mass M o that the vehicle can carry into the reference orbit, where radiation safety conditions allow the NPP to be started up. Results of studies are presented that give an idea of the rational choice of type of thermionic NPP for the organization in interorbital transfers

  4. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    Science.gov (United States)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  5. New space vehicle archetypes for human planetary missions

    Science.gov (United States)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  6. Automated space vehicle control for rendezvous proximity operations

    Science.gov (United States)

    Lea, Robert N.

    1988-01-01

    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  7. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    Science.gov (United States)

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  8. Space-Based Counterforce in the Second Nuclear Age

    Science.gov (United States)

    2015-04-01

    but also open wide the gates of the solar system to large-scale human exploration and development. Instead of offering only a dark age of...by the Scaled Composites SpaceShipOne vehicle that won the Ansari X-PRIZE in 2004 or Virgin Galactic’s space tourism vehicle SpaceShipTwo. It was

  9. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    Science.gov (United States)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  10. SIGMA/B, Doses in Space Vehicle for Multiple Trajectories, Various Radiation Source

    International Nuclear Information System (INIS)

    Jordan, T.M.

    2003-01-01

    1 - Description of problem or function: SIGMA/B calculates radiation dose at arbitrary points inside a space vehicle, taking into account vehicle geometry, heterogeneous placement of equipment and stores, vehicle materials, time-weighted astronaut positions and many radiation sources from mission trajectories, e.g. geomagnetically trapped protons and electrons, solar flare particles, galactic cosmic rays and their secondary radiations. The vehicle geometry, equipment and supplies, and man models are described by quadric surfaces. The irradiating flux field may be anisotropic. The code can be used to perform simultaneous dose calculations for multiple vehicle trajectories, each involving several radiation sources. Results are presented either as dose as a function of shield thickness, or the dose received through designated outer sections of the vehicle. 2 - Method of solution: Automatic sectoring of the vehicle is performed by a Simpson's rule integration over angle; the dose is computed by a numerical angular integration of the dose attenuation kernels about the dose points. The kernels are curve-fit functions constructed from input data tables. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning techniques to store data. The only restriction on problem size is the available core storage

  11. Levitation characteristics of a high-temperature superconducting Maglev system for launching space vehicles

    International Nuclear Information System (INIS)

    Yang Wenjiang; Liu Yu; Chen Xiaodong; Wen Zheng; Duan Yi; Qiu Ming

    2007-01-01

    Maglev launch assist is viewed as an effective method to reduce the cost of space launch. The primary aerodynamic characteristics of the Maglev launch vehicle and the space vehicle are discussed by analyzing their aerodynamic shapes and testing a scale mode in a standard wind tunnel. After analyzing several popular Maglev systems, we present a no-controlling Maglev system with bulk YBaCuO high-temperature superconductors (HTSs). We tested a HTS Maglev system unit, and obtained the levitation force density of 3.3 N/cm 2 and the lateral force density of 2.0 N/cm 2 . We also fabricated a freely levitated test platform to investigate the levitation characteristics of the HTS Maglev system in load changing processes. We found that the HTS system could provide the strong self-stable levitation performance due to the magnetic flux trapped in superconductors. The HTS Maglev system provided feasibility for application in the launch vehicle

  12. A FMM-FFT accelerated hybrid volume surface integral equation solver for electromagnetic analysis of re-entry space vehicles

    KAUST Repository

    Yü cel, Abdulkadir C.; Gomez, Luis J.; Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2014-01-01

    Space vehicles that re-enter the atmosphere often experience communication blackout. The blackout occurs when the vehicle becomes engulfed in plasma produced by interactions between the vehicle surface and the atmosphere. The plasma often

  13. Designing Light Electric Vehicles for urban freight transport

    NARCIS (Netherlands)

    Balm, S.H.; Hogt, Roeland

    2017-01-01

    The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the livability of cities. Freight vehicles are large contributors to polluting air and CO2 emissions and generate problems in terms of safety, noise and loss of public space. Small electric freight

  14. Initial Validation of Robotic Operations for In-Space Assembly of a Large Solar Electric Propulsion Transport Vehicle

    Science.gov (United States)

    Komendera, Erik E.; Dorsey, John T.

    2017-01-01

    Developing a capability for the assembly of large space structures has the potential to increase the capabilities and performance of future space missions and spacecraft while reducing their cost. One such application is a megawatt-class solar electric propulsion (SEP) tug, representing a critical transportation ability for the NASA lunar, Mars, and solar system exploration missions. A series of robotic assembly experiments were recently completed at Langley Research Center (LaRC) that demonstrate most of the assembly steps for the SEP tug concept. The assembly experiments used a core set of robotic capabilities: long-reach manipulation and dexterous manipulation. This paper describes cross-cutting capabilities and technologies for in-space assembly (ISA), applies the ISA approach to a SEP tug, describes the design and development of two assembly demonstration concepts, and summarizes results of two sets of assembly experiments that validate the SEP tug assembly steps.

  15. Space and Missile Systems Center Standard: Test Requirements for Launch, Upper-Stage and Space Vehicles

    Science.gov (United States)

    2014-09-05

    Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space and Missile Systems Center/Air Force Program...140 Satellite Hardness and Survivability; Testing Rationale for Electronic Upset and Burnout Effects 30. JANNAF-GL-2012-01-RO Test and Evaluation...vehicle, subsystem, and unit lev- els . Acceptance testing shall be conducted on all subsequent flight items. The protoqualification strategy shall require

  16. Research on the impacts of large-scale electric vehicles integration into power grid

    Science.gov (United States)

    Su, Chuankun; Zhang, Jian

    2018-06-01

    Because of its special energy driving mode, electric vehicles can improve the efficiency of energy utilization and reduce the pollution to the environment, which is being paid more and more attention. But the charging behavior of electric vehicles is random and intermittent. If the electric vehicle is disordered charging in a large scale, it causes great pressure on the structure and operation of the power grid and affects the safety and economic operation of the power grid. With the development of V2G technology in electric vehicle, the study of the charging and discharging characteristics of electric vehicles is of great significance for improving the safe operation of the power grid and the efficiency of energy utilization.

  17. Large-scale model-based assessment of deer-vehicle collision risk.

    Directory of Open Access Journals (Sweden)

    Torsten Hothorn

    Full Text Available Ungulates, in particular the Central European roe deer Capreolus capreolus and the North American white-tailed deer Odocoileus virginianus, are economically and ecologically important. The two species are risk factors for deer-vehicle collisions and as browsers of palatable trees have implications for forest regeneration. However, no large-scale management systems for ungulates have been implemented, mainly because of the high efforts and costs associated with attempts to estimate population sizes of free-living ungulates living in a complex landscape. Attempts to directly estimate population sizes of deer are problematic owing to poor data quality and lack of spatial representation on larger scales. We used data on >74,000 deer-vehicle collisions observed in 2006 and 2009 in Bavaria, Germany, to model the local risk of deer-vehicle collisions and to investigate the relationship between deer-vehicle collisions and both environmental conditions and browsing intensities. An innovative modelling approach for the number of deer-vehicle collisions, which allows nonlinear environment-deer relationships and assessment of spatial heterogeneity, was the basis for estimating the local risk of collisions for specific road types on the scale of Bavarian municipalities. Based on this risk model, we propose a new "deer-vehicle collision index" for deer management. We show that the risk of deer-vehicle collisions is positively correlated to browsing intensity and to harvest numbers. Overall, our results demonstrate that the number of deer-vehicle collisions can be predicted with high precision on the scale of municipalities. In the densely populated and intensively used landscapes of Central Europe and North America, a model-based risk assessment for deer-vehicle collisions provides a cost-efficient instrument for deer management on the landscape scale. The measures derived from our model provide valuable information for planning road protection and defining

  18. Powered Explicit Guidance Modifications and Enhancements for Space Launch System Block-1 and Block-1B Vehicles

    Science.gov (United States)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt; Fill, Thomas

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shuttle heritage) for closed loop guidance. To accommodate vehicle capabilities and design for future evolutions of SLS, modifications were made to PEG for Block-1 to handle multi-phase burns, provide PEG updated propulsion information, and react to a core stage engine out. In addition, due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying out Lunar Vicinity and Earth Escape missions, certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions to account for long burn arcs and target translunar and hyperbolic orbits. This paper describes the design and implementation of modifications to the Block-1 PEG algorithm as compared to Space Shuttle. Furthermore, this paper illustrates challenges posed by the Block-1B vehicle and the required PEG enhancements. These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guidance, Navigation, and Control (GN&C) System.

  19. Launch vehicle selection model

    Science.gov (United States)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  20. Soft Spaces as Vehicles for Neoliberal Transformations of Strategic Spatial Planning?

    DEFF Research Database (Denmark)

    Olesen, Kristian

    2012-01-01

    This paper analyses how policy agendas are being shaped and reshaped in new soft spaces emerging in Danish spatial planning at subnational scales, and how policy-making in these soft spaces seeks to influence formal planning arenas. The paper demonstrates how the new soft planning spaces in Danis...... spatial planning, being used as vehicles for neoliberal transformations of strategic spatial planning. This paper therefore argues for a need to maintain a critical stance towards the emergence of soft spaces in spatial planning.......This paper analyses how policy agendas are being shaped and reshaped in new soft spaces emerging in Danish spatial planning at subnational scales, and how policy-making in these soft spaces seeks to influence formal planning arenas. The paper demonstrates how the new soft planning spaces in Danish...... spatial planning primarily are concerned with promoting policy agendas centred on economic development, whilst doing limited work in filling in the gaps between formal scales of planning, as envisaged in the planning literature. Instead, soft spaces seem to add to the increasing pressures on statutory...

  1. Development of a Refined Space Vehicle Rollout Forcing Function

    Science.gov (United States)

    James, George; Tucker, Jon-Michael; Valle, Gerard; Grady, Robert; Schliesing, John; Fahling, James; Emory, Benjamin; Armand, Sasan

    2016-01-01

    For several decades, American manned spaceflight vehicles and the associated launch platforms have been transported from final assembly to the launch pad via a pre-launch phase called rollout. The rollout environment is rich with forced harmonics and higher order effects can be used for extracting structural dynamics information. To enable this utilization, processing tools are needed to move from measured and analytical data to dynamic metrics such as transfer functions, mode shapes, modal frequencies, and damping. This paper covers the range of systems and tests that are available to estimate rollout forcing functions for the Space Launch System (SLS). The specific information covered in this paper includes: the different definitions of rollout forcing functions; the operational and developmental data sets that are available; the suite of analytical processes that are currently in-place or in-development; and the plans and future work underway to solve two immediate problems related to rollout forcing functions. Problem 1 involves estimating enforced accelerations to drive finite element models for developing design requirements for the SLS class of launch vehicles. Problem 2 involves processing rollout measured data in near real time to understand structural dynamics properties of a specific vehicle and the class to which it belongs.

  2. A FMM-FFT accelerated hybrid volume surface integral equation solver for electromagnetic analysis of re-entry space vehicles

    KAUST Repository

    Yücel, Abdulkadir C.

    2014-07-01

    Space vehicles that re-enter the atmosphere often experience communication blackout. The blackout occurs when the vehicle becomes engulfed in plasma produced by interactions between the vehicle surface and the atmosphere. The plasma often is concentrated in a relatively thin shell around the vehicle, with higher densities near its nose than rear. A less structured, sometimes turbulent plasma wake often trails the vehicle. The plasma shell severely affects the performance of side-mounted antennas as it alters their characteristics (frequency response, gain patterns, axial ratio, and impedance) away from nominal, free-space values, sometimes entirely shielding the antenna from the outside world. The plasma plume/turbulent wake similarly affect the performance of antennas mounted at the back of the vehicle. The electromagnetic characteristics of the thin plasma shell and plume/turbulent wake heavily depend on the type of re-entry trajectory, the vehicle\\'s speed, angles of attack, and chemical composition, as well as environmental conditions. To analyze the antennas\\' performance during blackout and to design robust communication antennas, efficient and accurate simulation tools for charactering the antennas\\' performance along the trajectory are called for.

  3. Overview of Small and Large-Scale Space Solar Power Concepts

    Science.gov (United States)

    Potter, Seth; Henley, Mark; Howell, Joe; Carrington, Connie; Fikes, John

    2006-01-01

    An overview of space solar power studies performed at the Boeing Company under contract with NASA will be presented. The major concepts to be presented are: 1. Power Plug in Orbit: this is a spacecraft that collects solar energy and distributes it to users in space using directed radio frequency or optical energy. Our concept uses solar arrays having the same dimensions as ISS arrays, but are assumed to be more efficient. If radiofrequency wavelengths are used, it will necessitate that the receiving satellite be equipped with a rectifying antenna (rectenna). For optical wavelengths, the solar arrays on the receiving satellite will collect the power. 2. Mars Clipper I Power Explorer: this is a solar electric Mars transfer vehicle to support human missions. A near-term precursor could be a high-power radar mapping spacecraft with self-transport capability. Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. 3. Alternative Architectures: this task involves investigating alternatives to the traditional solar power satellite (SPS) to supply commercial power from space for use on Earth. Four concepts were studied: two using photovoltaic power generation, and two using solar dynamic power generation, with microwave and laser power transmission alternatives considered for each. All four architectures use geostationary orbit. 4. Cryogenic Propellant Depot in Earth Orbit: this concept uses large solar arrays (producing perhaps 600 kW) to electrolyze water launched from Earth, liquefy the resulting hydrogen and oxygen gases, and store them until needed by spacecraft. 5. Beam-Powered Lunar Polar Rover: a lunar rover powered by a microwave or laser beam can explore permanently shadowed craters near the lunar

  4. Closed Loop Guidance Trade Study for Space Launch System Block-1B Vehicle

    Science.gov (United States)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The design of the next evolution of SLS, Block-1B, is well underway. The Block-1B vehicle is more capable overall than Block-1; however, the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) presents a challenge to the Powered Explicit Guidance (PEG) algorithm used by Block-1. To handle the long burn durations (on the order of 1000 seconds) of EUS missions, two algorithms were examined. An alternative algorithm, OPGUID, was introduced, while modifications were made to PEG. A trade study was conducted to select the guidance algorithm for future SLS vehicles. The chosen algorithm needs to support a wide variety of mission operations: ascent burns to LEO, apogee raise burns, trans-lunar injection burns, hyperbolic Earth departure burns, and contingency disposal burns using the Reaction Control System (RCS). Additionally, the algorithm must be able to respond to a single engine failure scenario. Each algorithm was scored based on pre-selected criteria, including insertion accuracy, algorithmic complexity and robustness, extensibility for potential future missions, and flight heritage. Monte Carlo analysis was used to select the final algorithm. This paper covers the design criteria, approach, and results of this trade study, showing impacts and considerations when adapting launch vehicle guidance algorithms to a broader breadth of in-space operations.

  5. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  6. EDIN0613P weight estimating program. [for launch vehicles

    Science.gov (United States)

    Hirsch, G. N.

    1976-01-01

    The weight estimating relationships and program developed for space power system simulation are described. The program was developed to size a two-stage launch vehicle for the space power system. The program is actually part of an overall simulation technique called EDIN (Engineering Design and Integration) system. The program sizes the overall vehicle, generates major component weights and derives a large amount of overall vehicle geometry. The program is written in FORTRAN V and is designed for use on the Univac Exec 8 (1110). By utilizing the flexibility of this program while remaining cognizant of the limits imposed upon output depth and accuracy by utilization of generalized input, this program concept can be a useful tool for estimating purposes at the conceptual design stage of a launch vehicle.

  7. Weight and cost forecasting for advanced manned space vehicles

    Science.gov (United States)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  8. REFINED MODEL OF THE OPTICAL SYSTEM FOR SPACE MINI-VEHICLES WITH LASER PROPULSION

    Directory of Open Access Journals (Sweden)

    M. S. Egorov

    2015-09-01

    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  9. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  10. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    Science.gov (United States)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  11. Preliminary Investigation of Impact on Multiple-Sheet Structures and an Evaluation of the Meteoroid Hazard to Space Vehicles

    Science.gov (United States)

    Nysmith, C. Robert; Summers, James L.

    1961-01-01

    Small pyrex glass spheres, representative of stoney meteoroids, were fired into 2024-T3 aluminum alclad multiple-sheet structures at velocities to 11,000 feet per second to evaluate the effectiveness of multisheet hull construction as a means of increasing the resistance of a spacecraft to meteoroid penetrations. The results of these tests indicate that increasing the number of sheets in a structure while keeping the total sheet thickness constant and increasing the spacing between sheets both tend to increase the penetration resistance of a structure of constant weight per unit area. In addition, filling the space between the sheets with a light filler material was found to substantially increase structure penetration resistance with a small increase in weight. An evaluation of the meteoroid hazard to space vehicles is presented in the form of an illustrative-example for two specific lunar mission vehicles, a single-sheet, monocoque hull vehicle and a glass-wool filled, double-sheet hull vehicle. The evaluation is presented in terms of the "best" and the "worst" conditions that might be expected as determined from astronomical and satellite measurements, high-speed impact data, and hypothesized meteoroid structures and compositions. It was observed that the vehicle flight time without penetration can be increased significantly by use of multiple-sheet rather than single-sheet hull construction with no increase in hull weight. Nevertheless, it is evident that a meteoroid hazard exists, even for the vehicle with the selected multiple-sheet hull.

  12. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom

    Science.gov (United States)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.

    1993-01-01

    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  13. Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle

    Science.gov (United States)

    Rhodes, Brooke M.; Reynolds, David W.

    2015-01-01

    With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and

  14. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik

    2013-01-01

    with this imbalance and to reduce its high dependence on oil production. For this reason, it is interesting to analyse the extent to which transport electrification can further the renewable energy integration. This paper quantifies this issue in Inner Mongolia, where the share of wind power in the electricity supply...... was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power...... integration by 8%. The application of EVs benefits from saving both energy system cost and fuel cost. However, the negative consequences of decreasing energy system efficiency and increasing the CO2 emission should be noted when applying the hydrogen fuel cell vehicle (HFCV). The results also indicate...

  15. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  16. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  17. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision

    Science.gov (United States)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  18. Small star trackers for modern space vehicles

    Science.gov (United States)

    Kouzmin, Vladimir; Jushkov, Vladimir; Zaikin, Vladimir

    2017-11-01

    Based on experience of many years creation of spacecrafts' star trackers with diversified detectors (from the first star trackers of 60's to tens versions of star trackers in the following years), using technological achievements in the field of optics and electronics the NPP "Geofizika-Cosmos" has provided celestial orientation for all the space vehicles created in Russia and now has developed a series of new star trackers with CCD matrix and special processors, which are able to meet needs in celestial orientation of the modern spacecrafts for the nearest 10-15 years. In the given article the main characteristics and description of some star trackers' versions are presented. The star trackers have various levels of technical characteristics and use both combined (Russian and foreign) procurement parts, and only national (Russian) procurement parts for the main units.

  19. Large Scale Deployment of Electric Vehicles (EVs) and Heat Pumps (HPs) in the Nordic Region

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Petersen, Pauli Fríðheim

    This report describes the study results of large scale deployment of electric vehicles (EVs) and heat pumps (HPs) in the Nordic countries of Denmark, Norway, Sweden and Finland, focusing on the demand profiles with high peneration of EVs and HPs in 2050......This report describes the study results of large scale deployment of electric vehicles (EVs) and heat pumps (HPs) in the Nordic countries of Denmark, Norway, Sweden and Finland, focusing on the demand profiles with high peneration of EVs and HPs in 2050...

  20. The Role of Habitability Studies in Space Facility and Vehicle Design

    Science.gov (United States)

    Adams, Constance M.

    1999-01-01

    This document is a viewgraph presentation which reviews the role of the space architect in designing a space vehicle with habitability as a chief concern. Habitability is composed of the qualities of the environment or system which support the crew in working and living. All the impacts from habitability are interdependent; i.e., impacts to well-being can impact performance, safety or efficiency. After reviewing the issues relating to habitability the presentation discusses the application of these issues in two case studies. The first studies the Bio-Plex Hab chamber which includes designs of the living and working areas. The second case study is the ISS-TransHab which is being studied as a prototype for Mars transit.

  1. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    Science.gov (United States)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  2. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  3. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  4. Calculation of neutron die-away times in a large-vehicle portal monitor

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.

    1980-05-01

    Monte Carlo methods have been used to calculate neutron die-away times in a large-vehicle portal monitor. These calculations were performed to investigate the adequacy of using neutron die-away time measurements to detect the clandestine movement of shielded nuclear materials. The geometry consisted of a large tunnel lined with He 3 proportional counters. The time behavior of the (n,p) capture reaction in these counters was calculated when the tunnel contained a number of different tractor-trailer load configurations. Neutron die-away times obtained from weighted least squares fits to these data were compared. The change in neutron die-away time due to the replacement of cargo in a fully loaded truck with a spherical shell containing 240 kg of borated polyethylene was calculated to be less than 3%. This result together with the overall behavior of neutron die-away time versus mass inside the tunnel strongly suggested that measurements of this type will not provide a reliable means of detecting shielded nuclear materials in a large vehicle. 5 figures, 4 tables

  5. A fast approach to generate large-scale topographic maps based on new Chinese vehicle-borne Lidar system

    International Nuclear Information System (INIS)

    Youmei, Han; Bogang, Yang

    2014-01-01

    Large -scale topographic maps are important basic information for city and regional planning and management. Traditional large- scale mapping methods are mostly based on artificial mapping and photogrammetry. The traditional mapping method is inefficient and limited by the environments. While the photogrammetry methods(such as low-altitude aerial mapping) is an economical and effective way to map wide and regulate range of large scale topographic map but doesn't work well in the small area due to the high cost of manpower and resources. Recent years, the vehicle-borne LIDAR technology has a rapid development, and its application in surveying and mapping is becoming a new topic. The main objective of this investigation is to explore the potential of vehicle-borne LIDAR technology to be used to fast mapping large scale topographic maps based on new Chinese vehicle-borne LIDAR system. It studied how to use the new Chinese vehicle-borne LIDAR system measurement technology to map large scale topographic maps. After the field data capture, it can be mapped in the office based on the LIDAR data (point cloud) by software which programmed by ourselves. In addition, the detailed process and accuracy analysis were proposed by an actual case. The result show that this new technology provides a new fast method to generate large scale topographic maps, which is high efficient and accuracy compared to traditional methods

  6. Space Situational Awareness of Large Numbers of Payloads From a Single Deployment

    Science.gov (United States)

    Segerman, A.; Byers, J.; Emmert, J.; Nicholas, A.

    2014-09-01

    The nearly simultaneous deployment of a large number of payloads from a single vehicle presents a new challenge for space object catalog maintenance and space situational awareness (SSA). Following two cubesat deployments last November, it took five weeks to catalog the resulting 64 orbits. The upcoming Kicksat mission will present an even greater SSA challenge, with its deployment of 128 chip-sized picosats. Although all of these deployments are in short-lived orbits, future deployments will inevitably occur at higher altitudes, with a longer term threat of collision with active spacecraft. With such deployments, individual scientific payload operators require rapid precise knowledge of their satellites' locations. Following the first November launch, the cataloguing did not initially associate a payload with each orbit, leaving this to the satellite operators. For short duration missions, the time required to identify an experiment's specific orbit may easily be a large fraction of the spacecraft's lifetime. For a Kicksat-type deployment, present tracking cannot collect enough observations to catalog each small object. The current approach is to treat the chip cloud as a single catalog object. However, the cloud dissipates into multiple subclouds and, ultimately, tiny groups of untrackable chips. One response to this challenge may be to mandate installation of a transponder on each spacecraft. Directional transponder transmission detections could be used as angle observations for orbit cataloguing. Of course, such an approach would only be employable with cooperative spacecraft. In other cases, a probabilistic association approach may be useful, with the goal being to establish the probability of an element being at a given point in space. This would permit more reliable assessment of the probability of collision of active spacecraft with any cloud element. This paper surveys the cataloguing challenges presented by large scale deployments of small spacecraft

  7. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  8. Necessity of Mutual Understandings in Supply Chain Management of Lithium-Ion Battery for Space Vehicle

    Science.gov (United States)

    Kiyokawa, T.; Nakajima, M.; Mori, Y.

    2012-01-01

    Application of Lithium Ion Battery (LIB) is getting growth these days in space industry. Through the supply chain of LIB, it is very important to establish deepen mutual understandings between space industry people and non-space industry people in order to meet requirements of space grade quality control. Furthermore, this approach has positive effects for safety handling and safety transportation. This paper explains necessity of mutual understandings based on the analysis of aviation incident report. The study is focused on its background and issues on each related industry. These contents are studied and discussed in the New Work Item Proposal of the International Standard of LIB for space vehicle.

  9. Project ARGO: The design and analysis of an all-propulsive and an aeroassisted version of a manned space transportation vehicle

    Science.gov (United States)

    Wang, H.; Seifert, D.; Waidelich, J.; Mileski, M.; Herr, D.; Wilks, M.; Law, G.; Folz, A.

    1989-01-01

    The Senior Aerospace System Design class at the University of Michigan undertook the design of a manned space transportation vehicle (STV) that would transport payloads between low earth orbit (LEO) and geosynchronous earth orbit (GEO). Designated ARGO after the ship of the Greek adventurer Jason, two different versions of an STV that would be based, refueled, and serviced at the Space Station Freedom were designed and analyzed by the class. With the same 2-man/7-day nominal mission of transporting a 10,000-kg payload up to GEO and bringing a 5000-kg payload back to LEO, the two versions of ARGO differ in the manner in which the delta V is applied to insert the vehicle into LEO upon return from GEO. The all-propulsive ARGO (or CSTV for chemical STV) uses thrust from its LH2/LOX rocket engines to produce the delta V during all phases of its mission. While the aeroassisted ARGO (or ASTV for aeroassisted STV) also uses the same engines for the majority of the mission, the final delta V used to insert the ASTV into LEO is produced by skimming the Earth's atmosphere and using the drag on the vehicle to apply the required delta V. This procedure allows for large propellant, and thus cost, savings, but creates many design problems such as the high heating rates and decelerations experienced by a vehicle moving through the atmosphere at hypersonic velocities. The design class, consisting of 43 senior aerospace engineering students, was divided into one managerial and eight technical groups. The technical groups consisted of spacecraft configuration and integration, mission analysis, atmospheric flight, propulsion, power and communications, life support and human factors, logistics and support, and systems analysis. Two committees were set up with members from each group to create the scale models of the STV's and to produce the final report.

  10. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  11. Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station

    Science.gov (United States)

    Alberts, Samantha J.

    The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.

  12. Environmental Disturbance Modeling for Large Inflatable Space Structures

    National Research Council Canada - National Science Library

    Davis, Donald

    2001-01-01

    Tightening space budgets and stagnating spacelift capabilities are driving the Air Force and other space agencies to focus on inflatable technology as a reliable, inexpensive means of deploying large structures in orbit...

  13. The Design and Operation of Suborbital Low Cost and Low Risk Vehicle to the Edge of Space (SOLVES)

    Science.gov (United States)

    Ridzuan Zakaria, Norul; Nasrun, Nasri; Rashidy Zulkifi, Mohd; Izmir Yamin, Mohd; Othman, Jamaludin; Rafidi Zakaria, Norul

    2013-09-01

    Inclusive in the planning of Spaceport Malaysia are 2 local suborbital vehicles development. One of the vehicles is called SOLVES or Suborbital Low Cost and Low Risk Vehicle to the Edge of Space. The emphasis on the design and operation of SOLVES is green and robotic technology, where both green technology and robotic technology are used to protect the environment and enhance safety. As SOLVES climbs, its center of gravity stabilizes and remains at the bottom as its propellant being used until it depletes, due to the position of the vehicle's passenger cabin and its engines at its lower end. It will reach 80km from sea level generally known as "the edge of space" due to its momentum although its propellant will be depleted at a lower altitude. As the suborbital vehicle descends tail first, its wings automatically extend and rotate at horizontal axes perpendicular to the fuselage. These naturally and passively rotating wings ensure controlled low velocity and stable descend of the vehicle. The passenger cabin also rotates automatically at a steady low speed at the centerline of its fuselage as it descends, caused naturally by the lift force, enabling its passengers a surrounding 360 degrees view. SOLVES is steered automatically to its landing point by an electrical propulsion system with a vectoring nozzle. The electrical propulsion minimizes space and weight and is free of pollution and noise. Its electrical power comes from a battery aided by power generated by the naturally rotating wings. When the vehicle lands, it is in the safest mode as its propellant is depleted and its center of gravity remains at the bottom of its cabin. The cabin, being located at the bottom of the fuselage, enables very convenient, rapid and safe entry and exit of its passengers. SOLVES will be a robotic suborbital vehicle with green technology. The vehicle will carry 4 passengers and each passenger will be trained to land the vehicle manually if the fully automated landing system fails

  14. Navigation API Route Fuel Saving Opportunity Assessment on Large-Scale Real-World Travel Data for Conventional Vehicles and Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-06

    The green routing strategy instructing a vehicle to select a fuel-efficient route benefits the current transportation system with fuel-saving opportunities. This paper introduces a navigation API route fuel-saving evaluation framework for estimating fuel advantages of alternative API routes based on large-scale, real-world travel data for conventional vehicles (CVs) and hybrid electric vehicles (HEVs). The navigation APIs, such Google Directions API, integrate traffic conditions and provide feasible alternative routes for origin-destination pairs. This paper develops two link-based fuel-consumption models stratified by link-level speed, road grade, and functional class (local/non-local), one for CVs and the other for HEVs. The link-based fuel-consumption models are built by assigning travel from a large number of GPS driving traces to the links in TomTom MultiNet as the underlying road network layer and road grade data from a U.S. Geological Survey elevation data set. Fuel consumption on a link is calculated by the proposed fuel consumption model. This paper envisions two kinds of applications: 1) identifying alternate routes that save fuel, and 2) quantifying the potential fuel savings for large amounts of travel. An experiment based on a large-scale California Household Travel Survey GPS trajectory data set is conducted. The fuel consumption and savings of CVs and HEVs are investigated. At the same time, the trade-off between fuel saving and time saving for choosing different routes is also examined for both powertrains.

  15. Extra-large letter spacing improves reading in dyslexia

    Science.gov (United States)

    Zorzi, Marco; Barbiero, Chiara; Facoetti, Andrea; Lonciari, Isabella; Carrozzi, Marco; Montico, Marcella; Bravar, Laura; George, Florence; Pech-Georgel, Catherine; Ziegler, Johannes C.

    2012-01-01

    Although the causes of dyslexia are still debated, all researchers agree that the main challenge is to find ways that allow a child with dyslexia to read more words in less time, because reading more is undisputedly the most efficient intervention for dyslexia. Sophisticated training programs exist, but they typically target the component skills of reading, such as phonological awareness. After the component skills have improved, the main challenge remains (that is, reading deficits must be treated by reading more—a vicious circle for a dyslexic child). Here, we show that a simple manipulation of letter spacing substantially improved text reading performance on the fly (without any training) in a large, unselected sample of Italian and French dyslexic children. Extra-large letter spacing helps reading, because dyslexics are abnormally affected by crowding, a perceptual phenomenon with detrimental effects on letter recognition that is modulated by the spacing between letters. Extra-large letter spacing may help to break the vicious circle by rendering the reading material more easily accessible. PMID:22665803

  16. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    Science.gov (United States)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  17. A hybrid metaheuristic for the time-dependent vehicle routing problem with hard time windows

    Directory of Open Access Journals (Sweden)

    N. Rincon-Garcia

    2017-01-01

    Full Text Available This article paper presents a hybrid metaheuristic algorithm to solve the time-dependent vehicle routing problem with hard time windows. Time-dependent travel times are influenced by different congestion levels experienced throughout the day. Vehicle scheduling without consideration of congestion might lead to underestimation of travel times and consequently missed deliveries. The algorithm presented in this paper makes use of Large Neighbourhood Search approaches and Variable Neighbourhood Search techniques to guide the search. A first stage is specifically designed to reduce the number of vehicles required in a search space by the reduction of penalties generated by time-window violations with Large Neighbourhood Search procedures. A second stage minimises the travel distance and travel time in an ‘always feasible’ search space. Comparison of results with available test instances shows that the proposed algorithm is capable of obtaining a reduction in the number of vehicles (4.15%, travel distance (10.88% and travel time (12.00% compared to previous implementations in reasonable time.

  18. Optimal Routing for Heterogeneous Fixed Fleets of Multicompartment Vehicles

    OpenAIRE

    Wang, Qian; Ji, Qingkai; Chiu, Chun-Hung

    2014-01-01

    We present a metaheuristic called the reactive guided tabu search (RGTS) to solve the heterogeneous fleet multicompartment vehicle routing problem (MCVRP), where a single vehicle is required for cotransporting multiple customer orders. MCVRP is commonly found in delivery of fashion apparel, petroleum distribution, food distribution, and waste collection. In searching the optimum solution of MCVRP, we need to handle a large amount of local optima in the solution spaces. To overcome this proble...

  19. [Design and application of portable rescue vehicle].

    Science.gov (United States)

    Guo, Ying; Qi, Huaying; Wang, Shen

    2017-12-01

    The disease of critically ill patients was with rapid changes, and at any time faced the risk of emergency. The current commonly used rescue vehicles were larger and bulky implementation, which were not conducive to the operation, therefore the design of a portable rescue vehicle was needed. This new type of rescue vehicle is multi-layer folding structure, with small footprint, large storage space, so a variety of first aid things can be classified and put, easy to be cleaned and disinfected. In the rescue process, the portable rescue vehicles can be placed in the required position; box of various emergency items can be found at a glance with easy access; the height of the infusion stand can adjust freely according to the user height; the rescue vehicle handle can be easy to pull and adjust accord with human body mechanics principle. The portable rescue vehicle facilitates the operation of medical staff, and is worthy of clinical application.

  20. Indoor Climate of Large Glazed Spaces

    DEFF Research Database (Denmark)

    Hendriksen, Ole Juhl; Madsen, Christina E.; Heiselberg, Per

    In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate it is crui...... it is cruicial at the design stage to be able to predict the performance regarding thermal comfort and energy consumption. This paper focus on the practical implementation of Computational Fluid Dynamics (CFD) and the relation to other simulation tools regarding indoor climate.......In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate...

  1. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    International Nuclear Information System (INIS)

    McClure, Patrick Ray; Reid, Robert Stowers; Poston, David Irvin; Dasari, Venkateswara Rao

    2016-01-01

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  2. Near Space Hypersonic Unmanned Aerial Vehicle Dynamic Surface Backstepping Control Design

    Directory of Open Access Journals (Sweden)

    Jinyong YU

    2014-07-01

    Full Text Available Compared with traditional aircraft, the near space hypersonic unmanned aerial vehicle control system design must deal with the extra prominent dynamics characters, which are differ from the traditional aircrafts control system design. A new robust adaptive control design method is proposed for one hypersonic unmanned aerial vehicle (HSUAV uncertain MIMO nonaffine block control system by using multilayer neural networks, feedback linearization technology, and dynamic surface backstepping. Multilayer neural networks are used to compensate the influence from the uncertain, which designs the robust terms to solve the problem from approach error. Adaptive backstepping is adopted designed to ensure control law, the dynamic surface control strategy to eliminate “the explosion of terms” by introducing a series of first order filters to obtain the differentiation of the virtual control inputs. Finally, nonlinear six-degree-of-freedom (6-DOF numerical simulation results for a HSUAV model are presented to demonstrate the effectiveness of the proposed method.

  3. Benchmarking processes for managing large international space programs

    Science.gov (United States)

    Mandell, Humboldt C., Jr.; Duke, Michael B.

    1993-01-01

    The relationship between management style and program costs is analyzed to determine the feasibility of financing large international space missions. The incorporation of management systems is considered to be essential to realizing low cost spacecraft and planetary surface systems. Several companies ranging from large Lockheed 'Skunk Works' to small companies including Space Industries, Inc., Rocket Research Corp., and Orbital Sciences Corp. were studied. It is concluded that to lower the prices, the ways in which spacecraft and hardware are developed must be changed. Benchmarking of successful low cost space programs has revealed a number of prescriptive rules for low cost managements, including major changes in the relationships between the public and private sectors.

  4. Lightweight electric-powered vehicles. Which financial incentives after the large-scale field tests at Mendrisio?

    International Nuclear Information System (INIS)

    Keller, M.; Frick, R.; Hammer, S.

    1999-08-01

    How should lightweight electric-powered vehicles be promoted, after the large-scale fleet test being conducted at Mendrisio (southern Switzerland) is completed in 2001, and are there reasons to put question marks behind the current approach? The demand for electric vehicles, and particularly the one in the automobile category, has remained at a persistently low level. As it proved, any appreciable improvement of this situation is almost impossible, even with substantial financial incentives. However, the unsatisfactory sales figures have little to do with the nature of the fleet test itself or with the specific conditions at Mendrisio. The problem is rather of structural nature. For (battery-operated) electric cars the main problem at present is the lack of an expanding market which could become self-supporting with only a few additional incentives. Various strategies have been evaluated. Two alternatives were considered in particular: a strategy to promote explicitly electric vehicles ('EL-strategy'), and a strategy to promote efficient road vehicles in general which would have to meet specific energy and environmental-efficiency criteria ('EF-strategy'). The EL-strategies make the following dilemma clear. If the aim is to raise the share of these vehicles up to 5% of all cars on the road (or even 8%) in a mid-term prospect, then substantial interventions in the relevant vehicle markets would be required, either with penalties for conventional cars, or a large-scale funding scheme, or interventions at the supply level. The study suggests a differentiated strategy with two components: (i) 'institutionalised' promotion with the aim of a substantial increase of the share of 'efficient' vehicles (independently of the propulsion technology), and (ii) the continuation of pilot and demonstration projects for the promotion of different types of innovative technologies. (author) [de

  5. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  6. Air-Conditioning for Electric Vehicles

    Science.gov (United States)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  7. Human space flight and future major space astrophysics missions: servicing and assembly

    Science.gov (United States)

    Thronson, Harley; Peterson, Bradley M.; Greenhouse, Matthew; MacEwen, Howard; Mukherjee, Rudranarayan; Polidan, Ronald; Reed, Benjamin; Siegler, Nicholas; Smith, Hsiao

    2017-09-01

    Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly.

  8. Electric vehicles to support large wind power penetration in future danish power systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte; Thøgersen, Paul

    2012-01-01

    Electric Vehicles (EVs) could play major role in the future intelligent grids to support a large penetration of renewable energy in Denmark, especially electricity production from wind turbines. The future power systems aims to phase-out big conventional fossil-fueled generators with large number...... on low voltage residential networks. Significant amount of EVs could be integrated in local distribution grids with the support of intelligent grid and smart charging strategies....

  9. Designing astrophysics missions for NASA's Space Launch System

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-10-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.

  10. Large aperture telescope technology: a design for an active lightweight multi-segmented fold-out space mirror

    Science.gov (United States)

    Thompson, S. J.; Doel, A. P.; Whalley, M.; Edeson, R.; Edeson, R.; Tosh, I.; Poyntz-Wright, O.; Atad-Ettedgui, E.; Montgomery, D.; Nawasra, J.

    2017-11-01

    Large aperture telescope technology (LATT) is a design study for a differential lidar (DIAL) system; the main investigation being into suitable methods, technologies and materials for a 4-metre diameter active mirror that can be stowed to fit into a typical launch vehicle (e.g. ROKOT launcher with 2.1-metre diameter cargo) and can self-deploy - in terms of both leaving the space vehicle and that the mirrors unfold and self-align to the correct optical form within the tolerances specified. The primary mirror requirements are: main wavelength of 935.5 nm, RMS corrected wavefront error of λ/6, optical surface roughness better than 5 nm, areal density of less than 16 kg/m2 and 1-2 mirror shape corrections per orbit. The primary mirror consists of 7 segments - a central hexagonal mirror and 6 square mirror petals which unfold to form the 4-meter diameter aperture. The focus of the UK LATT consortium for this European Space Agency (ESA) funded project is on using lightweighted aluminium or carbon-fibre-composite materials for the mirror substrate in preference to more traditional materials such as glass and ceramics; these materials have a high strength and stiffness to weight ratio, significantly reducing risk of damage due to launch forces and subsequent deployment in orbit. We present an overview of the design, which includes suitable actuators for wavefront correction, petal deployment mechanisms and lightweight mirror technologies. Preliminary testing results from manufactured lightweight mirror samples will also be summarised.

  11. Large vehicle portal monitor for perimeter safeguards applications

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Atwater, H.F.; Bernard, W.; Bieri, J.M.; Shunk, E.R.

    1979-01-01

    We have developed a class of vehicle portal monitors based on shielded 4π geometry neutron counting. we have derived and experimentally verified an analytical expression relating the detection sensitivity of the neutron tunnel vehicle portal monitor to four design parameters of the system. For a given number of neutron detectors, this design achieves one or more orders of magnitude improvement in nuclear materials detection sensitivity over previous vehicle portal monitors

  12. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  13. A Review of Control Strategy of the Large-scale of Electric Vehicles Charging and Discharging Behavior

    Science.gov (United States)

    Kong, Lingyu; Han, Jiming; Xiong, Wenting; Wang, Hao; Shen, Yaqi; Li, Ying

    2017-05-01

    Large scale access of electric vehicles will bring huge challenges to the safe operation of the power grid, and it’s important to control the charging and discharging of the electric vehicle. First of all, from the electric quality and network loss, this paper points out the influence on the grid caused by electric vehicle charging behaviour. Besides, control strategy of electric vehicle charging and discharging has carried on the induction and the summary from the direct and indirect control. Direct control strategy means control the electric charging behaviour by controlling its electric vehicle charging and discharging power while the indirect control strategy by means of controlling the price of charging and discharging. Finally, for the convenience of the reader, this paper also proposed a complete idea of the research methods about how to study the control strategy, taking the adaptability and possibility of failure of electric vehicle control strategy into consideration. Finally, suggestions on the key areas for future research are put up.

  14. A model-based eco-routing strategy for electric vehicles in large urban networks

    OpenAIRE

    De Nunzio , Giovanni; Thibault , Laurent; Sciarretta , Antonio

    2016-01-01

    International audience; A novel eco-routing navigation strategy and energy consumption modeling approach for electric vehicles are presented in this work. Speed fluctuations and road network infrastructure have a large impact on vehicular energy consumption. Neglecting these effects may lead to large errors in eco-routing navigation, which could trivially select the route with the lowest average speed. We propose an energy consumption model that considers both accelerations and impact of the ...

  15. Esrange Space Center, a Gate to Space

    Science.gov (United States)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  16. Aerial vehicles collision avoidance using monocular vision

    Science.gov (United States)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  17. Shell model in large spaces and statistical spectroscopy

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1996-01-01

    For many nuclear structure problems of current interest it is essential to deal with shell model in large spaces. For this, three different approaches are now in use and two of them are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the shell model Monte Carlo method. A brief overview of these two methods is given. Large space shell model studies raise fundamental questions regarding the information content of the shell model spectrum of complex nuclei. This led to the third approach- the statistical spectroscopy methods. The principles of statistical spectroscopy have their basis in nuclear quantum chaos and they are described (which are substantiated by large scale shell model calculations) in some detail. (author)

  18. Simulation of reflecting surface deviations of centimeter-band parabolic space radiotelescope (SRT) with the large-size mirror

    Science.gov (United States)

    Kotik, A.; Usyukin, V.; Vinogradov, I.; Arkhipov, M.

    2017-11-01

    he realization of astrophysical researches requires the development of high-sensitive centimeterband parabolic space radiotelescopes (SRT) with the large-size mirrors. Constructively such SRT with the mirror size more than 10 m can be realized as deployable rigid structures. Mesh-structures of such size do not provide the reflector reflecting surface accuracy which is necessary for the centimeter band observations. Now such telescope with the 10 m diameter mirror is developed in Russia in the frame of "SPECTR - R" program. External dimensions of the telescope is more than the size of existing thermo-vacuum chambers used to prove SRT reflecting surface accuracy parameters under the action of space environment factors. That's why the numerical simulation turns out to be the basis required to accept the taken designs. Such modeling should be based on experimental working of the basic constructive materials and elements of the future reflector. In the article computational modeling of reflecting surface deviations of a centimeter-band of a large-sized deployable space reflector at a stage of his orbital functioning is considered. The analysis of the factors that determines the deviations - both determined (temperatures fields) and not-determined (telescope manufacturing and installation faults; the deformations caused by features of composite materials behavior in space) is carried out. The finite-element model and complex of methods are developed. They allow to carry out computational modeling of reflecting surface deviations caused by influence of all factors and to take into account the deviations correction by space vehicle orientation system. The results of modeling for two modes of functioning (orientation at the Sun) SRT are presented.

  19. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    Science.gov (United States)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  20. Maneuverability Strategy for Assistive Vehicles Navigating within Confined Spaces

    Directory of Open Access Journals (Sweden)

    Fernando Auat Cheein

    2011-08-01

    Full Text Available In this work, a path planning strategy for both a car-like and a unicycle type assistive vehicles is presented. The assistive vehicles are confined to restricted environments. The path planning strategy uses the environment information to generate a kinematically plausible path to be followed by the vehicle. The environment information is provided by a SLAM (Simultaneous Localization and Mapping algorithm implemented on the vehicles. The map generated by the SLAM algorithm compensates the lack of sensor at the back of the vehicles' chassis. A Monte Carlo-based technique is used to find the optimum path given the SLAM information. A visual and user-friendly interface enhances the user-vehicle communication allowing him/her to select a desired position and orientation (pose that the vehicle should reach within the mapped environment. A trajectory controller drives the vehicle until it reaches a neighborhood of the desired pose. Several real-time experimental results within real environments are also shown herein.

  1. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Science.gov (United States)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  2. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  3. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  4. Vehicle systems design optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  5. Systems Challenges for Hypersonic Vehicles

    Science.gov (United States)

    Hunt, James L.; Laruelle, Gerard; Wagner, Alain

    1997-01-01

    This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.

  6. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    Science.gov (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  7. Automation of vibroacoustic data bank for random vibration criteria development. [for the space shuttle and launch vehicles

    Science.gov (United States)

    Ferebee, R. C.

    1982-01-01

    A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.

  8. Hyperspectral Vehicle BRDF Learning: An Exploration of Vehicle Reflectance Variation and Optimal Measures of Spectral Similarity for Vehicle Reacquisition and Tracking Algorithms

    Science.gov (United States)

    Svejkosky, Joseph

    The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that

  9. Operations and support cost modeling of conceptual space vehicles

    Science.gov (United States)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  10. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    Science.gov (United States)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  11. Navier-Stokes structure of merged layer flow on the spherical nose of a space vehicle

    Science.gov (United States)

    Jain, A. C.; Woods, G. H.

    1988-01-01

    Hypersonic merged layer flow on the forepart of a spherical surface of a space vehicle has been investigated on the basis of the full steady-state Navier-Stokes equations using slip and temperature jump boundary conditions at the surface and free-stream conditions far from the surface. The shockwave-like structure was determined as part of the computations. Using an equivalent body concept, computations were carried out under conditions that the Aeroassist Flight Experiment (AFE) Vehicle would encounter at 15 and 20 seconds in its flight path. Emphasis was placed on understanding the basic nature of the flow structure under low density conditions. Particular attention was paid to the understanding of the structure of the outer shockwave-like region as the fluid expands around the sphere. Plots were drawn for flow profiles and surface characteristics to understand the role of dissipation processes in the merged layer of the spherical nose of the vehicle.

  12. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    Science.gov (United States)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  13. The Profile Envision and Splice Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    Science.gov (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Tropospheric winds are an important driver of the design and operation of space launch vehicles. Multiple types of weather balloons and Doppler Radar Wind Profiler (DRWP) systems exist at NASA's Kennedy Space Center (KSC), co-located on the United States Air Force's (USAF) Eastern Range (ER) at the Cape Canaveral Air Force Station (CCAFS), that are capable of measuring atmospheric winds. Meteorological data gathered by these instruments are being used in the design of NASA's Space Launch System (SLS) and other space launch vehicles, and will be used during the day-of-launch (DOL) of SLS to aid in loads and trajectory analyses. For the purpose of SLS day-of-launch needs, the balloons have the altitude coverage needed, but take over an hour to reach the maximum altitude and can drift far from the vehicle's path. The DRWPs have the spatial and temporal resolutions needed, but do not provide complete altitude coverage. Therefore, the Natural Environments Branch (EV44) at Marshall Space Flight Center (MSFC) developed the Profile Envision and Splice Tool (PRESTO) to combine balloon profiles and profiles from multiple DRWPs, filter the spliced profile to a common wavelength, and allow the operator to generate output files as well as to visualize the inputs and the spliced profile for SLS DOL operations. PRESTO was developed in Python taking advantage of NumPy and SciPy for the splicing procedure, matplotlib for the visualization, and Tkinter for the execution of the graphical user interface (GUI). This paper describes in detail the Python coding implementation for the splicing, filtering, and visualization methodology used in PRESTO.

  14. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    Science.gov (United States)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  15. Three years experience with forward-site mass casualty triage-, evacuation-, operating room-, ICU-, and radiography-enabled disaster vehicles: development of usage strategies from drills and deployments.

    Science.gov (United States)

    Griffiths, Jane L; Kirby, Neil R; Waterson, James A

    2014-01-01

    Delineation of the advantages and problems related to the use of forward-site operating room-, Intensive Care Unit (ICU)-, radiography-, and mass casualty-enabled disaster vehicles for site evacuation, patient stabilization, and triage. The vehicles discussed have six ventilated ICU spaces, two ORs, on-site radiography, 21 intermediate acuity spaces with stretchers, and 54 seated minor acuity spaces. Each space has piped oxygen with an independent vehicle-loaded supply. The vehicles are operated by the Dubai Corporate Ambulance Services. Their support hospital is the main trauma center for the Emirate of Dubai and provides the vehicles' surgical, intensivist, anesthesia, and nursing staff. The disaster vehicles have been deployed 264 times in the last 5 years (these figures do not include deployments for drills). Introducing this new service required extensive initial planning and ongoing analysis of the performance of the disaster vehicles that offer ambulance services and receiving hospitals a large array of possibilities in terms of triage, stabilization of priority I and II patients, and management of priority III patients. In both drills and in disasters, the vehicles were valuable in forward triage and stabilization and in the transport of large numbers of priority III patients. This has avoided the depletion of emergency transport available for priority I and II patients. The successful utilization of disaster vehicles requires seamless cooperation between the hospital staffing the vehicles and the ambulance service deploying them. They are particularly effective during preplanned deployments to high-risk situations. These vehicles also potentially provide self-sufficient refuges for forward teams in hostile environments.

  16. Vertical integration from the large Hilbert space

    Science.gov (United States)

    Erler, Theodore; Konopka, Sebastian

    2017-12-01

    We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.

  17. NASDA and the Space Industry in Japan

    Science.gov (United States)

    Takamatsu, Hideo

    2002-01-01

    With over 30 years of history in space activities, Japan is now recognized as one of space powers in the world. Compared to other countries though, the features of Japanese space development are unique in several aspects. At first, its efforts are directed solely toward peaceful purposes and strictly separated from military uses. Secondly, there are many space related governmental agencies and institutes which are under supervision of different ministries. Thirdly, although the government budget is moderate and sales revenue of space industries is not so large, many large companies in aerospace or electronics industries see the importance of this business and compete each other mainly in the domestic market. NASDA, founded in 1969, is the largest governmental space organization and has played an important role in realizing practical applications of space activities. It has rapidly caught up the technology gap behind leading countries and has achieved remarkable successes with its own launch vehicles and satellites. Space industries, under the guidance of NASDA, have learned much from the U.S. companies and improved their technology levels and enjoyed steady growth during the early stage of Japanese space development. But before they became competitive enough in the world space business, the trade conflict between Japan and the U.S. made the procurement of Japanese non-R&D satellites open to the foreign satellite companies. Furthermore, interruptions of space activities due to recent successive failures of launch vehicles as well as Japanese economic slump have made space industries face hard situations. Under these circumstances, M&A of launch vehicle companies as well as satellite makers took place for the first time in Japanese aero-space history. Also at the government level, reorganization of space agencies is now under process. It is expected as a natural consequence of the merge of the Ministry of Education and the Science an Technology Agency, three space

  18. Does the Constellation Program Offer Opportunities to Achieve Space Science Goals in Space?

    Science.gov (United States)

    Thronson, Harley A.; Lester, Daniel F.; Dissel, Adam F.; Folta, David C.; Stevens, John; Budinoff, Jason G.

    2008-01-01

    Future space science missions developed to achieve the most ambitious goals are likely to be complex, large, publicly and professionally very important, and at the limit of affordability. Consequently, it may be valuable if such missions can be upgraded, repaired, and/or deployed in space, either with robots or with astronauts. In response to a Request for Information from the US National Research Council panel on Science Opportunities Enabled by NASA's Constellation System, we developed a concept for astronaut-based in-space servicing at the Earth-Moon L1,2 locations that may be implemented by using elements of NASA's Constellation architecture. This libration point jobsite could be of great value for major heliospheric and astronomy missions operating at Earth-Sun Lagrange points. We explored five alternative servicing options that plausibly would be available within about a decade. We highlight one that we believe is both the least costly and most efficiently uses Constellation hardware that appears to be available by mid-next decade: the Ares I launch vehicle, Orion/Crew Exploration Vehicle, Centaur vehicle, and an airlock/servicing node developed for lunar surface operations. Our concept may be considered similar to the Apollo 8 mission: a valuable exercise before descent by astronauts to the lunar surface.

  19. Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study

    OpenAIRE

    Nordhoff, Sina; de Winter, Joost; Kyriakidis, Miltos; van Arem, Bart; Happee, Riender

    2018-01-01

    Shuttles that operate without an onboard driver are currently being developed and tested in various projects worldwide. However, there is a paucity of knowledge on the determinants of acceptance of driverless shuttles in large cross-national samples. In the present study, we surveyed 10,000 respondents on the acceptance of driverless vehicles and sociodemographic characteristics, using a 94-item online questionnaire. After data filtering, data of 7,755 respondents from 116 countries were reta...

  20. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    Science.gov (United States)

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  1. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  2. Practical Methodology for the Inclusion of Nonlinear Slosh Damping in the Stability Analysis of Liquid-Propelled Space Vehicles

    Science.gov (United States)

    Ottander, John A.; Hall, Robert A.; Powers, J. F.

    2018-01-01

    A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.

  3. Application of statistical distribution theory to launch-on-time for space construction logistic support

    Science.gov (United States)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  4. Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings and Mixed Epistemic/Aleatory Uncertainties

    OpenAIRE

    Balesdent , Mathieu; Brevault , Loïc; Price , Nathaniel; Defoort , Sébastien; Le Riche , Rodolphe; Kim , Nam-Ho; Haftka , Raphael T.; Bérend , Nicolas

    2016-01-01

    International audience; Space vehicle design is a complex process involving numerous disciplines such as aerodynamics, structure, propulsion and trajectory. These disciplines are tightly coupled and may involve antagonistic objectives that require the use of specific methodologies in order to assess trade-offs between the disciplines and to obtain the global optimal configuration. Generally, there are two ways to handle the system design. On the one hand, the design may be considered from a d...

  5. Nuclear spectroscopy in large shell model spaces: recent advances

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1995-01-01

    Three different approaches are now available for carrying out nuclear spectroscopy studies in large shell model spaces and they are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the recently introduced Monte Carlo method for the shell model; (iii) the spectral averaging theory, based on central limit theorems, in indefinitely large shell model spaces. The various principles, recent applications and possibilities of these three methods are described and the similarity between the Monte Carlo method and the spectral averaging theory is emphasized. (author). 28 refs., 1 fig., 5 tabs

  6. Quantity Distance for the Kennedy Space Center Vehicle Assembly Building for Solid Propellant Fueled Launchers

    Science.gov (United States)

    Stover, Steven; Diebler, Corey; Frazier, Wayne

    2006-01-01

    The NASA KSC VAB was built to process Apollo launchers in the 1960's, and later adapted to process Space Shuttles. The VAB has served as a place to assemble solid rocket motors (5RM) and mate them to the vehicle's external fuel tank and Orbiter before rollout to the launch pad. As Space Shuttle is phased out, and new launchers are developed, the VAB may again be adapted to process these new launchers. Current launch vehicle designs call for continued and perhaps increased use of SRM segments; hence, the safe separation distances are in the process of being re-calculated. Cognizant NASA personnel and the solid rocket contractor have revisited the above VAB QD considerations and suggest that it may be revised to allow a greater number of motor segments within the VAB. This revision assumes that an inadvertent ignition of one SRM stack in its High Bay need not cause immediate and complete involvement of boosters that are part of a vehicle in adjacent High Bay. To support this assumption, NASA and contractor personnel proposed a strawman test approach for obtaining subscale data that may be used to develop phenomenological insight and to develop confidence in an analysis model for later use on full-scale situations. A team of subject matter experts in safety and siting of propellants and explosives were assembled to review the subscale test approach and provide options to NASA. Upon deliberations regarding the various options, the team arrived at some preliminary recommendations for NASA.

  7. Space Launch System Complex Decision-Making Process

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman,Stuart

    2012-01-01

    The Space Shuttle program has ended and elements of the Constellation Program have either been cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. From Fall 2010 until Spring 2011, an SLS decision-making framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper focuses on the various steps and methods of this process (rather than specific data) that allowed for competing concepts to be compared across a variety of launch vehicle metrics in support of the successful completion of the SLS Mission Concept Review (MCR) milestone.

  8. Advanced automation for in-space vehicle processing

    Science.gov (United States)

    Sklar, Michael; Wegerif, D.

    1990-01-01

    The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.

  9. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  10. Vehicle systems design optimization study

    Science.gov (United States)

    Gilmour, J. L.

    1980-01-01

    The optimum vehicle configuration and component locations are determined for an electric drive vehicle based on using the basic structure of a current production subcompact vehicle. The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current internal combustion engine vehicles. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages, one at front under the hood and a second at the rear under the cargo area, in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passenger and cargo space for a given size vehicle.

  11. Passive Shielding Effect on Space Profile of Magnetic Field Emissions for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2015-01-01

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has...... fields for wireless power transfer for vehicle applications....

  12. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  13. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  14. SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering

    KAUST Repository

    Hadwiger, Markus; Al-Awami, Ali K.; Beyer, Johanna; Agus, Marco; Pfister, Hanspeter

    2017-01-01

    Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.

  15. SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering

    KAUST Repository

    Hadwiger, Markus

    2017-08-28

    Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.

  16. Space Launch System Ascent Flight Control Design

    Science.gov (United States)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  17. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  18. Optimal Vehicle Design Using the Integrated System and Cost Modeling Tool Suite

    Science.gov (United States)

    2010-08-01

    Space Vehicle Costing ( ACEIT ) • New Small Sat Model Development & Production Cost O&M Cost Module  Radiation Exposure  Radiation Detector Response...Reliability OML Availability Risk l l Tools CEA, SRM Model, POST, ACEIT , Inflation Model, Rotor Blade Des, Microsoft Project, ATSV, S/1-iABP...space STK, SOAP – Specific mission • Space Vehicle Design (SMAD) • Space Vehicle Propulsion • Orbit Propagation • Space Vehicle Costing ( ACEIT ) • New

  19. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  20. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy

    Science.gov (United States)

    Kempton, Willett; Tomić, Jasna

    Vehicle-to-grid power (V2G) uses electric-drive vehicles (battery, fuel cell, or hybrid) to provide power for specific electric markets. This article examines the systems and processes needed to tap energy in vehicles and implement V2G. It quantitatively compares today's light vehicle fleet with the electric power system. The vehicle fleet has 20 times the power capacity, less than one-tenth the utilization, and one-tenth the capital cost per prime mover kW. Conversely, utility generators have 10-50 times longer operating life and lower operating costs per kWh. To tap V2G is to synergistically use these complementary strengths and to reconcile the complementary needs of the driver and grid manager. This article suggests strategies and business models for doing so, and the steps necessary for the implementation of V2G. After the initial high-value, V2G markets saturate and production costs drop, V2G can provide storage for renewable energy generation. Our calculations suggest that V2G could stabilize large-scale (one-half of US electricity) wind power with 3% of the fleet dedicated to regulation for wind, plus 8-38% of the fleet providing operating reserves or storage for wind. Jurisdictions more likely to take the lead in adopting V2G are identified.

  1. Characteristics and prediction of sound level in extra-large spaces

    OpenAIRE

    Wang, C.; Ma, H.; Wu, Y.; Kang, J.

    2018-01-01

    This paper aims to examine sound fields in extra-large spaces, which are defined in this paper as spaces used by people, with a volume approximately larger than 125,000m 3 and absorption coefficient less than 0.7. In such spaces inhomogeneous reverberant energy caused by uneven early reflections with increasing volume has a significant effect on sound fields. Measurements were conducted in four spaces to examine the attenuation of the total and reverberant energy with increasing source-receiv...

  2. Precision Optical Coatings for Large Space Telescope Mirrors

    Science.gov (United States)

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  3. Large space antenna concepts for ESGP

    Science.gov (United States)

    Love, Allan W.

    1989-01-01

    It is appropriate to note that 1988 marks the 100th anniversary of the birth of the reflector antenna. It was in 1888 that Heinrich Hertz constructed the first one, a parabolic cylinder made of sheet zinc bent to shape and supported by a wooden frame. Hertz demonstrated the existence of the electromagnetic waves that had been predicted theoretically by James Clerk Maxwell some 22 years earlier. In the 100 years since Hertz's pioneering work the field of electromagnetics has grown explosively: one of the technologies is that of remote sensing of planet Earth by means of electromagnetic waves, using both passive and active sensors located on an Earth Science Geostationary Platform (ESEP). For these purposes some exquisitely sensitive instruments were developed, capable of reaching to the fringes of the known universe, and relying on large reflector antennas to collect the minute signals and direct them to appropriate receiving devices. These antennas are electrically large, with diameters of 3000 to 10,000 wavelengths and with gains approaching 80 to 90 dB. Some of the reflector antennas proposed for ESGP are also electrically large. For example, at 220 GHz a 4-meter reflector is nearly 3000 wavelengths in diameter, and is electrically quite comparable with a number of the millimeter wave radiotelescopes that are being built around the world. Its surface must meet stringent requirements on rms smoothness, and ability to resist deformation. Here, however, the environmental forces at work are different. There are no varying forces due to wind and gravity, but inertial forces due to mechanical scanning must be reckoned with. With this form of beam scanning, minimizing momentum transfer to the space platform is a problem that demands an answer. Finally, reflector surface distortion due to thermal gradients caused by the solar flux probably represents the most challenging problem to be solved if these Large Space Antennas are to achieve the gain and resolution required of

  4. Modeling, Analysis, and Optimization Issues for Large Space Structures

    Science.gov (United States)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  5. Large Deployable Reflector (LDR) Requirements for Space Station Accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-01-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  6. Large Deployable Reflector (LDR) requirements for space station accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-04-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  7. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  8. On a lunar space elevator

    Science.gov (United States)

    Lemke, E. H.

    We consider a space elevator system for lunar surface access that consists of a space station in circumlunar orbit, a cable reaching down to some meters above the surface and a magnetically levitated vehicle driven by a linear motor. It accelerates the load to be lifted to the speed of the cable end. Loads to be delivered are either put on the vehicle and slowed down by it or they are slowed down by a sand braking technique in a mare terrain. It is technically possible to operate this transport system nearly without fuel supply from Earth. We calculate various steel cable dimensions for a static stress maximum of 1/5th of the tensile strength. The process of takeover is considered in detail. Five ways of eliminating the adverse large cable elongation due to the load are described. The touchdown process and behaviour of the cable after disconnection are analysed. The positive difference between the speed of the load at takeover and cable end can excite a large inplane swing motion. We propose to damp it by a dissipative pulley that hangs in a loop of wire leading to the ends of two beams mounted on the space station tangentially to the orbit, the pulley's core being connected with the load. Roll librations are damped by energy losses in the elastic beams; damping can be reinforced by viscous beam elements and/or controlled out-of-plane motions of the beams. We argue in favour of the possibility of fast deployment. The problems of vehicle vibrations and agglutination at sand braking blades are underlined and their combined experimental investigation is suggested.

  9. Pioneering space research in the USSR and mathematical modeling of large problems of radiation transfer

    International Nuclear Information System (INIS)

    Sushkevich, T.A.

    2011-01-01

    This review is to remind scientists of the older generation of some memorable historical pages and of many famous researchers, teachers and colleagues. For the younger researchers and foreign colleagues it will be useful to get to know about pioneer advancements of the Soviet scientists in the field of information and mathematical supply for cosmonautic problems on the eve of the space era. Main attention is paid to the scientific experiments conducted on the piloted space vehicles and the research teams who created the information and mathematical tools for the first space projects. The role of Mstislav Vsevolodovich Keldysh, the Major Theoretician of cosmonautics, is particularly emphasized. He determined for the most part the basic directions of development of space research and remote sensing of the Earth and planets that are shortly called remote sensing

  10. Adaptive Large Neighbourhood Search

    DEFF Research Database (Denmark)

    Røpke, Stefan

    Large neighborhood search is a metaheuristic that has gained popularity in recent years. The heuristic repeatedly moves from solution to solution by first partially destroying the solution and then repairing it. The best solution observed during this search is presented as the final solution....... This tutorial introduces the large neighborhood search metaheuristic and the variant adaptive large neighborhood search that dynamically tunes parameters of the heuristic while it is running. Both heuristics belong to a broader class of heuristics that are searching a solution space using very large...... neighborhoods. The tutorial also present applications of the adaptive large neighborhood search, mostly related to vehicle routing problems for which the heuristic has been extremely successful. We discuss how the heuristic can be parallelized and thereby take advantage of modern desktop computers...

  11. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank

    2003-01-01

    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  12. Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number

    International Nuclear Information System (INIS)

    Ye Peng-Cheng; Pan Guang

    2015-01-01

    Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering. (paper)

  13. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    International Nuclear Information System (INIS)

    Haloulakos, V.E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment

  14. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    Science.gov (United States)

    Haloulakos, V. E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.

  15. A Large-Scale Design Integration Approach Developed in Conjunction with the Ares Launch Vehicle Program

    Science.gov (United States)

    Redmon, John W.; Shirley, Michael C.; Kinard, Paul S.

    2012-01-01

    This paper presents a method for performing large-scale design integration, taking a classical 2D drawing envelope and interface approach and applying it to modern three dimensional computer aided design (3D CAD) systems. Today, the paradigm often used when performing design integration with 3D models involves a digital mockup of an overall vehicle, in the form of a massive, fully detailed, CAD assembly; therefore, adding unnecessary burden and overhead to design and product data management processes. While fully detailed data may yield a broad depth of design detail, pertinent integration features are often obscured under the excessive amounts of information, making them difficult to discern. In contrast, the envelope and interface method results in a reduction in both the amount and complexity of information necessary for design integration while yielding significant savings in time and effort when applied to today's complex design integration projects. This approach, combining classical and modern methods, proved advantageous during the complex design integration activities of the Ares I vehicle. Downstream processes, benefiting from this approach by reducing development and design cycle time, include: Creation of analysis models for the Aerodynamic discipline; Vehicle to ground interface development; Documentation development for the vehicle assembly.

  16. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    Science.gov (United States)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  17. An automated rendezvous and capture system design concept for the cargo transfer vehicle and Space Station Freedom

    Science.gov (United States)

    Fuchs, Ron; Marsh, Steven

    1991-01-01

    A rendezvous sensor system concept was developed for the cargo transfer vehicle (CTV) to autonomously rendezvous with and be captured by Space Station Freedom (SSF). The development of requirements, the design of a unique Lockheed developed sensor concept to meet these requirements, and the system design to place this sensor on the CTV and rendezvous with the SSF are described .

  18. Large-size space debris flyby in low earth orbits

    Science.gov (United States)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total

  19. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  20. Choice of teenagers' vehicles and views on vehicle safety: survey of parents of novice teenage drivers.

    Science.gov (United States)

    Hellinga, Laurie A; McCartt, Anne T; Haire, Emily R

    2007-01-01

    To examine parental decisions about vehicles driven by teenagers and parental knowledge of vehicle safety. About 300 parents were interviewed during spring 2006 in Minnesota, North Carolina, and Rhode Island while teenagers took their first on-road driving tests. Fewer than half of parents surveyed said teenagers would be the primary drivers of the chosen vehicles. Parents most often cited safety, existing family vehicle, and reliability when explaining the choices for their teenagers' vehicles. About half of the vehicles intended for teenagers were small/mini/sports cars, pickups, or SUVs - vehicles considered less safe for teenagers than midsize/large cars or minivans. A large majority of vehicles were 2001 models or earlier. Vehicles purchased in anticipation of adding a new driver to the family were more likely to be the sizes/types considered less safe than vehicles already owned. Few parents insisted on side airbags or electronic stability control, despite strong evidence of their safety benefits. Even when asked to identify ideal vehicles for their teenagers to drive, about half of parents identified less safe vehicle sizes/types. Most parents knew that midsize/large vehicles are safer than small vehicles, and at least half of parents said SUVs and pickups are not safe for teenage drivers, citing instability. The majority of parents understood some of the important criteria for choosing safe vehicles for their teenagers. However, parents actually selected many vehicles for teenagers that provide inferior crash protection. Vehicle safety varies substantially by vehicle size, type, and safety features. Many teenagers are driving inferior vehicles in terms of crashworthiness and crash avoidance.

  1. Single-Commodity Vehicle Routing Problem with Pickup and Delivery Service

    Directory of Open Access Journals (Sweden)

    Goran Martinovic

    2008-01-01

    Full Text Available We present a novel variation of the vehicle routing problem (VRP. Single commodity cargo with pickup and delivery service is considered. Customers are labeled as either cargo sink or cargo source, depending on their pickup or delivery demand. This problem is called a single commodity vehicle routing problem with pickup and delivery service (1-VRPPD. 1-VRPPD deals with multiple vehicles and is the same as the single-commodity traveling salesman problem (1-PDTSP when the number of vehicles is equal to 1. Since 1-VRPPD specializes VRP, it is hard in the strong sense. Iterative modified simulated annealing (IMSA is presented along with greedy random-based initial solution algorithm. IMSA provides a good approximation to the global optimum in a large search space. Experiment is done for the instances with different number of customers and their demands. With respect to average values of IMSA execution times, proposed method is appropriate for practical applications.

  2. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    Science.gov (United States)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  3. Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in an automated terminal area metering and spacing ATC environment

    Science.gov (United States)

    Houck, J. A.

    1980-01-01

    This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.

  4. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  5. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  6. Human Engineering of Space Vehicle Displays and Controls

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  7. Water: A Critical Material Enabling Space Exploration

    Science.gov (United States)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  8. Complex Decision-Making Applications for the NASA Space Launch System

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  9. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    Science.gov (United States)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  10. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  11. Cooperative Path-Planning for Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Qichen Wang

    2014-11-01

    Full Text Available In this paper, we propose a collision avoidance algorithm for multi-vehicle systems, which is a common problem in many areas, including navigation and robotics. In dynamic environments, vehicles may become involved in potential collisions with each other, particularly when the vehicle density is high and the direction of travel is unrestricted. Cooperatively planning vehicle movement can effectively reduce and fairly distribute the detour inconvenience before subsequently returning vehicles to their intended paths. We present a novel method of cooperative path planning for multi-vehicle systems based on reinforcement learning to address this problem as a decision process. A dynamic system is described as a multi-dimensional space formed by vectors as states to represent all participating vehicles’ position and orientation, whilst considering the kinematic constraints of the vehicles. Actions are defined for the system to transit from one state to another. In order to select appropriate actions whilst satisfying the constraints of path smoothness, constant speed and complying with a minimum distance between vehicles, an approximate value function is iteratively developed to indicate the desirability of every state-action pair from the continuous state space and action space. The proposed scheme comprises two phases. The convergence of the value function takes place in the former learning phase, and it is then used as a path planning guideline in the subsequent action phase. This paper summarizes the concept and methodologies used to implement this online cooperative collision avoidance algorithm and presents results and analysis regarding how this cooperative scheme improves upon two baseline schemes where vehicles make movement decisions independently.

  12. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  13. Effectiveness of media awareness campaigns on the proportion of vehicles that give space to ambulances on roads: An observational study.

    Science.gov (United States)

    Shaikh, Shiraz; Baig, Lubna A; Polkowski, Maciej

    2017-01-01

    The findings of the Health Care in Danger project in Karachi suggests that there is presence of behavioral negligence among vehicle operators on roads in regards to giving way to ambulances. A mass media campaign was conducted to raise people's awareness on the importance of giving way to ambulances. The main objective of this study was to determine the effectiveness of the campaign on increasing the proportion of vehicles that give way to ambulances. This was a quasi-experimental study that was based on before and after design. Three observation surveys were carried out in different areas of the city in Karachi, Pakistan before, during and after the campaign by trained observers who recorded their findings on a checklist. Each observation was carried out at three different times of the day for at least two days on each road. The relationship of the media campaign with regards to a vehicle giving space to an ambulance was calculated by means of odds ratios and 95% confidence intervals using multivariate logistic regression. Overall, 245 observations were included in the analysis. Traffic congestion and negligence/resistance, by vehicles operators who were in front of the ambulance, were the two main reasons why ambulances were not given way. Other reasons include: sudden stops by minibuses and in the process causing obstruction, ambulances not rushing through to alert vehicle operators to give way and traffic interruption by VIP movement. After adjustment for site, time of day, type of ambulance and number of cars in front of the ambulance, vehicles during (OR=2.13, 95% CI=1.22-3.71, p=0.007) and after the campaign (OR=1.73, 95% CI=1.02-2.95, p=0.042) were significantly more likely give space to ambulances. Mass media campaigns can play a significant role in changing the negligent behavior of people, especially when the campaign conveys a humanitarian message such as: giving way to ambulances can save lives.

  14. 33 CFR 127.1311 - Motor vehicles.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Motor vehicles. 127.1311 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1311 Motor vehicles. (a) When LHG is... operator shall ensure that no person— (1) Stops or parks a motor vehicle in a space other than a designated...

  15. A logistics model for large space power systems

    Science.gov (United States)

    Koelle, H. H.

    Space Power Systems (SPS) have to overcome two hurdles: (1) to find an attractive design, manufacturing and assembly concept and (2) to have available a space transportation system that can provide economical logistic support during the construction and operational phases. An initial system feasibility study, some five years ago, was based on a reference system that used terrestrial resources only and was based partially on electric propulsion systems. The conclusion was: it is feasible but not yet economically competitive with other options. This study is based on terrestrial and extraterrestrial resources and on chemical (LH 2/LOX) propulsion systems. These engines are available from the Space Shuttle production line and require small changes only. Other so-called advanced propulsion systems investigated did not prove economically superior if lunar LOX is available! We assume that a Shuttle derived Heavy Lift Launch Vehicle (HLLV) will become available around the turn of the century and that this will be used to establish a research base on the lunar surface. This lunar base has the potential to grow into a lunar factory producing LOX and construction materials for supporting among other projects also the construction of space power systems in geostationary orbit. A model was developed to simulate the logistics support of such an operation for a 50-year life cycle. After 50 years 111 SPS units with 5 GW each and an availability of 90% will produce 100 × 5 = 500 GW. The model comprises 60 equations and requires 29 assumptions of the parameter involved. 60-state variables calculated with the 60 equations mentioned above are given on an annual basis and as averages for the 50-year life cycle. Recycling of defective parts in geostationary orbit is one of the features of the model. The state-of-the-art with respect to SPS technology is introduced as a variable Mg mass/MW electric power delivered. If the space manufacturing facility, a maintenance and repair facility

  16. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    Science.gov (United States)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  17. Project Freebird: An orbital transfer vehicle

    Science.gov (United States)

    Aneses, Carlos A.; Blanchette, Ryan L.; Brann, David M.; Campos, Mario J.; Cohen, Lisa E.; Corcoran, Daniel J., III; Cox, James F.; Curtis, Trevor J.; Douglass, Deborah A.; Downard, Catherine L.

    1994-08-01

    Freebird is a space-based orbital transfer vehicle designed to repair and deorbit orbital assets. Freebird is based at International Space Station Alpha (ISSA) at an inclination of 51.6 deg and is capable of three types of missions: crewed and teleoperated LEO missions, and extended robotic missions. In a crewed local configuration, the vehicle can visit inclinations between 30.8 deg and 72.4 deg at altitudes close to 390 km. Adding extra fuel tanks extends this range of inclination up to 84.9 deg and down to 18.3 deg. Furthermore, removing the crew module, using the vehicle in a teleoperated manner, and operating with extra fuel tanks allows missions to polar and geosynchronous orbits. To allow for mission flexibility, the vehicle was designed in a semimodular configuration. The major system components include a crew module, a 'smart box' (which contains command, communications, guidance, and navigation equipment), a propulsion pack, extra fuel tanks, and a vehicle storage facility (VSF) for storage purposes. To minimize risk as well as development time and cost, the vehicle was designed using only proven technology or technology which is expected to be flight-qualified in time for the intended launch date of 2002. And, because Freebird carries crew and operates near the space station, it must meet or exceed the NASA reliability standard of 0.994, as well as other standard requirements for such vehicles. The Freebird program was conceived and designed as a way to provide important and currently unavailable satellite repair and replacement services of a value equal to or exceeding operational costs.

  18. Field Programmable Gate Array Reliability Analysis Guidelines for Launch Vehicle Reliability Block Diagrams

    Science.gov (United States)

    Al Hassan, Mohammad; Britton, Paul; Hatfield, Glen Spencer; Novack, Steven D.

    2017-01-01

    Field Programmable Gate Arrays (FPGAs) integrated circuits (IC) are one of the key electronic components in today's sophisticated launch and space vehicle complex avionic systems, largely due to their superb reprogrammable and reconfigurable capabilities combined with relatively low non-recurring engineering costs (NRE) and short design cycle. Consequently, FPGAs are prevalent ICs in communication protocols and control signal commands. This paper will identify reliability concerns and high level guidelines to estimate FPGA total failure rates in a launch vehicle application. The paper will discuss hardware, hardware description language, and radiation induced failures. The hardware contribution of the approach accounts for physical failures of the IC. The hardware description language portion will discuss the high level FPGA programming languages and software/code reliability growth. The radiation portion will discuss FPGA susceptibility to space environment radiation.

  19. Automatic Design of a Maglev Controller in State Space

    Science.gov (United States)

    1991-12-01

    Design of a Maglev Controller in State Space Feng Zhao Richard Thornton Abstract We describe the automatic synthesis of a global nonlinear controller for...the global switching points of the controller is presented. The synthesized control system can stabilize the maglev vehicle with large initial displace...NUMBERS Automation Desing of a Maglev Controller in State Space N00014-89-J-3202 MIP-9001651 6. AUTHOR(S) Feng Zhao and Richard Thornton 7. PERFORMING

  20. Automatic vehicle counting system for traffic monitoring

    Science.gov (United States)

    Crouzil, Alain; Khoudour, Louahdi; Valiere, Paul; Truong Cong, Dung Nghy

    2016-09-01

    The article is dedicated to the presentation of a vision-based system for road vehicle counting and classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested. Furthermore, the method developed in this work is capable of managing shadows with high resolution. The related algorithm has been tested and compared to a classical method. Experimental results based on four large datasets show that our method can count and classify vehicles in real time with a high level of performance (>98%) under different environmental situations, thus performing better than the conventional inductive loop detectors.

  1. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    Science.gov (United States)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  2. Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries

    International Nuclear Information System (INIS)

    Burke, Paul J.; Nishitateno, Shuhei

    2013-01-01

    Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between − 0.2 and − 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes. - Highlights: ► We estimate the determinants of gasoline demand and new-vehicle fuel economy. ► Estimates are for a large sample of countries for the period 1995–2008. ► We instrument for gasoline prices using oil reserves and the world crude oil price. ► Gasoline demand and fuel economy are inelastic with respect to the gasoline price. ► Large energy efficiency gains are possible via higher gasoline prices

  3. Large anterior temporal Virchow-Robin spaces: unique MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Anthony T. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Chandra, Ronil V. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia); Trost, Nicholas M. [St Vincent' s Hospital, Neuroradiology Service, Melbourne (Australia); McKelvie, Penelope A. [St Vincent' s Hospital, Anatomical Pathology, Melbourne (Australia); Stuckey, Stephen L. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia)

    2015-05-01

    Large Virchow-Robin (VR) spaces may mimic cystic tumor. The anterior temporal subcortical white matter is a recently described preferential location, with only 18 reported cases. Our aim was to identify unique MR features that could increase prospective diagnostic confidence. Thirty-nine cases were identified between November 2003 and February 2014. Demographic, clinical data and the initial radiological report were retrospectively reviewed. Two neuroradiologists reviewed all MR imaging; a neuropathologist reviewed histological data. Median age was 58 years (range 24-86 years); the majority (69 %) was female. There were no clinical symptoms that could be directly referable to the lesion. Two thirds were considered to be VR spaces on the initial radiological report. Mean maximal size was 9 mm (range 5-17 mm); majority (79 %) had perilesional T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensity. The following were identified as potential unique MR features: focal cortical distortion by an adjacent branch of the middle cerebral artery (92 %), smaller adjacent VR spaces (26 %), and a contiguous cerebrospinal fluid (CSF) intensity tract (21 %). Surgery was performed in three asymptomatic patients; histopathology confirmed VR spaces. Unique MR features were retrospectively identified in all three patients. Large anterior temporal lobe VR spaces commonly demonstrate perilesional T2 or FLAIR signal and can be misdiagnosed as cystic tumor. Potential unique MR features that could increase prospective diagnostic confidence include focal cortical distortion by an adjacent branch of the middle cerebral artery, smaller adjacent VR spaces, and a contiguous CSF intensity tract. (orig.)

  4. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  5. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition.

    Science.gov (United States)

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-06

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  6. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    Science.gov (United States)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  7. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    Science.gov (United States)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  8. Vehicle logo recognition using multi-level fusion model

    Science.gov (United States)

    Ming, Wei; Xiao, Jianli

    2018-04-01

    Vehicle logo recognition plays an important role in manufacturer identification and vehicle recognition. This paper proposes a new vehicle logo recognition algorithm. It has a hierarchical framework, which consists of two fusion levels. At the first level, a feature fusion model is employed to map the original features to a higher dimension feature space. In this space, the vehicle logos become more recognizable. At the second level, a weighted voting strategy is proposed to promote the accuracy and the robustness of the recognition results. To evaluate the performance of the proposed algorithm, extensive experiments are performed, which demonstrate that the proposed algorithm can achieve high recognition accuracy and work robustly.

  9. On the possibility of large axion moduli spaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudelius, Tom [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)

    2015-04-28

    We study the diameters of axion moduli spaces, focusing primarily on type IIB compactifications on Calabi-Yau three-folds. In this case, we derive a stringent bound on the diameter in the large volume region of parameter space for Calabi-Yaus with simplicial Kähler cone. This bound can be violated by Calabi-Yaus with non-simplicial Kähler cones, but additional contributions are introduced to the effective action which can restrict the field range accessible to the axions. We perform a statistical analysis of simulated moduli spaces, finding in all cases that these additional contributions restrict the diameter so that these moduli spaces are no more likely to yield successful inflation than those with simplicial Kähler cone or with far fewer axions. Further heuristic arguments for axions in other corners of the duality web suggest that the difficulty observed in http://dx.doi.org/10.1088/1475-7516/2003/06/001 of finding an axion decay constant parametrically larger than M{sub p} applies not only to individual axions, but to the diagonals of axion moduli space as well. This observation is shown to follow from the weak gravity conjecture of http://dx.doi.org/10.1088/1126-6708/2007/06/060, so it likely applies not only to axions in string theory, but also to axions in any consistent theory of quantum gravity.

  10. Technology Improvement for the High Reliability LM-2F Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    QIN Tong; RONG Yi; ZHENG Liwei; ZHANG Zhi

    2017-01-01

    The Long March 2F (LM-2F) launch vehicle,the only launch vehicle designed for manned space flight in China,successfully launched the Tiangong 2 space laboratory and the Shenzhou ll manned spaceship into orbits in 2016 respectively.In this study,it introduces the technological improvements for enhancing the reliability of the LM-2F launch vehicle in the aspects of general technology,control system,manufacture and ground support system.The LM2F launch vehicle will continue to provide more contributions to the Chinese Space Station Project with its high reliability and 100% success rate.

  11. Distributed tactical reasoning framework for intelligent vehicles

    Science.gov (United States)

    Sukthankar, Rahul; Pomerleau, Dean A.; Thorpe, Chuck E.

    1998-01-01

    In independent vehicle concepts for the Automated Highway System (AHS), the ability to make competent tactical-level decisions in real-time is crucial. Traditional approaches to tactical reasoning typically involve the implementation of large monolithic systems, such as decision trees or finite state machines. However, as the complexity of the environment grows, the unforeseen interactions between components can make modifications to such systems very challenging. For example, changing an overtaking behavior may require several, non-local changes to car-following, lane changing and gap acceptance rules. This paper presents a distributed solution to the problem. PolySAPIENT consists of a collection of autonomous modules, each specializing in a particular aspect of the driving task - classified by traffic entities rather than tactical behavior. Thus, the influence of the vehicle ahead on the available actions is managed by one reasoning object, while the implications of an approaching exit are managed by another. The independent recommendations form these reasoning objects are expressed in the form of votes and vetos over a 'tactical action space', and are resolved by a voting arbiter. This local independence enables PolySAPIENT reasoning objects to be developed independently, using a heterogenous implementation. PolySAPIENT vehicles are implemented in the SHIVA tactical highway simulator, whose vehicles are based on the Carnegie Mellon Navlab robots.

  12. Innovative Vehicle Concept for the Integration of Alternative Power Trains

    OpenAIRE

    Steinle, Philipp; Kriescher, Michael; Friedrich, Horst E.

    2010-01-01

    Abstract: The Institute of Vehicle Concepts is developing a safe, modularisable vehicle concept in rib and space frame design for tomorrow’s vehicles with alternative power trains. The vehicle can be powered either by a fuel cell system, a free-piston linear generator developed at the DLR, or a traction battery. Taking into account the given boundary conditions, the challenge is to design a body structure that is light and performs well in the event of an accident. The rib and space fra...

  13. Trajectory generation for an on-road autonomous vehicle

    Science.gov (United States)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  14. Vehicle systems and payload requirements evaluation. [computer programs for identifying launch vehicle system requirements

    Science.gov (United States)

    Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.

    1975-01-01

    Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.

  15. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very

  16. Design considerations for an astronaut monorail system for large space structures and the structural characterization of its positioning arm

    Science.gov (United States)

    Watson, Judith J.

    1992-08-01

    An astronaut monorail system (AMS) is presented as a vehicle to transport and position EVA astronauts along large space truss structures. The AMS is proposed specifically as an alternative to the crew and equipment transfer aid for Space Station Freedom. Design considerations for the AMS were discussed and a reference configuration was selected for the study. Equations were developed to characterize the stiffness and frequency behavior of the AMS positioning arm. Experimental data showed that these equations gave a fairly accurate representation of the stiffness and frequency behavior of the arm. A study was presented to show trends for the arm behavior based on varying parameters of the stiffness and frequency equations. An ergonomics study was conducted to provide boundary conditions for tolerable frequency and deflection to be used in developing a design concept for the positioning arm. The feasibility of the AMS positioning arm was examined using equations and working curves developed in this study. It was found that a positioning arm of a length to reach all interior points of the space station truss structure could not be designed to satisfy frequency and deflection constraints. By relaxing the design requirements and the ergonomic boundaries, an arm could be designed which would provide a stable work platform for the EVA astronaut and give him access to over 75 percent of the truss interior.

  17. Ground Vehicle Convoying

    Science.gov (United States)

    Gage, Douglas W.; Pletta, J. Bryan

    1987-01-01

    Initial investigations into two different approaches for applying autonomous ground vehicle technology to the vehicle convoying application are described. A minimal capability system that would maintain desired speed and vehicle spacing while a human driver provided steering control could improve convoy performance and provide positive control at night and in inclement weather, but would not reduce driver manpower requirements. Such a system could be implemented in a modular and relatively low cost manner. A more capable system would eliminate the human driver in following vehicles and reduce manpower requirements for the transportation of supplies. This technology could also be used to aid in the deployment of teleoperated vehicles in a battlefield environment. The needs, requirements, and several proposed solutions for such an Attachable Robotic Convoy Capability (ARCC) system will be discussed. Included are discussions of sensors, communications, computers, control systems and safety issues. This advanced robotic convoy system will provide a much greater capability, but will be more difficult and expensive to implement.

  18. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  19. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  20. Prime focus architectures for large space telescopes: reduce surfaces to save cost

    Science.gov (United States)

    Breckinridge, J. B.; Lillie, C. F.

    2016-07-01

    Conceptual architectures are now being developed to identify future directions for post JWST large space telescope systems to operate in the UV Optical and near IR regions of the spectrum. Here we show that the cost of optical surfaces within large aperture telescope/instrument systems can exceed $100M/reflection when expressed in terms of the aperture increase needed to over come internal absorption loss. We recommend a program in innovative optical design to minimize the number of surfaces by considering multiple functions for mirrors. An example is given using the Rowland circle imaging spectrometer systems for UV space science. With few exceptions, current space telescope architectures are based on systems optimized for ground-based astronomy. Both HST and JWST are classical "Cassegrain" telescopes derived from the ground-based tradition to co-locate the massive primary mirror and the instruments at the same end of the metrology structure. This requirement derives from the dual need to minimize observatory dome size and cost in the presence of the Earth's 1-g gravitational field. Space telescopes, however function in the zero gravity of space and the 1- g constraint is relieved to the advantage of astronomers. Here we suggest that a prime focus large aperture telescope system in space may have potentially have higher transmittance, better pointing, improved thermal and structural control, less internal polarization and broader wavelength coverage than Cassegrain telescopes. An example is given showing how UV astronomy telescopes use single optical elements for multiple functions and therefore have a minimum number of reflections.

  1. Analysis of Space Tourism Constraints

    Science.gov (United States)

    Bonnal, Christophe

    2002-01-01

    Space tourism appears today as a new Eldorado in a relatively near future. Private operators are already proposing services for leisure trips in Low Earth Orbit, and some happy few even tested them. But are these exceptional events really marking the dawn of a new space age ? The constraints associated to the space tourism are severe : - the economical balance of space tourism is tricky; development costs of large manned - the technical definition of such large vehicles is challenging, mainly when considering - the physiological aptitude of passengers will have a major impact on the mission - the orbital environment will also lead to mission constraints on aspects such as radiation, However, these constraints never appear as show-stoppers and have to be dealt with pragmatically: - what are the recommendations one can make for future research in the field of space - which typical roadmap shall one consider to develop realistically this new market ? - what are the synergies with the conventional missions and with the existing infrastructure, - how can a phased development start soon ? The paper proposes hints aiming at improving the credibility of Space Tourism and describes the orientations to follow in order to solve the major hurdles found in such an exciting development.

  2. Conceptual shape optimization of entry vehicles applied to capsules and winged fuselage vehicles

    CERN Document Server

    Dirkx, Dominic

    2017-01-01

    This book covers the parameterization of entry capsules, including Apollo capsules and planetary probes, and winged entry vehicles such as the Space Shuttle and lifting bodies. The aerodynamic modelling is based on a variety of panel methods that take shadowing into account, and it has been validated with flight and wind tunnel data of Apollo and the Space Shuttle. The shape optimization is combined with constrained trajectory analysis, and the multi-objective approach provides the engineer with a Pareto front of optimal shapes. The method detailed in Conceptual Shape Optimization of Entry Vehicles is straightforward, and the output gives the engineer insight in the effect of shape variations on trajectory performance. All applied models and algorithms used are explained in detail, allowing for reconstructing the design tool to the researcher’s requirements. Conceptual Shape Optimization of Entry Vehicles will be of interest to both researchers and graduate students in the field of aerospace engineering, an...

  3. Applications of tuned mass dampers to improve performance of large space mirrors

    Science.gov (United States)

    Yingling, Adam J.; Agrawal, Brij N.

    2014-01-01

    In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system.

  4. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  5. Power conditioning for large dc motors for space flight applications

    Science.gov (United States)

    Veatch, Martin S.; Anderson, Paul M.; Eason, Douglas J.; Landis, David M.

    1988-01-01

    The design and performance of a prototype power-conditioning system for use with large brushless dc motors on NASA space missions are discussed in detail and illustrated with extensive diagrams, drawings, and graphs. The 5-kW 8-phase parallel module evaluated here would be suitable for use in the Space Shuttle Orbiter cargo bay. A current-balancing magnetic assembly with low distributed inductance permits high-speed current switching from a low-voltage bus as well as current balancing between parallel MOSFETs.

  6. Automation for Vehicle and Crew Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern space systems such as the International Space Station (ISS) and the proposed Constellation vehicles and habitats are complex entities with hundreds of...

  7. On the synergy between large electric vehicle fleet and high wind penetration – An analysis of the Danish case

    DEFF Research Database (Denmark)

    Krog Ekman, Claus

    2011-01-01

    Increasing the level of wind power penetration beyond the present level in the Danish power system implies large challenges when it comes to energy management and system stability. Plug-in electric vehicles promise to contribute to the flexibility of the energy system by creating a link between...... the power system and the transportation sector and provide the possibility to make use of the inherent energy storage of a large electric vehicle (EV) fleet. The present work investigates the effects of different EV charging strategies on the balance between wind power production and consumption in a future...... batteries are used as backup at times with little wind power production) will have very limited effects on the overall energy management and is more likely to be used only for regulation and reserve services, also in the longer perspective....

  8. Effects of vehicle power on passenger vehicle speeds.

    Science.gov (United States)

    McCartt, Anne T; Hu, Wen

    2017-07-04

    During the past 2 decades, there have been large increases in mean horsepower and the mean horsepower-to-vehicle weight ratio for all types of new passenger vehicles in the United States. This study examined the relationship between travel speeds and vehicle power, defined as horsepower per 100 pounds of vehicle weight. Speed cameras measured travel speeds and photographed license plates and drivers of passenger vehicles traveling on roadways in Northern Virginia during daytime off-peak hours in spring 2013. The driver licensing agencies in the District of Columbia, Maryland, and Virginia provided vehicle information numbers (VINs) by matching license plate numbers with vehicle registration records and provided the age, gender, and ZIP code of the registered owner(s). VINs were decoded to obtain the curb weight and horsepower of vehicles. The study focused on 26,659 observed vehicles for which information on horsepower was available and the observed age and gender of drivers matched vehicle registration records. Log-linear regression estimated the effects of vehicle power on mean travel speeds, and logistic regression estimated the effects of vehicle power on the likelihood of a vehicle traveling over the speed limit and more than 10 mph over the limit. After controlling for driver characteristics, speed limit, vehicle type, and traffic volume, a 1-unit increase in vehicle power was associated with a 0.7% increase in mean speed, a 2.7% increase in the likelihood of a vehicle exceeding the speed limit by any amount, and an 11.6% increase in the likelihood of a vehicle exceeding the limit by 10 mph. All of these increases were highly significant. Speeding persists as a major factor in crashes in the United States. There are indications that travel speeds have increased in recent years. The current findings suggest the trend toward substantially more powerful vehicles may be contributing to higher speeds. Given the strong association between travel speed and crash

  9. Highly Scalable Trip Grouping for Large Scale Collective Transportation Systems

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach; Risch, Tore

    2008-01-01

    Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost...... and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous...

  10. Optimal Routing for Heterogeneous Fixed Fleets of Multicompartment Vehicles

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2014-01-01

    Full Text Available We present a metaheuristic called the reactive guided tabu search (RGTS to solve the heterogeneous fleet multicompartment vehicle routing problem (MCVRP, where a single vehicle is required for cotransporting multiple customer orders. MCVRP is commonly found in delivery of fashion apparel, petroleum distribution, food distribution, and waste collection. In searching the optimum solution of MCVRP, we need to handle a large amount of local optima in the solution spaces. To overcome this problem, we design three guiding mechanisms in which the search history is used to guide the search. The three mechanisms are experimentally demonstrated to be more efficient than the ones which only apply the known distance information. Armed with the guiding mechanisms and the well-known reactive mechanism, the RGTS can produce remarkable solutions in a reasonable computation time.

  11. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  12. Performance Efficient Launch Vehicle Recovery and Reuse

    Science.gov (United States)

    Reed, John G.; Ragab, Mohamed M.; Cheatwood, F. McNeil; Hughes, Stephen J.; Dinonno, J.; Bodkin, R.; Lowry, Allen; Brierly, Gregory T.; Kelly, John W.

    2016-01-01

    For decades, economic reuse of launch vehicles has been an elusive goal. Recent attempts at demonstrating elements of launch vehicle recovery for reuse have invigorated a debate over the merits of different approaches. The parameter most often used to assess the cost of access to space is dollars-per-kilogram to orbit. When comparing reusable vs. expendable launch vehicles, that ratio has been shown to be most sensitive to the performance lost as a result of enabling the reusability. This paper will briefly review the historical background and results of recent attempts to recover launch vehicle assets for reuse. The business case for reuse will be reviewed, with emphasis on the performance expended to recover those assets, and the practicality of the most ambitious reuse concept, namely propulsive return to the launch site. In 2015, United Launch Alliance (ULA) announced its Sensible, Modular, Autonomous Return Technology (SMART) reuse plan for recovery of the booster module for its new Vulcan launch vehicle. That plan employs a non-propulsive approach where atmospheric entry, descent and landing (EDL) technologies are utilized. Elements of such a system have a wide variety of applications, from recovery of launch vehicle elements in suborbital trajectories all the way to human space exploration. This paper will include an update on ULA's booster module recovery approach, which relies on Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and Mid-Air Retrieval (MAR) technologies, including its concept of operations (ConOps). The HIAD design, as well as parafoil staging and MAR concepts, will be discussed. Recent HIAD development activities and near term plans including scalability, next generation materials for the inflatable structure and heat shield, and gas generator inflation systems will be provided. MAR topics will include the ConOps for recovery, helicopter selection and staging, and the state of the art of parachute recovery systems using large parafoils

  13. Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets

    Science.gov (United States)

    Adams, R. B.; Alexander, R. A.; Chapman, J. M.; Fincher, S. S.; Hopkins, R. C.; Philips, A. D.; Polsgrove, T. T.; Litchford, R. J.; Patton, B. W.; Statham, G.

    2003-01-01

    During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.

  14. Complex Decision-Making Applications for the NASA Space Launch System

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  15. Space transportation activities in the United States

    Science.gov (United States)

    Gabris, Edward A.

    1994-01-01

    The status of the existing space transportation systems in the U.S. and options for increased capability is being examined in the context of mission requirements, options for new vehicles, cost to operate the existing vehicles, cost to develop new vehicles, and the capabilities and plans of other suppliers. This assessment is addressing the need to build and resupply the space station, to maintain necessary military assets in a rapidly changing world, and to continue a competitive commercial space transportation industry. The Department of Defense (DOD) and NASA each conducted an 'access to space' study using a common mission model but with the emphasis on their unique requirements. Both studies considered three options: maintain and improve the existing capability, build a new launch vehicle using contemporary technology, and build a new launch vehicle using advanced technology. While no decisions have been made on a course of action, it will be influenced by the availability of funds in the U.S. budget, the changing need for military space assets, the increasing competition among space launch suppliers, and the emerging opportunity for an advanced technology, low cost system and international partnerships to develop it.

  16. Visiting Vehicle Ground Trajectory Tool

    Science.gov (United States)

    Hamm, Dustin

    2013-01-01

    The International Space Station (ISS) Visiting Vehicle Group needed a targeting tool for vehicles that rendezvous with the ISS. The Visiting Vehicle Ground Trajectory targeting tool provides the ability to perform both realtime and planning operations for the Visiting Vehicle Group. This tool provides a highly reconfigurable base, which allows the Visiting Vehicle Group to perform their work. The application is composed of a telemetry processing function, a relative motion function, a targeting function, a vector view, and 2D/3D world map type graphics. The software tool provides the ability to plan a rendezvous trajectory for vehicles that visit the ISS. It models these relative trajectories using planned and realtime data from the vehicle. The tool monitors ongoing rendezvous trajectory relative motion, and ensures visiting vehicles stay within agreed corridors. The software provides the ability to update or re-plan a rendezvous to support contingency operations. Adding new parameters and incorporating them into the system was previously not available on-the-fly. If an unanticipated capability wasn't discovered until the vehicle was flying, there was no way to update things.

  17. Small Launch Vehicle Design Approaches: Clustered Cores Compared with Multi-Stage Inline Concepts

    Science.gov (United States)

    Waters, Eric D.; Beers, Benjamin; Esther, Elizabeth; Philips, Alan; Threet, Grady E., Jr.

    2013-01-01

    In an effort to better define small launch vehicle design options two approaches were investigated from the small launch vehicle trade space. The primary focus was to evaluate a clustered common core design against a purpose built inline vehicle. Both designs focused on liquid oxygen (LOX) and rocket propellant grade kerosene (RP-1) stages with the terminal stage later evaluated as a LOX/methane (CH4) stage. A series of performance optimization runs were done in order to minimize gross liftoff weight (GLOW) including alternative thrust levels, delivery altitude for payload, vehicle length to diameter ratio, alternative engine feed systems, re-evaluation of mass growth allowances, passive versus active guidance systems, and rail and tower launch methods. Additionally manufacturability, cost, and operations also play a large role in the benefits and detriments for each design. Presented here is the Advanced Concepts Office's Earth to Orbit Launch Team methodology and high level discussion of the performance trades and trends of both small launch vehicle solutions along with design philosophies that shaped both concepts. Without putting forth a decree stating one approach is better than the other; this discussion is meant to educate the community at large and let the reader determine which architecture is truly the most economical; since each path has such a unique set of limitations and potential payoffs.

  18. Prediction of Thermal Environment in a Large Space Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Yoon

    2018-02-01

    Full Text Available Since the thermal environment of large space buildings such as stadiums can vary depending on the location of the stands, it is important to divide them into different zones and evaluate their thermal environment separately. The thermal environment can be evaluated using physical values measured with the sensors, but the occupant density of the stadium stands is high, which limits the locations available to install the sensors. As a method to resolve the limitations of installing the sensors, we propose a method to predict the thermal environment of each zone in a large space. We set six key thermal factors affecting the thermal environment in a large space to be predicted factors (indoor air temperature, mean radiant temperature, and clothing and the fixed factors (air velocity, metabolic rate, and relative humidity. Using artificial neural network (ANN models and the outdoor air temperature and the surface temperature of the interior walls around the stands as input data, we developed a method to predict the three thermal factors. Learning and verification datasets were established using STAR CCM+ (2016.10, Siemens PLM software, Plano, TX, USA. An analysis of each model’s prediction results showed that the prediction accuracy increased with the number of learning data points. The thermal environment evaluation process developed in this study can be used to control heating, ventilation, and air conditioning (HVAC facilities in each zone in a large space building with sufficient learning by ANN models at the building testing or the evaluation stage.

  19. Effects of Turbine Spacings in Very Large Wind Farms

    DEFF Research Database (Denmark)

    farm. LES simulations of large wind farms are performed with full aero-elastic Actuator Lines. The simulations investigate the inherent dynamics inside wind farms in the absence of atmospheric turbulence compared to cases with atmospheric turbulence. Resulting low frequency structures are inherent...... in wind farms for certain turbine spacings and affect both power production and loads...

  20. Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations

    Science.gov (United States)

    Hardy, Terry L.

    2005-12-01

    A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.

  1. Hardware-Based Non-Optimum Factors for Launch Vehicle Structural Design

    Science.gov (United States)

    Wu, K. Chauncey; Cerro, Jeffrey A.

    2010-01-01

    During aerospace vehicle conceptual and preliminary design, empirical non-optimum factors are typically applied to predicted structural component weights to account for undefined manufacturing and design details. Non-optimum factors are developed here for 32 aluminum-lithium 2195 orthogrid panels comprising the liquid hydrogen tank barrel of the Space Shuttle External Tank using measured panel weights and manufacturing drawings. Minimum values for skin thickness, axial and circumferential blade stiffener thickness and spacing, and overall panel thickness are used to estimate individual panel weights. Panel non-optimum factors computed using a coarse weights model range from 1.21 to 1.77, and a refined weights model (including weld lands and skin and stiffener transition details) yields non-optimum factors of between 1.02 and 1.54. Acreage panels have an average 1.24 non-optimum factor using the coarse model, and 1.03 with the refined version. The observed consistency of these acreage non-optimum factors suggests that relatively simple models can be used to accurately predict large structural component weights for future launch vehicles.

  2. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    Science.gov (United States)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  3. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  4. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  5. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    Science.gov (United States)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  6. Visualising very large phylogenetic trees in three dimensional hyperbolic space

    Directory of Open Access Journals (Sweden)

    Liberles David A

    2004-04-01

    Full Text Available Abstract Background Common existing phylogenetic tree visualisation tools are not able to display readable trees with more than a few thousand nodes. These existing methodologies are based in two dimensional space. Results We introduce the idea of visualising phylogenetic trees in three dimensional hyperbolic space with the Walrus graph visualisation tool and have developed a conversion tool that enables the conversion of standard phylogenetic tree formats to Walrus' format. With Walrus, it becomes possible to visualise and navigate phylogenetic trees with more than 100,000 nodes. Conclusion Walrus enables desktop visualisation of very large phylogenetic trees in 3 dimensional hyperbolic space. This application is potentially useful for visualisation of the tree of life and for functional genomics derivatives, like The Adaptive Evolution Database (TAED.

  7. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2013-01-01

    Full Text Available The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method for large-scale space and large workpieces (equipment combined with the laser theodolite measuring and vision guiding technologies. The measuring mark is established on the surface of the measured workpiece by the collimating laser which is coaxial with the sight-axis of theodolite, so the cooperation targets or manual marks are no longer needed. With the theoretical model data and the multiresolution visual imaging and tracking technology, it can realize the automatic, quick, and accurate measurement of large workpieces in large-scale space. Meanwhile, the impact of artificial error is reduced and the measuring efficiency is improved. Therefore, this method has significant ramification for the measurement of large workpieces, such as the geometry appearance characteristics measuring of ships, large aircraft, and spacecraft, and deformation monitoring for large building, dams.

  8. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Wei; Lv, Shengli; Guan, XiQi

    2017-09-01

    Carbon fiber composites and film materials can be effectively used in light aircraft structures, especially for solar unmanned aerial vehicles. The use of light materials can reduce the weight of the aircraft, but also can effectively improve the aircraft's strength and stiffness. The structure of the large aspect ratio solar energy UAV was analyzed in detail, taking Solar-impulse solar aircraft as an example. The solar energy UAV has a wing aspect ratio greater than 20, and the detailed digital model of the wing structure including beam, ribs and skin was built, also the Finite Element Method was applied to analyze the static and dynamic performance of the structure. The upper skin of the wing is covered with silicon solar cells, while the lower skin is light and transparent film. The single beam truss form of carbon fiber lightweight material is used in the wing structure. The wing beam is a box beam with rectangular cross sections. The box beam connected the front parts and after parts of the ribs together. The fuselage of the aircraft was built by space truss structure. According to the static and dynamic analysis with Finite Element method, it was found that the aircraft has a small wingtip deflection relative to the wingspan in the level flight state. The first natural frequency of the wing structure is pretty low, which is closed to the gust load.

  9. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  10. The Space of Aerospace Power: Why and How

    Science.gov (United States)

    2000-05-01

    SSTO - MSP/SOV/SMV - TAV - Micro-SATs - Cryogenic Fuels - HYFLEX Control Missile Detection and Space Defense - MIDAS - Satellite Inspector...Missile System Center SMV Space Maneuvering Vehicle SOA State of the Art SOV Space Operations Vehicle SRD System Requirements Document SSTO

  11. Maneuverability Strategy for Assistive Maneuverability Strategy for Assistive Vehicles Navigating within Confined Space

    Directory of Open Access Journals (Sweden)

    Fernando Auat Cheein

    2011-08-01

    Full Text Available In this work, a path planning strategy for both a car-like and a unicycle type assistive vehicles is presented. The assistive vehicles are confined to restricted environments. The path planning strategy uses the environment information to generate a kinematically plausible path to be followed by the vehicle. The environment information is provided by a SLAM (Simultaneous Localization and Mapping algorithm implemented on the vehicles. The map generated by the SLAM algorithm compensates the lack of sensor at the back of the vehicles' chassis. A Monte Carlo-based technique is used to find the optimum path given the SLAM information. A visual and user-friendly interface enhances the user-vehicle communication allowing him/her to select a desired position and orientation (pose that the vehicle should reach within the mapped environment. A trajectory controller drives the vehicle until it reaches a neighborhood of the desired pose. Several real-time experimental results within real environments are also shown herein.

  12. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  13. A study of an active magnetic shielding method for the superconductive Maglev vehicle

    International Nuclear Information System (INIS)

    Nemoto, K.; Komori, M.

    2010-01-01

    Various methods of magnetic shielding have been studied so far to reduce magnetic field strength inside the passenger room of the superconductive Maglev vehicle. Magnetic shielding methods with ferromagnetic materials are very useful, but they tend to be heavier for large space. Though some passive magnetic shielding methods using induced currents in superconducting bulks or superconducting coils have also been studied, the induced current is relatively small and it is difficult to get satisfactory magnetic shielding performance for the passenger room of the Maglev vehicle. Thus, we have proposed an active magnetic shielding method with some superconducting coils of the same length as propulsion-levitation-guidance superconducting coils of the Maglev vehicle. They are arranged under the passenger room of the Maglev vehicle. Then, we studied the shielding effect by canceling magnetic flux density in the passenger room by way of adjusting magnetomotive-forces of the magnetic shielding coils. As a result, it is found that a simple arrangement of two magnetic shielding coils for one propulsion-levitation-guidance superconducting coil on the vehicle shows an effective magnetic shielding.

  14. A study of an active magnetic shielding method for the superconductive Maglev vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, K., E-mail: nemoto@kamakuranet.ne.j [Kyushu Institute of Technology, Dept. of Applied Science for Integrated System Engineering, 1-1 Sensui, Tobata, Kitakyushu, Fukuoka 804-8550 (Japan); Komori, M. [Kyushu Institute of Technology, Dept. of Applied Science for Integrated System Engineering, 1-1 Sensui, Tobata, Kitakyushu, Fukuoka 804-8550 (Japan)

    2010-11-01

    Various methods of magnetic shielding have been studied so far to reduce magnetic field strength inside the passenger room of the superconductive Maglev vehicle. Magnetic shielding methods with ferromagnetic materials are very useful, but they tend to be heavier for large space. Though some passive magnetic shielding methods using induced currents in superconducting bulks or superconducting coils have also been studied, the induced current is relatively small and it is difficult to get satisfactory magnetic shielding performance for the passenger room of the Maglev vehicle. Thus, we have proposed an active magnetic shielding method with some superconducting coils of the same length as propulsion-levitation-guidance superconducting coils of the Maglev vehicle. They are arranged under the passenger room of the Maglev vehicle. Then, we studied the shielding effect by canceling magnetic flux density in the passenger room by way of adjusting magnetomotive-forces of the magnetic shielding coils. As a result, it is found that a simple arrangement of two magnetic shielding coils for one propulsion-levitation-guidance superconducting coil on the vehicle shows an effective magnetic shielding.

  15. NASA 3D Models: Vehicle Assembly Building (VAB)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vehicle Assembly Building (VAB) is one of the largest buildings in the world. It was originally built for assembly of Apollo/Saturn vehicles and was later...

  16. The seesaw space, a vector space to identify and characterize large-scale structures at 1 AU

    Science.gov (United States)

    Lara, A.; Niembro, T.

    2017-12-01

    We introduce the seesaw space, an orthonormal space formed by the local and the global fluctuations of any of the four basic solar parameters: velocity, density, magnetic field and temperature at any heliospheric distance. The fluctuations compare the standard deviation of a moving average of three hours against the running average of the parameter in a month (consider as the local fluctuations) and in a year (global fluctuations) We created this new vectorial spaces to identify the arrival of transients to any spacecraft without the need of an observer. We applied our method to the one-minute resolution data of WIND spacecraft from 1996 to 2016. To study the behavior of the seesaw norms in terms of the solar cycle, we computed annual histograms and fixed piecewise functions formed by two log-normal distributions and observed that one of the distributions is due to large-scale structures while the other to the ambient solar wind. The norm values in which the piecewise functions change vary in terms of the solar cycle. We compared the seesaw norms of each of the basic parameters due to the arrival of coronal mass ejections, co-rotating interaction regions and sector boundaries reported in literature. High seesaw norms are due to large-scale structures. We found three critical values of the norms that can be used to determined the arrival of coronal mass ejections. We present as well general comparisons of the norms during the two maxima and the minimum solar cycle periods and the differences of the norms due to large-scale structures depending on each period.

  17. Structural Weight Estimation for Launch Vehicles

    Science.gov (United States)

    Cerro, Jeff; Martinovic, Zoran; Su, Philip; Eldred, Lloyd

    2002-01-01

    This paper describes some of the work in progress to develop automated structural weight estimation procedures within the Vehicle Analysis Branch (VAB) of the NASA Langley Research Center. One task of the VAB is to perform system studies at the conceptual and early preliminary design stages on launch vehicles and in-space transportation systems. Some examples of these studies for Earth to Orbit (ETO) systems are the Future Space Transportation System [1], Orbit On Demand Vehicle [2], Venture Star [3], and the Personnel Rescue Vehicle[4]. Structural weight calculation for launch vehicle studies can exist on several levels of fidelity. Typically historically based weight equations are used in a vehicle sizing program. Many of the studies in the vehicle analysis branch have been enhanced in terms of structural weight fraction prediction by utilizing some level of off-line structural analysis to incorporate material property, load intensity, and configuration effects which may not be captured by the historical weight equations. Modification of Mass Estimating Relationships (MER's) to assess design and technology impacts on vehicle performance are necessary to prioritize design and technology development decisions. Modern CAD/CAE software, ever increasing computational power and platform independent computer programming languages such as JAVA provide new means to create greater depth of analysis tools which can be included into the conceptual design phase of launch vehicle development. Commercial framework computing environments provide easy to program techniques which coordinate and implement the flow of data in a distributed heterogeneous computing environment. It is the intent of this paper to present a process in development at NASA LaRC for enhanced structural weight estimation using this state of the art computational power.

  18. Research Opportunities in Space Propulsion

    Science.gov (United States)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  19. Coupling vibration research on Vehicle-bridge system

    Science.gov (United States)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  20. Effectiveness of Loan Guarantees versus Tax Incentives for Space Launch Ventures

    Science.gov (United States)

    Scottoline, S.; Coleman, R.

    1999-01-01

    Over the course of the past few years, several new and innovative fully or partiailly reusable launch vehicle designs have been initiated with the objective of reducing the cost of space transportation. These new designs are in various stages hardware development for technology and system demonstrators. The larger vehicles include the Lockheed Martin X-33 technology demonstrator for VentureStar and the Space Access launcher. The smaller launcher ventures include Kelly Space and Technology and Rotary Rocket Company. A common denominator between the new large and small commercial launch systems is the ability to obtain project financing and at an affordable cost. Both are having or will have great difficulty in obtaining financing in the capital markets because of the dollar amounts and the risk involved. The large established companies are pursuing multi-billion dollar developments which are a major challenge to finance because of the size and risk of the projects. The smaller start-up companies require less capital for their smaller systems, however, their lack of corporate financial muscle and launch vehicle track record results in a major challenge to obtain financing also because of high risk. On Wall Street, new launch system financing is a question of market, technical, organizational, legal/regulatory and financial risk. The current limit of acceptable financial risk for Space businesses on Wall Street are the telecommunications and broadcast satellite projects, of which many in number are projected for the future. Tbc recent problems with Iridium market and financial performance are casting a long shadow over new satellite project financing, making it increasingly difficult for the new satellite projects to obtain needed financing.

  1. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  2. An expert systems application to space base data processing

    Science.gov (United States)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  3. A Hybrid Power Management (HPM) Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.

  4. Automated guidance algorithms for a space station-based crew escape vehicle.

    Science.gov (United States)

    Flanary, R; Hammen, D G; Ito, D; Rabalais, B W; Rishikof, B H; Siebold, K H

    2003-04-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The first separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The first challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver requires

  5. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle

    Science.gov (United States)

    Qu, Feng; Sun, Di; Zuo, Guang

    2018-06-01

    With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.

  6. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles

    Science.gov (United States)

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  7. Analysis of large optical ground stations for deep-space optical communications

    Science.gov (United States)

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the

  8. Space Shuttle GN and C Development History and Evolution

    Science.gov (United States)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  9. Space station accommodations for lunar base elements: A study

    Science.gov (United States)

    Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.

    1987-01-01

    The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.

  10. Urban planning for autonomous vehicles

    OpenAIRE

    Fourie, Pieter J.; Ordoñez Medina, Sergio A.; Maheshwari, Tanvi; Wang, Biyu; Erath, Alexander; Cairns, Stephen; Axhausen, Kay W.

    2018-01-01

    In land-scarce Singapore, population growth and increasingly dense development are running up against limited remaining space for mobility infrastructure expansion. Autonomous Vehicles (AV) promise to relieve some of this pressure, through more efficient use of road space through platooning and intersection coordination, reducing the need for parking space, and reducing overall reliance on privately owned cars, realising Singapore’s vision of a “car-lite” future. In a collaborative resear...

  11. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    Science.gov (United States)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  12. Multiple Attribute Decision Making Based Relay Vehicle Selection for Electric Vehicle Communication

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2015-01-01

    Full Text Available Large-scale electric vehicle integration into power grid and charging randomly will cause serious impacts on the normal operation of power grid. Therefore, it is necessary to control the charging behavior of electric vehicle, while information transmission for electric vehicle is significant. Due to the highly mobile characteristics of vehicle, transferring information to power grid directly might be inaccessible. Relay vehicle (RV can be used for supporting multi-hop connection between SV and power grid. This paper proposes a multiple attribute decision making (MADM-based RV selection algorithm, which considers multiple attribute, including data transfer rate, delay, route duration. It takes the characteristics of electric vehicle communication into account, which can provide protection for the communication services of electric vehicle charging and discharging. Numerical results demonstrate that compared to previous algorithm, the proposed algorithm offer better performance in terms of throughput, transmission delay.

  13. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  14. Experimental Semiautonomous Vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; hide

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  15. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  16. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  17. EFT of large scale structures in redshift space

    Science.gov (United States)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun

    2018-03-01

    We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.

  18. Results of investigations conducted in the LaRC 8-foot transonic pressure tunnel using the 0.010-scale 72-OTS model of the space shuttle integrated vehicle (IA93), volume 2

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Test procedures, history, and plotted coefficient data are presented for an aero-loads investigation on the updated configuration-5 space shuttle launch vehicle at Mach numbers from 0.600 to 1.205. Six-component vehicle forces and moments, base and sting-cavity pressures, elevon hinge moments, wing-root bending and torsion moments, and normal shear force data were obtained. Full simulation of updated vehicle protuberances and attach hardware was employed.

  19. Sensing and control for autonomous vehicles applications to land, water and air vehicles

    CERN Document Server

    Pettersen, Kristin; Nijmeijer, Henk

    2017-01-01

    This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite sy...

  20. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  1. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  2. Weight savings in aerospace vehicles through propellant scavenging

    Science.gov (United States)

    Schneider, Steven J.; Reed, Brian D.

    1988-01-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  3. Weight savings in aerospace vehicles through propellant scavenging

    Science.gov (United States)

    Schneider, Steven J.; Reed, Brian D.

    1988-05-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  4. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    Directory of Open Access Journals (Sweden)

    Qianghui Zhang

    2016-07-01

    Full Text Available Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS, which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD based on Stolt interpolation. Finally, a modified TSP (MTSP is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application.

  5. Vehicle to grid: electric vehicles as an energy storage solution

    Science.gov (United States)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  6. Modulational instability for an induced field in the far-wake region of a space vehicle

    International Nuclear Information System (INIS)

    Liao Jingjing; Deng Qian; Qu Wen

    2012-01-01

    The behavior of the induced field and the generation of density cavitons in the far-wake region (|k 0 | → 0) of a space vehicle can be described by a set of nonlinear coupling equations. Modulational instability of the induced field is investigated on the basis of the nonlinear equations. The results show that the induced field is modulationally unstable and will collapse into spatial localized structures; meanwhile, density cavitons will be generated. The characteristic scale and the maximum growth rate of the induced field depend not only on the angle between the amplitude of pump waves E 0 and the perturbation wave vector k, but also on the energy density of pump waves |E 0 | 2 . (paper)

  7. An adaptive large neighborhood search heuristic for Two-Echelon Vehicle Routing Problems arising in city logistics

    Science.gov (United States)

    Hemmelmayr, Vera C.; Cordeau, Jean-François; Crainic, Teodor Gabriel

    2012-01-01

    In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP. PMID:23483764

  8. An adaptive large neighborhood search heuristic for Two-Echelon Vehicle Routing Problems arising in city logistics.

    Science.gov (United States)

    Hemmelmayr, Vera C; Cordeau, Jean-François; Crainic, Teodor Gabriel

    2012-12-01

    In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP.

  9. Large-scale deployment of electric vehicles in Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts

    International Nuclear Information System (INIS)

    Loisel, Rodica; Pasaoglu, Guzay; Thiel, Christian

    2014-01-01

    This study analyses battery electric vehicles (BEVs) in the future German power system and makes projections of the BEVs hourly load profile by car size (‘mini’, ‘small’, ‘compact’ and ‘large’). By means of a power plant dispatching optimisation model, the study assesses the optimal BEV charging/discharging strategies in grid-to-vehicle (G2V) and vehicle-to-grid (V2G) schemes. The results show that the 2% rise in power demand required to power these BEVs does not hamper system stability provided an optimal G2V scheme is applied. Moreover, such BEV deployment can contribute to further integrating wind and solar power generation. Applying a V2G scheme would increase the capacity factors of base and mid-load power plants, leading to a higher integration of intermittent renewables and resulting in a decrease in system costs. However, the evaluation of the profitability of BEVs shows that applying a V2G scheme is not a viable economic option due to the high cost of investing in batteries. Some BEV owners would make modest profits (€6 a year), but a higher number would sustain losses, for reasons of scale. For BEVs to become part of the power system, further incentives are necessary to make the business model attractive to car owners. - Highlights: • Optimal strategies for charging/discharging battery electric vehicles are assessed. • G2V scheme improves the stability of the future German power system. • V2G scheme would increase the capacity factors of base and mid-load power plants. • V2G scheme is not a viable economic option due to high batteries investment cost. • Further incentives are necessary to make the business model attractive to car owners

  10. FAST20XX: Achievements On European Suborbital Space Flight

    Science.gov (United States)

    Mack, A.; Steelant, J.; Adirim, H.; Lentsch, A.; Marini, M.; Pilz, N.

    2011-05-01

    In Europe, the EC co-funded project FAST20XX aims at exploring the borderline between aviation and space by investigating suborbital vehicles. The main focus is the identification and mastering of critical technologies for such vehicles rather than the vehicle development itself. Besides the objectives and overall layout of the project, the paper addresses also the progress made during the first period of the project. Two vehicle concepts are considered. A first one is a space vehicle launched from an airplane providing a low-energy ballistic flight experience using hybrid propulsion. The second is a vertically starting two-stage rocket space vehicle system concept taken as a basis to identify the conditions and constraints experienced during high- energy suborbital ultra-fast transport. The paper mainly discusses the two actual reference vehicles and the technical aspects of prerequisites for commercial operation including safety, human spaceflight, business cases, environmental and legal issues.

  11. A large-amplitude traveling ionospheric disturbance excited by the space shuttle during launch

    International Nuclear Information System (INIS)

    Noble, S.T.

    1990-01-01

    The ionosphere was monitored during the fourth space shuttle (STS 4) launch in June 1982 by the Arecibo incoherent scatter radar. A long-lived, large-amplitude, traveling ionospheric disturbance with dominant wave moles of ∼ 15 and 75 min was observed shortly after the launch. The disturbance wave train is likely the product of a variety of wave modes. The disturbance front traveled with an average group speed of >628 m/s. Such speeds are typical of fast moving shock waves and ducted gravity waves. Either one or both could be responsible for the signatures observed near the leading edge of the STS 4 wave train. Later arriving waves, with their inherently lower propagation speeds, are attributed to additional gravity wave modes. These waves, however, were not explicitly identified in this study. Although atmospheric waves are excited along the entire flight path, the most intense region of excitation is located along a relatively short flight segment (∼70 km) near the launch site where all primary thrusters are firing and over 70% of the propellants are expended. Not since the nuclear bomb tests of the late 1950s and early 1960s has an artificial source of atmospheric gravity waves been more available for upper atmospheric studies. The routine launching of high thrust vehicles provides an excellent opportunity to observe the propagation characteristics of atmospheric waves under controlled conditions and to acquire information on the nature of the upper atmosphere

  12. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  13. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  14. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    Science.gov (United States)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  15. Prevalence, attitudes, and knowledge of in-vehicle technologies and vehicle adaptations among older drivers.

    Science.gov (United States)

    Eby, David W; Molnar, Lisa J; Zakrajsek, Jennifer S; Ryan, Lindsay H; Zanier, Nicole; Louis, Renée M St; Stanciu, Sergiu C; LeBlanc, David; Kostyniuk, Lidia P; Smith, Jacqui; Yung, Raymond; Nyquist, Linda; DiGuiseppi, Carolyn; Li, Guohua; Mielenz, Thelma J; Strogatz, David

    2018-04-01

    The purpose of the present study was to gain a better understanding of the types of in-vehicle technologies being used by older drivers as well as older drivers' use, learning, and perceptions of safety related to these technologies among a large cohort of older drivers at multiple sites in the United States. A secondary purpose was to explore the prevalence of aftermarket vehicle adaptations and how older adults go about making adaptations and how they learn to use them. The study utilized baseline questionnaire data from 2990 participants from the Longitudinal Research on Aging Drivers (LongROAD) study. Fifteen in-vehicle technologies and 12 aftermarket vehicle adaptations were investigated. Overall, 57.2% of participants had at least one advanced technology in their primary vehicle. The number of technologies in a vehicle was significantly related to being male, having a higher income, and having a higher education level. The majority of respondents learned to use these technologies on their own, with "figured-it-out-myself" being reported by 25%-75% of respondents across the technologies. Overall, technologies were always used about 43% of the time, with wide variability among the technologies. Across all technologies, nearly 70% of respondents who had these technologies believed that they made them a safer driver. With regard to vehicle adaptations, less than 9% of respondents had at least one vehicle adaptation present, with the number of adaptations per vehicle ranging from 0 to 4. A large majority did not work with a professional to make or learn about the aftermarket vehicle adaptation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Conformal cryogenic tank trade study for reusable launch vehicles

    Science.gov (United States)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar™. Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  17. Airframe Integration Trade Studies for a Reusable Launch Vehicle

    Science.gov (United States)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  18. Electronic Prognostics for Vehicle Health Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — All electronic systems are prone to wear-out and eventual failure and this has direct implications for Vehicle Health Management for NASA with its long space...

  19. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  20. Flexible Composites for Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload mass reduction and packaging efficiency in launch vehicles are essential for deep space exploration.  Inflatable softgoods have been identified as attractive...

  1. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 2: Integrated loss of vehicle model

    Science.gov (United States)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    The application of the probabilistic risk assessment methodology to a Space Shuttle environment, particularly to the potential of losing the Shuttle during nominal operation is addressed. The different related concerns are identified and combined to determine overall program risks. A fault tree model is used to allocate system probabilities to the subsystem level. The loss of the vehicle due to failure to contain energetic gas and debris, to maintain proper propulsion and configuration is analyzed, along with the loss due to Orbiter, external tank failure, and landing failure or error.

  2. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    Science.gov (United States)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  3. Predicting vehicle fuel consumption patterns using floating vehicle data.

    Science.gov (United States)

    Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong

    2017-09-01

    The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.

  4. Intelligent Control Of An Electric Vehicle ICEV

    Directory of Open Access Journals (Sweden)

    Taoufik Chaouachi

    2017-01-01

    Full Text Available The electric vehicle allows fast gentle quiet and environmentally friendly movements in industrial and urban environments. The automotive industry has seen the opportunity to revive its production by replacing existing vehicles due to the reluctance of oil reserves around the world. In order to greatly reduce countries dependence on oil strategic sectors such as transport must increasingly integrate technologies based primarily on clean and renewable energy. Governments must implement large-scale measures to equip themselves with electric vehicles and build large recharge networks. The traditional system for conversions of conventional vehicles into electric vehicles consists of replacing the internal combustion engine and the gearbox with electrical components engine and gearbox or engine and gearbox retaining the rest of the elements Transmission transmission shafts etc..

  5. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  6. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  7. Mars Earth Return Vehicle (MERV) Propulsion Options

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; hide

    2010-01-01

    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  8. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv; Self, Timothy A.

    2007-01-01

    The Ares launch vehicles team, managed by the Ares Projects Office (APO) at NASA Marshall Space Flight Center, has completed the Ares I Crew Launch Vehicle System Requirements Review and System Definition Review and early design work for the Ares V Cargo Launch Vehicle. This paper provides examples of how Lean Manufacturing, Kaizen events, and Six Sigma practices are helping APO deliver a new space transportation capability on time and within budget, while still meeting stringent technical requirements. For example, Lean philosophies have been applied to numerous process definition efforts and existing process improvement activities, including the Ares I-X test flight Certificate of Flight Readiness (CoFR) process, risk management process, and review board organization and processes. Ares executives learned Lean practices firsthand, making the team "smart buyers" during proposal reviews and instilling the team with a sense of what is meant by "value-added" activities. Since the goal of the APO is to field launch vehicles at a reasonable cost and on an ambitious schedule, adopting Lean philosophies and practices will be crucial to the Ares Project's long-term SUCCESS.

  9. Control of maglev vehicles with aerodynamic and guideway disturbances

    Science.gov (United States)

    Flueckiger, Karl; Mark, Steve; Caswell, Ruth; Mccallum, Duncan

    1994-01-01

    A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.

  10. A space exploration strategy that promotes international and commercial participation

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  11. Reaction Control Engine for Space Launch Initiative

    Science.gov (United States)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  12. Benefits of Government Incentives for Reusable Launch Vehicle Development

    Science.gov (United States)

    Shaw, Eric J.; Hamaker, Joseph W.; Prince, Frank A.

    1998-01-01

    Many exciting new opportunities in space, both government missions and business ventures, could be realized by a reduction in launch prices. Reusable launch vehicle (RLV) designs have the potential to lower launch costs dramatically from those of today's expendable and partially-expendable vehicles. Unfortunately, governments must budget to support existing launch capability, and so lack the resources necessary to completely fund development of new reusable systems. In addition, the new commercial space markets are too immature and uncertain to motivate the launch industry to undertake a project of this magnitude and risk. Low-cost launch vehicles will not be developed without a mature market to service; however, launch prices must be reduced in order for a commercial launch market to mature. This paper estimates and discusses the various benefits that may be reaped from government incentives for a commercial reusable launch vehicle program.

  13. Conceptual Design Gamma-Ray Large Area Space Telescope (GLAST) Tower Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Chad

    2002-07-18

    The main objective of this work was to develop a conceptual design and engineering prototype for the Gamma-ray Large Area Space Telescope (GLAST) tower structure. This thesis describes the conceptual design of a GLAST tower and the fabrication and testing of a prototype tower tray. The requirements were that the structure had to support GLAST's delicate silicon strip detector array through ground handling, launch and in orbit operations as well as provide for thermal and electrical pathways. From the desired function and the given launch vehicle for the spacecraft that carries the GLAST detector, an efficient structure was designed which met the requirements. This thesis developed in three stages: design, fabrication, and testing. During the first stage, a general set of specifications was used to develop the initial design, which was then analyzed and shown to meet or exceed the requirements. The second stage called for the fabrication of prototypes to prove manufacturability and gauge cost and time estimates for the total project. The last step called for testing the prototypes to show that they performed as the analysis had shown and prove that the design met the requirements. As a spacecraft engineering exercise, this project required formulating a solution based on engineering judgment, analyzing the solution using advanced engineering techniques, then proving the validity of the design and analysis by the manufacturing and testing of prototypes. The design described here met all the requirements set out by the needs of the experiment and operating concerns. This strawman design is not intended to be the complete or final design for the GLAST instrument structure, but instead examines some of the main challenges involved and demonstrates that there are solutions to them. The purpose of these tests was to prove that there are solutions to the basic mechanical, electrical and thermal problems presented with the GLAST project.

  14. Second Generation RLV Space Vehicle Concept

    Science.gov (United States)

    Bailey, M. D.; Daniel, C. C.

    2002-01-01

    NASA has a long history of conducting development programs and projects in a consistant fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At 776M for phase I, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems

  15. Optimal control of large space structures via generalized inverse matrix

    Science.gov (United States)

    Nguyen, Charles C.; Fang, Xiaowen

    1987-01-01

    Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.

  16. Securing America's access to space

    Energy Technology Data Exchange (ETDEWEB)

    Rendine, M.; Wood, L.

    1990-05-23

    We review pertinent aspects of the history of the space launch capabilities of the United States and survey its present status and near-term outlook. Steps which must be taken, pitfalls which much be avoided, and a core set of National options for re-acquiring in the near term the capability to access the space environment with large payloads are discussed. We devote considerable attention to the prospect of creating an interim heavy-lift space launch vehicle of at least 100,000 pound payload-orbiting capacity to serve National needs during the next dozen years, suggesting that such a capability can be demonstrated within 5 years for less than $1 B. Such capability will apparently be essential for meeting the first-phase goals of the President's Space Exploration Initiative. Some other high-leverage aspects of securing American access to space are also noted briefly, emphasizing unconventional technological approaches of presently high promise.

  17. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    Science.gov (United States)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  18. Decadal opportunities for space architects

    Science.gov (United States)

    Sherwood, Brent

    2012-12-01

    A significant challenge for the new field of space architecture is the dearth of project opportunities. Yet every year more young professionals express interest to enter the field. This paper derives projections that bound the number, type, and range of global development opportunities that may be reasonably expected over the next few decades for human space flight (HSF) systems so those interested in the field can benchmark their goals. Four categories of HSF activity are described: human Exploration of solar system bodies; human Servicing of space-based assets; large-scale development of space Resources; and Breakout of self-sustaining human societies into the solar system. A progressive sequence of capabilities for each category starts with its earliest feasible missions and leads toward its full expression. The four sequences are compared in scale, distance from Earth, and readiness. Scenarios hybridize the most synergistic features from the four sequences for comparison to status quo, government-funded HSF program plans. Finally qualitative, decadal, order-of-magnitude estimates are derived for system development needs, and hence opportunities for space architects. Government investment towards human planetary exploration is the weakest generator of space architecture work. Conversely, the strongest generator is a combination of three market drivers: (1) commercial passenger travel in low Earth orbit; (2) in parallel, government extension of HSF capability to GEO; both followed by (3) scale-up demonstration of end-to-end solar power satellites in GEO. The rich end of this scale affords space architecture opportunities which are more diverse, complex, large-scale, and sociologically challenging than traditional exploration vehicle cabins and habitats.

  19. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles

    International Nuclear Information System (INIS)

    Batra, T.; Schaltz, E.

    2015-01-01

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in the vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications

  20. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Batra, T., E-mail: tba@et.aau.dk; Schaltz, E. [Department of Energy Technology, Aalborg University, Aalborg 9220 (Denmark)

    2015-05-07

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in the vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.

  1. Large-size deployable construction heated by solar irradiation in free space

    Science.gov (United States)

    Pestrenina, Irena; Kondyurin, Alexey; Pestrenin, Valery; Kashin, Nickolay; Naymushin, Alexey

    Large-size deployable construction in free space with subsequent direct curing was invented more than fifteen years ago (Briskman et al., 1997 and Kondyurin, 1998). It caused a lot of scientific problems, one of which is a possibility to use the solar energy for initiation of the curing reaction. This paper is devoted to investigate the curing process under sun irradiation during a space flight in Earth orbits. A rotation of the construction is considered. This motion can provide an optimal temperature distribution in the construction that is required for the polymerization reaction. The cylindrical construction of 80 m length with two hemispherical ends of 10 m radius is considered. The wall of the construction of 10 mm carbon fibers/epoxy matrix composite is irradiated by heat flux from the sun and radiates heat from the external surface by the Stefan- Boltzmann law. A stage of polymerization reaction is calculated as a function of temperature/time based on the laboratory experiments with certified composite materials for space exploitation. The curing kinetics of the composite is calculated for different inclination Low Earth Orbits (300 km altitude) and Geostationary Earth Orbit (40000 km altitude). The results show that • the curing process depends strongly on the Earth orbit and the rotation of the construction; • the optimal flight orbit and rotation can be found to provide the thermal regime that is sufficient for the complete curing of the considered construction. The study is supported by RFBR grant No.12-08-00970-a. 1. Briskman V., A.Kondyurin, K.Kostarev, V.Leontyev, M.Levkovich, A.Mashinsky, G.Nechitailo, T.Yudina, Polymerization in microgravity as a new process in space technology, Paper No IAA-97-IAA.12.1.07, 48th International Astronautical Congress, October 6-10, 1997, Turin Italy. 2. Kondyurin A.V., Building the shells of large space stations by the polymerisation of epoxy composites in open space, Int. Polymer Sci. and Technol., v.25, N4

  2. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, Namdoo [Argonne National Lab. (ANL), Argonne, IL (United States); Shidore, Neeraj [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  3. Analysis of Wheel Hub Motor Drive Application in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sun Yuechao

    2017-01-01

    Full Text Available Based on the comparative analysis of the performance characteristics of centralized and distributed drive electric vehicles, we found that the wheel hub motor drive mode of the electric vehicles with distributed drive have compact structure, high utilization ratio of interior vehicle space, lower center of vehicle gravity, good driving stability, easy intelligent control and many other advantages, hence in line with the new requirements for the development of drive performance of electric vehicles, and distributed drive will be the ultimate mode of electric vehicles in the future.

  4. Some thoughts on the management of large, complex international space ventures

    Science.gov (United States)

    Lee, T. J.; Kutzer, Ants; Schneider, W. C.

    1992-01-01

    Management issues relevant to the development and deployment of large international space ventures are discussed with particular attention given to previous experience. Management approaches utilized in the past are labeled as either simple or complex, and signs of efficient management are examined. Simple approaches include those in which experiments and subsystems are developed for integration into spacecraft, and the Apollo-Soyuz Test Project is given as an example of a simple multinational approach. Complex approaches include those for ESA's Spacelab Project and the Space Station Freedom in which functional interfaces cross agency and political boundaries. It is concluded that individual elements of space programs should be managed by individual participating agencies, and overall configuration control is coordinated by level with a program director acting to manage overall objectives and project interfaces.

  5. Designing Light Electric Vehicles for urban freight transport

    NARCIS (Netherlands)

    Hogt, Roeland; Balm, S.H.; Warmerdam, J.M.

    2017-01-01

    The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the liveability of cities. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can manoeuvre easily and free from polluting emissions. Within the two-year

  6. The ParaShield Entry Vehicle Concept: Basic Theory and Flight Test Development

    OpenAIRE

    Akin, David

    1990-01-01

    With the emergence of microsatellite launch vehicle technology and the development of interest in space commercialization, there is a renewed need for entry vehicle technology to return mass from low earth orbit. This paper documents the ParaShield concept of the Space Systems Laboratory, which is an ultra-low ballistic coefficient (ULβ) entry vehicle. Trajectory simulations show that as the ballistic coefficient is lowered into the range of 100-150 Pa (2-3lb/ft2) the total heat load and peak...

  7. Nytrox Oxidizers for NanoSat Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Propulsion Group, Inc. proposes to conduct systems studies to quantify the performance and cost advantages of Nytrox oxidizers for small launch vehicles. This...

  8. A survey of light-vehicle driver education curriculum on sharing the road with heavy vehicles.

    Science.gov (United States)

    Baker, Stephanie; Schaudt, William A; Freed, J C; Toole, Laura

    2012-07-01

    Light-vehicle driver education programs that contain content about sharing the road with heavy vehicles may be helpful in reducing future light-vehicle/heavy-vehicle interactions. However, the extent of curricula in the United States including such content is unclear. Researchers developed an online survey targeted at instructors/administrators of state driver education programs to identify curricula addressing heavy vehicles and to determine perceived effectiveness. Ninety-one percent of respondents indicated that the light-vehicle driver education curriculum they teach/administer included a component covering how to safely share the road with heavy vehicles (82% perceived this component to be effective). Although a large proportion of these programs included a component on how to safely share the road with heavy vehicles, participants indicated there may be room for improvement. Participants recommended that future improvements to driver education programs include updated materials and student hands-on experience with heavy vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  10. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  11. Mitigating vestibular disturbances during space flight using virtual reality training and reentry vehicle design guidelines

    Science.gov (United States)

    Stroud, Kenneth Joshua

    Seventy to eighty percent of astronauts reportedly exhibit undesirable vestibular disturbances during the first few days of weightlessness, including space motion sickness (SMS) and spatial disorientation (SD). SMS presents a potentially dangerous situation, both because critical piloted tasks such as docking maneuvers and emergency reentry may be compromised, and because of the potential for asphyxiation should an astronaut vomit while wearing a space suit. SD can be provocative for SMS as well as become dangerous during an emergency in which it is critical for an astronaut to move quickly through the vehicle. In the U.S. space program, medication is currently used both for prevention and treatment of SMS. However, this approach has had only moderate success, and the side effects of drowsiness and lack of concentration are undesirable. Research suggests that preflight training in virtual reality devices can simulate certain aspects of microgravity and may prove to be an effective countermeasure for SMS and SD. It was hypothesized that exposing subjects preflight to variable virtual orientations, similar to those encountered during space flight, will reduce the incidence and/or severity of SMS and SD. Results from a study conducted at the NASA Johnson Space Center as part of this research demonstrated that this type of training is effective for reducing motion sickness and improving task performance in potentially disorienting visual surroundings, thus suggesting the possibility that such training may prove an effective countermeasure for SMS, SD and related performance decrements that occur in space flight. In addition to the effects associated with weightlessness, almost all astronauts experience vestibular disturbances associated with gravity-transitions incurred during the return to Earth, which could be exacerbated if traveling in a spacecraft that is designed differently than a conventional aircraft. Therefore, for piloted descent and landing operations

  12. Space Transportation Infrastructure Supported By Propellant Depots

    Science.gov (United States)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.

  13. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data.

    Science.gov (United States)

    Kan, Zihan; Tang, Luliang; Kwan, Mei-Po; Zhang, Xia

    2018-03-21

    The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles' mobile activities ( MA ) and stationary activities ( SA ). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA , SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles' activities in road networks.

  14. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems

    Science.gov (United States)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.

    2006-01-01

    The U.S. Vision for Space Exploration (January 2004) serves as the foundation for the National Aeronautics and Space Administration's (NASA) strategic goals and objectives. As the NASA Administrator outlined during his confirmation hearing in April 2005, these include: 1) Flying the Space Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human space flight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. In spring 2005, the Agency commissioned a team of aerospace subject matter experts to perform the Exploration Systems Architecture Study (ESAS). The ESAS team performed in-depth evaluations of a number of space transportation architectures and provided recommendations based on their findings? The ESAS analysis focused on a human-rated Crew Launch Vehicle (CLV) for astronaut transport and a heavy lift Cargo Launch Vehicle (CaLV) to carry equipment, materials, and supplies for lunar missions and, later, the first human journeys to Mars. After several months of intense study utilizing safety and reliability, technical performance, budget, and schedule figures of merit in relation to design reference missions, the ESAS design options were unveiled in summer 2005. As part of NASA's systems engineering approach, these point of departure architectures have been refined through trade studies during the ongoing design phase leading to the development phase that

  15. Camera memory study for large space telescope. [charge coupled devices

    Science.gov (United States)

    Hoffman, C. P.; Brewer, J. E.; Brager, E. A.; Farnsworth, D. L.

    1975-01-01

    Specifications were developed for a memory system to be used as the storage media for camera detectors on the large space telescope (LST) satellite. Detectors with limited internal storage time such as intensities charge coupled devices and silicon intensified targets are implied. The general characteristics are reported of different approaches to the memory system with comparisons made within the guidelines set forth for the LST application. Priority ordering of comparisons is on the basis of cost, reliability, power, and physical characteristics. Specific rationales are provided for the rejection of unsuitable memory technologies. A recommended technology was selected and used to establish specifications for a breadboard memory. Procurement scheduling is provided for delivery of system breadboards in 1976, prototypes in 1978, and space qualified units in 1980.

  16. Retrospective review of adverse incidents involving passengers seated in wheeled mobility devices while traveling in large accessible transit vehicles.

    Science.gov (United States)

    Frost, Karen L; Bertocci, Gina

    2010-04-01

    Characterize wheeled mobility device (WhMD) adverse incidents on large accessible transit vehicles (LATVs) based on vehicle motion, WhMD activity during incident, incident scenario and injury. Retrospective records review. WhMD passengers traveling on LATVs while remaining seated in their. Adverse incidents characterized based on vehicle motion, WhMD activity during incident, and incident scenario. Injury characterized based on outcome, medical attention sought, vehicle activity, WhMD activity and incident scenario. 115 WhMD-related incident reports for years 2000-2005 were analyzed. Most incidents occurred when the LATV was stopped (73.9%), during ingress/egress (42.6%), and at the securement station (33.9%) when the LATV was moving. The combination of WhMD tipping and passenger falling (43.4%) occurred most frequently, and was 1.8 times more likely to occur during ingress/egress than at the securement station. One-third (33.6%) of all incidents resulted in injury, and injuries were equally distributed between ingress/egress (43.6%) and at the securement station (43.6%). WhMD users have a greater chance of incurring injury during ingress/egress than during transit. Research is needed to objectively assess real world transportation experiences of WhMD passengers, and to assess the adequacy of existing federal legislation/guidelines for accessible ramps used in public transportation. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Future orbital transfer vehicle technology study. Volume 2: Technical report

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  18. Robotic Vehicle Proxy Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes the development of a digital simulation that can replace robotic vehicles in field studies. This proxy simulation will model the...

  19. Vehicle path-planning in three dimensions using optics analogs for optimizing visibility and energy cost

    Science.gov (United States)

    Rowe, Neil C.; Lewis, David H.

    1989-01-01

    Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.

  20. X-43 Hypersonic Vehicle Technology Development

    Science.gov (United States)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  1. Vehicle System Management Modeling in UML for Ares I

    Science.gov (United States)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  2. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    Science.gov (United States)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  3. Flying on Sun Shine: Sailing in Space

    International Nuclear Information System (INIS)

    Alhorn, Dean

    2012-01-01

    On January 20th, 2011, NanoSail-D successfully deployed its sail in space. It was the first solar sail vehicle to orbit the earth and the second sail ever unfurled in space. The 10m2 sail, deployment mechanism and electronics were packed into a 3U CubeSat with a volume of about 3500cc. The NanoSail-D mission had two objectives: eject a nanosatellite from a minisatellite; deploy its sail from a highly compacted volume to validate large structure deployment and potential de-orbit technologies. NanoSail-D was jointly developed by NASA's Marshall Space Flight Center and Ames Research Center. The ManTech/NeXolve Corporation provided key sail design support. NanoSail-D is managed by Marshall and jointly sponsored by the Army Space and Missile Defense Command, the Space Test Program, the Von Braun Center for Science and Innovation and Dynetics Inc. The presentation will provide insights into sailcraft advances and potential missions enabled by this emerging in-space propulsion technology.

  4. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  5. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...... depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0....

  6. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0.......We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...

  7. Interactive computer graphics and its role in control system design of large space structures

    Science.gov (United States)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  8. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  9. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    Science.gov (United States)

    Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David

    2017-01-01

    marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance (ULA) in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the OSA and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 t to LEO, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An

  10. Smart and secure charging of electric vehicles in public parking spaces

    OpenAIRE

    Strobbe, Matthias; Mets, Kevin; Tahon, Mathieu; Tilman, M; Spiessens, F; Gheerardyn, J; De Craemer, K; Vandael, S; Geebelen, K; Lagaisse, B; Claessens, B; Develder, Chris

    2012-01-01

    Governments worldwide are starting to give incentives to promote the use of (hybrid) electrical vehicles to achieve cleaner and more energy-efficient road transport with a low carbon footprint. Through tax/VAT reductions and free additional services — such as free parking, and/or battery charging or lower traffic congestion taxes — private users, public organizations and car fleet operators are stimulated to adopt the plug-in (hybrid) electrical vehicle (PHEV). This upcoming breakthrough of P...

  11. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  12. China’s strategy in space

    CERN Document Server

    Solomone, Stacey

    2013-01-01

    This book addresses why China is going into space and provides up- to-date information on all aspects of the Chinese Space Program in terms of launch vehicles, launch sites and infrastructure, crew vehicles for space exploration, satellite applications and scientific exploration capabilities. Beyond mere capabilities, it is important to understand how Chinese aerospace leaders think, how they make decisions, and what their ultimate goal is during their space endeavors. What are Chinese intentions in space? To what extent does culture and ethics influence Chinese strategic decision-making within the highest levels of the aerospace industrial complex? This book examines these questions and offers four potential scenarios on where the Chinese space program is headed based on this new perspective of understanding China’s space goals. This book is not only required reading for policy makers and military leaders in the US government, but also for the general population, students, and professionals interested in t...

  13. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  14. The Advantages, Potentials and Safety of VTOL Suborbital Space Tourism Operations

    Science.gov (United States)

    Ridzuan Zakaria, N.; Nasrun, N.; Abu, J.; Jusoh, A.; Azim, L.; Said, A.; Ishak, S.; Rafidi Zakaria, N.

    2012-01-01

    Suborbital space tourism offers short-time zero gravity and Earth view from space to its customers, and a package that can offer the longest duration of zero- gravity and the most exciting Earth view from space to its customer can be considered a better one than the others. To increase the duration of zero gravity time involves the design and engineering of the suborbital vehicles, but to improve the view of Earth from space aboard a suborbital vehicle, involves more than just the design and engineering of the vehicle, but more on the location of where the vehicle operates. So far, most of the proposed operations of suborbital space tourism vehicles involve a flight to above 80km and less than 120km and taking-off and landing at the same location. Therefore, the operational location of the suborbital vehicle clearly determines the view of earth from space that will be available to its passengers. The proposed operational locations or spaceports usually are existing airports such as the airport at Curacao Island in the Caribbean or spaceport specially built at locations with economic interests such as Spaceport America in New Mexico or an airport that is going to be built, such as SpaceportSEA in Selangor, Malaysia. Suborbital vehicles operating from these spaceports can only offer limited views of Earth from space which is only few thousand kilometers of land or sea around their spaceports, and a clear view of only few hundred kilometers of land or sea directly below them, even though the views can be enhanced by the application of optical devices. Therefore, the view of some exotic locations such as a colorful coral reef, and phenomena such as a smoking volcano on Earth which may be very exciting when viewed from space will not be available on these suborbital tourism packages. The only possible way for the passengers of a suborbital vehicle to view such exotic locations and phenomena is by flying above or near them, and since it will not be economic and will be

  15. Research Opportunities on board Virgin Galactic's SpaceShipTwo

    Science.gov (United States)

    Attenborough, S.; Pomerantz, W.; Stephens, K.

    2013-09-01

    Virgin Galactic is building the world's first commercial spaceline. Our suborbital spaceflight system, pictured in Figure 1, consists of two vehicles: WhiteKnightTwo (WK2) and SpaceShipTwo (SS2). WhiteKnightTwo is a four-engine, dual-fuselage jet aircraft capable of high-altitude heavy lift missions, including, but not limited to fulfilling its role as a mothership for SpaceShipTwo, an air-launched, suborbital spaceplane capable of routinely reaching an apogee up to 110 kilometers. In conjunction, these two vehicles allow access to space and to regions of the atmosphere ranging from the troposphere to the thermosphere; additionally, they provide extended periods of microgravity in a reliable and affordable way. SpaceShipTwo, with a payload capacity of up to 1,300 lbs. (~600 kg), features payload mounting interfaces that are compatible with standard architectures such as NASA Space Shuttle Middeck Lockers, Cargo Transfer Bags, and server racks, in addition to custom structures. With the standard interface, payloads are allowed access to the large 17 inch diameter cabin windows for external observations. Each dedicated research flight will be accompanied by a Virgin Galactic Flight Test Engineer, providing an opportunity for limited in-flight interaction. In addition, tended payloads - a flight that includes the researcher and his or her payload - are also an option. At a price point that is highly competitive with parabolic aircraft and sounding rockets and significantly cheaper than orbital flights, SpaceShipTwo is a unique platform that can provide frequent and repeatable research opportunities. Suborbital flights on SpaceShipTwo offer researchers several minutes of microgravity time and views of the external environment in the upper atmosphere and in outer space. In addition to serving as an important research platform in and of itself, SpaceShipTwo also offers researchers a means to test, iterate, and calibrate experiments designed for orbital platforms

  16. Optimization of ACC system spacing policy on curved highway

    Science.gov (United States)

    Ma, Jun; Qian, Kun; Gong, Zaiyan

    2017-05-01

    The paper optimizes the original spacing policy when adopting VTH (Variable Time Headway), proposes to introduce the road curve curvature K to the spacing policy to cope with following the wrong vehicle or failing to follow the vehicle owing to the radar limitation of curve in ACC system. By utilizing MATLAB/Simulink, automobile longitudinal dynamics model is established. At last, the paper sets up such three common cases as the vehicle ahead runs at a uniform velocity, an accelerated velocity and hits the brake suddenly, simulates these cases on the curve with different curvature, analyzes the curve spacing policy in the perspective of safety and vehicle following efficiency and draws the conclusion whether the optimization scheme is effective or not.

  17. Diagram of Saturn V Launch Vehicle

    Science.gov (United States)

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  18. Hybrid Electrostatic/Flextensional Deformable Membrane Mirror for Lightweight, Large Aperture and Cryogenic Space Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes innovative hybrid electrostatic/flextensional membrane deformable mirror capable of large amplitude aberration correction for large...

  19. The Ares Launch Vehicles: Critical for America's Continued Leadership in Space

    Science.gov (United States)

    Cook, Stephen A.

    2009-01-01

    This video is designed to accompany the presentation of the paper delivered at the Joint Army, Navy, NASA, Airforce (JANNAF) Propulsion Meeting held in 2009. It shows various scenes: from the construction of the A-3 test stand, construction of portions of the vehicles, through various tests of the components of the Ares Launch Vehicles, including wind tunnel testing of the Ares V, shell buckling tests, and thermal tests of the avionics, to the construction of the TPS thermal spray booth.

  20. Demand for alternative-fuel vehicles when registration taxes are high

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Fosgerau, Mogens

    2011-01-01

    This paper investigates the potential futures for alternative-fuel vehicles in Denmark, where the vehicle registration tax is very high and large tax rebates can be given. A large stated choice dataset has been collected concerning vehicle choice among conventional, hydrogen, hybrid, bio......-diesel, and electric vehicles. We estimate a mixed logit model that improves on previous contributions by controlling for reference dependence and allowing for correlation of random effects. Both improvements are found to be important. An application of the model shows that alternative-fuel vehicles with present...... technology could obtain fairly high market shares given tax regulations possible in the present high-tax vehicle market....

  1. Consideration of adding a commercial module to the International Space Station

    Science.gov (United States)

    Friefeld, J.; Fugleberg, D.; Patel, J.; Subbaraman, G.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is currently assembling the International Space Station in Low Earth Orbit. One of NASA's program objectives is to encourage space commercialization. Through NASA's Engineering Research and Technology Development program, Boeing is conducting a study to ascertain the feasibility of adding a commercial module to the International Space Station. This module (facility) that can be added, following on-orbit assembly is described. The facility would have the capability to test large, engineering scale payloads in a space environment. It would also have the capability to provide services to co-orbiting space vehicles as well as gathering data for commercial terrestrial applications. The types of industries to be serviced are described as are some of the technical and business considerations that need to be addressed in order to achieve commercial viability.

  2. Longitudinal Control of a Platoon of Road Vehicles Equipped with Adaptive Cruise Control System

    Directory of Open Access Journals (Sweden)

    Zeeshan Ali Memon

    2012-07-01

    Full Text Available Automotive vehicle following systems are essential for the design of automated highway system. The problem associated with the automatic vehicle following system is the string stability of the platoon of vehicles, i.e. the problem of uniform velocity and spacing errors propagation. Different control algorithm for the longitudinal control of a platoon are discussed based on different spacing policies, communication link among the vehicles of a platoon, and the performance of a platoon have been analysed in the presence of disturbance (noise and parametric uncertainties. This paper presented the PID (Proportional Integral Derivative feedback control algorithm for the longitudinal control of a platoon in the presence of noise signal and investigates the performance of platoon under the influence of sudden acceleration and braking in severe conditions. This model has been applied on 6 vehicles moving in a platoon. The platoon has been analysed to retain the uniform velocity and safe spacing among the vehicles. The limitations of PID control algorithm have been discussed and the alternate methods have been suggested. Model simulations, in comparison with the literature, are also presented.

  3. Very large virtual compound spaces: construction, storage and utility in drug discovery.

    Science.gov (United States)

    Peng, Zhengwei

    2013-09-01

    Recent activities in the construction, storage and exploration of very large virtual compound spaces are reviewed by this report. As expected, the systematic exploration of compound spaces at the highest resolution (individual atoms and bonds) is intrinsically intractable. By contrast, by staying within a finite number of reactions and a finite number of reactants or fragments, several virtual compound spaces have been constructed in a combinatorial fashion with sizes ranging from 10(11)11 to 10(20)20 compounds. Multiple search methods have been developed to perform searches (e.g. similarity, exact and substructure) into those compound spaces without the need for full enumeration. The up-front investment spent on synthetic feasibility during the construction of some of those virtual compound spaces enables a wider adoption by medicinal chemists to design and synthesize important compounds for drug discovery. Recent activities in the area of exploring virtual compound spaces via the evolutionary approach based on Genetic Algorithm also suggests a positive shift of focus from method development to workflow, integration and ease of use, all of which are required for this approach to be widely adopted by medicinal chemists.

  4. The potential of electric vehicles

    International Nuclear Information System (INIS)

    2016-04-01

    Electric vehicles can help reduce the dependence of road transport on imported oil, cut the country's energy bill, reduce greenhouse gas emissions, improve air quality in cities through zero exhaust emissions and reduce noise pollution. The economic costs and environmental impacts of electric vehicles are mostly concentrated at the manufacturing stage, whereas the costs and impacts of internal combustion vehicles are predominantly felt during usage. So we cannot simply compare vehicles as objects, we must see how they are used, which means taking a fresh look at the full potential of electric vehicles which must be used intensely to be economically and environmentally viable. The main advantage of internal combustion vehicles is their ability to carry a very large amount of energy giving them a very large range and significant versatility. However, the consequences of the use of fossil fuels on the climate and the environment today require us to look for other solutions for vehicles and mobility systems. Electric vehicles are among these: its lack of versatility, due to its still limited range, is offset by being more adaptable and optimised for the usage sought. Electric vehicles are particularly suitable for new mobility services offerings and allow the transition to new ways of travelling to be speeded up optimising the use of the vehicle and no longer requiring ownership of it. The use of digital, facilitated by the electrical engine, opens up numerous opportunities for innovations and new services (such as the autonomous vehicle for example). In addition, electric vehicles can do more than just transport. Their batteries provide useful energy storage capabilities that can help regulate the power grid and the development of renewable energy. The marketing of electric vehicles may be accompanied by energy services that can be economically viable and used to structure the electro-mobility offer in return. To minimise the impact on the electrical grid, it is

  5. A Novel Axial Foldable Mechanism for a Segmented Primary Mirror of Space Telescope

    Directory of Open Access Journals (Sweden)

    Dignesh Thesiya

    2015-09-01

    Full Text Available Future space missions will have larger telescopes in order to look deeper into space while improvising on spatial resolution. The primary mirrors for these telescopes will be so large that using a monolithic mirror will be nearly impossible because of the difficulties associated with its fabrication, transportation, and installation on a launch vehicle. The feasibility of launching these huge mirrors is limited because of their small launch fairing diameter. The aerodynamic shape of the fairing requires a small diameter, but the height of the launch vehicle, which is available for designers to utilize, is larger than the fairing diameter. This paper presents the development of an axial deployment mechanism based on the screw jack principle. The mechanism was designed and developed, and a prototype was constructed in order to demonstrate a lab model.

  6. Survivable pulse power space radiator

    Science.gov (United States)

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  7. Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems

    International Nuclear Information System (INIS)

    Luo, Yugong; Zhu, Tao; Wan, Shuang; Zhang, Shuwei; Li, Keqiang

    2016-01-01

    The widespread use of electric vehicles (EVs) is becoming an imminent trend. Research has been done on the scheduling of EVs from the perspective of the charging characteristic, improvement in the safety and economy of the power grid, or the traffic jams in the transport system caused by a large number of EVs driven to charging stations. There is a lack of systematic studies considering EVs, the power grid, and the transport system all together. In this paper, a novel optimal charging scheduling strategy for different types of EVs is proposed based on not only transport system information, such as road length, vehicle velocity and waiting time, but also grid system information, such as load deviation and node voltage. In addition, a charging scheduling simulation platform suitable for large-scale EV deployment is developed based on actual charging scenarios. The simulation results show that the improvements in both the transport system efficiency and the grid system operation can be obtained by using the optimal strategy, such as the node voltage drop is decreased, the power loss is reduced, and the load curve is optimized. - Highlights: • A novel optimal charging scheduling strategy is proposed for different electric vehicles (EVs). • A simulation platform suitable for large-scale EV deployment is established. • The traffic congestion near the charging and battery-switch stations is relieved. • The safety and economy problems of the distribution network are solved. • The peak-to-valley load of the distribution system is reduced.

  8. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    Science.gov (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  9. The Ares Launch Vehicles: Critical Capabilities for America's Continued Leadership in Space

    Science.gov (United States)

    Cook, Stephen A.

    2009-01-01

    The Constellation Program renews the nation's commitment to human space exploration a) Access to ISS. b) Human explorers to the Moon and beyond. c) Large telescopes and other hardware to LEO . Hardware is being built today. Development made easier by applying lessons learned from 50 years of spaceflight experience. Ares V heavy-lift capability will be a strategic asset for the nation. Constellation provides a means for world leadership through inspiration and strategic capability.

  10. Results of investigations conducted in the LaRC 8-foot transonic pressure tunnel using the 0.010-scale 72-OTS model of the space shuttle integrated vehicle (IA93)

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Test procedures, history, and data from the wind tunnel test are presented. Aero-loads were investigated on the updated configuration-5 space shuttle launch vehicle at Mach numbers from 0.600 to 1.205. Six-component vehicle forces and moments, base and sting-cavity pressures, elevon hinge moments, wing-root bending and torsion moments, and normal shear force data were obtained. Full simulation of updated vehicle protuberances and attach hardware was employed. Various elevon deflection angles were tested with two different forward orbiter-to-external-tank attach-strut configurations. The entire model was supported by means of a balance mounted in the orbiter through its base and suspended from a sting.

  11. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-01

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible.

  12. Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles

    Science.gov (United States)

    Allen, Michael J.

    2006-01-01

    Large birds and glider pilots commonly use updrafts caused by convection in the lower atmosphere to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited air vehicles may also have the ability to exploit updrafts to improve performance. An updraft model was developed at NASA Dryden Flight Research Center (Edwards, California) to investigate the use of convective lift for uninhabited air vehicles in desert regions. Balloon and surface measurements obtained at the National Oceanic and Atmospheric Administration Surface Radiation station (Desert Rock, Nevada) enabled the model development. The data were used to create a statistical representation of the convective velocity scale, w*, and the convective mixing-layer thickness, zi. These parameters were then used to determine updraft size, vertical velocity profile, spacing, and maximum height. This paper gives a complete description of the updraft model and its derivation. Computer code for running the model is also given in conjunction with a check case for model verification.

  13. Preliminary results on the dynamics of large and flexible space structures in Halo orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2017-05-01

    The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around

  14. Requirements for a near-earth space tug vehicle

    Science.gov (United States)

    Gunn, Charles R.

    1990-01-01

    The requirement for a small but powerful space tug, which will be capable of autonomous orbital rendezvous, docking and translating cargos between near-earth orbits by the end of this decade to support the growing national and international space infrastructure focused near the Space Station Freedom, is described. An aggregate of missions drives the need for a space tug including reboosting decaying satellites back to their operational altitudes, retrieving failed or exhausted satellites to Shuttle or SSF for on-orbit refueling or repair, and transporting a satellite servicer system with an FTS to ailing satellites for supervised in-place repair. It is shown that the development and operation of a space tug to perform such numerous missions is more cost effective than separate module and satellite systems to perform the same tasks.

  15. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different

  16. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  17. Heating of large format filters in sub-mm and fir space optics

    Science.gov (United States)

    Baccichet, N.; Savini, G.

    2017-11-01

    Most FIR and sub-mm space borne observatories use polymer-based quasi-optical elements like filters and lenses, due to their high transparency and low absorption in such wavelength ranges. Nevertheless, data from those missions have proven that thermal imbalances in the instrument (not caused by filters) can complicate the data analysis. Consequently, for future, higher precision instrumentation, further investigation is required on any thermal imbalances embedded in such polymer-based filters. Particularly, in this paper the heating of polymers when operating at cryogenic temperature in space will be studied. Such phenomenon is an important aspect of their functioning since the transient emission of unwanted thermal radiation may affect the scientific measurements. To assess this effect, a computer model was developed for polypropylene based filters and PTFE-based coatings. Specifically, a theoretical model of their thermal properties was created and used into a multi-physics simulation that accounts for conductive and radiative heating effects of large optical elements, the geometry of which was suggested by the large format array instruments designed for future space missions. It was found that in the simulated conditions, the filters temperature was characterized by a time-dependent behaviour, modulated by a small scale fluctuation. Moreover, it was noticed that thermalization was reached only when a low power input was present.

  18. Prediction of temperature variation in a rotating spacecraft in space environment

    International Nuclear Information System (INIS)

    Gadalla, Mohamed A.

    2005-01-01

    This paper presents a closed-form prediction model for the temperature distribution of a thick-walled cylindrical space vehicle subjected to solar heating in deep space. The model is based on the coupling between dynamics and solar radiation. Since solar radiation is, in general, incident from a fixed direction, one side of the space vehicle will be shone bright, and the other side dark. Thus the space astronauts, instruments, and cryogenic-fuel tanks are gaining heat on the bright side and losing heat from the dark side. This radiative heat gain and loss become equally significant as the conductive heat transfer through the interior of the space vehicle. Thermal analysis is carried out to predict the effect of the spinning speed and angular position on the temperature variation and gradients attained by speed vehicles outside the Earth's atmosphere. This analysis is based on the non-linearity of the radiative heat dissipation, the significant conductive heat transfer role, and combined boundary conditions that involve the temperature and angular position of the vehicle. An exact analytical solution is obtained inspite of the non-linearity and non-homogeneity in the boundary conditions. The results indicate that the temperature distribution on the outer surface of the space vehicle is nearly independent of the angular position; at sub-cylindrical surface, this independence is achieved at low angular velocity

  19. Generation of Domestic Hot Water, Space Heating and Driving Pattern Profiles for Integration Analysis of Active Loads in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Pigazo, Alberto; Bak-Jensen, Birgitte

    2013-01-01

    at household level. Despite of the well-known flexible service that this kind of loads can provide, their flexibility is highly dependent of the domestic hot water and space heating demand and the driving habits of each user. This paper presents two methodologies employed to randomly generate thermal power......The changes in the Danish energy sector, consequence of political agreements, are expected to have direct impact in the actual power distribution systems. Large number of electric boiler, heat pumps and electric vehicles are planned and will cope large percentage of the future power consumption...... demand and electric vehicle driving profiles, to be used for power grid calculations. The generated thermal profiles relied on a statistical analysis made from real domestic hot water and space heating data from 25 households of a typical Danish residential area. The driving profiles instead were formed...

  20. OPTIMUM PROGRAMMABLE CONTROL OF UNMANNED FLYING VEHICLE

    Directory of Open Access Journals (Sweden)

    A. А. Lobaty

    2012-01-01

    Full Text Available The paper considers an analytical synthesis problem pertaining to programmable control of an unmanned flying vehicle while steering it to the fixed space point. The problem has been solved while applying a maximum principle which takes into account a final control purpose and its integral expenses. The paper presents an optimum law of controlling overload variation of a flying vehicle that has been obtained analytically

  1. Space Structure Development

    Science.gov (United States)

    Smith, Thomas

    2015-01-01

    The duration of my Summer 2015 Internship Tour at NASA's Johnson Space Center was spent working in the Structural Engineering Division's Structures Branch. One of the two main roles of the Structures Branch, ES2, is to ensure the structural integrity of spacecraft vehicles and the structural subsystems needed to support those vehicles. The other main objective of this branch is to develop the lightweight structures that are necessary to take humans beyond Low-Earth Orbit. Within ES2, my four projects involved inflatable space structure air bladder material testing; thermal and impact material testing for spacecraft windows; structural analysis on a joint used in the Boeing CST-100 airbag system; and an additive manufacturing design project.

  2. Science Enabled by the Ares V: A Large Monolithic Telescope Placed at the Second Sun-Earth Lagrange Point

    Science.gov (United States)

    Hopkins, Randall C.; Stahl, H. Philip

    2007-01-01

    The payload mass and volume capabilities of the planned Ares V launch vehicle provide the science community with unprecedented opportunities to place large science payloads into low earth orbit and beyond. One example, the outcome of a recent study conducted at the NASA Marshall Space Flight Center, is a large, monolithic telescope with a primary mirror diameter of 6.2 meters placed into a halo orbit about the second Sun-Earth Lagrange point, or L2, approximately 1.5 million kin beyond Earth's orbit. Operating in the visible and ultraviolet regions of the electromagnetic spectrum, such a large telescope would allow astronomers to detect bio-signatures and characterize the atmospheres of transiting exoplanets, provide high resolution imaging three or more times better than the Hubble Space Telescope and the James Webb Space Telescope, and observe the ultraviolet light from warm baryonic matter.

  3. Estimation and Prediction of Unmanned Aerial Vehicle Trajectories, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — There is serious concern about the introduction of Unmanned Aerial Vehicles (UAV) in the National Air Space (NAS) because of their potential to increase the risk of...

  4. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  5. Tethered elevator and platforms as space station facilities: Systems studies and demonstrative experiments

    Science.gov (United States)

    1986-01-01

    Several key concepts of the science and applications tethered platforms were studied. Some conclusions reached are herein listed. Tether elevator and platform could improve the space station scientific and applicative capabilities. The space elevator presents unique characteristics as microgravity facility and as a tethered platform servicing vehicle. Pointing platforms could represent a new kind of observation facility for large class of payloads. The dynamical, control and technological complexity of these concepts advised demonstrative experiments. The on-going tethered satellite system offers the opportunity to perform such experiments. And feasibility studies are in progress.

  6. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  7. An optimum organizational structure for a large earth-orbiting multidisciplinary Space Base

    Science.gov (United States)

    Ragusa, J. M.

    1973-01-01

    The purpose of this exploratory study was to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The essential finding of this research was that a four-level project type 'total matrix' model will optimize the efficiency and effectiveness of Space Base technologists.

  8. Radiation protection considerations in space station missions

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Bolch, W.E.

    1991-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying the degree to which the baseline design of space station Freedom (SSF) would permit its evolution to a transportation node for lunar or Mars expeditions. To accomplish NASA's more ambitious exploration goals, nuclear-powered vehicles could be used in SSF's vicinity. This enhanced radiation environment around SSF could necessitate additional crew shielding to maintain cumulative doses below recommended limits. This paper presents analysis of radiation doses received upon the return and subsequent unloading of Mars vehicles utilizing either nuclear electric propulsion (NEP) or nuclear thermal rocket (NTR) propulsion systems. No inherent shielding by the vehicle structure or space station is assumed; consequently, the only operational parameters available to control radiation doses are the source-to-target distance and the reactor shutdown time prior to the exposure period. For the operations planning, estimated doses are shown with respect to recommended dose limits and doses due solely to the natural space environment in low Earth orbit

  9. Cryogenic and radiation-hard asic for interfacing large format NIR/SWIR detector arrays

    Science.gov (United States)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2017-11-01

    For scientific and earth observation space missions, weight and power consumption is usually a critical factor. In order to obtain better vehicle integration, efficiency and controllability for large format NIR/SWIR detector arrays, a prototype ASIC is designed. It performs multiple detector array interfacing, power regulation and data acquisition operations inside the cryogenic chambers. Both operation commands and imaging data are communicated via the SpaceWire interface which will significantly reduce the number of wire goes in and out the cryogenic chamber. This "ASIC" prototype is realized in 0.18um CMOS technology and is designed for radiation hardness.

  10. Comparative Performance in Single-Port Versus Multiport Minimally Invasive Surgery, and Small Versus Large Operative Working Spaces: A Preclinical Randomized Crossover Trial.

    Science.gov (United States)

    Marcus, Hani J; Seneci, Carlo A; Hughes-Hallett, Archie; Cundy, Thomas P; Nandi, Dipankar; Yang, Guang-Zhong; Darzi, Ara

    2016-04-01

    Surgical approaches such as transanal endoscopic microsurgery, which utilize small operative working spaces, and are necessarily single-port, are particularly demanding with standard instruments and have not been widely adopted. The aim of this study was to compare simultaneously surgical performance in single-port versus multiport approaches, and small versus large working spaces. Ten novice, 4 intermediate, and 1 expert surgeons were recruited from a university hospital. A preclinical randomized crossover study design was implemented, comparing performance under the following conditions: (1) multiport approach and large working space, (2) multiport approach and intermediate working space, (3) single-port approach and large working space, (4) single-port approach and intermediate working space, and (5) single-port approach and small working space. In each case, participants performed a peg transfer and pattern cutting tasks, and each task repetition was scored. Intermediate and expert surgeons performed significantly better than novices in all conditions (P Performance in single-port surgery was significantly worse than multiport surgery (P performance in the intermediate versus large working space. In single-port surgery, there was a converse trend; performances in the intermediate and small working spaces were significantly better than in the large working space. Single-port approaches were significantly more technically challenging than multiport approaches, possibly reflecting loss of instrument triangulation. Surprisingly, in single-port approaches, in which triangulation was no longer a factor, performance in large working spaces was worse than in intermediate and small working spaces. © The Author(s) 2015.

  11. An optimal beam alignment method for large-scale distributed space surveillance radar system

    Science.gov (United States)

    Huang, Jian; Wang, Dongya; Xia, Shuangzhi

    2018-06-01

    Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.

  12. In-Space Structural Assembly: Applications and Technology

    Science.gov (United States)

    Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn

    2016-01-01

    As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.

  13. High Performance Hybrid Upper Stage for NanoLaunch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Parabilis Space Technologies, Inc. (Parabilis), in collaboration with Utah State University (USU), proposes a low cost, high performance launch vehicle upper stage...

  14. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    Science.gov (United States)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  15. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  16. Prospects for the application of fuel cells in electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, P L; Newbold, A [Loughborough Univ. of Technology (United Kingdom). Dept. of Transport Technology; Barton, R T; Dudfield, C D; Mitchell, P J; Naylor, P [Loughborough Univ. of Technology (United Kingdom). Dept. of Chemistry

    1992-01-01

    For a hybrid vehicle the use pattern has large effect on the vehicle design. If the vehicle is to be used extensively on the motorway then a continuous high power is required. For the case of a fuel cell battery hybrid vehicle this would require a large fuel cell (> 30 kW) to meet the sustained high power demand. The current high materials and fabrication cost of most fuel cells prohibits the commercial development of such a system. Consequently if fuel cell vehicles are to enter a 'clean car' market, earlier rather than later, alternative configurations must be sought and compromises in terms of performance are inevitable. (orig.).

  17. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  18. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  19. Protection from Induced Space Environments Effects on the International Space Station

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Stegall, Courtney; Schmidl, Danny; Huang, Alvin; Olsen, Randy; Koontz, Steven

    2010-01-01

    The International Space Station (ISS) is one of the largest, most complex multinational scientific projects in history and protection from induced space environments effects is critical to its long duration mission as well as to the health of the vehicle and safety of on-orbit operations. This paper discusses some of the unique challenges that were encountered during the design, assembly and operation of the ISS and how they were resolved. Examples are provided to illustrate the issues and the risk mitigation strategies that were developed to resolve these issues. Of particular importance are issues related with the interaction of multiple spacecraft as in the case of ISS and Visiting Vehicles transporting crew, hardware elements, cargo and scientific payloads. These strategies are applicable to the development of future long duration space systems, not only during design, but also during assembly and operation of these systems.

  20. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    Science.gov (United States)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  1. Fast neutron radiography testing for components of launch vehicles by a baby-cyclotron

    International Nuclear Information System (INIS)

    Ikeda, Y.; Ohkubo, K.; Matsumoto, G.; Nakamura, T.; Nozaki, Y.; Wakasa, S.; Toda, Y.; Kato, T.

    1990-01-01

    Recently, neutron radiography (NR) has become an important means of nondestructive testing (NDT) in Japan. Especially thermal neutron radiography testing (NRT) has been used for the NDT of various explosive devices of launch vehicles, which are developed as a H-series program by the National Space Development Agency (NASDA) of Japan. The NRT for launch vehicles has been carried out at the NR facility of a baby-cyclotron. In the NRT a conventional film method based on silver-halide emulsion has been exclusively employed to inspect various testing objects including components, and many valuable results have been obtained so far successfully. However, recently, the launch vehicles to be shot up have become much larger. With larger launch vehicles, the parts used in them have also become larger and thicker. One main disadvantage of the NRT by thermal neutrons is somewhat weak penetrability through objects because the energy is small. With the conventional thermal neutron radiography (TNR), steel objects being thicker than 40 to 50 mm are difficult to test through them because scattered neutrons obstruct real image of the object. Consequently a new method of NRT should be developed instead of TNR and applied to the new components of H-2 launch vehicles. In order to cope with the requirement, fast neutron radiography (FNR) has been studied for testing the new components of H-2, such as large separation bolts

  2. Activities of the Center for Space Construction

    Science.gov (United States)

    1993-01-01

    The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar

  3. Model Experiments for the Determination of Airflow in Large Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Model experiments are one of the methods used for the determination of airflow in large spaces. This paper will discuss the formation of the governing dimensionless numbers. It is shown that experiments with a reduced scale often will necessitate a fully developed turbulence level of the flow....... Details of the flow from supply openings are very important for the determination of room air distribution. It is in some cases possible to make a simplified supply opening for the model experiment....

  4. The relevance of economic data in the decision-making process for orbital launch vehicle programs, a U.S. perspective

    Science.gov (United States)

    Hertzfeld, Henry R.; Williamson, Ray A.; Peter, Nicolas

    2007-12-01

    Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems. The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts. The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation. Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical

  5. Marine vehicle path following using inner-outer loop control.

    Digital Repository Service at National Institute of Oceanography (India)

    Maurya, P.K.; Agular, A.P.; Pascoal, A.M.

    constraints are imposed on the motion of the vehicle. This is in striking contrast with trajectory tracking, where the reference for the vehicle motion is given explicitly in terms of ”space versus time” coordinates. This strategy is seldom pursued in practice... that its output variables can be tracked infinitely fast by the inner dynamic loop. In practice, this does not hold true. Furthermore, many vehicle suppliers equip their platforms with inner dynamic control loops for which only a general characterization...

  6. Macroeconomic Benefits of Low-Cost Reusable Launch Vehicles

    Science.gov (United States)

    Shaw, Eric J.; Greenberg, Joel

    1998-01-01

    The National Aeronautics and Space Administration (NASA) initiated its Reusable Launch Vehicle (RLV) Technology Program to provide information on the technical and commercial feasibility of single-stage to orbit (SSTO), fully-reusable launchers. Because RLVs would not depend on expendable hardware to achieve orbit, they could take better advantage of economies of scale than expendable launch vehicles (ELVs) that discard costly hardware on ascent. The X-33 experimental vehicle, a sub-orbital, 60%-scale prototype of Lockheed Martin's VentureStar SSTO RLV concept, is being built by Skunk Works for a 1999 first flight. If RLVs achieve prices to low-earth orbit of less than $1000 US per pound, they could hold promise for eliciting an elastic response from the launch services market. As opposed to the capture of existing market, this elastic market would represent new space-based industry businesses. These new opportunities would be created from the next tier of business concepts, such as space manufacturing and satellite servicing, that cannot earn a profit at today's launch prices but could when enabled by lower launch costs. New business creation contributes benefits to the US Government (USG) and the US economy through increases in tax revenues and employment. Assumptions about the costs and revenues of these new ventures, based on existing space-based and aeronautics sector businesses, can be used to estimate the macroeconomic benefits provided by new businesses. This paper examines these benefits and the flight prices and rates that may be required to enable these new space industries.

  7. 14 CFR 1204.1600 - Issuance of motor vehicle for home-to-work.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Issuance of motor vehicle for home-to-work... ADMINISTRATIVE AUTHORITY AND POLICY Temporary Duty Travel-Issuance of Motor Vehicle for Home-to-Work Transportation § 1204.1600 Issuance of motor vehicle for home-to-work. When a NASA employee on temporary duty...

  8. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  9. Launch vehicle design and GNC sizing with ASTOS

    Science.gov (United States)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2018-03-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  10. Biased Tracers in Redshift Space in the EFT of Large-Scale Structure

    Energy Technology Data Exchange (ETDEWEB)

    Perko, Ashley [Stanford U., Phys. Dept.; Senatore, Leonardo [KIPAC, Menlo Park; Jennings, Elise [Chicago U., KICP; Wechsler, Risa H. [Stanford U., Phys. Dept.

    2016-10-28

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a novel formalism that is able to accurately predict the clustering of large-scale structure (LSS) in the mildly non-linear regime. Here we provide the first computation of the power spectrum of biased tracers in redshift space at one loop order, and we make the associated code publicly available. We compare the multipoles $\\ell=0,2$ of the redshift-space halo power spectrum, together with the real-space matter and halo power spectra, with data from numerical simulations at $z=0.67$. For the samples we compare to, which have a number density of $\\bar n=3.8 \\cdot 10^{-2}(h \\ {\\rm Mpc}^{-1})^3$ and $\\bar n=3.9 \\cdot 10^{-4}(h \\ {\\rm Mpc}^{-1})^3$, we find that the calculation at one-loop order matches numerical measurements to within a few percent up to $k\\simeq 0.43 \\ h \\ {\\rm Mpc}^{-1}$, a significant improvement with respect to former techniques. By performing the so-called IR-resummation, we find that the Baryon Acoustic Oscillation peak is accurately reproduced. Based on the results presented here, long-wavelength statistics that are routinely observed in LSS surveys can be finally computed in the EFTofLSS. This formalism thus is ready to start to be compared directly to observational data.

  11. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    Science.gov (United States)

    Jones, Daniel S.; Brooks, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles

  12. Utilization of the Flexibility Potential of Electric Vehicles - an Alternative to Distribution Grid Reinforcements.

    OpenAIRE

    Ager-Hanssen, Siri Bruskeland; Myhre, Siri Olimb

    2015-01-01

    Today, the transport sector accounts for a large share of global emissions. Electric vehicles have many environmental advantages compared to conventional petrol vehicles. Hence, if electric vehicles can replace petrol vehicles, the transportation sector's total emissions can be significantly reduced. In Norway, due to policy incentives, it is expected that the number of electric vehicles will increase considerably in the near future. Despite the great advantages of electric vehicles, large pe...

  13. Cosmic perspectives in space physics

    CERN Document Server

    Biswas, Sukumar

    2000-01-01

    In the early years of the twentieth century, Victor Hess of Germany flew instruments in balloons and so discovered in 1912 that an extra-~errestial radiation of unknown origin is incident on the earth with an almost constant intensity at all times. These penetrating non­ solar radiations which were called Cosmic Rays by Millikan, USA, opened the new frontier of space physics and many leading scientists were attracted to it. At the end of World War II a number of space vehicles, e.g. stratospheric balloons, rockets and satellites were developed. In 1950 and onwards, these vehicles enabled spectacular advances in space physics and space astrophysics. New horizons were opened in the explorations of cosmic rays, the earth's magnetosphere, the Sun and the heliosphere, the moon and the planets. Using space-borne instruments, exciting discoveries were made of stars, and galaxies in the infra-red, ultra violet, x-ray and gamma-ray wavelengths. In this text book these fascinating new findings are presented in depth a...

  14. The Initial Nine Space Settlements

    Science.gov (United States)

    Gale, Anita E.; Edwards, Richard P.

    2003-01-01

    The co-authors describe a chronology of space infrastructure development illustrating how each element of infrastructure enables development of subsequent more ambitious infrastructure. This is likened to the ``Southern California freeway phenomenon'', wherein a new freeway built in a remote area promotes establishment of gas stations, restaurants, hotels, housing, and eventually entire new communities. The chronology includes new launch vehicles, inter-orbit vehicles, multiple LEO space stations, lunar mining, on-orbit manufacturing, tourist destinations, and supporting technologies required to make it all happen. The space settlements encompassed by the chronology are in Earth orbit (L5 and L4), on the lunar surface, in Mars orbit, on the Martian surface, and in the asteroid belt. Each space settlement is justified with a business rationale for construction. This paper is based on materials developed for Space Settlement Design Competitions that enable high school students to experience the technical and management challenges of working on an industry proposal team.

  15. Classification Of Road Accidents From The Perspective Of Vehicle Safety Systems

    Directory of Open Access Journals (Sweden)

    Jirovský Václav

    2015-11-01

    Full Text Available Modern road accident investigation and database structures are focused on accident analysis and classification from the point of view of the accident itself. The presented article offers a new approach, which will describe the accident from the point of view of integrated safety vehicle systems. Seven main categories have been defined to specify the level of importance of automated system intervention. One of the proposed categories is a new approach to defining the collision probability of an ego-vehicle with another object. This approach focuses on determining a 2-D reaction space, which describes all possible positions of the vehicle or other moving object in the specified amount of time in the future. This is to be used for defining the probability of the vehicles interacting - when the intersection of two reaction spaces exists, an action has to be taken on the side of ego-vehicle. The currently used 1-D quantity of TTC (time-to-collision can be superseded by the new reaction space variable. Such new quantity, whose basic idea is described in the article, enables the option of counting not only with necessary braking time, but mitigation by changing direction is then easily feasible. Finally, transparent classification measures of a probable accident are proposed. Their application is highly effective not only during basic accident comparison, but also for an on-board safety system.

  16. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data

    Directory of Open Access Journals (Sweden)

    Zihan Kan

    2018-03-01

    Full Text Available The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles’ mobile activities (MA and stationary activities (SA. First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS. Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA, SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles’ activities in road networks.

  17. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  18. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    Science.gov (United States)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  19. Metric Tracking of Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it...

  20. Using tradeable permits to achieve sustainability in the world's large cities. Policy design issues and efficiency conditions for controlling vehicle emissions, congestion and urban decentralization with an application to Mexico City

    International Nuclear Information System (INIS)

    Goddard, H.C.

    1997-01-01

    Many large cities in the world have serious ground level ozone problems, largely the product of vehicular emissions and thus the argued unsustainability of current urban growth patterns is frequently blamed on unrestricted private vehicle use. This article reviews Mexico City's experience with vehicle use restrictions as an emissions control program and develops the conditions for optimal quantitative restrictions on vehicle use and for complementary abatement technologies. The stochastic nature of air pollution outcomes is modelled explicitly in both the static and dynamic formulations of the control problem, in which for the first time in the literature the use of tradeable vehicle use permits is proposed as a cost-effective complement to technological abatement for mobile emissions control. This control regime gives the authorities a broader and more flexible set of instruments with which to deal more effectively with vehicle emissions, and with seasonal and stochastic variation of air quality outcomes. The market in tradeable vehicle use permits would be very competitive with low transactions costs. This control policy would have very favorable impacts on air quality, vehicle congestion and on urban form and development. Given the general political resistance to environmental taxes, this program could constitute a workable and politically palatable set of policies for controlling greenhouse gas emissions from the transport sector. 7 figs., 1 appendix, 23 refs

  1. Public open space as the only urban space for walking: Sumatera Utara experience

    Science.gov (United States)

    Nasution, A. D.; Zahrah, W.; Ginting, Nurlisa

    2018-03-01

    One of successful public open space (POS) criteria is the proper pedestrian linkage. Furthermore, a good quality POS should pay attention to pedestrian activities. This will contribute to the physical and mental health of people and enhance their quality of life. The research means to investigate how POS accommodate the pedestrians. The study takes place in twenty small towns in Sumatra Utara province, Indonesia. The analysis is a descriptive, explorative study that collects data about physical elements of POS. The survey also uses a set of questionnaire to get information about the visitors walking tradition. The result of the study shows that most of the citizens approach and get to the POS by vehicle, both cars, and motorcycles. They use their private vehicles although the distance between their houses and the POS is less than one kilometer. There is no pedestrian linkage that connects the POS with the other part of urban space. However, the POS is active by various physical activities, such as walking, playing and exercising. These events occur both in pedestrian ways in the periphery, inside the POS, and in the other spots of the POS, such as grass field or multipurpose plaza. The visitors’ vehicle tradition relates to the whole urban space which is planned in a car-oriented way. Thus, the POS becomes the only space that people can walk and enjoy the environment.

  2. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions. A New Generation of Laboratory & Space Studies

    Science.gov (United States)

    Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome

    2006-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the

  3. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  4. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers

    Science.gov (United States)

    MacConochie, Ian O.; Stnaley, Douglas O.

    1991-01-01

    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  5. Results of investigations conducted in the LaRC 4-foot unitary plan wind tunnel leg no. 1 using the 0.010-scale 72-OTS model of the space shuttle integrated vehicle (IA94A)

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Aero-loads investigations were conducted on the updated configuration-5 space shuttle launch vehicle at Mach numbers 2.50, 3.50, and 4.50. Six-component vehicle forces and moments, base and sting-cavity pressures, elevon hinge moments, wing-root bending and torsion moments, and normal shear force data were obtained. Full simulation of updated vehicle protuberances and attach hardware was employed. Various elevon deflection angles were tested, with two different forward orbiter-to-external-tank attach-strut configurations. The entire vehicle model 72-OTS was supported by means of a balance mounted in the orbiter through its base and suspended from an appropriate sting for the specific tunnel.

  6. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data

    KAUST Repository

    Ibrahim, Mohamed

    2017-08-28

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  7. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data

    KAUST Repository

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2017-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  8. Innovative Robot Archetypes for In-Space Construction and Maintenance

    Science.gov (United States)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  9. Major technological innovations introduced in the large antennas of the Deep Space Network

    Science.gov (United States)

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  10. Technical needs and research opportunities provided by projected aeronautical and space systems

    Science.gov (United States)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  11. LauncherOne Small Launch Vehicle Propulsion Advancement

    Data.gov (United States)

    National Aeronautics and Space Administration — Virgin Orbit, LLC (“Virgin Orbit”) is currently well into the development for our LauncherOne (L1) small satellite launch vehicle. LauncherOne is a dedicated small...

  12. Building a Quality Controlled Database of Meteorological Data from NASA Kennedy Space Center and the United States Air Force's Eastern Range

    Science.gov (United States)

    Brenton, James C.; Barbre. Robert E., Jr.; Decker, Ryan K.; Orcutt, John M.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large sets of data consists of ensuring erroneous data is removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, it is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.

  13. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models......Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  14. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  15. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2011-01-01

    that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. To achieve this result, we reduce k-LocVRP to the following generalization of k median, which might be of independent interest. Given a metric (V, d), bound k...... median forest, which leads to a (12+E)-approximation algorithm for k-LocVRP, for any constant E > 0. The algorithm for k median forest is t-swap local search, and we prove that it has locality gap 3 + 2 t ; this generalizes the corresponding result for k median [3]. Finally we consider the k median......We study a location-routing problem in the context of capacitated vehicle routing. The input to k-LocVRP is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so...

  16. Robotics development for the enhancement of space endeavors

    Science.gov (United States)

    Mauceri, A. J.; Clarke, Margaret M.

    Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.

  17. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    In the recent years, the electric vehicles (EVs) have drawn great attention world wide as a feasible solution for clean transportation. The electric vehicle technology is not new as it was introduced in the mid 19th century. The low battery capacity, driving range and superior gasoline cars had...... resulted in the demise of electric cars in the 1930s. However, with the advancement of new high density battery technologies and power electronic converters, it is now viable to produce electric cars of higher efficiency and driving range. The performance and durability of the battery technology...... is improving on a rapid scale and the battery cost is also reducing which could enable the electric cars to be competitive in the market. The electric vehicles could also benefit the electricity sector in supporting more renewable energy which is also one of the most important driving forces in its promotion...

  18. Habitability Designs for Crew Exploration Vehicle

    Science.gov (United States)

    Woolford, Barbara

    2006-01-01

    NASA's space human factors team is contributing to the habitability of the Crew Exploration Vehicle (CEV), which will take crews to low Earth orbit, and dock there with additional vehicles to go on to the moon's surface. They developed a task analysis for operations and for self-sustenance (sleeping, eating, hygiene), and estimated the volumes required for performing the various tasks and for the associated equipment, tools and supplies. Rough volumetric mockups were built for crew evaluations. Trade studies were performed to determine the size and location of windows. The habitability analysis also contributes to developing concepts of operations by identifying constraints on crew time. Recently completed studies provided stowage concepts, tools for assessing lighting constraints, and approaches to medical procedure development compatible with the tight space and absence of gravity. New work will be initiated to analyze design concepts and verify that equipment and layouts do meet requirements.

  19. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles...... (EVs) are assumed; comprising 2.5%, 15%, 34%, and 53% of the private passenger vehicle fleet in 2015, 2020, 2025, and 2030, respectively. Results show that when charged/discharged intelligently, EVs can facilitate significantly increased wind power investments already at low vehicle fleet shares....... Moreover, due to vehicle-to-grid capability, EVs can reduce the need for new coal/natural gas power capacities. Wind power can be expected to provide a large share of the electricity for EVs in several of the countries. However, if EVs are not followed up by economic support for renewable energy...

  20. Development of electric road vehicles in France. Political measures, large-scale tests, and strategy of PSA Peugeot Citroen

    International Nuclear Information System (INIS)

    Beau, J.C.

    1993-01-01

    France offers particularly favourable conditions for the further development and the market introduction of electric vehicles: On account of the electricity production with almost no exhaust emission and due to the concentrated population structure stemming from the historical background in densely populated historical towns up to the innovational, electrochemical and electrotechnical industries and last but not least the automotive industry itself. The article is structured as follows: A) Political measures, large scale experiments in France; B) Strategy of PSA Peugeot Citroen; C) Activities by Peugeot in Germany. (orig.) [de

  1. Ariane Transfer Vehicle in service of man in orbit

    Science.gov (United States)

    Deutscher, N.; Schefold, K.; Cougnet, C.

    1988-10-01

    The Ariane Transfer Vehicle (ATV), an unmanned propulsion system that is designed to be carried by the Ariane 5 launch vehicle, will undertake the logistical support required by the International Space Station and the Man-Tended Free Flyer, carrying both pressurized and unpressurized cargo to these spacecraft and carrying away wastes. The ATV is an expendable vehicle, disposed of by burn-up during reentry, and will be available for initial operations in 1996. In order to minimize development costs and recurrent costs, the ATV design will incorporate existing hardware and software.

  2. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  3. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling......For the efficiency and simplicity of electric systems, the dc based power electronics systems are widely used in variety applications such as electric vehicles, ships, aircrafts and also in homes. In these systems, there could be a number of dynamic interactions between loads and other dc-dc....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  4. Using tradeable permits to achieve sustainability in the world`s large cities. Policy design issues and efficiency conditions for controlling vehicle emissions, congestion and urban decentralization with an application to Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, H.C. [Instituto Tecnologico Autonomo de Mexico, Mexico City (Mexico)

    1997-07-01

    Many large cities in the world have serious ground level ozone problems, largely the product of vehicular emissions and thus the argued unsustainability of current urban growth patterns is frequently blamed on unrestricted private vehicle use. This article reviews Mexico City`s experience with vehicle use restrictions as an emissions control program and develops the conditions for optimal quantitative restrictions on vehicle use and for complementary abatement technologies. The stochastic nature of air pollution outcomes is modelled explicitly in both the static and dynamic formulations of the control problem, in which for the first time in the literature the use of tradeable vehicle use permits is proposed as a cost-effective complement to technological abatement for mobile emissions control. This control regime gives the authorities a broader and more flexible set of instruments with which to deal more effectively with vehicle emissions, and with seasonal and stochastic variation of air quality outcomes. The market in tradeable vehicle use permits would be very competitive with low transactions costs. This control policy would have very favorable impacts on air quality, vehicle congestion and on urban form and development. Given the general political resistance to environmental taxes, this program could constitute a workable and politically palatable set of policies for controlling greenhouse gas emissions from the transport sector. 7 figs., 1 appendix, 23 refs.

  5. Hyper-X Vehicle Model - Side View

    Science.gov (United States)

    1996-01-01

    A side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  6. Hyper-X Vehicle Model - Front View

    Science.gov (United States)

    1996-01-01

    A front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  7. EADS Roadmap for Launch Vehicles

    Science.gov (United States)

    Eymar, Patrick; Grimard, Max

    2002-01-01

    still think about the future, especially at industry level in order to make the most judicious choices in technologies, vehicle types as well as human resources and facilities specialization (especially after recent merger moves). and production as prime contractor, industrial architect or stage provider have taken benefit of this expertise and especially of all the studies ran under national funding and own financing on reusable vehicles and ground/flight demonstrators have analyzed several scenarios. VEHICLES/ASTRIUM SI strategy w.r.t. launch vehicles for the two next decades. Among the main inputs taken into account of course visions of the market evolutions have been considered, but also enlargement of international cooperations and governments requests and supports (e.g. with the influence of large international ventures). 1 patrick.eymar@lanceurs.aeromatra.com 2

  8. IEA Vehicle Efficiency Workshops Drive New Vehicle Policy Approaches

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Fuel economy is not only about getting more performance from the engine. Components outside the engine are also large fuel consumers. If fuel-economy test methods always remembered that, vehicle manufacturers would optimise component performance. A number of initiatives addressing component test standards and related policies have been triggered by IEA's recent workshops.

  9. Space-time relationship in continuously moving table method for large FOV peripheral contrast-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Sabati, M; Lauzon, M L; Frayne, R

    2003-01-01

    Data acquisition using a continuously moving table approach is a method capable of generating large field-of-view (FOV) 3D MR angiograms. However, in order to obtain venous contamination-free contrast-enhanced (CE) MR angiograms in the lower limbs, one of the major challenges is to acquire all necessary k-space data during the restricted arterial phase of the contrast agent. Preliminary investigation on the space-time relationship of continuously acquired peripheral angiography is performed in this work. Deterministic and stochastic undersampled hybrid-space (x, k y , k z ) acquisitions are simulated for large FOV peripheral runoff studies. Initial results show the possibility of acquiring isotropic large FOV images of the entire peripheral vascular system. An optimal trade-off between the spatial and temporal sampling properties was found that produced a high-spatial resolution peripheral CE-MR angiogram. The deterministic sampling pattern was capable of reconstructing the global structure of the peripheral arterial tree and showed slightly better global quantitative results than stochastic patterns. Optimal stochastic sampling patterns, on the other hand, enhanced small vessels and had more favourable local quantitative results. These simulations demonstrate the complex spatial-temporal relationship when sampling large FOV peripheral runoff studies. They also suggest that more investigation is required to maximize image quality as a function of hybrid-space coverage, acquisition repetition time and sampling pattern parameters

  10. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  11. Conference on Space and Military Applications of Automation and Robotics Held in Huntsville, Alabama on 21-22 June 1988

    Science.gov (United States)

    1988-06-22

    Moog Incorporated East Aurora, New York 14052-0013 ABSTRACT The goals of U.S. space programs have created a need for large, complex, long- life ...Bernard Schroer, Uiversity of Alabaw in Wntsville 64 A Robotic Vehicle Global Route Planner for the 1990s William J. Pollard KMS Fusion Inc Ann

  12. Unique Programme of Indian Centre for Space Physics using large rubber Balloons

    Science.gov (United States)

    Chakrabarti, Sandip Kumar; Sarkar, Ritabrata; Bhowmick, Debashis; Chakraborty, Subhankar

    Indian Centre for Space Physics (ICSP) has developed a unique capability to pursue space based studies at a very low cost. Here, large rubber balloons are sent to near space (~ 40km) with payloads of less than 4kg weight. These payloads can be cosmic ray detectors, X-ray detectors, muon detectors apart from communication device, GPS, and nine degrees of freedom measuring capabilities. With two balloons in orbiter-launcher configuration, ICSP has been able to conduct long duration flights upto 12 hours. ICSP has so far sent 56 Dignity missions to near space and obtained Cosmic Ray and muon variation on a regular basis, dynamical spectrum of solar flares and gamma ray burst apart from other usual parameters such as wind velocity components, temperature and pressure variations etc. Since all the payloads are retrieved by parachutes, the cost per mission remains very low, typically around USD1000.00. The preparation time is low. Furthermore, no special launching area is required. In principle, such experiments can be conducted on a daily basis, if need be. Presently, we are also incorporating studies relating to earth system science such as Ozone, aerosols, micro-meteorites etc.

  13. SpaceX making commercial spaceflight a reality

    CERN Document Server

    Seedhouse, Erik

    2013-01-01

    2012 - the year when the first ever privately-developed spacecraft visited the International Space Station. This is the story of how one company is transforming commercial space flight. It describes the extraordinary feats of engineering and human achievement that have resulted in the world's first fully reusable launch vehicles and the prospect of human travel to Mars. SpaceX - The First Ten Years: - explores the philosophy behind the success of SpaceX; - explains the practical management that enables SpaceX to keep it simple, reliable, and affordable; - details the developmentof the Falcon 1, Falcon 9 and Falcon Heavy rockets and the technology of the Merlin engines; - describes the collaboration with NASA; - introduces current SpaceX projects, including the Grasshopper reusable launch vehicle and the Stratolaunch System. SpaceX - The First Ten Years is a portrait of one of the most spectacular spaceflight triumphs of the 21st century, one that is laying the foundation for humanity to become a spacefaring c...

  14. Improved Dutch Roll Approximation for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Liang-Liang Yin

    2014-06-01

    Full Text Available An improved dutch roll approximation for hypersonic vehicle is presented. From the new approximations, the dutch roll frequency is shown to be a function of the stability axis yaw stability and the dutch roll damping is mainly effected by the roll damping ratio. In additional, an important parameter called roll-to-yaw ratio is obtained to describe the dutch roll mode. Solution shows that large-roll-to-yaw ratio is the generate character of hypersonic vehicle, which results the large error for the practical approximation. Predictions from the literal approximations derived in this paper are compared with actual numerical values for s example hypersonic vehicle, results show the approximations work well and the error is below 10 %.

  15. Non-cable vehicle guidance

    Energy Technology Data Exchange (ETDEWEB)

    Daugela, G.C.; Willott, A.M.; Chopiuk, R.G.; Thornton, S.E.

    1988-06-01

    The purpose is to determine the most promising driverless mine vehicle guidance systems that are not dependent on buried cables, and to plan their development. The project is presented in two phases: a preliminary study and literature review to determine whether suitable technologies exist to justify further work; and an in-depth assessment and selection of technologies for vehicle guidance. A large number of guidance elements are involved in a completely automated vehicle. The technologies that hold the best potential for development of guidance systems for mine vehicles are ultrasonics, radar, lasers, dead reckoning, and guidance algorithms. The best approach to adaptation of these technologies is on a step by step basis. Guidance modules that are complete in themselves and are designed to be integrated with other modules can provide short term benefits. Two modules are selected for development: the dragline operations monitor and automated machine control for optimized mining (AMCOM). 99 refs., 20 figs., 40 tabs.

  16. 11th International Space Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    2017-01-01

    The proceedings published in this book document and foster the goals of the 11th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.

  17. Interplanetary magnetic field according to measurements on the Fobos-1,-2 space vehicles. 3. Heliospheric substorm of August 5-7, 1988

    International Nuclear Information System (INIS)

    Ivanov, K.G.

    1995-01-01

    Three-phase disturbance of the interplanetary magnetic field was observed by FOBOS-1 and Fobos-2 space vehicles being at 10 million km distance from the Earth and by IMP-8 near-the-Earth satellite. Disturbance configuration and structure demonstrate that passing of nonstandard bend of heliospheric current layer is the reason of it. Structure, intensity and origination of disturbance enable to classify it as belonging to a category of heliospheric substorms. All three phases of interplanetary disturbance were represented in special near-the-Earth geomagnetic variations of polar cap. 9 refs

  18. Space tourism optimized reusable spaceplane design

    Energy Technology Data Exchange (ETDEWEB)

    Penn, J.P.; Lindley, C.A. [The Aerospace Corporation El Segundo, California90245-4691 (United States)

    1997-01-01

    Market surveys suggest that a viable space tourism industry will require flight rates about two orders of magnitude higher than those required for conventional spacelift. Although enabling round-trip cost goals for a viable space tourism business are about {dollar_sign}240 per pound ({dollar_sign}529/kg), or {dollar_sign}72,000 per passenger round-trip, goals should be about {dollar_sign}50 per pound ({dollar_sign}110/kg) or approximately {dollar_sign}15,000 for a typical passenger and baggage. The lower price will probably open space tourism to the general population. Vehicle reliabilities must approach those of commercial aircraft as closely as possible. This paper addresses the development of spaceplanes optimized for the ultra-high flight rate and high reliability demands of the space tourism mission. It addresses the fundamental operability, reliability, and cost drivers needed to satisfy this mission need. Figures of merit similar to those used to evaluate the economic viability of conventional commercial aircraft are developed, including items such as payload/vehicle dry weight, turnaround time, propellant cost per passenger, and insurance and depreciation costs, which show that infrastructure can be developed for a viable space tourism industry. A reference spaceplane design optimized for space tourism is described. Subsystem allocations for reliability, operability, and costs are made and a route to developing such a capability is discussed. The vehicle{close_quote}s ability to also satisfy the traditional spacelift market is shown. {copyright} {ital 1997 American Institute of Physics.}

  19. Space Transportation Materials and Structures Technology Workshop. Volume 2: Proceedings

    International Nuclear Information System (INIS)

    Cazier, F.W. Jr.; Gardner, J.E.

    1993-02-01

    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems. Separate abstracts have been prepared for papers in this report

  20. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft are...