WorldWideScience

Sample records for large size parameters

  1. Estimated spatial requirements of the medium- to large-sized ...

    African Journals Online (AJOL)

    Conservation planning in the Cape Floristic Region (CFR) of South Africa, a recognised world plant diversity hotspot, required information on the estimated spatial requirements of selected medium- to large-sized mammals within each of 102 Broad Habitat Units (BHUs) delineated according to key biophysical parameters.

  2. Phased array inspection of large size forged steel parts

    Science.gov (United States)

    Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre

    2018-04-01

    High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.

  3. Grain Size and Parameter Recovery with TIMSS and the General Diagnostic Model

    Science.gov (United States)

    Skaggs, Gary; Wilkins, Jesse L. M.; Hein, Serge F.

    2016-01-01

    The purpose of this study was to explore the degree of grain size of the attributes and the sample sizes that can support accurate parameter recovery with the General Diagnostic Model (GDM) for a large-scale international assessment. In this resampling study, bootstrap samples were obtained from the 2003 Grade 8 TIMSS in Mathematics at varying…

  4. Size-density scaling in protists and the links between consumer-resource interaction parameters.

    Science.gov (United States)

    DeLong, John P; Vasseur, David A

    2012-11-01

    Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are

  5. The large sample size fallacy.

    Science.gov (United States)

    Lantz, Björn

    2013-06-01

    Significance in the statistical sense has little to do with significance in the common practical sense. Statistical significance is a necessary but not a sufficient condition for practical significance. Hence, results that are extremely statistically significant may be highly nonsignificant in practice. The degree of practical significance is generally determined by the size of the observed effect, not the p-value. The results of studies based on large samples are often characterized by extreme statistical significance despite small or even trivial effect sizes. Interpreting such results as significant in practice without further analysis is referred to as the large sample size fallacy in this article. The aim of this article is to explore the relevance of the large sample size fallacy in contemporary nursing research. Relatively few nursing articles display explicit measures of observed effect sizes or include a qualitative discussion of observed effect sizes. Statistical significance is often treated as an end in itself. Effect sizes should generally be calculated and presented along with p-values for statistically significant results, and observed effect sizes should be discussed qualitatively through direct and explicit comparisons with the effects in related literature. © 2012 Nordic College of Caring Science.

  6. Development of superconducting poloidal field coils for medium and large size tokamaks

    International Nuclear Information System (INIS)

    Dittrich, H.-G.; Forster, S.; Hofmann, A.

    1983-01-01

    Large long pulse tokamak fusion experiments require the use of superconducting poloidal field (PF) coils. In the past not much attention has been paid to the development of such coils. Therefore a development programme has been initiated recently at KfK. In this report start with summarizing the relevant PF coil parameters of some medium and large size tokamaks presently under construction or design, respectively. The most important areas of research and development work are deduced from these parameters. Design considerations and first experimental results concerning low loss conductors, cooling concepts and structural components are given

  7. Study of the size effect by accurately determining the crystal parameters

    International Nuclear Information System (INIS)

    Seguin, Remy

    1973-01-01

    The size factor η = da/adC was measured by comparing the variations in the crystal parameter as a function of the concentration, samples of Al of various degrees of purity and Al - V and Al - Cu alloys with concentrations of less than 1 000 ppm being used. The results confirm the experimental results obtained with alloys supersaturated by ultra-rapid tempering but are not consistent with theoretical values, which appear to be too large for the case of transition elements in solution in Al. The parameter was determined from Kossel diagrams obtained using an electron probe microanalyzer. The measurement methods were developed and generalized by plotting curves representing the variation of the parameter as a function of temperature between 20 and 60 deg. C. Values were obtained for the parameter at given temperatures (± 0.1 deg. C) with an accuracy of Δa/a ≅ 8.10 -6 . (author) [fr

  8. Large-sized seaweed monitoring based on MODIS

    Science.gov (United States)

    Ma, Long; Li, Ying; Lan, Guo-xin; Li, Chuan-long

    2009-10-01

    In recent years, large-sized seaweed, such as ulva lactuca, blooms frequently in coastal water in China, which threatens marine eco-environment. In order to take effective measures, it is important to make operational surveillance. A case of large-sized seaweed blooming (i.e. enteromorpha), occurred in June, 2008, in the sea near Qingdao city, is studied. Seaweed blooming is dynamically monitored using Moderate Resolution Imaging Spectroradiometer (MODIS). After analyzing imaging spectral characteristics of enteromorpha, MODIS band 1 and 2 are used to create a band ratio algorithm for detecting and mapping large-sized seaweed blooming. In addition, chlorophyll-α concentration is inversed based on an empirical model developed using MODIS. Chlorophyll-α concentration maps are derived using multitemporal MODIS data, and chlorophyll-α concentration change is analyzed. Results show that the presented methods are useful to get the dynamic distribution and the growth of large-sized seaweed, and can support contingency planning.

  9. Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals.

    Directory of Open Access Journals (Sweden)

    Chiyori T Urabe

    Full Text Available In recent years, serious infectious diseases tend to transcend national borders and widely spread in a global scale. The incidence and prevalence of epidemics are highly influenced not only by pathogen-dependent disease characteristics such as the force of infection, the latent period, and the infectious period, but also by human mobility and contact patterns. However, the effect of heterogeneous mobility of individuals on epidemic outcomes is not fully understood. Here, we aim to elucidate how spatial mobility of individuals contributes to the final epidemic size in a spatial susceptible-exposed-infectious-recovered (SEIR model with mobile individuals in a square lattice. After illustrating the interplay between the mobility parameters and the other parameters on the spatial epidemic spreading, we propose an index as a function of system parameters, which largely governs the final epidemic size. The main contribution of this study is to show that the proposed index is useful for estimating how parameter scaling affects the final epidemic size. To demonstrate the effectiveness of the proposed index, we show that there is a positive correlation between the proposed index computed with the real data of human airline travels and the actual number of positive incident cases of influenza B in the entire world, implying that the growing incidence of influenza B is attributed to increased human mobility.

  10. Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste

    Science.gov (United States)

    Batyaev, V. F.; Skliarov, S. V.

    2018-01-01

    The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW). The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration), meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g) confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.

  11. Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste

    Directory of Open Access Journals (Sweden)

    Batyaev V.F.

    2018-01-01

    Full Text Available The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW. The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration, meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.

  12. Spawning Dynamics and Size Related Trends in Reproductive Parameters of Southern Bluefin Tuna, Thunnus maccoyii.

    Directory of Open Access Journals (Sweden)

    Jessica H Farley

    Full Text Available Knowledge of spawning behaviour and fecundity of fish is important for estimating the reproductive potential of a stock and for constructing appropriate statistical models for assessing sustainable catch levels. Estimates of length-based reproductive parameters are particularly important for determining potential annual fecundity as a function of fish size, but they are often difficult to estimate reliably. Here we provide new information on the reproductive dynamics of southern bluefin tuna (SBT Thunnus maccoyii through the analysis of fish size and ovary histology collected on the spawning ground in 1993-1995 and 1999-2002. These are used to refine previous parameter estimates of spawning dynamics and investigate size related trends in these parameters. Our results suggest that the small SBT tend to arrive on the spawning ground slightly later and depart earlier in the spawning season relative to large fish. All females were mature and the majority were classed as spawning capable (actively spawning or non-spawning with a very small proportion classed as regressing. The fraction of females spawning per day decreased with fish size, but once females start a spawning episode, they spawned daily irrespective of size. Mean batch fecundity was estimated directly at 6.5 million oocytes. Analysis of ovary histology and ovary weight data indicated that relative batch fecundity, and the duration of spawning and non-spawning episodes, increased with fish size. These reproductive parameter estimates could be used with estimates of residency time on the spawning ground as a function of fish size (if known and demographic data for the spawning population to provide a time series of relative annual fecundity for SBT.

  13. Large litter sizes

    DEFF Research Database (Denmark)

    Sandøe, Peter; Rutherford, K.M.D.; Berg, Peer

    2012-01-01

    This paper presents some key results and conclusions from a review (Rutherford et al. 2011) undertaken regarding the ethical and welfare implications of breeding for large litter size in the domestic pig and about different ways of dealing with these implications. Focus is primarily on the direct...... possible to achieve a drop in relative piglet mortality and the related welfare problems. However, there will be a growing problem with the need to use foster or nurse sows which may have negative effects on both sows and piglets. This gives rise to new challenges for management....

  14. Estimating demographic parameters from large-scale population genomic data using Approximate Bayesian Computation

    Directory of Open Access Journals (Sweden)

    Li Sen

    2012-03-01

    Full Text Available Abstract Background The Approximate Bayesian Computation (ABC approach has been used to infer demographic parameters for numerous species, including humans. However, most applications of ABC still use limited amounts of data, from a small number of loci, compared to the large amount of genome-wide population-genetic data which have become available in the last few years. Results We evaluated the performance of the ABC approach for three 'population divergence' models - similar to the 'isolation with migration' model - when the data consists of several hundred thousand SNPs typed for multiple individuals by simulating data from known demographic models. The ABC approach was used to infer demographic parameters of interest and we compared the inferred values to the true parameter values that was used to generate hypothetical "observed" data. For all three case models, the ABC approach inferred most demographic parameters quite well with narrow credible intervals, for example, population divergence times and past population sizes, but some parameters were more difficult to infer, such as population sizes at present and migration rates. We compared the ability of different summary statistics to infer demographic parameters, including haplotype and LD based statistics, and found that the accuracy of the parameter estimates can be improved by combining summary statistics that capture different parts of information in the data. Furthermore, our results suggest that poor choices of prior distributions can in some circumstances be detected using ABC. Finally, increasing the amount of data beyond some hundred loci will substantially improve the accuracy of many parameter estimates using ABC. Conclusions We conclude that the ABC approach can accommodate realistic genome-wide population genetic data, which may be difficult to analyze with full likelihood approaches, and that the ABC can provide accurate and precise inference of demographic parameters from

  15. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    International Nuclear Information System (INIS)

    Bai, Peikang; Hu, Shengliang; Zhang, Taiping; Sun, Jing; Cao, Shirui

    2010-01-01

    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  16. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Peikang [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Hu, Shengliang, E-mail: hsliang@yeah.net [Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China), Ministry of Education, National Key Laboratory Science and Technology on Electronic Test and Measurement, Taiyuan 030051 (China); School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Zhang, Taiping; Sun, Jing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cao, Shirui [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China)

    2010-07-15

    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  17. Study on external reactor vessel cooling capacity for advanced large size PWR

    International Nuclear Information System (INIS)

    Jin Di; Liu Xiaojing; Cheng Xu; Li Fei

    2014-01-01

    External reactor vessel cooling (ERVC) is widely adopted as a part of in- vessel retention (IVR) in severe accident management strategies. In this paper, some flow parameters and boundary conditions, eg., inlet and outlet area, water inlet temperature, heating power of the lower head, the annular gap size at the position of the lower head and flooding water level, were considered to qualitatively study the effect of them on natural circulation capacity of the external reactor vessel cooling for an advanced large size PWR by using RELAP5 code. And the calculation results provide some basis of analysis for the structure design and the following transient response behavior of the system. (authors)

  18. Size Class Dependent Relationships between Temperature and Phytoplankton Photosynthesis-Irradiance Parameters in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Alex Robinson

    2018-01-01

    Full Text Available Over the past decade, a number of methods have been developed to estimate size-class primary production from either in situ phytoplankton pigment data or remotely-sensed data. In this context, the first objective of this study was to compare two methods of estimating size class specific (micro-, nano-, and pico-phytoplankton photosynthesis-irradiance (PE parameters from pigment data. The second objective was to analyse the relationship between environmental variables (temperature, nitrate and PAR and PE parameters in the different size-classes. A large dataset was used of simultaneous measurements of the PE parameters (n = 1,260 and phytoplankton pigment markers (n = 2,326, from 3 different institutes. There were no significant differences in mean PE parameters of the different size classes between the chemotaxonomic method of Uitz et al. (2008 and the pigment markers and carbon-to-Chl a ratios method of Sathyendranath et al. (2009. For both methods, mean maximum photosynthetic rates (PmB for micro-phytoplankton were significantly lower than those for pico-phytoplankton and nano-phytoplankton. The mean light limited slope (αB for nano-phytoplankton were significantly higher than for the other size taxa. For micro-phytoplankton dominated samples identified using the Sathyendranath et al. (2009 method, both PmB and αB exhibited a significant, positive linear relationship with temperature, whereas for pico-phytoplankton the correlation with temperature was negative. Nano-phytoplankton dominated samples showed a positive correlation between PmB and temperature, whereas for αB and the light saturation parameter (Ek the correlations were not significant. For the Uitz et al. (2008 method, only micro-phytoplankton PmB, pico-phytoplankton αB, nano- and pico-phytoplankton Ek exhibited significant relationships with temperature. The temperature ranges occupied by the size classes derived using these methods differed. The Uitz et al. (2008 method

  19. Dynamic analysis of large structures with uncertain parameters based on coupling component mode synthesis and perturbation method

    Directory of Open Access Journals (Sweden)

    D. Sarsri

    2016-03-01

    Full Text Available This paper presents a methodological approach to compute the stochastic eigenmodes of large FE models with parameter uncertainties based on coupling of second order perturbation method and component mode synthesis methods. Various component mode synthesis methods are used to optimally reduce the size of the model. The statistical first two moments of dynamic response of the reduced system are obtained by the second order perturbation method. Numerical results illustrating the accuracy and efficiency of the proposed coupled methodological procedures for large FE models with uncertain parameters are presented.

  20. Size and shape dependent lattice parameters of metallic nanoparticles

    International Nuclear Information System (INIS)

    Qi, W. H.; Wang, M. P.

    2005-01-01

    A model is developed to account for the size and shape dependent lattice parameters of metallic nanoparticles, where the particle shape difference is considered by introducing a shape factor. It is predicted that the lattice parameters of nanoparticles in several nanometers decrease with decreasing of the particle size, which is consistent with the corresponding experimental results. Furthermore, it is found that the particle shape can lead to 10% of the total lattice variation. The model is a continuous media model and can deal with the nanoparticles larger than 1 nm. Since the shape factor approaches to infinity for nanowires and nanofilms, therefore, the model cannot be generalized to the systems of nanowires and nanofilms. For the input parameters are physical constants of bulk materials, therefore, the present model may be used to predict the lattice variation of different metallic nanoparticles with different lattice structures

  1. Modified distribution parameter for churn-turbulent flows in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: jschlege@purdue.edu; Macke, C.J.; Hibiki, T.; Ishii, M.

    2013-10-15

    Highlights: • Void fraction data collected in pipe sizes up to 0.304 m using impedance void meters. • Flow conditions extend to transition between churn-turbulent and annular flow. • Flow regime identification results agree with previous studies. • A new model for the distribution parameter in churn-turbulent flow is proposed. -- Abstract: Two phase flows in large diameter channels are important in a wide range of industrial applications, but especially in analysis of nuclear reactor safety for the prediction of BWR behavior and safety analysis in PWRs. To remedy an inability of current drift-flux models to accurately predict the void fraction in churn-turbulent flows in large diameter pipes, extensive experiments have been performed in pipes with diameters of 0.152 m, 0.203 m and 0.304 m to collect area-averaged void fraction data using electrical impedance void meters. The standard deviation and skewness of the impedance meter signal have been used to characterize the flow regime and confirm previous flow regime transition results. By treating churn-turbulent flow as a transition between cap-bubbly dispersed flow and annular separated flow and using a linear ramp, the distribution parameter has been modified for churn-turbulent flow. The modified distribution parameter has been evaluated through comparison of the void fraction predicted by the drift-flux model and the measured void fraction.

  2. Modified distribution parameter for churn-turbulent flows in large diameter channels

    International Nuclear Information System (INIS)

    Schlegel, J.P.; Macke, C.J.; Hibiki, T.; Ishii, M.

    2013-01-01

    Highlights: • Void fraction data collected in pipe sizes up to 0.304 m using impedance void meters. • Flow conditions extend to transition between churn-turbulent and annular flow. • Flow regime identification results agree with previous studies. • A new model for the distribution parameter in churn-turbulent flow is proposed. -- Abstract: Two phase flows in large diameter channels are important in a wide range of industrial applications, but especially in analysis of nuclear reactor safety for the prediction of BWR behavior and safety analysis in PWRs. To remedy an inability of current drift-flux models to accurately predict the void fraction in churn-turbulent flows in large diameter pipes, extensive experiments have been performed in pipes with diameters of 0.152 m, 0.203 m and 0.304 m to collect area-averaged void fraction data using electrical impedance void meters. The standard deviation and skewness of the impedance meter signal have been used to characterize the flow regime and confirm previous flow regime transition results. By treating churn-turbulent flow as a transition between cap-bubbly dispersed flow and annular separated flow and using a linear ramp, the distribution parameter has been modified for churn-turbulent flow. The modified distribution parameter has been evaluated through comparison of the void fraction predicted by the drift-flux model and the measured void fraction

  3. Challenges in parameter identification of large structural dynamic systems

    International Nuclear Information System (INIS)

    Koh, C.G.

    2001-01-01

    In theory, it is possible to determine the parameters of a structural or mechanical system by subjecting it to some dynamic excitation and measuring the response. Considerable research has been carried out in this subject area known as the system identification over the past two decades. Nevertheless, the challenges associated with numerical convergence are still formidable when the system is large in terms of the number of degrees of freedom and number of unknowns. While many methods work for small systems, the convergence becomes difficult, if not impossible, for large systems. In this keynote lecture, both classical and non-classical system identification methods for dynamic testing and vibration-based inspection are discussed. For classical methods, the extended Kalman filter (EKF) approach is used. On this basis, a substructural identification method has been developed as a strategy to deal with large structural systems. This is achieved by reducing the problem size, thereby significantly improving the numerical convergence and efficiency. Two versions of this method are presented each with its own merits. A numerical example of frame structure with 20 unknown parameters is illustrated. For non-classical methods, the Genetic Algorithm (GA) is shown to be applicable with relative ease due to its 'forward analysis' nature. The computational time is, however, still enormous for large structural systems due to the combinatorial explosion problem. A model GA method has been developed to address this problem and tested with considerable success on a relatively large system of 50 degrees of freedom, accounting for input and output noise effects. An advantages of this GA-based identification method is that the objective function can be defined in response measured. Numerical studies show that the method is relatively robust, as it does in response measured. Numerical studies show that the method is relatively robust, as it dos not require good initial guess and the

  4. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  5. Large size space construction for space exploitation

    Science.gov (United States)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  6. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    Science.gov (United States)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  7. Analyzing Damping Vibration Methods of Large-Size Space Vehicles in the Earth's Magnetic Field

    Directory of Open Access Journals (Sweden)

    G. A. Shcheglov

    2016-01-01

    Full Text Available It is known that most of today's space vehicles comprise large antennas, which are bracket-attached to the vehicle body. Dimensions of reflector antennas may be of 30 ... 50 m. The weight of such constructions can reach approximately 200 kg.Since the antenna dimensions are significantly larger than the size of the vehicle body and the points to attach the brackets to the space vehicles have a low stiffness, conventional dampers may be inefficient. The paper proposes to consider the damping antenna in terms of its interaction with the Earth's magnetic field.A simple dynamic model of the space vehicle equipped with a large-size structure is built. The space vehicle is a parallelepiped to which the antenna is attached through a beam.To solve the model problems, was used a simplified model of Earth's magnetic field: uniform, with intensity lines parallel to each other and perpendicular to the plane of the antenna.The paper considers two layouts of coils with respect to the antenna, namely: a vertical one in which an axis of magnetic dipole is perpendicular to the antenna plane, and a horizontal layout in which an axis of magnetic dipole lies in the antenna plane. It also explores two ways for magnetic damping of oscillations: through the controlled current that is supplied from the power supply system of the space vehicle, and by the self-induction current in the coil. Thus, four objectives were formulated.In each task was formulated an oscillation equation. Then a ratio of oscillation amplitudes and their decay time were estimated. It was found that each task requires the certain parameters either of the antenna itself, its dimensions and moment of inertia, or of the coil and, respectively, the current, which is supplied from the space vehicle. In each task for these parameters were found the ranges, which allow us to tell of efficient damping vibrations.The conclusion can be drawn based on the analysis of tasks that a specialized control system

  8. New Sequences with Low Correlation and Large Family Size

    Science.gov (United States)

    Zeng, Fanxin

    In direct-sequence code-division multiple-access (DS-CDMA) communication systems and direct-sequence ultra wideband (DS-UWB) radios, sequences with low correlation and large family size are important for reducing multiple access interference (MAI) and accepting more active users, respectively. In this paper, a new collection of families of sequences of length pn-1, which includes three constructions, is proposed. The maximum number of cyclically distinct families without GMW sequences in each construction is φ(pn-1)/n·φ(pm-1)/m, where p is a prime number, n is an even number, and n=2m, and these sequences can be binary or polyphase depending upon choice of the parameter p. In Construction I, there are pn distinct sequences within each family and the new sequences have at most d+2 nontrivial periodic correlation {-pm-1, -1, pm-1, 2pm-1,…,dpm-1}. In Construction II, the new sequences have large family size p2n and possibly take the nontrivial correlation values in {-pm-1, -1, pm-1, 2pm-1,…,(3d-4)pm-1}. In Construction III, the new sequences possess the largest family size p(d-1)n and have at most 2d correlation levels {-pm-1, -1,pm-1, 2pm-1,…,(2d-2)pm-1}. Three constructions are near-optimal with respect to the Welch bound because the values of their Welch-Ratios are moderate, WR_??_d, WR_??_3d-4 and WR_??_2d-2, respectively. Each family in Constructions I, II and III contains a GMW sequence. In addition, Helleseth sequences and Niho sequences are special cases in Constructions I and III, and their restriction conditions to the integers m and n, pm≠2 (mod 3) and n≅0 (mod 4), respectively, are removed in our sequences. Our sequences in Construction III include the sequences with Niho type decimation 3·2m-2, too. Finally, some open questions are pointed out and an example that illustrates the performance of these sequences is given.

  9. Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles

    International Nuclear Information System (INIS)

    Ao, Z M; Zheng, W T; Jiang, Q

    2007-01-01

    Based on the Sutton-Chen many-body potential function, several thermodynamic parameters of Ag are simulated by molecular dynamics. The parameters simulated are size dependences of the Kauzmann temperature T K and melting temperature T m , and size and temperature dependences of melting enthalpy H m and melting entropy S m . The simulation results and the results of the thermodynamic theory models of T K and T m show good agreement, indicating that as the size of the Ag particles decreases, the T K and T m functions decrease. However, the ratio of T K and T m of Ag nanoparticles is size-independent

  10. Experimental study on propagation properties of large size TEM antennas

    International Nuclear Information System (INIS)

    Zhang Guowei; Wang Haiyang; Chen Weiqing; Wang Wei; Zhu Xiangqin; Xie Linshen

    2014-01-01

    The propagation properties of large size TEM antennas were studied by experiment. The size of the TEM antennas is 60 m × 20 m × 10 m and the character Impedance is 120 Ω. A kind of dielectric foil switch is designed compactly with TEM antennas which can generate double exponential waveform with altitude of 10 kV and rise time of l.2 ns. The radiated field distribution was measured. The relationship between rise time/altitude and distance were provided, and the propagation properties of large size TEM antennas were summarized. (authors)

  11. Processing and properties of large-sized ceramic slabs

    Energy Technology Data Exchange (ETDEWEB)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-07-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm{sup 2} and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.

  12. Processing and properties of large-sized ceramic slabs

    International Nuclear Information System (INIS)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-01-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm 2 and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.

  13. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  14. The Effects of Size and Type of Vocal Fold Polyp on Some Acoustic Voice Parameters

    Directory of Open Access Journals (Sweden)

    Elaheh Akbari

    2018-03-01

    Full Text Available Background: Vocal abuse and misuse would result in vocal fold polyp. Certain features define the extent of vocal folds polyp effects on voice acoustic parameters. The present study aimed to define the effects of polyp size on acoustic voice parameters, and compare these parameters in hemorrhagic and non-hemorrhagic polyps. Methods: In the present retrospective study, 28 individuals with hemorrhagic or non-hemorrhagic polyps of the true vocal folds were recruited to investigate acoustic voice parameters of vowel/ æ/ computed by the Praat software. The data were analyzed using the SPSS software, version 17.0. According to the type and size of polyps, mean acoustic differences and correlations were analyzed by the statistical t test and Pearson correlation test, respectively; with significance level below 0.05. Results: The results indicated that jitter and the harmonics-to-noise ratio had a significant positive and negative correlation with the polyp size (P=0.01, respectively. In addition, both mentioned parameters were significantly different between the two types of the investigated polyps. Conclusion: Both the type and size of polyps have effects on acoustic voice characteristics. In the present study, a novel method to measure polyp size was introduced. Further confirmation of this method as a tool to compare polyp sizes requires additional investigations.

  15. Study on growth techniques and macro defects of large-size Nd:YAG laser crystal

    Science.gov (United States)

    Quan, Jiliang; Yang, Xin; Yang, Mingming; Ma, Decai; Huang, Jinqiang; Zhu, Yunzhong; Wang, Biao

    2018-02-01

    Large-size neodymium-doped yttrium aluminum garnet (Nd:YAG) single crystals were grown by the Czochralski method. The extinction ratio and wavefront distortion of the crystal were tested to determine the optical homogeneity. Moreover, under different growth conditions, the macro defects of inclusion, striations, and cracking in the as-grown Nd:YAG crystals were analyzed. Specifically, the inclusion defects were characterized using scanning electron microscopy and energy dispersive spectroscopy. The stresses of growth striations and cracking were studied via a parallel plane polariscope. These results demonstrate that improper growth parameters and temperature fields can enhance defects significantly. Thus, by adjusting the growth parameters and optimizing the thermal environment, high-optical-quality Nd:YAG crystals with a diameter of 80 mm and a total length of 400 mm have been obtained successfully.

  16. Effect of the grain sizes on the photovoltaic parameters of CdTe solar cells prepared by close space sublimation method

    International Nuclear Information System (INIS)

    Potlog, T.

    2007-01-01

    Thin Film CdS/CdTe solar cells were fabricated by Close Space Sublimation at the substrate temperature ranging from 300 degrees ± 5 degrees to 340 degrees ± degrees. The best photovoltaic parameters were achieved at substrate temperature 320 degrees and source temperature 610 degrees. The open circuit voltage and current density changes significantly with the substrate temperature and depends on the dimension of the grain sizes. Grain size is an efficiency limiting parameter for CdTe layers with large grains. The open circuit voltage and current density are the best for the cells having dimension of grains between 1.0 μm and ∼ 5.0 μm. CdS/CdTe solar cells with an efficiency of ∼ 10% were obtained. (author)

  17. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions.

    Science.gov (United States)

    Peng, Jie; Dong, Wu-Jun; Li, Ling; Xu, Jia-Ming; Jin, Du-Jia; Xia, Xue-Jun; Liu, Yu-Ling

    2015-12-01

    The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS) and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI) value of the emulsions were determined using the dynamic light scattering (DLS) method, and large-diameter tail assessments were performed using the light-obscuration/single particle optical sensing (LO/SPOS) method. Using 1000 bar homogenization pressure and seven recirculations, the energy input parameters related to the rotor-stator system will not have an effect on the final particle size results. When rotor-stator system energy input parameters are fixed, homogenization pressure and recirculation will affect mean particle size and large diameter droplet. Particle size will decrease with increasing homogenization pressure from 400 bar to 1300 bar when homogenization recirculation is fixed; when the homogenization pressure is fixed at 1000 bar, the particle size of both MDS and percent of fat droplets exceeding 5 μm (PFAT 5 ) will decrease with increasing homogenization recirculations, MDS dropped to 173 nm after five cycles and maintained this level, volume-weighted PFAT 5 will drop to 0.038% after three cycles, so the "plateau" of MDS will come up later than that of PFAT 5 , and the optimal particle size is produced when both of them remained at plateau. Excess homogenization recirculation such as nine times under the 1000 bar may lead to PFAT 5 increase to 0.060% rather than a decrease; therefore, the high-pressure homogenization procedure is the key factor affecting the particle size distribution of emulsions. Varying storage conditions (4-25°C) also influenced particle size, especially the PFAT 5 . Copyright

  18. Thermal study of bare tips with various system parameters and incision sizes.

    Science.gov (United States)

    Osher, Robert H; Injev, Valentine P

    2006-05-01

    To identify major and minor surgeon-controlled parameters that affect incision temperature when performing microincision lens removal using the Alcon Infiniti Vision System. In vitro research and development laboratory, Alcon Research, Irvine, California, USA. Phacoemulsification was performed in eye-bank cadaver eyes and the following parameters evaluated: incision, duty cycle, ultrasound (US) power, aspiration flow rate (AFR), vacuum, pulse, bottle height and balanced salt solution temperature, and tip design/size. Each parameter was varied while the others remained constant. The resulting temperature of the incision and US tip was measured using a thermal camera. Major contributors to elevated incision temperature included incision size, US power, duty cycle, AFR, vacuum setting, tip design, and presence of an ophthalmic viscosurgical device (OVD). Minor contributors included pulse frequency, bottle height, and temperature of the infusate. Microincision lens removal can be performed at safe temperatures with the knowledgeable selection of surgeon-controlled parameters.

  19. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs

    Directory of Open Access Journals (Sweden)

    Mau Robert

    2016-09-01

    Full Text Available Drug delivery systems (DDS ensure that therapeutically effective drug concentrations are delivered locally to the target site. For that reason, it is common to coat implants with a degradable polymer which contains drugs. However, the use of polymers as a drug carrier has been associated with adverse side effects. For that reason, several technologies have been developed to design polymer-free DDS. In literature it has been shown that micro-sized reservoirs can be applied as drug reservoirs. Inkjet techniques are capable of depositing drugs into these reservoirs. In this study, two different geometries of micro-sized reservoirs have been laden with a drug (ASA using a drop-on-demand inkjet printhead. Correlations between the characteristics of the drug solution, the operating parameters of the printhead and the geometric parameters of the reservoir are shown. It is indicated that wettability of the surface play a key role for drug deposition into micro-sized reservoirs.

  20. Visual exposure to large and small portion sizes and perceptions of portion size normality: Three experimental studies.

    Science.gov (United States)

    Robinson, Eric; Oldham, Melissa; Cuckson, Imogen; Brunstrom, Jeffrey M; Rogers, Peter J; Hardman, Charlotte A

    2016-03-01

    Portion sizes of many foods have increased in recent times. In three studies we examined the effect that repeated visual exposure to larger versus smaller food portion sizes has on perceptions of what constitutes a normal-sized food portion and measures of portion size selection. In studies 1 and 2 participants were visually exposed to images of large or small portions of spaghetti bolognese, before making evaluations about an image of an intermediate sized portion of the same food. In study 3 participants were exposed to images of large or small portions of a snack food before selecting a portion size of snack food to consume. Across the three studies, visual exposure to larger as opposed to smaller portion sizes resulted in participants considering a normal portion of food to be larger than a reference intermediate sized portion. In studies 1 and 2 visual exposure to larger portion sizes also increased the size of self-reported ideal meal size. In study 3 visual exposure to larger portion sizes of a snack food did not affect how much of that food participants subsequently served themselves and ate. Visual exposure to larger portion sizes may adjust visual perceptions of what constitutes a 'normal' sized portion. However, we did not find evidence that visual exposure to larger portions altered snack food intake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The effect of various parameters of large scale radio propagation models on improving performance mobile communications

    Science.gov (United States)

    Pinem, M.; Fauzi, R.

    2018-02-01

    One technique for ensuring continuity of wireless communication services and keeping a smooth transition on mobile communication networks is the soft handover technique. In the Soft Handover (SHO) technique the inclusion and reduction of Base Station from the set of active sets is determined by initiation triggers. One of the initiation triggers is based on the strong reception signal. In this paper we observed the influence of parameters of large-scale radio propagation models to improve the performance of mobile communications. The observation parameters for characterizing the performance of the specified mobile system are Drop Call, Radio Link Degradation Rate and Average Size of Active Set (AS). The simulated results show that the increase in altitude of Base Station (BS) Antenna and Mobile Station (MS) Antenna contributes to the improvement of signal power reception level so as to improve Radio Link quality and increase the average size of Active Set and reduce the average Drop Call rate. It was also found that Hata’s propagation model contributed significantly to improvements in system performance parameters compared to Okumura’s propagation model and Lee’s propagation model.

  2. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes

    Science.gov (United States)

    Liu, Chao; Yu, Meihua; Li, Yang; Li, Jiansheng; Wang, Jing; Yu, Chengzhong; Wang, Lianjun

    2015-07-01

    Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and small particle sizes may have excellent potential in drug/gene delivery.Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and

  4. Visual exposure to large and small portion sizes and perceptions of portion size normality: Three experimental studies

    OpenAIRE

    Robinson, Eric; Oldham, Melissa; Cuckson, Imogen; Brunstrom, Jeffrey M.; Rogers, Peter J.; Hardman, Charlotte A.

    2016-01-01

    Portion sizes of many foods have increased in recent times. In three studies we examined the effect that repeated visual exposure to larger versus smaller food portion sizes has on perceptions of what constitutes a normal-sized food portion and measures of portion size selection. In studies 1 and 2 participants were visually exposed to images of large or small portions of spaghetti bolognese, before making evaluations about an image of an intermediate sized portion of the same food. In study ...

  5. Effect of Some Synthetic Parameters on Size and Polydispersity Index of Gelatin Nanoparticles Cross-Linked by CDI/NHS System

    Directory of Open Access Journals (Sweden)

    S. Zinatloo-Ajabshir

    2015-04-01

    Full Text Available In our previous work, the effect of use of a water soluble CDI/NHS system as nontoxic cross-linking agent on fabrication of gelatin nanoparticles was investigated. In this research, the effect of variation in some synthetic parameters of gelatin nanoparticles cross-linked by CDI/NHS system such as type of gelatin and formulation of cross- linking agent on their size and distribution was examined. The conventional two step desolvation method was used for preparation of gelatin nanoparticles. The morphology, mean size and size distribution of the formed nanoparticles were evaluated and compared with each other. In addition, intrinsic viscosities of all the nanoparticles were measured and compared under different conditions. The results showed that the presence of more NHS and absence of NHS catalyst in CDI/NHS system lead to the large particle size and broad size distribution of nanoparticles that were attributed to the fast and slow cross-linking rate, respectively.

  6. Bayesian inference of genetic parameters on litter size and gestation length in Hungarian Landrace and Hungarian Large White pigs

    Directory of Open Access Journals (Sweden)

    Zoltán Csörnyei

    2010-01-01

    Full Text Available Genetic parameters of number of piglets born alive (NBA and gestation length (GL were analyzed for 39798 Hungarian Landrace (HLA, 141397 records and 70356 Hungarian Large White (HLW, 246961 records sows. Bivariate repeatability animal models were used, applying a Bayesian statistics. Estimated and heritabilitie repeatabilities (within brackets, were low for NBA, 0.07 (0.14 for HLA and 0.08 (0.17 for HLW, but somewhat higher for GL, 0.18 (0.27 for HLA and 0.26 (0.35 for HLW. Estimated genetic correlations between NBA and GL were low, -0.08 for HLA and -0.05 for HLW.

  7. Reliable pipeline repair system for very large pipe size

    Energy Technology Data Exchange (ETDEWEB)

    Charalambides, John N.; Sousa, Alexandre Barreto de [Oceaneering International, Inc., Houston, TX (United States)

    2004-07-01

    The oil and gas industry worldwide has been mainly depending on the long-term reliability of rigid pipelines to ensure the transportation of hydrocarbons, crude oil, gas, fuel, etc. Many other methods are also utilized onshore and offshore (e.g. flexible lines, FPSO's, etc.), but when it comes to the underwater transportation of very high volumes of oil and gas, the industry commonly uses large size rigid pipelines (i.e. steel pipes). Oil and gas operators learned to depend on the long-lasting integrity of these very large pipelines and many times they forget or disregard that even steel pipelines degrade over time and more often that that, they are also susceptible to various forms of damage (minor or major, environmental or external, etc.). Over the recent years the industry had recognized the need of implementing an 'emergency repair plan' to account for such unforeseen events and the oil and gas operators have become 'smarter' by being 'pro-active' in order to ensure 'flow assurance'. When we consider very large diameter steel pipelines such as 42' and 48' nominal pipe size (NPS), the industry worldwide does not provide 'ready-made', 'off-the-shelf' repair hardware that can be easily shipped to the offshore location and effect a major repair within acceptable time frames and avoid substantial profit losses due to 'down-time' in production. The typical time required to establish a solid repair system for large pipe diameters could be as long as six or more months (depending on the availability of raw materials). This paper will present in detail the Emergency Pipeline Repair Systems (EPRS) that Oceaneering successfully designed, manufactured, tested and provided to two major oil and gas operators, located in two different continents (Gulf of Mexico, U.S.A. and Arabian Gulf, U.A.E.), for two different very large pipe sizes (42'' and 48'' Nominal Pipe Sizes

  8. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    Science.gov (United States)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  9. Convergence of surface diffusion parameters with model crystal size

    Science.gov (United States)

    Cohen, Jennifer M.; Voter, Arthur F.

    1994-07-01

    A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.

  10. Higher albedos and size distribution of large transneptunian objects

    Science.gov (United States)

    Lykawka, Patryk Sofia; Mukai, Tadashi

    2005-11-01

    Transneptunian objects (TNOs) orbit beyond Neptune and do offer important clues about the formation of our solar system. Although observations have been increasing the number of discovered TNOs and improving their orbital elements, very little is known about elementary physical properties such as sizes, albedos and compositions. Due to TNOs large distances (>40 AU) and observational limitations, reliable physical information can be obtained only from brighter objects (supposedly larger bodies). According to size and albedo measurements available, it is evident the traditionally assumed albedo p=0.04 cannot hold for all TNOs, especially those with approximately absolute magnitudes H⩽5.5. That is, the largest TNOs possess higher albedos (generally >0.04) that strongly appear to increase as a function of size. Using a compilation of published data, we derived empirical relations which can provide estimations of diameters and albedos as a function of absolute magnitude. Calculations result in more accurate size/albedo estimations for TNOs with H⩽5.5 than just assuming p=0.04. Nevertheless, considering low statistics, the value p=0.04 sounds still convenient for H>5.5 non-binary TNOs as a group. We also discuss about physical processes (e.g., collisions, intrinsic activity and the presence of tenuous atmospheres) responsible for the increase of albedo among large bodies. Currently, all big TNOs (>700 km) would be capable to sustain thin atmospheres or icy frosts composed of CH 4, CO or N 2 even for body bulk densities as low as 0.5 g cm -3. A size-dependent albedo has important consequences for the TNOs size distribution, cumulative luminosity function and total mass estimations. According to our analysis, the latter can be reduced up to 50% if higher albedos are common among large bodies. Lastly, by analyzing orbital properties of classical TNOs ( 42AUbodies. For both populations, distinct absolute magnitude distributions are maximized for an inclination threshold

  11. Large parameter cases of the Gauss hypergeometric function

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    2002-01-01

    textabstractWe consider the asymptotic behaviour of the Gauss hypergeometric function when several of the parameters {it a, b, c} are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Meixner, Krawtchouk, etc.), which results are already available and

  12. HLIBCov: Parallel Hierarchical Matrix Approximation of Large Covariance Matrices and Likelihoods with Applications in Parameter Identification

    KAUST Repository

    Litvinenko, Alexander

    2017-09-26

    The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Mat\\\\\\'ern covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\\\H$-) matrix format with computational cost $\\\\mathcal{O}(k^2n \\\\log^2 n/p)$ and storage $\\\\mathcal{O}(kn \\\\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.

  13. HLIBCov: Parallel Hierarchical Matrix Approximation of Large Covariance Matrices and Likelihoods with Applications in Parameter Identification

    KAUST Repository

    Litvinenko, Alexander

    2017-09-24

    The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Mat\\\\\\'ern covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\\\mathcal{H}$-) matrix format with computational cost $\\\\mathcal{O}(k^2n \\\\log^2 n/p)$ and storage $\\\\mathcal{O}(kn \\\\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.

  14. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  15. Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks—A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET

    Science.gov (United States)

    Plyusnin, V. V.; Reux, C.; Kiptily, V. G.; Pautasso, G.; Decker, J.; Papp, G.; Kallenbach, A.; Weinzettl, V.; Mlynar, J.; Coda, S.; Riccardo, V.; Lomas, P.; Jachmich, S.; Shevelev, A. E.; Alper, B.; Khilkevitch, E.; Martin, Y.; Dux, R.; Fuchs, C.; Duval, B.; Brix, M.; Tardini, G.; Maraschek, M.; Treutterer, W.; Giannone, L.; Mlynek, A.; Ficker, O.; Martin, P.; Gerasimov, S.; Potzel, S.; Paprok, R.; McCarthy, P. J.; Imrisek, M.; Boboc, A.; Lackner, K.; Fernandes, A.; Havlicek, J.; Giacomelli, L.; Vlainic, M.; Nocente, M.; Kruezi, U.; COMPASS Team; TCV Team; ASDEX-Upgrade Team; EUROFusion MST1 Team; contributors, JET

    2018-01-01

    This paper presents a survey of the experiments on runaway electrons (RE) carried out recently in frames of EUROFusion Consortium in different tokamaks: COMPASS, ASDEX-Upgrade, TCV and JET. Massive gas injection (MGI) has been used in different scenarios for RE generation in small and medium-sized tokamaks to elaborate the most efficient and reliable ones for future RE experiments. New data on RE generated at disruptions in COMPASS and ASDEX-Upgrade was collected and added to the JET database. Different accessible parameters of disruptions, such as current quench rate, conversion rate of plasma current into runaways, etc have been analysed for each tokamak and compared to JET data. It was shown, that tokamaks with larger geometrical sizes provide the wider limits for spatial and temporal variation of plasma parameters during disruptions, thus extending the parameter space for RE generation. The second part of experiments was dedicated to study of RE generation in stationary discharges in COMPASS, TCV and JET. Injection of Ne/Ar have been used to mock-up the JET MGI runaway suppression experiments. Secondary RE avalanching was identified and quantified for the first time in the TCV tokamak in RE generating discharges after massive Ne injection. Simulations of the primary RE generation and secondary avalanching dynamics in stationary discharges has demonstrated that RE current fraction created via avalanching could achieve up to 70-75% of the total plasma current in TCV. Relaxations which are reminiscent the phenomena associated to the kinetic instability driven by RE have been detected in RE discharges in TCV. Macroscopic parameters of RE dominating discharges in TCV before and after onset of the instability fit well to the empirical instability criterion, which was established in the early tokamaks and examined by results of recent numerical simulations.

  16. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension

    Science.gov (United States)

    Maiti, Amitesh; McGrother, Simon

    2004-01-01

    Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren [J. Chem. Phys. 107, 4423 (1997)] established an important link between DPD and the Flory-Huggins χ-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.

  17. Accelerating inference for diffusions observed with measurement error and large sample sizes using approximate Bayesian computation

    DEFF Research Database (Denmark)

    Picchini, Umberto; Forman, Julie Lyng

    2016-01-01

    a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An approximate Bayesian computation (ABC)-MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm......In recent years, dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However, it is often computationally unfeasible to apply exact statistical methodologies in the context of large data sets and complex models. This paper considers...... applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered set-up. Finally, the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general...

  18. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    Energy Technology Data Exchange (ETDEWEB)

    Katata, Lebogang, E-mail: lebzakate@yahoo.com; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda [Materials Science and Manufacturing, Centre of Polymers and Composites, Council for Scientific and Industrial Research (South Africa)

    2012-11-15

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 {mu}g/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L{sub 8} orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 {+-} 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 {+-} 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 {+-} 2.48 nm and 0.093 {+-} 0.02.

  19. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    International Nuclear Information System (INIS)

    Katata, Lebogang; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda

    2012-01-01

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 μg/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L 8 orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 ± 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 ± 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 ± 2.48 nm and 0.093 ± 0.02.

  20. Large signal S-parameters: modeling and radiation effects in microwave power transistors

    International Nuclear Information System (INIS)

    Graham, E.D. Jr.; Chaffin, R.J.; Gwyn, C.W.

    1973-01-01

    Microwave power transistors are usually characterized by measuring the source and load impedances, efficiency, and power output at a specified frequency and bias condition in a tuned circuit. These measurements provide limited data for circuit design and yield essentially no information concerning broadbanding possibilities. Recently, a method using large signal S-parameters has been developed which provides a rapid and repeatable means for measuring microwave power transistor parameters. These large signal S-parameters have been successfully used to design rf power amplifiers. Attempts at modeling rf power transistors have in the past been restricted to a modified Ebers-Moll procedure with numerous adjustable model parameters. The modified Ebers-Moll model is further complicated by inclusion of package parasitics. In the present paper an exact one-dimensional device analysis code has been used to model the performance of the transistor chip. This code has been integrated into the SCEPTRE circuit analysis code such that chip, package and circuit performance can be coupled together in the analysis. Using []his computational tool, rf transistor performance has been examined with particular attention given to the theoretical validity of large-signal S-parameters and the effects of nuclear radiation on device parameters. (auth)

  1. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  2. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  3. Optical and thermal performance of large-size parabolic-trough solar collectors from outdoor experiments: A test method and a case study

    International Nuclear Information System (INIS)

    Valenzuela, Loreto; López-Martín, Rafael; Zarza, Eduardo

    2014-01-01

    This article presents an outdoor test method to evaluate the optical and thermal performance of parabolic-trough collectors of large size (length ≥ 100 m), similar to those currently installed in solar thermal power plants. Optical performance in line-focus collectors is defined by three parameters, peak-optical efficiency and longitudinal and transversal incidence angle modifiers. In parabolic-troughs, the transversal incidence angle modifier is usually assumed equal to 1, and the incidence angle modifier is referred to the longitudinal incidence angle modifier, which is a factor less than or equal to 1 and must be quantified. These measurements are performed by operating the collector at low fluid temperatures for reducing heat losses. Thermal performance is measured during tests at various operating temperatures, which are defined within the working temperature range of the solar field, and for the condition of maximum optical response. Heat losses are measured from both the experiments performed to measure the overall efficiency and the experiments done by operating the collector to ensure that absorber pipes are not exposed to concentrated solar radiation. The set of parameters describing the performance of a parabolic-trough collector of large size has been measured following the test procedures proposed and explained in the article. - Highlights: • Outdoor test procedures of parabolic-trough solar collector (PTC) of large size working at high temperature are described. • Optical performance measured with cold fluid temperature and thermal performance measured in the complete temperature range. • Experimental data obtained in the testing of a PTC prototype are explained

  4. Influence of the section size and holding time on the graphite parameters of ductile iron production

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2009-01-01

    Full Text Available This work was conducted to establish the conditions required to produce a desirable structure of the castings of various section sizes. This investigation was focused on the study of the influence of cooling rate or section size and holding time on graphite parameters of the ductile iron. Plates having thickness between 3 and 50mm were cast in sand molds using the same melt. The present investigation has shown that the section size of ductile iron castings and holding time had strong effect on the graphite parameters of the castings.

  5. DESIGN AND DEVELOPMENT OF A LARGE SIZE NON-TRACKING SOLAR COOKER

    Directory of Open Access Journals (Sweden)

    N. M. NAHAR

    2009-09-01

    Full Text Available A large size novel non-tracking solar cooker has been designed, developed and tested. The cooker has been designed in such a way that the width to length ratio for reflector and glass window is about 4 so that maximum radiation falls on the glass window. This has helped in eliminating azimuthal tracking that is required in simple hot box solar cooker towards the Sun every hour because the width to length ratio of reflector is 1. It has been found that stagnation temperatures were 118.5oC and 108oC in large size non-tracking solar cooker and hot box solar cooker respectively. It takes about 2 h for soft food and 3 h for hard food. The cooker is capable of cooking 4.0 kg of food at a time. The efficiency of the large size non-tracking solar cooker has been found to be 27.5%. The cooker saves 5175 MJ of energy per year. The cost of the cooker is Rs. 10000.00 (1.0 US$ = Rs. 50.50. The payback period has been calculated by considering 10% annual interest, 5% maintenance cost and 5% inflation in fuel prices and maintenance cost. The payback period is least, i.e. 1.58 yr., with respect to electricity and maximum, i.e. 4.89 yr., with respect to kerosene. The payback periods are in increasing order with respect to fuel: electricity, coal, firewood, liquid petroleum gas, and kerosene. The shorter payback periods suggests that the use of large size non-tracking solar cooker is economical.

  6. Data Mining for Efficient and Accurate Large Scale Retrieval of Geophysical Parameters

    Science.gov (United States)

    Obradovic, Z.; Vucetic, S.; Peng, K.; Han, B.

    2004-12-01

    Our effort is devoted to developing data mining technology for improving efficiency and accuracy of the geophysical parameter retrievals by learning a mapping from observation attributes to the corresponding parameters within the framework of classification and regression. We will describe a method for efficient learning of neural network-based classification and regression models from high-volume data streams. The proposed procedure automatically learns a series of neural networks of different complexities on smaller data stream chunks and then properly combines them into an ensemble predictor through averaging. Based on the idea of progressive sampling the proposed approach starts with a very simple network trained on a very small chunk and then gradually increases the model complexity and the chunk size until the learning performance no longer improves. Our empirical study on aerosol retrievals from data obtained with the MISR instrument mounted at Terra satellite suggests that the proposed method is successful in learning complex concepts from large data streams with near-optimal computational effort. We will also report on a method that complements deterministic retrievals by constructing accurate predictive algorithms and applying them on appropriately selected subsets of observed data. The method is based on developing more accurate predictors aimed to catch global and local properties synthesized in a region. The procedure starts by learning the global properties of data sampled over the entire space, and continues by constructing specialized models on selected localized regions. The global and local models are integrated through an automated procedure that determines the optimal trade-off between the two components with the objective of minimizing the overall mean square errors over a specific region. Our experimental results on MISR data showed that the combined model can increase the retrieval accuracy significantly. The preliminary results on various

  7. Automated Modal Parameter Estimation for Operational Modal Analysis of Large Systems

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Goursat, Maurice

    2007-01-01

    In this paper the problems of doing automatic modal parameter extraction and how to account for large number of data to process are considered. Two different approaches for obtaining the modal parameters automatically using OMA are presented: The Frequency Domain Decomposition (FDD) technique and...

  8. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene

    OpenAIRE

    Geng, Xiumei; Guo, Yufen; Li, Dongfang; Li, Weiwei; Zhu, Chao; Wei, Xiangfei; Chen, Mingliang; Gao, Song; Qiu, Shengqiang; Gong, Youpin; Wu, Liqiong; Long, Mingsheng; Sun, Mengtao; Pan, Gebo; Liu, Liwei

    2013-01-01

    Mass production of reduced graphene oxide and graphene nanoplatelets has recently been achieved. However, a great challenge still remains in realizing large-quantity and high-quality production of large-size thin few-layer graphene (FLG). Here, we create a novel route to solve the issue by employing one-time-only interlayer catalytic exfoliation (ICE) of salt-intercalated graphite. The typical FLG with a large lateral size of tens of microns and a thickness less than 2?nm have been obtained b...

  9. Large- and small-size advantages in sneaking behaviour in the dusky frillgoby Bathygobius fuscus

    Science.gov (United States)

    Takegaki, Takeshi; Kaneko, Takashi; Matsumoto, Yukio

    2012-04-01

    Sneaking tactic, a male alternative reproductive tactic involving sperm competition, is generally adopted by small individuals because of its inconspicuousness. However, large size has an advantage when competition occurs between sneakers for fertilization of eggs. Here, we suggest that both large- and small-size advantages of sneaker males are present within the same species. Large sneaker males of the dusky frillgoby Bathygobius fuscus showed a high success rate in intruding into spawning nests because of their advantage in competition among sneaker males in keeping a suitable position to sneak, whereas small sneakers had few chances to sneak. However, small sneaker males were able to stay in the nests longer than large sneaker males when they succeeded in sneak intrusion. This suggests the possibility of an increase in their paternity. The findings of these size-specific behavioural advantages may be important in considering the evolution of size-related reproductive traits.

  10. The Role of Large-Format Histopathology in Assessing Subgross Morphological Prognostic Parameters: A Single Institution Report of 1000 Consecutive Breast Cancer Cases

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2012-01-01

    Full Text Available Breast cancer subgross morphological parameters (disease extent, lesion distribution, and tumor size provide significant prognostic information and guide therapeutic decisions. Modern multimodality radiological imaging can determine these parameters with increasing accuracy in most patients. Large-format histopathology preserves the spatial relationship of the tumor components and their relationship to the resection margins and has clear advantages over traditional routine pathology techniques. We report a series of 1000 consecutive breast cancer cases worked up with large-format histology with detailed radiological-pathological correlation. We confirmed that breast carcinomas often exhibit complex subgross morphology in both early and advanced stages. Half of the cases were extensive tumors and occupied a tissue space ≥40 mm in its largest dimension. Because both in situ and invasive tumor components may exhibit unifocal, multifocal, and diffuse lesion distribution, 17 different breast cancer growth patterns can be observed. Combining in situ and invasive tumor components, most cases fall into three aggregate growth patterns: unifocal (36%, multifocal (35%, and diffuse (28%. Large-format histology categories of tumor size and disease extent were concordant with radiological measurements in approximately 80% of the cases. Noncalcified, low-grade in situ foci, and invasive tumor foci <5 mm were the most frequent causes of discrepant findings.

  11. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  12. Loading factor and inclination parameter of diagonal type MHD generators

    International Nuclear Information System (INIS)

    Ishikawa, Motoo

    1979-01-01

    Regarding diagonal type MHD generators is studied the relation between the loading factor and inclination parameter which is required for attaining the maximum power density with a given electrical efficiency on the assumption of infinitely segmented electrodes. The average current density on electrodes is calculated against the Hall parameter, loading factor, and inclination parameter. The diagonal type generator is compared with Faraday type generator regarding the average current density. Decreasing the loading factor from inlet to outlet is appropriate to small size generators but increasing to large size generators. The inclination parameter had better decrease in both generators, being smaller for small generators than for large ones. The average current density on electrodes of diagonal type generators varies less with the loading factor than the Faraday type. In large size generators its value can become smaller compared with that of the Faraday type. (author)

  13. Simulation of reflecting surface deviations of centimeter-band parabolic space radiotelescope (SRT) with the large-size mirror

    Science.gov (United States)

    Kotik, A.; Usyukin, V.; Vinogradov, I.; Arkhipov, M.

    2017-11-01

    he realization of astrophysical researches requires the development of high-sensitive centimeterband parabolic space radiotelescopes (SRT) with the large-size mirrors. Constructively such SRT with the mirror size more than 10 m can be realized as deployable rigid structures. Mesh-structures of such size do not provide the reflector reflecting surface accuracy which is necessary for the centimeter band observations. Now such telescope with the 10 m diameter mirror is developed in Russia in the frame of "SPECTR - R" program. External dimensions of the telescope is more than the size of existing thermo-vacuum chambers used to prove SRT reflecting surface accuracy parameters under the action of space environment factors. That's why the numerical simulation turns out to be the basis required to accept the taken designs. Such modeling should be based on experimental working of the basic constructive materials and elements of the future reflector. In the article computational modeling of reflecting surface deviations of a centimeter-band of a large-sized deployable space reflector at a stage of his orbital functioning is considered. The analysis of the factors that determines the deviations - both determined (temperatures fields) and not-determined (telescope manufacturing and installation faults; the deformations caused by features of composite materials behavior in space) is carried out. The finite-element model and complex of methods are developed. They allow to carry out computational modeling of reflecting surface deviations caused by influence of all factors and to take into account the deviations correction by space vehicle orientation system. The results of modeling for two modes of functioning (orientation at the Sun) SRT are presented.

  14. Classification of large-sized hyperspectral imagery using fast machine learning algorithms

    Science.gov (United States)

    Xia, Junshi; Yokoya, Naoto; Iwasaki, Akira

    2017-07-01

    We present a framework of fast machine learning algorithms in the context of large-sized hyperspectral images classification from the theoretical to a practical viewpoint. In particular, we assess the performance of random forest (RF), rotation forest (RoF), and extreme learning machine (ELM) and the ensembles of RF and ELM. These classifiers are applied to two large-sized hyperspectral images and compared to the support vector machines. To give the quantitative analysis, we pay attention to comparing these methods when working with high input dimensions and a limited/sufficient training set. Moreover, other important issues such as the computational cost and robustness against the noise are also discussed.

  15. Genetic parameters for litter size in Black Slavonian pigs

    Energy Technology Data Exchange (ETDEWEB)

    Skorput, D.; Gorjanc, G.; Dikic, M.; Lujovic, Z.

    2014-06-01

    The objective of this study was to estimate genetic parameters for litter size of Black Slavonian pigs using the repeatability, multiple trait, and random regression models, and to consider the possibility to increase litter size in Black Slavonian pigs by selection. A total of 4,733 litter records from the first to the sixth parity from sows that farrowed between January 1998 and December 2010 were included in the analysis. Individual record consisted of the following variables: breeding organisation (eight regions), parity (1-6), service boar, and farrowing season (monthyear interaction). Estimation of all the covariance components with three different models was based on the residual maximum likelihood method. Estimate of additive genetic variance and heritability for number of piglets born alive with repeatability model was 0.23 and 0.10, respectively. Estimates of additive genetic variance with multiple trait and random regression model were in a wider range from 0.05 to 0.65 across parities, and heritabilities were estimated in the range between 0.03 and 0.26. Estimates of phenotypic and additive genetic correlations were much smoother with random regression model in comparison with multiple trait model. Due to unexpected changes of variances along trajectory obtained with multiple trait and random regression model, the best option for genetic evaluation of litter size for now could be the use of repeatability model. With increasing number of data with proper data structure alternative modelling of litter size of Black Slavonian pig using multiple trait and random regression model could be taken into consideration. (Author)

  16. Genetic parameters for litter size in Black Slavonian pigs

    Directory of Open Access Journals (Sweden)

    Dubravko Skorput

    2014-02-01

    Full Text Available The objective of this study was to estimate genetic parameters for litter size of Black Slavonian pigs using the repeatability, multiple trait, and random regression models, and to consider the possibility to increase litter size in Black Slavonian pigs by selection. A total of 4733 litter records from the first to the sixth parity from sows that farrowed between January 1998 and December 2010 were included in the analysis. Individual record consisted of the following variables: breeding organisation (eight regions, parity (1-6, service boar, and farrowing season (month-year interaction. Estimation of all the covariance components with three different models was based on the residual maximum likelihood method. Estimate of additive genetic variance and heritability for number of piglets born alive with repeatability model was 0.23 and 0.10, respectively. Estimates of additive genetic variance with multiple trait and random regression model were in a wider range from 0.05 to 0.65 across parities, and heritabilities were estimated in the range between 0.03 and 0.26. Estimates of phenotypic and additive genetic correlations were much smoother with random regression model in comparison with multiple trait model. Due to unexpected changes of variances along trajectory obtained with multiple trait and random regression model, the best option for genetic evaluation of litter size for now could be the use of repeatability model. With increasing number of data with proper data structure alternative modelling of litter size of Black Slavonian pig using multiple trait and random regression model could be taken into consideration.

  17. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Science.gov (United States)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  18. Large- and small-size advantages in sneaking behaviour in the dusky frillgoby Bathygobius fuscus

    OpenAIRE

    Takegaki, Takeshi; Kaneko, Takashi; Matsumoto, Yukio

    2012-01-01

    Sneaking tactic, a male alternative reproductive tactic involving sperm competition, is generally adopted by small individuals because of its inconspicuousness. However, large size has an advantage when competition occurs between sneakers for fertilization of eggs. Here, we suggest that both large- and small-size advantages of sneaker males are present within the same species. Large sneaker males of the dusky frillgoby Bathygobius fuscus showed a high success rate in intruding into spawning n...

  19. Two parameter-tuned metaheuristic algorithms for the multi-level lot sizing and scheduling problem

    Directory of Open Access Journals (Sweden)

    S.M.T. Fatemi Ghomi

    2012-10-01

    Full Text Available This paper addresses the problem of lot sizing and scheduling problem for n-products and m-machines in flow shop environment where setups among machines are sequence-dependent and can be carried over. Many products must be produced under capacity constraints and allowing backorders. Since lot sizing and scheduling problems are well-known strongly NP-hard, much attention has been given to heuristics and metaheuristics methods. This paper presents two metaheuristics algorithms namely, Genetic Algorithm (GA and Imperialist Competitive Algorithm (ICA. Moreover, Taguchi robust design methodology is employed to calibrate the parameters of the algorithms for different size problems. In addition, the parameter-tuned algorithms are compared against a presented lower bound on randomly generated problems. At the end, comprehensive numerical examples are presented to demonstrate the effectiveness of the proposed algorithms. The results showed that the performance of both GA and ICA are very promising and ICA outperforms GA statistically.

  20. The welfare implications of large litter size in the domestic pig I

    DEFF Research Database (Denmark)

    Rutherford, K.M.D; Baxter, E.M.; D'Eath, R.B.

    2013-01-01

    Increasing litter size has long been a goal of pig breeders and producers, and may have implications for pig (Sus scrofa domesticus) welfare. This paper reviews the scientific evidence on biological factors affecting sow and piglet welfare in relation to large litter size. It is concluded that, i...

  1. Retrieval of cloud droplet size distribution parameters from polarized reflectance measurements

    Directory of Open Access Journals (Sweden)

    M. Alexandrov

    2011-09-01

    Full Text Available We present an algorithm for retrieval of cloud droplet size distribution parameters (effective radius and variance from the Research Scanning Polarimeter (RSP measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS, which is due to be launched as part of the NASA Glory Project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering angle range between 140 and 170 degrees where they exhibit rainbow. The shape of the rainbow is determined mainly by single-scattering properties of the cloud particles, that simplifies the inversions and reduces retrieval uncertainties. The retrieval algorithm was tested using realistically simulated cloud radiation fields. Our retrievals of cloud droplet sizes from actual RSP measurements made during two recent field campaigns were compared with the correlative in situ observations.

  2. Determination of the optimal sample size for a clinical trial accounting for the population size.

    Science.gov (United States)

    Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin

    2017-07-01

    The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Computational scalability of large size image dissemination

    Science.gov (United States)

    Kooper, Rob; Bajcsy, Peter

    2011-01-01

    We have investigated the computational scalability of image pyramid building needed for dissemination of very large image data. The sources of large images include high resolution microscopes and telescopes, remote sensing and airborne imaging, and high resolution scanners. The term 'large' is understood from a user perspective which means either larger than a display size or larger than a memory/disk to hold the image data. The application drivers for our work are digitization projects such as the Lincoln Papers project (each image scan is about 100-150MB or about 5000x8000 pixels with the total number to be around 200,000) and the UIUC library scanning project for historical maps from 17th and 18th century (smaller number but larger images). The goal of our work is understand computational scalability of the web-based dissemination using image pyramids for these large image scans, as well as the preservation aspects of the data. We report our computational benchmarks for (a) building image pyramids to be disseminated using the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to generate image pyramids and to utilize the underlying hardware, and (c) an image pyramid preservation approach using various hard drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. The benchmarks are obtained with a map (334.61 MB, JPEG format, 17591x15014 pixels). The discussion combines the speed and preservation objectives.

  4. Damage threshold from large retinal spot size repetitive-pulse laser exposures.

    Science.gov (United States)

    Lund, Brian J; Lund, David J; Edsall, Peter R

    2014-10-01

    The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.

  5. Folding and unfolding of large-size shell construction for application in Earth orbit

    Science.gov (United States)

    Kondyurin, Alexey; Pestrenina, Irena; Pestrenin, Valery; Rusakov, Sergey

    2016-07-01

    A future exploration of space requires a technology of large module for biological, technological, logistic and other applications in Earth orbits [1-3]. This report describes the possibility of using large-sized shell structures deployable in space. Structure is delivered to the orbit in the spaceship container. The shell is folded for the transportation. The shell material is either rigid plastic or multilayer prepreg comprising rigid reinforcements (such as reinforcing fibers). The unfolding process (bringing a construction to the unfolded state by loading the internal pressure) needs be considered at the presence of both stretching and bending deformations. An analysis of the deployment conditions (the minimum internal pressure bringing a construction from the folded state to the unfolded state) of large laminated CFRP shell structures is formulated in this report. Solution of this mechanics of deformable solids (MDS) problem of the shell structure is based on the following assumptions: the shell is made of components whose median surface has a reamer; in the separate structural element relaxed state (not stressed and not deformed) its median surface coincides with its reamer (this assumption allows choose the relaxed state of the structure correctly); structural elements are joined (sewn together) by a seam that does not resist rotation around the tangent to the seam line. The ways of large shell structures folding, whose median surface has a reamer, are suggested. Unfolding of cylindrical, conical (full and truncated cones), and large-size composite shells (cylinder-cones, cones-cones) is considered. These results show that the unfolding pressure of such large-size structures (0.01-0.2 atm.) is comparable to the deploying pressure of pneumatic parts (0.001-0.1 atm.) [3]. It would be possible to extend this approach to investigate the unfolding process of large-sized shells with ruled median surface or for non-developable surfaces. This research was

  6. Accuracy of the photogrametric measuring system for large size elements

    Directory of Open Access Journals (Sweden)

    M. Grzelka

    2011-04-01

    Full Text Available The aim of this paper is to present methods of estimating and guidelines for verifying the accuracy of optical photogrammetric measuringsystems, using for measurement of large size elements. Measuring systems applied to measure workpieces of a large size which oftenreach more than 10000mm require use of appropriate standards. Those standards provided by the manufacturer of photogrammetricsystems are certified and are inspected annually. To make sure that these systems work properly there was developed a special standardVDI / VDE 2634, "Optical 3D measuring systems. Imaging systems with point - by - point probing. " According to recommendationsdescribed in this standard research on accuracy of photogrametric measuring system was conducted using K class gauge blocks dedicatedto calibrate and test accuracy of classic CMMs. The paper presents results of research of estimation the actual error of indication for sizemeasurement MPEE for photogrammetric coordinate measuring system TRITOP.

  7. Large-sized SmBCO single crystals with T sub c over 93 K grown in atmospheric ambient by crystal pulling

    CERN Document Server

    Yao Xin; Shiohara, Y

    2003-01-01

    Sm sub 1 sub + sub x Ba sub 2 sub - sub x Cu sub 3 O sub z (SmBCO) single crystals were grown under atmospheric ambient by the top-seeded solution growth method. Inductively coupled plasma results indicate that there is negligible Sm substitution for Ba sites in the grown SmBCO crystals, although they crystallized from different Ba-Cu-O solvents with a wide composition range (Ba/Cu ratio of 0.5-0.6). As a result, these crystals show high superconducting critical transition temperature values (T sub c) of over 93 K with a sharp transition width after oxygenation. A large-sized crystal with an a-b plane of 23 x 22 mm sup 2 and a c-axis of 19 mm was obtained at a high growth rate of nearly 0.13 mm h sup - sup 1. In short, with more controllable thermodynamic parameters, SmBCO single crystals can readily achieve both large size and high superconducting properties. (rapid communication)

  8. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  9. Optimal Laser Phototherapy Parameters for Pain Relief.

    Science.gov (United States)

    Kate, Rohit J; Rubatt, Sarah; Enwemeka, Chukuka S; Huddleston, Wendy E

    2018-03-27

    Studies on laser phototherapy for pain relief have used parameters that vary widely and have reported varying outcomes. The purpose of this study was to determine the optimal parameter ranges of laser phototherapy for pain relief by analyzing data aggregated from existing primary literature. Original studies were gathered from available sources and were screened to meet the pre-established inclusion criteria. The included articles were then subjected to meta-analysis using Cohen's d statistic for determining treatment effect size. From these studies, ranges of the reported parameters that always resulted into large effect sizes were determined. These optimal ranges were evaluated for their accuracy using leave-one-article-out cross-validation procedure. A total of 96 articles met the inclusion criteria for meta-analysis and yielded 232 effect sizes. The average effect size was highly significant: d = +1.36 (confidence interval [95% CI] = 1.04-1.68). Among all the parameters, total energy was found to have the greatest effect on pain relief and had the most prominent optimal ranges of 120-162 and 15.36-20.16 J, which always resulted in large effect sizes. The cross-validation accuracy of the optimal ranges for total energy was 68.57% (95% CI = 53.19-83.97). Fewer and less-prominent optimal ranges were obtained for the energy density and duration parameters. None of the remaining parameters was found to be independently related to pain relief outcomes. The findings of meta-analysis indicate that laser phototherapy is highly effective for pain relief. Based on the analysis of parameters, total energy can be optimized to yield the largest effect on pain relief.

  10. SENSITIVITY OF BODY SWAY PARAMETERS DURING QUIET STANDING TO MANIPULATION OF SUPPORT SURFACE SIZE

    Directory of Open Access Journals (Sweden)

    Sarabon Nejc

    2010-09-01

    Full Text Available The centre of pressure (COP movement during stance maintenance on a stable surface is commonly used to describe and evaluate static balance. The aim of our study was to test sensitivity of individual COP parameters to different stance positions which were used to address size specific changes in the support surface. Twenty-nine subjects participated in the study. They carried out three 60-second repetitions of each of the five balance tasks (parallel stance, semi-tandem stance, tandem stance, contra-tandem stance, single leg stance. Using the force plate, the monitored parameters included the total COP distance, the distance covered in antero-posterior and medio-lateral directions, the maximum oscillation amplitude in antero-posterior and medio-lateral directions, the total frequency of oscillation, as well as the frequency of oscillation in antero-posterior and medio-lateral directions. The parameters which describe the total COP distance were the most sensitive to changes in the balance task, whereas the frequency of oscillation proved to be sensitive to a slightly lesser extent. Reductions in the support surface size in each of the directions resulted in proportional changes of antero-posterior and medio- lateral directions. The frequency of oscillation did not increase evenly with the increase in the level of difficulty of the balance task, but reached a certain value, above which it did not increase. Our study revealed the monitored parameters of the COP to be sensitive to the support surface size manipulations. The results of the study provide an important source for clinical and research use of the body sway measurements.

  11. Large exon size does not limit splicing in vivo.

    Science.gov (United States)

    Chen, I T; Chasin, L A

    1994-03-01

    Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.

  12. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    Science.gov (United States)

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  13. Sample Size Calculation: Inaccurate A Priori Assumptions for Nuisance Parameters Can Greatly Affect the Power of a Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Elsa Tavernier

    Full Text Available We aimed to examine the extent to which inaccurate assumptions for nuisance parameters used to calculate sample size can affect the power of a randomized controlled trial (RCT. In a simulation study, we separately considered an RCT with continuous, dichotomous or time-to-event outcomes, with associated nuisance parameters of standard deviation, success rate in the control group and survival rate in the control group at some time point, respectively. For each type of outcome, we calculated a required sample size N for a hypothesized treatment effect, an assumed nuisance parameter and a nominal power of 80%. We then assumed a nuisance parameter associated with a relative error at the design stage. For each type of outcome, we randomly drew 10,000 relative errors of the associated nuisance parameter (from empirical distributions derived from a previously published review. Then, retro-fitting the sample size formula, we derived, for the pre-calculated sample size N, the real power of the RCT, taking into account the relative error for the nuisance parameter. In total, 23%, 0% and 18% of RCTs with continuous, binary and time-to-event outcomes, respectively, were underpowered (i.e., the real power was 90%. Even with proper calculation of sample size, a substantial number of trials are underpowered or overpowered because of imprecise knowledge of nuisance parameters. Such findings raise questions about how sample size for RCTs should be determined.

  14. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model

    International Nuclear Information System (INIS)

    Zhang Feng; Zhang Ning-Ning; Yan Sen; Song Sun; Jun Bao; Chen Gao; Zhang Yi

    2017-01-01

    Luminescent solar concentrators (LSC) can reduce the area of solar cells by collecting light from a large area and concentrating the captured light onto relatively small area photovoltaic (PV) cells, and thereby reducing the cost of PV electricity generation. LSCs with bottom-facing cells (BMP-LSC) can collect both direct light and indirect light, so further improving the efficiency of the PV cells. However, it is hard to analyze the effect of each parameter by experiment because there are too many parameters involved in the BMP-LSC. In this paper, all the physical processes of the light transmission and collection in the BMP-LSC were analyzed. A three-dimensional Monte Carlo ray tracing program was developed to study the transmission of photons in the LSC. A larger-size LSC was simulated, and the effects of dye concentration, the LSC thickness, the cell area, and the cell distance were systematically analyzed. (paper)

  15. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Ning-Ning Zhang; Yi Zhang; Sen Yan; Song Sun; Jun Bao; Chen Gao

    2017-01-01

    Luminescent solar concentrators (LSC) can reduce the area of solar cells by collecting light from a large area and concentrating the captured light onto relatively small area photovoltaic (PV) cells,and thereby reducing the cost of PV electricity generation.LSCs with bottom-facing cells (BMP-LSC) can collect both direct light and indirect light,so further improving the efficiency of the PV cells.However,it is hard to analyze the effect of each parameter by experiment because there are too many parameters involved in the BMP-LSC.In this paper,all the physical processes of the light transmission and collection in the BMP-LSC were analyzed.A three-dimensional Monte Carlo ray tracing program was developed to study the transmission of photons in the LSC.A larger-size LSC was simulated,and the effects of dye concentration,the LSC thickness,the cell area,and the cell distance were systematically analyzed.

  16. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Science.gov (United States)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-03-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO4·7H2O or FeCl3), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  17. Body size evolution in an old insect order: No evidence for Cope's Rule in spite of fitness benefits of large size.

    Science.gov (United States)

    Waller, John T; Svensson, Erik I

    2017-09-01

    We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates ("dragonflies and damselflies"). Fossil evidence for "Cope's Rule" in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life-stage. This lack of stabilizing selection during the adult life-stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  18. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  19. Sounding-derived parameters associated with large hail and tornadoes in the Netherlands

    NARCIS (Netherlands)

    Groenemeijer, P.H.; van Delden, A.J.|info:eu-repo/dai/nl/072670703

    2007-01-01

    A study is presented focusing on the potential value of parameters derived from radiosonde data or data from numerical atmospheric models for the forecasting of severe weather associated with convective storms. Parameters have been derived from soundings in the proximity of large hail, tornadoes

  20. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Nikki; Greenlee, Lauren F., E-mail: lauren.greenlee@nist.gov [National Institute of Standards and Technology, Materials Reliability Division (United States)

    2012-03-15

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO{sub 4}{center_dot}7H{sub 2}O or FeCl{sub 3}), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  1. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    International Nuclear Information System (INIS)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-01-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO 4 ·7H 2 O or FeCl 3 ), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05–0.9) and borohydride-to-iron (0.5–8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  2. Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools

    Directory of Open Access Journals (Sweden)

    M. Anushka S. Perera

    2015-07-01

    Full Text Available This paper discusses the topics related to automating parameter, disturbance and state estimation analysis of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex systems, before implementing any state estimator, the system should be analyzed for structural observability and the structural observability analysis can be automated using Modelica and Python. As a result of structural observability analysis, the system may be decomposed into subsystems where some of them may be observable --- with respect to parameter, disturbances, and states --- while some may not. The state estimation process is carried out for those observable subsystems and the optimum number of additional measurements are prescribed for unobservable subsystems to make them observable. In this paper, an industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand, Norway. The copper production process is a large-scale complex system. It is shown how to implement various state estimators, in Python, to estimate parameters and disturbances, in addition to states, based on available measurements.

  3. Effect of Fabrication Process Parameters on the Size of Gelatin/Nanohydroxyapatite Microspheres

    Directory of Open Access Journals (Sweden)

    S. Bagheri-Khoulenjani

    2009-12-01

    Full Text Available Nano-hydroxyapatite/gelatin (nHA/Ge microspheres are currently used in bone tissue engineering as bone filler. In this  study, the effect of fabrication process parameters on the particle size of nano-hydroxyapatite/gelatinmicrospheres was investigated. The nHA/Ge microspheres were fabricated using water in oil emulsion. In order to design an experimental design, a surface response model with 2 factors including the rate of shaking and water to oil volume ratio in 3 levels was applied. Particle size was evaluated by using an optical microscope. The morphology of microspheres and distribution of nano-particles within the microspheres were studied by using scanning electron microscope and Ca elemental map obtained from energy dispersive X-ray analysis (EDX, respectively. Statistical analysis of the results obtained from particle size measurements revealed that the rate of shaking has stronger influence on the particle size of microspheres. Morphological studies showed that the fabricated microspheres were spherical with smooth surface. Ca elemental map of the microspheres showed that nano-hydroxyapatite particles distributed uniformly within the microspheres.

  4. Gastro-oesophageal reflux in large-sized, deep-chested versus small-sized, barrel-chested dogs undergoing spinal surgery in sternal recumbency.

    Science.gov (United States)

    Anagnostou, Tilemahos L; Kazakos, George M; Savvas, Ioannis; Kostakis, Charalampos; Papadopoulou, Paraskevi

    2017-01-01

    The aim of this study was to investigate whether an increased frequency of gastro-oesophageal reflux (GOR) is more common in large-sized, deep-chested dogs undergoing spinal surgery in sternal recumbency than in small-sized, barrelchested dogs. Prospective, cohort study. Nineteen small-sized, barrel-chested dogs (group B) and 26 large-sized, deep-chested dogs (group D). All animals were premedicated with intramuscular (IM) acepromazine (0.05 mg kg -1 ) and pethidine (3 mg kg -1 ) IM. Anaesthesia was induced with intravenous sodium thiopental and maintained with halothane in oxygen. Lower oesophageal pH was monitored continuously after induction of anaesthesia. Gastro-oesophageal reflux was considered to have occurred whenever pH values > 7.5 or < 4 were recorded. If GOR was detected during anaesthesia, measures were taken to avoid aspiration of gastric contents into the lungs and to prevent the development of oesophagitis/oesophageal stricture. The frequency of GOR during anaesthesia was significantly higher in group D (6/26 dogs; 23.07%) than in group B (0/19 dogs; 0%) (p = 0.032). Signs indicative of aspiration pneumonia, oesophagitis or oesophageal stricture were not reported in any of the GOR cases. In large-sized, deep-chested dogs undergoing spinal surgery in sternal recumbency, it would seem prudent to consider measures aimed at preventing GOR and its potentially devastating consequences (oesophagitis/oesophageal stricture, aspiration pneumonia). Copyright © 2016 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  5. Cell size spatial convergence analysis on GOTHIC distributed parameter models for studying hydrogen mixing behaviour in CANDU containments

    International Nuclear Information System (INIS)

    Yim, K.; Wong, R.C.

    1995-01-01

    Gas mixing phenomena can be modelled using distributed parameter codes such as GOTHIC, but the selection of the optimum cell size is an important user input. The tradeoff between accuracy and practical computation times affect the choice of cell sizes, where small cells provide better accuracy at the expense of longer computing time. A study on cell size effect on hydrogen distribution is presented for the problem of hydrogen mixing behaviour in a typical CANDU reactor containment following a severe reactor accident. Optimal cell sizes were found for different room volumes, hydrogen release profiles and elevations using spatial convergence criteria. The findings of this study provide the technical basis for the cell size selection in the GOTHIC distributed parameter models used for analysing hydrogen mixing behaviour. (author). 1 ref., 1 tab., 13 figs

  6. Holocene marine transgression as interpreted from bathymetry and sand grain size parameters off Gopalpur

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.M.; Rajamanickam, G.V.; Rao, T.C.S.

    Grain size statistical parameters of the surface sediment samples collected from the innershelf off Gopalpur were calculated using graphic and moment methods. Fine-grained sand present up to 15 m water depth shows symmetrical skewness and good...

  7. Fission gas release during post irradiation annealing of large grain size fuels from Hinkley point B

    International Nuclear Information System (INIS)

    Killeen, J.C.

    1997-01-01

    A series of post-irradiation anneals has been carried out on fuel taken from an experimental stringer from Hinkley Point B AGR. The stringer was part of an experimental programme in the reactor to study the effect of large grain size fuel. Three differing fuel types were present in separate pins in the stringer. One variant of large grain size fuel had been prepared by using an MgO dopant during fuel manufactured, a second by high temperature sintering of standard fuel and the third was a reference, 12μm grain size fuel. Both large grain size variants had similar grain sizes around 35μm. The present experiments took fuel samples from highly rated pins from the stringer with local burn-up in excess of 25GWd/tU and annealed these to temperature of up to 1535 deg. C under reducing conditions to allow a comparison of fission gas behaviour at high release levels. The results demonstrate the beneficial effect of large grain size on release rate of 85 Kr following interlinkage. At low temperatures and release rates there was no difference between the fuel types, but at temperatures in excess of 1400 deg. C the release rate was found to be inversely dependent on the fuel grain size. The experiments showed some differences between the doped and undoped large grains size fuel in that the former became interlinked at a lower temperature, releasing fission gas at an increased rate at this temperature. At higher temperatures the grain size effect was dominant. The temperature dependence for fission gas release was determined over a narrow range of temperature and found to be similar for all three types and for both pre-interlinkage and post-interlinkage releases, the difference between the release rates is then seen to be controlled by grain size. (author). 4 refs, 7 figs, 3 tabs

  8. Fission gas release during post irradiation annealing of large grain size fuels from Hinkley point B

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J C [Nuclear Electric plc, Barnwood (United Kingdom)

    1997-08-01

    A series of post-irradiation anneals has been carried out on fuel taken from an experimental stringer from Hinkley Point B AGR. The stringer was part of an experimental programme in the reactor to study the effect of large grain size fuel. Three differing fuel types were present in separate pins in the stringer. One variant of large grain size fuel had been prepared by using an MgO dopant during fuel manufactured, a second by high temperature sintering of standard fuel and the third was a reference, 12{mu}m grain size fuel. Both large grain size variants had similar grain sizes around 35{mu}m. The present experiments took fuel samples from highly rated pins from the stringer with local burn-up in excess of 25GWd/tU and annealed these to temperature of up to 1535 deg. C under reducing conditions to allow a comparison of fission gas behaviour at high release levels. The results demonstrate the beneficial effect of large grain size on release rate of {sup 85}Kr following interlinkage. At low temperatures and release rates there was no difference between the fuel types, but at temperatures in excess of 1400 deg. C the release rate was found to be inversely dependent on the fuel grain size. The experiments showed some differences between the doped and undoped large grains size fuel in that the former became interlinked at a lower temperature, releasing fission gas at an increased rate at this temperature. At higher temperatures the grain size effect was dominant. The temperature dependence for fission gas release was determined over a narrow range of temperature and found to be similar for all three types and for both pre-interlinkage and post-interlinkage releases, the difference between the release rates is then seen to be controlled by grain size. (author). 4 refs, 7 figs, 3 tabs.

  9. Small-size pedestrian detection in large scene based on fast R-CNN

    Science.gov (United States)

    Wang, Shengke; Yang, Na; Duan, Lianghua; Liu, Lu; Dong, Junyu

    2018-04-01

    Pedestrian detection is a canonical sub-problem of object detection with high demand during recent years. Although recent deep learning object detectors such as Fast/Faster R-CNN have shown excellent performance for general object detection, they have limited success for small size pedestrian detection in large-view scene. We study that the insufficient resolution of feature maps lead to the unsatisfactory accuracy when handling small instances. In this paper, we investigate issues involving Fast R-CNN for pedestrian detection. Driven by the observations, we propose a very simple but effective baseline for pedestrian detection based on Fast R-CNN, employing the DPM detector to generate proposals for accuracy, and training a fast R-CNN style network to jointly optimize small size pedestrian detection with skip connection concatenating feature from different layers to solving coarseness of feature maps. And the accuracy is improved in our research for small size pedestrian detection in the real large scene.

  10. Habitat disturbance and hydrological parameters determine the body size and reproductive strategy of alluvial ground beetles.

    Science.gov (United States)

    Gerisch, Michael

    2011-01-01

    Environmental variability is the main driver for the variation of biological characteristics (life-history traits) of species. Therefore, life-history traits are particularly suited to identify mechanistic linkages between environmental variability and species occurrence and can help in explaining ecological patterns. For ground beetles, few studies directly related species traits to environmental variables. This study aims to analyse how life-history traits of alluvial ground beetles are controlled by environmental factors. I expected that the occurrence of species and the occurrence of specific traits are closely related to hydrological and disturbance parameters. Furthermore I expected most of the trait-variation to be explained by a combination of environmental variables, rather than by their isolated effects. Ground beetles were sampled in the year 2005 in floodplain grassland along the Elbe River in Germany. I used redundancy analysis to quantify the effects of hydrological, sediment, and disturbance related parameters on both species occurrence and species traits. I applied variation partitioning to analyse which environmental compartments explain most of the trait variation. Species occurrence and trait variation were both mainly controlled by hydrological and flood disturbance parameters. I could clearly identify reproductive traits and body size as key traits for floodplain ground beetles to cope with the environmental variability. Furthermore, combinations of hydrological, habitat disturbance, habitat type, and species diversity parameters, rather than their isolated effects, explained large parts of ground beetle trait variation. Thus, a main conclusion of this study is that ground beetle occurrence is mainly determined by complex, multi-scale interactions between environmental variability and their life-history traits.

  11. Measurement of the thickness of the sprayed nickel coatings on large-sized cast iron products

    Directory of Open Access Journals (Sweden)

    В. А. Сясько

    2016-11-01

    Full Text Available Modern industries increasingly use automatic spraying of heat-resistant Nickel  coating with a thickness  of      T = 1-3 mm for large-size parts made of cast iron with nodular graphite. The process of coating application is characterized by time-dependent behavior of its relative magnetic permeability, μс , that is a function of relaxation time, which can be as long as 24 hours, and by μс deviation from point to point on the surface. Aspects of eddy-current phase method for measuring the T value are considered. The structure of four- winding eddy current transformer transducers is described and results of calculation and optimization of their parameters are presented. The influence of controlled and interfering parameters is considered. Based  on the above results, a two-channel combined transducer is developed  providing measurement  error  of ΔТ ≤ ±(0.03T + 0.02 mm  in the shop environment in the process of coating application and in the final product check. Results of tests on reference specimens and of application in production processes are presented.

  12. Impact of spectral nudging and domain size in studies of RCM response to parameter modification

    Energy Technology Data Exchange (ETDEWEB)

    Separovic, Leo; Laprise, Rene [Universite du Quebec a Montreal, Centre pour l' Etude et la Simulation du Climat a l' Echelle Regionale (ESCER), Montreal, QC (Canada); Universite du Quebec a Montreal (UQAM), Montreal, QC (Canada); Elia, Ramon de [Universite du Quebec a Montreal, Centre pour l' Etude et la Simulation du Climat a l' Echelle Regionale (ESCER), Montreal, QC (Canada); Consortium Ouranos, Montreal, QC (Canada)

    2012-04-15

    The paper aims at finding an RCM configuration that facilitates studies devoted to quantifying RCM response to parameter modification. When using short integration times, the response of the time-averaged variables to RCM modification tend to be blurred by the noise originating in the lack of predictability of the instantaneous atmospheric states. Two ways of enhancing the signal-to-noise ratio are studied in this work: spectral nudging and reduction of the computational domain size. The approach followed consists in the analysis of the sensitivity of RCM-simulated seasonal averages to perturbations of two parameters controlling deep convection and stratiform condensation, perturbed one at a time. Sensitivity is analyzed within different simulation configurations obtained by varying domain size and using the spectral nudging option. For each combination of these factors multiple members of identical simulations that differ exclusively in initial conditions are also generated to provide robust estimates of the sensitivities (the signal) and sample the noise. Results show that the noise magnitude is decreased both by reduction of domain size and the spectral nudging. However, the reduction of domain size alters some sensitivity signals. When spectral nudging is used significant alterations of the signal are not found. (orig.)

  13. Autonomous sensor particle for parameter tracking in large vessels

    International Nuclear Information System (INIS)

    Thiele, Sebastian; Da Silva, Marco Jose; Hampel, Uwe

    2010-01-01

    A self-powered and neutrally buoyant sensor particle has been developed for the long-term measurement of spatially distributed process parameters in the chemically harsh environments of large vessels. One intended application is the measurement of flow parameters in stirred fermentation biogas reactors. The prototype sensor particle is a robust and neutrally buoyant capsule, which allows free movement with the flow. It contains measurement devices that log the temperature, absolute pressure (immersion depth) and 3D-acceleration data. A careful calibration including an uncertainty analysis has been performed. Furthermore, autonomous operation of the developed prototype was successfully proven in a flow experiment in a stirred reactor model. It showed that the sensor particle is feasible for future application in fermentation reactors and other industrial processes

  14. Neonatal L-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters.

    Science.gov (United States)

    de Lima, Denise Sandrelly Cavalcanti; Francisco, Elian da Silva; Lima, Cássia Borges; Guedes, Rubem Carlos Araújo

    2017-02-01

    In mammals, L-glutamine (Gln) can alter the glutamate-Gln cycle and consequently brain excitability. Here, we investigated in developing rats the effect of treatment with different doses of Gln on anxiety-like behavior, cortical spreading depression (CSD), and microglial activation expressed as Iba1-immunoreactivity. Wistar rats were suckled in litters with 9 and 15 pups (groups L 9 and L 15 ; respectively, normal size- and large size litters). From postnatal days (P) 7-27, the animals received Gln per gavage (250, 500 or 750 mg/kg/day), or vehicle (water), or no treatment (naive). At P28 and P30, we tested the animals, respectively, in the elevated plus maze and open field. At P30-35, we measured CSD parameters (velocity of propagation, amplitude, and duration). Fixative-perfused brains were processed for microglial immunolabeling with anti-IBA-1 antibodies to analyze cortical microglia. Rats treated with Gln presented an anxiolytic behavior and accelerated CSD propagation when compared to the water- and naive control groups. Furthermore, CSD velocity was higher (p litter sizes, and for microglial activation in the L 15 groups. Besides confirming previous electrophysiological findings (CSD acceleration after Gln), our data demonstrate for the first time a behavioral and microglial activation that is associated with early Gln treatment in developing animals, and that is possibly operated via changes in brain excitability.

  15. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene

    Science.gov (United States)

    Geng, Xiumei; Guo, Yufen; Li, Dongfang; Li, Weiwei; Zhu, Chao; Wei, Xiangfei; Chen, Mingliang; Gao, Song; Qiu, Shengqiang; Gong, Youpin; Wu, Liqiong; Long, Mingsheng; Sun, Mengtao; Pan, Gebo; Liu, Liwei

    2013-01-01

    Mass production of reduced graphene oxide and graphene nanoplatelets has recently been achieved. However, a great challenge still remains in realizing large-quantity and high-quality production of large-size thin few-layer graphene (FLG). Here, we create a novel route to solve the issue by employing one-time-only interlayer catalytic exfoliation (ICE) of salt-intercalated graphite. The typical FLG with a large lateral size of tens of microns and a thickness less than 2 nm have been obtained by a mild and durative ICE. The high-quality graphene layers preserve intact basal crystal planes owing to avoidance of the degradation reaction during both intercalation and ICE. Furthermore, we reveal that the high-quality FLG ensures a remarkable lithium-storage stability (>1,000 cycles) and a large reversible specific capacity (>600 mAh g-1). This simple and scalable technique acquiring high-quality FLG offers considerable potential for future realistic applications.

  16. Semi-empirical formula for large pore-size estimation from o-Ps annihilation lifetime

    International Nuclear Information System (INIS)

    Nguyen Duc Thanh; Tran Quoc Dung; Luu Anh Tuyen; Khuong Thanh Tuan

    2007-01-01

    The o-Ps annihilation rate in large pore was investigated by the semi-classical approach. The semi-empirical formula that simply correlates between the pore size and the o-Ps lifetime was proposed. The calculated results agree well with experiment in the range from some angstroms to several ten nanometers size of pore. (author)

  17. Large increase in nest size linked to climate change: an indicator of life history, senescence and condition.

    Science.gov (United States)

    Møller, Anders Pape; Nielsen, Jan Tøttrup

    2015-11-01

    Many animals build extravagant nests that exceed the size required for successful reproduction. Large nests may signal the parenting ability of nest builders suggesting that nests may have a signaling function. In particular, many raptors build very large nests for their body size. We studied nest size in the goshawk Accipiter gentilis, which is a top predator throughout most of the Nearctic. Both males and females build nests, and males provision their females and offspring with food. Nest volume in the goshawk is almost three-fold larger than predicted from their body size. Nest size in the goshawk is highly variable and may reach more than 600 kg for a bird that weighs ca. 1 kg. While 8.5% of nests fell down, smaller nests fell down more often than large nests. There was a hump-shaped relationship between nest volume and female age, with a decline in nest volume late in life, as expected for senescence. Clutch size increased with nest volume. Nest volume increased during 1977-2014 in an accelerating fashion, linked to increasing spring temperature during April, when goshawks build and start reproduction. These findings are consistent with nest size being a reliable signal of parental ability, with large nest size signaling superior parenting ability and senescence, and also indicating climate warming.

  18. Relations between source parameters for large Persian earthquakes

    Directory of Open Access Journals (Sweden)

    Majid Nemati

    2015-11-01

    Full Text Available Empirical relationships for magnitude scales and fault parameters were produced using 436 Iranian intraplate earthquakes of recently regional databases since the continental events represent a large portion of total seismicity of Iran. The relations between different source parameters of the earthquakes were derived using input information which has usefully been provided from the databases after 1900. Suggested equations for magnitude scales relate the body-wave, surface-wave as well as local magnitude scales to scalar moment of the earthquakes. Also, dependence of source parameters as surface and subsurface rupture length and maximum surface displacement on the moment magnitude for some well documented earthquakes was investigated. For meeting this aim, ordinary linear regression procedures were employed for all relations. Our evaluations reveal a fair agreement between obtained relations and equations described in other worldwide and regional works in literature. The M0-mb and M0-MS equations are correlated well to the worldwide relations. Also, both M0-MS and M0-ML relations have a good agreement with regional studies in Taiwan. The equations derived from this study mainly confirm the results of the global investigations about rupture length of historical and instrumental events. However, some relations like MW-MN and MN-ML which are remarkably unlike to available regional works (e.g., American and Canadian were also found.

  19. Statistical characteristics and stability index (si) of large-sized landslide dams around the world

    International Nuclear Information System (INIS)

    Iqbal, J.; Dai, F.; Raja, I.A.

    2014-01-01

    In the last few decades, landslide dams have received greater attention of researchers, as they have caused loss to property and human lives. Over 261 large-sized landslide dams from different countries of the world with volume greater than 1 x 105 m have been reviewed for this study. The data collected for this study shows that 58% of the catastrophic landslides were triggered by earthquakes and 21 % by rainfall, revealing that earthquake and rainfall are the two major triggers, accounting for 75% of large-sized landslide dams. These land-slides were most frequent during last two decades (1990-2010) throughout the world. The mean landslide dam volume of the studied cases was 53.39 x 10 m with mean dam height of 71.98 m, while the mean lake volume was found to be 156.62 x 10 m. Failure of these large landslide dams pose a severe threat to the property and people living downstream, hence immediate attention is required to deal with this problem. A stability index (SI) has been derived on the basis on 59 large-sized landslide dams (out of the 261 dams) with complete parametric information. (author)

  20. A comparison of workplace safety perceptions among financial decision-makers of medium- vs. large-size companies.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Leamon, Tom B; Courtney, Theodore K; Chen, Peter Y; DeArmond, Sarah

    2011-01-01

    This study, through a random national survey in the U.S., explored how corporate financial decision-makers perceive important workplace safety issues as a function of the size of the company for which they worked (medium- vs. large-size companies). Telephone surveys were conducted with 404 U.S. corporate financial decision-makers: 203 from medium-size companies and 201 from large companies. Results showed that the patterns of responding for participants from medium- and large-size companies were somewhat similar. The top-rated safety priorities in resource allocation reported by participants from both groups were overexertion, repetitive motion, and bodily reaction. They believed that there were direct and indirect costs associated with workplace injuries and for every dollar spent improving workplace safety, more than four dollars would be returned. They perceived the top benefits of an effective safety program to be predominately financial in nature - increased productivity and reduced costs - and the safety modification participants mentioned most often was to have more/better safety-focused training. However, more participants from large- than medium-size companies reported that "falling on the same level" was the major cause of workers' compensation loss, which is in line with industry loss data. Participants from large companies were more likely to see their safety programs as better than those of other companies in their industries, and those of medium-size companies were more likely to mention that there were no improvements needed for their companies. Copyright © 2009 Elsevier Ltd. All rights reserved.

  1. BAND STRUCTURE OF NON-STEIOCHIOMETRIC LARGE-SIZED NANOCRYSTALLITES

    Directory of Open Access Journals (Sweden)

    I.V.Kityk

    2004-01-01

    Full Text Available A band structure of large-sized (from 20 to 35nm non-steichiometric nanocrystallites (NC of the Si2-xCx (1.04 < x < 1.10 has been investigated using different band energy approaches and a modified Car-Parinello molecular dynamics structure optimization of the NC interfaces. The non-steichiometric excess of carbon favors the appearance of a thin prevailingly carbon-contained layer (with thickness of about 1 nm covering the crystallites. As a consequence, one can observe a substantial structure reconstruction of boundary SiC crystalline layers. The numerical modeling has shown that these NC can be considered as SiC reconstructed crystalline films with thickness of about 2 nm covering the SiC crystallites. The observed data are considered within the different one-electron band structure methods. It was shown that the nano-sized carbon sheet plays a key role in a modified band structure. Independent manifestation of the important role played by the reconstructed confined layers is due to the experimentally discovered excitonic-like resonances. Low-temperature absorption measurements confirm the existence of sharp-like absorption resonances originating from the reconstructed layers.

  2. Differentiation of low- and high-grade clear cell renal cell carcinoma: Tumor size versus CT perfusion parameters.

    Science.gov (United States)

    Chen, Chao; Kang, Qinqin; Xu, Bing; Guo, Hairuo; Wei, Qiang; Wang, Tiegong; Ye, Hui; Wu, Xinhuai

    To compare the utility of tumor size and CT perfusion parameters for differentiation of low- and high-grade clear cell renal cell carcinoma (RCC). Tumor size, Equivalent blood volume (Equiv BV), permeability surface-area product (PS), blood flow (BF), and Fuhrman pathological grading of clear cell RCC were retrospectively analyzed. High-grade clear cell RCC had significantly higher tumor size and lower PS than low grade. Tumor size positively correlated with Fuhrman grade, but PS negatively did. Tumor size and PS were significantly independent indexes for differentiating high-grade from low-grade clear cell RCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Fatigue-crack propagation in gamma-based titanium aluminide alloys at large and small crack sizes

    International Nuclear Information System (INIS)

    Kruzic, J.J.; Campbell, J.P.; Ritchie, R.O.

    1999-01-01

    Most evaluations of the fracture and fatigue-crack propagation properties of γ+α 2 titanium aluminide alloys to date have been performed using standard large-crack samples, e.g., compact-tension specimens containing crack sizes which are on the order of tens of millimeters, i.e., large compared to microstructural dimensions. However, these alloys have been targeted for applications, such as blades in gas-turbine engines, where relevant crack sizes are much smaller ( 5 mm) and (c ≅ 25--300 microm) cracks in a γ-TiAl based alloy, of composition Ti-47Al-2Nb-2Cr-0.2B (at.%), specifically for duplex (average grain size approximately17 microm) and refined lamellar (average colony size ≅150 microm) microstructures. It is found that, whereas the lamellar microstructure displays far superior fracture toughness and fatigue-crack growth resistance in the presence of large cracks, in small-crack testing the duplex microstructure exhibits a better combination of properties. The reasons for such contrasting behavior are examined in terms of the intrinsic and extrinsic (i.e., crack bridging) contributions to cyclic crack advance

  4. Optimizing supercritical antisolvent process parameters to minimize the particle size of paracetamol nanoencapsulated in L-polylactide

    Directory of Open Access Journals (Sweden)

    Kalani M

    2011-05-01

    Full Text Available Mahshid Kalani, Robiah Yunus, Norhafizah AbdullahChemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor Darul Ehsan, MalaysiaBackground: The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.Methods and results: The optimized process parameters resulted in production of nanoencapsulated paracetamol in L-polylactide with a mean diameter of approximately 300 nm at 120 bar, 30°C, and a polymer concentration of 16 ppm. Thermogravimetric analysis illustrated the thermal characteristics of the nanoparticles. The high electrical charge on the surface of the nanoparticles caused the particles to repel each other, with the high negative zeta potential preventing flocculation.Conclusion: Our results illustrate the effect of different process parameters on particle size and morphology, and validate results obtained via RSM statistical software. Furthermore, the in vitro drug-release profile is consistent with a Korsmeyer–Peppas kinetic model.Keywords: supercritical, antisolvent, encapsulation, nanoparticles, biodegradable polymer, optimization, drug delivery

  5. Influence Factors of Sports Bra Evaluation and Design Based on Large Size

    Directory of Open Access Journals (Sweden)

    Zhang Lingxi

    2016-01-01

    Full Text Available The purpose of this paper was to find the main influence factors of sports bra evaluation by the subjective assessment of different styles commercial sports bra, and to summarize the design elements of sports bra for large size. 10 women in large size (>C80 were chosen to evaluate 9 different sports bras. The main influence factors were extracted by factor analysis and all the product samples were classified by Q-cluster analysis. The conclusions show that breast stability, wearing comfort and bust modelling are the three key factors for sports bra evaluation. And a classification-positioning model of sports bra products was established. The findings can provide theoretical basis and guidance for the research and design of sports bras both for academic and sports or underwear enterprises, and also provide reference value for women customers.

  6. Optimization of Blending Parameters and Fiber Size of Kenaf-Bast-Fiber-Reinforced the Thermoplastic Polyurethane Composites by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2013-01-01

    Full Text Available “Kenaf-fibers- (KF-” reinforced “thermoplastic polyurethane (TPU” composites were prepared by the melt-blending method followed by compression molding. Composite specimens were cut from the sheets that were prepared by compression molding. The criteria of optimization were testing the specimens by tensile test and comparing the ultimate tensile strength. The aim of this study is to optimize processing parameters (e.g., processing temperature, time, and speed and fiber size using the Taguchi approach. These four parameters were investigated in three levels each. The L9 orthogonal array was used based on the number of parameters and levels that has been selected. Furthermore, analysis of variance (ANOVA was used to determine the significance of different parameters. The results showed that the optimum values were 180°C, 50 rpm, 13 min, and 125–300 micron for processing temperature, processing speed, processing time, and fiber size, respectively. Using ANOVA, processing temperature showed the highest significance value followed by fiber size. Processing time and speed did not show any significance on the optimization of TPU/KF.

  7. Preparation and provisional validation of a large size dried spike: Batch SAL-9931

    International Nuclear Information System (INIS)

    Jammet, G.; Zoigner, A.; Doubek, N.; Grabmueller, G.; Bagliano, G.

    1990-05-01

    To determine uranium and plutonium concentration using isotope dilution mass spectrometry, weighed aliquands of a synthetic mixture containing about 2 mg of Pu (with a 239 Pu abundance of about 98%) and 40 mg of U (with a 235 U enrichment of about 19%) have been prepared and verified by SAL to be used to spike samples of concentrated spent fuel solutions with a high burn-up and a low 235 U enrichment. The advantages of such a Large Size Dried (LSD) Spike have been pointed out elsewhere and proof of the usefulness in the field reported. Certified Reference Materials Pu-NBL-126, natural U-NBS-960 and 93% enriched U-NBL-116 were used to prepare a stock solution containing 1.8 mg/ml of Pu and 37.3 mg/ml of 19.4% enriched U. Before shipment to the Reprocessing Plant, aliquands of the stock solution are dried to give Large Size Dried Spikes which resist shocks encountered during transportation, so that they can readily be recovered quantitatively at the plant. This paper describes the preparation and the validation of a Large Size Dried Spike which is intended to be used as a common spike by the plant operator, the national and the IAEA inspectorates. 6 refs, 7 tabs

  8. Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter

    DEFF Research Database (Denmark)

    Wang, Yanwei; Peters, Günther H.J.; Hansen, Flemming Yssing

    2008-01-01

    structures (CABS), allows the computation of equilibrium partition coefficients as a function of confinement size solely based on a single sampling of the configuration space of a macromolecule in bulk. Superior in computational speed to previous computational methods, CABS is capable of handling slits...... parameter for characterization of spatial confinement effects on macromolecules. Results for the equilibrium partition coefficient in the weak confinement regime depend only on the ratio ofR-s to the confinement size regardless of molecular details....

  9. The research of the quantitative prediction of the deposits concentrated regions of the large and super-large sized mineral deposits in China

    International Nuclear Information System (INIS)

    Zhao Zhenyu; Wang Shicheng

    2003-01-01

    By the general theory and method of mineral resources prognosis of synthetic information, the locative and quantitative prediction of the large and super-large sized mineral deposits of solid resources of 1 : 5,000,000 are developed in china. The deposit concentrated regions is model unit, the anomaly concentrated regions is prediction unit. The mineral prognosis of synthetic information is developed on GIS platform. The technical route and work method of looking for the large and super-large sized mineral resources and basic principle of compiling attribute table of the variables and the response variables are mentioned. In research of prediction of resources quantity, the locative and quantitative prediction are processed by separately the quantification theory Ⅲ and the corresponding characteristic analysis, two methods are compared. It is very important for resources prediction of western ten provinces in china, it is helpful. (authors)

  10. Genome size variation affects song attractiveness in grasshoppers: evidence for sexual selection against large genomes.

    Science.gov (United States)

    Schielzeth, Holger; Streitner, Corinna; Lampe, Ulrike; Franzke, Alexandra; Reinhold, Klaus

    2014-12-01

    Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow-winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non-Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. Large Time Asymptotics for a Continuous Coagulation-Fragmentation Model with Degenerate Size-Dependent Diffusion

    KAUST Repository

    Desvillettes, Laurent

    2010-01-01

    We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one-dimensional domain with no-flux boundary conditions. In particular, we consider size-dependent diffusion coefficients, which may degenerate for small and large cluster-sizes. We prove that the entropy-entropy dissipation method applies directly in this inhomogeneous setting. We first show the necessary basic a priori estimates in dimension one, and second we show faster-than-polynomial convergence toward global equilibria for diffusion coefficients which vanish not faster than linearly for large sizes. This extends the previous results of [J.A. Carrillo, L. Desvillettes, and K. Fellner, Comm. Math. Phys., 278 (2008), pp. 433-451], which assumes that the diffusion coefficients are bounded below. © 2009 Society for Industrial and Applied Mathematics.

  12. Prospects for the domestic production of large-sized cast blades and vanes for industrial gas turbines

    Science.gov (United States)

    Kazanskiy, D. A.; Grin, E. A.; Klimov, A. N.; Berestevich, A. I.

    2017-10-01

    Russian experience in the production of large-sized cast blades and vanes for industrial gas turbines is analyzed for the past decades. It is noted that the production of small- and medium-sized blades and vanes made of Russian alloys using technologies for aviation, marine, and gas-pumping turbines cannot be scaled for industrial gas turbines. It is shown that, in order to provide manufacturability under large-scale casting from domestic nickel alloys, it is necessary to solve complex problems in changing their chemical composition, to develop new casting technologies and to optimize the heat treatment modes. An experience of PAO NPO Saturn in manufacturing the blades and vanes made of ChS88U-VI and IN738-LC foundry nickel alloys for the turbines of the GTE-110 gas turbine unit is considered in detail. Potentialities for achieving adopted target parameters for the mechanical properties of working blades cast from ChS88UM-VI modified alloy are established. For the blades made of IN738-LC alloy manufactured using the existing foundry technology, a complete compliance with the requirements of normative and technical documentation has been established. Currently, in Russia, the basis of the fleet of gas turbine plants is composed by foreign turbines, and, for the implementation of the import substitution program, one can use the positive experience of PAO NPO Saturn in casting blades from IN738-LC alloy based on a reverse engineering technique. A preliminary complex of studies of the original manufacturer's blades should be carried out, involving, first of all, the determination of geometric size using modern measurement methods as well as the studies on the chemical compositions of the used materials (base metal and protective coatings). Further, verifying the constructed calculation models based on the obtained data, one could choose available domestic materials that would meet the operating conditions of the blades according to their heat resistance and corrosion

  13. On the impact of large angle CMB polarization data on cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Burigana, Carlo; Gruppuso, Alessandro; Trombetti, Tiziana [Istituto Nazionale di Astrofisica, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Piero Gobetti 101, I-40129 Bologna (Italy); Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Polenta, Gianluca [Agenzia Spaziale Italiana Science Data Center, Via del Politecnico snc, 00133, Roma (Italy); Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it [Dipartimento di Fisica, Università La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2017-02-01

    We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.

  14. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Y.; Kubo, H.; Masuda, S. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan); Paoletti, R.; Poulios, S. [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Rugliancich, A., E-mail: andrea.rugliancich@pi.infn.it [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Saito, T. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-07-11

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards. - Highlights: • The Dragon Board is part of the DAQ of the LST Cherenkov telescope prototype. • We developed an automated quality control system for the Dragon Board. • We check pedestal, linearity, pulse shape and crosstalk values. • The quality control test can be performed on the production line.

  15. RESOURCE SAVING TECHNOLOGICAL PROCESS OF LARGE-SIZE DIE THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    L. A. Glazkov

    2009-01-01

    Full Text Available The given paper presents a development of a technological process pertaining to hardening large-size parts made of die steel. The proposed process applies a water-air mixture instead of a conventional hardening medium that is industrial oil.While developing this new technological process it has been necessary to solve the following problems: reduction of thermal treatment duration, reduction of power resource expense (natural gas and mineral oil, elimination of fire danger and increase of process ecological efficiency. 

  16. An Effect Size Measure for Raju's Differential Functioning for Items and Tests

    Science.gov (United States)

    Wright, Keith D.; Oshima, T. C.

    2015-01-01

    This study established an effect size measure for differential functioning for items and tests' noncompensatory differential item functioning (NCDIF). The Mantel-Haenszel parameter served as the benchmark for developing NCDIF's effect size measure for reporting moderate and large differential item functioning in test items. The effect size of…

  17. First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules

    International Nuclear Information System (INIS)

    Guenzburger, Diana; Ellis, D.E.; Zeng, Z.

    1997-10-01

    Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author)

  18. Processing and properties of large-sized ceramic slabs

    Directory of Open Access Journals (Sweden)

    Fossa, L.

    2010-10-01

    Full Text Available Large-sized ceramic slabs – with dimensions up to 360x120 cm2 and thickness down to 2 mm – are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites. Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD and microstructural (SEM viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated façades, tunnel coverings, insulating panelling, indoor furnitures (table tops, doors, support for photovoltaic ceramic panels.

    Se han fabricado piezas de gran formato, con dimensiones de hasta 360x120 cm, y menos de 2 mm, de espesor, empleando métodos innovadores de fabricación, partiendo de composiciones de gres porcelánico y utilizando, molienda con bolas por vía húmeda, atomización, prensado a baja velocidad sin boquilla de extrusión, secado y cocción rápido en una sola etapa, y un acabado que incluye la adhesión de fibra de vidrio al soporte cerámico y el rectificado de la pieza final. Se han

  19. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  20. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  1. Noise Parameter Analysis of SiGe HBTs for Different Sizes in the Breakdown Region

    Directory of Open Access Journals (Sweden)

    Chie-In Lee

    2016-01-01

    Full Text Available Noise parameters of silicon germanium (SiGe heterojunction bipolar transistors (HBTs for different sizes are investigated in the breakdown region for the first time. When the emitter length of SiGe HBTs shortens, minimum noise figure at breakdown decreases. In addition, narrower emitter width also decreases noise figure of SiGe HBTs in the avalanche region. Reduction of noise performance for smaller emitter length and width of SiGe HBTs at breakdown resulted from the lower noise spectral density resulting from the breakdown mechanism. Good agreement between experimental and simulated noise performance at breakdown is achieved for different sized SiGe HBTs. The presented analysis can benefit the RF circuits operating in the breakdown region.

  2. Do detailed simulations with size-resolved microphysics reproduce basic features of observed cirrus ice size distributions?

    Science.gov (United States)

    Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.

    2017-12-01

    It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the

  3. A model for optimal offspring size in fish, including live-bearing and parental effects.

    Science.gov (United States)

    Jørgensen, Christian; Auer, Sonya K; Reznick, David N

    2011-05-01

    Since Smith and Fretwell's seminal article in 1974 on the optimal offspring size, most theory has assumed a trade-off between offspring number and offspring fitness, where larger offspring have better survival or fitness, but with diminishing returns. In this article, we use two ubiquitous biological mechanisms to derive the shape of this trade-off: the offspring's growth rate combined with its size-dependent mortality (predation). For a large parameter region, we obtain the same sigmoid relationship between offspring size and offspring survival as Smith and Fretwell, but we also identify parameter regions where the optimal offspring size is as small or as large as possible. With increasing growth rate, the optimal offspring size is smaller. We then integrate our model with strategies of parental care. Egg guarding that reduces egg mortality favors smaller or larger offspring, depending on how mortality scales with size. For live-bearers, the survival of offspring to birth is a function of maternal survival; if the mother's survival increases with her size, then the model predicts that larger mothers should produce larger offspring. When using parameters for Trinidadian guppies Poecilia reticulata, differences in both growth and size-dependent predation are required to predict observed differences in offspring size between wild populations from high- and low-predation environments.

  4. When bigger is not better: selection against large size, high condition and fast growth in juvenile lemon sharks.

    Science.gov (United States)

    Dibattista, J D; Feldheim, K A; Gruber, S H; Hendry, A P

    2007-01-01

    Selection acting on large marine vertebrates may be qualitatively different from that acting on terrestrial or freshwater organisms, but logistical constraints have thus far precluded selection estimates for the former. We overcame these constraints by exhaustively sampling and repeatedly recapturing individuals in six cohorts of juvenile lemon sharks (450 age-0 and 255 age-1 fish) at an enclosed nursery site (Bimini, Bahamas). Data on individual size, condition factor, growth rate and inter-annual survival were used to test the 'bigger is better', 'fatter is better' and 'faster is better' hypotheses of life-history theory. For age-0 sharks, selection on all measured traits was weak, and generally acted against large size and high condition. For age-1 sharks, selection was much stronger, and consistently acted against large size and fast growth. These results suggest that selective pressures at Bimini may be constraining the evolution of large size and fast growth, an observation that fits well with the observed small size and low growth rate of juveniles at this site. Our results support those of some other recent studies in suggesting that bigger/fatter/faster is not always better, and may often be worse.

  5. Resonant atom-field interaction in large-size coupled-cavity arrays

    International Nuclear Information System (INIS)

    Ciccarello, Francesco

    2011-01-01

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  6. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    International Nuclear Information System (INIS)

    Keck, Lothar; Spielvogel, Juergen; Grimm, Hans

    2009-01-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  7. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    Science.gov (United States)

    Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans

    2009-05-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  8. The maximum sizes of large scale structures in alternative theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sourav [IUCAA, Pune University Campus, Post Bag 4, Ganeshkhind, Pune, 411 007 India (India); Dialektopoulos, Konstantinos F. [Dipartimento di Fisica, Università di Napoli ' Federico II' , Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, Napoli, I-80126 Italy (Italy); Romano, Antonio Enea [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52–21, Medellín (Colombia); Skordis, Constantinos [Department of Physics, University of Cyprus, 1 Panepistimiou Street, Nicosia, 2109 Cyprus (Cyprus); Tomaras, Theodore N., E-mail: sbhatta@iitrpr.ac.in, E-mail: kdialekt@gmail.com, E-mail: aer@phys.ntu.edu.tw, E-mail: skordis@ucy.ac.cy, E-mail: tomaras@physics.uoc.gr [Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, 70013 Heraklion (Greece)

    2017-07-01

    The maximum size of a cosmic structure is given by the maximum turnaround radius—the scale where the attraction due to its mass is balanced by the repulsion due to dark energy. We derive generic formulae for the estimation of the maximum turnaround radius in any theory of gravity obeying the Einstein equivalence principle, in two situations: on a spherically symmetric spacetime and on a perturbed Friedman-Robertson-Walker spacetime. We show that the two formulae agree. As an application of our formula, we calculate the maximum turnaround radius in the case of the Brans-Dicke theory of gravity. We find that for this theory, such maximum sizes always lie above the ΛCDM value, by a factor 1 + 1/3ω, where ω>> 1 is the Brans-Dicke parameter, implying consistency of the theory with current data.

  9. Large Area Projection Microstereolithography: Characterization and Optimization of 3D Printing Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Melissa R. [Ohlone College, Fremont, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Bryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bekker, Logan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dudukovic, Nikola [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    Large Area Projection Microstereolithography (LAPμSL) is a new technology that allows the additive manufacture of parts that have feature sizes spanning from centimeters to tens of microns. Knowing the accuracy of builds from a system like this is a crucial step in development. This project explored the capabilities of the second and newest LAPμSL system that was built by comparing the features of actual builds to the desired structures. The system was then characterized in order to achieve the best results. The photo polymeric resins that were used were Autodesk PR48 and HDDA. Build parameters for Autodesk PR48 were found that allowed the prints to progress while using the full capacity of the system to print quality parts in a relatively short amount of time. One of the larger prints in particular had a print time that was nearly eighteen times faster than it would have been had printed in the first LAPμSL system. The characterization of HDDA resin helped the understanding that the flux of the light projected into the resin also affected the quality of the builds, rather than just the dose of light given. Future work for this project includes exploring the use of other resins in the LAPμSL systems, exploring the use of Raman Spectroscopy to analyze builds, and completing the characterization of the LAPμSL system.

  10. The effect of formulative parameters on the size and physical stability of SLN based on "green" components.

    Science.gov (United States)

    Soddu, Elena; Rassu, Giovanna; Cossu, Massimo; Giunchedi, Paolo; Cerri, Guido; Gavini, Elisabetta

    2016-01-01

    Cocoa butter (CB) is a largely used excipient in pharmaceutical field. Aim of this work was to set formulative parameters for the preparation of SLN based on "green" lipid matrix for drug delivery as natural, both human and environmental safe systems. Double emulsion technique (w1/o/w2) was selected for SLN preparation. The effect on the dimensional properties of different surfactants (Tween 80 and PEG 40 monostearate) and co-surfactants (PEG400 monostearate, Emulium® Kappa2 and Plurol®Stearique) at different concentrations was evaluated. Stability tests were performed. SLN dispersions were exsiccated and the effect of the dried process on SLN size was evaluated. The influence of temperature on SLN dimensions was investigated at 37 °C. MTT test was performed on raw materials and formulations. The w1/o/w2 is suitable, rapid and economic technique for the preparation of CB SLN. Tween 80-Plurol Stearique combination gives the best results: particles size less than 400 nm and PI of about 0.4 are obtained when PS 2% is used. Both raw materials and formulations are safe. The importance to evaluate the effect of different surfactant and/or co-surfactant on the dimensional properties of SLN is evident by selecting substances with preferable safety profiles, and favorable environmental properties to develop stable "green" SLN.

  11. Uncertainty budget in internal monostandard NAA for small and large size samples analysis

    International Nuclear Information System (INIS)

    Dasari, K.B.; Acharya, R.

    2014-01-01

    Total uncertainty budget evaluation on determined concentration value is important under quality assurance programme. Concentration calculation in NAA or carried out by relative NAA and k0 based internal monostandard NAA (IM-NAA) method. IM-NAA method has been used for small and large sample analysis of clay potteries. An attempt was made to identify the uncertainty components in IM-NAA and uncertainty budget for La in both small and large size samples has been evaluated and compared. (author)

  12. AUTOMATIC ESTIMATION OF SIZE PARAMETERS USING VERIFIED COMPUTERIZED STEREOANALYSIS

    Directory of Open Access Journals (Sweden)

    Peter R Mouton

    2011-05-01

    Full Text Available State-of-the-art computerized stereology systems combine high-resolution video microscopy and hardwaresoftware integration with stereological methods to assist users in quantifying multidimensional parameters of importance to biomedical research, including volume, surface area, length, number, their variation and spatial distribution. The requirement for constant interactions between a trained, non-expert user and the targeted features of interest currently limits the throughput efficiency of these systems. To address this issue we developed a novel approach for automatic stereological analysis of 2-D images, Verified Computerized Stereoanalysis (VCS. The VCS approach minimizes the need for user interactions with high contrast [high signal-to-noise ratio (S:N] biological objects of interest. Performance testing of the VCS approach confirmed dramatic increases in the efficiency of total object volume (size estimation, without a loss of accuracy or precision compared to conventional computerized stereology. The broad application of high efficiency VCS to high-contrast biological objects on tissue sections could reduce labor costs, enhance hypothesis testing, and accelerate the progress of biomedical research focused on improvements in health and the management of disease.

  13. First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guenzburger, Diana [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Ellis, D.E. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Zeng, Z. [Academia Sinica, Hefei, AH (China). Inst. of Solid-State Physics

    1997-10-01

    Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author) 22 refs., 8 figs., 1 tab.

  14. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuang-Tung Cheng

    2010-01-01

    Full Text Available The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD. The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been discussed in this research. Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4 coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. Open circuit (Voc is 616 mV, short circuit current (Jsc is 34.1 mA/cm2, and minority carrier diffusion length is 474.16 μm. The isotropic texturing and silicon nitride layers coating approach contribute to lowering cost and achieving high efficiency in mass production.

  15. The Effects of Test Length and Sample Size on Item Parameters in Item Response Theory

    Science.gov (United States)

    Sahin, Alper; Anil, Duygu

    2017-01-01

    This study investigates the effects of sample size and test length on item-parameter estimation in test development utilizing three unidimensional dichotomous models of item response theory (IRT). For this purpose, a real language test comprised of 50 items was administered to 6,288 students. Data from this test was used to obtain data sets of…

  16. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    Science.gov (United States)

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 2D/3D Quantification of bone morphometric parameter changes using X-ray microtomograpphy with different pixel sizes

    International Nuclear Information System (INIS)

    Vidal, F.; Assis, J.T. de; Lopes, R.T.; Lima, I.

    2014-01-01

    In recent years, bone quantification led to a deeper knowledge of the 3D microarchitecture. In this study the bone architecture of rats was investigated based on 2D/3D morphometric analysis using microcomputed tomography, aiming at determining the effect of the image acquisition pixel on the quality of some 2D/3D morphometric parameters, such as porosity and trabecular density. Six pairs of bone samples were used and the scans were carried out using high microcomputed tomography system, operating at three different pixel sizes of 33.3 μm, 15.0 μm and 9.5 μm. The results showed 2D parameters values lower than those obtained in the 3D analysis, mainly for trabecular density, separation and thickness. - Highlights: ► Bone quantification led to a deeper knowledge of the 3D microarchitecture. ► μCT was used in order to investigate condyles bone in 03 different pixel sizes. ► The results showed 2D parameters values lower than those obtained in the 3D analysis. ► The parameters trabecular density, separation and thickness were the most affected

  18. Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy.

    Science.gov (United States)

    Penas, David R; González, Patricia; Egea, Jose A; Doallo, Ramón; Banga, Julio R

    2017-01-21

    The development of large-scale kinetic models is one of the current key issues in computational systems biology and bioinformatics. Here we consider the problem of parameter estimation in nonlinear dynamic models. Global optimization methods can be used to solve this type of problems but the associated computational cost is very large. Moreover, many of these methods need the tuning of a number of adjustable search parameters, requiring a number of initial exploratory runs and therefore further increasing the computation times. Here we present a novel parallel method, self-adaptive cooperative enhanced scatter search (saCeSS), to accelerate the solution of this class of problems. The method is based on the scatter search optimization metaheuristic and incorporates several key new mechanisms: (i) asynchronous cooperation between parallel processes, (ii) coarse and fine-grained parallelism, and (iii) self-tuning strategies. The performance and robustness of saCeSS is illustrated by solving a set of challenging parameter estimation problems, including medium and large-scale kinetic models of the bacterium E. coli, bakerés yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The results consistently show that saCeSS is a robust and efficient method, allowing very significant reduction of computation times with respect to several previous state of the art methods (from days to minutes, in several cases) even when only a small number of processors is used. The new parallel cooperative method presented here allows the solution of medium and large scale parameter estimation problems in reasonable computation times and with small hardware requirements. Further, the method includes self-tuning mechanisms which facilitate its use by non-experts. We believe that this new method can play a key role in the development of large-scale and even whole-cell dynamic models.

  19. Prey size and availability limits maximum size of rainbow trout in a large tailwater: insights from a drift-foraging bioenergetics model

    Science.gov (United States)

    Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W

    2016-01-01

    The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.

  20. Mechanical properties of duplex steel welded joints in large-size constructions

    OpenAIRE

    J. Nowacki

    2012-01-01

    Purpose: On the basis of sources and own experiments, the analysis of mechanical properties, applications as well as material and technological problems of ferritic-austenitic steel welding were carried out. It was shown the area of welding applications, particularly welding of large-size structures, on the basis of example of the FCAW method of welding of the UNS S3 1803 duplex steel in construction of chemical cargo ships.Design/methodology/approach: Welding tests were carried out for duple...

  1. Mock-up test of remote controlled dismantling apparatus for large-sized vessels (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Myodo, Masato; Miyajima, Kazutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Okane, Shogo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-03-01

    The Remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedures for dismantling the large-sized vessel was studied and various date was obtained in the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF. (author)

  2. Mock-up test of remote controlled dismantling apparatus for large-sized vessels (contract research)

    International Nuclear Information System (INIS)

    Myodo, Masato; Miyajima, Kazutoshi; Okane, Shogo

    2001-03-01

    The Remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedures for dismantling the large-sized vessel was studied and various date was obtained in the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF. (author)

  3. Impact basins on Ganymede and Callisto and implications for the large-projectile size distribution

    Science.gov (United States)

    Wagner, R.; Neukum, G.; Wolf, U.; Greeley, R.; Klemaszewski, J. E.

    2003-04-01

    It has been conjectured that the projectile family which impacted the Galilean Satellites of Jupiter was depleted in large projectiles, concluded from a ''dearth'' in large craters (> 60 km) (e.g. [1]). Geologic mapping, aided by spatial filtering of new Galileo as well as older Voyager data shows, however, that large projectiles have left an imprint of palimpsests and multi-ring structures on both Ganymede and Callisto (e. g. [2]). Most of these impact structures are heavily degraded and hence difficult to recognize. In this paper, we present (1) maps showing the outlines of these basins, and (2) derive updated crater size-frequency diagrams of the two satellites. The crater diameter from a palimpsest diameter was reconstructed using a formula derived by [3]. The calculation of the crater diameter Dc from the outer boundary Do of a multi-ring structure is much less constrained and on the order of Dc = k \\cdot Do , with k ≈ 0.25-0.3 [4]. Despite the uncertainties in locating the ''true'' crater rims, the resulting shape of the distribution in the range from kilometer-sized craters to sizes of ≈ 500 km is lunar-like and strongly suggests a collisionally evolved projectile family, very likely of asteroidal origin. An alternative explanation for this shape could be that comets are collisionally evolved bodies in a similar way as are asteroids, which as of yet is still uncertain and in discussion. Also, the crater size distributions on Ganymede and Callisto are shifted towards smaller crater sizes compared to the Moon, caused by a much lower impact velocity of impactors which preferentially were in planetocentric orbits [5]. References: [1] Strom et al., JGR 86, 8659-8674, 1981. [2] J. E. Klemaszewski et al., Ann. Geophys. 16, suppl. III, 1998. [3] Iaquinta-Ridolfi &Schenk, LPSC XXVI (abstr.), 651-652, 1995. [4] Schenk &Moore, LPSC XXX, abstr. No. 1786 [CD-Rom], 1999. [5] Horedt & Neukum, JGR 89, 10,405-10,410, 1984.

  4. Investigation of effective parameters in preparation and controlling lithium fluoride nano size powder

    International Nuclear Information System (INIS)

    Naderi, S.; Sarraf Mamoory, F.; Riahi Noori, N.

    2007-01-01

    In this research, the reaction of LiOH + HF+LiF+H 2 O has been selected and some precipitation parameters such as pH, temperature, time, super saturation, q d agitation type have been studied, and controlled. The morphology, phase analysis and particle size of the resulting powders were analyzed by SEM, XRD and LPSA. Finally, at temperature 2S d ig C , pH of about 2-3, reaction time less than 1 sec, and agitation by ultrasonic bath, the pure nano lithium fluoride powders of about 100 nm were produced

  5. —Does Demand Fall When Customers Perceive That Prices Are Unfair? The Case of Premium Pricing for Large Sizes

    OpenAIRE

    Eric T. Anderson; Duncan I. Simester

    2008-01-01

    We analyze a large-scale field test conducted with a mail-order catalog firm to investigate how customers react to premium prices for larger sizes of women's apparel. We find that customers who demand large sizes react unfavorably to paying a higher price than customers for small sizes. Further investigation suggests that these consumers perceive that the price premium is unfair. Overall, premium pricing led to a 6% to 8% decrease in gross profits.

  6. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    Directory of Open Access Journals (Sweden)

    John P Wilson

    Full Text Available Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  7. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    Science.gov (United States)

    Wilson, John P; Woodruff, D Cary; Gardner, Jacob D; Flora, Holley M; Horner, John R; Organ, Chris L

    2016-01-01

    Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  8. Technical trends of large-size photomasks for flat panel displays

    Science.gov (United States)

    Yoshida, Koichiro

    2017-06-01

    Currently, flat panel displays (FPDs) are one of the main parts for information technology devices and sets. From 1990's to 2000's, liquid crystal displays (LCDs) and plasma displays had been mainstream FPDs. In the middle of 2000's, demand of plasma displays declined and organic light emitting diodes (OLEDs) newly came into FPD market. And today, major technology of FPDs are LCDs and OLEDs. Especially for mobile devices, the penetration of OLEDs is remarkable. In FPDs panel production, photolithography is the key technology as same as LSI. Photomasks for FPDs are used not only as original master of circuit pattern, but also as a tool to form other functional structures of FPDs. Photomasks for FPDs are called as "Large Size Photomasks(LSPMs)", since the remarkable feature is " Size" which reaches over 1- meter square and over 100kg. In this report, we discuss three LSPMs technical topics with FPDs technical transition and trend. The first topics is upsizing of LSPMs, the second is the challenge for higher resolution patterning, and the last is "Multi-Tone Mask" for "Half -Tone Exposure".

  9. Ultra-large size austenitic stainless steel forgings for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    Tsukada, Hisashi; Suzuki, Komei; Sato, Ikuo; Miura, Ritsu.

    1988-01-01

    The large SUS 304 austenitic stainless steel forgings for the reactor vessel of the prototype FBR 'Monju' of 280 MWe output were successfully manufactured. The reactor vessel contains the heart of the reactor and sodium coolant at 530 deg C, and its inside diameter is about 7 m, and height is about 18 m. It is composed of 12 large forgings, that is, very thick flanges and shalls made by ring forging and an end plate made by disk forging and hot forming, using a special press machine. The manufacture of these large forgings utilized the results of the basic test on the material properties in high temperature environment and the effect that the manufacturing factors exert on the material properties and the results of the development of manufacturing techniques for superlarge forgings. The problems were the manufacturing techniques for the large ingots of 250 t class of high purity, the hot working techniques for stainless steel of fine grain size, the forging techniques for superlarge rings and disks, and the machining techniques of high precision for particularly large diameter, thin wall rings. The manufacture of these large stainless steel forgings is reported. (Kako, I.)

  10. A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters

    International Nuclear Information System (INIS)

    Novak Pintarič, Zorka; Kravanja, Zdravko

    2015-01-01

    This paper presents a robust computational methodology for the synthesis and design of flexible HEN (Heat Exchanger Networks) having large numbers of uncertain parameters. This methodology combines several heuristic methods which progressively lead to a flexible HEN design at a specific level of confidence. During the first step, a HEN topology is generated under nominal conditions followed by determining those points critical for flexibility. A significantly reduced multi-scenario model for flexible HEN design is formulated at the nominal point with the flexibility constraints at the critical points. The optimal design obtained is tested by stochastic Monte Carlo optimization and the flexibility index through solving one-scenario problems within a loop. This presented methodology is novel regarding the enormous reduction of scenarios in HEN design problems, and computational effort. Despite several simplifications, the capability of designing flexible HENs with large numbers of uncertain parameters, which are typical throughout industry, is not compromised. An illustrative case study is presented for flexible HEN synthesis comprising 42 uncertain parameters. - Highlights: • Methodology for HEN (Heat Exchanger Network) design under uncertainty is presented. • The main benefit is solving HENs having large numbers of uncertain parameters. • Drastically reduced multi-scenario HEN design problem is formulated through several steps. • Flexibility of HEN is guaranteed at a specific level of confidence.

  11. A hybrid adaptive large neighborhood search algorithm applied to a lot-sizing problem

    DEFF Research Database (Denmark)

    Muller, Laurent Flindt; Spoorendonk, Simon

    This paper presents a hybrid of a general heuristic framework that has been successfully applied to vehicle routing problems and a general purpose MIP solver. The framework uses local search and an adaptive procedure which choses between a set of large neighborhoods to be searched. A mixed integer...... of a solution and to investigate the feasibility of elements in such a neighborhood. The hybrid heuristic framework is applied to the multi-item capacitated lot sizing problem with dynamic lot sizes, where experiments have been conducted on a series of instances from the literature. On average the heuristic...

  12. Sizing and scaling requirements of a large-scale physical model for code validation

    International Nuclear Information System (INIS)

    Khaleel, R.; Legore, T.

    1990-01-01

    Model validation is an important consideration in application of a code for performance assessment and therefore in assessing the long-term behavior of the engineered and natural barriers of a geologic repository. Scaling considerations relevant to porous media flow are reviewed. An analysis approach is presented for determining the sizing requirements of a large-scale, hydrology physical model. The physical model will be used to validate performance assessment codes that evaluate the long-term behavior of the repository isolation system. Numerical simulation results for sizing requirements are presented for a porous medium model in which the media properties are spatially uncorrelated

  13. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature.

    Science.gov (United States)

    Hani, Younes Mohamed Ismail; Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-01-01

    Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler's index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass.

  14. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature

    Science.gov (United States)

    Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-01-01

    Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler’s index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass. PMID:29614133

  15. Effect of pore size on performance of monolithic tube chromatography of large biomolecules.

    Science.gov (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-11-01

    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Scrum of scrums solution for large size teams using scrum methodology

    OpenAIRE

    Qurashi, Saja Al; Qureshi, M. Rizwan Jameel

    2014-01-01

    Scrum is a structured framework to support complex product development. However, Scrum methodology faces a challenge of managing large teams. To address this challenge, in this paper we propose a solution called Scrum of Scrums. In Scrum of Scrums, we divide the Scrum team into teams of the right size, and then organize them hierarchically into a Scrum of Scrums. The main goals of the proposed solution are to optimize communication between teams in Scrum of Scrums; to make the system work aft...

  17. Introduction to Large-sized Test Facility for validating Containment Integrity under Severe Accidents

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seongwan; Hong, Seongho; Min, Beongtae

    2014-01-01

    An overall assessment of containment integrity can be conducted properly by examining the hydrogen behavior in the containment building. Under severe accidents, an amount of hydrogen gases can be generated by metal oxidation and corium-concrete interaction. Hydrogen behavior in the containment building strongly depends on complicated thermal hydraulic conditions with mixed gases and steam. The performance of a PAR can be directly affected by the thermal hydraulic conditions, steam contents, gas mixture behavior and aerosol characteristics, as well as the operation of other engineering safety systems such as a spray. The models in computer codes for a severe accident assessment can be validated based on the experiment results in a large-sized test facility. The Korea Atomic Energy Research Institute (KAERI) is now preparing a large-sized test facility to examine in detail the safety issues related with hydrogen including the performance of safety devices such as a PAR in various severe accident situations. This paper introduces the KAERI test facility for validating the containment integrity under severe accidents. To validate the containment integrity, a large-sized test facility is necessary for simulating complicated phenomena induced by an amount of steam and gases, especially hydrogen released into the containment building under severe accidents. A pressure vessel 9.5 m in height and 3.4 m in diameter was designed at the KAERI test facility for the validating containment integrity, which was based on the THAI test facility with the experimental safety and the reliable measurement systems certified for a long time. This large-sized pressure vessel operated in steam and iodine as a corrosive agent was made by stainless steel 316L because of corrosion resistance for a long operating time, and a vessel was installed in at KAERI in March 2014. In the future, the control systems for temperature and pressure in a vessel will be constructed, and the measurement system

  18. Study on characteristics of response to nodal vibration in a main hull of a large-size ferry boat; Ogata feri no shusentai yodo oto tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Takimoto, T; Yamamoto, A; Kasuda, T; Yanagi, K [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1996-04-10

    Demand for reduction in vibration and noise in large-size ferry boats has been severer in recent years. On the other hand, vibration exciting force in main engines and propellers is on an increasing trend in association with increase in speed and horsepower. A large-size ferry boat uses an intermediate-speed diesel engine which has high vibration exciting frequency. Therefore, discussions were given on characteristics of response to nodal vibration in a main hull induced by primary internal moment in a main engine in a large-size ferry boat mounting an intermediate speed main engine. Results of detailed vibration calculations, vibration experiments using an actual ship, and results of measurements were used for the discussions. Natural frequency for two-node vibration above and below the main hull was set for an equation of estimation such that the whole ship is hypothesized to have been structured with beams having the same cross section according to the Todd`s equation, and effect of rigidity of the long structure can be evaluated. Parameters were derived by using the minimum square method that uses the measured natural frequency of the ship A through the ship E among large-size ferry boats. The derived result may be summarized as follows: this equation of estimation has an estimation error of about 5% against the natural frequency for nodal vibration above and below the main hull; and this equation of estimation has an estimation error of about 30% against the acceleration in the vertical direction at the end of the stern. 2 refs., 11 figs., 1 tab.

  19. Large Scale Behavior and Droplet Size Distributions in Crude Oil Jets and Plumes

    Science.gov (United States)

    Katz, Joseph; Murphy, David; Morra, David

    2013-11-01

    The 2010 Deepwater Horizon blowout introduced several million barrels of crude oil into the Gulf of Mexico. Injected initially as a turbulent jet containing crude oil and gas, the spill caused formation of a subsurface plume stretching for tens of miles. The behavior of such buoyant multiphase plumes depends on several factors, such as the oil droplet and bubble size distributions, current speed, and ambient stratification. While large droplets quickly rise to the surface, fine ones together with entrained seawater form intrusion layers. Many elements of the physics of droplet formation by an immiscible turbulent jet and their resulting size distribution have not been elucidated, but are known to be significantly influenced by the addition of dispersants, which vary the Weber Number by orders of magnitude. We present experimental high speed visualizations of turbulent jets of sweet petroleum crude oil (MC 252) premixed with Corexit 9500A dispersant at various dispersant to oil ratios. Observations were conducted in a 0.9 m × 0.9 m × 2.5 m towing tank, where large-scale behavior of the jet, both stationary and towed at various speeds to simulate cross-flow, have been recorded at high speed. Preliminary data on oil droplet size and spatial distributions were also measured using a videoscope and pulsed light sheet. Sponsored by Gulf of Mexico Research Initiative (GoMRI).

  20. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  1. Large-sized and highly radioactive 3H and 109Cd Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Shibata, S.; Kawakami, H.; Kato, S.

    1994-02-01

    A device for the deposition of a radioactive Langmuir-Blodgett (LB) film was developed with the use of: (1) a modified horizontal lifting method, (2) an extremely shallow trough, and (3) a surface pressure-generating system without piston oil. It made a precious radioactive subphase solution repeatedly usable while keeping its radioactivity concentration as high as possible. Any large-size thin films can be prepared by just changing the trough size. Two monomolecular-layers of Y-type films of cadmium [ 3 H] icosanoate and 109 Cd icosanoate were built up as 3 H and 109 Cd β-sources for electron spectroscopy with intensities of 1.5 GBq (40 mCi) and 7.4 MBq (200 μCi), respectively, and a size of 65x200 mm 2 . Excellent uniformity of the distribution of deposited radioactivity was confirmed by autoradiography and photometry. (author)

  2. Multi-fractal measures of city-size distributions based on the three-parameter Zipf model

    International Nuclear Information System (INIS)

    Chen Yanguang; Zhou Yixing

    2004-01-01

    A multi-fractal framework of urban hierarchies is presented to address the rank-size distribution of cities. The three-parameter Zipf model based on a pair of exponential-type scaling laws is generalized to multi-scale fractal measures. Then according to the equivalent relationship between Zipf's law and Pareto distribution, a set of multi-fractal equations are derived using dual conversion and the Legendre transform. The US city population data coming from the 2000 census are employed to verify the multi-fractal models and the results are satisfying. The multi-fractal measures reveal some strange symmetry regularity of urban systems. While explaining partially the remains of the hierarchical step-like frequency distribution of city sizes suggested by central place theory, the mathematical framework can be interpreted with the entropy-maximizing principle and some related ideas from self-organization

  3. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.

    Science.gov (United States)

    Hossain, M S; Gabr, M A; Asce, F

    2009-09-01

    In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.

  4. Rectocele--does the size matter?

    Science.gov (United States)

    Carter, Dan; Gabel, Marc Beer

    2012-07-01

    Large rectoceles (>2 cm) are believed to be associated with difficulty in evacuation, constipation, rectal pain, and rectal bleeding. The aim of our study was to determine whether rectocele size is related to patient's symptoms or defecatory parameters. We conducted a retrospective study on data collected on patients referred to our clinic for the evaluation of evacuation disorders. All patients were questioned for constipation, fecal incontinence, and irritable bowel syndrome and were assessed with dynamic perineal ultrasonography and conventional anorectal manometry. Four hundred eighty-seven women were included in our study. Rectocele was diagnosed in 106 (22%) women, and rectocele diameter >2 cm in 93 (87%) women. Rectocele size was not significantly related to demographic data, parity, or patient's symptoms. The severity of the symptoms was not correlated to the size or to the position of the rectocele. The diagnosis of irritable bowel syndrome was neither related to the size of the rectocele. Rectocele location, occurrence of enterocele, and intussusception were not related to the size of the rectocele. Full evacuation of rectoceles was more common in small rectoceles (79% vs. 24%, p = 0.0001), and no evacuation was more common in large rectoceles (37% vs. 0, p = 0.01). Rectal hyposensitivity and anismus were not related to the size of the rectocele. In conclusion, only the evacuation of rectoceles was correlated to the size of the rectoceles, but had no clinical significance. Other clinical, anatomical factors were also not associated to the size of the rectoceles. Rectoceles' size alone may not be an indication for surgery.

  5. Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing

    KAUST Repository

    Ali, Hussain; Ahmed, Sajid; Al-Naffouri, Tareq Y.; Sharawi, Mohammad S.; Alouini, Mohamed-Slim

    2017-01-01

    Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.

  6. Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing

    KAUST Repository

    Ali, Hussain

    2017-01-09

    Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.

  7. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  8. HLIBCov: Parallel Hierarchical Matrix Approximation of Large Covariance Matrices and Likelihoods with Applications in Parameter Identification

    KAUST Repository

    Litvinenko, Alexander

    2017-01-01

    and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters

  9. Large-scale investigation of the parameters in response to Eimeria maxima challenge in broilers.

    Science.gov (United States)

    Hamzic, E; Bed'Hom, B; Juin, H; Hawken, R; Abrahamsen, M S; Elsen, J M; Servin, B; Pinard-van der Laan, M H; Demeure, O

    2015-04-01

    Coccidiosis, a parasitic disease of the intestinal tract caused by members of the genera Eimeria and Isospora, is one of the most common and costly diseases in chicken. The aims of this study were to assess the effect of the challenge and level of variability of measured parameters in chickens during the challenge with Eimeria maxima. Furthermore, this study aimed to investigate which parameters are the most relevant indicators of the health status. Finally, the study also aimed to estimate accuracy of prediction for traits that cannot be measured on large scale (such as intestinal lesion score and fecal oocyst count) using parameters that can easily be measured on all animals. The study was performed in 2 parts: a pilot challenge on 240 animals followed by a large-scale challenge on 2,024 animals. In both experiments, animals were challenged with 50,000 Eimeria maxima oocysts at 16 d of age. In the pilot challenge, all animals were measured for BW gain, plasma coloration, hematocrit, and rectal temperature and, in addition, a subset of 48 animals was measured for oocyst count and the intestinal lesion score. All animals from the second challenge were measured for BW gain, plasma coloration, and hematocrit whereas a subset of 184 animals was measured for intestinal lesion score, fecal oocyst count, blood parameters, and plasma protein content and composition. Most of the parameters measured were significantly affected by the challenge. Lesion scores for duodenum and jejunum (P Eimeria maxima. Prediction of intestinal lesion score and fecal oocyst count using the other parameters measured was not very precise (R2 Eimeria maxima has a strong genetic determinism, which may be improved by genetic selection.

  10. Q0000-398 is a high-redshift quasar with a large angular size

    International Nuclear Information System (INIS)

    Gearhart, M.R.; Pacht, E.

    1977-01-01

    A study is described, using the three-element interferrometer at the National Radio Astronomy Observatory, West Virginia, to investigate whether any quasars exist that might be radio sources. It was found that Q0000-398 appeared to be a quasar of high red shift and large angular size. The interferrometer was operated with a 300-1200-1500 m baseline configuration at 2695 MHz. The radio map for Q0000-398 is shown, and has two weak components separated by 134 +- 40 arc s. If these components are associated with the optical object this quasar has the largest known angular size for its red shift value. The results reported for Q0000-398 and other quasars having considerable angular extent demonstrate the importance of considering radio selection effects in the angular diameter-red shift relationship, and since any radio selection effects are removed when quasars are selected optically, more extensive mapping programs should be undertaken, looking particularly for large scale structure around optically selected high-z quasars. (U.K.)

  11. Plasma parameter estimations for the Large Helical Device based on the gyro-reduced Bohm scaling

    International Nuclear Information System (INIS)

    Okamoto, Masao; Nakajima, Noriyoshi; Sugama, Hideo.

    1991-10-01

    A model of gyro-reduced Bohm scaling law is incorporated into a one-dimensional transport code to predict plasma parameters for the Large Helical Device (LHD). The transport code calculations reproduce well the LHD empirical scaling law and basic parameters and profiles of the LHD plasma are calculated. The amounts of toroidal currents (bootstrap current and beam-driven current) are also estimated. (author)

  12. Observation of chorus waves by the Van Allen Probes: dependence on solar wind parameters and scale size

    Science.gov (United States)

    Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.

    2016-12-01

    Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems, and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are non-specific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters, but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity respectively. Results show that the average scale size of chorus wave packets is approximately 1300 - 2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere, and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  13. Small, medium, large or supersize? The development and evaluation of interventions targeted at portion size

    Science.gov (United States)

    Vermeer, W M; Steenhuis, I H M; Poelman, M P

    2014-01-01

    In the past decades, portion sizes of high-caloric foods and drinks have increased and can be considered an important environmental obesogenic factor. This paper describes a research project in which the feasibility and effectiveness of environmental interventions targeted at portion size was evaluated. The studies that we conducted revealed that portion size labeling, offering a larger variety of portion sizes, and proportional pricing (that is, a comparable price per unit regardless of the size) were considered feasible to implement according to both consumers and point-of-purchase representatives. Studies into the effectiveness of these interventions demonstrated that the impact of portion size labeling on the (intended) consumption of soft drinks was, at most, modest. Furthermore, the introduction of smaller portion sizes of hot meals in worksite cafeterias in addition to the existing size stimulated a moderate number of consumers to replace their large meals by a small meal. Elaborating on these findings, we advocate further research into communication and marketing strategies related to portion size interventions; the development of environmental portion size interventions as well as educational interventions that improve people's ability to deal with a ‘super-sized' environment; the implementation of regulation with respect to portion size labeling, and the use of nudges to stimulate consumers to select healthier portion sizes. PMID:25033959

  14. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    Science.gov (United States)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  15. Correlations between cultured pearl size parameters and PIF-177 biomarker expression in Pinctada margaritifera families reared in two contrasting environments

    Science.gov (United States)

    Blay, Carole; Parrad, Sophie; Cabral, Philippe; Aiho, Vaite; Ky, Chin-Long

    2016-12-01

    The black-lipped pearl oyster, Pinctada margaritifera, produces the largest and most valuable coloured pearls in the world. Cultured pearl size remains one of the most important quality traits. Despite the great geographical area covered by pearl farms in the atolls of French Polynesia, little is known about the influence of grow-out site effects on pearl size attained. To explore the genetic and environmental impact on the size of pearls as well as the genetic × environment interaction, a uniform experimental graft was designed on two contrasting macro-geographical lagoons. Five biparental families of donor oysters were grafted and then reared at both sites. After 18 months of culture, phenotypic parameters corresponding to pearl size, i.e. nacre weight and thickness, were recorded among the harvested pearls. The expression of Pif-177 gene, a biomarker encoding protein in the aragonite nacreous layer, was analysed in the corresponding pearl sac. The results show a family effect for nacre weight and thickness on both sites, with family F058 producing the heaviest and thickest nacre, and F805 the lightest and thinnest. By contrast, inter-site comparison revealed no significant site effects for these two parameters. In addition, grow-out location did not modify the relative gene expression of Pif-177 in the pearl sac between donor families in either culture site. Both nacre weight and thickness were positively correlated with the level gene expression of Pif-177. These results suggest that pearl size parameters were not affected by the environment in the present study and this is supported by the relative gene expression of Pif-177 observed. This knowledge constitutes an initial step in the study of pearl size trait inheritance, which will be helpful in the near future for the diffusion of genetically selected donor oyster lines produced by hatchery systems throughout production sites.

  16. The influence of control parameter estimation on large scale geomorphological interpretation of pointclouds

    Science.gov (United States)

    Dorninger, P.; Koma, Z.; Székely, B.

    2012-04-01

    In recent years, laser scanning, also referred to as LiDAR, has proved to be an important tool for topographic data acquisition. Basically, laser scanning acquires a more or less homogeneously distributed point cloud. These points represent all natural objects like terrain and vegetation as well as man-made objects such as buildings, streets, powerlines, or other constructions. Due to the enormous amount of data provided by current scanning systems capturing up to several hundred thousands of points per second, the immediate application of such point clouds for large scale interpretation and analysis is often prohibitive due to restrictions of the hard- and software infrastructure. To overcome this, numerous methods for the determination of derived products do exist. Commonly, Digital Terrain Models (DTM) or Digital Surface Models (DSM) are derived to represent the topography using a regular grid as datastructure. The obvious advantages are a significant reduction of the amount of data and the introduction of an implicit neighborhood topology enabling the application of efficient post processing methods. The major disadvantages are the loss of 3D information (i.e. overhangs) as well as the loss of information due to the interpolation approach used. We introduced a segmentation approach enabling the determination of planar structures within a given point cloud. It was originally developed for the purpose of building modeling but has proven to be well suited for large scale geomorphological analysis as well. The result is an assignment of the original points to a set of planes. Each plane is represented by its plane parameters. Additionally, numerous quality and quantity parameters are determined (e.g. aspect, slope, local roughness, etc.). In this contribution, we investigate the influence of the control parameters required for the plane segmentation on the geomorphological interpretation of the derived product. The respective control parameters may be determined

  17. Validation Of Intermediate Large Sample Analysis (With Sizes Up to 100 G) and Associated Facility Improvement

    International Nuclear Information System (INIS)

    Bode, P.; Koster-Ammerlaan, M.J.J.

    2018-01-01

    Pragmatic rather than physical correction factors for neutron and gamma-ray shielding were studied for samples of intermediate size, i.e. up to the 10-100 gram range. It was found that for most biological and geological materials, the neutron self-shielding is less than 5 % and the gamma-ray self-attenuation can easily be estimated. A trueness control material of 1 kg size was made based on use of left-overs of materials, used in laboratory intercomparisons. A design study for a large sample pool-side facility, handling plate-type volumes, had to be stopped because of a reduction in human resources, available for this CRP. The large sample NAA facilities were made available to guest scientists from Greece and Brazil. The laboratory for neutron activation analysis participated in the world’s first laboratory intercomparison utilizing large samples. (author)

  18. Optimal integrated sizing and planning of hubs with midsize/large CHP units considering reliability of supply

    International Nuclear Information System (INIS)

    Moradi, Saeed; Ghaffarpour, Reza; Ranjbar, Ali Mohammad; Mozaffari, Babak

    2017-01-01

    Highlights: • New hub planning formulation is proposed to exploit assets of midsize/large CHPs. • Linearization approaches are proposed for two-variable nonlinear CHP fuel function. • Efficient operation of addressed CHPs & hub devices at contingencies are considered. • Reliability-embedded integrated planning & sizing is formulated as one single MILP. • Noticeable results for costs & reliability-embedded planning due to mid/large CHPs. - Abstract: Use of multi-carrier energy systems and the energy hub concept has recently been a widespread trend worldwide. However, most of the related researches specialize in CHP systems with constant electricity/heat ratios and linear operating characteristics. In this paper, integrated energy hub planning and sizing is developed for the energy systems with mid-scale and large-scale CHP units, by taking their wide operating range into consideration. The proposed formulation is aimed at taking the best use of the beneficial degrees of freedom associated with these units for decreasing total costs and increasing reliability. High-accuracy piecewise linearization techniques with approximation errors of about 1% are introduced for the nonlinear two-dimensional CHP input-output function, making it possible to successfully integrate the CHP sizing. Efficient operation of CHP and the hub at contingencies is extracted via a new formulation, which is developed to be incorporated to the planning and sizing problem. Optimal operation, planning, sizing and contingency operation of hub components are integrated and formulated as a single comprehensive MILP problem. Results on a case study with midsize CHPs reveal a 33% reduction in total costs, and it is demonstrated that the proposed formulation ceases the need for additional components/capacities for increasing reliability of supply.

  19. A procedure to detect flaws inside large size marble blocks by ultrasound

    OpenAIRE

    Bramanti, Mauro; Bozzi, Edoardo

    1999-01-01

    In stone and marble industry there is considerable interest in the possibility of using ultrasound diagnostic techniques for non-destructive testing of large size blocks in order to detect internal flaws such as faults, cracks and fissures. In this paper some preliminary measurements are reported in order to acquire basic knowledge of the fundamental properties of ultrasound, such as propagation velocity and attenuation, in the media here considered. We then outline a particular diagnostic pr...

  20. Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening

    Science.gov (United States)

    Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.

    2017-12-01

    Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.

  1. Comparison of silicon strip tracker module size using large sensors from 6 inch wafers

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Two large silicon strip sensor made from 6 inch wafers are placed next to each other to simulate the size of a CMS outer silicon tracker module. On the left is a prototype 2 sensor CMS inner endcap silicon tracker module made from 4 inch wafers.

  2. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time.

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  3. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which—as shown on the contact process—provides a significant improvement of the large deviation function estimators compared to the standard one.

  4. Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters

    Directory of Open Access Journals (Sweden)

    Yuji Tsutsui

    2017-06-01

    Full Text Available Objective(s: We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF-based positron emission tomography (PET image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline ordered subsets expectation maximization (OSEM algorithm and the OSEM with PSF correction model. The reconstruction parameters included a pixel size of 1.0, 2.0, or 3.0 mm, 1-12 iterations, 24 subsets, and a full width at half maximum (FWHM of the post-filter Gaussian filter of 1.0, 2.0, or 3.0 mm. We compared both the maximum recovery coefficient (RCmax and the mean recovery coefficient (RCmean in the phantom at different diameters.Results: The OSEM images had no edge artifacts, but the OSEM with PSF images had a dense edge delineating the hot phantom at diameters 10 mm or more and a dense spot at the center at diameters of 8 mm or less. The dense edge was clearly observed on images with a small pixel size, a Gaussian filter with a small FWHM, and a high number of iterations. At a phantom diameter of 6-7 mm, the RCmax for the OSEM and OSEM with PSF images was 60% and 140%, respectively (pixel size: 1.0 mm; FWHM of the Gaussian filter: 2.0 mm; iterations: 2. The RCmean of the OSEM with PSF images did not exceed 100%.Conclusion: PSF-based image reconstruction resulted in edge artifacts, the degree of which depends on the pixel size, number of iterations, FWHM of the Gaussian filter, and object size.

  5. Nonlinear adaptive synchronization rule for identification of a large amount of parameters in dynamical models

    International Nuclear Information System (INIS)

    Ma Huanfei; Lin Wei

    2009-01-01

    The existing adaptive synchronization technique based on the stability theory and invariance principle of dynamical systems, though theoretically proved to be valid for parameters identification in specific models, is always showing slow convergence rate and even failed in practice when the number of parameters becomes large. Here, for parameters update, a novel nonlinear adaptive rule is proposed to accelerate the rate. Its feasibility is validated by analytical arguments as well as by specific parameters identification in the Lotka-Volterra model with multiple species. Two adjustable factors in this rule influence the identification accuracy, which means that a proper choice of these factors leads to an optimal performance of this rule. In addition, a feasible method for avoiding the occurrence of the approximate linear dependence among terms with parameters on the synchronized manifold is also proposed.

  6. Influence of region of interest size and ultrasound lesion size on the performance of 2D shear wave elastography (SWE) in solid breast masses

    International Nuclear Information System (INIS)

    Skerl, K.; Vinnicombe, S.; Giannotti, E.; Thomson, K.; Evans, A.

    2015-01-01

    Aim: To evaluate the influence of the region of interest (ROI) size and lesion diameter on the diagnostic performance of 2D shear wave elastography (SWE) of solid breast lesions. Materials and methods: A study group of 206 consecutive patients (age range 21–92 years) with 210 solid breast lesions (70 benign, 140 malignant) who underwent core biopsy or surgical excision was evaluated. Lesions were divided into small (diameter <15 mm, n=112) and large lesions (diameter ≥15 mm, n=98). An ROI with a diameter of 1, 2, and 3 mm was positioned over the stiffest part of the lesion. The maximum elasticity (E_m_a_x), mean elasticity (E_m_e_a_n) and standard deviation (SD) for each ROI size were compared to the pathological outcome. Statistical analysis was undertaken using the chi-square test and receiver operating characteristic (ROC) analysis. Results: The ROI size used has a significant impact on the performance of E_m_e_a_n and SD but not on E_m_a_x. Youden's indices show a correlation with the ROI size and lesion size: generally, the benign/malignant threshold is lower with increasing ROI size but higher with increasing lesion size. Conclusions: No single SWE parameter has superior performance. Lesion size and ROI size influence diagnostic performance. - Highlights: • Optimal cut-off for benign/malignant differentiation depends on lesion size. • Region of interest size influences measurements of mean elasticity and standard deviation. • Large lesions are stiffer than small lesions. • Optimal cut-off for benign/malignant differentiation should increase with increasing lesion size. • Region of interest of 2 mm achieved best compromise of the diagnostic performance for all SWE parameter.

  7. Anthropic prediction for a large multi-jump landscape

    International Nuclear Information System (INIS)

    Schwartz-Perlov, Delia

    2008-01-01

    The assumption of a flat prior distribution plays a critical role in the anthropic prediction of the cosmological constant. In a previous paper we analytically calculated the distribution for the cosmological constant, including the prior and anthropic selection effects, in a large toy 'single-jump' landscape model. We showed that it is possible for the fractal prior distribution that we found to behave as an effectively flat distribution in a wide class of landscapes, but only if the single-jump size is large enough. We extend this work here by investigating a large (N∼10 500 ) toy 'multi-jump' landscape model. The jump sizes range over three orders of magnitude and an overall free parameter c determines the absolute size of the jumps. We will show that for 'large' c the distribution of probabilities of vacua in the anthropic range is effectively flat, and thus the successful anthropic prediction is validated. However, we argue that for small c, the distribution may not be smooth

  8. An automated system for the preparation of Large Size Dried (LSD) Spikes

    International Nuclear Information System (INIS)

    Verbruggen, A.; Bauwens, J.; Jakobsson, U.; Eykens, R.; Wellum, R.; Aregbe, Y.; Van De Steene, N.

    2008-01-01

    Large size dried (LSD) spikes have been produced to fulfill the existing requirement for reliable and traceable isotopic reference materials for nuclear safeguards. A system to produce certified nuclear isotopic reference material as a U/Pu mixture in the form of large size dried spikes, comparable to those produced using traditional methods has been installed in collaboration with Nucomat, a company with a recognized reputation in design and development of integrated automated systems. The major components of the system are a robot, two balances, a dispenser and a drying unit fitted into a glove box. The robot is software driven and designed to control all movements inside the glove-box, to identify unambiguously the penicillin vials with a bar-code reader, to dispense the LSD batch solution into the vials and to weigh the amount dispensed. The system functionality has been evaluated and the performance validated by comparing the results from a series of samples dispensed and weighed by the automated system with the results by manual substitution weighing. After applying the proper correction factors to the data from the automated system balance no significant difference was observed between the two. However, an additional component of uncertainty of 3*10 -4 is introduced in the uncertainty budget for the certified weights provided by the automatic system. (authors)

  9. An automated system for the preparation of Large Size Dried (LSD) Spikes

    Energy Technology Data Exchange (ETDEWEB)

    Verbruggen, A.; Bauwens, J.; Jakobsson, U.; Eykens, R.; Wellum, R.; Aregbe, Y. [European Commission - Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 211, B2440 Geel (Belgium); Van De Steene, N. [Nucomat, Mercatorstraat 206, B9100 Sint Niklaas (Belgium)

    2008-07-01

    Large size dried (LSD) spikes have been produced to fulfill the existing requirement for reliable and traceable isotopic reference materials for nuclear safeguards. A system to produce certified nuclear isotopic reference material as a U/Pu mixture in the form of large size dried spikes, comparable to those produced using traditional methods has been installed in collaboration with Nucomat, a company with a recognized reputation in design and development of integrated automated systems. The major components of the system are a robot, two balances, a dispenser and a drying unit fitted into a glove box. The robot is software driven and designed to control all movements inside the glove-box, to identify unambiguously the penicillin vials with a bar-code reader, to dispense the LSD batch solution into the vials and to weigh the amount dispensed. The system functionality has been evaluated and the performance validated by comparing the results from a series of samples dispensed and weighed by the automated system with the results by manual substitution weighing. After applying the proper correction factors to the data from the automated system balance no significant difference was observed between the two. However, an additional component of uncertainty of 3*10{sup -4} is introduced in the uncertainty budget for the certified weights provided by the automatic system. (authors)

  10. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    Science.gov (United States)

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  11. Approaches in highly parameterized inversion - PEST++, a Parameter ESTimation code optimized for large environmental models

    Science.gov (United States)

    Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.

    2012-01-01

    An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.

  12. Integrating economic parameters into genetic selection for Large White pigs.

    Science.gov (United States)

    Dube, Bekezela; Mulugeta, Sendros D; Dzama, Kennedy

    2013-08-01

    The objective of the study was to integrate economic parameters into genetic selection for sow productivity, growth performance and carcass characteristics in South African Large White pigs. Simulation models for sow productivity and terminal production systems were performed based on a hypothetical 100-sow herd, to derive economic values for the economically relevant traits. The traits included in the study were number born alive (NBA), 21-day litter size (D21LS), 21-day litter weight (D21LWT), average daily gain (ADG), feed conversion ratio (FCR), age at slaughter (AGES), dressing percentage (DRESS), lean content (LEAN) and backfat thickness (BFAT). Growth of a pig was described by the Gompertz growth function, while feed intake was derived from the nutrient requirements of pigs at the respective ages. Partial budgeting and partial differentiation of the profit function were used to derive economic values, which were defined as the change in profit per unit genetic change in a given trait. The respective economic values (ZAR) were: 61.26, 38.02, 210.15, 33.34, -21.81, -68.18, 5.78, 4.69 and -1.48. These economic values indicated the direction and emphases of selection, and were sensitive to changes in feed prices and marketing prices for carcasses and maiden gilts. Economic values for NBA, D21LS, DRESS and LEAN decreased with increasing feed prices, suggesting a point where genetic improvement would be a loss, if feed prices continued to increase. The economic values for DRESS and LEAN increased as the marketing prices for carcasses increased, while the economic value for BFAT was not sensitive to changes in all prices. Reductions in economic values can be counterbalanced by simultaneous increases in marketing prices of carcasses and maiden gilts. Economic values facilitate genetic improvement by translating it to proportionate profitability. Breeders should, however, continually recalculate economic values to place the most appropriate emphases on the respective

  13. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Directory of Open Access Journals (Sweden)

    Batyaev V.F.

    2017-01-01

    Full Text Available The analysis of various non-destructive methods to control fissile materials (FM in large-size containers filled with radioactive waste (RAW has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one.

  14. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    International Nuclear Information System (INIS)

    Mamand, S.M.; Omar, M.S.; Muhammad, A.J.

    2012-01-01

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: ► A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. ► A direct method is used to calculate phonon group velocity for these nanowires. ► 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. ► Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2–300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10 14 m −2 the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10 14 m −2 , lattice thermal conductivity would be independent of that.

  15. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mamand, S.M., E-mail: soran.mamand@univsul.net [Department of Physics, College of Science, University of Sulaimani, Sulaimanyah, Iraqi Kurdistan (Iraq); Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Muhammad, A.J. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  16. Sizing the star cluster population of the Large Magellanic Cloud

    Science.gov (United States)

    Piatti, Andrés E.

    2018-04-01

    The number of star clusters that populate the Large Magellanic Cloud (LMC) at deprojected distances knowledge of the LMC cluster formation and dissolution histories, we closely revisited such a compilation of objects and found that only ˜35 per cent of the previously known catalogued clusters have been included. The remaining entries are likely related to stellar overdensities of the LMC composite star field, because there is a remarkable enhancement of objects with assigned ages older than log(t yr-1) ˜ 9.4, which contrasts with the existence of the LMC cluster age gap; the assumption of a cluster formation rate similar to that of the LMC star field does not help to conciliate so large amount of clusters either; and nearly 50 per cent of them come from cluster search procedures known to produce more than 90 per cent of false detections. The lack of further analyses to confirm the physical reality as genuine star clusters of the identified overdensities also glooms those results. We support that the actual size of the LMC main body cluster population is close to that previously known.

  17. A comparative study of parameters used in design and operation of desalination experimental facility versus the process parameters in a commercial desalination plant

    International Nuclear Information System (INIS)

    Hanra, M.S.; Verma, R.K.; Ramani, M.P.S.

    1982-01-01

    Desalination Experimental Facility (DEF) based on multistage flash desalination process has been set up by the Desalination Division of the Bhabha Atomic Research Centre, Bombay. The design parameters of DEF and materials used for various equipment and parts of DEF are mentioned. DEF was operated for 2300 hours in six operational runs. The range of operational parameters maintained during operation and observations on the performance of the materials of construction are given. Detailed comparison has been made for the orocess parameters in DEF and those in a large size plant. (M.G.B.)

  18. Impact parameter dynamics in quantum theory in large angle scattering

    International Nuclear Information System (INIS)

    Andriyanov, A.A.

    1975-01-01

    High energy behaviour of a free particle Green's function is studied for construction of the scattering amplitude. The main part of the Green's function is determined by eikonal scattering along the mean moment and by the total scattering along the transfered momentum. This ''impact'' approximation may be included as a first approximation in the iteration scheme for the scattering amplitude along the mean momentum, i.e. the ''impact'' perturbation theory. With the help of the ''impact'' approximation an expansion of the scattering amplitude in the impact parameter depending on interaction is obtained. These expansions are more correct than the eikonal expansions at large angle scattering. The results are illustrated grafically foe the exponential and the Yukawa potentials

  19. Growth of large-size-two-dimensional crystalline pentacene grains for high performance organic thin film transistors

    Directory of Open Access Journals (Sweden)

    Chuan Du

    2012-06-01

    Full Text Available New approach is presented for growth of pentacene crystalline thin film with large grain size. Modification of dielectric surfaces using a monolayer of small molecule results in the formation of pentacene thin films with well ordered large crystalline domain structures. This suggests that pentacene molecules may have significantly large diffusion constant on the modified surface. An average hole mobility about 1.52 cm2/Vs of pentacene based organic thin film transistors (OTFTs is achieved with good reproducibility.

  20. Does company size matter? Validation of an integrative model of safety behavior across small and large construction companies.

    Science.gov (United States)

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2018-02-01

    Previous safety climate studies primarily focused on either large construction companies or the construction industry as a whole, while little is known about whether company size has significant effects on workers' understanding of safety climate measures and relationships between safety climate factors and safety behavior. Thus, this study aims to: (a) test the measurement equivalence (ME) of a safety climate measure across workers from small and large companies; (b) investigate if company size alters the causal structure of the integrative model developed by Guo, Yiu, and González (2016). Data were collected from 253 construction workers in New Zealand using a safety climate measure. This study used multi-group confirmatory factor analyses (MCFA) to test the measurement equivalence of the safety climate measure and structure invariance of the integrative model. Results indicate that workers from small and large companies understood the safety climate measure in a similar manner. In addition, it was suggested that company size does not change the causal structure and mediational processes of the integrative model. Both measurement equivalence of the safety climate measure and structural invariance of the integrative model were supported by this study. Practical applications: Findings of this study provided strong support for a meaningful use of the safety climate measure across construction companies in different sizes. Safety behavior promotion strategies designed based on the integrative model may be well suited for both large and small companies. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  1. Blood Parameters, Digestive Organ Size and Intestinal Microflora of Broiler Chicks Fed Sorghum as Partial Substitute of Corn

    Directory of Open Access Journals (Sweden)

    Anca GHEORGHE

    2017-11-01

    Full Text Available A study was conducted to evaluate the effects of dietary white sorghum (WS, as partial substitute of corn on blood parameters, digestive organ size and intestinal microflora of broilers at 35 d. Cobb 500 broilers (n=400, assigned to 2 groups, were fed with isocaloric and isonitrogenous corn-soybean meal control diets (C or corn-WS-soybean meal diets (WS, where corn was partially replaced (50% with WS. At 35 d, sixteen broilers per group were selected for blood sampling, gastrointestinal (GIT measurements, digesta pH and ileum microflora analysis. There was no effect (P>0.05 of the dietary WS inclusion on blood biochemistry parameters, GIT development and digesta pH of broilers. In our study, dietary WS significantly reduced the ileal population of Enterobacteriaceae (-1.38%; P<0.0001 and E. coli (-1.16%; P=0.020, and increased the Lactobacillus spp. (+1.07%; P=0.014 compared with the C diet. In conclusion, feeding white sorghum, as partial substitute of corn in broiler diets, did not affect blood parameters, digestive organ size and digesta pH, that support the obtained performance. In addition, sorghum had a positive effect of the ileal microflora increasing the beneficial bacterial Lactobacillus spp.

  2. Correlation between the Quantifiable Parameters of Whole Solitary Pulmonary Nodules Perfusion Imaging Derived with Dynamic CT and Nodules Size

    Directory of Open Access Journals (Sweden)

    Shiyuan LIU

    2009-05-01

    Full Text Available Background and objective The solitary pulmonary nodules (SPNs is one of the most common findings on chest radiographs. The blood flow patterns of the biggest single SPNs level has been studied. This assessment may be only a limited sample of the entire region of interest (ROI and is unrepresentative of the SPNs as a volume. Ideally, SPNs volume perfusion should be measured. The aim of this study is to evaluate the correlation between the quantifiableparameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size. Methods Sixty-five patients with SPNs (diameter≤3 cm; 42 malignant; 12 active inflammatory; 11 benign underwent multi-location dynamic contrast material-enhanced serial CT scanning mode with stable table were performed; The mean values of valid sections were calculated, as the quantifiable parameters of volume SPNs perfusion imaging derived with16-slice spiral CT and 64-slice spiral CT. The correlation between the quantifiable parameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size were assessed by means of linear regression analysis. Results No significant correlations were found between the nodules size and each of the peak height (PHSPN (32.15 Hu±14.55 Hu,ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio(13.20±6.18%, perfusion(PSPN (29.79±19.12 mLmin-1100 g-1 and mean transit time (12.95±6.53 s (r =0.081, P =0.419; r =0.089, P =0.487; r =0.167, P =0.077; r =0.023, P =0.880. Conclusion No significant correlations were found between the quantifiable parameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size.

  3. Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.

    Science.gov (United States)

    You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary

    2011-02-01

    The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure

  4. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  5. Precise large deviations of aggregate claims in a size-dependent renewal risk model with stopping time claim-number process

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2017-04-01

    Full Text Available Abstract In this paper, we consider a size-dependent renewal risk model with stopping time claim-number process. In this model, we do not make any assumption on the dependence structure of claim sizes and inter-arrival times. We study large deviations of the aggregate amount of claims. For the subexponential heavy-tailed case, we obtain a precise large-deviation formula; our method substantially relies on a martingale for the structure of our models.

  6. Statistical characterization of a large geochemical database and effect of sample size

    Science.gov (United States)

    Zhang, C.; Manheim, F.T.; Hinde, J.; Grossman, J.N.

    2005-01-01

    smaller numbers of data points showed that few elements passed standard statistical tests for normality or log-normality until sample size decreased to a few hundred data points. Large sample size enhances the power of statistical tests, and leads to rejection of most statistical hypotheses for real data sets. For large sample sizes (e.g., n > 1000), graphical methods such as histogram, stem-and-leaf, and probability plots are recommended for rough judgement of probability distribution if needed. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Science.gov (United States)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  8. Flexible Multi-Bit Feedback Design for HARQ Operation of Large-Size Data Packets in 5G

    DEFF Research Database (Denmark)

    Khosravirad, Saeed; Mudolo, Luke; Pedersen, Klaus I.

    2017-01-01

    large-size data packet thanks to which the transmitter node can reduce the retransmission size to only include the initially failed segments of the packet. We study the effect of feedback size on retransmission efficiency through extensive link-level simulations over realistic channel models. Numerical......A reliable feedback channel is vital to report decoding acknowledgments in retransmission mechanisms such as the hybrid automatic repeat request (HARQ). While the feedback bits are known to be costly for the wireless link, a feedback message more informative than the conventional single......-bit feedback can increase resource utilization efficiency. Considering the practical limitations for increasing feedback message size, this paper proposes a framework for the design of flexible-content multi-bit feedback. The proposed design is capable of efficiently indicating the faulty segments of a failed...

  9. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery.

    Science.gov (United States)

    Kang, Shaohong; Yu, Tao; Liu, Tingting; Guan, Shiyou

    2018-02-15

    We proposed a large-sized graphene preparation method by short-circuit discharge of the lithium-graphite primary battery for the first time. LiC x is obtained through lithium ions intercalation into graphite cathode in the above primary battery. Graphene was acquired by chemical reaction between LiC x and stripper agents with dispersion under sonication conditions. The gained graphene is characterized by Raman spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Atomic force microscope (AFM) and Scanning electron microscopy (SEM). The results indicate that the as-prepared graphene has a large size and few defects, and it is monolayer or less than three layers. The quality of graphene is significant improved compared to the reported electrochemical methods. The yield of graphene can reach 8.76% when the ratio of the H 2 O and NMP is 3:7. This method provides a potential solution for the recycling of waste lithium ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Science.gov (United States)

    2010-07-01

    ... § 141.87 Monitoring requirements for water quality parameters. All large water systems, and all small- and medium-size systems that exceed the lead or copper action level shall monitor water quality... methods. (i) Tap samples shall be representative of water quality throughout the distribution system...

  11. Evolution in linear sizes and the Faraday effects in radio sources

    International Nuclear Information System (INIS)

    Anene, G.; Ugwoke, A.C.

    2001-05-01

    It is still a matter of conjecture whether the observed depolarization in radio sources originate from an external Faraday screen lying in our line of sight, or is largely due to internal processes occurring within these sources. This paper argues for an external origin. By applying recent evidences from the evolution of linear sizes while allowing for selection effects, it is shown that the density parameters within radio sources do not depend on redshift, implying that the observed depolarizations is epoch independent and may therefore, be largely external in origin. We also show that the observed low correlation between λ 1/2 and linear size(D) cannot be improved much even when allowance is made for evolution in D. (author)

  12. Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method

    Directory of Open Access Journals (Sweden)

    Suk Fun Chin

    2014-01-01

    Full Text Available Controllable particles sizes of starch nanoparticles were synthesized via a precipitation in water-in-oil microemulsion approach. Microemulsion method offers the advantages of ultralow interfacial tension, large interfacial area, and being thermodynamically stable and affords monodispersed nanoparticles. The synthesis parameters such as stirring rates, ratios of oil/cosurfactant, oil phases, cosurfactants, and ratios of water/oil were found to affect the mean particle size of starch nanoparticles. Starch nanoparticles with mean particles sizes of 109 nm were synthesized by direct nanoprecipitation method, whereas by using precipitation in microemulsion approach, starch nanoparticles with smaller mean particles sizes of 83 nm were obtained.

  13. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Wiesel, J R

    1969-02-15

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions.

  14. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    International Nuclear Information System (INIS)

    Wiesel, J.R.

    1969-02-01

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions

  15. Modeling of the evolution of bubble size distribution of gas-liquid flow inside a large vertical pipe. Influence of bubble coalescence and breakup models

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk

    2011-01-01

    The range of gas-liquid flow applications in today's technology is immensely wide. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. In gas-liquid flows, the bubble size distribution plays an important role in the phase structure and interfacial exchange behaviors. It is therefore necessary to take into account the dynamic change of the bubble size distribution to get good predictions in CFD. An efficient 1D Multi-Bubble-Size-Class Test Solver was introduced in Lucas et al. (2001) for the simulation of the development of the flow structure along a vertical pipe. The model considers a large number of bubble classes. It solves the radial profiles of liquid and gas velocities, bubble-size class resolved gas fraction profiles as well as turbulence parameters on basis of the bubble size distribution present at the given axial position. The evolution of the flow along the height is assumed to be solely caused by the progress of bubble coalescence and break-up resulting in a bubble size distribution changing in the axial direction. In this model, the bubble coalescence and breakup models are very important for reasonable predictions of the bubble size distribution. Many bubble coalescence and breakup models have been proposed in the literature. However, some obvious discrepancies exist in the models; for example, the daughter bubble size distributions are greatly different from different bubble breakup models, as reviewed in our previous publication (Liao and Lucas, 2009a; 2010). Therefore, it is necessary to compare and evaluate typical bubble coalescence and breakup models that have been commonly used in the literature. Thus, this work is aimed to make a comparison of several typical bubble coalescence and breakup models and to discuss in detail the ability of the Test Solver to predict the evolution of bubble size distribution. (orig.)

  16. Sample size methodology

    CERN Document Server

    Desu, M M

    2012-01-01

    One of the most important problems in designing an experiment or a survey is sample size determination and this book presents the currently available methodology. It includes both random sampling from standard probability distributions and from finite populations. Also discussed is sample size determination for estimating parameters in a Bayesian setting by considering the posterior distribution of the parameter and specifying the necessary requirements. The determination of the sample size is considered for ranking and selection problems as well as for the design of clinical trials. Appropria

  17. High voltage distribution scheme for large size GEM detector

    International Nuclear Information System (INIS)

    Saini, J.; Kumar, A.; Dubey, A.K.; Negi, V.S.; Chattopadhyay, S.

    2016-01-01

    Gas Electron Multiplier (GEM) detectors will be used for Muon tracking in the Compressed Baryonic Matter (CBM) experiment at the Facility for Anti-proton Ion Research (FAIR) at Darmstadt, Germany. The sizes of the detector modules in the Muon chambers are of the order of 1 metre x 0.5 metre. For construction of these chambers, three GEM foils are used per chamber. These foils are made by two layered 50μm thin kapton foil. Each GEM foil has millions of holes on it. In such a large scale manufacturing of the foils, even after stringent quality controls, some of the holes may still have defects or defects might develop over the time with operating conditions. These defects may result in short-circuit of the entire GEM foil. A short even in a single hole will make entire foil un-usable. To reduce such occurrences, high voltage (HV) segmentation within the foils has been introduced. These segments are powered either by individual HV supply per segment or through an active HV distribution to manage such a large number of segments across the foil. Individual supplies apart from being costly, are highly complex to implement. Additionally, CBM will have high intensity of particles bombarding on the detector causing the change of resistive chain current feeding the GEM detector with the variation in the intensity. This leads to voltage fluctuations across the foil resulting in the gain variation with the particle intensity. Hence, a low cost active HV distribution is designed to take care of the above discussed issues

  18. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  19. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    Science.gov (United States)

    Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.

    2014-08-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.

  20. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  1. Atmospheric stellar parameters for large surveys using FASMA, a new spectral synthesis package

    Science.gov (United States)

    Tsantaki, M.; Andreasen, D. T.; Teixeira, G. D. C.; Sousa, S. G.; Santos, N. C.; Delgado-Mena, E.; Bruzual, G.

    2018-02-01

    In the era of vast spectroscopic surveys focusing on Galactic stellar populations, astronomers want to exploit the large quantity and good quality of data to derive their atmospheric parameters without losing precision from automatic procedures. In this work, we developed a new spectral package, FASMA, to estimate the stellar atmospheric parameters (namely effective temperature, surface gravity and metallicity) in a fast and robust way. This method is suitable for spectra of FGK-type stars in medium and high resolution. The spectroscopic analysis is based on the spectral synthesis technique using the radiative transfer code, MOOG. The line list is comprised of mainly iron lines in the optical spectrum. The atomic data are calibrated after the Sun and Arcturus. We use two comparison samples to test our method, (i) a sample of 451 FGK-type dwarfs from the high-resolution HARPS spectrograph; and (ii) the Gaia-ESO benchmark stars using both high and medium resolution spectra. We explore biases in our method from the analysis of synthetic spectra covering the parameter space of our interest. We show that our spectral package is able to provide reliable results for a wide range of stellar parameters, different rotational velocities, different instrumental resolutions and for different spectral regions of the VLT-GIRAFFE spectrographs, used amongst others for the Gaia-ESO survey. FASMA estimates stellar parameters in less than 15 m for high-resolution and 3 m for medium-resolution spectra. The complete package is publicly available to the community.

  2. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    Science.gov (United States)

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  3. A simple, compact, and rigid piezoelectric step motor with large step size

    Science.gov (United States)

    Wang, Qi; Lu, Qingyou

    2009-08-01

    We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, and any direction operability. Although tested in room temperature, it is believed to work in low temperatures, owing to its loose operation conditions and large step size. The motor is implemented with a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollow shaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in one direction and recover simultaneously will move the shaft in the opposite direction, and vice versa.

  4. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade.

    Science.gov (United States)

    Sun, Wei; Yang, Fei; Wang, Yan; Fu, Han; Yang, Yan; Li, Chun-Li; Wang, Xiao-Liang; Lin, Qing; Chen, Jun

    2017-02-01

    Under physiological state, small- and medium-sized dorsal root ganglia (DRG) neurons are believed to mediate nociceptive behavioral responses to painful stimuli. However, recently it has been found that a number of large-sized neurons are also involved in nociceptive transmission under neuropathic conditions. Nonetheless, the underlying mechanisms that large-sized DRG neurons mediate nociception are poorly understood. In the present study, the role of large-sized neurons in bee venom (BV)-induced mechanical allodynia and the underlying mechanisms were investigated. Behaviorally, it was found that mechanical allodynia was still evoked by BV injection in rats in which the transient receptor potential vanilloid 1-positive DRG neurons were chemically deleted. Electrophysiologically, in vitro patch clamp recordings of large-sized neurons showed hyperexcitability in these neurons. Interestingly, the firing pattern of these neurons was changed from phasic to tonic under BV-inflamed state. It has been suggested that hyperpolarization-activated cyclic nucleotide gated channels (HCN) expressed in large-sized DRG neurons contribute importantly to repeatedly firing. So we examined the roles of HCNs in BV-induced mechanical allodynia. Consistent with the overexpression of HCN1/2 detected by immunofluorescence, HCNs-mediated hyperpolarization activated cation current (I h ) was significantly increased in the BV treated samples. Pharmacological experiments demonstrated that the hyperexcitability and upregulation of I h in large-sized neurons were mediated by cyclooxygenase-1 (COX-1)-prostaglandin E2 pathway. This is evident by the fact that the COX-1 inhibitor significantly attenuated the BV-induced mechanical allodynia. These results suggest that BV can excite the large-sized DRG neurons at least in part by increasing I h through activation of COX-1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  6. CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2016-09-01

    To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the disk size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.

  7. Strength and fatigue testing of large size wind turbines rotors. Vol. II: Full size natural vibration and static strength test, a reference case

    Energy Technology Data Exchange (ETDEWEB)

    Arias, F.; Soria, E.

    1996-12-01

    This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particular it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel`s test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)

  8. Strength and fatigue testing of large size wind turbines rotors. Volume II. Full size natural vibration and static strength test, a reference case

    International Nuclear Information System (INIS)

    Arias, F.; Soria, E.

    1996-01-01

    This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particularly it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)

  9. Signal formation processes in Micromegas detectors and quality control for large size detector construction for the ATLAS new small wheel

    Energy Technology Data Exchange (ETDEWEB)

    Kuger, Fabian

    2017-07-31

    The Micromegas technology is one of the most successful modern gaseous detector concepts and widely utilized in nuclear and particle physics experiments. Twenty years of R and D rendered the technology sufficiently mature to be selected as precision tracking detector for the New Small Wheel (NSW) upgrade of the ATLAS Muon spectrometer. This will be the first large scale application of Micromegas in one of the major LHC experiments. However, many of the fundamental microscopic processes in these gaseous detectors are still not fully understood and studies on several detector aspects, like the micromesh geometry, have never been addressed systematically. The studies on signal formation in Micromegas, presented in the first part of this thesis, focuses on the microscopic signal electron loss mechanisms and the amplification processes in electron gas interaction. Based on a detailed model of detector parameter dependencies, these processes are scrutinized in an iterating comparison between experimental results, theory prediction of the macroscopic observables and process simulation on the microscopic level. Utilizing the specialized detectors developed in the scope of this thesis as well as refined simulation algorithms, an unprecedented level of accuracy in the description of the microscopic processes is reached, deepening the understanding of the fundamental process in gaseous detectors. The second part is dedicated to the challenges arising with the large scale Micromegas production for the ATLAS NSW. A selection of technological choices, partially influenced or determined by the herein presented studies, are discussed alongside a final report on two production related tasks addressing the detectors' core components: For the industrial production of resistive anode PCBs a detailed quality control (QC) and quality assurance (QA) scheme as well as the therefore required testing tools have been developed. In parallel the study on micromesh parameter optimization

  10. Signal formation processes in Micromegas detectors and quality control for large size detector construction for the ATLAS new small wheel

    International Nuclear Information System (INIS)

    Kuger, Fabian

    2017-01-01

    The Micromegas technology is one of the most successful modern gaseous detector concepts and widely utilized in nuclear and particle physics experiments. Twenty years of R and D rendered the technology sufficiently mature to be selected as precision tracking detector for the New Small Wheel (NSW) upgrade of the ATLAS Muon spectrometer. This will be the first large scale application of Micromegas in one of the major LHC experiments. However, many of the fundamental microscopic processes in these gaseous detectors are still not fully understood and studies on several detector aspects, like the micromesh geometry, have never been addressed systematically. The studies on signal formation in Micromegas, presented in the first part of this thesis, focuses on the microscopic signal electron loss mechanisms and the amplification processes in electron gas interaction. Based on a detailed model of detector parameter dependencies, these processes are scrutinized in an iterating comparison between experimental results, theory prediction of the macroscopic observables and process simulation on the microscopic level. Utilizing the specialized detectors developed in the scope of this thesis as well as refined simulation algorithms, an unprecedented level of accuracy in the description of the microscopic processes is reached, deepening the understanding of the fundamental process in gaseous detectors. The second part is dedicated to the challenges arising with the large scale Micromegas production for the ATLAS NSW. A selection of technological choices, partially influenced or determined by the herein presented studies, are discussed alongside a final report on two production related tasks addressing the detectors' core components: For the industrial production of resistive anode PCBs a detailed quality control (QC) and quality assurance (QA) scheme as well as the therefore required testing tools have been developed. In parallel the study on micromesh parameter optimization

  11. Job Stress in the United Kingdom: Are Small and Medium-Sized Enterprises and Large Enterprises Different?

    Science.gov (United States)

    Lai, Yanqing; Saridakis, George; Blackburn, Robert

    2015-08-01

    This paper examines the relationships between firm size and employees' experience of work stress. We used a matched employer-employee dataset (Workplace Employment Relations Survey 2011) that comprises of 7182 employees from 1210 private organizations in the United Kingdom. Initially, we find that employees in small and medium-sized enterprises experience lower level of overall job stress than those in large enterprises, although the effect disappears when we control for individual and organizational characteristics in the model. We also find that quantitative work overload, job insecurity and poor promotion opportunities, good work relationships and poor communication are strongly associated with job stress in the small and medium-sized enterprises, whereas qualitative work overload, poor job autonomy and employee engagements are more related with larger enterprises. Hence, our estimates show that the association and magnitude of estimated effects differ significantly by enterprise size. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Composite likelihood estimation of demographic parameters

    Directory of Open Access Journals (Sweden)

    Garrigan Daniel

    2009-11-01

    Full Text Available Abstract Background Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC method for parameter estimation is developed that uses both composite and likelihood methods and is applied to the three different pairwise combinations of the human population resequence data. The accuracy of the method is also tested on data sets sampled from a simulated population model with known parameters. Results The Bayesian MCMCMC method also estimates the ratio of effective population size for the X chromosome versus that of the autosomes. The method is shown to estimate, with reasonable

  13. Linking particle and pore-size distribution parameters to soil gas transport properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per

    2012-01-01

    , respectively) and the Campbell water retention parameter b were used to characterize particle and pore size distributions, respectively. Campbell b yielded a wide interval (4.6–26.2) and was highly correlated with α, β, and volumetric clay content. Both Dp/Do and ka followed simple power-law functions (PLFs......) of air-filled porosity (εa). The PLF tortuosity–connectivity factors (X*) for Dp/Do and ka were both highly correlated with all basic soil characteristics, in the order of volumetric clay content = Campbell b > gravimetric clay content > α > β. The PLF water blockage factors (H) for Dp/Do and ka were...... also well (but relatively more weakly) correlated with the basic soil characteristics, again with the best correlations to volumetric clay content and b. As a first attempt at developing a simple Dp/Do model useful at the field scale, we extended the classical Buckingham Dp/Do model (εa2) by a scaling...

  14. A simple method for estimating the size of nuclei on fractal surfaces

    Science.gov (United States)

    Zeng, Qiang

    2017-10-01

    Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.

  15. Geometry, packing, and evolutionary paths to increased multicellular size

    Science.gov (United States)

    Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.

    2018-05-01

    The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.

  16. Definition of datum of materials lump size on conveyors by means of reflected gamma-radiation method

    International Nuclear Information System (INIS)

    Gal'yanov, A.V.; Antonov, V.A.; Laptev, Yu.V.

    2001-01-01

    A method of technological control of large-size lumps in conveyor-transported crushed material based on intensity measurement of X-ray and gamma radiation reflected from the material surface was suggested. The method was substantiated theoretically and as a result it was shown that dispersion of radiation intensity, multiply measured for short periods of time, can be analytic parameter of large-size lumps yield. Principled methodical and design recommendations on the method practical applications are given [ru

  17. Ulysses: accurate detection of low-frequency structural variations in large insert-size sequencing libraries.

    Science.gov (United States)

    Gillet-Markowska, Alexandre; Richard, Hugues; Fischer, Gilles; Lafontaine, Ingrid

    2015-03-15

    The detection of structural variations (SVs) in short-range Paired-End (PE) libraries remains challenging because SV breakpoints can involve large dispersed repeated sequences, or carry inherent complexity, hardly resolvable with classical PE sequencing data. In contrast, large insert-size sequencing libraries (Mate-Pair libraries) provide higher physical coverage of the genome and give access to repeat-containing regions. They can thus theoretically overcome previous limitations as they are becoming routinely accessible. Nevertheless, broad insert size distributions and high rates of chimerical sequences are usually associated to this type of libraries, which makes the accurate annotation of SV challenging. Here, we present Ulysses, a tool that achieves drastically higher detection accuracy than existing tools, both on simulated and real mate-pair sequencing datasets from the 1000 Human Genome project. Ulysses achieves high specificity over the complete spectrum of variants by assessing, in a principled manner, the statistical significance of each possible variant (duplications, deletions, translocations, insertions and inversions) against an explicit model for the generation of experimental noise. This statistical model proves particularly useful for the detection of low frequency variants. SV detection performed on a large insert Mate-Pair library from a breast cancer sample revealed a high level of somatic duplications in the tumor and, to a lesser extent, in the blood sample as well. Altogether, these results show that Ulysses is a valuable tool for the characterization of somatic mosaicism in human tissues and in cancer genomes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Optimization of parameters for fitting linear accelerator photon beams using a modified CBEAM model

    International Nuclear Information System (INIS)

    Ayyangar, K.; Daftari, I.; Palta, J.; Suntharalingam, N.

    1989-01-01

    Measured beam profiles and central-axis depth-dose data for 6- and 25-MV photon beams are used to generate a dose matrix which represents the full beam. A corresponding dose matrix is also calculated using the modified CBEAM model. The calculational model uses the usual set of three parameters to define the intensity at beam edges and the parameter that accounts for collimator transmission. An additional set of three parameters is used for the primary profile factor, expressed as a function of distance from the central axis. An optimization program has been adapted to automatically adjust these parameters to minimize the χ 2 between the measured and calculated data. The average values of the parameters for small (6x6 cm 2 ), medium (10x10 cm 2 ), and large (20x20 cm 2 ) field sizes are found to represent the beam adequately for all field sizes. The calculated and the measured doses at any point agree to within 2% for any field size in the range 4x4 to 40x40 cm 2

  19. A Study of Transmission Control Method for Distributed Parameters Measurement in Large Factories and Storehouses

    Directory of Open Access Journals (Sweden)

    Shujing Su

    2015-01-01

    Full Text Available For the characteristics of parameters dispersion in large factories, storehouses, and other applications, a distributed parameter measurement system is designed that is based on the ring network. The structure of the system and the circuit design of the master-slave node are described briefly. The basic protocol architecture about transmission communication is introduced, and then this paper comes up with two kinds of distributed transmission control methods. Finally, the reliability, extendibility, and control characteristic of these two methods are tested through a series of experiments. Moreover, the measurement results are compared and discussed.

  20. Image-based Exploration of Iso-surfaces for Large Multi- Variable Datasets using Parameter Space.

    KAUST Repository

    Binyahib, Roba S.

    2013-05-13

    With an increase in processing power, more complex simulations have resulted in larger data size, with higher resolution and more variables. Many techniques have been developed to help the user to visualize and analyze data from such simulations. However, dealing with a large amount of multivariate data is challenging, time- consuming and often requires high-end clusters. Consequently, novel visualization techniques are needed to explore such data. Many users would like to visually explore their data and change certain visual aspects without the need to use special clusters or having to load a large amount of data. This is the idea behind explorable images (EI). Explorable images are a novel approach that provides limited interactive visualization without the need to re-render from the original data [40]. In this work, the concept of EI has been used to create a workflow that deals with explorable iso-surfaces for scalar fields in a multivariate, time-varying dataset. As a pre-processing step, a set of iso-values for each scalar field is inferred and extracted from a user-assisted sampling technique in time-parameter space. These iso-values are then used to generate iso- surfaces that are then pre-rendered (from a fixed viewpoint) along with additional buffers (i.e. normals, depth, values of other fields, etc.) to provide a compressed representation of iso-surfaces in the dataset. We present a tool that at run-time allows the user to interactively browse and calculate a combination of iso-surfaces superimposed on each other. The result is the same as calculating multiple iso- surfaces from the original data but without the memory and processing overhead. Our tool also allows the user to change the (scalar) values superimposed on each of the surfaces, modify their color map, and interactively re-light the surfaces. We demonstrate the effectiveness of our approach over a multi-terabyte combustion dataset. We also illustrate the efficiency and accuracy of our

  1. A large scale GIS geodatabase of soil parameters supporting the modeling of conservation practice alternatives in the United States

    Science.gov (United States)

    Water quality modeling requires across-scale support of combined digital soil elements and simulation parameters. This paper presents the unprecedented development of a large spatial scale (1:250,000) ArcGIS geodatabase coverage designed as a functional repository of soil-parameters for modeling an...

  2. Alien derivatives of the WKB solutions of the Gauss hypergeometric differential equation with a large parameter

    Directory of Open Access Journals (Sweden)

    Mika Tanda

    2015-01-01

    Full Text Available We compute alien derivatives of the WKB solutions of the Gauss hypergeometric differential equation with a large parameter and discuss the singularity structures of the Borel transforms of the WKB solution expressed in terms of its alien derivatives.

  3. Sensitivity analysis of effective population size to demographic parameters in house sparrow populations.

    Science.gov (United States)

    Stubberud, Marlene Waege; Myhre, Ane Marlene; Holand, Håkon; Kvalnes, Thomas; Ringsby, Thor Harald; Saether, Bernt-Erik; Jensen, Henrik

    2017-05-01

    The ratio between the effective and the census population size, Ne/N, is an important measure of the long-term viability and sustainability of a population. Understanding which demographic processes that affect Ne/N most will improve our understanding of how genetic drift and the probability of fixation of alleles is affected by demography. This knowledge may also be of vital importance in management of endangered populations and species. Here, we use data from 13 natural populations of house sparrow (Passer domesticus) in Norway to calculate the demographic parameters that determine Ne/N. Using the global variance-based Sobol' method for the sensitivity analyses, we found that Ne/N was most sensitive to demographic variance, especially among older individuals. Furthermore, the individual reproductive values (that determine the demographic variance) were most sensitive to variation in fecundity. Our results draw attention to the applicability of sensitivity analyses in population management and conservation. For population management aiming to reduce the loss of genetic variation, a sensitivity analysis may indicate the demographic parameters towards which resources should be focused. The result of such an analysis may depend on the life history and mating system of the population or species under consideration, because the vital rates and sex-age classes that Ne/N is most sensitive to may change accordingly. © 2017 John Wiley & Sons Ltd.

  4. Development and introduction of stamping technique for large-size laterals of NPP pipelines

    International Nuclear Information System (INIS)

    Romashko, N.I.; Moshnin, E.N.; Timokhin, V.S.; Bryukhanov, Yu.V.; Lebedev, V.A.

    1984-01-01

    The results of development and introduction of stamping technique for large-size laterals of NPP high-pressure pipelines are presented. The main experimental data characterizing technological possibilities of the process are given. The technological process and design of the stamp assure production of laterals from ovalized bars per one heating of the bar and per one running of the press cronnhead. Introduction of new technology decreased labour input of lateral production, reliability and serviceability of pipelines increased in this case. Introduction of this technology gives a considerable benefit

  5. Shared and Distinct Rupture Discriminants of Small and Large Intracranial Aneurysms.

    Science.gov (United States)

    Varble, Nicole; Tutino, Vincent M; Yu, Jihnhee; Sonig, Ashish; Siddiqui, Adnan H; Davies, Jason M; Meng, Hui

    2018-04-01

    Many ruptured intracranial aneurysms (IAs) are small. Clinical presentations suggest that small and large IAs could have different phenotypes. It is unknown if small and large IAs have different characteristics that discriminate rupture. We analyzed morphological, hemodynamic, and clinical parameters of 413 retrospectively collected IAs (training cohort; 102 ruptured IAs). Hierarchal cluster analysis was performed to determine a size cutoff to dichotomize the IA population into small and large IAs. We applied multivariate logistic regression to build rupture discrimination models for small IAs, large IAs, and an aggregation of all IAs. We validated the ability of these 3 models to predict rupture status in a second, independently collected cohort of 129 IAs (testing cohort; 14 ruptured IAs). Hierarchal cluster analysis in the training cohort confirmed that small and large IAs are best separated at 5 mm based on morphological and hemodynamic features (area under the curve=0.81). For small IAs (IAs (area under the curve=0.84; 95% confidence interval, 0.78-0.88), whereas for large IAs (≥5 mm), the model included undulation index, low wall shear stress, previous subarachnoid hemorrhage, and IA location (area under the curve=0.87; 95% confidence interval, 0.82-0.93). The model for the aggregated training cohort retained all the parameters in the size-dichotomized models. Results in the testing cohort showed that the size-dichotomized rupture discrimination model had higher sensitivity (64% versus 29%) and accuracy (77% versus 74%), marginally higher area under the curve (0.75; 95% confidence interval, 0.61-0.88 versus 0.67; 95% confidence interval, 0.52-0.82), and similar specificity (78% versus 80%) compared with the aggregate-based model. Small (IAs have different hemodynamic and clinical, but not morphological, rupture discriminants. Size-dichotomized rupture discrimination models performed better than the aggregate model. © 2018 American Heart Association, Inc.

  6. The cardioprotective effect of vanillic acid on hemodynamic parameters, malondialdehyde, and infarct size in ischemia-reperfusion isolated rat heart exposed to PM10

    Directory of Open Access Journals (Sweden)

    Esmat Radmanesh

    2017-07-01

    Full Text Available Objective(s: Particulate matter (PM exposure can promote cardiac ischemia and myocardial damage. The effects of PM10 on hemodynamic parameters, lipid peroxidation, and infarct size induced by ischemia-reperfusion injury and the protective effects of vanillic acid (VA in isolated rat heart were investigated. Materials and Methods: Eighty male Wistar rats (250–300 g were divided into 8 groups (n=10: Control, Sham, VAc, VA, PMa (0.5 mg/kg PM, intratracheal instillation, PMb (2.5 mg/kg PM, intratracheal instillation, PMc (5 mg/kg PM, intratracheal instillation, and PMc + VA (5 mg/kg PM, intratracheal instillation; and 10 mg/kg vanillic acid, gavage for 10 days. PM10 was instilled into the trachea in two stages, within 48 hr. After isolating the hearts and transfer to a Langendorff apparatus, hearts were subjected to 30 min ischemia and 60 min reperfusion. Hemodynamic parameters (±dp/dt, LVSP, LVDP, and RPP, production of lipid peroxidation (MDA, and infarct size were assessed. Results: A significant decrease in ±dp/dt, LVSP, LVDP and RPP occurred in PM groups. A significant increase in MDA and myocardial infarct size occurred in PM groups. A significant increase in LVDP, LVSP, ±dp/dt, RPP and decrease in infarct size, MDA, and myocardial dysfunction was observed in groups that received vanillic acid after ischemia–reperfusion. Conclusion: It was demonstrated that PM10 increases MDA, as well as the percentage of cardiac infarct size, and has negative effects on hemodynamic parameters. This study suggests that vanillic acid may serve as an adjunctive treatment in delaying the progression of ischemic heart disease.

  7. Quark bag coupling to finite size pions

    International Nuclear Information System (INIS)

    De Kam, J.; Pirner, H.J.

    1982-01-01

    A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)

  8. Correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size

    Directory of Open Access Journals (Sweden)

    Chenshi ZHANG

    2008-02-01

    Full Text Available Background and Objective The solitary pulmonary nodules (SPNs is one of the most common findings on chest radiographs. It becomes possible to provide more accurately quantitative information about blood flow patterns of solitary pulmonary nodules (SPNs with multi-slice spiral computed tomography (MSCT. The aim of this study is to evaluate the correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size. Methods 68 patients with maliagnant solitary pulmonary nodules (SPNs (diameter <=4 cmunderwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubital vein at a rate of 4mL/s by an autoinjector, 4*5mm or 4*2.5mm scanning mode with stable table were performed. serial CT. Precontrast and postcontrast attenuation on every scan was recorded. Perfusion (PSPN, peak height (PHSPNratio of peak height of the SPN to that of the aorta (SPN-to-A ratioand mean transit time(MTT were calculated. The correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size were assessed by means of linear regression analysis. Results No significant correlations were found between the tumor size and each of the peak height (PHSPN ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio perfusion(PSPNand mean transit time (r=0.18, P=0.14; r=0.20,P=0.09; r=0.01, P=0.95; r=0.01, P=0.93. Conclusion No significant correlation is found between the tumor size and each of the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules.

  9. An Examination of Teachers' Perceptions and Practice when Teaching Large and Reduced-Size Classes: Do Teachers Really Teach Them in the Same Way?

    Science.gov (United States)

    Harfitt, Gary James

    2012-01-01

    Class size research suggests that teachers do not vary their teaching strategies when moving from large to smaller classes. This study draws on interviews and classroom observations of three experienced English language teachers working with large and reduced-size classes in Hong Kong secondary schools. Findings from the study point to subtle…

  10. Design and construction of large capacitor banks

    International Nuclear Information System (INIS)

    Whitham, K.; Gritton, D.G.; Holloway, R.W.; Merritt, B.T.

    1983-01-01

    Over the past 12 years, the Laser Program at LLNL has actively pursued laser fusion, using a series of large, solid-state lasers to develop target data leading to reactor designs using the concept of inertial confinement fusion. These lasers are all linear chains of flashlamp driven, Nd-doped glass amplifiers with a master oscillator at the front end. Techniques have been developed during this time to scale the lasers to an arbitrarily large size. A table shows the series of lasers and their parameters that have been developed to date

  11. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae).

    Science.gov (United States)

    Krahulcová, Anna; Trávnícek, Pavel; Krahulec, František; Rejmánek, Marcel

    2017-04-01

    Aesculus L. (horse chestnut, buckeye) is a genus of 12-19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. The same chromosome number, 2 n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum , confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C -1 in A. parviflora to 1·275 pg 2C -1 in A. glabra var. glabra. The chromosome number of 2 n = 40 seems to be conclusively the universal 2 n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  12. Preparation and validation of a large size dried spike: Batch SAL-9924

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Doubek, N.; Jammet, G.; Raab, W.; Zoigner, A.

    1989-12-01

    To determine uranium and plutonium concentration using isotope dilution mass spectrometry, weighed aliquands of a synthetic mixture containing 2 to 4 mg of Pu (with a 239 Pu abundance of about 97%) and 40 to 200 mg of U (with a 235 U enrichment of about 18%) can be advantageously used to spike a concentrated spent fuel solution with a high burn up and with a low 235 U enrichment. This will simplify the conditioning of the sample by 1) reduced time of preparation (from more than one day used for the conventional technique to 2-3 hours); 2) reduced burden for the operator with a clear easiness for the inspector to witness the entire procedure (accurate dilution of the spent fuel sample before spiking being no longer necessary). Furthermore this type of spike could be used as a common spike for the operator and the inspector. The source materials are available in sufficient quantity and are enough cheaper than the commonly used 233 U and 242 Pu or 244 Pu tracer that the costs of the overall Operator-Inspector procedures will be reduced. Certified Reference Materials Pu-NBL-126, natural U-NBS-960 and 93% enriched U-NBL-116 were used to prepare a stock solution containing 1.7 mg/ml of Pu and 68 mg/ml of 17.5% enriched U. Before shipment to the Reprocessing Plant, aliquands of the stock solution must be dried to give Large Size Dried Spikes which resist shocks encountered during transportation, so that they can readily be recovered quantitatively at the plant. This paper describes the preparation and the validation of the Large Size Dried Spike. Proof of usefulness in the field will be done at a later date in parallel with analysis by the conventional technique. Refs and tabs

  13. Transformation of Image Positions, Rotations, and Sizes into Shift Parameters

    DEFF Research Database (Denmark)

    Skov Jensen, A.; Lindvold, L.; Rasmussen, E.

    1987-01-01

    An optical image processing system is described that converts orientation and size to shift properties and simultaneously preserves the positional information as a shift. The system is described analytically and experimentally. The transformed image can be processed further with a classical...... correlator working with a rotational and size-invariant. multiplexed match filter. An optical robot vision system designed on this concept would be able to look at several objects simultaneously and determine their shape, size, orientation, and position with two measurements on the input scene at different...

  14. Core size effects on safety performances of LMRs

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byung Chan; Hahn, Do Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An oxide fuel small size core (1200 MWt) was analyzed in comparison with a large size core (3600 MWt) in order to evaluate the size effects on transient safety performances of liquid-metal reactors (LMRs). In the first part of the study, main static safety parameters (i.e., Doppler coefficient, sodium void effect, etc.) of the two cores were characterized, and the second part of the study was focused on the dynamic behavior of the cores in two representative transient events: the unprotected loss-of-flow (ULOF) and the unprotected transient overpower (UTOP). Margins to fuel melting and sodium boiling have been evaluated for these representative transients. Results show that the small core has a generally better or equivalent level of safety performances during these events. 6 refs., 4 figs., 2 tabs. (Author)

  15. Core size effects on safety performances of LMRs

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byung Chan; Hahn, Do Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    An oxide fuel small size core (1200 MWt) was analyzed in comparison with a large size core (3600 MWt) in order to evaluate the size effects on transient safety performances of liquid-metal reactors (LMRs). In the first part of the study, main static safety parameters (i.e., Doppler coefficient, sodium void effect, etc.) of the two cores were characterized, and the second part of the study was focused on the dynamic behavior of the cores in two representative transient events: the unprotected loss-of-flow (ULOF) and the unprotected transient overpower (UTOP). Margins to fuel melting and sodium boiling have been evaluated for these representative transients. Results show that the small core has a generally better or equivalent level of safety performances during these events. 6 refs., 4 figs., 2 tabs. (Author)

  16. Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains

    Directory of Open Access Journals (Sweden)

    Kaustav Bandyopadhyay

    2016-09-01

    Full Text Available Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA and abscisic acid (ABA ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination.

  17. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  18. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    Science.gov (United States)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423

  19. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    International Nuclear Information System (INIS)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose: To quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials: Four-dimensional Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3 cc) and motion amplitudes (3-30 mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity, and 2-year local control rate (2y-LC). Results: Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ ≈ 3 mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor 2.8 compared with a larger spot size (σ ≈ 13 mm). Using a smaller spot size to treat a tumor with 30-mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V 20 are <0.6 Gy(RBE) and <1.7%, respectively. Conclusions: For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments using smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the

  20. Large and abundant flowers increase indirect costs of corollas: a study of coflowering sympatric Mediterranean species of contrasting flower size.

    Science.gov (United States)

    Teixido, Alberto L; Valladares, Fernando

    2013-09-01

    Large floral displays receive more pollinator visits but involve higher production and maintenance costs. This can result in indirect costs which may negatively affect functions like reproductive output. In this study, we explored the relationship between floral display and indirect costs in two pairs of coflowering sympatric Mediterranean Cistus of contrasting flower size. We hypothesized that: (1) corolla production entails direct costs in dry mass, N and P, (2) corollas entail significant indirect costs in terms of fruit set and seed production, (3) indirect costs increase with floral display, (4) indirect costs are greater in larger-flowered sympatric species, and (5) local climatic conditions influence indirect costs. We compared fruit set and seed production of petal-removed flowers and unmanipulated control flowers and evaluated the influence of mean flower number and mean flower size on relative fruit and seed gain of petal-removed and control flowers. Fruit set and seed production were significantly higher in petal-removed flowers in all the studied species. A positive relationship was found between relative fruit gain and mean individual flower size within species. In one pair of species, fruit gain was higher in the large-flowered species, as was the correlation between fruit gain and mean number of open flowers. In the other pair, the correlation between fruit gain and mean flower size was also higher in the large-flowered species. These results reveal that Mediterranean environments impose significant constraints on floral display, counteracting advantages of large flowers from the pollination point of view with increased indirect costs of such flowers.

  1. The effect of cage size on reproductive performance and behavior of C57BL/6 mice.

    Science.gov (United States)

    Whitaker, Julia; Moy, Sheryl S; Saville, Benjamin R; Godfrey, Virginia; Nielsen, Judith; Bellinger, Dwight; Bradfield, John

    2007-11-01

    Scientific research has yet to conclusively determine the optimal cage size for mice. The authors examined the effect of cage size on mouse breeding performance and on offspring behavior, which can serve as indications of overall well-being. They housed breeding trios of C57BL/6Tac mice in standard or large individually ventilated cages and measured four reproductive parameters: litter size; litter survival to weaning age; average pup weight at 7, 14 and 21 days; and the number of days between litter births. They investigated the behavior of a subset of male and female pups from parents housed in cages of each size in the elevated plus maze test, the open field assay and the acoustic startle test. Cage size had no significant effect on any of the reproductive parameters measured and few or inconsistent effects on behavior in weaned pups.

  2. On the testing fast response NPP's valves of large nominal bores and high parameters

    International Nuclear Information System (INIS)

    Majorov, A.P.; Ostretsov, I.N.

    1990-01-01

    Investigation technique for valves of large norminal bores and high parameters which is based on application of simulation effect for operation and accident loadings during movement of valve lock at bench tests with medium flow rate by 100-1000 times less than during operation is given. Loading simulation technique is provided using simulator of lock loading. Investigation results are essential to make decision concerning advisability of serial production of fittings without full-scale test conducting

  3. Optimization of Performance Parameters for Large Area Silicon Photomultipliers

    Science.gov (United States)

    Janzen, Kathryn

    2008-10-01

    The goal of the GlueX experiment is to search for exotic hybrid mesons as evidence of gluonic excitations in an effort to better understand confinement. A key component of the GlueX detector is the electromagnetic barrel calorimeter (BCAL) located immediately inside a superconducting solenoid of approximately 2.5T. Because of this arrangement, traditional vacuum photomultiplier tubes (PMTs) which are affected significantly by magnetic fields cannot be used on the BCAL. The use of Silicon photomultipliers (SiPMs) as front-end detectors has been proposed. While the largest SiPMs that have been previously employed by other experiments are 1x1 mm^2, GlueX proposes to use large area SiPMs each composed of 16 - 3x3 mm^2 cells in a 4x4 array. This puts the GlueX collaboration in the unique position of driving the technology for larger area sensors. In this talk I will discuss tests done in Regina regarding performance parameters of prototype SiPM arrays delivered by SensL, a photonics research and development company based in Ireland, as well as sample 1x1 mm^2 and 3x3 mm^2 SiPMs.

  4. Application of electron beam welding to large size pressure vessels made of thick low alloy steel

    International Nuclear Information System (INIS)

    Kuri, S.; Yamamoto, M.; Aoki, S.; Kimura, M.; Nayama, M.; Takano, G.

    1993-01-01

    The authors describe the results of studies for application of the electron beam welding to the large size pressure vessels made of thick low alloy steel (ASME A533 Gr.B cl.2 and A533 Gr.A cl.1). Two major problems for applying the EBW, the poor toughness of weld metal and the equipment to weld huge pressure vessels are focused on. For the first problem, the effects of Ni content of weld metal, welding conditions and post weld heat treatment are investigated. For the second problem, an applicability of the local vacuum EBW to a large size pressure vessel made of thick plate is qualified by the construction of a 120 mm thick, 2350 mm outside diameter cylindrical model. The model was electron beam welded using local vacuum chamber and the performance of the weld joint is investigated. Based on these results, the electron beam welding has been applied to the production of a steam generator for a PWR. (author). 3 refs., 10 figs., 4 tabs

  5. Statistical inference involving binomial and negative binomial parameters.

    Science.gov (United States)

    García-Pérez, Miguel A; Núñez-Antón, Vicente

    2009-05-01

    Statistical inference about two binomial parameters implies that they are both estimated by binomial sampling. There are occasions in which one aims at testing the equality of two binomial parameters before and after the occurrence of the first success along a sequence of Bernoulli trials. In these cases, the binomial parameter before the first success is estimated by negative binomial sampling whereas that after the first success is estimated by binomial sampling, and both estimates are related. This paper derives statistical tools to test two hypotheses, namely, that both binomial parameters equal some specified value and that both parameters are equal though unknown. Simulation studies are used to show that in small samples both tests are accurate in keeping the nominal Type-I error rates, and also to determine sample size requirements to detect large, medium, and small effects with adequate power. Additional simulations also show that the tests are sufficiently robust to certain violations of their assumptions.

  6. Photosynthetic parameters and primary production, with focus on large phytoplankton, in a temperate mid-shelf ecosystem

    KAUST Repository

    Moran, Xose Anxelu G.

    2015-01-09

    Annual variability of photosynthetic parameters and primary production (PP), with a special focus on large (i.e. >2μm) phytoplankton was assessed by monthly photosynthesis-irradiance experiments at two depths of the southern Bay of Biscay continental shelf in 2003. Integrated chl a (22-198mgm-2) was moderately dominated by large cells on an annual basis. The March through May dominance of diatoms was replaced by similar shares of dinoflagellates and other flagellates during the rest of the year. Variability of photosynthetic parameters was similar for total and large phytoplankton, but stratification affected the initial slope αB [0.004-0.049mgCmg chl a-1h-1 (μmol photons m-2s-1)-1] and maximum photosynthetic rates PmB (0.1-10.7mgCmg chl a-1h-1) differently. PmB, correlated positively with αB only for the large fraction. PmB tended to respond faster to ambient irradiance than αB, which was negatively correlated with diatom abundance in the >2μm fraction. Integrated PP rates were relatively low, averaging 387 (132-892) for the total and 207 (86-629) mg C m-2d-1 for the large fraction, probably the result of inorganic nutrient limitation. Although similar mean annual contributions of large phytoplankton to total values were found for biomass and PP (~58%), water-column production to biomass ratios (2-26mgCmg chl-1d-1) and light utilization efficiency of the >2μm fraction (0.09-0.84gCg chl-1mol photons-1m2) were minimum during the spring bloom. Our results indicate that PP peaks in the area are not necessarily associated to maximum standing stocks.

  7. Photosynthetic parameters and primary production, with focus on large phytoplankton, in a temperate mid-shelf ecosystem

    KAUST Repository

    Moran, Xose Anxelu G.; Scharek, Renate

    2015-01-01

    Annual variability of photosynthetic parameters and primary production (PP), with a special focus on large (i.e. >2μm) phytoplankton was assessed by monthly photosynthesis-irradiance experiments at two depths of the southern Bay of Biscay continental shelf in 2003. Integrated chl a (22-198mgm-2) was moderately dominated by large cells on an annual basis. The March through May dominance of diatoms was replaced by similar shares of dinoflagellates and other flagellates during the rest of the year. Variability of photosynthetic parameters was similar for total and large phytoplankton, but stratification affected the initial slope αB [0.004-0.049mgCmg chl a-1h-1 (μmol photons m-2s-1)-1] and maximum photosynthetic rates PmB (0.1-10.7mgCmg chl a-1h-1) differently. PmB, correlated positively with αB only for the large fraction. PmB tended to respond faster to ambient irradiance than αB, which was negatively correlated with diatom abundance in the >2μm fraction. Integrated PP rates were relatively low, averaging 387 (132-892) for the total and 207 (86-629) mg C m-2d-1 for the large fraction, probably the result of inorganic nutrient limitation. Although similar mean annual contributions of large phytoplankton to total values were found for biomass and PP (~58%), water-column production to biomass ratios (2-26mgCmg chl-1d-1) and light utilization efficiency of the >2μm fraction (0.09-0.84gCg chl-1mol photons-1m2) were minimum during the spring bloom. Our results indicate that PP peaks in the area are not necessarily associated to maximum standing stocks.

  8. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data.

    Science.gov (United States)

    Bhaskar, Anand; Wang, Y X Rachel; Song, Yun S

    2015-02-01

    With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. © 2015 Bhaskar et al.; Published by Cold Spring Harbor Laboratory Press.

  9. HFSB-seeding for large-scale tomographic PIV in wind tunnels

    Science.gov (United States)

    Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio

    2016-12-01

    A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.

  10. Maize kernel size and texture: production parameters, quality of eggs of the laying hens and electricity intake

    OpenAIRE

    Javer Alves Vieira Filho; Edivaldo Antônio Garcia; Odivaldo José Seraphim; Elise Saori Floriano Murakami; Andréa Britto Molino; Graciene Conceição dos Santos

    2015-01-01

    The influence of maize corn size and texture on the performance parameters of laying hens and power consumption required for grinding maize corn were evaluated. The experiment was carried out on 384 Isa Brown hens, 36 weeks old, penned in a conventional aviary with 562.5 cm2 bird-1 stocking rate. The treatments were distributed in a completely randomized 2 x 3 factorial design (maize textures: flint and dent; and milling degree: fine, medium and coarse) with eight replicates of eight birds pe...

  11. When David beats Goliath: the advantage of large size in interspecific aggressive contests declines over evolutionary time.

    Directory of Open Access Journals (Sweden)

    Paul R Martin

    Full Text Available Body size has long been recognized to play a key role in shaping species interactions. For example, while small species thrive in a diversity of environments, they typically lose aggressive contests for resources with larger species. However, numerous examples exist of smaller species dominating larger species during aggressive interactions, suggesting that the evolution of traits can allow species to overcome the competitive disadvantage of small size. If these traits accumulate as lineages diverge, then the advantage of large size in interspecific aggressive interactions should decline with increased evolutionary distance. We tested this hypothesis using data on the outcomes of 23,362 aggressive interactions among 246 bird species pairs involving vultures at carcasses, hummingbirds at nectar sources, and antbirds and woodcreepers at army ant swarms. We found the advantage of large size declined as species became more evolutionarily divergent, and smaller species were more likely to dominate aggressive contests when interacting with more distantly-related species. These results appear to be caused by both the evolution of traits in smaller species that enhanced their abilities in aggressive contests, and the evolution of traits in larger species that were adaptive for other functions, but compromised their abilities to compete aggressively. Specific traits that may provide advantages to small species in aggressive interactions included well-developed leg musculature and talons, enhanced flight acceleration and maneuverability, novel fighting behaviors, and traits associated with aggression, such as testosterone and muscle development. Traits that may have hindered larger species in aggressive interactions included the evolution of morphologies for tree trunk foraging that compromised performance in aggressive contests away from trunks, and the evolution of migration. Overall, our results suggest that fundamental trade-offs, such as those

  12. Hypopigmentation Induced by Frequent Low-Fluence, Large-Spot-Size QS Nd:YAG Laser Treatments.

    Science.gov (United States)

    Wong, Yisheng; Lee, Siong See Joyce; Goh, Chee Leok

    2015-12-01

    The Q-switched 1064-nm neodymium-doped yttrium aluminum garnet (QS 1064-nm Nd:YAG) laser is increasingly used for nonablative skin rejuvenation or "laser toning" for melasma. Multiple and frequent low-fluence, large-spot-size treatments are used to achieve laser toning, and these treatments are associated with the development of macular hypopigmentation as a complication. We present a case series of three patients who developed guttate hypomelanotic macules on the face after receiving laser toning treatment with QS 1064-nm Nd:YAG.

  13. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    OpenAIRE

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Lee, William J.; Tsai, Song-Yeu; Lu, Yung-An; Liou, Jia-Jhe; Chang, Shun-Hsyung; Wang, Kang L.

    2010-01-01

    The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si) wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD). The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been d...

  14. The Interaction of C-Band Microwaves with Large Plasma Sheets

    International Nuclear Information System (INIS)

    Ding Liang; Huo Wenqing; Yang Xinjie; Xu Yuemin

    2012-01-01

    A large plasma sheet 60 cm×60 cm×2 cm in size was generated using a hollow cathode, and measurements were conducted for interactions including transmission, reflection and absorption. With different discharge parameters, plasma sheets can vary and influence microwave strength. Microwave reflection decreases when the discharge current rises, and the opposite occurs in transmission. The C-band microwave is absorbed when it is propagated through large plasma sheets at higher pressure. When plasma density and collision frequency are fitted with incident microwave frequency, a large amount of microwave energy is consumed. Reflection, transmission and absorption all exist simultaneously. Plasma sheets are an attractive alternative to microwave steering at low pressure, and the microwave reflection used in receiving radar can be altered by changing the discharge parameters.

  15. [Effect sizes, statistical power and sample sizes in "the Japanese Journal of Psychology"].

    Science.gov (United States)

    Suzukawa, Yumi; Toyoda, Hideki

    2012-04-01

    This study analyzed the statistical power of research studies published in the "Japanese Journal of Psychology" in 2008 and 2009. Sample effect sizes and sample statistical powers were calculated for each statistical test and analyzed with respect to the analytical methods and the fields of the studies. The results show that in the fields like perception, cognition or learning, the effect sizes were relatively large, although the sample sizes were small. At the same time, because of the small sample sizes, some meaningful effects could not be detected. In the other fields, because of the large sample sizes, meaningless effects could be detected. This implies that researchers who could not get large enough effect sizes would use larger samples to obtain significant results.

  16. A size dependent dynamic model for piezoelectric nanogenerators: effects of geometry, structural and environmental parameters

    Science.gov (United States)

    Sadeghzadeh, Sadegh; Farshad Mir Saeed Ghazi, Seyyed

    2018-03-01

    Piezoelectric Nanogenerator (PENG) is one of the novel energy harvester systems that recently, has been a subject of interest for researchers. By the use of nanogenerators, it’s possible to harvest different forms of energy in the environment like mechanical vibrations and generate electricity. The structure of a PENG consists of vertical arrays of nanowires between two electrodes. In this paper, dynamic analysis of a PENG is studied numerically. The modified couple stress theory which includes one length scale material parameter is used to study the size-dependent behavior of PENGs. Then, by application of a complete form of linear hybrid piezoelectric—pyroelectric equations, and using the Euler-Bernoulli beam model, the equations of motion has been derived. Generalized Differential Quadrature (GDQ) method was employed to solve the equations of motion. The effect of damping ratio, temperature rise, excitation frequency and length scale parameter was studied. It was found that the PENG voltage maximizes at the resonant frequency of nanowire. The temperature rise has a significant effect on PENG’s efficiency. When temperature increases about 10 {{K}}, the maximum voltage increases about 26%. Increasing the damping ratio, the maximum voltage decreases gradually.

  17. Container size influences snack food intake independently of portion size.

    Science.gov (United States)

    Marchiori, David; Corneille, Olivier; Klein, Olivier

    2012-06-01

    While larger containers have been found to increase food intake, it is unclear whether this effect is driven by container size, portion size, or their combination, as these variables are usually confounded. The study was advertised as examining the effects of snack food consumption on information processing and participants were served M&M's for free consumption in individual cubicles while watching a TV show. Participants were served (1) a medium portion of M&M's in a small (n=30) or (2) in a large container (n=29), or (3) a large portion in a large container (n=29). The larger container increased intake by 129% (199 kcal) despite holding portion size constant, while controlling for different confounding variables. This research suggests that larger containers stimulate food intake over and above their impact on portion size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    Science.gov (United States)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  19. Analysis of a large number of clinical studies for breast cancer radiotherapy: estimation of radiobiological parameters for treatment planning

    International Nuclear Information System (INIS)

    Guerrero, M; Li, X Allen

    2003-01-01

    Numerous studies of early-stage breast cancer treated with breast conserving surgery (BCS) and radiotherapy (RT) have been published in recent years. Both external beam radiotherapy (EBRT) and/or brachytherapy (BT) with different fractionation schemes are currently used. The present RT practice is largely based on empirical experience and it lacks a reliable modelling tool to compare different RT modalities or to design new treatment strategies. The purpose of this work is to derive a plausible set of radiobiological parameters that can be used for RT treatment planning. The derivation is based on existing clinical data and is consistent with the analysis of a large number of published clinical studies on early-stage breast cancer. A large number of published clinical studies on the treatment of early breast cancer with BCS plus RT (including whole breast EBRT with or without a boost to the tumour bed, whole breast EBRT alone, brachytherapy alone) and RT alone are compiled and analysed. The linear quadratic (LQ) model is used in the analysis. Three of these clinical studies are selected to derive a plausible set of LQ parameters. The potential doubling time is set a priori in the derivation according to in vitro measurements from the literature. The impact of considering lower or higher T pot is investigated. The effects of inhomogeneous dose distributions are considered using clinically representative dose volume histograms. The derived LQ parameters are used to compare a large number of clinical studies using different regimes (e.g., RT modality and/or different fractionation schemes with different prescribed dose) in order to validate their applicability. The values of the equivalent uniform dose (EUD) and biologically effective dose (BED) are used as a common metric to compare the biological effectiveness of each treatment regime. We have obtained a plausible set of radiobiological parameters for breast cancer. This set of parameters is consistent with in vitro

  20. Seed size effects on the response of seedlings of Acacia asak (Forssk.) Willd to water stress

    International Nuclear Information System (INIS)

    El Atta, H.A.; Areef, I.M.; Ahmed, A.I.

    2016-01-01

    Dry tropical forests are characterized by unpredictable spells of drought and climate change. Saudi Arabia mostly falls within the arid zone and some few scattered areas fall in the semiarid zone mainly in the South Western region. Rainfall is sparse and with sporadic distribution. Drought is the most critical factor for restoration of the tree cover. Within a tree, seeds vary in size from large to small seeds. Although several researchers have studied the effect of within species variation in seed size on seedlings growth parameters, however there is a lack of knowledge regarding the effect of seed size on stress tolerance (Khurana and Singh 2000). We assumed that seedlings grown from different seed sizes from the same tree species may influence their response to water stress. Seeds of Acacia asak (Forssk.) Willd. were categorized into large, medium and small seeds on the basis of the seed weight. Seedlings from the three seed sizes were grown in potted soil and subjected to 5 levels of field water capacity (FC) (100, 75, 50, 25 and 15 percent) in the greenhouse. The Objective was to evaluate the response of seedling grown (from different seed sizes) to water stress and to understand the acclimation of seedlings to water stress. Water stress significantly reduced RWC, leaf area, and shoot length, fresh and dry weight. Significant correlations between growth parameters and water stress level were recorded. Seedlings from large seeds were heavier and comparatively less affected by drought compared to seedlings from smaller seeds. In all seedlings root length increased significantly and more biomass was allocated to roots than to shoots. However, at severe water stress (15 percent FC) no significant differences were reported between the three seedling categories. Therefore, raising of seedlings from large seeds is more appropriate for tree restoration programs under drought conditions. (author)

  1. Autologous chondrocyte implantation: Is it likely to become a saviour of large-sized and full-thickness cartilage defect in young adult knee?

    Science.gov (United States)

    Zhang, Chi; Cai, You-Zhi; Lin, Xiang-Jin

    2016-05-01

    A literature review of the first-, second- and third-generation autologous chondrocyte implantation (ACI) technique for the treatment of large-sized (>4 cm(2)) and full-thickness knee cartilage defects in young adults was conducted, examining the current literature on features, clinical scores, complications, magnetic resonance image (MRI) and histological outcomes, rehabilitation and cost-effectiveness. A literature review was carried out in the main medical databases to evaluate the several studies concerning ACI treatment of large-sized and full-thickness knee cartilage defects in young adults. ACI technique has been shown to relieve symptoms and improve functional assessment in large-sized (>4 cm(2)) and full-thickness knee articular cartilage defect of young adults in short- and medium-term follow-up. Besides, low level of evidence demonstrated its efficiency and durability at long-term follow-up after implantation. Furthermore, MRI and histological evaluations provided the evidence that graft can return back to the previous nearly normal cartilage via ACI techniques. Clinical outcomes tend to be similar in different ACI techniques, but with simplified procedure, low complication rate and better graft quality in the third-generation ACI technique. ACI based on the experience of cell-based therapy, with the high potential to regenerate hyaline-like tissue, represents clinical development in treatment of large-sized and full-thickness knee cartilage defects. IV.

  2. Sample size planning for composite reliability coefficients: accuracy in parameter estimation via narrow confidence intervals.

    Science.gov (United States)

    Terry, Leann; Kelley, Ken

    2012-11-01

    Composite measures play an important role in psychology and related disciplines. Composite measures almost always have error. Correspondingly, it is important to understand the reliability of the scores from any particular composite measure. However, the point estimates of the reliability of composite measures are fallible and thus all such point estimates should be accompanied by a confidence interval. When confidence intervals are wide, there is much uncertainty in the population value of the reliability coefficient. Given the importance of reporting confidence intervals for estimates of reliability, coupled with the undesirability of wide confidence intervals, we develop methods that allow researchers to plan sample size in order to obtain narrow confidence intervals for population reliability coefficients. We first discuss composite reliability coefficients and then provide a discussion on confidence interval formation for the corresponding population value. Using the accuracy in parameter estimation approach, we develop two methods to obtain accurate estimates of reliability by planning sample size. The first method provides a way to plan sample size so that the expected confidence interval width for the population reliability coefficient is sufficiently narrow. The second method ensures that the confidence interval width will be sufficiently narrow with some desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for the population reliability coefficient will be less than W units wide). The effectiveness of our methods was verified with Monte Carlo simulation studies. We demonstrate how to easily implement the methods with easy-to-use and freely available software. ©2011 The British Psychological Society.

  3. Uniformity studies in large area triple-GEM based detectors

    Energy Technology Data Exchange (ETDEWEB)

    Akl, M. Abi [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar); Bouhali, O., E-mail: othmane.bouhali@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar); Qatar Computing Research Institute, Hamad Bin Khalifa University, PO Box 5825, Doha (Qatar); Castaneda, A.; Maghrbi, Y.; Mohamed, T. [Science Program, Texas A& M University at Qatar, PO Box 23874, Doha (Qatar)

    2016-10-01

    Gas Electron Multiplier (GEM) based detectors have been used in many applications since their introduction in 1997. Large areas, e.g. exceeding 30×30 cm{sup 2}, of GEM detectors are foreseen in future experiments which puts stringent requirements on the uniformity of response across the detection area. We investigate the effect of small variations of several parameters that could affect the uniformity. Parameters such as the anode pitch, the gas gap, the size and the shape of the holes are investigated. Simulation results are presented and compared to previous experimental data.

  4. Large-size space debris flyby in low earth orbits

    Science.gov (United States)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total

  5. Maize kernel size and texture: production parameters, quality of eggs of the laying hens and electricity intake

    Directory of Open Access Journals (Sweden)

    Javer Alves Vieira Filho

    2015-08-01

    Full Text Available The influence of maize corn size and texture on the performance parameters of laying hens and power consumption required for grinding maize corn were evaluated. The experiment was carried out on 384 Isa Brown hens, 36 weeks old, penned in a conventional aviary with 562.5 cm2 bird-1 stocking rate. The treatments were distributed in a completely randomized 2 x 3 factorial design (maize textures: flint and dent; and milling degree: fine, medium and coarse with eight replicates of eight birds per plot. Data were evaluated with SISVAR and means were compared by Tukey’s test at 5% probability. Difference was reported for the variable texture and flint increased the variables feed intake and egg weight. Significant difference in the characteristics of egg quality occurred only for the colorof the yolk. Larger corn sizes consumed less electricity during grinding. The maize flint cultivar had a lower 31.7% power consumption when compared to that of the dent cultivar.

  6. Methods for Evaluating the Temperature Structure-Function Parameter Using Unmanned Aerial Systems and Large-Eddy Simulation

    Science.gov (United States)

    Wainwright, Charlotte E.; Bonin, Timothy A.; Chilson, Phillip B.; Gibbs, Jeremy A.; Fedorovich, Evgeni; Palmer, Robert D.

    2015-05-01

    Small-scale turbulent fluctuations of temperature are known to affect the propagation of both electromagnetic and acoustic waves. Within the inertial-subrange scale, where the turbulence is locally homogeneous and isotropic, these temperature perturbations can be described, in a statistical sense, using the structure-function parameter for temperature, . Here we investigate different methods of evaluating , using data from a numerical large-eddy simulation together with atmospheric observations collected by an unmanned aerial system and a sodar. An example case using data from a late afternoon unmanned aerial system flight on April 24 2013 and corresponding large-eddy simulation data is presented and discussed.

  7. Study of large size fiber reinforced cement containers for solid wastes from dismantling

    International Nuclear Information System (INIS)

    Jaouen, C.

    1990-01-01

    The production of large-sized metallic waste by dismantling operations, and the evolution of the specifications of the waste to be stored in the different European countries will create a need for large standard containers for the transport and final disposal of the corresponding waste. The research conducted during the 1984-1988 programme, supported by the Commission of European Communities, and based on a comparative study of high-grade concrete materials, reinforced with organic or metallic fibres, led to the development of a high performance container meeting international transport recommendations as well as French requirements for shallow-ground disposal. The material selected, consisting of high-performance mortar with metal fibre reinforcement, was the subject of an intensive programme of characterization tests conducted in close cooperation with LAFARGE Company, demonstrating the achievement of mechanical and physical properties comfortably above the regulatory requirements. The construction of an industrial prototype and the subsequent economic analysis served to guarantee the industrial feasibility and cost of this system, in which attempts were made to optimize the finished package product, including its closure system

  8. Flow induced vibration of the large-sized sodium valve for MONJU

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K [Sodium Engineering Division, O-arai Engineering Centre, Power Reactor and Nuclear Fuel Development Corporation, Nariata-cho, O-arai Machi, Ibaraki-ken (Japan)

    1977-12-01

    Measurements have been made on the hydraulic characteristics of the large-sized sodium valves in the hydraulic simulation test loop with water as fluid. The following three prototype sodium valves were tested; (1) 22-inch wedge gate type isolation valve, (2) 22-inch butterfly type isolation valve, and (3) 16-inch butterfly type control valve. In the test, accelerations of flow induced vibrations were measured as a function of flow velocity and disk position. The excitation mechanism of the vibrations is not fully interpreted in these tests due to the complexity of the phenomena, but the experimental results suggest that it closely depends on random pressure fluctuations near the valve disk and flow separation at the contracted cross section between the valve seat and the disk. The intensity of flow induced vibrations suddenly increases at a certain critical condition, which depends on the type of valve and is proportional to fluid velocity. (author)

  9. Flow induced vibration of the large-sized sodium valve for MONJU

    International Nuclear Information System (INIS)

    Sato, K.

    1977-01-01

    Measurements have been made on the hydraulic characteristics of the large-sized sodium valves in the hydraulic simulation test loop with water as fluid. The following three prototype sodium valves were tested; (1) 22-inch wedge gate type isolation valve, (2) 22-inch butterfly type isolation valve, and (3) 16-inch butterfly type control valve. In the test, accelerations of flow induced vibrations were measured as a function of flow velocity and disk position. The excitation mechanism of the vibrations is not fully interpreted in these tests due to the complexity of the phenomena, but the experimental results suggest that it closely depends on random pressure fluctuations near the valve disk and flow separation at the contracted cross section between the valve seat and the disk. The intensity of flow induced vibrations suddenly increases at a certain critical condition, which depends on the type of valve and is proportional to fluid velocity. (author)

  10. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts

    International Nuclear Information System (INIS)

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-01-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0–2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. - Highlights: • Dust particle size distributions had large differences for varying origins. • Dust originating from Taklimakan Desert was finer than that from Gobi Desert. • Effect of dust on the supermicron particles was obvious. • PM_1_0 concentrations increased by a factor of 3.4–25.6 during the dust event. - Dust particle size distributions had large differences for varying origins, which may be also related to other factors such as mixing between dust and urban emissions.

  11. Upper bounds on ε{sup ′}/ε parameters B{sub 6}{sup (1/2)} and B{sub 8}{sup (3/2)} from large N QCD and other news

    Energy Technology Data Exchange (ETDEWEB)

    Buras, Andrzej J. [TUM Institute for Advanced Study,Lichtenbergstr. 2a, D-85748 Garching (Germany); Physik Department, TU München,James-Franck-Straße, D-85748 Garching (Germany); Gérard, Jean-Marc [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)

    2015-12-01

    We demonstrate that in the large N approach developed by the authors in collaboration with Bardeen, the parameters B{sub 6}{sup (1/2)} and B{sub 8}{sup (3/2)} parametrizing the K→ππ matrix elements 〈Q{sub 6}〉{sub 0} and 〈Q{sub 8}〉{sub 2} of the dominant QCD and electroweak operators receive both negativeO(1/N) corrections such that B{sub 6}{sup (1/2)}≤B{sub 8}{sup (3/2)}<1 in agreement with the recent lattice results of the RBC-UKQCD collaboration. We also point out that the pattern of the size of the hadronic matrix elements of all QCD and electroweak penguin operators Q{sub i} contributing to the K→ππ amplitudes A{sub 0} and A{sub 2}, obtained by this lattice collaboration, provides further support to our large N approach. In particular, the lattice result for the matrix element 〈Q{sub 8}〉{sub 0} implies for the corresponding parameter B{sub 8}{sup (1/2)}=1.0±0.2 to be compared with large N value B{sub 8}{sup (1/2)}=1.1±0.1. We discuss briefly the implications of these findings for the ratio ε{sup ′}/ε. In fact, with the precise value for B{sub 8}{sup (3/2)} from RBC-UKQCD collaboration, our upper bound on B{sub 6}{sup (1/2)} implies ε{sup ′}/ε in the SM roughly by a factor of two below its experimental value (16.6±2.3)×10{sup −4}. We also briefly comment on the parameter B̂{sub K} and the ΔI=1/2 rule.

  12. Technology for Obtaining Large Size Complex Oxide Crystals for Experiments on Muon-Electron Conversion Registration in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Gerasymov, Ya.

    2014-11-01

    Full Text Available Technological approaches for qualitative large size scintillation crystals growing based on rare-earth silicates are proposed. A method of iridium crucibles charging using eutectic phase instead of a oxyorthosilicate was developed.

  13. Growing vertical ZnO nanorod arrays within graphite: efficient isolation of large size and high quality single-layer graphene.

    Science.gov (United States)

    Ding, Ling; E, Yifeng; Fan, Louzhen; Yang, Shihe

    2013-07-18

    We report a unique strategy for efficiently exfoliating large size and high quality single-layer graphene directly from graphite into DMF dispersions by growing ZnO nanorod arrays between the graphene layers in graphite.

  14. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini).

    Science.gov (United States)

    Streinzer, Martin; Huber, Werner; Spaethe, Johannes

    2016-10-01

    Stingless bees constitute a species-rich tribe of tropical and subtropical eusocial Apidae that act as important pollinators for flowering plants. Many foraging tasks rely on vision, e.g. spatial orientation and detection of food sources and nest entrances. Meliponini workers are usually small, which sets limits on eye morphology and thus quality of vision. Limitations are expected both on acuity, and thus on the ability to detect objects from a distance, as well as on sensitivity, and thus on the foraging time window at dusk and dawn. In this study, we determined light intensity thresholds for flight under dim light conditions in eight stingless bee species in relation to body size in a Neotropical lowland rainforest. Species varied in body size (0.8-1.7 mm thorax-width), and we found a strong negative correlation with light intensity thresholds (0.1-79 lx). Further, we measured eye size, ocelli diameter, ommatidia number, and facet diameter. All parameters significantly correlated with body size. A disproportionately low light intensity threshold in the minute Trigonisca pipioli, together with a large eye parameter P eye suggests specific adaptations to circumvent the optical constraints imposed by the small body size. We discuss the implications of body size in bees on foraging behavior.

  15. The effects of parameter estimation on minimizing the in-control average sample size for the double sampling X bar chart

    Directory of Open Access Journals (Sweden)

    Michael B.C. Khoo

    2013-11-01

    Full Text Available The double sampling (DS X bar chart, one of the most widely-used charting methods, is superior for detecting small and moderate shifts in the process mean. In a right skewed run length distribution, the median run length (MRL provides a more credible representation of the central tendency than the average run length (ARL, as the mean is greater than the median. In this paper, therefore, MRL is used as the performance criterion instead of the traditional ARL. Generally, the performance of the DS X bar chart is investigated under the assumption of known process parameters. In practice, these parameters are usually estimated from an in-control reference Phase-I dataset. Since the performance of the DS X bar chart is significantly affected by estimation errors, we study the effects of parameter estimation on the MRL-based DS X bar chart when the in-control average sample size is minimised. This study reveals that more than 80 samples are required for the MRL-based DS X bar chart with estimated parameters to perform more favourably than the corresponding chart with known parameters.

  16. The effect of continuous grouping of pigs in large groups on stress response and haematological parameters

    DEFF Research Database (Denmark)

    Damgaard, Birthe Marie; Studnitz, Merete; Jensen, Karin Hjelholt

    2009-01-01

    The consequences of an ‘all in-all out' static group of uniform age vs. a continuously dynamic group with litter introduction and exit every third week were examined with respect to stress response and haematological parameters in large groups of 60 pigs. The experiment included a total of 480 pigs...... from weaning at the age of 4 weeks to the age of 18 weeks after weaning. Limited differences were found in stress and haematological parameters between pigs in dynamic and static groups. The cortisol response to the stress test was increasing with the duration of the stress test in pigs from...... the dynamic group while it was decreasing in the static group. The health condition and the growth performance were reduced in the dynamic groups compared with the static groups. In the dynamic groups the haematological parameters indicated an activation of the immune system characterised by an increased...

  17. Adjusting parameters of aortic valve stenosis severity by body size

    DEFF Research Database (Denmark)

    Minners, Jan; Gohlke-Baerwolf, Christa; Kaufmann, Beat A

    2014-01-01

    stenosis (jet velocity ≥2.5 m/s) and related to outcomes in a second cohort of 1525 patients from the Simvastatin/Ezetimibe in Aortic Stenosis (SEAS) study. RESULTS: Whereas jet velocity and MPG were independent of body size, AVA was significantly correlated with height, weight, BSA and BMI (Pearson...... correlation coefficient (r) 0.319, 0.281, 0.317 and 0.126, respectively, all pcorrelation between AVA and body size...

  18. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.

    Science.gov (United States)

    Papes, Martin; Cheben, Pavel; Benedikovic, Daniel; Schmid, Jens H; Pond, James; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, Gonzalo; Ye, Winnie N; Xu, Dan-Xia; Janz, Siegfried; Dado, Milan; Vašinek, Vladimír

    2016-03-07

    Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO 2 upper cladding thin high-index Si 3 N 4 layers. The Si 3 N 4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.

  19. Development of high sensitivity and high speed large size blank inspection system LBIS

    Science.gov (United States)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  20. A new type of intelligent wireless sensing network for health monitoring of large-size structures

    Science.gov (United States)

    Lei, Ying; Liu, Ch.; Wu, D. T.; Tang, Y. L.; Wang, J. X.; Wu, L. J.; Jiang, X. D.

    2009-07-01

    In recent years, some innovative wireless sensing systems have been proposed. However, more exploration and research on wireless sensing systems are required before wireless systems can substitute for the traditional wire-based systems. In this paper, a new type of intelligent wireless sensing network is proposed for the heath monitoring of large-size structures. Hardware design of the new wireless sensing units is first studied. The wireless sensing unit mainly consists of functional modules of: sensing interface, signal conditioning, signal digitization, computational core, wireless communication and battery management. Then, software architecture of the unit is introduced. The sensing network has a two-level cluster-tree architecture with Zigbee communication protocol. Important issues such as power saving and fault tolerance are considered in the designs of the new wireless sensing units and sensing network. Each cluster head in the network is characterized by its computational capabilities that can be used to implement the computational methodologies of structural health monitoring; making the wireless sensing units and sensing network have "intelligent" characteristics. Primary tests on the measurement data collected by the wireless system are performed. The distributed computational capacity of the intelligent sensing network is also demonstrated. It is shown that the new type of intelligent wireless sensing network provides an efficient tool for structural health monitoring of large-size structures.

  1. Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis

    Science.gov (United States)

    Priour, D. J.

    2014-01-01

    The percolation threshold for flow or conduction through voids surrounding randomly placed spheres is calculated. With large-scale Monte Carlo simulations, we give a rigorous continuum treatment to the geometry of the impenetrable spheres and the spaces between them. To properly exploit finite-size scaling, we examine multiple systems of differing sizes, with suitable averaging over disorder, and extrapolate to the thermodynamic limit. An order parameter based on the statistical sampling of stochastically driven dynamical excursions and amenable to finite-size scaling analysis is defined, calculated for various system sizes, and used to determine the critical volume fraction ϕc=0.0317±0.0004 and the correlation length exponent ν =0.92±0.05.

  2. Steady-state plasma and reactor parameters for elliptical cross section tokamaks with very large power ratings

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.

    1975-06-01

    In previous studies only circular cross section reactor plasmas were considered. The purpose of this research is to examine the effects of elliptical plasma cross sections. Several technological benefits have been determined. Maximum magnetic field strength requirements are 30 to 65 percent less than for 5000 MW (th) reactors and may be as much as 40 percent less than for circular cross section reactors of comparable size. Very large n tau values are found (10 15 to 10 17 sec/cm 3 ), which produce large burn-up fractions (15 to 60 percent). There is relatively little problem with impurity build-up. Long confinement times (60 to 500 seconds) are found. Finally, the elliptical cross section reactors exhibit a major toroidal radius reduction of as large as 30 percent over circular reactors operating at comparable power levels

  3. A modified approach to estimating sample size for simple logistic regression with one continuous covariate.

    Science.gov (United States)

    Novikov, I; Fund, N; Freedman, L S

    2010-01-15

    Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.

  4. Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin

    Directory of Open Access Journals (Sweden)

    Li Ke

    2014-12-01

    Full Text Available A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.

  5. A preliminary investigation of the design parameters of an air induction nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Vashahi, Foad; Ra, Sothea; Lee, Jeekeun [Chonbuk National University, Jeonju (Korea, Republic of); Choi, Yong [National Academy of Agricultural Science, Wanju (Korea, Republic of)

    2017-07-15

    In the present study, an experimental study on design parameters of an air induction nozzle was performed. These nozzles are capable of producing large size droplets, including microbubbles, which in turn results in high drift reduction. A magnified 2D version of an air induction nozzle was designed and manufactured. The manufactured geometries have the ability to be disassembled easily, thus several geometrical parameters are replaced sequentially. The effects of a venturi throat, air orifices and discharge orifice diameters along with the length of the mixing chamber are analyzed. Analysis of the parameters revealed their strength of prediction on the air liquid ratio and the nozzle performance.

  6. Evolution of A-Type Macrosegregation in Large Size Steel Ingot After Multistep Forging and Heat Treatment

    Science.gov (United States)

    Loucif, Abdelhalim; Ben Fredj, Emna; Harris, Nathan; Shahriari, Davood; Jahazi, Mohammad; Lapierre-Boire, Louis-Philippe

    2018-06-01

    A-type macrosegregation refers to the channel chemical heterogeneities that can be formed during solidification in large size steel ingots. In this research, a combination of experiment and simulation was used to study the influence of open die forging parameters on the evolution of A-type macrosegregation patterns during a multistep forging of a 40 metric ton (MT) cast, high-strength steel ingot. Macrosegregation patterns were determined experimentally by macroetch along the longitudinal axis of the forged and heat-treated ingot. Mass spectroscopy, on more than 900 samples, was used to determine the chemical composition map of the entire longitudinal sectioned surface. FORGE NxT 1.1 finite element modeling code was used to predict the effect of forging sequences on the morphology evolution of A-type macrosegregation patterns. For this purpose, grain flow variables were defined and implemented in a large scale finite element modeling code to describe oriented grains and A-type segregation patterns. Examination of the A-type macrosegregation showed four to five parallel continuous channels located nearly symmetrical to the axis of the forged ingot. In some regions, the A-type patterns became curved or obtained a wavy form in contrast to their straight shape in the as-cast state. Mass spectrometry analysis of the main alloying elements (C, Mn, Ni, Cr, Mo, Cu, P, and S) revealed that carbon, manganese, and chromium were the most segregated alloying elements in A-type macrosegregation patterns. The observed differences were analyzed using thermodynamic calculations, which indicated that changes in the chemical composition of the liquid metal can affect the primary solidification mode and the segregation intensity of the alloying elements. Finite element modeling simulation results showed very good agreement with the experimental observations, thereby allowing for the quantification of the influence of temperature and deformation on the evolution of the shape of the

  7. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    International Nuclear Information System (INIS)

    Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.

    1989-01-01

    We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic

  8. What Makes Jessica Rabbit Sexy? Contrasting Roles of Waist and Hip Size

    Directory of Open Access Journals (Sweden)

    William D. Lassek

    2016-04-01

    Full Text Available While waist/hip ratio (WHR and body mass index (BMI have been the most studied putative determinants of female bodily attractiveness, BMI is not directly observable, and few studies have considered the independent roles of waist and hip size. The range of attractiveness in many studies is also quite limited, with none of the stimuli rated as highly attractive. To explore the relationships of these anthropometric parameters with attractiveness across a much broader spectrum of attractiveness, we employ three quite different samples: a large sample of college women, a larger sample of Playboy Playmates of the Month than that has been previously examined, and a large pool of imaginary women (e.g., cartoon, video game, graphic novel characters chosen as the “most attractive” by university students. Within-sample and between-sample comparisons agree in indicating that waist size is the key determinant of female bodily attractiveness and accounts for the relationship of both BMI and WHR with attractiveness, with between-sample effect sizes of 2.4–3.2. In contrast, hip size is much more similar across attractiveness groups and is unrelated to attractiveness when BMI or waist size is controlled.

  9. Resolution 8.069/12. It approve the regulations for the large size structures installation, destined for wind power generation

    International Nuclear Information System (INIS)

    2012-01-01

    This resolution approve the regulations for the large size structures installation, destined to wind power generation. The objective of this rule is to regulate the urban conditions of the facilities and the environmental guarantees, safety and inhabitants wholesomeness

  10. Analysis of Modeling Parameters on Threaded Screws.

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  11. Ecosystem size structure response to 21st century climate projection: large fish abundance decreases in the central North Pacific and increases in the California Current.

    Science.gov (United States)

    Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Dunne, John P; Blanchard, Julia L

    2013-03-01

    Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupled climate model with a biogeochemical model including major nutrients, three phytoplankton functional groups, and zooplankton grazing. The size-based food web model includes linkages between two size-structured pelagic communities: primary producers and consumers. Our investigation focuses on seven sites in the North Pacific, each highlighting a specific aspect of projected climate change, and includes top-down ecosystem depletion through fishing. We project declines in large fish abundance ranging from 0 to 75.8% in the central North Pacific and increases of up to 43.0% in the California Current (CC) region over the 21st century in response to change in phytoplankton size structure and direct physiological effects. We find that fish abundance is especially sensitive to projected changes in large phytoplankton density and our model projects changes in the abundance of large fish being of the same order of magnitude as changes in the abundance of large phytoplankton. Thus, studies that address only climate-induced impacts to primary production without including changes to phytoplankton size structure may not adequately project ecosystem responses. © 2012 Blackwell Publishing Ltd.

  12. Reducing process delays for real-time earthquake parameter estimation - An application of KD tree to large databases for Earthquake Early Warning

    Science.gov (United States)

    Yin, Lucy; Andrews, Jennifer; Heaton, Thomas

    2018-05-01

    Earthquake parameter estimations using nearest neighbor searching among a large database of observations can lead to reliable prediction results. However, in the real-time application of Earthquake Early Warning (EEW) systems, the accurate prediction using a large database is penalized by a significant delay in the processing time. We propose to use a multidimensional binary search tree (KD tree) data structure to organize large seismic databases to reduce the processing time in nearest neighbor search for predictions. We evaluated the performance of KD tree on the Gutenberg Algorithm, a database-searching algorithm for EEW. We constructed an offline test to predict peak ground motions using a database with feature sets of waveform filter-bank characteristics, and compare the results with the observed seismic parameters. We concluded that large database provides more accurate predictions of the ground motion information, such as peak ground acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, such as hypocenter distance. Application of the KD tree search to organize the database reduced the average searching process by 85% time cost of the exhaustive method, allowing the method to be feasible for real-time implementation. The algorithm is straightforward and the results will reduce the overall time of warning delivery for EEW.

  13. Displacement in the parameter space versus spurious solution of discretization with large time step

    International Nuclear Information System (INIS)

    Mendes, Eduardo; Letellier, Christophe

    2004-01-01

    In order to investigate a possible correspondence between differential and difference equations, it is important to possess discretization of ordinary differential equations. It is well known that when differential equations are discretized, the solution thus obtained depends on the time step used. In the majority of cases, such a solution is considered spurious when it does not resemble the expected solution of the differential equation. This often happens when the time step taken into consideration is too large. In this work, we show that, even for quite large time steps, some solutions which do not correspond to the expected ones are still topologically equivalent to solutions of the original continuous system if a displacement in the parameter space is considered. To reduce such a displacement, a judicious choice of the discretization scheme should be made. To this end, a recent discretization scheme, based on the Lie expansion of the original differential equations, proposed by Monaco and Normand-Cyrot will be analysed. Such a scheme will be shown to be sufficient for providing an adequate discretization for quite large time steps compared to the pseudo-period of the underlying dynamics

  14. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VI. EROSION OF LARGE AGGREGATES AS A SOURCE OF MICROMETER-SIZED PARTICLES

    International Nuclear Information System (INIS)

    Schraepler, Rainer; Blum, Juergen

    2011-01-01

    Observed protoplanetary disks consist of a large amount of micrometer-sized particles. Dullemond and Dominik pointed out for the first time the difficulty in explaining the strong mid-infrared excess of classical T Tauri stars without any dust-retention mechanisms. Because high relative velocities in between micrometer-sized and macroscopic particles exist in protoplanetary disks, we present experimental results on the erosion of macroscopic agglomerates consisting of micrometer-sized spherical particles via the impact of micrometer-sized particles. We find that after an initial phase, in which an impacting particle erodes up to 10 particles of an agglomerate, the impacting particles compress the agglomerate's surface, which partly passivates the agglomerates against erosion. Due to this effect, the erosion halts for impact velocities up to ∼30 m s -1 within our error bars. For higher velocities, the erosion is reduced by an order of magnitude. This outcome is explained and confirmed by a numerical model. In a next step, we build an analytical disk model and implement the experimentally found erosive effect. The model shows that erosion is a strong source of micrometer-sized particles in a protoplanetary disk. Finally, we use the stationary solution of this model to explain the amount of micrometer-sized particles in the observational infrared data of Furlan et al.

  15. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor

    International Nuclear Information System (INIS)

    Li Zhi-Ming; Jiang Hai-Ying; Han Yan-Bin; Li Jin-Ping; Yin Jian-Qin; Zhang Jin-Cheng

    2012-01-01

    The effect of coil location on wafer temperature is analyzed in a vertical MOCVD reactor by induction heating. It is observed that the temperature distribution in the wafer with the coils under the graphite susceptor is more uniform than that with the coils around the outside wall of the reactor. For the case of coils under the susceptor, we find that the thickness of the susceptor, the distance from the coils to the susceptor bottom and the coil turns significantly affect the temperature uniformity of the wafer. An optimization process is executed for a 3-inch susceptor with this kind of structure, resulting in a large improvement in the temperature uniformity. A further optimization demonstrates that the new susceptor structure is also suitable for either multiple wafers or large-sized wafers approaching 6 and 8 inches

  16. Large-area landslide susceptibility with optimized slope-units

    Science.gov (United States)

    Alvioli, Massimiliano; Marchesini, Ivan; Reichenbach, Paola; Rossi, Mauro; Ardizzone, Francesca; Fiorucci, Federica; Guzzetti, Fausto

    2017-04-01

    A Slope-Unit (SU) is a type of morphological terrain unit bounded by drainage and divide lines that maximize the within-unit homogeneity and the between-unit heterogeneity across distinct physical and geographical boundaries [1]. Compared to other terrain subdivisions, SU are morphological terrain unit well related to the natural (i.e., geological, geomorphological, hydrological) processes that shape and characterize natural slopes. This makes SU easily recognizable in the field or in topographic base maps, and well suited for environmental and geomorphological analysis, in particular for landslide susceptibility (LS) modelling. An optimal subdivision of an area into a set of SU depends on multiple factors: size and complexity of the study area, quality and resolution of the available terrain elevation data, purpose of the terrain subdivision, scale and resolution of the phenomena for which SU are delineated. We use the recently developed r.slopeunits software [2,3] for the automatic, parametric delineation of SU within the open source GRASS GIS based on terrain elevation data and a small number of user-defined parameters. The software provides subdivisions consisting of SU with different shapes and sizes, as a function of the input parameters. In this work, we describe a procedure for the optimal selection of the user parameters through the production of a large number of realizations of the LS model. We tested the software and the optimization procedure in a 2,000 km2 area in Umbria, Central Italy. For LS zonation we adopt a logistic regression model implemented in an well-known software [4,5], using about 50 independent variables. To select the optimal SU partition for LS zonation, we want to define a metric which is able to quantify simultaneously: (i) slope-unit internal homogeneity (ii) slope-unit external heterogeneity (iii) landslide susceptibility model performance. To this end, we define a comprehensive objective function S, as the product of three

  17. The limits of weak selection and large population size in evolutionary game theory.

    Science.gov (United States)

    Sample, Christine; Allen, Benjamin

    2017-11-01

    Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the [Formula: see text] limit, in which weak selection is applied before the large population limit, and the [Formula: see text] limit, in which the order is reversed. Formal mathematical definitions of the [Formula: see text] and [Formula: see text] limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the [Formula: see text] and [Formula: see text] limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.

  18. Reproductive potential of Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) in the laboratory: effect of multiple couples and the size.

    Science.gov (United States)

    Specht, A; Montezano, D G; Sosa-Gómez, D R; Paula-Moraes, S V; Roque-Specht, V F; Barros, N M

    2016-06-01

    This study aimed to evaluate the effect of keeping three couples in the same cage, and the size of adults emerged from small, medium-sized and large pupae (278.67 mg; 333.20 mg and 381.58 mg, respectively), on the reproductive potential of S. eridania (Stoll, 1782) adults, under controlled conditions (25 ± 1 °C, 70% RH and 14 hour photophase). We evaluated the survival, number of copulations, fecundity and fertility of the adult females. The survival of females from these different pupal sizes did not differ statistically, but the survival of males from large pupae was statistically shorter than from small pupae. Fecundity differed significantly and correlated positively with size. The number of effective copulations (espematophores) and fertility did not vary significantly with pupal size. Our results emphasize the importance of indicating the number of copulations and the size of the insects when reproductive parameters are compared.

  19. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Science.gov (United States)

    2010-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... WATER REGULATIONS Control of Lead and Copper § 141.81 Applicability of corrosion control treatment steps...). (ii) A report explaining the test methods used by the water system to evaluate the corrosion control...

  20. Preliminary approach on early post mortem stress and quality indexes changes in large size bluefin tuna (Thunnus thynnus

    Directory of Open Access Journals (Sweden)

    R. Ugolini

    2010-01-01

    Full Text Available Bluefin tuna (Thunnus thynnus is very appreciated on Japan and USA market for the preparation of sushi and sahimi. The market price of the fresh product can vary from 8 to 33 Euro/kg (gate farm/producers prices according to size, shape, fat level, meat colour, consistency and freshness (absence of “hyake”, all parameters strictly connected to feeding quality and quantity, rearing and killing stress factors and refrigeration times and conditions after death. Excessive levels of stress during the slaughtering can affect meat quality, contributing to significantly decrease of tuna’s price. The present trial was carried out to evaluate the possible harvesting/slaughtering stress effect on reared bluefin tuna meat quality, starting from the examination of the most important stress and quality parameters changes during the early post mortem period.

  1. The restricted stochastic user equilibrium with threshold model: Large-scale application and parameter testing

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær; Nielsen, Otto Anker; Watling, David P.

    2017-01-01

    Equilibrium model (DUE), by combining the strengths of the Boundedly Rational User Equilibrium model and the Restricted Stochastic User Equilibrium model (RSUE). Thereby, the RSUET model reaches an equilibrated solution in which the flow is distributed according to Random Utility Theory among a consistently...... model improves the behavioural realism, especially for high congestion cases. Also, fast and well-behaved convergence to equilibrated solutions among non-universal choice sets is observed across different congestion levels, choice model scale parameters, and algorithm step sizes. Clearly, the results...... highlight that the RSUET outperforms the MNP SUE in terms of convergence, calculation time and behavioural realism. The choice set composition is validated by using 16,618 observed route choices collected by GPS devices in the same network and observing their reproduction within the equilibrated choice sets...

  2. FRX-C Large Source Modification

    International Nuclear Information System (INIS)

    Chrien, R.E.; Tuszewski, M.; Yavornik, E.J.

    1985-01-01

    The FRX-C Large Source Modification (LSM) consists of a larger discharge tube and a larger radius coil connected to the existing FRX-C collector plates and capacitor banks. The objectives of LSM are to (1) study the size dependences of processes governing FRC formation and poloidal flux trapping in order to improve the design of larger field-reversed theta pinch devices, (2) increase the parameter s (number of local ion gyroradii between the field null and separatrix) to seek access to predicted new regimes of improved confinement and possible instability, (3) search for evidence of internal tilt instability at higher values of s where the mode is predicted to grow more rapidly, and (4) observe the effect of s and larger size on FRC confinement. In this paper we will discuss the construction of LSM, the experimental plan, and preliminary experimental results

  3. An investigation on effect of geometrical parameters on spray cone angle and droplet size distribution of a two-fluid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Shafaee, Maziar; Banitabaei, Sayed Abdolhossein; Esfahanian, Vahid; Ashjaee, Mehdi [Tehran University, Tehran (Iran, Islamic Republic of)

    2011-12-15

    A visual study is conducted to determine the effect of geometrical parameters of a two-fluid atomizer on its spray cone angle. The liquid (water) jets exit from six peripheral inclined orifices and are introduced to a high speed gas (air) stream in the gravitational direction. Using a high speed imaging system, the spray cone angle has been determined in constant operational conditions, i.e., Reynolds and Weber numbers for different nozzle geometries. Also, the droplet sizes (Sauter mean diameter) and their distributions have been determined using Malvern Master Sizer x. The investigated geometrical parameters are the liquid jet diameter, liquid port angle and the length of the gas-liquid mixing chamber. The results show that among these parameters, the liquid jet diameter has a significant effect on spray cone angle. In addition, an empirical correlation has been obtained to predict the spray cone angle of the present two-fluid atomizer in terms of nozzle geometries.

  4. Complexity analysis on public transport networks of 97 large- and medium-sized cities in China

    Science.gov (United States)

    Tian, Zhanwei; Zhang, Zhuo; Wang, Hongfei; Ma, Li

    2018-04-01

    The traffic situation in Chinese urban areas is continuing to deteriorate. To make a better planning and designing of the public transport system, it is necessary to make profound research on the structure of urban public transport networks (PTNs). We investigate 97 large- and medium-sized cities’ PTNs in China, construct three types of network models — bus stop network, bus transit network and bus line network, then analyze the structural characteristics of them. It is revealed that bus stop network is small-world and scale-free, bus transit network and bus line network are both small-world. Betweenness centrality of each city’s PTN shows similar distribution pattern, although these networks’ size is various. When classifying cities according to the characteristics of PTNs or economic development level, the results are similar. It means that the development of cities’ economy and transport network has a strong correlation, PTN expands in a certain model with the development of economy.

  5. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study

    KAUST Repository

    Fan, M.

    2015-03-29

    Parameter estimation is a challenging computational problemin the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter esti- mation of gene circuitmodels fromsuch time-series mRNA data has become an importantmethod for quantitatively dissecting the regulation of gene expression. By focusing on themodeling of gene circuits, we examine here the perform- ance of three types of state-of-the-art parameter estimation methods: population-basedmethods, onlinemethods and model-decomposition-basedmethods. Our results show that certain population-basedmethods are able to generate high- quality parameter solutions. The performance of thesemethods, however, is heavily dependent on the size of the param- eter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, onlinemethods andmodel decomposition-basedmethods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fastmethods with local search as a subsequent refinement procedure can substantially increase the qual- ity of their parameter estimates to the level on par with the best solution obtained fromthe population-basedmethods whilemaintaining high computational speed. These suggest that such hybridmethods can be a promising alternative to themore commonly used population-basedmethods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatorymechanismsmakes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press.

  6. Growing axons analysis by using Granulometric Size Distribution

    International Nuclear Information System (INIS)

    Gonzalez, Mariela A; Ballarin, Virginia L; Rapacioli, Melina; CelIn, A R; Sanchez, V; Flores, V

    2011-01-01

    Neurite growth (neuritogenesis) in vitro is a common methodology in the field of developmental neurobiology. Morphological analyses of growing neurites are usually difficult because their thinness and low contrast usually prevent to observe clearly their shape, number, length and spatial orientation. This paper presents the use of the granulometric size distribution in order to automatically obtain information about the shape, size and spatial orientation of growing axons in tissue cultures. The results here presented show that the granulometric size distribution results in a very useful morphological tool since it allows the automatic detection of growing axons and the precise characterization of a relevant parameter indicative of the axonal growth spatial orientation such as the quantification of the angle of deviation of the growing direction. The developed algorithms automatically quantify this orientation by facilitating the analysis of these images, which is important given the large number of images that need to be processed for this type of study.

  7. Estimation of the sizes of hot nuclear systems from particle-particle large angle kinematical correlations

    International Nuclear Information System (INIS)

    La Ville, J.L.; Bizard, G.; Durand, D.; Jin, G.M.; Rosato, E.

    1990-06-01

    Light fragment emission, when triggered by large transverse momentum protons shows specific kinematical correlations due to recoil effects of the excited emitting source. Such effects have been observed in azimuthal angular distributions of He-particles produced in collisions induced by 94 MeV/u 16 0 ions on Al, Ni and Au targets. A model calculation assuming a two-stage mechanism (formation and sequential decay of a hot source) gives a good description of these whole data. From this succesfull confrontation, it is possible to estimate the size of the emitting system

  8. Verification measurements of the IRMM-1027 and the IAEA large-sized dried (LSD) spikes

    International Nuclear Information System (INIS)

    Jakopic, R.; Aregbe, Y.; Richter, S.

    2017-01-01

    In the frame of the accountancy measurements of the fissile materials, reliable determinations of the plutonium and uranium content in spent nuclear fuel are required to comply with international safeguards agreements. Large-sized dried (LSD) spikes of enriched "2"3"5U and "2"3"9Pu for isotope dilution mass spectrometry (IDMS) analysis are routinely applied in reprocessing plants for this purpose. A correct characterisation of these elements is a pre-requirement for achieving high accuracy in IDMS analyses. This paper will present the results of external verification measurements of such LSD spikes performed by the European Commission and the International Atomic Energy Agency. (author)

  9. Fire Detection Tradeoffs as a Function of Vehicle Parameters

    Science.gov (United States)

    Urban, David L.; Dietrich, Daniel L.; Brooker, John E.; Meyer, Marit E.; Ruff, Gary A.

    2016-01-01

    Fire survivability depends on the detection of and response to a fire before it has produced an unacceptable environment in the vehicle. This detection time is the result of interplay between the fire burning and growth rates; the vehicle size; the detection system design; the transport time to the detector (controlled by the level of mixing in the vehicle); and the rate at which the life support system filters the atmosphere, potentially removing the detected species or particles. Given the large differences in critical vehicle parameters (volume, mixing rate and filtration rate) the detection approach that works for a large vehicle (e.g. the ISS) may not be the best choice for a smaller crew capsule. This paper examines the impact of vehicle size and environmental control and life support system parameters on the detectability of fires in comparison to the hazard they present. A lumped element model was developed that considers smoke, heat, and toxic product release rates in comparison to mixing and filtration rates in the vehicle. Recent work has quantified the production rate of smoke and several hazardous species from overheated spacecraft polymers. These results are used as the input data set in the lumped element model in combination with the transport behavior of major toxic products released by overheating spacecraft materials to evaluate the necessary alarm thresholds to enable appropriate response to the fire hazard.

  10. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  11. Asteroid collisional history - Effects on sizes and spins

    International Nuclear Information System (INIS)

    Davis, D.R.; Weidenschilling, S.J.; Farinella, P.; Paolicchi, P.; Binzel, R.P.

    1989-01-01

    The effects of asteroid collisional history on sizes and spins of present-day objects are discussed. Collisional evolution studies indicate that collisions have altered the spin-rates of small bodies, but that the largest asteroids may have retained their primordial rotation rates. Most asteroids larger than 100 km diam have probably been shattered, but have gravitationally recaptured their fragments to form a rubble-pile structure. Large angular momentum asteroids appear to have Maclaurian spheroidal or Jacobi-ellipsoid-like shapes; some of them may have fissioned into binaries. An integrated size and spin collisional evolution model is presented, with two critical parameters: one which determines the spin rates for small fragments resulting from a shattering collision, and the other determines the fraction of impact angular momentum that is retained by the target. 36 refs

  12. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    Science.gov (United States)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  13. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  14. Evidence for density-dependent changes in growth, downstream movement, and size of Chinook salmon subyearlings in a large-river landscape

    Science.gov (United States)

    Connor, William P.; Tiffan, Kenneth F.; Plumb, John M.; Moffit, Christine M.

    2013-01-01

    We studied the growth rate, downstream movement, and size of naturally produced fall Chinook Salmon Oncorhynchus tshawytscha subyearlings (age 0) for 20 years in an 8th-order river landscape with regulated riverine upstream rearing areas and an impounded downstream migration corridor. The population transitioned from low to high abundance in association with U.S. Endangered Species Act and other federally mandated recovery efforts. The mean growth rate of parr in the river did not decline with increasing abundance, but during the period of higher abundance the timing of dispersal from riverine habitat into the reservoir averaged 17 d earlier and the average size at the time of downstream dispersal was smaller by 10 mm and 1.8 g. Changes in apparent abundance, measured by catch per unit effort, largely explained the time of dispersal, measured by median day of capture, in riverine habitat. The growth rate of smolts in the reservoir declined from an average of 0.6 to 0.2 g/d between the abundance periods because the reduction in size at reservoir entry was accompanied by a tendency to migrate rather than linger and by increasing concentrations of smolts in the reservoir. The median date of passage through the reservoir was 14 d earlier on average, and average smolt size was smaller by 38 mm and 22.0 g, in accordance with density-dependent behavioral changes reflected by decreased smolt growth. Unexpectedly, smolts during the high-abundance period had begun to reexpress the migration timing and size phenotypes observed before the river was impounded, when abundance was relatively high. Our findings provide evidence for density-dependent phenotypic change in a large river that was influenced by the expansion of a recovery program. Thus, this study shows that efforts to recover native fishes can have detectable effects in large-river landscapes. The outcome of such phenotypic change, which will be an important area of future research, can only be fully judged by

  15. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study.

    Science.gov (United States)

    Fan, Ming; Kuwahara, Hiroyuki; Wang, Xiaolei; Wang, Suojin; Gao, Xin

    2015-11-01

    Parameter estimation is a challenging computational problem in the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter estimation of gene circuit models from such time-series mRNA data has become an important method for quantitatively dissecting the regulation of gene expression. By focusing on the modeling of gene circuits, we examine here the performance of three types of state-of-the-art parameter estimation methods: population-based methods, online methods and model-decomposition-based methods. Our results show that certain population-based methods are able to generate high-quality parameter solutions. The performance of these methods, however, is heavily dependent on the size of the parameter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, online methods and model decomposition-based methods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fast methods with local search as a subsequent refinement procedure can substantially increase the quality of their parameter estimates to the level on par with the best solution obtained from the population-based methods while maintaining high computational speed. These suggest that such hybrid methods can be a promising alternative to the more commonly used population-based methods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatory mechanisms makes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Fissure formation in coke. 3: Coke size distribution and statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jenkins; D.E. Shaw; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences

    2010-07-15

    A model of coke stabilization, based on a fundamental model of fissuring during carbonisation is used to demonstrate the applicability of the fissuring model to actual coke size distributions. The results indicate that the degree of stabilization is important in determining the size distribution. A modified form of the Weibull distribution is shown to provide a better representation of the whole coke size distribution compared to the Rosin-Rammler distribution, which is generally only fitted to the lump coke. A statistical analysis of a large number of experiments in a pilot scale coke oven shows reasonably good prediction of the coke mean size, based on parameters related to blend rank, amount of low rank coal, fluidity and ash. However, the prediction of measures of the spread of the size distribution is more problematic. The fissuring model, the size distribution representation and the statistical analysis together provide a comprehensive capability for understanding and predicting the mean size and distribution of coke lumps produced during carbonisation. 12 refs., 16 figs., 4 tabs.

  17. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, A., E-mail: ahahn@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Mazin, D., E-mail: mazin@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277–8582 (Japan); Bangale, P., E-mail: priya@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Dettlaff, A., E-mail: todettl@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Fink, D., E-mail: fink@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Grundner, F., E-mail: grundner@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Haberer, W., E-mail: haberer@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Maier, R., E-mail: rma@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); and others

    2017-02-11

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges. - Highlights: • The design of the first SiPM large-size IACT pixel is described. • The simulation of the light concentrators is presented. • The temperature stability of the detector module is demonstrated. • The calibration procedure of SiPM device in the field is described.

  18. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    KAUST Repository

    Ghattas, Omar

    2015-01-07

    The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions

  19. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    KAUST Repository

    Ghattas, Omar

    2015-01-01

    The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions

  20. PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    Directory of Open Access Journals (Sweden)

    Dóra Faragó

    2018-02-01

    Full Text Available Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9 mutant. While the technology was developed with Arabidopsis plants

  1. Influence of region of interest size and ultrasound lesion size on the performance of 2D shear wave elastography (SWE) in solid breast masses.

    Science.gov (United States)

    Skerl, K; Vinnicombe, S; Giannotti, E; Thomson, K; Evans, A

    2015-12-01

    To evaluate the influence of the region of interest (ROI) size and lesion diameter on the diagnostic performance of 2D shear wave elastography (SWE) of solid breast lesions. A study group of 206 consecutive patients (age range 21-92 years) with 210 solid breast lesions (70 benign, 140 malignant) who underwent core biopsy or surgical excision was evaluated. Lesions were divided into small (diameter <15 mm, n=112) and large lesions (diameter ≥15 mm, n=98). An ROI with a diameter of 1, 2, and 3 mm was positioned over the stiffest part of the lesion. The maximum elasticity (Emax), mean elasticity (Emean) and standard deviation (SD) for each ROI size were compared to the pathological outcome. Statistical analysis was undertaken using the chi-square test and receiver operating characteristic (ROC) analysis. The ROI size used has a significant impact on the performance of Emean and SD but not on Emax. Youden's indices show a correlation with the ROI size and lesion size: generally, the benign/malignant threshold is lower with increasing ROI size but higher with increasing lesion size. No single SWE parameter has superior performance. Lesion size and ROI size influence diagnostic performance. Copyright © 2015. Published by Elsevier Ltd.

  2. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach.

    Directory of Open Access Journals (Sweden)

    Simon Boitard

    2016-03-01

    Full Text Available Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey, PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles.

  3. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

    Science.gov (United States)

    Cui, Tiangang; Marzouk, Youssef; Willcox, Karen

    2016-06-01

    Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.

  4. Reproductive potential of Spodoptera eridania (Stoll (Lepidoptera: Noctuidae in the laboratory: effect of multiple couples and the size

    Directory of Open Access Journals (Sweden)

    A. Specht

    Full Text Available Abstract This study aimed to evaluate the effect of keeping three couples in the same cage, and the size of adults emerged from small, medium-sized and large pupae (278.67 mg; 333.20 mg and 381.58 mg, respectively, on the reproductive potential of S. eridania (Stoll, 1782 adults, under controlled conditions (25 ± 1 °C, 70% RH and 14 hour photophase. We evaluated the survival, number of copulations, fecundity and fertility of the adult females. The survival of females from these different pupal sizes did not differ statistically, but the survival of males from large pupae was statistically shorter than from small pupae. Fecundity differed significantly and correlated positively with size. The number of effective copulations (espematophores and fertility did not vary significantly with pupal size. Our results emphasize the importance of indicating the number of copulations and the size of the insects when reproductive parameters are compared.

  5. Some properties of 2-D dielectric-based ENG/MNG material parameters extracted using the S-parameter method

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    This work presents a systematic investigation of material parameters for two-dimensional epsilon-negative (ENG) and mu-negative (MNG) materials as obtained by the scattering parameter method. The unit cell consists of infinite dielectric cylinders, their sizes and permittivities are chosen...... to enable the ENG and MNG behaviors. For the both configurations, the permittivity and the permeability is reported. Influence of several effects on the extracted material parameters is examined, including the loss inside the cylinders and the size of the unit cells...

  6. Fabrication of large size alginate beads for three-dimensional cell-cluster culture

    Science.gov (United States)

    Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang

    2017-08-01

    We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.

  7. Larval assemblages of large and medium-sized pelagic species in the Straits of Florida

    Science.gov (United States)

    Richardson, David E.; Llopiz, Joel K.; Guigand, Cedric M.; Cowen, Robert K.

    2010-07-01

    Critical gaps in our understanding of the distributions, interactions, life histories and preferred habitats of large and medium-size pelagic fishes severely constrain the implementation of ecosystem-based, spatially structured fisheries management approaches. In particular, spawning distributions and the environmental characteristics associated with the early life stages are poorly documented. In this study, we consider the diversity, assemblages, and associated habitat of the larvae of large and medium-sized pelagic species collected during 2 years of monthly surveys across the Straits of Florida. In total, 36 taxa and 14,295 individuals were collected, with the highest diversity occurring during the summer and in the western, frontal region of the Florida Current. Only a few species (e.g. Thunnus obesus, T. alalunga, Tetrapturus pfluegeri) considered for this study were absent. Small scombrids (e.g. T. atlanticus, Katsuwonus pelamis, Auxis spp.) and gempylids dominated the catch and were orders of magnitude more abundant than many of the rare species (e.g. Thunnus thynnus,Kajikia albida). Both constrained (CCA) and unconstrained (NMDS) multivariate analyses revealed a number of species groupings including: (1) a summer Florida edge assemblage (e.g. Auxis spp., Euthynnus alleterattus, Istiophorus platypterus); (2) a summer offshore assemblage (e.g. Makaira nigricans, T. atlanticus, Ruvettus pretiosus, Lampris guttatus); (3) an ubiquitous assemblage (e.g. K. pelamis, Coryphaena hippurus, Xiphias gladius); and (4) a spring/winter assemblage that was widely dispersed in space (e.g. trachipterids). The primary environmental factors associated with these assemblages were sea-surface temperature (highest in summer-early fall), day length (highest in early summer), thermocline depth (shallowest on the Florida side) and fluorescence (highest on the Florida side). Overall, the results of this study provide insights into how a remarkable diversity of pelagic species

  8. Numerical modeling of deformation and vibrations in the construction of large-size fiberglass cooling tower fan

    Directory of Open Access Journals (Sweden)

    Fanisovich Shmakov Arthur

    2016-01-01

    Full Text Available This paper presents the results of numerical modeling of deformation processes and the analysis of the fundamental frequencies of the construction of large-size fiberglass cooling tower fan. Obtain the components of the stress-strain state structure based on imported gas dynamic and thermal loads and the form of fundamental vibrations. The analysis of fundamental frequencies, the results of which have been proposed constructive solutions to reduce the probability of failure of the action of aeroelastic forces.

  9. Sextupole correction for a ring with large chromaticity and the influence of magnetic errors on its parameters

    International Nuclear Information System (INIS)

    Kamiya, Y.; Katoh, M.; Honjo, I.

    1987-01-01

    A future ring with a low emittance and large circumference, specifically dedicated to a synchrotron light source, will have a large chromaticity, so that it is important to employ a sophisticated sextupole correction as well as the design of linear lattice to obtain the stable beam. The authors tried a method of sextupole correction for a lattice with a large chromaticity and small dispersion function. In such a lattice the sextupole magnets are obliged to become large in strength to compensate the chromaticity. Then the nonlinear effects of the sextupole magnets will become more serious than their chromatic effects. Furthermore, a ring with strong quadrupole magnets to get a very small emittance and with strong sextupole magnets to compensate the generated chromaticity will be very sensitive to their magnetic errors. The authors also present simple formulae to evaluate the effects on the beam parameters. The details will appear in a KEK Report

  10. γ-Fe{sub 2}O{sub 3} by sol–gel with large nanoparticles size for magnetic hyperthermia application

    Energy Technology Data Exchange (ETDEWEB)

    Lemine, O.M., E-mail: leminej@yahoo.com [Physics Department, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh (Saudi Arabia); Omri, K. [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes (Tunisia); Iglesias, M.; Velasco, V. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC (Spain); Crespo, P.; Presa, P. de la [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC (Spain); Dpto. Física de Materiales, Universidad Complutense de Madrid (Spain); El Mir, L. [Physics Department, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh (Saudi Arabia); Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes (Tunisia); Bouzid, Houcine [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Laboratoire des Matériaux Ferroélectriques, Faculté des Sciences de Sfax, Route Soukra Km 3 5, B.P. 802, F-3018 Sfax (Tunisia); Yousif, A. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Code 123, Al Khoud (Oman); Al-Hajry, Ali [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia)

    2014-09-01

    Highlights: • Iron oxides nanoparticles with different sizes are successfully synthesized using sol–gel method. • The obtained nanoparticles are mainly composed of maghemite phase (γ-Fe{sub 2}O{sub 3}). • A non-negligible coercive field suggests that the particles are ferromagnetic. • A mean heating efficiency of 30 W/g is obtained for the smallest particles at 110 kHz and 190 Oe. - Abstract: Iron oxides nanoparticles with different sizes are successfully synthesized using sol–gel method. X-ray diffraction (XRD) and Mössbauer spectroscopy show that the obtained nanoparticles are mainly composed of maghemite phase (γ-Fe{sub 2}O{sub 3}). XRD and transmission electron microscopy (TEM) results suggest that the nanoparticles have sizes ranging from 14 to 30 nm, which are indeed confirmed by large magnetic saturation and high blocking temperature. At room temperature, the observation of a non-negligible coercive field suggests that the particles are ferro/ferrimagnetic. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of size, frequency and amplitude of the applied magnetic field. A mean heating efficiency of 30 W/g is obtained for the smallest particles at 110 kHz and 190 Oe, whereas further increase of particle size does not improve significantly the heating efficiency.

  11. Towards Optimal Buffer Size in Wi-Fi Networks

    KAUST Repository

    Showail, Ahmad J.

    2016-01-19

    Buffer sizing is an important network configuration parameter that impacts the quality of data traffic. Falling memory cost and the fallacy that ‘more is better’ lead to over provisioning network devices with large buffers. Over-buffering or the so called ‘bufferbloat’ phenomenon creates excessive end-to-end delay in today’s networks. On the other hand, under-buffering results in frequent packet loss and subsequent under-utilization of network resources. The buffer sizing problem has been studied extensively for wired networks. However, there is little work addressing the unique challenges of wireless environment. In this dissertation, we discuss buffer sizing challenges in wireless networks, classify the state-of-the-art solutions, and propose two novel buffer sizing schemes. The first scheme targets buffer sizing in wireless multi-hop networks where the radio spectral resource is shared among a set of con- tending nodes. Hence, it sizes the buffer collectively and distributes it over a set of interfering devices. The second buffer sizing scheme is designed to cope up with recent Wi-Fi enhancements. It adapts the buffer size based on measured link characteristics and network load. Also, it enforces limits on the buffer size to maximize frame aggregation benefits. Both mechanisms are evaluated using simulation as well as testbed implementation over half-duplex and full-duplex wireless networks. Experimental evaluation shows that our proposal reduces latency by an order of magnitude.

  12. Sample size determination for a three-arm equivalence trial of Poisson and negative binomial responses.

    Science.gov (United States)

    Chang, Yu-Wei; Tsong, Yi; Zhao, Zhigen

    2017-01-01

    Assessing equivalence or similarity has drawn much attention recently as many drug products have lost or will lose their patents in the next few years, especially certain best-selling biologics. To claim equivalence between the test treatment and the reference treatment when assay sensitivity is well established from historical data, one has to demonstrate both superiority of the test treatment over placebo and equivalence between the test treatment and the reference treatment. Thus, there is urgency for practitioners to derive a practical way to calculate sample size for a three-arm equivalence trial. The primary endpoints of a clinical trial may not always be continuous, but may be discrete. In this paper, the authors derive power function and discuss sample size requirement for a three-arm equivalence trial with Poisson and negative binomial clinical endpoints. In addition, the authors examine the effect of the dispersion parameter on the power and the sample size by varying its coefficient from small to large. In extensive numerical studies, the authors demonstrate that required sample size heavily depends on the dispersion parameter. Therefore, misusing a Poisson model for negative binomial data may easily lose power up to 20%, depending on the value of the dispersion parameter.

  13. Micro gas turbine thermodynamic and economic analysis up to 500 kWe size

    International Nuclear Information System (INIS)

    Galanti, Leandro; Massardo, Aristide F.

    2011-01-01

    Highlights: → Thermoeconomic analysis and optimization of micro gas turbines up to 500 kWe. → Analysis carried out for both regenerative and intercooled regenerative cycles. → Focus on thermodynamic, geometric and cost parameters of the main MGT devices. → ICR cycle has an interesting reduction in capital and electricity costs, rising size. → Complete thermoeconomic investigation is essential to support thermodynamic analysis. -- Abstract: In this paper a thermoeconomic analysis and optimization of micro gas turbines (MGT) up to 500 kWe is presented. This analysis is strongly related to the need of minimizing specific capital cost, still high for MGT large market penetration, and optimizing MGT size to match market needs. The analysis was carried out for both existing regenerative MGT cycles and new inter-cooled regenerative cycles, using the Web-based ThermoEconomic Modular Program by the University of Genoa. The attention is mainly focused on the basis of thermodynamic, geometric and capital cost parameters of the main MGT devices (such as recuperator size, material and effectiveness, turbine inlet temperature, and compressor pressure ratio) and on economic scenario (fuel cost, cost of electricity, etc.) for different MGT size in the range 25-500 kWe.

  14. A Novel Read Scheme for Large Size One-Resistor Resistive Random Access Memory Array.

    Science.gov (United States)

    Zackriya, Mohammed; Kittur, Harish M; Chin, Albert

    2017-02-10

    The major issue of RRAM is the uneven sneak path that limits the array size. For the first time record large One-Resistor (1R) RRAM array of 128x128 is realized, and the array cells at the worst case still have good Low-/High-Resistive State (LRS/HRS) current difference of 378 nA/16 nA, even without using the selector device. This array has extremely low read current of 9.7 μA due to both low-current RRAM device and circuit interaction, where a novel and simple scheme of a reference point by half selected cell and a differential amplifier (DA) were implemented in the circuit design.

  15. Morphology parameters for intracranial aneurysm rupture risk assessment.

    Science.gov (United States)

    Dhar, Sujan; Tremmel, Markus; Mocco, J; Kim, Minsuok; Yamamoto, Junichi; Siddiqui, Adnan H; Hopkins, L Nelson; Meng, Hui

    2008-08-01

    The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture. For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture. Parameters were analyzed with a two-tailed independent Student's t test for significance; significant parameters (P 41; 95% confidence interval, 1.03-1.92) and undulation index (odds ratio, 1.51; 95% confidence interval, 1.08-2.11) had the strongest independent correlation with ruptured IA. From the receiver operating characteristic analysis, size ratio and aneurysm angle had the highest area under the curve values of 0.83 and 0.85, respectively. Size ratio and aneurysm angle are promising new morphological metrics for IA rupture risk assessment. Because these parameters account for vessel geometry, they may bridge the gap between morphological studies and more qualitative location-based studies.

  16. Study of heat treatment parameters for large-scale hydraulic steel gate track

    Directory of Open Access Journals (Sweden)

    Ping-zhou Cao

    2013-10-01

    Full Text Available In order to enhance external hardness and strength, a large-scale hydraulic gate track should go through heat treatment. The current design method of hydraulic gate wheels and tracks is based on Hertz contact linear elastic theory, and does not take into account the changes in mechanical properties of materials caused by heat treatment. In this study, the heat treatment parameters were designed and analyzed according to the bearing mechanisms of the wheel and track. The quenching process of the track was simulated by the ANSYS program, and the temperature variation, residual stress, and deformation were obtained and analyzed. The metallurgical structure field after heat treatment was predicted by the method based on time-temperature-transformation (TTT curves. The results show that the analysis method and designed track heat treatment process are feasible, and can provide a reference for practical projects.

  17. Small sample GEE estimation of regression parameters for longitudinal data.

    Science.gov (United States)

    Paul, Sudhir; Zhang, Xuemao

    2014-09-28

    Longitudinal (clustered) response data arise in many bio-statistical applications which, in general, cannot be assumed to be independent. Generalized estimating equation (GEE) is a widely used method to estimate marginal regression parameters for correlated responses. The advantage of the GEE is that the estimates of the regression parameters are asymptotically unbiased even if the correlation structure is misspecified, although their small sample properties are not known. In this paper, two bias adjusted GEE estimators of the regression parameters in longitudinal data are obtained when the number of subjects is small. One is based on a bias correction, and the other is based on a bias reduction. Simulations show that the performances of both the bias-corrected methods are similar in terms of bias, efficiency, coverage probability, average coverage length, impact of misspecification of correlation structure, and impact of cluster size on bias correction. Both these methods show superior properties over the GEE estimates for small samples. Further, analysis of data involving a small number of subjects also shows improvement in bias, MSE, standard error, and length of the confidence interval of the estimates by the two bias adjusted methods over the GEE estimates. For small to moderate sample sizes (N ≤50), either of the bias-corrected methods GEEBc and GEEBr can be used. However, the method GEEBc should be preferred over GEEBr, as the former is computationally easier. For large sample sizes, the GEE method can be used. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Evidence of scattering effects on the sizes of interplanetary Type III radio bursts

    Science.gov (United States)

    Steinberg, J. L.; Hoang, S.; Dulk, G. A.

    1985-01-01

    An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.

  19. Estimation of object motion parameters from noisy images.

    Science.gov (United States)

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  20. Spatial distribution and size of small canopy gaps created by Japanese black bears: estimating gap size using dropped branch measurements.

    Science.gov (United States)

    Takahashi, Kazuaki; Takahashi, Kaori

    2013-06-10

    Japanese black bears, a large-bodied omnivore, frequently create small gaps in the tree crown during fruit foraging. However, there are no previous reports of black bear-created canopy gaps. To characterize physical canopy disturbance by black bears, we examined a number of parameters, including the species of trees in which canopy gaps were created, gap size, the horizontal and vertical distribution of gaps, and the size of branches broken to create gaps. The size of black bear-created canopy gaps was estimated using data from branches that had been broken and dropped on the ground. The disturbance regime was characterized by a highly biased distribution of small canopy gaps on ridges, a large total overall gap area, a wide range in gap height relative to canopy height, and diversity in gap size. Surprisingly, the annual rate of bear-created canopy gap formation reached 141.3 m2 ha-1 yr-1 on ridges, which were hot spots in terms of black bear activity. This rate was approximately 6.6 times that of tree-fall gap formation on ridges at this study site. Furthermore, this rate was approximately two to three times that of common tree-fall gap formation in Japanese forests, as reported in other studies. Our findings suggest that the ecological interaction between black bears and fruit-bearing trees may create a unique light regime, distinct from that created by tree falls, which increases the availability of light resources to plants below the canopy.

  1. Upper limits to americium concentration in large sized sodium-cooled fast reactors loaded with metallic fuel

    International Nuclear Information System (INIS)

    Zhang, Youpeng; Wallenius, Janne

    2014-01-01

    Highlights: • The americium transmutation capability of Integral Fast Reactor was investigated. • The impact from americium introduction was parameterized by applying SERPENT Monte Carlo calculations. • Higher americium content in metallic fuel leads to a power penalty, preserving consistent safety margins. - Abstract: Transient analysis of a large sized sodium-cooled reactor loaded with metallic fuel modified by different fractions of americium have been performed. Unprotected loss-of-offsite power, unprotected loss-of-flow and unprotected transient-over-power accidents were simulated with the SAS4A/SASSYS code based on the geometrical model of an IFR with power rating of 2500 MW th , using safety parameters obtained with the SERPENT Monte Carlo code. The Ti-modified austenitic D9 steel, having higher creep rupture strength, was considered as the cladding and structural material apart from the ferritic/martensitic HT9 steel. For the reference case of U–12Pu–1Am–10Zr fuel at EOEC, the margin to fuel melt during a design basis condition UTOP is about 50 K for a maximum linear rating of 30 kW/m. In order to maintain a margin of 50 K to fuel failure, the linear power rating has to be reduced by ∼3% and 6% for 2 wt.% and 3 wt.% Am introduction into the fuel respectively. Hence, an Am concentration of 2–3 wt.% in the fuel would lead to a power penalty of 3–6%, permitting a consumption rate of 3.0–5.1 kg Am/TW h th . This consumption rate is significantly higher than the one previously obtained for oxide fuelled SFRs

  2. Two-parameter fracture mechanics: Theory and applications

    International Nuclear Information System (INIS)

    O'Dowd, N.P.; Shih, C.F.

    1993-02-01

    A family of self-similar fields provides the two parameters required to characterize the full range of high- and low-triaxiality crack tip states. The two parameters, J and Q, have distinct roles: J sets the size scale of the process zone over which large stresses and strains develop, while Q scales the near-tip stress distribution relative to a high triaxiality reference stress state. An immediate consequence of the theory is this: it is the toughness values over a range of crack tip constraint that fully characterize the material's fracture resistance. It is shown that Q provides a common scale for interpreting cleavage fracture and ductile tearing data thus allowing both failure modes to be incorporated in a single toughness locus. The evolution of Q, as plasticity progresses from small scale yielding to fully yielded conditions, has been quantified for several crack geometries and for a wide range of material strain hardening properties. An indicator of the robustness of the J-Q fields is introduced; Q as a field parameter and as a pointwise measure of stress level is discussed

  3. Structure and properties of large-sized forged disk of alloy type KhN73MBTYu-VD(EhI 698-VD)

    International Nuclear Information System (INIS)

    Sudakov, V.S.

    1994-01-01

    Investigation results are presented for structure and mechanical properties of serial large-sized forged disk 1100 mm in diameter produced of alloy type EhI 9698-VD hand tested after standard heat treatment and isothermal ageing at operating temperature. Chemical composition studies have revealed no macroheterogeneity. In a central cross-section macrostructure is free of pores, inclusions, delaminating and variation in grain size. The metal of the disk possesses high values of long-term rupture strength and creep resistance at 650-700 deg C

  4. The characteristics on dose distribution of a large field

    International Nuclear Information System (INIS)

    Lee, Sang Rok; Jeong, Deok Yang; Lee, Btiung Koo; Kwon, Young Ho

    2003-01-01

    In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100 cm, size of field under 40 x 40 cm 2 ) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. In this study, using Multidata Water Phantom from standard SSD 100 cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180 cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350 cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. In comparison with the standard dose data, parameter which measures between SSD 180 cm and 350 cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  5. APPHi: Automated Photometry Pipeline for High Cadence Large Volume Data

    Science.gov (United States)

    Sánchez, E.; Castro, J.; Silva, J.; Hernández, J.; Reyes, M.; Hernández, B.; Alvarez, F.; García T.

    2018-04-01

    APPHi (Automated Photometry Pipeline) carries out aperture and differential photometry of TAOS-II project data. It is computationally efficient and can be used also with other astronomical wide-field image data. APPHi works with large volumes of data and handles both FITS and HDF5 formats. Due the large number of stars that the software has to handle in an enormous number of frames, it is optimized to automatically find the best value for parameters to carry out the photometry, such as mask size for aperture, size of window for extraction of a single star, and the number of counts for the threshold for detecting a faint star. Although intended to work with TAOS-II data, APPHi can analyze any set of astronomical images and is a robust and versatile tool to performing stellar aperture and differential photometry.

  6. Planning under uncertainty solving large-scale stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  7. Early outcome in renal transplantation from large donors to small and size-matched recipients - a porcine experimental model

    DEFF Research Database (Denmark)

    Ravlo, Kristian; Chhoden, Tashi; Søndergaard, Peter

    2012-01-01

    in small recipients within 60 min after reperfusion. Interestingly, this was associated with a significant reduction in medullary RPP, while there was no significant change in the size-matched recipients. No difference was observed in urinary NGAL excretion between the groups. A significant higher level......Kidney transplantation from a large donor to a small recipient, as in pediatric transplantation, is associated with an increased risk of thrombosis and DGF. We established a porcine model for renal transplantation from an adult donor to a small or size-matched recipient with a high risk of DGF...... and studied GFR, RPP using MRI, and markers of kidney injury within 10 h after transplantation. After induction of BD, kidneys were removed from ∼63-kg donors and kept in cold storage for ∼22 h until transplanted into small (∼15 kg, n = 8) or size-matched (n = 8) recipients. A reduction in GFR was observed...

  8. Reduction of Specimen Size for the Full Simultaneous Characterization of Thermoelectric Performance

    Science.gov (United States)

    Vasilevskiy, D.; Simard, J.-M.; Masut, R. A.; Turenne, S.

    2017-05-01

    The successful implementation of thermoelectric (TE) materials for waste heat recovery depends strongly on our ability to increase their performance. This challenge continues to generate a renewed interest in novel high TE performance compounds. The technological difficulties in producing homogeneous ingots of new compounds or alloys with regular shape and a size sufficiently large to prepare several samples that are usually needed for a separate measurement of all TE parameters are well known. It creates a situation whereby material performance could be critically over- or under-evaluated at the first stages of the research process of a new material. Both cases would equally lead to negative consequences. Thus, minimizing the specimen size yet keeping it adequate for accurate material characterization becomes extremely important. In this work we report the experimental validation of reliable simultaneous measurements of the four most relevant TE parameters on a single bismuth telluride alloy based specimen of 4 mm × 4 mm × 1.4 mm in size. This translates in roughly 140 mg in weight for one of the heaviest TE materials, as was used in this study, and coefficient, electrical resistivity, thermal conductivity and the figure of merit were simultaneously assessed from 300 K to 440 K with increments of 20 K, 15 K, 10 K, 5 K, and 1 K. Our choice of a well-known homogeneous material has been made to increase measurement reliability and accuracy, but the results are expected to be valid for the full TE characterization of any unknown material. These results show a way to significantly decrease specimen sizes which has the potential to accelerate investigation of novel TE materials for large scale waste heat recovery.

  9. Diagnostic accuracy of electrocardiographic P wave related parameters in the assessment of left atrial size in dogs with degenerative mitral valve disease.

    Science.gov (United States)

    Soto-Bustos, Ángel; Caro-Vadillo, Alicia; Martínez-DE-Merlo, Elena; Alonso-Alegre, Elisa González

    2017-10-07

    The purpose of this research was to compare the accuracy of newly described P wave-related parameters (P wave area, Macruz index and mean electrical axis) with classical P wave-related parameters (voltage and duration of P wave) for the assessment of left atrial (LA) size in dogs with degenerative mitral valve disease. One hundred forty-six dogs (37 healthy control dogs and 109 dogs with degenerative mitral valve disease) were prospectively studied. Two-dimensional echocardiography examinations and a 6-lead ECG were performed prospectively in all dogs. Echocardiography parameters, including determination of the ratios LA diameter/aortic root diameter and LA area/aortic root area, were compared to P wave-related parameters: P wave area, Macruz index, mean electrical axis voltage and duration of P wave. The results showed that P wave-related parameters (classical and newly described) had low sensitivity (range=52.3 to 77%; median=60%) and low to moderate specificity (range=47.2 to 82.5%; median 56.3%) for the prediction of left atrial enlargement. The areas under the curve of P wave-related parameters were moderate to low due to poor sensitivity. In conclusion, newly P wave-related parameters do not increase the diagnostic capacity of ECG as a predictor of left atrial enlargement in dogs with degenerative mitral valve disease.

  10. Vacuum system for applying reflective coatings on large-size optical components using the method of magnetron sputtering

    Science.gov (United States)

    Azerbaev, Alexander A.; Abdulkadyrov, Magomed A.; Belousov, Sergey P.; Ignatov, Aleksandr N.; Mukhammedzyanov, Timur R.

    2016-10-01

    Vacuum system for reflective coatings deposition on large-size optical components up to 4.0 m diameter using the method of magnetron sputtering was built at JSC LZOS. The technological process for deposition of reflective Al coating with protective SiO2 layer was designed and approved. After climatic tests the lifetime of such coating was estimated as 30 years. Uniformity of coating thickness ±5% was achieved on maximum diameter 4.0 m.

  11. Song repertoire size correlates with measures of body size in Eurasian blackbirds

    DEFF Research Database (Denmark)

    Hesler, Nana; Mundry, Roger; Sacher, Thomas

    2012-01-01

    In most oscine bird species males possess a repertoire of different song patterns. The size of these repertoires is assumed to serve as an honest signal of male quality. The Eurasian blackbird’s (Turdus merula) song contains a large repertoire of different element types with a flexible song...... organisation. Here we investigated whether repertoire size in Eurasian blackbirds correlates with measures of body size, namely length of wing, 8th primary, beak and tarsus. So far, very few studies have investigated species with large repertoires and a flexible song organisation in this context. We found...... positive correlations, meaning that larger males had larger repertoires. Larger males may have better fighting abilities and, thus, advantages in territorial defence. Larger structural body size may also reflect better conditions during early development. Therefore, under the assumption that body size...

  12. Hypofractionated Whole-Breast Radiation Therapy: Does Breast Size Matter?

    International Nuclear Information System (INIS)

    Hannan, Raquibul; Thompson, Reid F.; Chen Yu; Bernstein, Karen; Kabarriti, Rafi; Skinner, William; Chen, Chin C.; Landau, Evan; Miller, Ekeni; Spierer, Marnee; Hong, Linda; Kalnicki, Shalom

    2012-01-01

    Purpose: To evaluate the effects of breast size on dose-volume histogram parameters and clinical toxicity in whole-breast hypofractionated radiation therapy using intensity modulated radiation therapy (IMRT). Materials and Methods: In this retrospective study, all patients undergoing breast-conserving therapy between 2005 and 2009 were screened, and qualifying consecutive patients were included in 1 of 2 cohorts: large-breasted patients (chest wall separation >25 cm or planning target volume [PTV] >1500 cm 3 ) (n=97) and small-breasted patients (chest wall separation 3 ) (n=32). All patients were treated prone or supine with hypofractionated IMRT to the whole breast (42.4 Gy in 16 fractions) followed by a boost dose (9.6 Gy in 4 fractions). Dosimetric and clinical toxicity data were collected and analyzed using the R statistical package (version 2.12). Results: The mean PTV V95 (percentage of volume receiving >= 95% of prescribed dose) was 90.18% and the mean V105 percentage of volume receiving >= 105% of prescribed dose was 3.55% with no dose greater than 107%. PTV dose was independent of breast size, whereas heart dose and maximum point dose to skin correlated with increasing breast size. Lung dose was markedly decreased in prone compared with supine treatments. Radiation Therapy Oncology Group grade 0, 1, and 2 skin toxicities were noted acutely in 6%, 69%, and 25% of patients, respectively, and at later follow-up (>3 months) in 43%, 57%, and 0% of patients, respectively. Large breast size contributed to increased acute grade 2 toxicity (28% vs 12%, P=.008). Conclusions: Adequate PTV coverage with acceptable hot spots and excellent sparing of organs at risk was achieved by use of IMRT regardless of treatment position and breast size. Although increasing breast size leads to increased heart dose and maximum skin dose, heart dose remained within our institutional constraints and the incidence of overall skin toxicity was comparable to that reported in the

  13. Asymptotic size determines species abundance in the marine size spectrum

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2006-01-01

    The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory......, where population structure is derived from physiology and simple arguments regarding the predator-prey interaction. Using a hypothesis of constant satiation, which states that the average degree of satiation is independent of the size of an organism, the number of individuals with a given size is found...... to be proportional to the weight raised to the power -2.05, independent of the predator/prey size ratio. This is the first time the spectrum exponent has been derived solely on the basis of processes at the individual level. The theory furthermore predicts that the parameters in the von Bertalanffy growth function...

  14. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    Science.gov (United States)

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  15. Inverse problem to constrain the controlling parameters of large-scale heat transport processes: The Tiberias Basin example

    Science.gov (United States)

    Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien

    2015-04-01

    Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite

  16. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  17. Exploring cosmic origins with CORE: Cosmological parameters

    Science.gov (United States)

    Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed

  18. Large model-space calculation of the nuclear level density parameter

    International Nuclear Information System (INIS)

    Agrawal, B.K.; Samaddar, S.K.; De, J.N.; Shlomo, S.

    1998-01-01

    Recently, several attempts have been made to obtain nuclear level density (ρ) and level density parameter (α) within the microscopic approaches based on path integral representation of the partition function. The results for the inverse level density parameter K es and the level density as a function of excitation energy are presented

  19. Estimations of parameters in Pareto reliability model in the presence of masked data

    International Nuclear Information System (INIS)

    Sarhan, Ammar M.

    2003-01-01

    Estimations of parameters included in the individual distributions of the life times of system components in a series system are considered in this paper based on masked system life test data. We consider a series system of two independent components each has a Pareto distributed lifetime. The maximum likelihood and Bayes estimators for the parameters and the values of the reliability of the system's components at a specific time are obtained. Symmetrical triangular prior distributions are assumed for the unknown parameters to be estimated in obtaining the Bayes estimators of these parameters. Large simulation studies are done in order: (i) explain how one can utilize the theoretical results obtained; (ii) compare the maximum likelihood and Bayes estimates obtained of the underlying parameters; and (iii) study the influence of the masking level and the sample size on the accuracy of the estimates obtained

  20. Performance of Using Cascade Forward Back Propagation Neural Networks for Estimating Rain Parameters with Rain Drop Size Distribution

    Directory of Open Access Journals (Sweden)

    Siddi Tengeleng

    2014-06-01

    Full Text Available The aim of our study is to estimate the parameters M (water content, R (rain rate and Z (radar reflectivity with raindrop size distribution by using the neural network method. Our investigations have been conducted in five African localities: Abidjan (Côte d’Ivoire, Boyele (Congo-Brazzaville, Debuncha (Cameroon, Dakar (Senegal and Niamey (Niger. For the first time, we have predicted the values of the various parameters in each locality after using neural models (LANN which have been developed with locally obtained disdrometer data. We have shown that each LANN can be used under other latitudes to get satisfactory results. Secondly, we have also constructed a model, using as train-data, a combination of data issued from all five localities. With this last model called PANN, we could obtain satisfactory estimates forall localities. Lastly, we have distinguished between stratiform and convective rain while building the neural networks. In fact, using simulation data from stratiform rain situations, we have obtained smaller root mean square errors (RMSE between neural values and disdrometer values than using data issued from convective situations.

  1. Size analysis of single-core magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Frank, E-mail: f.ludwig@tu-bs.de [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Balceris, Christoph; Viereck, Thilo [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Posth, Oliver; Steinhoff, Uwe [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Gavilan, Helena; Costo, Rocio [Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Madrid (Spain); Zeng, Lunjie; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Jonasson, Christian; Johansson, Christer [ACREO Swedish ICT AB, Göteborg (Sweden)

    2017-04-01

    Single-core iron-oxide nanoparticles with nominal core diameters of 14 nm and 19 nm were analyzed with a variety of non-magnetic and magnetic analysis techniques, including transmission electron microscopy (TEM), dynamic light scattering (DLS), static magnetization vs. magnetic field (M-H) measurements, ac susceptibility (ACS) and magnetorelaxometry (MRX). From the experimental data, distributions of core and hydrodynamic sizes are derived. Except for TEM where a number-weighted distribution is directly obtained, models have to be applied in order to determine size distributions from the measurand. It was found that the mean core diameters determined from TEM, M-H, ACS and MRX measurements agree well although they are based on different models (Langevin function, Brownian and Néel relaxation times). Especially for the sample with large cores, particle interaction effects come into play, causing agglomerates which were detected in DLS, ACS and MRX measurements. We observed that the number and size of agglomerates can be minimized by sufficiently strong diluting the suspension. - Highlights: • Investigation of size parameters of single-core magnetic nanoparticles with nominal core diameters of 14 nm and 19 nm utilizing different magnetic and non-magnetic methods • Hydrodynamic size determined from ac susceptibility measurements is consistent with the DLS findings • Core size agrees determined from static magnetization curves, MRX and ACS data agrees with results from TEM although the estimation is based on different models (Langevin function, Brownian and Néel relaxation times).

  2. Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu

    International Nuclear Information System (INIS)

    Zhong Yong; Ping Dehai; Song Xiaoyan; Yin Fuxing

    2009-01-01

    In this work, a serial of pure copper sample with different grain sizes from nano- to micro-scale were prepared by sparkle plasma sintering (SPS) and following anneal treatment at 873 K and 1073 K, respectively. The grain size distributions of these samples were determined by both X-ray diffraction (XRD) profile analysis and transmission electronic microscope (TEM) micrograph counting. Although these two methods give similar distributions of grain size in the case of as-SPS sample with nano-scale grain size (around 10 nm), there are apparent discrepancies between the grain size distributions of the annealed samples obtained from XRD and TEM, especially for the sample annealed at 1073 K after SPS with micro-scale grain size (around 2 μm), which TEM counting provides much higher values of grain sizes than XRD analysis does. It indicates that for large grain-sized material, XRD analysis lost its validity for determination of grain size. It might be due to some small sized substructures possibly existed in even annealed (large grain-sized) samples, whereas there is no substructures in as-SPS (nanocrystalline) sample. Moreover, it has been found that the effective outer cut-off radius R e derived from XRD analysis coincides with the grain sizes given by TEM counting. The potential relationship between grain size and R e was discussed in the present work. These results might provide some new hints for deeper understanding of the physical meaning of XRD analysis and the parameters derived.

  3. Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large-Sized and Ductile Metallic Glass Composites.

    Science.gov (United States)

    Song, Wenli; Wu, Yuan; Wang, Hui; Liu, Xiongjun; Chen, Houwen; Guo, Zhenxi; Lu, Zhaoping

    2016-10-01

    A novel strategy to control the precipitation behavior of the austenitic phase, and to obtain large-sized, transformation-induced, plasticity-reinforced bulk metallic glass matrix composites, with good tensile properties, is proposed. By inducing heterogeneous nucleation of the transformable reinforcement via potent nucleants formed in situ, the characteristics of the austenitic phase are well manipulated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    Science.gov (United States)

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  5. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments.

    Science.gov (United States)

    Sastry, Madhavi; Lowrie, Jeffrey F; Dixon, Steven L; Sherman, Woody

    2010-05-24

    A systematic virtual screening study on 11 pharmaceutically relevant targets has been conducted to investigate the interrelation between 8 two-dimensional (2D) fingerprinting methods, 13 atom-typing schemes, 13 bit scaling rules, and 12 similarity metrics using the new cheminformatics package Canvas. In total, 157 872 virtual screens were performed to assess the ability of each combination of parameters to identify actives in a database screen. In general, fingerprint methods, such as MOLPRINT2D, Radial, and Dendritic that encode information about local environment beyond simple linear paths outperformed other fingerprint methods. Atom-typing schemes with more specific information, such as Daylight, Mol2, and Carhart were generally superior to more generic atom-typing schemes. Enrichment factors across all targets were improved considerably with the best settings, although no single set of parameters performed optimally on all targets. The size of the addressable bit space for the fingerprints was also explored, and it was found to have a substantial impact on enrichments. Small bit spaces, such as 1024, resulted in many collisions and in a significant degradation in enrichments compared to larger bit spaces that avoid collisions.

  6. Generalized Bragg-Williams model for the size-dependent order-disorder transition of bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Li, Y J; Qi, W H; Wang, M P; Liu, J F; Xiong, S Y; Huang, B Y

    2011-01-01

    Considering the different effects of exterior atoms (face, edge and corner atoms), the Bragg-Williams model is generalized to account for the size, shape and composition-dependent order-disorder transition of bimetallic nanoparticles (NPs) with B 2 , L1 0 and L1 2 ordered structures. The results show that the order-disorder temperatures T C,p are different for different shapes even in the identical particle size. The order of order-disorder temperatures of different shapes varies for different sizes. The long-range order parameter decreases with the increase in temperature in all size ranges and decreases smoothly in large sizes, but drops dramatically in small sizes. Moreover, it is also found that the order-disorder temperature of bimetallic NPs rises with increasing particle sizes and decreases with a deviation from the ideal compositions. The present predictions are consistent with the available literature results, indicating its capability in predicting other order-disorder transition phenomena of bimetallic NPs.

  7. Perihelion asymmetry in the photometric parameters of long-period comets at large heliocentric distances

    International Nuclear Information System (INIS)

    Svoren, J.

    1982-01-01

    The present statistical analysis is based on a sample of long-period comets selected according to two criteria: (1) availability of photometric observations made at large distances from the Sun and covering an orbital arc long enough for a reliable determination of the photometric parameters, and (2) availability of a well determined orbit making it possible to classify the comet as new or old in Oort's (1950) sense. The selection was confined to comets with nearly parabolic orbits. 67 objects were found to satisfy the selection criteria. Photometric data referring to heliocentric distances of r > 2.5 AU were only used, yielding a total of 2,842 individual estimates and measurements. (Auth.)

  8. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    Science.gov (United States)

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size.

  9. Total grain-size distribution of four subplinian-Plinian tephras from Hekla volcano, Iceland: Implications for sedimentation dynamics and eruption source parameters

    Science.gov (United States)

    Janebo, Maria H.; Houghton, Bruce F.; Thordarson, Thorvaldur; Bonadonna, Costanza; Carey, Rebecca J.

    2018-05-01

    The size distribution of the population of particles injected into the atmosphere during a volcanic explosive eruption, i.e., the total grain-size distribution (TGSD), can provide important insights into fragmentation efficiency and is a fundamental source parameter for models of tephra dispersal and sedimentation. Recent volcanic crisis (e.g. Eyjafjallajökull 2010, Iceland and Córdon Caulle 2011, Chile) and the ensuing economic losses, highlighted the need for a better constraint of eruption source parameters to be used in real-time forecasting of ash dispersal (e.g., mass eruption rate, plume height, particle features), with a special focus on the scarcity of published TGSD in the scientific literature. Here we present TGSD data associated with Hekla volcano, which has been very active in the last few thousands of years and is located on critical aviation routes. In particular, we have reconstructed the TGSD of the initial subplinian-Plinian phases of four historical eruptions, covering a range of magma composition (andesite to rhyolite), eruption intensity (VEI 4 to 5), and erupted volume (0.2 to 1 km3). All four eruptions have bimodal TGSDs with mass fraction of fine ash (primary fragmentation. Due to differences in plume height, this contrast is not seen in samples from individual sites, especially in the near field, where lapilli have a wider spatial coverage in the Plinian deposits. The distribution of pyroclast sizes in Plinian versus subplinian falls reflects competing influences of more efficient fragmentation (e.g., producing larger amounts of fine ash) versus more efficient particle transport related to higher and more vigorous plumes, displacing relatively coarse lapilli farther down the dispersal axis.

  10. Steady-state numerical modeling of size effects in micron scale wire drawing

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2017-01-01

    Wire drawing processes at the micron scale have received increased interest as micro wires are increasingly required in electrical components. It is well-established that size effects due to large strain gradient effects play an important role at this scale and the present study aims to quantify...... these effects for the wire drawing process. Focus will be on investigating the impact of size effects on the most favourable tool geometry (in terms of minimizing the drawing force) for various conditions between the wire/tool interface. The numerical analysis is based on a steady-state framework that enables...... convergence without dealing with the transient regime, but still fully accounts for the history dependence as-well as the elastic unloading. Thus, it forms the basis for a comprehensive parameter study. During the deformation process in wire drawing, large plastic strain gradients evolve in the contact region...

  11. Biomechanical testing and material characterization for the rat large intestine: regional dependence of material parameters.

    Science.gov (United States)

    Sokolis, Dimitrios P; Orfanidis, Ioannis K; Peroulis, Michalis

    2011-12-01

    The function of the large bowel is to absorb water from the remaining indigestible food matter and subsequently pass useless waste material from the body, but there has been only a small amount of data in the literature on its biomechanical characteristics that would facilitate our understanding of its transport function. Our study aims to fill this gap by affording comprehensive inflation/extension data of intestinal segments from distinct areas, spanning a physiologically relevant deformation range (100-130% axial stretches and 0-15 mmHg lumen pressures). These data were characterized by the Fung-type exponential model in the thick-walled setting, showing reasonable agreement, i.e. root-mean-square error ~30%. Based on optimized material parameters, i.e. a(1)testing and material characterization results for the large intestine of healthy young animals are expected to aid in comprehending the adaptation/remodeling that occurs with ageing, pathological conditions and surgical procedures, as well as for the development of suitable biomaterials for replacement.

  12. Rigorous Asymptotics for the Lamé and Mathieu Functions and their Respective Eigenvalues with a Large Parameter

    Science.gov (United States)

    Ogilvie, Karen; Olde Daalhuis, Adri B.

    2015-11-01

    By application of the theory for second-order linear differential equations with two turning points developed in [Olver F.W.J., Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 137-174], uniform asymptotic approximations are obtained in the first part of this paper for the Lamé and Mathieu functions with a large real parameter. These approximations are expressed in terms of parabolic cylinder functions, and are uniformly valid in their respective real open intervals. In all cases explicit bounds are supplied for the error terms associated with the approximations. Approximations are also obtained for the large order behaviour for the respective eigenvalues. We restrict ourselves to a two term uniform approximation. Theoretically more terms in these approximations could be computed, but the coefficients would be very complicated. In the second part of this paper we use a simplified method to obtain uniform asymptotic expansions for these functions. The coefficients are just polynomials and satisfy simple recurrence relations. The price to pay is that these asymptotic expansions hold only in a shrinking interval as their respective parameters become large; this interval however encapsulates all the interesting oscillatory behaviour of the functions. This simplified method also gives many terms in asymptotic expansions for these eigenvalues, derived simultaneously with the coefficients in the function expansions. We provide rigorous realistic error bounds for the function expansions when truncated and order estimates for the error when the eigenvalue expansions are truncated. With this paper we confirm that many of the formal results in the literature are correct.

  13. Correlations between skin hydration parameters and corneocyte-derived parameters to characterize skin conditions.

    Science.gov (United States)

    Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri

    2018-03-30

    Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.

  14. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    Science.gov (United States)

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  15. Relationship between side necking and plastic zone size at fracture

    International Nuclear Information System (INIS)

    Kim, Do Hyung; Kang, Ki Ju; Kim, Dong Hak

    2004-01-01

    Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixes 0 .deg., 30 deg., 60 deg., 90 .deg. and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed

  16. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1978-01-01

    This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.

  17. Identification of strategy parameters for particle swarm optimizer through Taguchi method

    Institute of Scientific and Technical Information of China (English)

    KHOSLA Arun; KUMAR Shakti; AGGARWAL K.K.

    2006-01-01

    Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has been used for finding promising solutions in complex search space through the interaction of particles in a swarm. It is a well recognized fact that the performance of evolutionary algorithms to a great extent depends on the choice of appropriate strategy/operating parameters like population size,crossover rate, mutation rate, crossover operator, etc. Generally, these parameters are selected through hit and trial process, which is very unsystematic and requires rigorous experimentation. This paper proposes a systematic based on Taguchi method reasoning scheme for rapidly identifying the strategy parameters for the PSO algorithm. The Taguchi method is a robust design approach using fractional factorial design to study a large number of parameters with small number of experiments. Computer simulations have been performed on two benchmark functions-Rosenbrock function and Griewank function-to validate the approach.

  18. Common Noctule Bats Are Sexually Dimorphic in Migratory Behaviour and Body Size but Not Wing Shape.

    Directory of Open Access Journals (Sweden)

    M Teague O'Mara

    Full Text Available Within the large order of bats, sexual size dimorphism measured by forearm length and body mass is often female-biased. Several studies have explained this through the effects on load carrying during pregnancy, intrasexual competition, as well as the fecundity and thermoregulation advantages of increased female body size. We hypothesized that wing shape should differ along with size and be under variable selection pressure in a species where there are large differences in flight behaviour. We tested whether load carrying, sex differential migration, or reproductive advantages of large females affect size and wing shape dimorphism in the common noctule (Nyctalus noctula, in which females are typically larger than males and only females migrate long distances each year. We tested for univariate and multivariate size and shape dimorphism using data sets derived from wing photos and biometric data collected during pre-migratory spring captures in Switzerland. Females had forearms that are on average 1% longer than males and are 1% heavier than males after emerging from hibernation, but we found no sex differences in other size, shape, or other functional characters in any wing parameters during this pre-migratory period. Female-biased size dimorphism without wing shape differences indicates that reproductive advantages of big mothers are most likely responsible for sexual dimorphism in this species, not load compensation or shape differences favouring aerodynamic efficiency during pregnancy or migration. Despite large behavioural and ecological sex differences, morphology associated with a specialized feeding niche may limit potential dimorphism in narrow-winged bats such as common noctules and the dramatic differences in migratory behaviour may then be accomplished through plasticity in wing kinematics.

  19. An operational calculus framework to characterize droplet size populations from turbulent breakup by a small number of parameters

    International Nuclear Information System (INIS)

    Vazquez, Rafael; Ganan-Calvo, Alfonso M

    2010-01-01

    A systematic operational calculus framework that characterizes droplet/bubble size distributions resulting from turbulent breakup of an immiscible fluid into a carrier one is presented. The proposed formulation is derived from dynamical arguments; a finite-difference formulation of the integro-differential continuous coagulation and fragmentation equation is shown to exhibit the same structure as a discrete sequence of Mellin convolutions between the probability distribution of the evolving dispersed phase and a generic kernel. This kernel may have its physical correspondence with the probability distribution resulting from a single breakup event, e.g. a liquid ligament breakup in a ligament-mediated spray formation. The number of convolution steps in the sequence can be reduced to a single parameter. As an illustration, this procedure is applied to the exponential and the gamma distributions, obtaining as a result the Frechet distribution earlier used by Rosin and Rammler (1934 Kolloid-Zeitschrift 67 16-26), and by Nukiyama and Tanasawa (1939 Trans. Soc. Mech. Eng. Japan 5 62-7). Thus, the framework introduced in this work provides a physical foundation for the success of the Frechet distribution in accurately fitting experimentally measured droplet size distributions in sprays and emulsions.

  20. An operational calculus framework to characterize droplet size populations from turbulent breakup by a small number of parameters

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Rafael; Ganan-Calvo, Alfonso M, E-mail: amgc@us.e [Departamento de IngenierIa Aeroespacial y Mecanica de Fluidos, Universidad de Sevilla, e-41092 Sevilla (Spain)

    2010-05-07

    A systematic operational calculus framework that characterizes droplet/bubble size distributions resulting from turbulent breakup of an immiscible fluid into a carrier one is presented. The proposed formulation is derived from dynamical arguments; a finite-difference formulation of the integro-differential continuous coagulation and fragmentation equation is shown to exhibit the same structure as a discrete sequence of Mellin convolutions between the probability distribution of the evolving dispersed phase and a generic kernel. This kernel may have its physical correspondence with the probability distribution resulting from a single breakup event, e.g. a liquid ligament breakup in a ligament-mediated spray formation. The number of convolution steps in the sequence can be reduced to a single parameter. As an illustration, this procedure is applied to the exponential and the gamma distributions, obtaining as a result the Frechet distribution earlier used by Rosin and Rammler (1934 Kolloid-Zeitschrift 67 16-26), and by Nukiyama and Tanasawa (1939 Trans. Soc. Mech. Eng. Japan 5 62-7). Thus, the framework introduced in this work provides a physical foundation for the success of the Frechet distribution in accurately fitting experimentally measured droplet size distributions in sprays and emulsions.

  1. Size dependent diffusive parameters and tensorial diffusion equations in neutronic models for optically small nuclear systems

    International Nuclear Information System (INIS)

    Premuda, F.

    1983-01-01

    Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated

  2. Influence of emulsifiers on the optimization of processing parameters of refining milk chocolate in the ball mill

    Directory of Open Access Journals (Sweden)

    Pajin Biljana

    2011-01-01

    Full Text Available Chocolate manufacture is a complex process which includes a large number of technology operations. One of the obligatory phases is milling, called refining, which aims at obtaining the appropriate distribution of particle size, resulting in the chocolate with optimal physical and sensory characteristics. The aim of this work was to define and optimize the process parameters for the production of milk chocolate by a non-conventional procedure, using the ball mill. The quality of chocolate mass, produced on this way, is determined by measuring the following parameters: moisture, size of the largest cocoa particle, yield flow, and Casson plastic viscosity. A special consideration of this study is the optimization of the types and amounts of emulsifiers, which are responsible for achieving the appropriate rheological and physical characteristics of the chocolate mass. The obtained parameters are compared with those which are typical for the standard procedure.

  3. Large size self-assembled quantum rings: quantum size effect and modulation on the surface diffusion.

    Science.gov (United States)

    Tong, Cunzhu; Yoon, Soon Fatt; Wang, Lijun

    2012-09-24

    We demonstrate experimentally the submicron size self-assembled (SA) GaAs quantum rings (QRs) by quantum size effect (QSE). An ultrathin In0.1 Ga0.9As layer with different thickness is deposited on the GaAs to modulate the surface nucleus diffusion barrier, and then the SA QRs are grown. It is found that the density of QRs is affected significantly by the thickness of inserted In0.1 Ga0.9As, and the diffusion barrier modulation reflects mainly on the first five monolayer . The physical mechanism behind is discussed. The further analysis shows that about 160 meV decrease in diffusion barrier can be achieved, which allows the SA QRs with density of as low as one QR per 6 μm2. Finally, the QRs with diameters of 438 nm and outer diameters of 736 nm are fabricated using QSE.

  4. Phylogenetic relationships of hexaploid large-sized barbs (genus Labeobarbus, Cyprinidae) based on mtDNA data.

    Science.gov (United States)

    Tsigenopoulos, Costas S; Kasapidis, Panagiotis; Berrebi, Patrick

    2010-08-01

    The phylogenetic relationships among species of the Labeobarbus genus (Teleostei, Cyprinidae) which comprises large body-sized hexaploid taxa were inferred using complete cytochrome b mitochondrial gene sequences. Molecular data suggest two main evolutionary groups which roughly correspond to a Northern (Middle East and Northwest Africa) and a sub-Saharan lineage. The splitting of the African hexaploids from their Asian ancestors and their subsequent diversification on the African continent occurred in the Late Miocene, a period in which other cyprinins also invaded Africa and radiated in the Mediterranean region. Finally, systematic implications of these results to the taxonomic validity of genera or subgenera such as Varicorhinus, Kosswigobarbus, Carasobarbus and Capoeta are further discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Gas–liquid nucleation at large metastability: unusual features and a new formalism

    International Nuclear Information System (INIS)

    Santra, Mantu; Singh, Rakesh S; Bagchi, Biman

    2011-01-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  6. Gas-liquid nucleation at large metastability: unusual features and a new formalism

    Science.gov (United States)

    Santra, Mantu; Singh, Rakesh S.; Bagchi, Biman

    2011-03-01

    Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order

  7. Five-Axis Milling of Large Spiral Bevel Gears: Toolpath Definition, Finishing, and Shape Errors

    Directory of Open Access Journals (Sweden)

    Álvaro Álvarez

    2018-05-01

    Full Text Available In this paper, a five-axis machining process is analyzed for large spiral-bevel gears, an interesting process for one-of-kind manufacturing. The work is focused on large sized spiral bevel gears manufacturing using universal multitasking machines or five-axis milling centers. Different machining strategies, toolpath patterns, and parameters are tested for both gear roughing and finishing operations. Machining time, tools’ wear, and gear surface are analyzed in order to determine which are the best strategies and parameters for large modulus gear manufacturing on universal machines. The case study results are discussed in the last section, showing the capacity of a universal five-axis milling for this niche. Special attention was paid to the possible affectations of the metal surfaces, since gear durability is very sensitive to thermo-mechanical damage, affected layers, and flank gear surface state.

  8. Are large farms more efficient? Tenure security, farm size and farm efficiency: evidence from northeast China

    Science.gov (United States)

    Zhou, Yuepeng; Ma, Xianlei; Shi, Xiaoping

    2017-04-01

    How to increase production efficiency, guarantee grain security, and increase farmers' income using the limited farmland is a great challenge that China is facing. Although theory predicts that secure property rights and moderate scale management of farmland can increase land productivity, reduce farm-related costs, and raise farmer's income, empirical studies on the size and magnitude of these effects are scarce. A number of studies have examined the impacts of land tenure or farm size on productivity or efficiency, respectively. There are also a few studies linking farm size, land tenure and efficiency together. However, to our best knowledge, there are no studies considering tenure security and farm efficiency together for different farm scales in China. In addition, there is little study analyzing the profit frontier. In this study, we particularly focus on the impacts of land tenure security and farm size on farm profit efficiency, using farm level data collected from 23 villages, 811 households in Liaoning in 2015. 7 different farm scales have been identified to further represent small farms, median farms, moderate-scale farms, and large farms. Technical efficiency is analyzed with stochastic frontier production function. The profit efficiency is regressed on a set of explanatory variables which includes farm size dummies, land tenure security indexes, and household characteristics. We found that: 1) The technical efficiency scores for production efficiency (average score = 0.998) indicate that it is already very close to the production frontier, and thus there is little room to improve production efficiency. However, there is larger space to raise profit efficiency (average score = 0.768) by investing more on farm size expansion, seed, hired labor, pesticide, and irrigation. 2) Farms between 50-80 mu are most efficient from the viewpoint of profit efficiency. The so-called moderate-scale farms (100-150 mu) according to the governmental guideline show no

  9. EFFECTS OF RATION SIZE AND TEMPERATURE ON MOULT INCREMENT AND METABOLIC PARAMETERS OF JUVENILE NOBLE CRAYFISH, ASTACUS ASTACUS

    Directory of Open Access Journals (Sweden)

    RENAI B.

    2007-07-01

    Full Text Available A laboratory experiment was carried out to test the combined effects of ration size (1 vs 3% body weight, b.w. and temperature (15 ± 2 vs 22 ± 2 °C on moult increment and metabolic parameters of 80 juvenile noble crayfish (Astacus astacus. The maximum daily consumption (Cmax and respiration rate (R were used to calculate the growth scope (i.e. the difference between maximum daily energy consumption and energy costs at a given temperature. The conversion of R into a food-equivalent unit allowed the comparison with Cmax. Results showed that crayfish obtained the maximum moult increment when fed 3% b.w. while temperature seemed to play a less relevant role on growth rate per moult, affecting only the moulting frequency. Crayfish A. astacus fed ad libitum showed a relative insensitivity to the metabolic parameters (oxygen uptake, R and Cmax within the analysed range of temperatures, possibly as a reflection of this “species” distribution across a broad variety of habitats with different thermal regimes. In the present study, A. astacus displayed characteristics proper of a K-selected species, as slow to moderate growth.

  10. Radiofrequency Energy and Electrode Proximity Influences Stereoelectroencephalography-Guided Radiofrequency Thermocoagulation Lesion Size: An In Vitro Study with Clinical Correlation.

    Science.gov (United States)

    Staudt, Michael D; Maturu, Sarita; Miller, Jonathan P

    2018-02-16

    Radiofrequency thermocoagulation of epileptogenic foci via stereoelectroencephalography (SEEG) electrodes has been suggested as a treatment for medically intractable epilepsy, but reported outcomes have been suboptimal, possibly because lesions generated using conventional high-energy radiofrequency parameters are relatively small. To describe a technique of delivering low energy across separate SEEG electrodes in order to create large confluent radiofrequency lesions. The size and configuration of radiofrequency lesions using different radiofrequency intensity and interelectrode distance was assessed in egg whites. Magnetic resonance images (MRI) from 3 patients who had undergone radiofrequency lesion creation were evaluated to determine the contribution of lesion intensity and electrode separation on lesion size. Electroencephalography, MRI, and clinical data were assessed before and after lesion creation. Both in Vitro and in Vivo analysis revealed that less energy paradoxically produced larger lesions, with the largest possible lesions produced when radiofrequency power was applied for long duration at less than 3 W. Linear separation of electrodes also contributed to lesion size, with largest lesions produced when electrodes were separated by a linear distance of between 5 and 12 mm. Clinical lesions produced using these parameters were large and resulted in improvement in interictal and ictal activity. Radiofrequency lesions produced using low-energy delivery between SEEG electrodes in close proximity can produce a large lesion. These findings might have advantages for treatment of focal epilepsy.

  11. Optimal Siting and Sizing of Energy Storage System for Power Systems with Large-scale Wind Power Integration

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2015-01-01

    This paper proposes algorithms for optimal sitingand sizing of Energy Storage System (ESS) for the operationplanning of power systems with large scale wind power integration.The ESS in this study aims to mitigate the wind powerfluctuations during the interval between two rolling Economic......Dispatches (EDs) in order to maintain generation-load balance.The charging and discharging of ESS is optimized consideringoperation cost of conventional generators, capital cost of ESSand transmission losses. The statistics from simulated systemoperations are then coupled to the planning process to determinethe...

  12. Comparing spatial grain-size trends inferred from textural parameters using percentile statistical parameters and those based on the log-hyperbolic method

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Christiansen, C.; Pedersen, Jørn Bjarke Torp

    2007-01-01

    The Folk&Ward (F&W) and the log-hyperbolic methods are applied to a small - and easy to overlook - number of typical sand sized grain-size distributions from the Danish Wadden Sea. The sand originates from the same source, and the pattern of change in the grain-size distributions is, therefore...

  13. Large-size deployable construction heated by solar irradiation in free space

    Science.gov (United States)

    Pestrenina, Irena; Kondyurin, Alexey; Pestrenin, Valery; Kashin, Nickolay; Naymushin, Alexey

    Large-size deployable construction in free space with subsequent direct curing was invented more than fifteen years ago (Briskman et al., 1997 and Kondyurin, 1998). It caused a lot of scientific problems, one of which is a possibility to use the solar energy for initiation of the curing reaction. This paper is devoted to investigate the curing process under sun irradiation during a space flight in Earth orbits. A rotation of the construction is considered. This motion can provide an optimal temperature distribution in the construction that is required for the polymerization reaction. The cylindrical construction of 80 m length with two hemispherical ends of 10 m radius is considered. The wall of the construction of 10 mm carbon fibers/epoxy matrix composite is irradiated by heat flux from the sun and radiates heat from the external surface by the Stefan- Boltzmann law. A stage of polymerization reaction is calculated as a function of temperature/time based on the laboratory experiments with certified composite materials for space exploitation. The curing kinetics of the composite is calculated for different inclination Low Earth Orbits (300 km altitude) and Geostationary Earth Orbit (40000 km altitude). The results show that • the curing process depends strongly on the Earth orbit and the rotation of the construction; • the optimal flight orbit and rotation can be found to provide the thermal regime that is sufficient for the complete curing of the considered construction. The study is supported by RFBR grant No.12-08-00970-a. 1. Briskman V., A.Kondyurin, K.Kostarev, V.Leontyev, M.Levkovich, A.Mashinsky, G.Nechitailo, T.Yudina, Polymerization in microgravity as a new process in space technology, Paper No IAA-97-IAA.12.1.07, 48th International Astronautical Congress, October 6-10, 1997, Turin Italy. 2. Kondyurin A.V., Building the shells of large space stations by the polymerisation of epoxy composites in open space, Int. Polymer Sci. and Technol., v.25, N4

  14. Embrittlement and decrease of apparent strength in large-sized ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In fact, the dimensional disparity between tensile stress σ([F][L]. −2) and ..... they work only in a limited range. This is the case of the ...... ACI 1992 American Concrete Institute: Building Code 318R-89 (Detroit: ACI Press). Ba˘zant Z P 1984 Size ...

  15. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2014-02-01

    Full Text Available In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  16. Comparing fishers' and scientific estimates of size at maturity and maximum body size as indicators for overfishing.

    Science.gov (United States)

    Mclean, Elizabeth L; Forrester, Graham E

    2018-04-01

    We tested whether fishers' local ecological knowledge (LEK) of two fish life-history parameters, size at maturity (SAM) at maximum body size (MS), was comparable to scientific estimates (SEK) of the same parameters, and whether LEK influenced fishers' perceptions of sustainability. Local ecological knowledge was documented for 82 fishers from a small-scale fishery in Samaná Bay, Dominican Republic, whereas SEK was compiled from the scientific literature. Size at maturity estimates derived from LEK and SEK overlapped for most of the 15 commonly harvested species (10 of 15). In contrast, fishers' maximum size estimates were usually lower than (eight species), or overlapped with (five species) scientific estimates. Fishers' size-based estimates of catch composition indicate greater potential for overfishing than estimates based on SEK. Fishers' estimates of size at capture relative to size at maturity suggest routine inclusion of juveniles in the catch (9 of 15 species), and fishers' estimates suggest that harvested fish are substantially smaller than maximum body size for most species (11 of 15 species). Scientific estimates also suggest that harvested fish are generally smaller than maximum body size (13 of 15), but suggest that the catch is dominated by adults for most species (9 of 15 species), and that juveniles are present in the catch for fewer species (6 of 15). Most Samaná fishers characterized the current state of their fishery as poor (73%) and as having changed for the worse over the past 20 yr (60%). Fishers stated that concern about overfishing, catching small fish, and catching immature fish contributed to these perceptions, indicating a possible influence of catch-size composition on their perceptions. Future work should test this link more explicitly because we found no evidence that the minority of fishers with more positive perceptions of their fishery reported systematically different estimates of catch-size composition than those with the more

  17. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions, 2

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1976-01-01

    The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.

  18. Hypofractionated Whole-Breast Radiation Therapy: Does Breast Size Matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannan, Raquibul, E-mail: Raquibul.Hannan@gmail.com [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Thompson, Reid F.; Chen Yu; Bernstein, Karen; Kabarriti, Rafi; Skinner, William [Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (United States); Chen, Chin C. [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Landau, Evan; Miller, Ekeni; Spierer, Marnee; Hong, Linda; Kalnicki, Shalom [Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (United States)

    2012-11-15

    Purpose: To evaluate the effects of breast size on dose-volume histogram parameters and clinical toxicity in whole-breast hypofractionated radiation therapy using intensity modulated radiation therapy (IMRT). Materials and Methods: In this retrospective study, all patients undergoing breast-conserving therapy between 2005 and 2009 were screened, and qualifying consecutive patients were included in 1 of 2 cohorts: large-breasted patients (chest wall separation >25 cm or planning target volume [PTV] >1500 cm{sub 3}) (n=97) and small-breasted patients (chest wall separation <25 cm and PTV <1500 cm{sub 3}) (n=32). All patients were treated prone or supine with hypofractionated IMRT to the whole breast (42.4 Gy in 16 fractions) followed by a boost dose (9.6 Gy in 4 fractions). Dosimetric and clinical toxicity data were collected and analyzed using the R statistical package (version 2.12). Results: The mean PTV V95 (percentage of volume receiving >= 95% of prescribed dose) was 90.18% and the mean V105 percentage of volume receiving >= 105% of prescribed dose was 3.55% with no dose greater than 107%. PTV dose was independent of breast size, whereas heart dose and maximum point dose to skin correlated with increasing breast size. Lung dose was markedly decreased in prone compared with supine treatments. Radiation Therapy Oncology Group grade 0, 1, and 2 skin toxicities were noted acutely in 6%, 69%, and 25% of patients, respectively, and at later follow-up (>3 months) in 43%, 57%, and 0% of patients, respectively. Large breast size contributed to increased acute grade 2 toxicity (28% vs 12%, P=.008). Conclusions: Adequate PTV coverage with acceptable hot spots and excellent sparing of organs at risk was achieved by use of IMRT regardless of treatment position and breast size. Although increasing breast size leads to increased heart dose and maximum skin dose, heart dose remained within our institutional constraints and the incidence of overall skin toxicity was comparable

  19. Effects of spot parameters in pencil beam scanning treatment planning.

    Science.gov (United States)

    Kraan, Aafke Christine; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2018-01-01

    Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility. Our study could help as a guideline to make the trade-off between treatment quality and time in existing PBS centers and in future systems. We created plans for seven patients and a phantom, with different tumor sites and volumes, and compared the effect of small-, medium-, and large-spot widths (σ = 2.5, 5, and 10 mm) and interspot distances (1σ, 1.5σ, and 1.75σ) on dose, spot charge, and treatment time. Moreover, we quantified how postplanning charge threshold cuts affect plan quality and the total number of spots to deliver, for different spot widths and interspot distances. We show the effect of a minimum charge (or MU) cutoff value for a given proton delivery system. Spot size had a strong influence on dose: larger spots resulted in more protons delivered outside the target region. We observed dose differences of 2-13 Gy (RBE) between 2.5 mm and 10 mm spots, where the amount of extra dose was due to dose penumbra around the target region. Interspot distance had little influence on dose quality for our patient group. Both parameters strongly influence spot charge in the plans and thus the possible impact of postplanning charge threshold cuts. If such charge thresholds are not included in the treatment planning system (TPS), it is important that the practitioner validates that a given combination of lower charge threshold, interspot spacing, and spot size does not result in a plan degradation. Low average spot charge occurs for small spots, small interspot

  20. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  1. Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX

    Science.gov (United States)

    Patade, Sachin; Prabha, T. V.; Axisa, D.; Gayatri, K.; Heymsfield, A.

    2015-10-01

    A comprehensive analysis of particle size distributions measured in situ with airborne instrumentation during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) is presented. In situ airborne observations in the developing stage of continental convective clouds during premonsoon (PRE), transition, and monsoon (MON) period at temperatures from 25 to -22°C are used in the study. The PRE clouds have narrow drop size and particle size distributions compared to monsoon clouds and showed less development of size spectra with decrease in temperature. Overall, the PRE cases had much lower values of particle number concentrations and ice water content compared to MON cases, indicating large differences in the ice initiation and growth processes between these cloud regimes. This study provided compelling evidence that in addition to dynamics, aerosol and moisture are important for modulating ice microphysical processes in PRE and MON clouds through impacts on cloud drop size distribution. Significant differences are observed in the relationship of the slope and intercept parameters of the fitted particle size distributions (PSDs) with temperature in PRE and MON clouds. The intercept values are higher in MON clouds than PRE for exponential distribution which can be attributed to higher cloud particle number concentrations and ice water content in MON clouds. The PRE clouds tend to have larger values of dispersion of gamma size distributions than MON clouds, signifying narrower spectra. The relationships between PSDs parameters are presented and compared with previous observations.

  2. Optimization of the plasma parameters for the high current and uniform large-scale pulse arc ion source of the VEST-NBI system

    International Nuclear Information System (INIS)

    Jung, Bongki; Park, Min; Heo, Sung Ryul; Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2016-01-01

    Highlights: • High power magnetic bucket-type arc plasma source for the VEST NBI system is developed with modifications based on the prototype plasma source for KSTAR. • Plasma parameters in pulse duration are measured to characterize the plasma source. • High plasma density and good uniformity is achieved at the low operating pressure below 1 Pa. • Required ion beam current density is confirmed by analysis of plasma parameters and results of a particle balance model. - Abstract: A large-scale hydrogen arc plasma source was developed at the Korea Atomic Energy Research Institute for a high power pulsed NBI system of VEST which is a compact spherical tokamak at Seoul national university. One of the research target of VEST is to study innovative tokamak operating scenarios. For this purpose, high current density and uniform large-scale pulse plasma source is required to satisfy the target ion beam power efficiently. Therefore, optimizing the plasma parameters of the ion source such as the electron density, temperature, and plasma uniformity is conducted by changing the operating conditions of the plasma source. Furthermore, ion species of the hydrogen plasma source are analyzed using a particle balance model to increase the monatomic fraction which is another essential parameter for increasing the ion beam current density. Conclusively, efficient operating conditions are presented from the results of the optimized plasma parameters and the extractable ion beam current is calculated.

  3. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  4. Investigating the Variability in Cumulus Cloud Number as a Function of Subdomain Size and Organization using large-domain LES

    Science.gov (United States)

    Neggers, R.

    2017-12-01

    Recent advances in supercomputing have introduced a "grey zone" in the representation of cumulus convection in general circulation models, in which this process is partially resolved. Cumulus parameterizations need to be made scale-aware and scale-adaptive to be able to conceptually and practically deal with this situation. A potential way forward are schemes formulated in terms of discretized Cloud Size Densities, or CSDs. Advantages include i) the introduction of scale-awareness at the foundation of the scheme, and ii) the possibility to apply size-filtering of parameterized convective transport and clouds. The CSD is a new variable that requires closure; this concerns its shape, its range, but also variability in cloud number that can appear due to i) subsampling effects and ii) organization in a cloud field. The goal of this study is to gain insight by means of sub-domain analyses of various large-domain LES realizations of cumulus cloud populations. For a series of three-dimensional snapshots, each with a different degree of organization, the cloud size distribution is calculated in all subdomains, for a range of subdomain sizes. The standard deviation of the number of clouds of a certain size is found to decrease with the subdomain size, following a powerlaw scaling corresponding to an inverse-linear dependence. Cloud number variability also increases with cloud size; this reflects that subsampling affects the largest clouds first, due to their typically larger neighbor spacing. Rewriting this dependence in terms of two dimensionless groups, by dividing by cloud number and cloud size respectively, yields a data collapse. Organization in the cloud field is found to act on top of this primary dependence, by enhancing the cloud number variability at the smaller sizes. This behavior reflects that small clouds start to "live" on top of larger structures such as cold pools, favoring or inhibiting their formation (as illustrated by the attached figure of cloud mask

  5. Donor-Recipient Size Mismatch in Paediatric Renal Transplantation

    Directory of Open Access Journals (Sweden)

    J. Donati-Bourne

    2014-01-01

    Full Text Available Introduction. End stage renal failure in children is a rare but devastating condition, and kidney transplantation remains the only permanent treatment option. The aim of this review was to elucidate the broad surgical issues surrounding the mismatch in size of adult kidney donors to their paediatric recipients. Methods. A comprehensive literature search was undertaken on PubMed, MEDLINE, and Google Scholar for all relevant scientific articles published to date in English language. Manual search of the bibliographies was also performed to supplement the original search. Results. Size-matching kidneys for transplantation into children is not feasible due to limited organ availability from paediatric donors, resulting in prolonged waiting list times. Transplanting a comparatively large adult kidney into a child may lead to potential challenges related to the surgical incision and approach, vessel anastomoses, wound closure, postoperative cardiovascular stability, and age-correlated maturation of the graft. Conclusion. The transplantation of an adult kidney into a size mismatched paediatric recipient significantly reduces waiting times for surgery; however, it presents further challenges in terms of both the surgical procedure and the post-operative management of the patient’s physiological parameters.

  6. Order parameter fluctuations at a critical point - an exact result about percolation -

    International Nuclear Information System (INIS)

    Botet, Robert

    2011-01-01

    The order parameter of the system in the critical state, is expected to undergo large non-Gaussian fluctuations. However, almost nothing is known about the mathematical forms of the possible probability distributions of the order parameter. A remarkable exception is the site-percolation on the Bethe lattice, for which the complete order-parameter distribution has been recently derived at the critical point. Surprisingly, it appears to be the Kolmogorov-Smirnov distribution, well known in very different areas of mathematical statistics. In the present paper, we explain first how this special distribution could appear naturally in the context of the critical systems, under the assumption (still virtually unstudied) of the exponential distribution of the number of domains of a given size. In a second part, we present for the first time the complete derivation of the order-parameter distribution for the critical percolation model on the Bethe lattice, thus completing a recent publication announcing this result.

  7. Genetic parameters of reproductive traits in pigs: a contribution

    Directory of Open Access Journals (Sweden)

    G. Pagnacco

    2011-03-01

    Full Text Available Generally pig breeding efficiency is defined as the number of piglets weaned per sow per year, so in every pig breeding programmes, great emphasis is placed on improving reproductive traits in sow lines and generally, the evaluation of litter size is carried out in most selection planes. Usually, the reproduction breeding goal is to increase the number of piglets born, but this trait, as reported by Hanenberg et al. (2001 gives an undesirable correlation with the number of stillborn piglets. Litter size is the result of a large number of traits as number of total piglets born, number of born alive, stillbirth, weaned survival; as reported by Tummaruk et al. (2000 the variation in these parameters is influenced by genetic value of the sow and by environmental factors, such as management and season. Regarding the genetic influence on the litter size, we know that the breed can influence the number of born, but its interaction with stillbirth is not significant, although Leenhouwers et al. (1999 found an higher stillbirth incidence in purebred than in crossbred litters........

  8. Evidence for soft bounds in Ubuntu package sizes and mammalian body masses.

    Science.gov (United States)

    Gherardi, Marco; Mandrà, Salvatore; Bassetti, Bruno; Cosentino Lagomarsino, Marco

    2013-12-24

    The development of a complex system depends on the self-coordinated action of a large number of agents, often determining unexpected global behavior. The case of software evolution has great practical importance: knowledge of what is to be considered atypical can guide developers in recognizing and reacting to abnormal behavior. Although the initial framework of a theory of software exists, the current theoretical achievements do not fully capture existing quantitative data or predict future trends. Here we show that two elementary laws describe the evolution of package sizes in a Linux-based operating system: first, relative changes in size follow a random walk with non-Gaussian jumps; second, each size change is bounded by a limit that is dependent on the starting size, an intriguing behavior that we call "soft bound." Our approach is based on data analysis and on a simple theoretical model, which is able to reproduce empirical details without relying on any adjustable parameter and generates definite predictions. The same analysis allows us to formulate and support the hypothesis that a similar mechanism is shaping the distribution of mammalian body sizes, via size-dependent constraints during cladogenesis. Whereas generally accepted approaches struggle to reproduce the large-mass shoulder displayed by the distribution of extant mammalian species, this is a natural consequence of the softly bounded nature of the process. Additionally, the hypothesis that this model is valid has the relevant implication that, contrary to a common assumption, mammalian masses are still evolving, albeit very slowly.

  9. The hydraulic conductivity of sediments: A pore size perspective

    KAUST Repository

    Ren, X.W.

    2017-12-06

    This article presents an analysis of previously published hydraulic conductivity data for a wide range of sediments. All soils exhibit a prevalent power trend between the hydraulic conductivity and void ratio. Data trends span 12 orders of magnitude in hydraulic conductivity and collapse onto a single narrow trend when the hydraulic conductivity data are plotted versus the mean pore size, estimated using void ratio and specific surface area measurements. The sensitivity of hydraulic conductivity to changes in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based on macroscale index parameters in this and similar previous studies has reached an asymptote in the range of kmeas/5≤kpredict≤5kmeas. The remaining uncertainty underscores the important role of underlying sediment characteristics such as pore size distribution, shape, and connectivity that are not measured with index properties. Furthermore, the anisotropy in hydraulic conductivity cannot be recovered from scalar parameters such as index properties. Overall, results highlight the robustness of the physics inspired data scrutiny based Hagen–Poiseuille and Kozeny-Carman analyses.

  10. Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions.

    Science.gov (United States)

    Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano

    2015-09-01

    Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.

  11. Effect of the design variables on the energy performance and size parameters of a heat transformer based on the system acetone/H[sub 2]/2-propanol

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, L M; Montes, M [Ente Vasco de la Energia, Bilbao (Spain). Div. de Investigacion y Recursos

    1992-12-01

    A high-temperature chemical heat pump based on the system acetone/H[sub 2]/2-propanol for waste heat recovery was studied. Two reversible catalytic chemical reactions are involved in this system. The waste heat (at 333-353K) is recovered by means of the endothermic liquid-phase dehydrogenation of 2-propanol, and is upgraded at high temperature (453-473K) by the reverse reaction, the exothermic gaseous-phase hydrogenation of acetone. In this process, a fraction of the recovered waste heat is removed at low temperature (303K), to carry out the separation by vapour rectification between acetone and 2-propanol. A mathematical model was developed, that permits the study of the effect of the heat pump operating conditions on the coefficient of performance (COP), exergetic efficiency and size parameters. This model allows the optimal range for the system control variables to be estimated. Under these conditions, the energy and size parameters have been calculated on a basis of 0.32 MW upgraded heat. (author)

  12. Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors

    Science.gov (United States)

    Sohrabi, M.; Habibi, M.; Ramezani, V.

    2014-11-01

    Helium ion beam profile, angular and iso-ion beam distributions in 4 kJ Amirkabir plasma focus (APF) device were effectively observed by the unaided eyes and studied in single 1 mm-thick large-diameter (20 cm) polycarbonate track detectors (PCTD). The PCTDs were processed by 50 Hz-HV electrochemical etching using a large-size ECE chamber. The results show that helium ions produced in the APF device have a ring-shaped angular distribution peaked at an angle of ∼ ± 60 ° with respect to the top of the anode. Some information on the helium ion energy and distributions is also provided. The method is highly effective for ion beam studies.

  13. Cybele: a large size ion source of module construction for Tore-Supra injector

    International Nuclear Information System (INIS)

    Simonin, A.; Garibaldi, P.

    2005-01-01

    A 70 keV 40 A hydrogen beam injector has been developed at Cadarache for plasma diagnostic purpose (MSE diagnostic and Charge exchange) on the Tore-Supra Tokamak. This injector daily operates with a large size ions source (called Pagoda) which does not completely fulfill all the requirements necessary for the present experiment. As a consequence, the development of a new ion source (called Cybele) has been underway whose objective is to meet high proton rate (>80%), current density of 160 mA/cm 2 within 5% of uniformity on the whole extraction surface for long shot operation (from 1 to 100 s). Moreover, the main particularity of Cybele is the module construction concept: it is composed of five source modules vertically juxtaposed, with a special orientation which fits the curved extraction surface of the injector; this curvature ensures a geometrical focalization of the neutral beam 7 m downstream in the Tore-Supra chamber. Cybele will be tested first in positive ion production for the Tore-Supra injector, and afterward in negative ion production mode; its modular concept could be advantageous to ensure plasma uniformity on the large extraction surface (about 1 m 2 ) of the ITER neutral beam injector. A module prototype (called the Drift Source) has already been developed in the past and optimized in the laboratory both for positive and negative ion production, where it has met the ITER ion source requirements in terms of D-current density (200 A/m 2 ), source pressure (0.3 Pa), uniformity and arc efficiency (0.015 A D-/kW). (authors)

  14. Critical Parametric Study on Final Size of Magnetite Nanoparticles

    Science.gov (United States)

    Yusoff, A. H. M.; Salimi, M. N.; Jamlos, M. F.

    2018-03-01

    The great performance of magnetite nanoparticle in varsity field are mainly depended on their size since size determine the saturation magnetisation and also the phase purity. Magnetite nanoparticles were prepared using a simple co-precipitation method in order to study the influence of synthesis condition on the final size. Variable parameters include stirring rate, reaction temperature and pH of the solution can finely tuned the size of the resulting nanoparticles. Generally, any increase in these parameters had a gently reduction on particle size. But, the size was promoted to increase back at certain point due to the specific reason. Nucleation and growth processes are involved to clarify the impact of synthesis condition on the particle sizes. The result obtained give the correct conditions for pure magnetite synthesis at nanoscale size of dimensions less than 100 nm.

  15. Determination of supersymmetric parameters with neural networks at the large hadron collider

    International Nuclear Information System (INIS)

    Bornhauser, Nicki

    2013-12-01

    The LHC is running and in the near future potentially some signs of new physics are measured. In this thesis it is assumed that the underlying theory of such a signal would be identified and that it is some kind of minimal supersymmetric extension of the Standard Model. Generally, the mapping from the measurable observables onto the parameter values of the supersymmetric theory is unknown. Instead, only the opposite direction is known, i.e. for fixed parameters the measurable observables can be computed with some uncertainties. In this thesis, the ability of artifical neural networks to determine this unknown function is demonstrated. At the end of a training process, the created networks are capable to calculate the parameter values with errors for an existing measurement. To do so, at first a set of mostly counting observables is introduced. In the following, the usefulness of these observables for the determination of supersymmetric parameters is checked. This is done by applying them on 283 pairs of parameter sets of a MSSM with 15 parameters. These pairs were found to be indistinguishable at the LHC by another study, even without the consideration of SM background. It can be shown that 260 of these pairs can be discriminated using the introduced observables. Without systematic errors even all pairs can be distinguished. Also with the consideration of SM background still most pairs can be disentangled (282 without and 237 with systematic errors). This result indicates the usefulness of the observables for the direct parameter determination. The performance of neural networks is investigated for four different parameter regions of the CMSSM. With the right set of observables, the neural network approach generally could also be used for any other (non-supersymmetric) theory. In each region, a reference point with around 1,000 events after cuts should be determined in the context of a LHC with a center of mass energy of 14 TeV and an integrated luminosity of 10 fb

  16. Changing the values of parameters on lot size reorder point model

    Directory of Open Access Journals (Sweden)

    Chang Hung-Chi

    2003-01-01

    Full Text Available The Just-In-Time (JIT philosophy has received a great deal of attention. Several actions such as improving quality, reducing setup cost and shortening lead time have been recognized as effective ways to achieve the underlying goal of JIT. This paper considers the partial backorders, lot size reorder point inventory system with an imperfect production process. The objective is to simultaneously optimize the lot size, reorder point, process quality, setup cost and lead time, constrained on a service level. We assume the explicit distributional form of lead time demand is unknown but the mean and standard deviation are given. The minimax distribution free approach is utilized to solve the problem and a numerical example is provided to illustrate the results. .

  17. Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile

    International Nuclear Information System (INIS)

    Shelke, Ashish V.; Gera, B.; Maheshwari, N.K.; Singh, R.K.

    2018-01-01

    After the events of 9/11, the impact of fast flying commercial aircraft is considered as major hazard threatening the Nuclear Power Plant's (NPP) safety. The study of fuel spillage phenomenon and fireball formation is important to understand fire hazards due to burning of dispersed aviation fuel. The detailed analysis of fuel dispersion is very difficult to deliberate because both, large NPP structures and the large size of commercial aircrafts. Sandia National Laboratories, USA conducted impact tests using cylindrical projectiles filled with water to measure the associated parameters. Due to combustion properties and volatile nature of hydrocarbon fuels, the obtained parameters from impact studies using water are incomplete in fire analysis of flammable droplet clouds. A mathematical model is developed for prediction of droplet sizes and distribution associated with the impact of a liquid-containing projectile. The model can predict the transient behavior of droplet cloud. It is validated with experimental data available in literature. In the present study, the analysis has been performed using water and kerosene. The data obtained can be utilized as boundary and initial condition for CFD analysis. This information is useful for fire hazard analysis of aircraft impacts on NPP structures.

  18. Size matters: large objects capture attention in visual search.

    Science.gov (United States)

    Proulx, Michael J

    2010-12-23

    Can objects or events ever capture one's attention in a purely stimulus-driven manner? A recent review of the literature set out the criteria required to find stimulus-driven attentional capture independent of goal-directed influences, and concluded that no published study has satisfied that criteria. Here visual search experiments assessed whether an irrelevantly large object can capture attention. Capture of attention by this static visual feature was found. The results suggest that a large object can indeed capture attention in a stimulus-driven manner and independent of displaywide features of the task that might encourage a goal-directed bias for large items. It is concluded that these results are either consistent with the stimulus-driven criteria published previously or alternatively consistent with a flexible, goal-directed mechanism of saliency detection.

  19. Ab initio estimates of the size of the observable universe

    International Nuclear Information System (INIS)

    Page, Don N.

    2011-01-01

    When one combines multiverse predictions by Bousso, Hall, and Nomura for the observed age and size of the universe in terms of the proton and electron charge and masses with anthropic predictions of Carter, Carr, and Rees for these masses in terms of the charge, one gets that the age of the universe should be roughly the inverse 64th power, and the cosmological constant should be around the 128th power, of the proton charge. Combining these with a further renormalization group argument gives a single approximate equation for the proton charge, with no continuous adjustable or observed parameters, and with a solution that is within 8% of the observed value. Using this solution gives large logarithms for the age and size of the universe and for the cosmological constant that agree with the observed values within 17%

  20. Ab initio estimates of the size of the observable universe

    Energy Technology Data Exchange (ETDEWEB)

    Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-183 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 Canada (Canada)

    2011-09-01

    When one combines multiverse predictions by Bousso, Hall, and Nomura for the observed age and size of the universe in terms of the proton and electron charge and masses with anthropic predictions of Carter, Carr, and Rees for these masses in terms of the charge, one gets that the age of the universe should be roughly the inverse 64th power, and the cosmological constant should be around the 128th power, of the proton charge. Combining these with a further renormalization group argument gives a single approximate equation for the proton charge, with no continuous adjustable or observed parameters, and with a solution that is within 8% of the observed value. Using this solution gives large logarithms for the age and size of the universe and for the cosmological constant that agree with the observed values within 17%.

  1. Out-coupling membrane for large-size organic light-emitting panels with high efficiency and improved uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lei, E-mail: dinglei@sust.edu.cn [College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021 (China); Wang, Lu-Wei [College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021 (China); Zhou, Lei, E-mail: zhzhlei@gmail.com [Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai' an 223003 (China); Zhang, Fang-hui [College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021 (China)

    2016-12-15

    Highlights: • An out-coupling membrane embedded with a scattering film of SiO{sub 2} spheres and polyethylene terephthalate (PET) plastic was successfully developed for 150 × 150 mm{sup 2} OLEDs. • Remarkable enhancement in efficiency was achieved from the OLEDs with out- coupling membrane. • The uniformity of large-size GOLED lighting panel is remarkably improved. - Abstract: An out-coupling membrane embedded with a scattering film of SiO{sub 2} spheres and polyethylene terephthalate (PET) plastic was successfully developed for 150 × 150 mm{sup 2} green OLEDs. Comparing with a reference OLED panel, an approximately 1-fold enhancement in the forward emission was obtained with an out-coupling membrane adhered to the surface of the external glass substrate of the panel. Moreover, it was verified that the emission color at different viewing angles can be stabilized without apparent spectral distortion. Particularly, the uniformity of the large-area OLEDs was greatly improved. Theoretical calculation clarified that the improved performance of the lighting panels is primarily attributed to the effect of particle scattering.

  2. Herniation despite Decompressive Hemicraniectomy in Large Hemispherical Ischemic Strokes.

    Science.gov (United States)

    Hinduja, Archana; Samant, Rohan; Feng, Dongxia; Hannawi, Yousef

    2018-02-01

    Despite decompressive hemicraniectomy (DHC), progressive herniation resulting in death has been reported following middle cerebral artery (MCA) strokes. We aimed to determine the surgical parameters measured on brain computed tomography (CT) scan that are associated with progressive herniation despite DHC in large MCA strokes. Retrospective chart review of medical records of patients with malignant hemispheric infarction who underwent DHC for cerebral edema was performed. Infarct volume was calculated on CT scans obtained within 24 hours of ictus. Radiological parameters of craniectomy bone flap size, brain volume protruding out of the skull, adequate centering of the craniectomy over the stroke bed, and the infarct volume outside the craniectomy bed (volume not centered [VNC]) were measured on the postoperative brain CT. Of 41 patients who underwent DHC, 7 had progressive herniation leading to death. Radiographic parameters significantly associated with progressive herniation included insufficient centering of craniectomy bed on the stroke bed (P = .03), VNC (P = .011), additional anterior cerebral artery infarction (P = .047), and smaller craniectomy length (P = .05). Multivariate logistic regression analysis for progressive herniation using craniectomy length and VNC as independent variables demonstrated that a higher VNC was significantly associated with progressive herniation despite surgery (P = .029). In large MCA strokes, identification of large infarct volume outside the craniectomy bed was associated with progressive herniation despite surgery. These results will need to be verified in larger prospective studies. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation.

    Science.gov (United States)

    Liu, Yupu; Shen, Dengke; Chen, Gang; Elzatahry, Ahmed A; Pal, Manas; Zhu, Hongwei; Wu, Longlong; Lin, Jianjian; Al-Dahyan, Daifallah; Li, Wei; Zhao, Dongyuan

    2017-09-01

    Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m 2 g -1 ), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free-standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well-defined pore diameters for highly efficient nanosize-based separation at the macroscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On the Relationship between Pollen Size and Genome Size

    Directory of Open Access Journals (Sweden)

    Charles A. Knight

    2010-01-01

    Full Text Available Here we test whether genome size is a predictor of pollen size. If it were, inferences of ancient genome size would be possible using the abundant paleo-palynolgical record. We performed regression analyses across 464 species of pollen width and genome size. We found a significant positive trend. However, regression analysis using phylogentically independent contrasts did not support the correlated evolution of these traits. Instead, a large split between angiosperms and gymnosperms for both pollen width and genome size was revealed. Sister taxa were not more likely to show a positive contrast when compared to deeper nodes. However, significantly more congeneric species had a positive trend than expected by chance. These results may reflect the strong selection pressure for pollen to be small. Also, because pollen grains are not metabolically active when measured, their biology is different than other cells which have been shown to be strongly related to genome size, such as guard cells. Our findings contrast with previously published research. It was our hope that pollen size could be used as a proxy for inferring the genome size of ancient species. However, our results suggest pollen is not a good candidate for such endeavors.

  5. Box-Cox transformation of firm size data in statistical analysis

    Science.gov (United States)

    Chen, Ting Ting; Takaishi, Tetsuya

    2014-03-01

    Firm size data usually do not show the normality that is often assumed in statistical analysis such as regression analysis. In this study we focus on two firm size data: the number of employees and sale. Those data deviate considerably from a normal distribution. To improve the normality of those data we transform them by the Box-Cox transformation with appropriate parameters. The Box-Cox transformation parameters are determined so that the transformed data best show the kurtosis of a normal distribution. It is found that the two firm size data transformed by the Box-Cox transformation show strong linearity. This indicates that the number of employees and sale have the similar property as a firm size indicator. The Box-Cox parameters obtained for the firm size data are found to be very close to zero. In this case the Box-Cox transformations are approximately a log-transformation. This suggests that the firm size data we used are approximately log-normal distributions.

  6. Box-Cox transformation of firm size data in statistical analysis

    International Nuclear Information System (INIS)

    Chen, Ting Ting; Takaishi, Tetsuya

    2014-01-01

    Firm size data usually do not show the normality that is often assumed in statistical analysis such as regression analysis. In this study we focus on two firm size data: the number of employees and sale. Those data deviate considerably from a normal distribution. To improve the normality of those data we transform them by the Box-Cox transformation with appropriate parameters. The Box-Cox transformation parameters are determined so that the transformed data best show the kurtosis of a normal distribution. It is found that the two firm size data transformed by the Box-Cox transformation show strong linearity. This indicates that the number of employees and sale have the similar property as a firm size indicator. The Box-Cox parameters obtained for the firm size data are found to be very close to zero. In this case the Box-Cox transformations are approximately a log-transformation. This suggests that the firm size data we used are approximately log-normal distributions

  7. Inferring the temperature dependence of Beremin cleavage model parameters from the Master Curve

    International Nuclear Information System (INIS)

    Cao Yupeng; Hui Hu; Wang Guozhen; Xuan Fuzhen

    2011-01-01

    Research highlights: → Temperature dependence of Beremin model parameters is inferred by Master Curve approach. → Weibull modulus decreases while Weibull stress scale parameter increases with increasing the temperature. → Estimation of Weibull stress parameters in terms of small amounts of specimens leads to a considerable uncertainty. - Abstract: The temperature dependence of Beremin model parameters in the ductile-to-brittle transition region was addressed by employing the Master Curve. Monte Carlo simulation was performed to produce a large number of 1T fracture toughness data randomly drawn from the scatter band at a temperature of interest and thus to determine Beremin model parameters. In terms of the experimental data of a C-Mn steel (the 16MnR steel in China), results revealed that the Weibull modulus, m, decreases with temperature over the lower transition range and remains a constant in the lower-to-mid transition region. The Weibull scale parameter, σ u , increases with temperature over the temperature range of investigated. A small sample may lead to a considerable uncertainty in estimates of the Weibull stress parameters. However, no significant difference was observed for the average of Weibull stress parameters from different sample sizes.

  8. Portion size

    Science.gov (United States)

    ... of cards One 3-ounce (84 grams) serving of fish is a checkbook One-half cup (40 grams) ... for the smallest size. By eating a small hamburger instead of a large, you will save about 150 calories. ...

  9. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    Science.gov (United States)

    Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali

    2015-07-01

    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

  10. Disruption effects on the beam size measurement

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-06-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D{sub y} is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10{sup 10} particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 {mu}m horizontally and 0.55 {mu}m vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H{sub D} of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit.

  11. Disruption effects on the beam size measurement

    International Nuclear Information System (INIS)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-01-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D y is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10 10 particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 μm horizontally and 0.55 μm vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H D of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit

  12. Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2015-11-01

    Full Text Available The basic geometric parameters of 236 debris flow catchments were determined by interpreting SPOT5 remote sensing images with a resolution of 2.5 m in a 209 km section along the Jinsha River in the Panxi area, China. A total of 27 large-scale debris flow catchments were selected for detailed in situ investigation. Samples were taken from two profiles in the deposition zone for each debris flow catchment. The φ value gradation method of the grain size was used to obtain 54 histograms with abscissa in a logarithmic scale. Five types of debris flows were summarized from the outline of the histogram. Four grain size parameters were calculated: mean grain size, standard deviation, coefficient of skewness, and coefficient of kurtosis. These four values were used to evaluate the features of the histogram. The grain index that reflects the transport (kinetic energy information of debris flows was defined to describe the characteristics of the debris-flow materials. Furthermore, a normalized grain index based on the catchment area was proposed to allow evaluation of the debris flow mobility. The characteristics of the debris-flow materials were well-described by the histogram of grain-size distribution and the normalized grain index.

  13. Large superconducting conductors and joints for fusion magnets: From conceptual design to test at full size scale

    International Nuclear Information System (INIS)

    Ciazynski, D.; Duchateau, J.L.; Decool, P.; Libeyre, P.; Turck, B.

    2001-01-01

    A new kind of superconducting conductor, using the so-called cable-in-conduit concept, is emerging mainly involving fusion activity. It is to be noted that at present time no large Nb 3 Sn magnet in the world is operating using this concept. The difficulty of this technology which has now been studied for 20 years, is that it has to integrate major progresses in multiple interconnected new fields such as: large number (1000) of superconducting strands, high current conductors (50 kA), forced flow cryogenics, Nb 3 Sn technology, low loss conductors in pulsed operation, high current connections, high voltage insulation (10 kV), economical and industrial feasibility. CEA was very involved during these last 10 years in this development which took place in the frame of the NET and ITER technological programs. One major milestone was reached in 1998-1999 with the successful tests by our Association of three full size conductor and connection samples in the Sultan facility (Villigen, Switzerland). (author)

  14. Parameter estimation of the zero inflated negative binomial beta exponential distribution

    Science.gov (United States)

    Sirichantra, Chutima; Bodhisuwan, Winai

    2017-11-01

    The zero inflated negative binomial-beta exponential (ZINB-BE) distribution is developed, it is an alternative distribution for the excessive zero counts with overdispersion. The ZINB-BE distribution is a mixture of two distributions which are Bernoulli and negative binomial-beta exponential distributions. In this work, some characteristics of the proposed distribution are presented, such as, mean and variance. The maximum likelihood estimation is applied to parameter estimation of the proposed distribution. Finally some results of Monte Carlo simulation study, it seems to have high-efficiency when the sample size is large.

  15. Family Medicine Panel Size with Care Teams: Impact on Quality.

    Science.gov (United States)

    Angstman, Kurt B; Horn, Jennifer L; Bernard, Matthew E; Kresin, Molly M; Klavetter, Eric W; Maxson, Julie; Willis, Floyd B; Grover, Michael L; Bryan, Michael J; Thacher, Tom D

    2016-01-01

    The demand for comprehensive primary health care continues to expand. The development of team-based practice allows for improved capacity within a collective, collaborative environment. Our hypothesis was to determine the relationship between panel size and access, quality, patient satisfaction, and cost in a large family medicine group practice using a team-based care model. Data were retrospectively collected from 36 family physicians and included total panel size of patients, percentage of time spent on patient care, cost of care, access metrics, diabetic quality metrics, patient satisfaction surveys, and patient care complexity scores. We used linear regression analysis to assess the relationship between adjusted physician panel size, panel complexity, and outcomes. The third available appointments (P size. Patient satisfaction, cost, and percentage fill rate were not affected by panel size. A physician-adjusted panel size larger than the current mean (2959 patients) was associated with a greater likelihood of poor-quality rankings (≤25th percentile) compared with those with a less than average panel size (odds ratio [OR], 7.61; 95% confidence interval [CI], 1.13-51.46). Increased panel size was associated with a longer time to the third available appointment (OR, 10.9; 95% CI, 1.36-87.26) compared with physicians with panel sizes smaller than the mean. We demonstrated a negative impact of larger panel size on diabetic quality results and available appointment access. Evaluation of a family medicine practice parameters while controlling for panel size and patient complexity may help determine the optimal panel size for a practice. © Copyright 2016 by the American Board of Family Medicine.

  16. Coherent inflation for large quantum superpositions of levitated microspheres

    Science.gov (United States)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  17. Reparation and validation of a large size dried spike: Batch SAL-9951

    International Nuclear Information System (INIS)

    Doubek, N.; Jammet, G.; Zoigner, A.

    1991-02-01

    To determine uranium and plutonium concentration using isotope dilution mass spectrometry, weighed aliquands of a synthetic mixture containing about 2mg of Pu (with a 239 Pu abundance of about 98%) and 37mg of U (with a 235 U enrichment of about 19%) have been prepared by the IAEA-SAL and verified by three analytical laboratories: NMCC-SAL, OEFZS, IAEA-SAL; they will be used to spike samples of concentrated spent fuel solutions with a high burnup and a low 235 U enrichment. Certified Reference Materials Pu-NBL-126, natural U-NBL-112A and 93% enriched U-NBL-116 were used to prepare a stock solution containing about 3.2 mg/ml of Pu and 64.3 mg/ml of 18.7% enriched U. Before shipment to the Reprocessing Plant, aliquands of the stock solution are dried to give Large Size Dried (LSD) Spikes which resist shocks encountered during transportation, so that they can readily be recovered quantitatively at the plant. This paper describes the preparation and the validation of a fifth batch of LSD-spike which is intended to be used as a common spike by the plant operator, the national and the IAEA inspectorates. 7 refs, 6 tabs

  18. The rate-size trade-off structures intraspecific variation in Daphnia ambigua life history parameters.

    Science.gov (United States)

    DeLong, John P; Hanley, Torrance C

    2013-01-01

    The identification of trade-offs is necessary for understanding the evolution and maintenance of diversity. Here we employ the supply-demand (SD) body size optimization model to predict a trade-off between asymptotic body size and growth rate. We use the SD model to quantitatively predict the slope of the relationship between asymptotic body size and growth rate under high and low food regimes and then test the predictions against observations for Daphnia ambigua. Close quantitative agreement between observed and predicted slopes at both food levels lends support to the model and confirms that a 'rate-size' trade-off structures life history variation in this population. In contrast to classic life history expectations, growth and reproduction were positively correlated after controlling for the rate-size trade-off. We included 12 Daphnia clones in our study, but clone identity explained only some of the variation in life history traits. We also tested the hypothesis that growth rate would be positively related to intergenic spacer length (i.e. the growth rate hypothesis) across clones, but we found that clones with intermediate intergenic spacer lengths had larger asymptotic sizes and slower growth rates. Our results strongly support a resource-based optimization of body size following the SD model. Furthermore, because some resource allocation decisions necessarily precede others, understanding interdependent life history traits may require a more nested approach.

  19. The rate-size trade-off structures intraspecific variation in Daphnia ambigua life history parameters.

    Directory of Open Access Journals (Sweden)

    John P DeLong

    Full Text Available The identification of trade-offs is necessary for understanding the evolution and maintenance of diversity. Here we employ the supply-demand (SD body size optimization model to predict a trade-off between asymptotic body size and growth rate. We use the SD model to quantitatively predict the slope of the relationship between asymptotic body size and growth rate under high and low food regimes and then test the predictions against observations for Daphnia ambigua. Close quantitative agreement between observed and predicted slopes at both food levels lends support to the model and confirms that a 'rate-size' trade-off structures life history variation in this population. In contrast to classic life history expectations, growth and reproduction were positively correlated after controlling for the rate-size trade-off. We included 12 Daphnia clones in our study, but clone identity explained only some of the variation in life history traits. We also tested the hypothesis that growth rate would be positively related to intergenic spacer length (i.e. the growth rate hypothesis across clones, but we found that clones with intermediate intergenic spacer lengths had larger asymptotic sizes and slower growth rates. Our results strongly support a resource-based optimization of body size following the SD model. Furthermore, because some resource allocation decisions necessarily precede others, understanding interdependent life history traits may require a more nested approach.

  20. LMFBR plant parameters 1991

    International Nuclear Information System (INIS)

    1991-03-01

    The document has been prepared on the basis of information provided by the members of the IAEA International Working Group on Fast Reactors (IWGFR). It contains updated parameters of 27 experimental, prototype and commercial size liquid metal fast breeder reactors (LMFBRs). Most of the reactors are currently in operation, under construction or in an advanced planning stage. Parameters of the Clinch River Breeder Reactor (USA), PEC (Italy), RAPSODIE (France), DFR (UK) and EFFBR (USA) are included in the report because of their important role in the development of LMFBR technology from first LMFBRs to the prototype size fast reactors. Two more reactors appeared in the list: European Fast Reactor (EFR) and PRISM (USA). Parameters of these reactors included in this publication are based on the data from the papers presented at the 23rd Annual Meeting of the IWGFR. All in all more than four hundred corrections and additions have been made to update the document. The report is intended for specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors

  1. Relative merits of size, field, and current on ignited tokamak performance

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1988-01-01

    A simple global analysis is developed to examine the relative merits of size (L = a or R/sub 0 /), field (B/sub 0 /), and current (I) on ignition regimes of tokamaks under various confinement scaling laws. Scalings of key parameters with L, B/sub 0 /, and I are presented at several operating points, including (a) optimal path to ignition (saddle point), (b) ignition at minimum beta, (c) ignition at 10 keV, and (d) maximum performance at the limits of density and beta. Expressions for the saddle point and the minimum conditions needed for ohmic ignition are derived analytically for any confinement model of the form tau/sub E/ ∼ n/sup x/T/sup y/. For a wide range of confinement models, the ''figure of merit'' parameters and I are found to give a good indication of the relative performance of the devices where q* is the cylindrical safety factor. As an illustration, the results are applied to representative ''CIT'' (as a class of compact, high-field ignition tokamaks) and ''Super-JETs'' [a class of large-size (few x JET), low-field, high-current (≥20-MA) devices.

  2. Plant Size and Competitive Dynamics along Nutrient Gradients.

    Science.gov (United States)

    Goldberg, Deborah E; Martina, Jason P; Elgersma, Kenneth J; Currie, William S

    2017-08-01

    Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.

  3. A new database sub-system for grain-size analysis

    Science.gov (United States)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay

  4. EBSD-based techniques for characterization of microstructural restoration processes during annealing of metals deformed to large plastic strains

    DEFF Research Database (Denmark)

    Godfrey, A.; Mishin, Oleg; Yu, Tianbo

    2012-01-01

    Some methods for quantitative characterization of the microstructures deformed to large plastic strains both before and after annealing are discussed and illustrated using examples of samples after equal channel angular extrusion and cold-rolling. It is emphasized that the microstructures...... in such deformed samples exhibit a heterogeneity in the microstructural refinement by high angle boundaries. Based on this, a new parameter describing the fraction of regions containing predominantly low angle boundaries is introduced. This parameter has some advantages over the simpler high angle boundary...... on mode of the distribution of dislocation cell sizes is outlined, and it is demonstrated how this parameter can be used to investigate the uniformity, or otherwise, of the restoration processes occurring during annealing of metals deformed to large plastic strains. © (2012) Trans Tech Publications...

  5. Design and performance of large-pixel-size high-fill-fraction TES arrays for future X-ray astrophysics missions

    International Nuclear Information System (INIS)

    Figueroa-Feliciano, E.; Bandler, S.R.; Chervenak, J.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Porter, F.S.; Saab, T.; Sadleir, J.; White, J.

    2006-01-01

    We have designed, modeled, fabricated and tested a 600μm high-fill-fraction microcalorimeter array that will be a good match to the requirements of future X-ray missions. Our devices use transition-edge sensors coupled to overhanging bismuth/copper absorbers to produce arrays with 97% or higher fill fraction. An extensive modeling effort was undertaken in order to accommodate large pixel sizes (500-1000μm) and maintain the best energy resolution possible. The finite thermalization time of the large absorber and the associated position dependence of the pulse shape on absorption position constrain the time constants of the system given a desired energy-resolution performance. We show the results of our analysis and our new pixel design, consisting of a novel TES-on-the-side architecture which creates a controllable TES-absorber conductance

  6. Equation-free analysis of agent-based models and systematic parameter determination

    Science.gov (United States)

    Thomas, Spencer A.; Lloyd, David J. B.; Skeldon, Anne C.

    2016-12-01

    Agent based models (ABM)s are increasingly used in social science, economics, mathematics, biology and computer science to describe time dependent systems in circumstances where a description in terms of equations is difficult. Yet few tools are currently available for the systematic analysis of ABM behaviour. Numerical continuation and bifurcation analysis is a well-established tool for the study of deterministic systems. Recently, equation-free (EF) methods have been developed to extend numerical continuation techniques to systems where the dynamics are described at a microscopic scale and continuation of a macroscopic property of the system is considered. To date, the practical use of EF methods has been limited by; (1) the over-head of application-specific implementation; (2) the laborious configuration of problem-specific parameters; and (3) large ensemble sizes (potentially) leading to computationally restrictive run-times. In this paper we address these issues with our tool for the EF continuation of stochastic systems, which includes algorithms to systematically configuration problem specific parameters and enhance robustness to noise. Our tool is generic and can be applied to any 'black-box' simulator and determines the essential EF parameters prior to EF analysis. Robustness is significantly improved using our convergence-constraint with a corrector-repeat (C3R) method. This algorithm automatically detects outliers based on the dynamics of the underlying system enabling both an order of magnitude reduction in ensemble size and continuation of systems at much higher levels of noise than classical approaches. We demonstrate our method with application to several ABM models, revealing parameter dependence, bifurcation and stability analysis of these complex systems giving a deep understanding of the dynamical behaviour of the models in a way that is not otherwise easily obtainable. In each case we demonstrate our systematic parameter determination stage for

  7. LMFBR plant parameters

    International Nuclear Information System (INIS)

    1985-07-01

    This document has been prepared on the basis of information compiled by the members of the IAEA International Working Group on Fast Reactors (IWGFR). It contains parameters of 25 experimental, prototype and commercial size liquid metal fast breeder reactors (LMFBR). Most of the reactors are currently in operation, under construction or in an advanced planning stage. Parameters of the Clinch River Breeder Reactor (USA) are presented because its design was nearly finished and most of the components were fabricated at the time when the project was terminated. Three reactors (RAPSODIE (France), DFR (UK) and EFFBR (USA)) have been shut down. However, they are included in the report because of their important role in the development of LMFBR technology from first LMFBRs to the prototype size fast reactors. The first LMFBRs (CLEMENTINE (USA), EBR-1 (USA), BR-2 (USSR), BR-5 (USSR)) and very special reactors (LAMPRE (USA), SEFOR (USA)) were not recommended by the members of the IWGFR to be included in the report

  8. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    Directory of Open Access Journals (Sweden)

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  9. Failure probability under parameter uncertainty.

    Science.gov (United States)

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.

  10. HOW THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE DEVELOPED A NEW WASTE PACKAGE USING A POLYUREA COATING THAT IS SAFELY AND ECONOMICALLY ELIMINATING SIZE REDUCTION OF LARGE ITEMS

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Hogue, Richard S.; Kimokeo, Margaret K.

    2003-01-01

    One of the major challenges involved in closing the Rocky Flats Environmental Technology Site (RFETS) is the disposal of extremely large pieces of contaminated production equipment and building debris. Past practice has been to size reduce the equipment into pieces small enough to fit into approved, standard waste containers. Size reducing this equipment is extremely expensive, and exposes workers to high-risk tasks, including significant industrial, chemical, and radiological hazards. RFETS has developed a waste package using a Polyurea coating for shipping large contaminated objects. The cost and schedule savings have been significant

  11. Study of the pressing operation of large-sized tiles using X-ray absorption

    International Nuclear Information System (INIS)

    Amoros, J. L.; Mallol, G.; Llorens, D.; Boix, J.; Arnau, J. M.; Feliu, C.; Cerisuelo, J. A.; Gargallo, J. J.

    2010-01-01

    An apparatus for X-Ray non destructive inspection of bulk density distribution in large ceramic tiles has been designed, built and patented. This technique has many advantages compared with other methods: it allows tile bulk density distribution to be mapped and is neither destructive nor toxic, provided the X-ray tube and detector area are shielded to prevent leakage. In the present study, this technique, whose technical feasibility and accuracy had been verified in previous studies, has been used to scan ceramic tiles formed under different industrial conditions, modifying press working parameters. The use of high-precision laser telemeters allows tile thicknesses to be mapped, facilitating the interpretation of manufacturing defects produced in pressing, which cannot be interpreted by just measuring bulk density. The bulk density distributions obtained in the same unfired and fired tiles are also compared, a possibility afforded only by this measurement method, since it is non-destructive. The comparison of both unfired and fired tile bulk density distributions allows the influence of the pressing and firing stages on tile end porosity to be individually identified. (Author) 12 refs.

  12. Development of an indicator for characterizing particle size distribution and quality of stormwater runoff.

    Science.gov (United States)

    Wang, Qian; Zhang, Qionghua; Dzakpasu, Mawuli; Lian, Bin; Wu, Yaketon; Wang, Xiaochang C

    2018-03-01

    Stormwater particles washed from road-deposited sediments (RDS) are traditionally characterized as either turbidity or total suspended solids (TSS). Although these parameters are influenced by particle sizes, neither of them characterizes the particle size distribution (PSD), which is of great importance in pollutant entrainment and treatment performance. Therefore, the ratio of turbidity to TSS (Tur/TSS) is proposed and validated as a potential surrogate for the bulk PSD and quality of stormwater runoff. The results show an increasing trend of Tur/TSS with finer sizes of both RDS and stormwater runoff. Taking heavy metals (HMs, including Cu, Pb, Zn, Cr, and Ni) as typical pollutants in stormwater runoff, the concentrations (mg/kg) were found to vary significantly during rainfall events and tended to increase significantly with Tur/TSS. Therefore, Tur/TSS is a valid parameter to characterize the PSD and quality of stormwater. The high negative correlations between Tur/TSS and rainfall intensity demonstrate that stormwater with higher Tur/TSS generates under low intensity and, thus, characterizes small volume, finer sizes, weak settleability, greater mobility, and bioavailability. Conversely, stormwater with lower Tur/TSS generates under high intensity and, thus, characterizes large volume, coarser sizes, good settleability, low mobility, and bioavailability. These results highlight the need to control stormwater with high Tur/TSS. Moreover, Tur/TSS can aid the selection of stormwater control measures with appropriate detention storage, pollution loading, and removal effectiveness of particles.

  13. Quantitative assessment of Aluminium cast Alloys` structural parameters to optimize ITS properties

    Directory of Open Access Journals (Sweden)

    L. Kuchariková

    2017-01-01

    Full Text Available The present work deals with evaluation of eutectic Si (its shape, size, and distribution, dendrite cell size and dendrite arm spacing in aluminium cast alloys which were cast into different moulds (sand and metallic. Structural parameters were evaluated using NIS-Elements image analyser software. This software is imaging analysis software for the evaluation, capture, archiving and automated measurement of structural parameters. The control of structural parameters by NIS Elements shows that optimum mechanical properties of aluminium cast alloys strongly depend on the distribution, morphology, size of eute ctic Si and matrix parameters.

  14. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    Science.gov (United States)

    Winands, G. J. J.; Liu, Z.; Pemen, A. J. M.; van Heesch, E. J. M.; Yan, K.; van Veldhuizen, E. M.

    2006-07-01

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh)-1. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh)-1, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.

  15. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    Energy Technology Data Exchange (ETDEWEB)

    Winands, G J J [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Liu, Z [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Pemen, A J M [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Heesch, E J M van [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Yan, K [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Veldhuizen, E M van [EPG Group, Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands)

    2006-07-21

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh){sup -1}. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh){sup -1}, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.

  16. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    International Nuclear Information System (INIS)

    Winands, G J J; Liu, Z; Pemen, A J M; Heesch, E J M van; Yan, K; Veldhuizen, E M van

    2006-01-01

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh) -1 . For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh) -1 , still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second

  17. Interaction between numbers and size during visual search

    OpenAIRE

    Krause, Florian; Bekkering, Harold; Pratt, Jay; Lindemann, Oliver

    2016-01-01

    The current study investigates an interaction between numbers and physical size (i.e. size congruity) in visual search. In three experiments, participants had to detect a physically large (or small) target item among physically small (or large) distractors in a search task comprising single-digit numbers. The relative numerical size of the digits was varied, such that the target item was either among the numerically large or small numbers in the search display and the relation between numeric...

  18. Parameter identifiability and redundancy: theoretical considerations.

    Directory of Open Access Journals (Sweden)

    Mark P Little

    Full Text Available BACKGROUND: Models for complex biological systems may involve a large number of parameters. It may well be that some of these parameters cannot be derived from observed data via regression techniques. Such parameters are said to be unidentifiable, the remaining parameters being identifiable. Closely related to this idea is that of redundancy, that a set of parameters can be expressed in terms of some smaller set. Before data is analysed it is critical to determine which model parameters are identifiable or redundant to avoid ill-defined and poorly convergent regression. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we outline general considerations on parameter identifiability, and introduce the notion of weak local identifiability and gradient weak local identifiability. These are based on local properties of the likelihood, in particular the rank of the Hessian matrix. We relate these to the notions of parameter identifiability and redundancy previously introduced by Rothenberg (Econometrica 39 (1971 577-591 and Catchpole and Morgan (Biometrika 84 (1997 187-196. Within the widely used exponential family, parameter irredundancy, local identifiability, gradient weak local identifiability and weak local identifiability are shown to be largely equivalent. We consider applications to a recently developed class of cancer models of Little and Wright (Math Biosciences 183 (2003 111-134 and Little et al. (J Theoret Biol 254 (2008 229-238 that generalize a large number of other recently used quasi-biological cancer models. CONCLUSIONS/SIGNIFICANCE: We have shown that the previously developed concepts of parameter local identifiability and redundancy are closely related to the apparently weaker properties of weak local identifiability and gradient weak local identifiability--within the widely used exponential family these concepts largely coincide.

  19. Control of minimum member size in parameter-free structural shape optimization by a medial axis approximation

    Science.gov (United States)

    Schmitt, Oliver; Steinmann, Paul

    2017-09-01

    We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.

  20. Long-term clinical evaluation of a 800-nm long-pulsed diode laser with a large spot size and vacuum-assisted suction for hair removal.

    Science.gov (United States)

    Ibrahimi, Omar A; Kilmer, Suzanne L

    2012-06-01

    The long-pulsed diode (800-810-nm) laser is one of the most commonly used and effective lasers for hair removal. Limitations of currently available devices include a small treatment spot size, treatment-associated pain, and the need for skin cooling. To evaluate the long-term hair reduction capabilities of a long-pulsed diode laser with a large spot size and vacuum assisted suction. Thirty-five subjects were enrolled in a prospective, self-controlled, single-center study of axillary hair removal. The study consisted of three treatments using a long-pulsed diode laser with a large spot size and vacuum-assisted suction at 4- to 6-week intervals with follow-up visits 6 and 15 months after the last treatment. Hair clearance was quantified using macro hair-count photographs taken at baseline and at 6- and 15-month follow-up visits. Changes in hair thickness and color, levels of treatment-associated pain, and adverse events were additional study endpoints. There was statistically significant hair clearance at the 6 (54%) and 15-month (42%) follow-up visits. Remaining hairs were thinner and lighter at the 15-month follow-up visit, and the majority of subjects reported feeling up to mild to moderate pain during treatment without the use of pretreatment anesthesia or skin cooling. A long-pulsed diode laser with a large spot size and vacuum-assisted suction is safe and effective for long-term hair removal. This is the largest prospective study to evaluate long-term hair removal and the first to quantify decreases in hair thickness and darkness with treatment. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.