WorldWideScience

Sample records for large seasonal accumulation

  1. Seasonal dynamics of Co60 accumulation by Elodea canadensis Rich

    International Nuclear Information System (INIS)

    Bochenin, V.F.; Chebotina, M.Ya.

    1975-01-01

    The seasonal dynamics of Co 60 accumulation by one of the most widely distributed fresh-water plants, elodea (Elodea canadensis Rich), were studied. Accumulation was shown to vary with the season. A very low coefficient of accumulation (500-700 units) was typical for the summer period (June to August). It increased in the fall, reached its highest values (3500-4000) in mid-winter (January), and dropped sharply in the spring. Radioisotope concentrations in the plant varied similarly. The cumulative capacity of plants for Co 60 may vary by a factor of 6 to 7 during the year. It is suggested that the seasonal changes in Co 60 accumulation may be caused by both differences in the physiological state of the plants at different times of the year, and by seasonal variations in the hydrochemical regime of the water reservoir. Experiments were done to clarify which of these mechanisms is the determining factor. (V.A.P.)

  2. How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds

    Science.gov (United States)

    Bairlein, Franz

    2002-01-01

    Many migratory birds accumulate large amounts of lipids as the prime energy source for their long-distance flights. This fat accumulation is mostly under endogenous control, reflecting genetically programmed temporal shifts of the body mass set point. It is accompanied by an increase in daily food intake and food utilisation efficiency and by a seasonal shift in food selection. In particular, seasonal frugivory appears to play a key role in many migrants. Fruits have a high content of fatty acids indispensable for building up the specific depot lipids. In addition, plant secondary compounds seem to play some kind of supportive role, but the mechanisms are not yet known. The effect of being fat on the metabolic situation in migrant birds appears to be similar to the metabolic syndrome in obese humans. The fat migratory bird provides a model through which to study nutritional factors as well as the biochemical and endocrine regulation of food intake, body mass and obesity.

  3. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    International Nuclear Information System (INIS)

    Thi Thuy Duong; Morin, Soizic; Herlory, Olivier; Feurtet-Mazel, Agnes; Coste, Michel; Boudou, Alain

    2008-01-01

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems

  4. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Thi Thuy Duong [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: duongthuy0712@yahoo.com; Morin, Soizic [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Herlory, Olivier [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France); Feurtet-Mazel, Agnes [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: a.feurtet-mazel@epoc.u-bordeaux1.fr; Coste, Michel [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Boudou, Alain [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)

    2008-10-20

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems.

  5. Seasonal Accumulation and Depletion of Local Sediment Stores of Four Headwater Catchments

    Directory of Open Access Journals (Sweden)

    Sarah E. Martin

    2014-07-01

    Full Text Available Seasonal turbidity patterns and event-level hysteresis analysis of turbidity verses discharge in four 1 km2 headwater catchments in California’s Sierra Nevada indicate localized in-channel sediment sources and seasonal accumulation-depletion patterns of stream sediments. Turbidity signals were analyzed for three years in order to look at the relationships between seasonal turbidity trends, event turbidity patterns, and precipitation type to stream sediment production and transport. Seasonal patterns showed more turbidity events associated with fall and early to mid- winter events than with peak snow-melt. No significant turbidity patterns emerged for periods of snow melt vs. rain. Single event hysteresis loops showed clockwise patterns were dominant suggesting local sediment sources. In successive discharge events, the largest turbidity spike was often associated with the first but not necessarily the largest discharge event-indicating seasonal depletion of local sediment stores. In multi-peaked discharge events, hysteresis loops shifted from clockwise to linear or random patterns suggesting that localized sediment stores are being used up and sufficient flow energy must be reached to start entraining the more consolidated bank/bed sediment or that dominant sediment sources may be shifting to less localized areas such as hill slopes. A conceptual model with phases of accumulation and transport is proposed.

  6. Seasonal Arsenic Accumulation in Stream Sediments at a Groundwater Discharge Zone

    DEFF Research Database (Denmark)

    MacKay, Allison A.; Gan, Ping; Yu, Ran

    2014-01-01

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic...... and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), With higher surface water: levels, was associated with losses...... of arsenic and iron from bead column coatings at. depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg...

  7. Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.

    Science.gov (United States)

    MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F

    2014-01-21

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.

  8. Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed from Lake Skadar, Montenegro

    Directory of Open Access Journals (Sweden)

    Kastratović Vlatko

    2013-01-01

    Full Text Available Due to its ability to accumulate metals, availability throughout the year and its large biomass, Phragmites australis (common reed is suitable for biomonitoring studies for the evaluation of load level of water ecosystem with trace metals. The heavy metals concentration in P.australis tissue can be several ten to several thousand times higher than those in the surrounding water. In this study we examined the content of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, Sr and V in sediment, water and different organs of Phragmites australis collected from Lake Skadar, Montenegro, during different seasons of the year 2011. The highest concentrations of Sr were found in the leaves, while the other studied metals showed their highest concentrations in the roots. Thus, P. australis is considered a root bioaccumulation species. For most metals the concentration in roots and stems increases over time until the end of the growing season, and then decreases, while the concentration in leaves increases even after the growing season of the plant. If P. australis is used for phytoremediation purposes, then it should be harvested after the growing season because then the concentration of metals in the aboveground parts is maximal.

  9. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  10. Retrospective forecasts of the upcoming winter season snow accumulation in the Inn headwaters (European Alps)

    Science.gov (United States)

    Förster, Kristian; Hanzer, Florian; Stoll, Elena; Scaife, Adam A.; MacLachlan, Craig; Schöber, Johannes; Huttenlau, Matthias; Achleitner, Stefan; Strasser, Ulrich

    2018-02-01

    This article presents analyses of retrospective seasonal forecasts of snow accumulation. Re-forecasts with 4 months' lead time from two coupled atmosphere-ocean general circulation models (NCEP CFSv2 and MetOffice GloSea5) drive the Alpine Water balance and Runoff Estimation model (AWARE) in order to predict mid-winter snow accumulation in the Inn headwaters. As snowpack is hydrological storage that evolves during the winter season, it is strongly dependent on precipitation totals of the previous months. Climate model (CM) predictions of precipitation totals integrated from November to February (NDJF) compare reasonably well with observations. Even though predictions for precipitation may not be significantly more skilful than for temperature, the predictive skill achieved for precipitation is retained in subsequent water balance simulations when snow water equivalent (SWE) in February is considered. Given the AWARE simulations driven by observed meteorological fields as a benchmark for SWE analyses, the correlation achieved using GloSea5-AWARE SWE predictions is r = 0.57. The tendency of SWE anomalies (i.e. the sign of anomalies) is correctly predicted in 11 of 13 years. For CFSv2-AWARE, the corresponding values are r = 0.28 and 7 of 13 years. The results suggest that some seasonal prediction of hydrological model storage tendencies in parts of Europe is possible.

  11. Effects of season and storage period on accumulation of individual carotenoids in pumpkin flesh (Cucurbita moschata).

    Science.gov (United States)

    Jaswir, Irwandi; Shahidan, Norshazila; Othman, Rashidi; Has-Yun Hashim, Yumi Zuhanis; Octavianti, Fitri; bin Salleh, Mohammad Noor

    2014-01-01

    Carotenoids are antioxidants with pharmaceutical potential. The major carotenoids important to humans are α-carotene, β-carotene, lycopene, lutein, zeaxanthin, and β-cryptoxanthin. Some of the biological functions and actions of these individual carotenoids are quite similar to each other, whereas others are specific. Besides genotype and location, other environmental effects such as temperature, light, mineral uptake, and pH have been found affect carotenoid development in plant tissues and organs. Therefore, this research investigated the effects of the season and storage periods during postharvest handling on the accumulation of carotenoid in pumpkin. This study shows that long-term storage of pumpkins resulted in the accumulation of lutein and β-carotene with a slight decrease in zeaxanthin. The amounts of β-carotene ranged from 174.583±2.105 mg/100g to 692.871±22.019 mg/100g, lutein from 19.841±9.693 mg/100g to 59.481±1.645 mg/100g, and zeaxanthin from not detected to 2.709±0.118 mg/100g. The pumpkins were collected three times in a year; they differed in that zeaxanthin was present only in the first season, while the amounts of β-carotene and lutein were the highest in the second and third seasons, respectively. By identifying the key factors among the postharvest handling conditions that control specific carotenoid accumulations, a greater understanding of how to enhance the nutritional values of pumpkin and other crops will be gained. Postharvest storage conditions can markedly enhance and influence the levels of zeaxanthin, lutein, and β-carotene in pumpkin. This study describes how the magnitudes of these effects depend on the storage period and season.

  12. Seasonal variation of dystocia in a large Danish cohort.

    Science.gov (United States)

    Rohr Thomsen, Christine; Uldbjerg, Niels; Hvidman, Lone; Atladóttir, Hjördís Ósk; Henriksen, Tine Brink; Milidou, Ioanna

    2014-01-01

    Dystocia is one of the most frequent causes of cesarean delivery in nulliparous women. Despite this, its causes are largely unknown. Vitamin D receptor (VDR) has been found in the myometrium. Thus, it is possible that vitamin D affects the contractility of the myometrium and may be involved in the pathogenesis of dystocia. Seasonal variation of dystocia in areas with distinct seasonal variation in sunlight exposure, like Denmark, could imply that vitamin D may play a role. This study examined whether there was seasonal variation in the incidence of dystocia in a Danish population. We used information from a cohort of 34,261 nulliparous women with singleton pregnancies, spontaneous onset of labor between 37 and 42 completed gestational weeks, and vertex fetal presentation. All women gave birth between 1992 and 2010 at the Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby. Logistic regression combined with cubic spline was used to estimate the seasonal variation for each outcome after adjusting for calendar time. No evidence for seasonal variation was found for any of the outcomes: acute cesarean delivery due to dystocia (p = 0.44); instrumental vaginal delivery due to dystocia (p = 0.69); oxytocin augmentation due to dystocia (p = 0.46); and overall dystocia (p = 0.91). No seasonal variation in the incidence of dystocia was observed in a large cohort of Danish women. This may reflect no association between vitamin D and dystocia, or alternatively that other factors with seasonal variation and influence on the occurrence of dystocia attenuate such an association.

  13. Dynamical spin accumulation in large-spin magnetic molecules

    Science.gov (United States)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  14. Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis).

    Science.gov (United States)

    Duman, Fatih; Cicek, Mehmet; Sezen, Goksal

    2007-08-01

    In this study, two aquatic macrophytes Phragmites australis and Schoenoplectus lacustris and corresponding sediment samples were collected every three months from Lake Sapanca (Turkey) and analysed for their heavy-metal contents (Pb, Cr, Cu, Mn, Ni, Zn and Cd). Accumulation factor ratios of plant parts were calculated for all metals, and the two species were compared in terms of accumulation properties. The highest concentrations were measured in the root systems while relatively low concentrations were found in the rhizome and above-ground parts of the plants. The accumulation ratios of root for P. australis were usually higher than the ratios for S. lacustris. While the accumulation ratios of root were higher in winter than in the other seasons for P. australis, for S. lacustris the highest accumulation ratios were found in the autumn. Both plant species were found to be root accumulators of Pb, Cu, Mn, Ni, Zn and Cd.

  15. Seasonal patterns of mixed species groups in large East African mammals.

    Science.gov (United States)

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups.

  16. The emission of nitrous oxide upon wetting a rice soil following a dry season fallow

    Science.gov (United States)

    Byrnes, B. H.; Holt, L. S.; Austin, E. R.

    1993-12-01

    A greenhouse experiment was conducted to measure nitrous oxide (N2O) emissions from a soil, which had been planted to flooded transplanted rice, as it was rewetted to simulate the end of a dry season fallow period. The pots of soil had been cropped to transplanted rice with two commonly used nitrogen (N) fertilizer treatments and a control, and the soil had been puddled before transplanting. Large amounts of nitrate N accumulated in the soils during the dry season fallow, and the N fertilizers applied to the previous crop had little effect on nitrate accumulation. There was little N2O emission during the nitrification period. With water additions meant to simulate rainfall events at the beginning of a wet season, the soil redox dropped slightly, and large amounts of N2O began to be emitted. Large emissions began 5 days after each of the two simulated rainy season watering events and stopped abruptly at soil saturation, even though considerable amounts of nitrate still remained in the soil after saturation. Total measured emissions amounted to 6 to 7 kg N2O-N ha-1 for the period. Although these measurements were made in a system which may have favored nitrate accumulation, they are the first known measurements of N2O made from a rice soil as it is wetted. Nitrous oxide emitted from the flooding of rice soils that have accumulated nitrate during a dry season fallow may be a major source of N2O additions to the atmosphere.

  17. Seasonal patterns of mixed species groups in large East African mammals.

    Directory of Open Access Journals (Sweden)

    Christian Kiffner

    Full Text Available Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups.

  18. Analysis of the spatial and temporal variation of seasonal snow accumulation in alpine catchments using airborne laser scanning : basic research for the adaptation of spatially distributed hydrological models to mountain regions

    International Nuclear Information System (INIS)

    Helfricht, K.

    2014-01-01

    Information about the spatial distribution of snow accumulation is a prerequisitefor adaptating hydro-meteorological models to achieve realistic simulations of therunoff from mountain catchments. Therefore, the spatial snow depthdistribution in complex topography of ice-free terrain and glaciers was investigatedusing airborne laser scanning (ALS) data. This thesis presents for the first time an analysis of the persistence and the variability of the snow patterns at the end of five accumulation seasons in a comparatively large catchment. ALS derived seasonal surface elevation changes on glaciers were compared to the actual snow depths calculated from ground penetrating radar (GPR) measurements. Areas of increased deviations. In the investigated region, the ALS-derived snow depths on most of the glacier surface do not deviate markedly from actual snow depths. 75% of a the total area showed low inter-annual variability of standardized snow depths at the end of the five accumulation seasons. The high inter-annual variability of snow depths could be attributed to changes in the ice cover within the investigated 10-yearperiod for much of the remaining area. Avalanches and snow sloughs continuously contribute to the accumulation on glaciers, but their share of the total snow covervolume is small. The assimilation of SWE maps calculated from ALS data in the adaptation of snow-hydrological models to mountain catchments improved the results not only for the but also for the simulated snow cover distribution and for the mass balance of the glaciers. The results demonstrate that ALS data are a beneficial source for extensive analysis of snow patterns and for modeling the runoff from high Alpine catchments.(author) [de

  19. Seasonal cycles of pelagic production and consumption

    Science.gov (United States)

    Longhurst, Alan

    Comprehensive seasonal cycles of production and consumption in the pelagial require the ocean to be partitioned. This can be done rationally at two levels: into four primary ecological domains (three oceanic and one coastal), or about fifty biogeochemical provinces. The domains differ in their characteristic seasonal cycles of stability, nutrient supply and illumination, while provinces are defined by ocean currents, fronts, topography and recurrent features in the sea surface chlorophyll field. For each of these compartments, seasonal cycles of photic depth, primary production and accumulation (or loss) of algal biomass were obtained from the climatological CZCS chlorophyll field and other data and these, together with mixed layer depths, rendered characteristic seasonal cycles of production and consumption, which can be grouped into eight models: i - polar irradiance-mediated production peak; ii - nutrient-limited spring production peak; iii - winter-spring production with nutrient limitation; iv - small amplitude response to trade wind seasonality; v - large amplitude response to monsoon reversal; vi - canonical spring-fall blooms of mid-latitude continental shelves; vii - topography-forced summer production; viii - intermittent production at coastal divergences. For higher latitudes, these models suggest that the observed late-summer ‘blooms’ result not from a renewal of primary production rate, but from a relaxation of grazing pressure; in mid-latitudes, the observed ‘winter’ bloom represents chlorophyll accumulation at a season when loss terms are apparently smaller than during the period of peak primary production rate which occurs later, in spring. Where an episodic seasonal increase in rate of primary production occurs, as in the Arabian Sea, algal biomass accumulation may brief, lasting only until consumption is fully re-established. Only in the low latitude oligotrophic ocean are production and consumption perennially and closely coupled.

  20. Seasonal variation in accumulation of persistent organic pollutants in an Arctic marine benthic food web

    Energy Technology Data Exchange (ETDEWEB)

    Evenset, A., E-mail: anita.evenset@akvaplan.niva.no [Akvaplan-niva. Fram Centre, Tromsø (Norway); University of Tromsø, The Arctic University of Norway, Tromsø (Norway); Hallanger, I.G. [University of Tromsø, The Arctic University of Norway, Tromsø (Norway); Tessmann, M. [Akvaplan-niva. Fram Centre, Tromsø (Norway); Institute for Hydrobiology and Fisheries Research, University of Hamburg (Germany); Warner, N. [Norwegian Institute for Air Research, Fram Centre, Tromsø (Norway); Ruus, A. [Norwegian Institute for Water Research, Oslo (Norway); Borgå, K. [Norwegian Institute for Water Research, Oslo (Norway); Department of Biosciences, P.O. Box 1066, Blindern 0316, Oslo (Norway); Gabrielsen, G.W. [Norwegian Polar Institute, Fram Centre, Tromsø (Norway); Christensen, G. [Akvaplan-niva. Fram Centre, Tromsø (Norway); Renaud, P.E. [Akvaplan-niva. Fram Centre, Tromsø (Norway); University Centre in Svalbard, Longyearbyen (Norway)

    2016-01-15

    The aim of the present study was to investigate seasonal variation in persistent organic pollutant (POP) concentrations, as well as food-web biomagnification, in an Arctic, benthic marine community. Macrozoobenthos, demersal fish and common eiders were collected both inside and outside of Kongsfjorden, Svalbard, during May, July and October 2007. The samples were analysed for a selection of legacy chlorinated POPs. Overall, low levels of POPs were measured in all samples. Although POP levels and accumulation patterns showed some seasonal variation, the magnitude and direction of change was not consistent among species. Overall, seasonality in bioaccumulation in benthic biota was less pronounced than in the pelagic system in Kongsfjorden. In addition, the results indicate that δ{sup 15}N is not a good predictor for POP-levels in benthic food chains. Other factors, such as feeding strategy (omnivory, necrophagy versus herbivory), degree of contact with the sediment, and a high dependence on particulate organic matter (POM), with low POP-levels and high δ{sup 15}N-values (due to bacterial isotope enrichment), seem to govern the uptake of the different POPs and result in loads deviating from what would be expected consulting the trophic position alone. - Highlights: • Seasonal variation in POP biomagnification was investigated in a benthic food web. • Levels of POPs are generally low in benthic species from Kongsfjorden, Svalbard. • POP-concentrations varied with season, but direction of change varied among taxa. • No POP-biomagnification, except for cis-nonachlor, was detected in this study. • δ{sup 15}N-values does not seem to be a good proxy for trophic level in macrozoobenthos.

  1. Seasonal variation in accumulation of persistent organic pollutants in an Arctic marine benthic food web

    International Nuclear Information System (INIS)

    Evenset, A.; Hallanger, I.G.; Tessmann, M.; Warner, N.; Ruus, A.; Borgå, K.; Gabrielsen, G.W.; Christensen, G.; Renaud, P.E.

    2016-01-01

    The aim of the present study was to investigate seasonal variation in persistent organic pollutant (POP) concentrations, as well as food-web biomagnification, in an Arctic, benthic marine community. Macrozoobenthos, demersal fish and common eiders were collected both inside and outside of Kongsfjorden, Svalbard, during May, July and October 2007. The samples were analysed for a selection of legacy chlorinated POPs. Overall, low levels of POPs were measured in all samples. Although POP levels and accumulation patterns showed some seasonal variation, the magnitude and direction of change was not consistent among species. Overall, seasonality in bioaccumulation in benthic biota was less pronounced than in the pelagic system in Kongsfjorden. In addition, the results indicate that δ"1"5N is not a good predictor for POP-levels in benthic food chains. Other factors, such as feeding strategy (omnivory, necrophagy versus herbivory), degree of contact with the sediment, and a high dependence on particulate organic matter (POM), with low POP-levels and high δ"1"5N-values (due to bacterial isotope enrichment), seem to govern the uptake of the different POPs and result in loads deviating from what would be expected consulting the trophic position alone. - Highlights: • Seasonal variation in POP biomagnification was investigated in a benthic food web. • Levels of POPs are generally low in benthic species from Kongsfjorden, Svalbard. • POP-concentrations varied with season, but direction of change varied among taxa. • No POP-biomagnification, except for cis-nonachlor, was detected in this study. • δ"1"5N-values does not seem to be a good proxy for trophic level in macrozoobenthos.

  2. Ecological strategies of Al-accumulating and non-accumulating functional groups from the cerrado sensu stricto

    Directory of Open Access Journals (Sweden)

    Marcelo C. de Souza

    2015-06-01

    Full Text Available The cerrado's flora comprises aluminum-(Al accumulating and non-accumulating plants, which coexist on acidic and Al-rich soils with low fertility. Despite their existence, the ecological importance or biological strategies of these functional groups have been little explored. We evaluated the leaf flushing patterns of both groups throughout a year; leaf concentrations of N, P, K, Ca, Mg, S, Al, total flavonoids and polyphenols; as well as the specific leaf area (SLA on young and mature leaves within and between the groups. In Al-accumulating plants, leaf flushed throughout the year, mainly in May and September; for non-accumulating plants, leaf flushing peaked at the dry-wet seasons transition. However, these behaviors could not be associated with strategies for building up concentrations of defense compounds in leaves of any functional groups. Al-accumulating plants showed low leaf nutrient concentrations, while non-accumulating plants accumulated more macronutrients and produced leaves with high SLA since the juvenile leaf phase. This demonstrates that the increase in SLA is slower in Al-accumulating plants that are likely to achieve SLA values comparable to the rest of the plant community only in the wet season, when sunlight capture is important for the growth of new branches.

  3. Ecological strategies of Al-accumulating and non-accumulating functional groups from the cerrado sensu stricto.

    Science.gov (United States)

    Souza, Marcelo C de; Bueno, Paula C P; Morellato, Leonor P C; Habermann, Gustavo

    2015-01-01

    The cerrado's flora comprises aluminum-(Al) accumulating and non-accumulating plants, which coexist on acidic and Al-rich soils with low fertility. Despite their existence, the ecological importance or biological strategies of these functional groups have been little explored. We evaluated the leaf flushing patterns of both groups throughout a year; leaf concentrations of N, P, K, Ca, Mg, S, Al, total flavonoids and polyphenols; as well as the specific leaf area (SLA) on young and mature leaves within and between the groups. In Al-accumulating plants, leaf flushed throughout the year, mainly in May and September; for non-accumulating plants, leaf flushing peaked at the dry-wet seasons transition. However, these behaviors could not be associated with strategies for building up concentrations of defense compounds in leaves of any functional groups. Al-accumulating plants showed low leaf nutrient concentrations, while non-accumulating plants accumulated more macronutrients and produced leaves with high SLA since the juvenile leaf phase. This demonstrates that the increase in SLA is slower in Al-accumulating plants that are likely to achieve SLA values comparable to the rest of the plant community only in the wet season, when sunlight capture is important for the growth of new branches.

  4. HIV populations are large and accumulate high genetic diversity in a nonlinear fashion.

    Science.gov (United States)

    Maldarelli, Frank; Kearney, Mary; Palmer, Sarah; Stephens, Robert; Mican, JoAnn; Polis, Michael A; Davey, Richard T; Kovacs, Joseph; Shao, Wei; Rock-Kress, Diane; Metcalf, Julia A; Rehm, Catherine; Greer, Sarah E; Lucey, Daniel L; Danley, Kristen; Alter, Harvey; Mellors, John W; Coffin, John M

    2013-09-01

    HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence and to estimate replicating population sizes in a group of treatment-naive HIV-infected individuals sampled at single (n = 22) or multiple, longitudinal (n = 11) time points. Analysis of single genome sequences revealed nonlinear accumulation of sequence diversity during the course of infection. Diversity accumulated in recently infected individuals at rates 30-fold higher than in patients with chronic infection. Accumulation of synonymous changes accounted for most of the diversity during chronic infection. Accumulation of diversity resulted in population shifts, but the rates of change were low relative to estimated replication cycle times, consistent with relatively large population sizes. Analysis of changes in allele frequencies revealed effective population sizes that are substantially higher than previous estimates of approximately 1,000 infectious particles/infected individual. Taken together, these observations indicate that HIV populations are large, diverse, and slow to change in chronic infection and that the emergence of new mutations, including drug resistance mutations, is governed by both selection forces and drift.

  5. Forage accumulation in brachiaria grass under continuous grazing with single or variable height during the seasons of the year

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2013-05-01

    Full Text Available The objective of this study was to evaluate grazing management strategies of Brachiaria decumbens cv. Basilisk managed with different heights under continuous grazing with cattle. Two grazing management strategies were evaluated: maintenance of pasture with an average height of 25 cm throughout the experimental period and maintenance of pasture on the average of 15 cm in height during winter, up to 25 cm from the beginning of spring. The split-plot scheme and the randomized block design with four replications were adopted. The grazing management strategies corresponded to the primary factor, while the seasons (winter, spring and summer corresponded to secondary factor. The reduction of the average sward height to 15 cm in the winter resulted, when compared with pasture maintained at 25 cm, in overall higher growth rates (95 kg/ha.day DM and leaf blade (66.1 kg/ha.day DM, as well as higher rates of total accumulation (81.5 kg/ha.day DM and leaf blade (52.6 kg/ha.day DM. The accumulated forage production (from winter to summer was higher in the pasture lowered to 15 cm in winter (25.6 t/ha DM compared with that managed with an average height of 25 cm (22.2 t/ha DM. Regarding the seasons of the year, in the winter, there were lower rates of overall growth (6.4 kg/ha.day DM, leaf blade (5.6 kg/ha.day DM and pseudostem (0.8 kg/ha.day DM, and also lower total (-6.6 kg/ha.day DM and leaf blade (-7.5 kg/ha.day DM accumulation rates. In the spring there was a higher rate of leaf senescence (22.4 kg/ha.day DM. The accumulation of forage is incremented when the pasture of B. decumbens is lowered to 15 cm during the winter, and in the spring and summer, its average height is increased to 25 cm.

  6. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Moisture accumulation in a building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Forest, T.W.; Checkwitch, K.

    1988-09-01

    In a large number of cases, the failure of a building envelope can be traced to the accumulation of moisture. In a cold winter climate, characteristic of the Canadian prairies, moisture is deposited in the structure by the movement of warm, moist air through the envelope. Tests on the moisture accumulation in a building envelope were initiated in a test house at an Alberta research facility during the 1987/88 heating season. The indoor moisture generation rate was measured and compared with the value inferred from the measured air infiltration rate. With the flue open, the moisture generation rate was approximately 5.5 kg/d of which 0.7 kg/d entered the building envelope; the remainder was exhausted through the flue. With the flue blocked, the moisture generation rate decreased to 3.4 kg/d, while the amount of moisture migrating through the envelope increased to 4.0 kg/d. The moisture accumulation in wall panels located on the north and south face of the test house was also monitored. Moisture was allowed to enter the wall cavity via a hole in the drywall. The fiberglass insulation remained dry throughout the test period. The moisture content of the exterior sheathing of the north panel increased to a maximum of 18% wt in the vicinity of the hole, but quickly dried when the ambient temperatures increased towards the end of the season. The south panel showed very little moisture accumlation due to the effects of solar radiation. 14 refs., 9 figs.

  8. Diet selection and seasonal dietary switch of a large sexually dimorphic herbivore

    Science.gov (United States)

    Shannon, Graeme; Mackey, Robin L.; Slotow, Rob

    2013-01-01

    Although diet selection and the physiological adaptations of grazers and browsers have been widely studied, much less is known about mixed-feeders that target both grass and woody species. The ability to switch diet allows the individual to respond to spatial and temporal changes in forage abundance and quality, providing a key mechanism for large herbivores to exploit heterogeneous environments. We compare diet selection and timing of the seasonal dietary switch for a large-bodied, sexually dimorphic mixed-feeder, the African elephant. The study was carried out on a small population of elephants (n = 48) in the Pongola Game Reserve (PGR), South Africa. Sex-specific dietary composition evaluated from feeding behaviour correlated with composition in dung samples from individuals of known sex. Grass was strongly preferred during the wet season and browse in the winter dry season. However, adult male elephants switched from browse to grass earlier, and consumed a greater overall proportion of grass in their diet, compared with adult females and their associated family groups. Male elephants also spent more time in grassland habitats, and expanded their ranges to a greater extent than females following the end of the dry season. Our results suggest that smaller adult body size, high nutritional demands of offspring, and the constraints of sociality have contributed to female elephants in PGR resolving their diet selection strategies to target higher quality foraging opportunities, whilst males appear to be adopting a rate maximizing approach. The behavioural differences between the sexes are pronounced, which has implications for elephant management approaches that are typically focussed at the population level.

  9. The Accumulation and Seasonal Dynamic of the Soil Organic Carbon in Wetland of the Yellow River Estuary, China

    Directory of Open Access Journals (Sweden)

    Xianxiang Luo

    2014-01-01

    Full Text Available The wetland of the Yellow River estuary is a typical new coastal wetland in northern China. It is essential to study the carbon pool and its variations for evaluating the carbon cycle process. The study results regarding the temporal-spatial distribution and influential factors of soil organic carbon in four typical wetlands belonging to the Yellow River estuary showed that there was no significant difference in the contents of the surface soil TOC to the same season among the four types of wetlands. For each type of wetlands, the TOC content in surface soils was significantly higher in October than that in both May and August. On the whole, the obvious differences in DOC contents in surface soils were not observed in the different wetland types and seasons. The peak of TOC appeared at 0–10 cm in the soil profiles. The contents of TOC and DOC were significantly higher in salsa than those in reed, suggesting that the rhizosphere effect of organic carbon in salsa was more obvious than that in reed. The results of the principal component analysis showed that the nitrogen content, salinity, bulk density, and water content were dominant influential factors for organic carbon accumulation and seasonal variation.

  10. Selective accumulation may account for shellfish-associated viral illness.

    Science.gov (United States)

    Burkhardt, W; Calci, K R

    2000-04-01

    From 1991 through 1998, 1,266 cases of shellfish-related illnesses were attributed to Norwalk-like viruses. Seventy-eight percent of these illnesses occurred following consumption of oysters harvested from the Gulf Coast during the months of November through January. This study investigated the ability of eastern oysters (Crassostrea virginica) to accumulate indicator microorganisms (i.e., fecal coliforms, Escherichia coli, Clostridium perfringens, and F(+) coliphage) from estuarine water. One-week trials over a 1-year period were used to determine if these indicator organisms could provide insight into the seasonal occurrence of these gastrointestinal illnesses. The results demonstrate that oysters preferentially accumulated F(+) coliphage, an enteric viral surrogate, to their greatest levels from late November through January, with a concentration factor of up to 99-fold. However, similar increases in accumulation of the other indicator microorganisms were not observed. These findings suggest that the seasonal occurrence of shellfish-related illnesses by enteric viruses is, in part, the result of seasonal physiological changes undergone by the oysters that affect their ability to accumulate viral particles from estuarine waters.

  11. Large spin accumulation due to spin-charge coupling across a break-junction

    Science.gov (United States)

    Chen, Shuhan; Zou, Han; Chui, Siu-Tat; Ji, Yi

    2013-03-01

    We investigate large spin signals in break-junction nonlocal spin valves (NLSV). The break-junction is a nanometer-sized vacuum tunneling gap between the spin detector and the nonmagnetic channel, formed by electro-static discharge. The spin signals can be either inverted or non-inverted and the magnitudes are much larger than those of standard NLSV. Spin signals with high percentage values (10% - 0%) have been observed. When the frequency of the a.c. modulation is varied, the absolute magnitudes of signals remain the same although the percentage values change. These observations affirm the nonlocal nature of the measurements and rule out local magnetoresistive effects. Owing to the spin-charge coupling across the break-junction, the spin accumulation in a ferromagnet splits into two terms. One term decays on the charge screening length (0.1 nm) and the other decays on the spin diffusion length (10 nm nm). The magnitude of the former is proportional to the resistance of the junction. Therefore a highly resistive break-junction leads to a large spin accumulation and thereby a large spin signal. The signs of the spin signal are determined by the relationship between spin-dependent conductivities, diffusion constants, and density of states of the ferromagnet. This work was supported by US DOE grant No. DE-FG02-07ER46374.

  12. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    International Nuclear Information System (INIS)

    Pramanik, Prabhat; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2014-01-01

    Cover crop application increased CH 4 emission from rice paddy soil. • N 2 O emission was decreased instead of applying N-rich cover crops. • N was accumulated mainly in smaller soil aggregates during rice cultivation. • N accumulation increased N 2 O emission potentials of soil aggregates. • Higher amount of N 2 O was emitted in the fallow season from cover crop treated soil

  13. Formation conditions, accumulation models and exploration direction of large-scale gas fields in Sinian-Cambrian, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Guoqi Wei

    2016-02-01

    Full Text Available According to comprehensive research on forming conditions including sedimentary facies, reservoirs, source rocks, and palaeo-uplift evolution of Sinian-Cambrian in Sichuan Basin, it is concluded that: (1 large-scale inherited palaeo-uplifts, large-scale intracratonic rifts, three widely-distributed high-quality source rocks, four widely-distributed karst reservoirs, and oil pyrolysis gas were all favorable conditions for large-scale and high-abundance accumulation; (2 diverse accumulation models were developed in different areas of the palaeo-uplift. In the core area of the inherited palaeo-uplift, “in-situ” pyrolysis accumulation model of paleo-reservoir was developed. On the other hand, in the slope area, pyrolysis accumulation model of dispersed liquid hydrocarbon was developed in the late stage structural trap; (3 there were different exploration directions in various areas of the palaeo-uplift. Within the core area of the palaeo-uplift, we mainly searched for the inherited paleo-structural trap which was also the foundation of lithological-strigraphic gas reservoirs. In the slope areas, we mainly searched for the giant structural trap formed in the Himalayan Period.

  14. Seasonal dependence of large-scale Birkeland currents

    International Nuclear Information System (INIS)

    Fujii, R.; Iijima, T.; Potemra, T.A.; Sugiura, M.

    1981-01-01

    The seasonal dependence of large-scale Birkeland currents has been determined from the analysis of vector magnetic field data acquired by the TRIAD satellite in the northern hemisphere. Statistical characteristics of single sheet (i.e., net currents) and double sheet Birkeland currents were determined from 555 TRIAD passes during the summer, and 408 passes during the winter (more complicated multiple-sheet current systems were not included in this study). The average K/sub p/ value for the summer events is 1.9 and for the winter events is 2.0. The principal results include the following: (1) The single sheet Birkeland currents are statistically observed more often than the double sheet currents in the dayside of the auroral zone during any season. The single sheet currents are also observed more often in the summer than in the winter (as much as 2 to 3 times as often depending upon the MLT sector). (2) The intensities of the single and double sheet Birkeland currents on the dayside, from approximately 1000 MLT to 1800 MLT, are larger during the summer (in comparison to winter) by a factor of about 2. (3) The intensities of the double sheet Birkeland currents in the nightside (the dominant system in this local time) do not show a significant difference from summer to winter. (4) The single and double sheet currents in the dayside (between 0600 and 1800 MLT) appear at higher latitudes (by about 1 0 to 3 0 ) during the summer in comparison to the winter. These characterisctis suggest that the Birkeland current intensities are controlled by the ionosphere conductivity in the polar region. The greater occurrence of single sheet Birkeland currents during the summertime supports the suggestion that these currents close via the polar cap when the conductivity there is sufficiently high to permit it

  15. Large-scale fortification of condiments and seasonings as a public health strategy: equity considerations for implementation.

    Science.gov (United States)

    Zamora, Gerardo; Flores-Urrutia, Mónica Crissel; Mayén, Ana-Lucia

    2016-09-01

    Fortification of staple foods with vitamins and minerals is an effective approach to increase micronutrient intake and improve nutritional status. The specific use of condiments and seasonings as vehicles in large-scale fortification programs is a relatively new public health strategy. This paper underscores equity considerations for the implementation of large-scale fortification of condiments and seasonings as a public health strategy by examining nonexhaustive examples of programmatic experiences and pilot projects in various settings. An overview of conceptual elements in implementation research and equity is presented, followed by an examination of equity considerations for five implementation strategies: (1) enhancing the capabilities of the public sector, (2) improving the performance of implementing agencies, (3) strengthening the capabilities and performance of frontline workers, (3) empowering communities and individuals, and (4) supporting multiple stakeholders engaged in improving health. Finally, specific considerations related to intersectoral action are considered. Large-scale fortification of condiments and seasonings cannot be a standalone strategy and needs to be implemented with concurrent and coordinated public health strategies, which should be informed by a health equity lens. © 2016 New York Academy of Sciences.

  16. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest

    NARCIS (Netherlands)

    Ahrestani, F.S.; Heitkonig, I.M.A.; Prins, H.H.T.

    2012-01-01

    There is little understanding of how large mammalian herbivores in Asia partition habitat and forage resources, and vary their diet and habitat selection seasonally in order to coexist. We studied an assemblage of four large herbivores, chital (Axis axis), sambar (Cervus unicolor), gaur (Bos gaurus)

  17. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Prabhat, E-mail: prabhat2003@gmail.com; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo, E-mail: pjkim@gnu.ac.kr

    2014-08-15

    considered especially for fallow season to calculate total GWP. - Highlights: • Cover crop application increased CH{sub 4} emission from rice paddy soil. • N{sub 2}O emission was decreased instead of applying N-rich cover crops. • N was accumulated mainly in smaller soil aggregates during rice cultivation. • N accumulation increased N{sub 2}O emission potentials of soil aggregates. • Higher amount of N{sub 2}O was emitted in the fallow season from cover crop treated soil.

  18. Seasonal variation in the mating system of a selfing annual with large floral displays.

    Science.gov (United States)

    Yin, Ge; Barrett, Spencer C H; Luo, Yi-Bo; Bai, Wei-Ning

    2016-03-01

    Flowering plants display considerable variation in mating system, specifically the relative frequency of cross- and self-fertilization. The majority of estimates of outcrossing rate do not account for temporal variation, particularly during the flowering season. Here, we investigated seasonal variation in mating and fertility in Incarvillea sinensis (Bignoniaceae), an annual with showy, insect-pollinated, 'one-day' flowers capable of delayed selfing. We examined the influence of several biotic and abiotic environmental factors on day-to-day variation in fruit set, seed set and patterns of mating. We recorded daily flower number and pollinator abundance in nine 3 × 3-m patches in a population at Mu Us Sand land, Inner Mongolia, China. From marked flowers we collected data on daily fruit and seed set and estimated outcrossing rate and biparental inbreeding using six microsatellite loci and 172 open-pollinated families throughout the flowering period. Flower density increased significantly over most of the 50-d flowering season, but was associated with a decline in levels of pollinator service by bees, particularly on windy days. Fruit and seed set declined over time, especially during the latter third of the flowering period. Multilocus estimates of outcrossing rate were obtained using two methods (the programs MLTR and BORICE) and both indicated high selfing rates of ∼80 %. There was evidence for a significant increase in levels of selfing as the flowering season progressed and pollinator visitation declined. Biparental inbreeding also declined significantly as the flowering season progressed. Temporal variation in outcrossing rates may be a common feature of the mating biology of annual, insect-pollinated plants of harsh environments but our study is the first to examine seasonal mating-system dynamics in this context. Despite having large flowers and showy floral displays, I. sinensis attracted relatively few pollinators. Delayed selfing by corolla dragging

  19. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  20. Selenium accumulation in the cockle Anadara trapezia

    International Nuclear Information System (INIS)

    Jolley, Dianne F.; Maher, William A.; Kyd, Jennelle

    2004-01-01

    An extensive study on Se accumulation in a population of Anadara trapezia from a marine lake is reported. The effects of organism mass, gender, reproductive cycle, and season on Se accumulation and tissue distribution were investigated. Analyses showed that gender and reproductive cycle had no significant effect on Se accumulation. A. trapezia showed a strong positive correlation between Se burden and tissue mass. Constant Se concentrations were observed within individual populations but varied spatially with sediment Se concentrations. Se concentrations in tissues decreased from gills > gonad/intestine > mantle > muscle > foot, which remained constant over 12 months, however, significantly lower concentrations were observed in the summer compared to winter. A. trapezia is a good biomonitor for Se, as gender and size do not effect concentration, however, season of collection must be reported if changes in Se bioavailability are to be identified in short term studies, or during intersite comparisons. - Capsule: The marine bivalve Anadara trapezia is a good bioindicator for marine selenium contamination

  1. On the architecture for the X part of a very large FX correlator using two-accumulator CMACs

    Science.gov (United States)

    Lapshev, Stepan; Rezaul Hasan, S. M.

    2016-02-01

    This paper presents an improved input-buffer architecture for the X part of a very large FX correlator that optimizes memory use to both increase performance and reduce the overall power consumption. The architecture uses an array of two-accumulator CMACs that are reused for different pairs of correlated signals. Using two accumulators in every CMAC allows the processing array to alternately correlate two sets of signal pairs selected in such a way so that they share some or all of the processed data samples. This leads to increased processing bandwidth and a significant reduction of the memory read rate due to not having to update some or all of the processing buffers in every second processing cycle. The overall memory access rate is at most 75 % of that of the single-accumulator CMAC array. This architecture is intended for correlators of very large multi-element radio telescopes such as the Square Kilometre Array (SKA), and is suitable for an ASIC implementation.

  2. Organic Carbon Accumulation in Topsoil Following Afforestation with Willow: Emphasis on Leaf Litter Decomposition and Soil Organic Matter Quality

    Directory of Open Access Journals (Sweden)

    Benoit Lafleur

    2015-03-01

    Full Text Available Short-rotation intensive cultures (SRICs of willows can potentially sequester carbon (C in soil. However, there is limited information regarding the factors governing soil organic C (Corg accumulation following afforestation. The objectives of this study were to: (i determine whether willow leads to Corg accumulation in the topsoil (0–10 cm two to six years after establishment in five SRICs located along a large climatic/productivity gradient in southern Quebec, and (ii assess the influence of leaf litter decomposition and soil organic matter (OM quality on Corg accumulation in the topsoil. Topsoil Corg concentrations and pools under SRICs were, on average, 25% greater than reference fields, and alkyls concentrations were higher under SRICs. On an annualized basis, Corg accumulation rates in the topsoil varied between 0.4 and 4.5 Mg ha−1 yr−1. Estimated annual litterfall C fluxes were in the same order of magnitude, suggesting that SRICs can accumulate Corg in the topsoil during early years due to high growth rates. Leaf litter decomposition was also related to Corg accumulation rates in the topsoil. It was positively correlated to growing season length, degree-days, and growing season average air and topsoil temperature (r > 0.70, and negatively correlated to topsoil volumetric water content (r = −0.55. Leaf litter decomposition likely occurred more quickly than that of plants in reference fields, and as it progressed, OM became more decay resistant, more stable and accumulated as Corg in the topsoil.

  3. Seasonal accumulation of ultraviolet-B screening pigments in needles of Norway spruce (Picea abies (L.) Karst.)

    International Nuclear Information System (INIS)

    Fischbach, R.J.; Kossmann, B.; Panten, H.; Steinbrecher, R.; Heller, W.; Seidlitz, H.K.; Sandermann, H.; Hertkorn, N.; Schnitzler, J.P.

    1999-01-01

    Conifer needles are highly effective in screening ultraviolet-B radiation (280–320 nm). This ability is mainly attributed to the presence of flavonoids and hydroxycinnamic acids in the epidermal tissue. In two field cabinet experiments with two different clones of Norway spruce we assessed the seasonal accumulation of UV-B screening pigments under near-ambient, and close-to-zero UV-B irradiation. At the beginning of needle development, i.e. in June, kaempferol 3-O-glucoside was the dominant UV-B screening pigment. It was replaced during needle differentiation by the more effective diacylated flavonol glucosides, particulary kaempferol 3-O-(3 , 6 - O-di-p-coumaroyl)-glucoside, which reached highest concentrations in July. In addition to the soluble pool of diacylated flavonol glucoside derivatives, a cell wall-bound UV-B screen in the epidermal cell walls was formed during needle differentiation, consisting mainly of p-coumaric acid and kaempferol 3-O-glucoside. An effect of UV-B radiation on the accumulation of diacylated flavonol glucosides was only observed in 1996 with clone 2, when the concentrations of kaempferol 3-O-(3 , 6 - O-di-p-coumaroyl)-glucoside were significantly higher in July and August under field, and near-ambient than under close-to-zero UV-B irradiance. For wall-bound p-coumaric acid and kaempferol 3-O-glucoside UV-B radiation enhanced the concentrations of these compounds by approximately 20% in relation to the concentrations in close-to-zero UV-B-treated plants in both field cabinet experiments. (author)

  4. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    Directory of Open Access Journals (Sweden)

    Yushi Ye

    Full Text Available Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C, nitrogen (N and phosphorus (P, in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD and four N managements (control, N0; conventional urea at 240 kg N ha(-1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1, BBF; polymer-coated urea at 240 kg N ha(-1, PCU. We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems.

  5. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    Science.gov (United States)

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha−1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha−1, BBF; polymer-coated urea at 240 kg N ha−1, PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  6. Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations

    Science.gov (United States)

    Xie, Z.

    2015-12-01

    In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.

  7. Advanced accumulator for PWR

    International Nuclear Information System (INIS)

    Ichimura, Taiki; Chikahata, Hideyuki

    1997-01-01

    Advanced accumulators have been incorporated into the APWR design in order to simplify the safety system configuration and to improve reliability. The advanced accumulators refill the reactor vessel with a large discharge flow rate in a large LOCA, then switch to a small flow rate to continue safety injection for core reflooding. The functions of the conventional accumulator and the low head safety injection pump are integrated into this advanced accumulator. Injection performance tests simulating LOCA conditions and visualization tests for new designs have been carried out. This paper describes the APWR ECCS configuration, the advanced accumulator design and some of the injection performance and visualization test results. It was verified that the flow resistance of the advanced accumulator is independent of the model scale. The similarity law and performance data of the advanced accumulator for applying APWR was established. (author)

  8. Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers

    Science.gov (United States)

    Muñoz, Á. G.; Díaz-Lobatón, J.; Chourio, X.; Stock, M. J.

    2016-05-01

    The Lake Maracaibo Basin in North Western Venezuela has the highest annual lightning rate of any place in the world (~ 200 fl km- 2 yr- 1), whose electrical discharges occasionally impact human and animal lives (e.g., cattle) and frequently affect economic activities like oil and natural gas exploitation. Lightning activity is so common in this region that it has a proper name: Catatumbo Lightning (plural). Although short-term lightning forecasts are now common in different parts of the world, to the best of the authors' knowledge, seasonal prediction of lightning activity is still non-existent. This research discusses the relative role of both large-scale and local climate drivers as modulators of lightning activity in the region, and presents a formal predictability study at seasonal scale. Analysis of the Catatumbo Lightning Regional Mode, defined in terms of the second Empirical Orthogonal Function of monthly Lightning Imaging Sensor (LIS-TRMM) and Optical Transient Detector (OTD) satellite data for North Western South America, permits the identification of potential predictors at seasonal scale via a Canonical Correlation Analysis. Lightning activity in North Western Venezuela responds to well defined sea-surface temperature patterns (e.g., El Niño-Southern Oscillation, Atlantic Meridional Mode) and changes in the low-level meridional wind field that are associated with the Inter-Tropical Convergence Zone migrations, the Caribbean Low Level Jet and tropical cyclone activity, but it is also linked to local drivers like convection triggered by the topographic configuration and the effect of the Maracaibo Basin Nocturnal Low Level Jet. The analysis indicates that at seasonal scale the relative contribution of the large-scale drivers is more important than the local (basin-wide) ones, due to the synoptic control imposed by the former. Furthermore, meridional CAPE transport at 925 mb is identified as the best potential predictor for lightning activity in the Lake

  9. Exploratory studies into seasonal flow forecasting potential for large lakes

    Science.gov (United States)

    Sene, Kevin; Tych, Wlodek; Beven, Keith

    2018-01-01

    In seasonal flow forecasting applications, one factor which can help predictability is a significant hydrological response time between rainfall and flows. On account of storage influences, large lakes therefore provide a useful test case although, due to the spatial scales involved, there are a number of modelling challenges related to data availability and understanding the individual components in the water balance. Here some possible model structures are investigated using a range of stochastic regression and transfer function techniques with additional insights gained from simple analytical approximations. The methods were evaluated using records for two of the largest lakes in the world - Lake Malawi and Lake Victoria - with forecast skill demonstrated several months ahead using water balance models formulated in terms of net inflows. In both cases slight improvements were obtained for lead times up to 4-5 months from including climate indices in the data assimilation component. The paper concludes with a discussion of the relevance of the results to operational flow forecasting systems for other large lakes.

  10. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient.

    Science.gov (United States)

    de Araújo, Alessandro C; Kruijt, Bart; Nobre, Antonio D; Dolman, Albertus J; Waterloo, Maarten J; Moors, Eddy J; de Souza, Juliana S

    2008-09-01

    Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy covariance systems. This study describes such variability using measurements of CO2 along vertical profiles and along a toposequence in a tropical rain forest near Manaus, Brazil. Seasonal and diurnal variation was recorded, with atmospheric CO2 concentration maxima around dawn, generally higher CO2 build-up in the dry season and stronger daytime CO2 drawdown in the wet season. This variation was reflected all along the toposequence, but the slope and valley bottom accumulated clearly more CO2 than the plateaus, depending on atmospheric stability. Particularly during stable nights, accumulation was along lines of equal altitude, suggesting that large amounts of CO2 are stored in the valleys of the landscape. Flushing of this store only occurs during mid-morning, when stored CO2 may well be partly transported back to the plateaus. It is clear that, for proper interpretation of tower fluxes in such complex and actively respiring terrain, the horizontal variability of storage needs to be taken into account not only during the night but also during the mornings.

  11. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    Science.gov (United States)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  12. SEASONAL DIFFERENCES IN PHYSICAL ACTIVITY AND SEDENTARY PATTERNS: THE RELEVANCE OF THE PA CONTEXT

    Directory of Open Access Journals (Sweden)

    Pedro Silva

    2011-03-01

    Full Text Available The aim of this pilot study was to characterize seasonal variation in the moderate to vigorous physical activity (MVPA and sedentary behavior of Portuguese school youth, and understand the influence of activity choices and settings. The participants in this study were 24 students, aged 10-13 years. Accelerometers measured daily PA over 7 consecutive days, in different seasons May - June and January - February. In summer, boys accumulated more minutes in MVPA (928 minutes/week than girls (793 minutes/week. In winter the pattern was reversed with girls accumulating more activity than boys (736 minutes/week vs. 598 minutes/week. The repeated measures ANOVA revealed significant effects for season (F = 5.98, p = 0.023 and in- school vs. out-of-school (F = 6.53, p = 0.018. Youth were more active in the summer and activity levels were higher after school than in school. Summer season provided relevant contexts for youth physical activity accumulation. Winter season may have been a significant barrier to boy's preferred PA context. Differences in choices of outdoor or indoor PA, after school, explained the gender differences in seasonal activity patterns

  13. Influence of surface water accumulations of the Stupnica creek on underground coal mining in the Durdevic coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Valjarevic, R; Urosevic, V

    1986-01-01

    Discusses hydrological, geological and mining conditions at the Durdevic underground coal mine. A landslide at a spoil bank dammed the creek flowing above the mine. Two exploratory boreholes (62 m and 68 m) were drilled for hydrological investigations. Water coloring techniques, chemical water analysis, measurement of underground water level and water flow were used to determine whether a sudden inrush of rainfall and accumulated surface water could endanger the mine. Underground water inflow to mine rooms varies from 110-200 m/sup 3//min, depending on the season. Diversion of the creek bed with the accumulated water and accumulation and subsequent drainage of surface water via large diameter concrete pipes were considered as possible ways of improving safety in the mine. Details of these projects are included. 4 refs.

  14. Accumulation pattern of total nonstructural carbohydrate in ...

    African Journals Online (AJOL)

    The pattern of total nonstructural carbohydrate (TNC) accumulation in strawberry (Fragaria ananassa Duch.) nursery runner plants, cv. eCamarosaf, was determined for three growing seasons. Plant growth and fruit production patterns were also evaluated. The experiments were carried out on plants propagated in high ...

  15. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    Science.gov (United States)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.

    2018-03-01

    Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  16. Effects of Planting of Calluna Vulgaris for Stable Snow Accumulation in Winter

    Science.gov (United States)

    Ibuki, R.; Harada, K.

    2017-12-01

    Recent year climate of the winter season is changing and the period of snow accumulation is reduced compared with before. It affects the management of the ski resort. Snowfall had occurred in December 2016, but the snow accumulated after January 2017 at the ski resort located in the Pacific Ocean side of the Northeast region of Japan. This situation is thought to be originated from two reasons, one is snow thawing, another is to be blown away by the strong monsoon wind. We are considering utilizing planting to stabilize snow accumulation. Currently building rock gardens with shrubs, mainly Calluna Vulgaris in the ski resort for attracting customers in the summer. These are difficult to raise in the lowlands of Japan because they are too hot, but because of their good growth in relatively low-temperature highlands, it is rare for local residents to appreciate the value of these. In addition, it is excellent in low temperature resistance, and it will not die even under the snow. We investigated the pressure resistance performance due to snowfall and the appropriateness of growth under the weather conditions of the area. Regarding Calluna Vulgaris, Firefly, the plants were not damaged even under snow more than 1 m. In addition, three years have passed since planting, relatively good growth is shown, and the stock has been growing every year. Based on these results, we plan to stabilize the snow accumulation by carrying out planting of Calluna vulgaris inside the slope. The growth of the Calluna species is gentle and the tree height grows only about 50 cm even if 15 years have passed since planting. Therefore, it is considered that the plant body is hard to put out their head on the snow surface during the ski season. Next season will monitor the snow accumulation around the planting area through the snow season.

  17. Ensemble seasonal forecast of extreme water inflow into a large reservoir

    Directory of Open Access Journals (Sweden)

    A. N. Gelfan

    2015-06-01

    Full Text Available An approach to seasonal ensemble forecast of unregulated water inflow into a large reservoir was developed. The approach is founded on a physically-based semi-distributed hydrological model ECOMAG driven by Monte-Carlo generated ensembles of weather scenarios for a specified lead-time of the forecast (3 months ahead in this study. Case study was carried out for the Cheboksary reservoir (catchment area is 374 000 km2 located on the middle Volga River. Initial watershed conditions on the forecast date (1 March for spring freshet and 1 June for summer low-water period were simulated by the hydrological model forced by daily meteorological observations several months prior to the forecast date. A spatially distributed stochastic weather generator was used to produce time-series of daily weather scenarios for the forecast lead-time. Ensemble of daily water inflow into the reservoir was obtained by driving the ECOMAG model with the generated weather time-series. The proposed ensemble forecast technique was verified on the basis of the hindcast simulations for 29 spring and summer seasons beginning from 1982 (the year of the reservoir filling to capacity to 2010. The verification criteria were used in order to evaluate an ability of the proposed technique to forecast freshet/low-water events of the pre-assigned severity categories.

  18. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    Directory of Open Access Journals (Sweden)

    A. Schepen

    2018-03-01

    Full Text Available Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S, which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  19. Artificial deepening of seasonal waterholes in eastern Cambodia: impact on water retention and use by large ungulates and waterbirds

    Directory of Open Access Journals (Sweden)

    Thomas N.E. Gray

    2015-05-01

    Full Text Available Natural seasonal waterholes (trapeang in Khmer are an important feature of the deciduous dipterocarp forests of eastern Cambodia and are utilised by a number of globally threatened species of large ungulates and waterbirds. However at the end of the dry-season (April only a small proportion of waterholes retain water. In 2011, we artificially deepened six waterholes in the core area of Mondulkiri Protected Forest, eastern Cambodia, removing 3m3 to 24m3 of earth (mean 16.5m3 from each.  Surveys prior to deepening demonstrated that only one of these waterholes, and 10% of all waterholes surveyed in the study area (n=50, held water at the end of the dry-season.  Following modification five of the six deepened waterholes (83% held water at the end of the subsequent dry-season. From four camera traps over 448 trap-nights, 23 species including two globally threatened large ungulates, Banteng Bos javanicus and Eld’s Deer Rucervus eldii, and two Critically Endangered Ibises (Giant Thaumatibis gigantea and White-shouldered Ibis Pseudibis davisoni, were photographed foraging and drinking at the deepened waterholes between March and June 2012.  Our results suggest that artificial deepening of natural waterholes does not cause damage, and makes these waterholes suitable for use throughout the dry-season.  In the face of changing climate it is suggested that management plans should have a programme for the survey and determination of the status of waterholes every year and improve the use of water resources by artificial deepening. 

  20. Precipitation in Madeira island and atmospheric rivers in the winter seasons

    Science.gov (United States)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor

    2016-04-01

    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  1. A Mitigation Approach to Alleviate Arsenic Accumulation in Rice through Balanced Fertilization

    International Nuclear Information System (INIS)

    Huq, S.M.I.; Sultana, S.; Chakraborty, G.; Chowdhury, M.T.A.

    2011-01-01

    Pot experiments with boro and aman season rice on the same soils treated with arsenic contaminated irrigation water and using balanced fertilizer or not revealed that balance fertilization could be a strategy to mitigate arsenic accumulation in rice grain. The study also revealed that there is a carryover effect of As applied through irrigation in the boro season to the subsequent aman season rice. This carryover effect too, could be minimized with balanced fertilization.

  2. Large-scale functional MRI analysis to accumulate knowledge on brain functions

    International Nuclear Information System (INIS)

    Schwartz, Yannick

    2015-01-01

    How can we accumulate knowledge on brain functions? How can we leverage years of research in functional MRI to analyse finer-grained psychological constructs, and build a comprehensive model of the brain? Researchers usually rely on single studies to delineate brain regions recruited by mental processes. They relate their findings to previous works in an informal way by defining regions of interest from the literature. Meta-analysis approaches provide a more principled way to build upon the literature. This thesis investigates three ways to assemble knowledge using activation maps from a large amount of studies. First, we present an approach that uses jointly two similar fMRI experiments, to better condition an analysis from a statistical standpoint. We show that it is a valuable data-driven alternative to traditional regions of interest analyses, but fails to provide a systematic way to relate studies, and thus does not permit to integrate knowledge on a large scale. Because of the difficulty to associate multiple studies, we resort to using a single dataset sampling a large number of stimuli for our second contribution. This method estimates functional networks associated with functional profiles, where the functional networks are interacting brain regions and the functional profiles are a weighted set of cognitive descriptors. This work successfully yields known brain networks and automatically associates meaningful descriptions. Its limitations lie in the unsupervised nature of this method, which is more difficult to validate, and the use of a single dataset. It however brings the notion of cognitive labels, which is central to our last contribution. Our last contribution presents a method that learns functional atlases by combining several datasets. [Henson 2006] shows that forward inference, i.e. the probability of an activation given a cognitive process, is often not sufficient to conclude on the engagement of brain regions for a cognitive process

  3. Effect of Different Calcium Concentration in Contaminate Soil on 90S Accumulation by the Seasonal Vegetative Growth of Lettuce

    International Nuclear Information System (INIS)

    Kodah, Z.; Makahle, M.; Al- Omari, M.; Al-Qawasmi, W.

    2004-01-01

    Pot experiment was conducted in greenhouse at National Center for Agriculture Research and Technology Transfer (NCARTT) farm in Baqa. To establish the effect of different calcium concentration in the contaminated soil on the 90 S accumulation by the seasonal vegetative growth of lettuce. The pots were distributed in split plot in RCBD design with four replicates. The main plots of experiment were four concentration of calcium (Ca ++ ) in the soil. The calcium soluble solution was applied and mixed with the soil. Four concentrations of calcium were 50, 100, 150 and 200 mg Ca /Kg. The sub main plots of experiment were four specific activities of Strontium-90. The contamination has been done with 90 S to the surface area of the soil after one week of planting. The specific activities of 90 S were: 40, 57, 73 and 89 Bq/Kg soil . The results indicate after 70 days of planting (duration of season), that the specific active of 90Sr in vegetative mass of plant (Lettuce) and in leached irrigation water at the end of season was nonsignificant increased with the increment of Ca concentration in the soil . The specific active of 90 Sr reached to 1.12 Bq/Kg in plant and to 1.13 Bq/ l in irrigation water. There was strong linear correlation between specific active of 90 Sr in vegetative mass of plant (Lettuce) with the increment of Ca concentration in the soil (r 2 = 94) , the similar results was observed for irrigation water (r 2 =88) . The distribution of specific active of 90 Sr in the soil, plant and irrigation water was not significant effected by the increasing of specific active of 90 Sr in contaminated soil and / or by increasing of Ca concentration in the soil. It was found that most of specific active of 90 Sr in all treatments were remained at the end of season in the soil (96.6-97.9%). The values of Stander Transfer Factor (TFs) for 90 Sr by plant or irrigation water weren't effected with increasing of specific active of 90 Sr in the soil .On contrary the increasing

  4. A Mitigation Approach to Alleviate Arsenic Accumulation in Rice through Balanced Fertilization

    Directory of Open Access Journals (Sweden)

    S. M. Imamul Huq

    2011-01-01

    Full Text Available Pot experiments with boro and aman season rice on the same soils treated with arsenic contaminated irrigation water and using balanced fertilizer or not revealed that balance fertilization could be a strategy to mitigate arsenic accumulation in rice grain. The study also revealed that there is a carryover effect of As applied through irrigation in the boro season to the subsequent aman season rice. This carryover effect too, could be minimized with balanced fertilization.

  5. Seasonality in ocean microbial communities.

    Science.gov (United States)

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  6. An integrated, indicator framework for assessing large-scale variations and change in seasonal timing and phenology (Invited)

    Science.gov (United States)

    Betancourt, J. L.; Weltzin, J. F.

    2013-12-01

    As part of an effort to develop an Indicator System for the National Climate Assessment (NCA), the Seasonality and Phenology Indicators Technical Team (SPITT) proposed an integrated, continental-scale framework for understanding and tracking seasonal timing in physical and biological systems. The framework shares several metrics with the EPA's National Climate Change Indicators. The SPITT framework includes a comprehensive suite of national indicators to track conditions, anticipate vulnerabilities, and facilitate intervention or adaptation to the extent possible. Observed, modeled, and forecasted seasonal timing metrics can inform a wide spectrum of decisions on federal, state, and private lands in the U.S., and will be pivotal for international efforts to mitigation and adaptation. Humans use calendars both to understand the natural world and to plan their lives. Although the seasons are familiar concepts, we lack a comprehensive understanding of how variability arises in the timing of seasonal transitions in the atmosphere, and how variability and change translate and propagate through hydrological, ecological and human systems. For example, the contributions of greenhouse warming and natural variability to secular trends in seasonal timing are difficult to disentangle, including earlier spring transitions from winter (strong westerlies) to summer (weak easterlies) patterns of atmospheric circulation; shifts in annual phasing of daily temperature means and extremes; advanced timing of snow and ice melt and soil thaw at higher latitudes and elevations; and earlier start and longer duration of the growing and fire seasons. The SPITT framework aims to relate spatiotemporal variability in surface climate to (1) large-scale modes of natural climate variability and greenhouse gas-driven climatic change, and (2) spatiotemporal variability in hydrological, ecological and human responses and impacts. The hierarchical framework relies on ground and satellite observations

  7. A new classification of large-scale climate regimes around the Tibetan Plateau based on seasonal circulation patterns

    Directory of Open Access Journals (Sweden)

    Xin-Gang Dai

    2017-03-01

    Full Text Available This study aims to develop a large-scale climate classification for investigating the characteristics of the climate regimes around the Tibetan Plateau based on seasonal precipitation, moisture transport and moisture divergence using in situ observations and ERA40 reanalysis data. The results indicate that the climate can be attributed to four regimes around the Plateau. They situate in East Asia, South Asia, Central Asia and the semi-arid zone in northern Central Asia throughout the dryland of northwestern China, in addition to the Köppen climate classification. There are different collocations of seasonal temperature and precipitation: 1 in phase for the East and South Asia monsoon regimes, 2 anti-phase for the Central Asia regime, 3 out-of-phase for the westerly regime. The seasonal precipitation concentrations are coupled with moisture divergence, i.e., moisture convergence coincides with the Asian monsoon zone and divergence appears over the Mediterranean-like arid climate region and westerly controlled area in the warm season, while it reverses course in the cold season. In addition, moisture divergence is associated with meridional moisture transport. The northward/southward moisture transport corresponds to moisture convergence/divergence, indicating that the wet and dry seasons are, to a great extent, dominated by meridional moisture transport in these regions. The climate mean southward transport results in the dry-cold season of the Asian monsoon zone and the dry-warm season, leading to desertification or land degradation in Central Asia and the westerly regime zone. The mean-wind moisture transport (MMT is the major contributor to total moisture transport, while persistent northward transient eddy moisture transport (TEMT plays a key role in dry season precipitation, especially in the Asian monsoon zone. The persistent TEMT divergence is an additional mechanism of the out-of-phase collocation in the westerly regime zone. In addition

  8. Biomass cycles, accumulation rates and nutritional characteristics of ...

    African Journals Online (AJOL)

    Annual biomass cycles, accumulation rates and nutritional characteristics of forage and non-forage species groups were determined in the canopied and open, uncanopied subhabitats of the herbaceous layer in Burkea africana savanna. The total amount of biomass of all species over the season was significantly greater in ...

  9. Retrieving a common accumulation record from Greenland ice cores for the past 1800 years

    DEFF Research Database (Denmark)

    Andersen, Katrine K.; Ditlevsen, Peter D.; Rasmussen, Sune Olander

    2006-01-01

    In the accumulation zone of the Greenland ice sheet the annual accumulation rate may be determined through identification of the annual cycle in the isotopic climate signal and other parameters that exhibit seasonal variations. On an annual basis the accumulation rate in different Greenland ice...... cores is highly variable, and the degree of correlation between accumulation series from different ice cores is low. However, when using multiyear averages of the different accumulation records, the correlation increases significantly. A statistical model has been developed to estimate the common...

  10. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    Science.gov (United States)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation

  11. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  12. Tropical Drosophila ananassae of wet-dry seasons show cross resistance to heat, drought and starvation

    Directory of Open Access Journals (Sweden)

    Chanderkala Lambhod

    2017-11-01

    Full Text Available Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation, and changes in trehalose, proline and body lipids in Drosophila ananassae flies reared under wet or dry season-specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry-season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization as well as rates of metabolic change for each energy metabolite were significantly higher in wet-season flies than dry-season flies. Energy metabolite changes due to inter-related stressors (heat versus desiccation or starvation resulted in possible maintenance of energetic homeostasis in wet- or dry-season flies. Thus, low or high humidity-induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors.

  13. Seasonal variation in the composition and concentration of butyltin compounds in marine fish of Taiwan

    International Nuclear Information System (INIS)

    Dong, C.D.; Chen, C.W.; Liu, L.L.

    2004-01-01

    For the first time, strong evidence is presented to demonstrate that the accumulations of butyltin compounds (BTs) exhibit seasonal variations with respect to their compositions and concentrations in marine fishes. Measurements were made on the benthic ponyfish Leiogenathus splendens and lizardfish Trachinocephalus myops inhabiting the west coast of Taiwan. In the whole body samples of the ponyfish, BT concentrations ranged from 236 to 2501 ng/g wet wt, with those in winter considerably higher than in the other seasons (p summer > spring (p<0.05). Meanwhile, TBT (41%) was predominant in spring, whereas DBT (50 and 68%) was most heavily concentrated in summer and autumn (p<0.001). Seasonally mediated physiological changes, such as dilution due to growth and metabolic compensation, may play important roles in forming different BT accumulation patterns among seasons and organisms

  14. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    Science.gov (United States)

    Robin, Jessica; Dubayah, Ralph; Sparrow, Elena; Levine, Elissa

    2008-03-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region. Six quadratic regression models with NDVI as a function of accumulated growing degree days (AGDD) were developed from 2001 through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land covers. Model parameters determined NDVI values for start of the observational period as well as peak and length of the growing season. NDVI values for start of the growing season were determined from the model equations and field observations of SOS made by GLOBE students and researchers at University of Alaska Fairbanks. AGDD was computed from daily air temperature. AVHRR and MODIS models were significantly different from one another with differences in the start of the observational season as well as start, peak, and length of the growing season. Furthermore, AGDD for SOS was significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect this change. There are limitations with using NDVI to monitor phenological changes in these regions because of snow, the large extent of conifers, and clouds, which restrict the composite period. In addition, differing processing and spectral characteristics restrict continuity between AVHRR and MODIS NDVI data sets.

  15. Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen; Zou, Zhijun; Li, Meiling; Wang, Xin; Huang, Wugang; Yang, Jiangang [University of Shanghai for Science and Technology, Shanghai (China); Li, Wei; Xiao, Xueqin [Shanghai International Gymnastics Stadium, Shanghai (China)

    2007-05-15

    Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15{sup o}C in winter. The second largest one is 12{sup o}C in summer, and less than 2{sup o}C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building. (author)

  16. Seasonal Dynamics of Dissolved Organic Carbon Under Complex Circulation Schemes on a Large Continental Shelf: The Northern South China Sea

    Science.gov (United States)

    Meng, Feifei; Dai, Minhan; Cao, Zhimian; Wu, Kai; Zhao, Xiaozheng; Li, Xiaolin; Chen, Junhui; Gan, Jianping

    2017-12-01

    We examined the distribution and seasonality of dissolved organic carbon (DOC) based on a large data set collected from the northern South China Sea (NSCS) shelf under complex circulation schemes influenced by river plume, coastal upwelling, and downwelling. The highest surface values of ˜117 μmol L-1 were observed nearshore in summer suggesting high DOC supplies from the river inputs, whereas the lowest surface values of ˜62 μmol L-1 were on the outer shelf in winter due to entrainment of DOC-poor subsurface water under strengthened vertical mixing. While the summer coastal upwelling brought lower DOC from offshore depth to the nearshore surface, the winter coastal downwelling delivered higher surface DOC to the midshelf deep waters from the inner shelf fueled by the China Coastal Current (CCC) transporting relatively high DOC from the East China Sea to the NSCS. The intensified winter downwelling generated a cross-shelf DOC transport of 3.1 × 1012 g C over a large shelf area, which induced a significant depression of the NSCS DOC inventory in winter relative to in autumn. In addition to the variable physical controls, net biological production of DOC was semiquantified in both the river plume (2.8 ± 3.0 μmol L-1) and coastal upwelling (3.1 ± 1.3 μmol L-1) in summer. We demonstrated that the NSCS shelf had various origins of DOC including riverine inputs, inter-shelf transport and in situ production. Via cross-shelf transport, the accumulated DOC would be exported to and stored in the deep ocean, suggesting that continental shelves are a potentially effective carbon sink.

  17. Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum)

    Science.gov (United States)

    B.L. Wong; K.L. Baggett; A.H. Rye

    2003-01-01

    Sugar maple (Acer saccharum Marsh.) trees exhibit seasonal patterns of production, accumulation, and utilization of nonstructural carbohydrates that are closely correlated with phenological events and (or) physiological processes. The simultaneous seasonal patterns of both reserve and soluble carbohydrates in the leaves, twigs, branches, and trunks of healthy mature...

  18. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Science.gov (United States)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  19. Preliminary assessment of mercury accumulation in Massachusetts and Minnesota seasonal forest pools

    Science.gov (United States)

    Robert T. Brooks; Susan L. Eggert; Keith H. Nislow; Randall K. Kolka; Celia Y. Chen; Darren M. Ward

    2012-01-01

    Seasonal forest pools (SFPs) are common, widespread, and provide critical habitat for amphibians and invertebrates. The ephemeral hydrology of SFPs has been identified as an important factor in the production of biologically active methylmercury (MeHg). To investigate mercury (Hg) in SFPs, we collected water, fine benthic organic matter (FBOM), detrital materials, and...

  20. Seasonal dynamics and diversity of bacteria in retail oyster tissues.

    Science.gov (United States)

    Wang, Dapeng; Zhang, Qian; Cui, Yan; Shi, Xianming

    2014-03-03

    Oysters are one of the important vehicles for the transfer of foodborne pathogens. It was reported that bacteria could be bio-accumulated mainly in the gills and digestive glands. In artificially treated oysters, bacterial communities have been investigated by culture-independent methods after harvest. However, little information is available on the seasonal dynamics of bacterial accumulation in retail oyster tissues. In this study, retail oysters were collected from local market in different seasons. The seasonal dynamics and diversity of bacteria in oyster tissues, including the gills, digestive glands and residual tissues, were analyzed by denaturing gradient gel electrophoresis (DGGE). It was interesting that the highest bacterial diversity appeared in the Fall season, not in summer. Our results indicated that Proteobacteria was the predominant member (23/46) in oyster tissues. Our results also suggested that bacterial diversity in gills was higher than that in digestive glands and other tissues. In addition, not all the bacteria collected from surrounding water by gills were transferred to digestive glands. On the other hand, few bacteria were found in oyster tissues except in the gills. Therefore, the gills could be the best candidate target tissue for monitoring of pathogenic bacteria either to human or to oyster. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Seasonal timing in a warming world : Plasticity of seasonal timing of growth and reproduction

    NARCIS (Netherlands)

    Salis, Lucia

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the

  2. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    DEFF Research Database (Denmark)

    Charalampidis, C.; Van As, D.; Box, J. E.

    2015-01-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l.-above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly...... negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ∼ 0.......78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface...

  3. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    Science.gov (United States)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  4. Dry Bean Morpho-Physiological Responses to Gradual Weed Biomass Accumulation

    Directory of Open Access Journals (Sweden)

    Hossein GHAMARI

    2013-02-01

    Full Text Available Field study was carried out in 2011 in west of Iran to assess responses of dry bean (Phaseolus vulgaris L. morpho-physiological traits to gradual weed biomass accumulation. The treatments consisted of two different periods of weed interference, which weeds either infested the plots or removed for an increasing duration of time (0, 10, 20, 30, 40, 50 days after crop emergence. Relative dominance and relative importance of weed species fluctuated over the crop cycle. As the duration of weed interference was increased, a declining trend of crop growth rate (CGR was observed. When weeds were allowed to compete with crop throughout the crop cycle, maximum value of CGR was decreased from 25.57 g m-2 days in full season weed free treatment to 16.78 g m-2 days in full season weed infested treatment. Effect of treatments on leaf area index (LAI was significant. Weed removal increased LAI but it could not significantly affect this trait, at the early of growing season. Weed interference caused a significant reduction on number of branches. The minimum number of branches was registered in full season weed infested treatment (2.58 branches per plant, while the maximum one was observed in the full season weed free treatment (4.25 branches per plant. Weed competition severely reduced crop yield. At 10 and 20 days after crop emergence, weed infestation could not significantly affect the yield. A negative relationship between weeds’ dry matter accumulation and LAI as well as number of branches was observed which signify the vulnerability of these morpho-physiological traits to weed competition.

  5. Higher water plants in a lake contaminated with radionuclides: composition, distribution, reserves and accumulation of Cs-137

    International Nuclear Information System (INIS)

    Pavlyutin, A.P.; Babitskij, V.A.

    1996-01-01

    Species composition, specials distribution, seasonal pattern and accumulation of cesium-137 by aquatic plants had been investigated in the small not flowing meso trophic lake (Belarus) during vegetative season of 1993. Macrophyte phytomass storage is equal 10,56 t, and mass of its roots is 4.28 t of dry weight. Cesium-137 stock's in green mass and macrophytes roots are equal to 108.6 and 96.4 MBK respectively. Total accumulation of cesium-137 by macrophyte constituted 5% from its stock in the whole lake water mass

  6. Monitoring Start of Season in Alaska

    Science.gov (United States)

    Robin, J.; Dubayah, R.; Sparrow, E.; Levine, E.

    2006-12-01

    In biomes that have distinct winter seasons, start of spring phenological events, specifically timing of budburst and green-up of leaves, coincides with transpiration. Seasons leave annual signatures that reflect the dynamic nature of the hydrologic cycle and link the different spheres of the Earth system. This paper evaluates whether continuity between AVHRR and MODIS normalized difference vegetation index (NDVI) is achievable for monitoring land surface phenology, specifically start of season (SOS), in Alaska. Additionally, two thresholds, one based on NDVI and the other on accumulated growing degree-days (GDD), are compared to determine which most accurately predicts SOS for Fairbanks. Ratio of maximum greenness at SOS was computed from biweekly AVHRR and MODIS composites for 2001 through 2004 for Anchorage and Fairbanks regions. SOS dates were determined from annual green-up observations made by GLOBE students. Results showed that different processing as well as spectral characteristics of each sensor restrict continuity between the two datasets. MODIS values were consistently higher and had less inter-annual variability during the height of the growing season than corresponding AVHRR values. Furthermore, a threshold of 131-175 accumulated GDD was a better predictor of SOS for Fairbanks than a NDVI threshold applied to AVHRR and MODIS datasets. The NDVI threshold was developed from biweekly AVHRR composites from 1982 through 2004 and corresponding annual green-up observations at University of Alaska-Fairbanks (UAF). The GDD threshold was developed from 20+ years of historic daily mean air temperature data and the same green-up observations. SOS dates computed with the GDD threshold most closely resembled actual green-up dates observed by GLOBE students and UAF researchers. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska.

  7. Distribution and seasonal abundance of large cetaceans in the ...

    African Journals Online (AJOL)

    Killer whale Orcinus orca presence was coincident with that of offshore minke whales and the southward migrations of other baleen whales, whereas densities of animals deemed as bottlenose whale Hyperoodon planifrons suggest strong early and late summer seasonal abundance in the offshore region. Such extensive ...

  8. A modelling study of the seasonal snowpack energy balance at three sites along the Andes Cordillera. Regional climate and local effects.

    Science.gov (United States)

    McPhee, James; Mengual, Sebastian; MacDonell, Shelley

    2017-04-01

    Seasonal snowpack melt constitutes the main water source for large portions of extratropical South America, including central Chile and Western Argentina. The properties and distribution of snow in the Andes are threatened by rapid climate change, characterised by warming and drying. This study provides a first attempt at detailed description of the energy balance of the seasonal snowpack and its variability along a latitudinal gradient, which is also correlated with an elevation and precipitation gradient, in the Andes Cordillera. The Snowpack model was validated at semi-arid, Mediterranean and temperate humid sites, where meteorological and snowpack properties have been observed since year 2013. Site elevations decrease from north to south, whereas precipitation climatology increases with latitude. Results show that turbulent energy exchange becomes relatively more important in periods of low snow accumulation, with sensible heat fluxes having a greater effect in cooling the snowpack at the high-altitude, low latitude site. Likewise, daily melt-freeze cycles are important in maintaining positive cold contents throughout the accumulation season at this site, and contribute to extending the duration of snow cover despite low accumulation and high radiation loads. In contrast, the southernmost, lowest elevation site shows smaller daily temperature amplitude and a much more preponderant radiation component to the energy balance. This modelling exercise highlights the nonlinearities of snow dynamics at different geographical settings in a sparsely monitored mountain area of the world, as well as the need for further understanding in order to evaluate the sensitivity of snow-dominated watersheds to global warming and climate change.

  9. Season-to-Season Variations of Physiological Fitness Within a Squad of Professional Male Soccer Players

    Science.gov (United States)

    Clark, Niall A.; Edwards, Andrew M.; Morton, R. Hugh; Butterly, Ronald J.

    2008-01-01

    The purpose of this study was to examine season-to-season variations in physiological fitness parameters among a 1st team squad of professional adult male soccer players for the confirmatory purposes of identifying normative responses (immediately prior to pre-season training (PPS), mid-season (MID), and end-of-season (EOS)). Test-retest data were collected from a student population on the primary dependent variables of anaerobic threshold (AT) and maximal aerobic power (VO2 max) to define meaningful measurement change in excess of test-retest technical error between test-to-test performances. Participants from a pool of 42 professional soccer players were tested over a set sequence of tests during the 3-year period: 1) basic anthropometry, 2) countermovement jump (CMJ) tests 3) a combined AT and VO2 max test. Over the 3-year period there were no test-to-test changes in mean VO2 max performance exceeding pre-defined limits of test agreement (mean of eight measures: 61.6 ± 0.6 ml·kg-1·min-1). In contrast, VO2 at AT was significantly higher at the MID test occasion in seasons 2 (+4.8%; p = 0.04, p elite cohort between test-to-test occasions, VO2 max values did not vary significantly over the study which supports previous short-term observations suggesting a general ‘elite’ threshold of 60 ml·kg-1 min. Interestingly, AT significantly varied where VO2 max was stable and these variations also coincided with on- and off-seasons suggesting that AT is a better indication of acute training state than VO2 max. Key points Maximal aerobic power remains fairly stable across inter- and intra-season measurements. Anaerobic threshold appears more sensitive of training state confirming our earlier observations. The professional players tended to attain optimal performances at the mid-season interval over the 3 seasons, presumably prior to the development of accumulative fatigue. PMID:24150149

  10. Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming

    Science.gov (United States)

    Fedy, Bradley C.; Doherty, Kevin E.; Aldridge, Cameron L.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Gummer, David; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Pratt, Aaron C.; Swanson, Christopher C.; Walker, Brett L.

    2014-01-01

    Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever-increasing extents because of the appreciation for the role of landscape-scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large-scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) occur in western semi-arid landscapes in North America. Range-wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage-grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high-quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage-grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage-grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred

  11. Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dawei, E-mail: dwxue@hznu.edu.cn [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Jiang, Hua [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou 310021 (China); Deng, Xiangxiong; Zhang, Xiaoqin [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Wang, Hua [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou 310021 (China); Xu, Xiangbin [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Hu, Jiang; Zeng, Dali [State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Guo, Longbiao, E-mail: guolongbiao@caas.cn [State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Qian, Qian, E-mail: qianqian188@hotmail.com [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China)

    2014-09-15

    Graphical abstract: - Highlights: • Cd is the most toxic heavy metal and is a major pollutant in rice grains. • The mechanism of Cd accumulation in rice grains has not been well demonstrated. • Proteomics analysis is carried out and the verification is implemented by QPCR. • Proteins associated with ROS and photosynthesis showed large variation in expression. - Abstract: Rice is one of the most important staple crops. During the growth season, rice plants are inevitably subjected to numerous stresses, among which heavy metal stress represented by cadmium contamination not only hindering the yield of rice but also affecting the food safety by Cd accumulating in rice grains. The mechanism of Cd accumulation in rice grains has not been well elucidated. In this study, we compare the proteomic difference between two genotypes with different Cd accumulation ability in grains. Verification of differentially expressed protein-encoding genes was analyzing by quantitative PCR (QPCR) and reanalysis of microarray expression data. Forty-seven proteins in total were successfully identified through proteomic screening. GO and KEGG enrichment analysis showed Cd accumulation triggered stress-related pathways in the cells, and strongly affecting metabolic pathways. Many proteins associated with nutrient reservoir and starch-related enzyme were identified in this study suggesting that a considerably damage on grain quality was caused. The results also implied stress response was initiated by the abnormal cells and the transmission of signals may mediated by reactive oxygen species (ROS). Our research will provide new insights into Cd accumulation in rice grain under Cd stress.

  12. Seasonal Snowpack Dynamics and Runoff in a Maritime Forested Basin, Niigata, Japan

    Science.gov (United States)

    Whitaker, A. C.; Sugiyama, H.

    2005-12-01

    Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff is given through three complete winter seasons 2002-05 in: (1) mature cedar stand, (2) larch stand, and (3) regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter base-flow, mid-winter melt, rain-on-snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterised by constant ground melt of 0.8-1.0 mm/day. Rapid response to mid-winter melt or rainfall shows that the snowpack remains in a ripe or near-ripe condition throughout the snowcover season. Hourly and daily lysimeter discharge was greatest during rain-on-snow with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain-on-snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4.0 times greater in the opening compared to the mature cedar, and 48-hour discharge was up to 2.5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models.

  13. Seasonal timing in a warming world : plasticity of seasonal timing of growth and reproduction

    OpenAIRE

    Salis, L.

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the study of seasonal timing in the food chain of the oak-winter moth-great tit. As temperature increased over the last decades, both phenologies of the host plant, the oak, and the herbivorous insect, t...

  14. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Ortiz, G.

    2009-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and artificial recharge to the underlying Navajo Sandstone. The total volume of estimated artificial recharge between 2002 and 2007 is 85 million cubic meters (69,000 acre-feet). Since 2002, artificial recharge rates have generally been declining and are inversely correlated with the increasing surface area of the reservoir. Permeability testing of core samples retrieved from beneath the reservoir indicates that this decline may not be due to silt accumulation. Artificial recharge rates also show much seasonal variability. Calculations of apparent intrinsic permeability show that these variations can only partly be explained by variation in water viscosity associated with seasonal changes in water temperature. Sporadic seasonal trends in recharge rates and intrinsic permeability during 2002-2004 could be associated with the large fluctuations in reservoir elevation and wetted area. From 2005 through 2007, the reservoir was mostly full and there has been a more consistent seasonal pattern of minimum recharge rates during the summer and maximum rates during the autumn. Total dissolved-gas pressure measurements indicate the presence of biogenic gas bubbles in the shallow sediments beneath the shallower parts of Sand Hollow Reservoir when the water is warmer. Permeability reduction associated with this gas clogging may contribute to the decrease in artificial recharge rates during the spring and summer, with a subsequently increasing recharge rates in the autumn associated with a decline in volume of gas bubbles. Other possible causes for seasonal variation in artificial recharge rates require further investigation.

  15. Growth and dry matter accumulation in drought resistant maize ( Zea ...

    African Journals Online (AJOL)

    growth, dry matter accumulation and yield characters of maize planted under the same environmental conditions. The trial was conducted during the 2010 wet season at Bagauda the Kano University of Technology (KUST) temporary research farm (11° 39° N, 08° 20° E).The treatments consisted of three sowing dates ...

  16. Temporal and spatial variation in Hg accumulation in zebra mussels (Dreissena polymorpha): possible influences of DOC and diet.

    Science.gov (United States)

    Kraemer, Lisa D; Evans, Douglas; Dillon, Peter J

    2013-05-01

    Zebra mussels (Dreissena polymorpha) are filter feeders located near the base of the foodweb and these animals are able to utilize a variety of carbon sources that may also vary seasonally. We conducted both a spatial and a temporal study in order to test the hypotheses: (1) dissolved organic carbon (DOC) concentrations influence Hg accumulation in zebra mussels sampled from a series of lakes and (2) seasonal variations in diet influence Hg accumulation. In the spatial study, we found a significant negative relationship between Hg concentrations and DOC concentrations, suggesting an influence of DOC on Hg bioaccumulation. In the temporal study, we used stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) as ecological tools to provide a temporally integrated description of the feeding ecology of zebra mussels. Both δ(15)N and δ(13)C varied seasonally in a similar manner: more depleted values occurred in the summer and more enriched values occurred in the fall. Mercury concentrations also varied significantly over the year, with highest concentrations occurring in the summer, followed by a progressive decrease in concentrations into the fall. The C/N ratio of zebra mussels also varied significantly over the year with the lowest values occurring mid-summer and then values increased in the fall and winter, suggesting that there was significant variation in lipid stores. These results indicate that in addition to any effect of seasonal dietary changes, seasonal variation in energy stores also appeared to be related to Hg levels in the zebra mussels. Collectively results from this study suggest that DOC concentrations, seasonal variation in diet and seasonal depletion of energy stores are all important variables to consider when understanding Hg accumulation in zebra mussels. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Machado, W.; Moscatelli, M.; Rezende, L.G.; Lacerda, L.D

    2002-12-01

    Mangrove sediments may prevent movement of metals to adjacent bodies of water. - The accumulation of Hg, Zn, and Cu was evaluated in mangrove sediments located between a large, 20-years-old landfill and waters of Guanabara Bay (southeast Brazil). The contamination history of the area provides substantial evidence that metal accumulation in the study site is influenced by past metal emissions from multiple sources (e.g. contaminated rivers and the landfill surrounding the site). At the southern part of the site, metal levels are up to 890 ng g{sup -1} Hg, 850 {mu}g g{sup -1} Zn, and 58 {mu}g g{sup -1} Cu. Enrichment factors and excess (background-deducted) concentration inventories show a high spatial variability of metal contamination and storage in the site, with differences often by a factor higher than two within a sampling station and higher than five between sampling stations. These contrasts are attributable to a coupling between spatial variability of anthropogenic metal input and metal behavior and retention within the sediments. Results indicate that during the last few decades mangrove sediments retained a substantial part of metal emissions to the site, probably reducing the metal transport to Guanabara Bay waters, and suggest the suitability of mangrove ecosystems as physical and biogeochemical barriers to metal contaminant transport.

  18. Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil

    International Nuclear Information System (INIS)

    Machado, W.; Moscatelli, M.; Rezende, L.G.; Lacerda, L.D.

    2002-01-01

    Mangrove sediments may prevent movement of metals to adjacent bodies of water. - The accumulation of Hg, Zn, and Cu was evaluated in mangrove sediments located between a large, 20-years-old landfill and waters of Guanabara Bay (southeast Brazil). The contamination history of the area provides substantial evidence that metal accumulation in the study site is influenced by past metal emissions from multiple sources (e.g. contaminated rivers and the landfill surrounding the site). At the southern part of the site, metal levels are up to 890 ng g -1 Hg, 850 μg g -1 Zn, and 58 μg g -1 Cu. Enrichment factors and excess (background-deducted) concentration inventories show a high spatial variability of metal contamination and storage in the site, with differences often by a factor higher than two within a sampling station and higher than five between sampling stations. These contrasts are attributable to a coupling between spatial variability of anthropogenic metal input and metal behavior and retention within the sediments. Results indicate that during the last few decades mangrove sediments retained a substantial part of metal emissions to the site, probably reducing the metal transport to Guanabara Bay waters, and suggest the suitability of mangrove ecosystems as physical and biogeochemical barriers to metal contaminant transport

  19. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  20. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  1. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available This study examined the water quality of the large young tropical Bakun hydroelectric reservoir in Sarawak, Malaysia, and the influence of the outflow on the downstream river during wet and dry seasons. Water quality was determined at five stations in the reservoir at three different depths and one downstream station. The results show that seasons impacted the water quality of the Bakun Reservoir, particularly in the deeper water column. Significantly lower turbidity, SRP, and TP were found during the wet season. At 3–6 m, the oxygen content fell below 5 mg/L and hypoxia was also recorded. Low NO2--N, NO3--N, and SRP and high BOD5, OKN, and TP were observed in the reservoir indicating organic pollution. Active logging activities and the dam construction upstream resulted in water quality deterioration. The outflow decreased the temperature, DO, and pH and increased the turbidity and TSS downstream. Elevated organic matter and nutrients downstream are attributable to domestic discharge along the river. This study shows that the downstream river was affected by the discharge through the turbines, the spillway operations, and domestic waste. Therefore, all these factors should be taken into consideration in the downstream river management for the health of the aquatic organisms.

  2. Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    Directory of Open Access Journals (Sweden)

    Junjie Ren

    2013-01-01

    Full Text Available Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9 occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF and the Guanxian-Jiangyou fault (GJF. However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS and Interferometric Synthetic Aperture Radar (InSAR data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3 × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  3. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    Science.gov (United States)

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 10¹⁷ N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  4. Episodes of large exchange rate appreciations and reserves accumulations in selected Asian economies: Is fear of appreciations justified?

    OpenAIRE

    Victor Pontines; Reza Siregar

    2012-01-01

    The objective of our paper is to provide an empirical platform to the debate on the macroeconomic consequences of large currency appreciations. Observing the experiences of six major Asian economies (the ASEAN-5 (Indonesia, Malaysia, Philippines, Thailand and Singapore) and Korea) during the past two decades, the primary aim of this study is to ascertain the consequences of strong currencies, on the one hand, and reserves accumulation, on the other, for a set of vital macroeconomic indicators...

  5. Improving seasonal forecasts of hydroclimatic variables through the state of multiple large-scale climate signals

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Block, P. J.

    2017-12-01

    Increasingly uncertain hydrologic regimes combined with more frequent and intense extreme events are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. Despite modern forecasts are skillful over short lead time (from hours to days), predictability generally tends to decrease on longer lead times. Global climate teleconnection, such as El Niño Southern Oscillation (ENSO), may contribute in extending forecast lead times. However, ENSO teleconnection is well defined in some locations, such as Western USA and Australia, while there is no consensus on how it can be detected and used in other regions, particularly in Europe, Africa, and Asia. In this work, we generalize the Niño Index Phase Analysis (NIPA) framework by contributing the Multi Variate Niño Index Phase Analysis (MV-NIPA), which allows capturing the state of multiple large-scale climate signals (i.e. ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Indian Ocean Dipole) to forecast hydroclimatic variables on a seasonal time scale. Specifically, our approach distinguishes the different phases of the considered climate signals and, for each phase, identifies relevant anomalies in Sea Surface Temperature (SST) that influence the local hydrologic conditions. The potential of the MV-NIPA framework is demonstrated through an application to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Numerical results show high correlations between seasonal SST values and one season-ahead precipitation in the Lake Como basin. The skill of the resulting MV-NIPA forecast outperforms the one of ECMWF products. This information represents a valuable contribution to partially anticipate the summer water availability, especially during drought events, ultimately supporting the improvement of the Lake Como

  6. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China.

    Science.gov (United States)

    Li, J; Zhang, G; Li, X D; Qi, S H; Liu, G Q; Peng, X Z

    2006-02-15

    Mega-cities are large sources of air pollution on a regional base. Differences in energy structures, geographical settings and regional climate features lead to a large variety of air pollution sources from place to place. To understand the seasonality of air pollution sources is critical to precise emission inventories and a sound protection of human health. Based on a year-round dataset, the sources of PAHs in the air of Guangzhou were drawn by principal factor analysis (PCA) in combination with diagnostic ratios, and the seasonality of these sources were analyzed by PCA/MLR (multiple linear regressions) and discussed. The average total gaseous and particulate PAHs concentrations were 313 and 23.7 ng m(-3), respectively, with a higher concentration of vapor PAHs in summer and particulate PAHs in winter. In addition to vehicle exhaust, which contributed 69% of the particulate PAHs, coal combustion was still an important source and contributed 31% of the particulate PAHs. Relatively constant contribution from coal combustion was found through the year, implying that coal combustion in power plants was not a seasonally dependent source. Evaporation from contaminated ground may be an important source of light PAHs in summer, providing an average contribution of 68% to the total PAHs in this study. By comparing the PAH concentrations and meteorological parameters, we found that higher concentrations of particulate PAHs in winter resulted from enhanced vehicle exhaust under low temperature and accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. It is suggested that the typical subtropical monsoon climate in South China, cool and dry in winter, hot and humid in summer, may play a key role in controlling the source seasonality (by enhancing vehicle exhaust in winter, ground evaporation in summer), and hence the ambient concentrations of PAHs in the air.

  7. A Large Accumulation of Avian Eggs from the Late Cretaceous of Patagonia (Argentina) Reveals a Novel Nesting Strategy in Mesozoic Birds

    Science.gov (United States)

    Fernández, Mariela S.; García, Rodolfo A.; Fiorelli, Lucas; Scolaro, Alejandro; Salvador, Rodrigo B.; Cotaro, Carlos N.; Kaiser, Gary W.; Dyke, Gareth J.

    2013-01-01

    We report the first evidence for a nesting colony of Mesozoic birds on Gondwana: a fossil accumulation in Late Cretaceous rocks mapped and collected from within the campus of the National University of Comahue, Neuquén City, Patagonia (Argentina). Here, Cretaceous ornithothoracine birds, almost certainly Enanthiornithes, nested in an arid, shallow basinal environment among sand dunes close to an ephemeral water-course. We mapped and collected 65 complete, near-complete, and broken eggs across an area of more than 55 m2. These eggs were laid either singly, or occasionally in pairs, onto a sandy substrate. All eggs were found apparently in, or close to, their original nest site; they all occur within the same bedding plane and may represent the product of a single nesting season or a short series of nesting attempts. Although there is no evidence for nesting structures, all but one of the Comahue eggs were half-buried upright in the sand with their pointed end downwards, a position that would have exposed the pole containing the air cell and precluded egg turning. This egg position is not seen in living birds, with the exception of the basal galliform megapodes who place their eggs within mounds of vegetation or burrows. This accumulation reveals a novel nesting behaviour in Mesozoic Aves that was perhaps shared with the non-avian and phylogenetically more basal troodontid theropods. PMID:23613776

  8. A large accumulation of avian eggs from the late cretaceous of patagonia (Argentina) reveals a novel nesting strategy in mesozoic birds.

    Science.gov (United States)

    Fernández, Mariela S; García, Rodolfo A; Fiorelli, Lucas; Scolaro, Alejandro; Salvador, Rodrigo B; Cotaro, Carlos N; Kaiser, Gary W; Dyke, Gareth J

    2013-01-01

    We report the first evidence for a nesting colony of mesozoic birds on Gondwana: a fossil accumulation in Late Cretaceous rocks mapped and collected from within the campus of the National University of Comahue, Neuquén City, Patagonia (Argentina). Here, Cretaceous ornithothoracine birds, almost certainly Enanthiornithes, nested in an arid, shallow basinal environment among sand dunes close to an ephemeral water-course. We mapped and collected 65 complete, near-complete, and broken eggs across an area of more than 55 m(2). These eggs were laid either singly, or occasionally in pairs, onto a sandy substrate. All eggs were found apparently in, or close to, their original nest site; they all occur within the same bedding plane and may represent the product of a single nesting season or a short series of nesting attempts. Although there is no evidence for nesting structures, all but one of the Comahue eggs were half-buried upright in the sand with their pointed end downwards, a position that would have exposed the pole containing the air cell and precluded egg turning. This egg position is not seen in living birds, with the exception of the basal galliform megapodes who place their eggs within mounds of vegetation or burrows. This accumulation reveals a novel nesting behaviour in Mesozoic Aves that was perhaps shared with the non-avian and phylogenetically more basal troodontid theropods.

  9. Prediction uncertainty in seasonal partial duration series

    DEFF Research Database (Denmark)

    Rasmussen, Peter Funder; Rosbjerg, Dan

    1991-01-01

    In order to obtain a good description of the exceedances in a partial duration series it is often necessary to divide the year into a number (2-4) of seasons. Hereby a stationary exceedance distribution can be maintained within each season. This type of seasonal models may, however, not be suitable...... for prediction purposes due to the large number of parameters required. In the particular case with exponentially distributed exceedances and Poissonian occurrence times the precision of the T year event estimator has been thoroughly examined considering both seasonal and nonseasonal models. The two......-seasonal probability density function of the T year event estimator has been deduced and used in the assessment of the precision of approximate moments. The nonseasonal approach covered both a total omission of seasonality by pooling data from different flood seasons and a discarding of nonsignificant season(s) before...

  10. Seasonal Variations in Color Preference.

    Science.gov (United States)

    Schloss, Karen B; Nelson, Rolf; Parker, Laura; Heck, Isobel A; Palmer, Stephen E

    2017-08-01

    We investigated how color preferences vary according to season and whether those changes could be explained by the ecological valence theory (EVT). To do so, we assessed the same participants' preferences for the same colors during fall, winter, spring, and summer in the northeastern United States, where there are large seasonal changes in environmental colors. Seasonal differences were most pronounced between fall and the other three seasons. Participants liked fall-associated dark-warm colors-for example, dark-red, dark-orange (brown), dark-yellow (olive), and dark-chartreuse-more during fall than other seasons. The EVT could explain these changes with a modified version of Palmer and Schloss' (2010) weighted affective valence estimate (WAVE) procedure that added an activation term to the WAVE equation. The results indicate that color preferences change according to season, as color-associated objects become more/less activated in the observer. These seasonal changes in color preferences could not be characterized by overall shifts in weights along cone-contrast axes. Copyright © 2016 Cognitive Science Society, Inc.

  11. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  12. Shifts in Summertime Precipitation Accumulation Distributions over the US

    Science.gov (United States)

    Martinez-Villalobos, C.; Neelin, J. D.

    2017-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation

  13. Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season.

    Science.gov (United States)

    Ito, Akiko; Sugiura, Toshihiko; Sakamoto, Daisuke; Moriguchi, Takaya

    2013-04-01

    In order to elucidate which physiological event(s) are involved in the seasonal changes of carbohydrate dynamics during winter, we examined the effects of different low temperatures on the carbohydrate concentrations of Japanese pear (Pyrus pyrifolia (Burm.) Nakai). For four winter seasons, large increases in the sorbitol concentration of shoot xylem sap occurred during mid- to late December, possibly due to the endodormancy completion and low-temperature responses. When trees were kept at 15 °C from 3 November to 3 December in order to postpone the initiation and completion of chilling accumulation that would break endodormancy, sorbitol accumulation in xylem sap was always higher from trees with sufficient chilling accumulation than from trees that received insufficient chilling. However, an additional increase in xylem sap sorbitol occurred around late December in trees regardless of whether their chilling accumulation naturally progressed or was postponed. To examine different temperature effects more closely, we compared the carbohydrate concentrations of trees subjected to either 6 or 0 °C treatment. The sorbitol concentration in xylem sap tremendously increased at 0 °C treatment compared with 6 °C treatment. However, an additional increase in xylem sap sorbitol occurred at both the temperatures when sufficient chilling accumulated with a peak coinciding with the peak expression in shoots of the sorbitol transporter gene (PpSOT2). Interestingly, the total carbohydrate concentration of shoots tremendously increased with exposure to 0 °C compared with exposure to 6 °C, but was not affected by the amount of accumulated chilling. Instead, as chilling accumulated the ratio of sorbitol to total soluble sugars in shoots increased. We presumed that carbohydrates in the shoot tissues may be converted to sorbitol and loaded into the xylem sap so that the sorbitol accumulation patterns were synchronized with the progression of dormancy, whereas the total

  14. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  15. Seasonality of community structure and carbon flow in Narragansett Bay sediments

    International Nuclear Information System (INIS)

    Rudnick, D.T.

    1984-01-01

    Seasonal patterns of benthic community dynamics and the pathways of detrital decomposition in Narragansett Bay were examined. Benthic meiofauna and macrofauna exhibited a pronounced seasonality, with peak abundances in the late spring and minima in the late summer. This pattern was most pronounced for surface dwelling fauna, particularly harpacticoid copepods. These results were attributed to the seasonality of detrital inputs to the sediment and the fate of these inputs. A six month study in which 14 C-sodium bicarbonate was added to a large (13 m 3 ) microcosm enabled the author to observe pathways of carbon flow. Half of the labeled organic carbon that was deposited on the sediment during the winter and spring was found in the sediment in July. At least 20 gC/m 2 had accumulated since December. Within the sediment, the existence of two discrete food webs was distinguished by measurement of faunal specific activity. Surface fauna, dominated by the meiofauna, exclusively assimilate fresh (labeled) organics, while subsurface fauna (meiofauna and macrofauna) predominantly assimilated older, non-labeled organics for the duration of the study. Only the subsurface food web had access to the storage of buried detritus. While there was a surplus of detritus for both food webs during the winter and spring, the authors expect that benthic respiration rates exceed organic deposition rates during the summer. Detrital storage may be critical for the survival of the fauna through the summer

  16. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    Science.gov (United States)

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  17. Sediment dynamics in a large shallow lake characterized by seasonal flood pulse in Southeast Asia.

    Science.gov (United States)

    Siev, Sokly; Yang, Heejun; Sok, Ty; Uk, Sovannara; Song, Layheang; Kodikara, Dilini; Oeurng, Chantha; Hul, Seingheng; Yoshimura, Chihiro

    2018-08-01

    Most of studies on sediment dynamics in stable shallow lakes focused on the resuspension process as it is the dominant process. However, understanding of sediment dynamics in a shallow lake influenced by flood pulse is unclear. We tested a hypothesis that floodplain vegetation plays as a significant role in lessening the intensity of resuspension process in a shallow lake characterized by the flood pulse system. Therefore, this study aimed to investigate sediment dynamics in this type of shallow lake. The target was Tonle Sap Lake (TSL), which is a large shallow lake influenced by a flood pulse system of Mekong River located in Southeast Asia. An extensive and seasonal sampling survey was conducted to measure total suspended solid (TSS) concentrations, sedimentation and resuspension rates in TSL and its 4 floodplain areas. The study revealed that sedimentation process was dominant (TSS ranged: 3-126mgL -1 ) in the high water period (September-December) while resuspension process was dominant (TSS ranged: 4-652mgL -1 ) only in the low water period (March-June). In addition, floodplain vegetation reduced the resuspension of sediment (up to 26.3%) in water. The implication of the study showed that resuspension is a seasonally dominant process in shallow lake influenced by the flood pulse system at least for the case of TSL. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Selenium accumulation by plants.

    Science.gov (United States)

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops

  19. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States

    Science.gov (United States)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.

    2002-11-01

    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  20. The Effect of Agricultural Growing Season Change on Market Prices in Africa

    Science.gov (United States)

    deBeurs, K.M.; Brown, M. E.

    2013-01-01

    to plan effective adaptation strategies. Remote sensing data can also provide some understanding of the spatial extent of these changes and whether they are likely to continue. Given the agricultural nature of most economies on the African continent, agricultural production continues to be a critical determinant of both food security and economic growth (Funk and Brown, 2009). Crop phenological parameters, such as the start and end of the growing season, the total length of the growing season, and the rate of greening and senescence are important for planning crop management, crop diversification, and intensification. The World Food Summit of 1996 defined food security as: "when all people at all times have access to sufficient, safe, nutritious food to maintain a healthy and active life". Food security roughly depends on three factors: 1) availability of food; 2) access to food and 3) appropriate use of food, as well as adequate water and sanitation. The first factor is dependent on growing conditions and weather and climate. In a previous paper we have investigated this factor by evaluating the effect of large scale climate oscillation on land surface phenology (Brown et al., 2010). We found that all areas in Africa are significantly affected by at least one type of large scale climate oscillations and concluded that these somewhat predictable oscillations could perhaps be used to forecast agricultural production. In addition, we have evaluated changes in agricultural land surface phenology over time (Brown et al., 2012). We found that land surface phenology models, which link large-scale vegetation indices with accumulated humidity, could successfully predict agricultural productivity in several countries around the world. In this chapter we are interested in the effect of variability in peak timing of the growing season, or phenology, on the second factor of food security, food access. In this chapter we want to determine if there is a link between market prices

  1. Influence of seasonality and exposure on the accumulation and reproductive effects of p,p'-dichlorodiphenyldichloroethane and dieldrin in largemouth bass.

    Science.gov (United States)

    Johnson, Kevin G; Muller, Jennifer K; Price, Bertram; Ware, Adam; Sepúlveda, María S; Borgert, Christopher J; Gross, Timothy S

    2007-05-01

    Two studies investigated the accumulation and reproductive effects of p,p'-dichlorodiphenyldichloroethane (DDE) and dieldrin over 30 or 120 d of oral exposure in captive Florida, USA, largemouth bass (Micropterus salmoides floridanus). The 30-d exposures were conducted during the peak reproductive season, and the 120-d study was conducted to simulate exposure throughout the ovarian cycle. Whole body chemical residue concentrations were similar, regardless of exposure duration, for the medium and high feed concentrations of either chemical; however, the low-dose residue concentrations were much lower, yet similar to natural exposures. No clear dose-response relationships were identified between chemical dose and morphological (length, weight, hepatosomatic index) or reproductive endpoints (sex steroid concentration, gonadosomatic index, percentage of fry hatching). Reproductive parameters were variable within treatment groups, indicating that circulating sex steroids and percent hatch endpoints have high natural variability among fish of the same age and reproductive stage. However, in general there was a decrease in plasma estradiol and 11-ketotestosterone for female and male fish, respectively, that were exposed to dieldrin. Overall, results suggest that exposure throughout ovarian (follicular) development to either DDE or dieldrin alone does not result in the depressed endocrine status and poor reproductive success reported in highly organochlorine pesticide-contaminated environments in Central Florida, USA.

  2. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C K; Henebry, G M [Geographic Information Science Center of Excellence (GIScCE), South Dakota State University, Brookings, SD (United States); De Beurs, K M [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States); Akhmadieva, Z K [Kazakhstan Scientific Research Institute of Ecology and Climate, Ministry of Environment Protection of the Republic of Kazakhstan, Astana (Kazakhstan); Groisman, P Y, E-mail: Geoffrey.Henebry@sdstate.ed [National Climatic Data Center, University Corporation for Atmospheric Research, Asheville, NC (United States)

    2009-10-15

    We present time series analyses of recently compiled climate station data which allowed us to assess contemporary trends in growing season weather across Kazakhstan as drivers of a significant decline in growing season normalized difference vegetation index (NDVI) recently observed by satellite remote sensing across much of Central Asia. We used a robust nonparametric time series analysis method, the seasonal Kendall trend test to analyze georeferenced time series of accumulated growing season precipitation (APPT) and accumulated growing degree-days (AGDD). Over the period 2000-2006 we found geographically extensive, statistically significant (p<0.05) decreasing trends in APPT and increasing trends in AGDD. The temperature trends were especially apparent during the warm season and coincided with precipitation decreases in northwest Kazakhstan, indicating that pervasive drought conditions and higher temperature excursions were the likely drivers of NDVI declines observed in Kazakhstan over the same period. We also compared the APPT and AGDD trends at individual stations with results from trend analysis of gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis v4 and gridded daily near surface air temperature from the National Centers for Climate Prediction Reanalysis v2 (NCEP R2). We found substantial deviation between the station and the reanalysis trends, suggesting that GPCC and NCEP data substantially underestimate the geographic extent of recent drought in Kazakhstan. Although gridded climate products offer many advantages in ease of use and complete coverage, our findings for Kazakhstan should serve as a caveat against uncritical use of GPCC and NCEP reanalysis data and demonstrate the importance of compiling and standardizing daily climate data from data-sparse regions like Central Asia.

  3. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan

    International Nuclear Information System (INIS)

    Wright, C K; Henebry, G M; De Beurs, K M; Akhmadieva, Z K; Groisman, P Y

    2009-01-01

    We present time series analyses of recently compiled climate station data which allowed us to assess contemporary trends in growing season weather across Kazakhstan as drivers of a significant decline in growing season normalized difference vegetation index (NDVI) recently observed by satellite remote sensing across much of Central Asia. We used a robust nonparametric time series analysis method, the seasonal Kendall trend test to analyze georeferenced time series of accumulated growing season precipitation (APPT) and accumulated growing degree-days (AGDD). Over the period 2000-2006 we found geographically extensive, statistically significant (p<0.05) decreasing trends in APPT and increasing trends in AGDD. The temperature trends were especially apparent during the warm season and coincided with precipitation decreases in northwest Kazakhstan, indicating that pervasive drought conditions and higher temperature excursions were the likely drivers of NDVI declines observed in Kazakhstan over the same period. We also compared the APPT and AGDD trends at individual stations with results from trend analysis of gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis v4 and gridded daily near surface air temperature from the National Centers for Climate Prediction Reanalysis v2 (NCEP R2). We found substantial deviation between the station and the reanalysis trends, suggesting that GPCC and NCEP data substantially underestimate the geographic extent of recent drought in Kazakhstan. Although gridded climate products offer many advantages in ease of use and complete coverage, our findings for Kazakhstan should serve as a caveat against uncritical use of GPCC and NCEP reanalysis data and demonstrate the importance of compiling and standardizing daily climate data from data-sparse regions like Central Asia.

  4. Radon in houses utilizing stone magazines for heat accumulation

    International Nuclear Information System (INIS)

    Stranden, E.

    1981-01-01

    Measurements of 222 Rn and its daughters in three solar energy houses utilizing stone magazines for heat accumulation are reported. Theoretical calculations of the radon contribution from the stone magazines seem to be in good agreement with the measured values. The survey indicated that this method for heat accumulation could give a significant increase in the indoor radon concentration if the radium concentration of the stone material is high. The theoretical considerations suggest that a radium concentration of 1 pCi/g of the stone material could give an increment of the radon concentration in the indoor air of about 1 pCi/l. during the heating season in a house with air volume of 250 m 3 and a 10 5 -kg stone magazine. (author)

  5. Seasonal growth and translocation of some major and trace elements in two Mediterranean grasses (Stipa tenacissima Loefl. ex L. and Lygeum spartum Loefl. ex L.)

    Science.gov (United States)

    Nedjimi, Bouzid

    2018-05-01

    The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.

  6. SOME FEATURES OF THE POWER SUPPLY OF RESIDENTIAL BUILDINGS DURING THE HEATING SEASON

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available A large proportion of consumption of different types of energy by the residential sector, especially in the heating period, makes the energy efficiency of buildings without considering the loss of fuel with a significant reduction in hourly load on the generators, especially at night, already insufficient for real energy savings. Therefore in Belarus, in order to attract the consumer, electricity tariff for heating at night hours (from 11 p.m. to 6.00 a.m. is three times cheaper than at any other time. Significant increase of the electricity consumption of at night could be achieved by using heat accumulators for heating and hot water supply to the residential sector. Particularly effective are water accumulators of heat and accumulators of underfloor heating that enable to use a coolant with a temperature of 40 оC and to increase the useful supply of heat. The use of heat accumulators for daily heating, ventilation and hot water supply of buildings significantly reduces the cost of creating the infrastructure of the territory under construction by eliminating the necessity of running the distribution network of heat or gas supply. The use of the heat accumulators is necessary due to the increase of the time-weighted average outdoor temperature. The mentioned increase in the City of Minsk in the heating season is of about 0.1 °C per year in average, and as for the last 20 years, the increase has led to a reduction of the required heat load on the premises by about 10 %. Research and project work on choosing the most effective options for the arrangement and use the heat accumulators in buildings of the various functions ought to be fulfilled in order to make the application of heat accumulators successful. In this respect civil and power engineers as well as operators should work together so to determine the chronological, technical and economic conditions of charging and use of heat accumulators.

  7. Potential for western US seasonal snowpack prediction

    Science.gov (United States)

    Kapnick, Sarah B.; Yang, Xiaosong; Vecchi, Gabriel A.; Delworth, Thomas L.; Gudgel, Rich; Malyshev, Sergey; Milly, Paul C. D.; Shevliakova, Elena; Underwood, Seth; Margulis, Steven A.

    2018-01-01

    Western US snowpack—snow that accumulates on the ground in the mountains—plays a critical role in regional hydroclimate and water supply, with 80% of snowmelt runoff being used for agriculture. While climate projections provide estimates of snowpack loss by the end of th ecentury and weather forecasts provide predictions of weather conditions out to 2 weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), crucial for regional agricultural decisions (e.g., plant choice and quantity). Seasonal predictions with climate models first took the form of El Niño predictions 3 decades ago, with hydroclimate predictions emerging more recently. While the field has been focused on single-season predictions (3 months or less), we are now poised to advance our predictions beyond this timeframe. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate the feasibility of seasonal snowpack predictions and quantify the limits of predictive skill 8 month sin advance. This physically based dynamic system outperforms observation-based statistical predictions made on July 1 for March snowpack everywhere except the southern Sierra Nevada, a region where prediction skill is nonexistent for every predictor presently tested. Additionally, in the absence of externally forced negative trends in snowpack, narrow maritime mountain ranges with high hydroclimate variability pose a challenge for seasonal prediction in our present system; natural snowpack variability may inherently be unpredictable at this timescale. This work highlights present prediction system successes and gives cause for optimism for developing seasonal predictions for societal needs.

  8. Variations of Mercury Concentrations in American Beech Foliage over a Growing Season

    Science.gov (United States)

    Stinson, I.; Tsui, M. T. K.; Chow, A. T.

    2017-12-01

    Accumulation of atmospheric gaseous mercury (Hg) in foliage is well known, however, a small fraction of Hg always exists as highly bioavailable methylmercury (MeHg) in foliage but the source of MeHg in foliage is unknown. Recent studies suggested in-vivo Hg methylation in foliage while others suggested external inputs (e.g., precipitation) as sources of MeHg in foliage. This study assesses the accumulation of total Hg and MeHg within the foliage of a small sample set of American Beech trees, one of the common tree species in the east coast and the study site is located within the campus of University of North Carolina - Greensboro, over the growing season in 2017 (spring, summer, and fall). In addition, this study evaluates the Hg concentrations in foliage as related to other physiological parameters (e.g., stomatal density, leaf area, chlorophyll, and carbon/nitrogen content) and the changes in environmental characteristics (e.g., sunlight) over the growing season. For this investigation, five American Beech trees with varying characteristics (height, age, and location) were selected. On a biweekly basis, starting late April 2017, foliage samples were collected and composited from different positions on each tree. For the samples processed to date, our results indicate that total Hg accumulation is occurring for all five trees with an initial mean value of 5.79 ng/g, increasing to a mean value of 13.9 ng/g over a ten-week period. Coincidentally, there has been a similar increase in chlorophyll (a+b) concentrations for the foliage, and there is a strong, positive relationship between chlorophyll and total-Hg concentrations. However, we found no relationships between total Hg concentrations and stomatal density of foliage or carbon/nitrogen content. This study is still ongoing and will continue through the end of the growing season in 2017. Additionally, from the same sample sets, besides total Hg analysis and other ancillary parameters in foliage, MeHg analysis

  9. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream.

    Science.gov (United States)

    Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena

    2013-02-01

    While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    Science.gov (United States)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  11. Selenium accumulation by plants

    Science.gov (United States)

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate 100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which

  12. Mass balance re-analysis of Findelengletscher, Switzerland; benefits of extensive snow accumulation measurements

    Directory of Open Access Journals (Sweden)

    Leo eSold

    2016-02-01

    Full Text Available A re-analysis is presented here of a 10-year mass balance series at Findelengletscher, a temperate mountain glacier in Switzerland. Calculating glacier-wide mass balance from the set of glaciological point balance observations using conventional approaches, such as the profile or contour method, resulted in significant deviations from the reference value given by the geodetic mass change over a five-year period. This is attributed to the sparsity of observations at high elevations and to the inability of the evaluation schemes to adequately estimate accumulation in unmeasured areas. However, measurements of winter mass balance were available for large parts of the study period from snow probings and density pits. Complementary surveys by helicopter-borne ground-penetrating radar (GPR were conducted in three consecutive years. The complete set of seasonal observations was assimilated using a distributed mass balance model. This model-based extrapolation revealed a substantial mass loss at Findelengletscher of -0.43m w.e. a^-1 between 2004 and 2014, while the loss was less pronounced for its former tributary, Adlergletscher (-0.30m w.e. a^-1. For both glaciers, the resulting time series were within the uncertainty bounds of the geodetic mass change. We show that the model benefited strongly from the ability to integrate seasonal observations. If no winter mass balance measurements were available and snow cover was represented by a linear precipitation gradient, the geodetic mass balance was not matched. If winter balance measurements by snow probings and snow density pits were taken into account, the model performance was substantially improved but still showed a significant bias relative to the geodetic mass change. Thus the excellent agreement of the model-based extrapolation with the geodetic mass change was owed to an adequate representation of winter accumulation distribution by means of extensive GPR measurements.

  13. Accumulation of Settling Particles in Some Coral Reef Areas of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Lee, J.N.; Che Abdul Rahim Mohamed

    2011-01-01

    The aim of this study was to determine the accumulation of settling particles in coral reefs of Peninsular Malaysia. Settling particles were collected from the coral reefs of Port Dickson, Pulau Langkawi, Pulau Tioman, Pulau Redang and Pulau Tinggi from 2005 to 2008. The average total settling particles in Pulau Langkawi and Port Dickson was 49.8 mg/ cm 2 / day, while for Pulau Tioman, Pulau Redang, and Pulau Tinggi was 3.5 mg/ cm 2 / day. The results showed that accumulations rate in west coast were higher than east coast of Peninsular Malaysia. However, Pulau Tioman in the east coast received high accumulations rate of settling particles in certain times of the year due to sediment resuspension at shallow reefs caused by high energy seasonal yearly wave and monsoon. (author)

  14. A comparative study of seasonal variation of 137CS concentration in mangroves and sediment around Mumbai Harbour Bay

    International Nuclear Information System (INIS)

    Dutta, Madhuparna; Raj, Sanu S.; Jha, S.K.; Tripathi, R.M.

    2016-01-01

    Mangroves are various large and extensive types of trees up to medium height and also shrubs, which belong to the genus Rhizophora, that grow in saline coastal sediment habitats in the tropics and subtropics mainly between latitudes 25 ° N and 25° S. Mangrove ecosystems play a key role in nutrient and metal cycling. Because of their variable physical and chemical properties. Mangroves can act as a sink or a source of heavy metals in coastal environments. The level of trace metal which accumulate in mangroves differ seasonally and spatially varying with saline environment that may affect uptake and distribution of metals in the plants. Hence the estimation of 137 Cs activity in samples of mangrove and the surrounding sediment collected round the year will give us pattern of seasonal uptake. The study was carried out in Mumbai Harbour Bay (MHB), to estimate the 137 Cs activity concentration in mangrove leaves and the surrounding sediment and to compare the two

  15. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico

    Science.gov (United States)

    Verduzco, Vivian S.; Garatuza-Payán, Jaime; Yépez, Enrico A.; Watts, Christopher J.; Rodríguez, Julio C.; Robles-Morua, Agustin; Vivoni, Enrique R.

    2015-10-01

    Due to their large extent and high primary productivity, tropical dry forests (TDF) are important contributors to atmospheric carbon exchanges in subtropical and tropical regions. In northwest Mexico, a bimodal precipitation regime that includes winter precipitation derived from Pacific storms and summer precipitation from the North American monsoon (NAM) couples water availability with ecosystem processes. We investigated the net ecosystem production of a TDF ecosystem using a 4.5 year record of water and carbon fluxes obtained from the eddy covariance method complemented with remotely sensed data. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer that respiration is mainly due to decomposition of soil organic matter accumulated from the prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production but can be overwhelmed by the strength of the primary productivity during the NAM. Precipitation characteristics during NAM have significant controls on sustaining carbon fixation in the TDF into the fall season. We identified that a threshold of ~350 to 400 mm of monsoon precipitation leads to a switch in the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This monsoonal precipitation threshold is typically exceeded one out of every 2 years. The close coupling of winter and summer periods with respect to carbon fluxes suggests that the annual carbon balance is dependent on precipitation amounts in both seasons in TDF ecosystems.

  16. Feeding season duration and the relative success of capital and income spawning copepods

    DEFF Research Database (Denmark)

    Sainmont, Julie; Varpe, Øystein; Andersen, Ken Haste

    to the spring bloom, using only its reserves accumulated the previous year (capital breeder). The success of these two strategies is related to the length of the spring bloom, the only source of nutrients for these copepods. We use an individual based model to approach the question of income versus capital...... breeders in a highly seasonal environment, and find that the capital breeders have a higher fitness during short spring bloom while the income breeder has an improved performance over long productive seasons...

  17. Influence of Media on Seasonal Influenza Epidemic Curves.

    Science.gov (United States)

    Saito, Satoshi; Saito, Norihiro; Itoga, Masamichi; Ozaki, Hiromi; Kimura, Toshiyuki; Okamura, Yuji; Murakami, Hiroshi; Kayaba, Hiroyuki

    2016-09-01

    Theoretical investigations predicting the epidemic curves of seasonal influenza have been demonstrated so far; however, there is little empirical research using ever accumulated epidemic curves. The effects of vaccine coverage and information distribution on influenza epidemics were evaluated. Four indices for epidemics (i.e., onset-peak duration, onset-end duration, ratio of the onset-peak duration to onset-end duration and steepness of epidemic curves) were defined, and the correlations between these indices and anti-flu drug prescription dose, vaccine coverage, the volume of media and search trend on influenza through internet were analyzed. Epidemiological data on seasonal influenza epidemics from 2002/2003 to 2013/2014 excluding 2009/2010 season were collected from National Institute of Infectious Diseases of Japan. The onset-peak duration and its ratio to onset-end duration correlated inversely with the volume of anti-flu drug prescription. Onset-peak duration correlated positively with media information volume on influenza. The steepness of the epidemic curve, and anti-flu drug prescription dose inversely correlated with the volume of media information. Pre-epidemic search trend and media volume on influenza correlated with the vaccine coverage in the season. Vaccine coverage had no strong effect on epidemic curve. Education through media has an effect on the epidemic curve of seasonal influenza. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Charles; Gallagher, Frank J. [Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, 14 College Farm Rd., New Brunswick, NJ 08901-8551 (United States); Holzapfel, Claus, E-mail: holzapfe@andromeda.rutgers.ed [Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, 195 University Ave., Newark, NJ 07102-1811 (United States)

    2010-05-15

    The use of passerine species as bioindicators of metal bioaccumulation is often underutilized when examining the wildlife habitat value of polluted sites. In this study we tested feathers of nestlings of two common bird species (house wren and American robin) for accumulation of Pb, Zn, As, Cr, Cu, Fe in comparison of a polluted, urban brownfield with a rural, unpolluted site. House wren nestlings at the study site accumulated significantly greater concentrations of all target metals except Zn. At the polluted site we found significant species differences of metal concentrations in feathers, with house wrens accumulating greater concentrations of Pb, Fe, and Zn but slightly lesser accumulations of Cr and Cu than American robins. Although house wren nestlings demonstrated significant accumulation of metals, these concentrations showed little effect on size metrics or fledge rates during the breeding season compared to nestlings from the control site. - Nestlings of birds in an urban brownfield accumulated soil contaminants but did not show signs of reduced breeding success or growth.

  19. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site

    International Nuclear Information System (INIS)

    Hofer, Charles; Gallagher, Frank J.; Holzapfel, Claus

    2010-01-01

    The use of passerine species as bioindicators of metal bioaccumulation is often underutilized when examining the wildlife habitat value of polluted sites. In this study we tested feathers of nestlings of two common bird species (house wren and American robin) for accumulation of Pb, Zn, As, Cr, Cu, Fe in comparison of a polluted, urban brownfield with a rural, unpolluted site. House wren nestlings at the study site accumulated significantly greater concentrations of all target metals except Zn. At the polluted site we found significant species differences of metal concentrations in feathers, with house wrens accumulating greater concentrations of Pb, Fe, and Zn but slightly lesser accumulations of Cr and Cu than American robins. Although house wren nestlings demonstrated significant accumulation of metals, these concentrations showed little effect on size metrics or fledge rates during the breeding season compared to nestlings from the control site. - Nestlings of birds in an urban brownfield accumulated soil contaminants but did not show signs of reduced breeding success or growth.

  20. Linking small-scale circulation dynamics with large-scale seasonal production (phytoplankton) in the Southern Ocean

    CSIR Research Space (South Africa)

    Nicholson, S

    2012-10-01

    Full Text Available Understanding the seasonal and intra-seasonal (daily to weekly) changes of the upper ocean and the impact on the primary production in the Southern Ocean is key to better understanding the sensitivities of the global carbon cycle....

  1. Heat and cold accumulators in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauranen, P.; Wikstroem, L. (VTT Technical Research Centre of Finland, Advanced Materials, Tampere (Finland)); Heikkinen, J. (VTT Technical Research Centre of Finland, Building Services and Indoor Environment, Espoo (Finland)); Laurikko, J.; Elonen, T. (VTT Technical Research Centre of Finland, Emission Control, Espoo (Finland)); Seppaelae, A. (Helsinki Univ. of Technology, Applied Thermodynamics, Espoo (Finland)). Email: ari.seppala@tkk.fi

    2009-07-01

    Phase Change Material (PCM) based heat and cold accumulators have been tailored for transport applications including a mail delivery van as well as the cold chains of foodstuff and blood products. The PCMs can store relative large amount of thermal energy in a narrow temperature interval as latent heat of fusion of their melting and crystallization processes. Compact heat and cold accumulators can be designed using PCMs. The aim of the project has been to reduce the exhaust gas and noise emissions and improve the fuel economy of the transport systems and to improve the reliability of the cold chains studied by storing thermal energy in PCM accumulators. (orig.)

  2. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Science.gov (United States)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  3. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments.

    Science.gov (United States)

    Jumpponen, A; Jones, K L

    2010-04-01

    *The fungal richness, diversity and community composition in the Quercus macrocarpa phyllosphere were compared across a growing season in trees located in six stands within and outside a small urban center using 454-sequencing and DNA tagging. The approaches did not differentiate between endophytic and epiphytic fungal communities. *Fungi accumulated in the phyllosphere rapidly and communities were temporally dynamic, with more than a third of the analyzed operational taxonomic units (OTUs) and half of the BLAST-inferred genera showing distinct seasonal patterns. The seasonal patterns could be explained by fungal life cycles or environmental tolerances. *The communities were hyperdiverse and differed between the urban and nonurban stands, albeit not consistently across the growing season. Foliar macronutrients (nitrogen (N), potassium (K) and sulfur (S)), micronutrients (boron (B), manganese (Mn) and selenium (Se)) and trace elements (cadmium (Cd), lead (Pb) and zinc (Zn)) were enriched in the urban trees, probably as a result of anthropogenic activities. Because of correlations with the experimental layout, these chemical elements should not be considered as community drivers without further empirical studies. *We suggest that a combination of mechanisms leads to differences between urban and nonurban communities. Among those are stand isolation and size, nutrient and pollutant accumulation plus stand management, including fertilization and litter removal.

  4. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    underestimation of wet-to-dry-season droughts and snow-related droughts. Furthermore, almost no composite droughts were simulated for slowly responding areas, while many multi-year drought events were expected in these systems.

    We conclude that most drought propagation processes are reasonably well reproduced by the ensemble mean of large-scale models in contrasting catchments in Europe. Challenges, however, remain in catchments with cold and semi-arid climates and catchments with large storage in aquifers or lakes. This leads to a high uncertainty in hydrological drought simulation at large scales. Improvement of drought simulation in large-scale models should focus on a better representation of hydrological processes that are important for drought development, such as evapotranspiration, snow accumulation and melt, and especially storage. Besides the more explicit inclusion of storage in large-scale models, also parametrisation of storage processes requires attention, for example through a global-scale dataset on aquifer characteristics, improved large-scale datasets on other land characteristics (e.g. soils, land cover, and calibration/evaluation of the models against observations of storage (e.g. in snow, groundwater.

  5. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    International Nuclear Information System (INIS)

    Deram, Annabelle; Denayer, Franck-Olivier; Petit, Daniel; Van Haluwyn, Chantal

    2006-01-01

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 μg g -1 . Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass

  6. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Deram, Annabelle [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France)]. E-mail: aderam@ilis.univ-lille2.fr; Denayer, Franck-Olivier [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France); Petit, Daniel [Laboratoire de Genetique et Evolution des Populations Vegetales, UPRESA-CNRS 8016, Bat SN2, Universite des Sciences et Techniques de Lille, 59655 Villeneuve d' Ascq, F59655 France (France); Van Haluwyn, Chantal [Faculte des Sciences Pharmaceutiques et Biologiques, Departement de Botanique, Universite Droit et Sante de Lille, EA 2690, B.P. 83, 59006 Lille Cedex (France)

    2006-03-15

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 {mu}g g{sup -1}. Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass.

  7. Spatial Pattern of Soil Salinity in Area Around the Yellow River Delta and Its Seasonal Dynamics over a 3-year Period

    Science.gov (United States)

    Lai, J.; Ouyang, Z.

    2017-12-01

    Salt-affected land varies spatially and seasonally in terms of soil salinity. "Bohai Granary" is a newly proposed national-level program which was aimed to improve soil quality and mining grain production potential of the salt-affected land in east China. In this work, soil samples were monthly taken at 11 sites within Wudi county in the Yellow river delta. The spatial distribution pattern of soil salinity were investigated and its seasonal variation over 36 months were discussed. Our findings indicate that the vertical distribution type of soil salinity was bottom-accumulating in the near coastal area while its gradually turned into a type of surface-accumulating as the sampling site moving towards the inner land. The peak of the soil salinity along the soil profile alternately moved upwards and downwards during the growing seasons. However, there was no evidence for the increasing of the total salt amount within the upper 100cm of soil. Moreover, the salt was mostly accumulated in the upper soil (0-40cm) during the late spring and early summer season; and winter wheat was tend to be affected severely at this stage. Therefore, special field practices (e.g. regular irrigation to leach salt, good maintenance of drainage system) should be taken to minimize the threat of soil salinity.

  8. SEASONAL INFLUENCES ON PCB RETENTION AND BIOTRANSFORMATION IN FISH

    Science.gov (United States)

    James, Margaret O.; Kleinow, Kevin M.

    2013-01-01

    There is extensive evidence that fish from waters with PCB-contaminated sediments accumulate PCBs and related chemicals, and that people who eat fish from contaminated waters have higher body burdens of PCBs and PCB metabolites than those who do not. PCBs and their metabolites are potentially toxic, thus it is important to human health to understand the uptake, biotransformation and elimination of PCBs in fish, since these processes determine the extent of accumulation. The intestinal uptake of PCBs present in the diet of fish into fish tissues is a process that is influenced by the lipid composition of the diet. Biotransformation of PCBs in fish, as in mammals, facilitates elimination, although many PCB congeners are recalcitrant to biotransformation in fish and mammals. Sequential biotransformation of PCBs by cytochrome P450 and conjugation pathways is even less efficient in fish than in mammalian species, thus contributing to the retention of PCBs in fish tissues. A very important factor influencing overall PCB disposition in fish is water temperature. Seasonal changes in water temperature produce adaptive physiological and biochemical changes in fish. While uptake of PCBs from the diet is similar in fish acclimated to winter or summer temperatures, there is evidence that elimination of PCBs occurs much more slowly when the fish is acclimated at low temperatures than at warmer temperatures. Research to date suggests that the processes of elimination of PCBs are modulated by several factors in fish including seasonal changes in water temperature. Thus, the body burden of PCBs in fish from a contaminated location is likely to vary with season. PMID:23494683

  9. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Science.gov (United States)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16

  10. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Directory of Open Access Journals (Sweden)

    A. Joesoef

    2017-11-01

    Full Text Available Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC, total alkalinity (TA, and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3− concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11 during high discharge and low (0.94 during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2, most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3− inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2

  11. [Seasonality of rotavirus infection in Venezuela: relationship between monthly rotavirus incidence and rainfall rates].

    Science.gov (United States)

    González Chávez, Rosabel

    2015-09-01

    In general, it has been reported that rotavirus infection was detected year round in tropical countries. However, studies in Venezuela and Brazil suggest a seasonal behavior of the infection. On the other hand, some studies link infection with climatic variables such as rainfall. This study analyzes the pattern of behavior of the rotavirus infection in Carabobo-Venezuela (2001-2005), associates the seasonality of the infection with rainfall, and according to the seasonal pattern, estimates the age of greatest risk for infection. The analysis of the rotavirus temporal series and accumulated precipitation was performed with the software SPSS. The infection showed two periods: high incidence (November-April) and low incidence (May-October). Accumulated precipitation presents an opposite behavior. The highest frequency of events (73.8% 573/779) for those born in the period with a low incidence of the virus was recorded at an earlier age (mean age 6.5 +/- 2.0 months) when compared with those born in the station of high incidence (63.5% 568/870, mean age 11.7 +/- 2.2 months). Seasonality of the infection and the inverse relationship between virus incidence and rainfall was demonstrated. In addition, it was found that the period of birth determines the age and risk of infection. This information generated during the preaccine period will be helpful to measure the impact of the vaccine against the rotavirus.

  12. Seasonal contrast in the surface energy balance of the Sahel

    Science.gov (United States)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  13. Seasonal variability of carbon in humic-like matter of ambient size-segregated water soluble organic aerosols from urban background environment

    Science.gov (United States)

    Frka, Sanja; Grgić, Irena; Turšič, Janja; Gini, Maria I.; Eleftheriadis, Konstantinos

    2018-01-01

    Long-term measurements of carbon in HUmic-LIke Substances (HULIS-C) of ambient size-segregated water soluble organic aerosols were performed using a ten-stage low-pressure Berner impactor from December 2014 to November 2015 at an urban background environment in Ljubljana, Slovenia. The mass size distribution patterns of measured species (PM - particulate matter, WSOC - water-soluble organic carbon and HULIS-C) for all seasons were generally tri-modal (primarily accumulation mode) but with significant seasonal variability. HULIS-C was found to have similar distributions as WSOC, with nearly the same mass median aerodynamic diameters (MMADs), except for winter when the HULIS-C size distribution was bimodal. In autumn and winter, the dominant accumulation mode with MMAD at ca. 0.65 μm contributed 83 and 97% to the total HULIS-C concentration, respectively. HULIS-C accounted for a large fraction of WSOC, averaging more than 50% in autumn and 40% in winter. Alternatively, during warmer periods the contributions of ultrafine (27% in summer) and coarse mode (27% in spring) were also substantial. Based on mass size distribution characteristics, HULIS-C was found to be of various sources. In colder seasons, wood burning was confirmed as the most important HULIS source; secondary formation in atmospheric liquid water also contributed significantly, as revealed by the MMADs of the accumulation mode shifting to larger sizes. The distinct difference between the spring and summer ratios of HULIS-C/WSOC in fine particles (ca. 50% in spring, but only 10% in summer) indicated different sources and chemical composition of WSOC in summer (e.g., SOA formation from biogenic volatile organic compounds (BVOCs) via photochemistry). The enlarged amount of HULIS-C in the ultrafine mode in summer suggests that the important contribution was most likely from new particle formation during higher emissions of BVOC due to the vicinity of a mixed deciduous forest; the higher contribution of

  14. Hydrological Implications of Covering Wind-Blown Snow Accumulations with Geotextiles on Mount Aragats, Armenia

    Directory of Open Access Journals (Sweden)

    Alexander Nestler

    2014-07-01

    Full Text Available Snow is an excellent water reservoir, naturally storing large quantities of water at time scales from a few days to several months. In summer-dry countries, like Armenia, runoff due to snow melt from mountain regions is highly important for a sustained water supply (irrigation, hydropower. Snow fields on Mount Aragats, Armenia’s highest peak, often persist until July, providing vital amounts of melt water. Artificially managing these wind-driven snow accumulations as a natural water reservoir might have considerable potential. In the context of the Swiss-Armenian joint venture, Freezwater, snow fields are covered with geotextiles in order to delay snow melt long enough to provide additional melt water in the dry season of the year. In this study, we analyze the hydrological effectiveness of the artificial management of the natural snow cover on Mount Aragats based on various field measurements acquired over a three-year period and numerical modeling. Over the winter season, partly more than five meter-thick snow deposits are formed supported by snow redistribution by strong wind. Repeated mappings of snow fields indicate that snow cover patterns remain highly consistent over time. Measurements of ablation below manually applied geotextiles show a considerable reduction of melt rates by more than 50%. Simulations with an energy-balance model and a distributed temperature-index model allow assessing the hydrological effect of artificial snow management for different initial snow depths and elevations and suggest that coverage is needed at a large scale in order to generate a significant impact on discharge.

  15. The Impacts of Pine Tree Die-Off on Snow Accumulation and Distribution at Plot to Catchment Scales

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gutmann, E. D.; Reed, D. E.; Gochis, D. J.; Brooks, P. D.

    2011-12-01

    Seasonal snow cover is a primary water source throughout much of Western North America, where insect-induced tree die-off is changing the montane landscape. Widespread mortality from insects or drought differs from well-studied cases of fire and logging in that tree mortality is not accompanied by other immediate biophysical changes. Much of the impacted landscape is a mosaic of stands of varying species, structure, management history and health overlain on complex terrain. To address the challenge of predicting the effects of forest die-off on snow water input, we quantified snow accumulation and ablation at scales ranging from individual trees, through forest stands, to nested small catchments. Our study sites in Northern Colorado and Southern Wyoming are dominated by lodgepole pine, but they include forest stands that are naturally developed, managed and clear-cut with varying mortality from Mountain Pine Beetle (MPB). Our record for winters 2010 and 2011 includes continuous meteorological data and snow depth in plots with varying MPB impact as well as stand- to catchment-scale snow surveys mid-winter and near maximal accumulation. At the plot scale, snow depth sensors in healthy stands recorded greater inputs during storms (21-42% of depth) and greater seasonal accumulation (15-40%) in canopy gaps than under trees, whereas no spatial effects of canopy geometry were observed in stands with heavy mortality. Similar patterns were observed in snow surveys near peak accumulation. At both impacted and thinned sites, spatial variability in snow depth was more closely associated with larger scale topography and changes in stand structure than with canopy cover. The role of aspect in ablation was observed to increase in impacted stands as both shading and wind attenuation decreased. Evidence of wind-controlled snow distribution was found 80-100 meters from exposed stand edges in impacted forest as compared to 10-15 meters in healthy forest. Integrating from the scale of

  16. Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis.

    Science.gov (United States)

    Newbery, David M; Chuyong, George B; Zimmermann, Lukas

    2006-01-01

    Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.

  17. Seasonal variation in the composition and concentration of butyltin compounds in marine fish of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Dong, C.D.; Chen, C.W.; Liu, L.L

    2004-10-01

    For the first time, strong evidence is presented to demonstrate that the accumulations of butyltin compounds (BTs) exhibit seasonal variations with respect to their compositions and concentrations in marine fishes. Measurements were made on the benthic ponyfish Leiogenathus splendens and lizardfish Trachinocephalus myops inhabiting the west coast of Taiwan. In the whole body samples of the ponyfish, BT concentrations ranged from 236 to 2501 ng/g wet wt, with those in winter considerably higher than in the other seasons (p<0.05). In a similar vein, proportions of mono- (MBT), di- (DBT) and tributyltin (TBT) differed significantly (p<0.001) depending upon the season, with TBT (75 and 50%) dominant in winter and spring and DBT (37 and 57%) and MBT (42 and 24%) dominant in summer and autumn, respectively. In the lizardfish, the concentrations of BTs were one to two orders of magnitude higher in the liver than in the muscle, i.e. 3058-11,473 vs. 36-159 ng/g wet wt, respectively. Concentrations of MBT, DBT and TBT in the muscle ranged, respectively, from 5 to 14, 8 to 35 and 23 to 110 ng/g wet wt, with the major compound being TBT (57-69%) in all seasons. However, in the liver, DBT concentrations, ranging from 992 to 7797 ng/g wet wt, differed seasonally with a descending order of autumn > summer > spring (p<0.05). Meanwhile, TBT (41%) was predominant in spring, whereas DBT (50 and 68%) was most heavily concentrated in summer and autumn (p<0.001). Seasonally mediated physiological changes, such as dilution due to growth and metabolic compensation, may play important roles in forming different BT accumulation patterns among seasons and organisms.

  18. Accumulation of carbon in northern mire ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, K; Turunen, J; Alm, J [Joensuu Univ. (Finland). Dept. of Biology; Korhola, A [Helsinki Univ. (Finland). Lab. of Physical Geography; Jungner, H [Helsinki Univ. (Finland). Dating Lab.; Vasander, H [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    The basic feature in the functional ecology of any mire ecosystem is retardation of the effective decay of organic material resulting in a conspicuous accumulation of plant debris as peat overtime. The carbon accumulation process is slow, and climatic change may have an impact on the carbon cycle of peatlands, therefore, it has been of interest to study the rate of carbon accumulation by geological methods from dated peat strata. The approach is hampered by several facts. First, the mires vary enormously as to their vegetation and hydrology and hence their production and decay properties. It follows that a great number of study sites are needed. Second, the peat in mires expands both vertically and laterally, and this requires a spatial reconstruction of carbon accumulation within a mire basin. Third, simple geological methods cannot account for the actual rate of carbon accumulation in peat, and finally, an additional carbon sink in the mire ecosystems can be the mineral subsoil beneath peat. The proposed warming will perhaps shift northwards the existing climatic mire regimes and, thus, the northern aapa fens will change to Sphagnum bogs that are more effective in sequestering carbon, but distinctly less effective in their CH{sub 4} and N{sub 2}O emanation. The role of mire fires in more remote northern areas may then become another important factor. The answer to the important question of future total sequestration of carbon to peatlands depends on the precipitation and its seasonal distribution pattern. Most climatic scenarios predict a decrease in the evaporation surplus during the summer at northern regions. Presumably, the consequent lowering of the water table would improve growth of forest on mires and simultaneously decrease the methane fluxes from peat. The combined net effect could be a clear restraining of the radiative forcing

  19. Accumulation of carbon in northern mire ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, K.; Turunen, J.; Alm, J. [Joensuu Univ. (Finland). Dept. of Biology; Korhola, A. [Helsinki Univ. (Finland). Lab. of Physical Geography; Jungner, H. [Helsinki Univ. (Finland). Dating Lab.; Vasander, H. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The basic feature in the functional ecology of any mire ecosystem is retardation of the effective decay of organic material resulting in a conspicuous accumulation of plant debris as peat overtime. The carbon accumulation process is slow, and climatic change may have an impact on the carbon cycle of peatlands, therefore, it has been of interest to study the rate of carbon accumulation by geological methods from dated peat strata. The approach is hampered by several facts. First, the mires vary enormously as to their vegetation and hydrology and hence their production and decay properties. It follows that a great number of study sites are needed. Second, the peat in mires expands both vertically and laterally, and this requires a spatial reconstruction of carbon accumulation within a mire basin. Third, simple geological methods cannot account for the actual rate of carbon accumulation in peat, and finally, an additional carbon sink in the mire ecosystems can be the mineral subsoil beneath peat. The proposed warming will perhaps shift northwards the existing climatic mire regimes and, thus, the northern aapa fens will change to Sphagnum bogs that are more effective in sequestering carbon, but distinctly less effective in their CH{sub 4} and N{sub 2}O emanation. The role of mire fires in more remote northern areas may then become another important factor. The answer to the important question of future total sequestration of carbon to peatlands depends on the precipitation and its seasonal distribution pattern. Most climatic scenarios predict a decrease in the evaporation surplus during the summer at northern regions. Presumably, the consequent lowering of the water table would improve growth of forest on mires and simultaneously decrease the methane fluxes from peat. The combined net effect could be a clear restraining of the radiative forcing

  20. Seasonal hydroclimatic impacts of Sun Corridor expansion

    International Nuclear Information System (INIS)

    Georgescu, M; Mahalov, A; Moustaoui, M

    2012-01-01

    Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona’s Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C). Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for

  1. Season of sampling and season of birth influence serotonin metabolite levels in human cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Jurjen J Luykx

    Full Text Available BACKGROUND: Animal studies have revealed seasonal patterns in cerebrospinal fluid (CSF monoamine (MA turnover. In humans, no study had systematically assessed seasonal patterns in CSF MA turnover in a large set of healthy adults. METHODOLOGY/PRINCIPAL FINDINGS: Standardized amounts of CSF were prospectively collected from 223 healthy individuals undergoing spinal anesthesia for minor surgical procedures. The metabolites of serotonin (5-hydroxyindoleacetic acid, 5-HIAA, dopamine (homovanillic acid, HVA and norepinephrine (3-methoxy-4-hydroxyphenylglycol, MPHG were measured using high performance liquid chromatography (HPLC. Concentration measurements by sampling and birth dates were modeled using a non-linear quantile cosine function and locally weighted scatterplot smoothing (LOESS, span = 0.75. The cosine model showed a unimodal season of sampling 5-HIAA zenith in April and a nadir in October (p-value of the amplitude of the cosine = 0.00050, with predicted maximum (PC(max and minimum (PC(min concentrations of 173 and 108 nmol/L, respectively, implying a 60% increase from trough to peak. Season of birth showed a unimodal 5-HIAA zenith in May and a nadir in November (p = 0.00339; PC(max = 172 and PC(min = 126. The non-parametric LOESS showed a similar pattern to the cosine in both season of sampling and season of birth models, validating the cosine model. A final model including both sampling and birth months demonstrated that both sampling and birth seasons were independent predictors of 5-HIAA concentrations. CONCLUSION: In subjects without mental illness, 5-HT turnover shows circannual variation by season of sampling as well as season of birth, with peaks in spring and troughs in fall.

  2. Induced Plant Accumulation of Lithium

    Directory of Open Access Journals (Sweden)

    Laurence Kavanagh

    2018-02-01

    Full Text Available Lithium’s (Li value has grown exponentially since the development of Li-ion batteries. It is usually accessed in one of two ways: hard rock mineral mining or extraction from mineral-rich brines. Both methods are expensive and require a rich source of Li. This paper examines the potential of agro-mining as an environmentally friendly, economically viable process for extracting Li from low grade ore. Agro-mining exploits an ability found in few plant species, to accumulate substantial amounts of metals in the above ground parts of the plant. Phyto-mined metals are then retrieved from the incinerated plants. Although the actual amount of metal collected from a crop may be low, the process has been shown to be profitable. We have investigated the suitability of several plant species including: Brassica napus and Helianthus annuus, as Li-accumulators under controlled conditions. Large plant trials were carried out with/without chelating agents to encourage Li accumulation. The question we sought to answer was, can any of the plant species investigated accumulate Li at levels high enough to justify using them to agro-mine Li. Results show maximum accumulated levels of >4000 mg/kg Li in some species. Our data suggests that agro-mining of Li is a potentially viable process.

  3. Proxy of monsoon seasonality in carbon isotopes from paleosols of the southern Chinese Loess Plateau

    Science.gov (United States)

    Wang, Hongfang; Follmer, L.R.

    1998-01-01

    Soil organic matter (SOM) and soil carbonate (SC) are common constituents in soils and are directly related to plant growth. SOM accumulates gradually from the decomposition of plant material over time, whereas SC formation is biased to dry-season soil-dissolved CO2 that derives from plant respiration during a drying phase of the growing season. In some mixed C3-C4 environments, the peak of C3 and C4 plant metabolism differs seasonally, and the carbon source that contributes to the SOM and SC can be different. Consequently, ??13C(SOM) values reflect an annual average of the floral biomass, but ??13C(SC) values reflect a seasonal aspect of the plant community. The relationship between ??13C(SC) and ??13C(SOM) is mainly controlled by how different the seasonal conditions are. Our results suggest that the relationship is a seasonal proxy that can be used to differentiate the seasonality effects of Indian, East Asian, and Siberian monsoons on the Chinese Loess Plateau during the last interglacial-glacial cycle.

  4. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    Science.gov (United States)

    Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo

    2018-05-01

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m-3, respectively. Although the annual mean OC / EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC / EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g-1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol-climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  5. Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan

    Science.gov (United States)

    Nasim, Wajid; Amin, Asad; Fahad, Shah; Awais, Muhammad; Khan, Naeem; Mubeen, Muhammad; Wahid, Abdul; Turan, Veysel; Rehman, Muhammad Habibur; Ihsan, Muhammad Zahid; Ahmad, Shakeel; Hussain, Sajjad; Mian, Ishaq Ahmad; Khan, Bushra; Jamal, Yousaf

    2018-06-01

    Climate change has adverse effects at global, regional and local level. Heat wave events have serious contribution for global warming and natural hazards in Pakistan. Historical (1997-2015) heat wave were analyzed over different provinces (Punjab, Sindh and Baluchistan) of Pakistan to identify the maximum temperature trend. Heat accumulation in Pakistan were simulated by the General Circulation Model (GCM) combined with 3 GHG (Green House Gases) Representative Concentration Pathways (RCPs) (RCP-4.5, 6.0, and 8.5) by using SimCLIM model (statistical downscaling model for future trend projections). Heat accumulation was projected for year 2030, 2060, and 2090 for seasonal and annual analysis in Pakistan. Heat accumulation were projected to increase by the baseline year (1995) was represented in percentage change. Projection shows that Sindh and southern Punjab was mostly affected by heat accumulation. This study identified the rising trend of heat wave over the period (1997-2015) for Punjab, Sindh and Baluchistan (provinces of Pakistan), which identified that most of the meteorological stations in Punjab and Sindh are highly prone to heat waves. According to model projection; future trend of annual heat accumulation, in 2030 was increased 17%, 26%, and 32% but for 2060 the trends were reported by 54%, 49%, and 86% for 2090 showed highest upto 62%, 75%, and 140% for RCP-4.5, RCP-6.0, and RCP-8.5, respectively. While seasonal trends of heat accumulation were projected to maximum values for monsoon and followed by pre-monsoon and post monsoon. Heat accumulation in monsoon may affect the agricultural activities in the region under study.

  6. Seasonal variation in the Dutch bovine raw milk composition

    NARCIS (Netherlands)

    Heck, J.M.L.; Valenberg, van H.J.F.; Dijkstra, J.; Hooijdonk, van A.C.M.

    2009-01-01

    In this study, we determined the detailed composition of and seasonal variation in Dutch dairy milk. Raw milk samples representative of the complete Dutch milk supply were collected weekly from February 2005 until February 2006. Large seasonal variation exists in the concentrations of the main

  7. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    Science.gov (United States)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  8. Chemistry of plants which accumulate metals. [Hybanthus floribundus; Polycarpia glabra

    Energy Technology Data Exchange (ETDEWEB)

    Farago, M E; Clark, A J; Pitt, M J

    1975-01-01

    Information on the accumulation of metals in plants is reviewed. The authors report some of their investigations of the metal accumulating plants Hybanthus floribundus and Polycarpia glabra. In general, nickel levels in the aerial parts of plants are quite low, however a number of plants have been cited as nickel tolerant. The leaves of the Hybanthus plant have large epidermal cells and ridges of large cells which continue along the leaf stem and on to the main stem of the bush. It was found that nickel could be located in these large cells. The presence of nickel in the ridge cells was confirmed by an electron probe technique using a scanning electron microscope. These same areas showed high concentration of pectins. In studying the Polycarpia species, two zinc complexes were found to accumulate in the flowers and stems. 22 references.

  9. The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover

    Science.gov (United States)

    Ivanov, V. V.; Repina, I. A.

    2018-01-01

    Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.

  10. Seasonal Shifts in Primary Water Source Type: A Comparison of Largely Pastoral Communities in Uganda and Tanzania

    Directory of Open Access Journals (Sweden)

    Amber L. Pearson

    2016-01-01

    Full Text Available Many water-related illnesses show an increase during the wet season. This is often due to fecal contamination from runoff, yet, it is unknown whether seasonal changes in water availability may also play a role in increased illness via changes in the type of primary water source used by households. Very little is known about the dynamic aspects of access to water and changes in source type across seasons, particularly in semi-arid regions with annual water scarcity. The research questions in this study were: (1 To what degree do households in Uganda (UG and Tanzania (TZ change primary water source type between wet and dry seasons?; and (2 How might seasonal changes relate to water quality and health? Using spatial survey data from 92 households each in UG and TZ this study found that, from wet to dry season, 26% (UG and 9% (TZ of households switched from a source with higher risk of contamination to a source with lower risk. By comparison, only 20% (UG and 0% (TZ of households switched from a source with lower risk of contamination to a source with higher risk of contamination. This research suggests that one pathway through which water-related disease prevalence may differ across seasons is the use of water sources with higher risk contamination, and that households with access to sources with lower risks of contamination sometimes choose to use more contaminated sources.

  11. Credit Constraints, Political Instability, and Capital Accumulation

    OpenAIRE

    Risto Herrala; Rima Turk-Ariss

    2013-01-01

    We investigate the complex interactions between credit constraints, political instability, and capital accumulation using a novel approach based on Kiyotaki and Moore’s (1997) theoretical framework. Drawing on a unique firm-level data set from Middle-East and North Africa (MENA), empirical findings point to a large and significant effect of credit conditions on capital accumulation and suggest that continued political unrest worsens credit constraints. The results support the view that financ...

  12. NEW SEASON NEW HOPES: OFF-SEASON OPTIMISM

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2017-12-01

    Full Text Available While literature on the relation between on-field sports performance and stock returns is ample, there is very limited evidence on off-season stage. Constituting around 3 months, off-seasons do not only occupy a significant part of the year but also represent totally different characteristics than on-seasons. They lack the periodic, unambiguous news events in on-seasons (match results, instead they are associated with highly uncertain transfer news and rumors. We show that this distinction has several impacts on the stock market performances of soccer clubs. Most notably, off-seasons generate substantially higher (excess returns. After controlling for other variables, the estimated effect of off-season periods is as high as 38.75%, annually. In line with several seminal studies, we link this fact to increased optimism and betting behavior through uncertain periods; and periods prior to the start of a new calendar (in our case, new season. For all of the examined 7 clubs (3 from Italy and 4 from Turkey, mean excess returns over the market are positive (negative in off-seasons (on-seasons. On-seasons are associated with increased trading activity due to more frequent news. Stocks of Italian clubs are evidently more volatile through off-seasons while volatility results for the stocks of Turkish clubs are not consistent.

  13. Heavy metal tolerance and accumulation of Triarrhena sacchariflora, a large amphibious ornamental grass.

    Science.gov (United States)

    Tian, R N; Yu, S; Wang, S G; Zhang, Y; Tang, J Y; Liu, Y L; Nie, Y H

    2013-01-01

    In this study, we report the tolerance and accumulation of Triarrhena sacchariflora to copper (Cu) and cadmium (Cd). The results show that T. sacchariflora had strong tolerance to Cu and Cd stress. The tolerance indexes (TI) were greater than 0.5 for all treatments. The bioconcentration factors (BCFs) to Cu and Cd were both above 1.0. The accumulation ability of roots was stronger than that of shoots, and ranges of BCF to Cu and Cd in roots were 37.89-79.08 and 83.96-300.57, respectively. However, the translocation ability to Cu and Cd was weak, with more than 86% of Cu or Cd accumulated in roots, suggesting an exclusion strategy for heavy metal tolerance. The uptake efficiency (UE) and translocation efficiency (TE) to Cu and Cd increased linearly as the Cu and Cd concentration in the substrate increased. UE was higher than TE, with a maximum of 2,118.90 μg g(-1) root dry weight (DW) (50 mg L(-1) Cu) and 1,847.51 μg g(-1) root DW (20 mg L(-1)Cd), respectively. The results indicate that T. sacchariflora is a Cu- and Cd-tolerant non-hyperaccumulator plant, suggesting that T. sacchariflora could play an important role in phytoremediation in areas contaminated with Cu and Cd.

  14. Evaluation of CFSV2 Forecast Skill for Indian Summer Monsoon Sub-Seasonal Characteristics

    Science.gov (United States)

    S, S. A.; Ghosh, S.

    2015-12-01

    Prediction of sub seasonal monsoon characteristics of Indian Summer Monsoon (ISM) is highly crucial for agricultural planning and water resource management. The Climate forecast System version 2 (CFS V2), the state of the art coupled climate model developed by NCEP, is currently being employed for the seasonal and extended range forecasts of ISM. Even though CFSV2 is a fully coupled ocean- atmosphere- land model with advanced physics, increased resolution and refined initialisation, its ISM forecasts, in terms of seasonal mean and variability needs improvement. Numerous works have been done for verifying the CFSV2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO) - monsoon interactions. Most of these works are based on either rain fall strength or rainfall based indices. Here we evaluate the skill of CFS v2 model in forecasting the various sub seasonal features of ISM, viz., the onset and withdrawal days of monsoon that are determined using circulation based indices, the Monsoon Intra Seasonal Oscillations (MISO), and Indian Ocean and Pacific Ocean sea surface temperatures. The MISO index, we use here, is based on zonal wind at 850 hPa and Outgoing Long wave Radiation (OLR) anomalies. With this work, we aim at assessing the skill of the model in simulating the large scale circulation patterns and their variabilities within the monsoon season. Variabilities in these large scale circulation patterns are primarily responsible for the variabilities in the seasonal monsoon strength and its temporal distribution across the season. We find that the model can better forecast the large scale circulation and than the actual precipitation. Hence we suggest that seasonal rainfall forecasts can be improved by the statistical downscaling of CFSV2 forecasts by incorporating the established relationships between the well forecasted large scale variables and monsoon precipitation.

  15. Influenza Seasonal Summary, 2014-2015 Season

    Science.gov (United States)

    2015-08-14

    Influenza Seasonal Summarv 2014-2015 Season EpiData Center Department Communicable Disease Division NMCPHC-EDC-TR-394-2015 REPORT DOCUMENTATION... Influenza Seasonal Summary, 2014-2015 Season Sb. GRANT NUMBER $c. PROGRAM ELEMENT NUMBER 6. AUTHORjS) Sd. PROJECT NUMBER Ashleigh K McCabe, Kristen R...SUPPLEMENTARY NOTES 1<l. ABSTRACT This report summartzes influenza activity among Department of Navy (DON) and Depar1ment of Defense (DOD

  16. Theoretical-probability evaluation of the fire hazard of coal accumulations

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, F F

    1978-01-01

    An evaluation is suggested for the fire hazard of coal accumulations, based on determining the probability of an endogenic fire. This probability is computed by using the statistical characteristics of the temperature distribution of spontaneous heating in large accumulations, and the criteria of Gluzberg's fire hazard that is determined by the coal's physico-chemical properties, oxygen concentration, and the size of the accumulations. 4 references.

  17. Tundra shrub effects on growing season energy and carbon dioxide exchange

    Science.gov (United States)

    Lafleur, Peter M.; Humphreys, Elyn R.

    2018-05-01

    Increased shrub cover on the Arctic tundra is expected to impact ecosystem-atmosphere exchanges of carbon and energy resulting in feedbacks to the climate system, yet few direct measurements of shrub tundra-atmosphere exchanges are available to corroborate expectations. Here we present energy and carbon dioxide (CO2) fluxes measured using the eddy covariance technique over six growing seasons at three closely located tundra sites in Canada’s Low Arctic. The sites are dominated by the tundra shrub Betula glandulosa, but percent cover varies from 17%–60% and average shrub height ranges from 18–59 cm among sites. The site with greatest percent cover and height had greater snow accumulation, but contrary to some expectations, it had similar late-winter albedo and snow melt dates compared to the other two sites. Immediately after snowmelt latent heat fluxes increased more slowly at this site compared to the others. Yet by the end of the growing season there was little difference in cumulative latent heat flux among the sites, suggesting evapotranspiration was not increased with greater shrub cover. In contrast, lower albedo and less soil thaw contributed to greater summer sensible heat flux at the site with greatest shrub cover, resulting in greater total atmospheric heating. Net ecosystem exchange of CO2 revealed the potential for enhanced carbon cycling rates under greater shrub cover. Spring CO2 emissions were greatest at the site with greatest percent cover of shrubs, as was summer net uptake of CO2. The seasonal net sink for CO2 was ~2 times larger at the site with the greatest shrub cover compared to the site with the least shrub cover. These results largely agree with expectations that the growing season feedback to the atmosphere arising from shrub expansion in the Arctic has the potential to be negative for CO2 fluxes but positive for turbulent energy fluxes.

  18. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  19. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    Science.gov (United States)

    Anthony P. Walker; Kelsey R. Carter; Lianhong Gu; Paul J. Hanson; Avni Malhotra; Richard J. Norby; Stephen D. Sebestyen; Stan D. Wullschleger; David J. Weston

    2017-01-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum...

  20. Evidence accumulation as a model for lexical selection.

    Science.gov (United States)

    Anders, R; Riès, S; van Maanen, L; Alario, F X

    2015-11-01

    We propose and demonstrate evidence accumulation as a plausible theoretical and/or empirical model for the lexical selection process of lexical retrieval. A number of current psycholinguistic theories consider lexical selection as a process related to selecting a lexical target from a number of alternatives, which each have varying activations (or signal supports), that are largely resultant of an initial stimulus recognition. We thoroughly present a case for how such a process may be theoretically explained by the evidence accumulation paradigm, and we demonstrate how this paradigm can be directly related or combined with conventional psycholinguistic theory and their simulatory instantiations (generally, neural network models). Then with a demonstrative application on a large new real data set, we establish how the empirical evidence accumulation approach is able to provide parameter results that are informative to leading psycholinguistic theory, and that motivate future theoretical development. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China

    Directory of Open Access Journals (Sweden)

    Yiping Hou

    2018-01-01

    Full Text Available Extensive studies on hydrological responses to forest change have been published for centuries, yet partitioning the hydrological effects of forest change, climate variability and other factors in a large watershed remains a challenge. In this study, we developed a single watershed approach combining the modified double mass curve (MDMC and the time series multivariate autoregressive integrated moving average model (ARIMAX to separate the impact of forest change, climate variability and other factors on dry season runoff variation in two large watersheds in China. The Zagunao watershed was examined for the deforestation effect, while the Meijiang watershed was examined to study the hydrological impact of reforestation. The key findings are: (1 both deforestation and reforestation led to significant reductions in dry season runoff, while climate variability yielded positive effects in the studied watersheds; (2 the hydrological response to forest change varied over time due to changes in soil infiltration and evapotranspiration after vegetation regeneration; (3 changes of subalpine natural forests produced greater impact on dry season runoff than alteration of planted forests. These findings are beneficial to water resource and forest management under climate change and highlight a better planning of forest operations and management incorporated trade-off between carbon and water in different forests.

  2. Fructan accumulation and transcription of candidate genes during cold acclimation in three varieties of Poa pratensis

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Andersen, Jeppe Reitan; Dionisio, Giuseppe

    2011-01-01

    Poa pratensis, a type species for the grass family (Poaceae), is an important cool season grass that accumulates fructans as a polysaccharide reserve. We studied fructan contents and expression of candidate fructan metabolism genes during cold acclimation in three varieties of P. pratensis adapted...... to different environments: Northern Norway, Denmark, and the Netherlands. Fructan content increased significantly during cold acclimation and varieties showed significant differences in the level of fructan accumulation. cDNA sequences of putative fructosyltransferase (FT), fructan exohydrolase (FEH), and cold...... acclimation protein (CAP) genes were identified and cloned. In agreement with a function in fructan biosynthesis, transcription of a putative sucrose:fructan 6-fructosyltransferase (Pp6-SFT) gene was induced during cold acclimation and fructan accumulation in all three P. pratensis varieties. Transcription...

  3. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China.

    Science.gov (United States)

    Wang, Hua; Chen, Hui Hua; Tang, Li Sheng; Wang, Juan Huai; Tang, Hai Yan

    2018-01-01

    Trend analysis method was applied to analyze the general variation characteristics of the climate resources and meteorological disasters of growing season of the winter planting in Guangdong before (1961-1996) and after climate warming (1997-2015). Percentile method was employed to determine thresholds for extreme cold and drought in major planting regions, and the characteristics of extreme disasters since climate warming were analyzed. The results showed that, by comparing 1997-2015 with 1961-1996, the heat value in winter growing season increased significantly. The belt with a higher heat value, where the average temperature was ≥15 ℃ and accumulated temperature was ≥2200 ℃·d, covered the main winter production regions as Shaoguan, Zhanjiang, Maoming, Huizhou, Meizhou and Guangzhou. Meanwhile, the precipitation witnessed a slight increase. The regions with precipitations of 250-350 mm included Zhanjiang, Maoming, Huizhou, Guangzhou and Meizhou. Chilling injury in the winter planting season in the regions decreased, the belt with an accumulated chilling of climate resources and the occurrence law of meteorological disasters in growing season.

  4. [Seasonal distribution of diagnoses and DRG in trauma surgery].

    Science.gov (United States)

    von Dercks, N; Melz, R; Hepp, P; Marquass, B; Theopold, J; Josten, C

    2011-11-01

    Recording DRGs and diagnoses allows their distribution to be shown over the course of the year. Thus, cumulative seasonal occurrence of diseases can be detected. From 2004 to 2010 we recorded 22,293 main diagnoses and DRGs at the clinic for trauma surgery. Injuries with the same localization and treatment were pooled. The most frequent injuries were concussion, followed by spinal and lower leg fractures. They showed no seasonal accumulation. Proximal fractures of the humerus occurred approx. 25% more often in winter and ankle fractures about 33% more frequently. The diagnosis of osteoarthritis of the knee is twice as high in the winter as in the summer. It has to be verified if logistic conclusions of these results can lead to more efficiency in a hospital. The underlying analysis is applicable for every hospital and poses a valid controlling tool.

  5. Seasonal and Downslope Changes in the Pore Water Geochemistry of Tundra Soils Near Nome, Alaska

    Science.gov (United States)

    Philben, M. J.; Zheng, J.; Wullschleger, S. D.; Graham, D. E.; Gu, B.

    2017-12-01

    Thawing permafrost is exposing vast stores of organic matter to decomposition in previously frozen tundra soils. In low-relief and poorly drained areas, the complexity of microbial metabolism under anaerobic conditions complicates the prediction of resulting CO2 and CH4 emissions. To improve this understanding, we investigated the dissolved gas and major ion concentrations and DOM composition in depth profiles of soil pore water collected from the Teller Road site near Nome, AK, as part of the Next Generation Ecosystem Experiment (NGEE)-Arctic. Pathways of anaerobic organic matter degradation were inferred based on two complementary approaches: first, we compared the composition of soil pore waters of saturated areas in the peat plateau and the base of the hillslope, collected early and late in the thaw season (July and September) to assess seasonal changes in the soil solution chemistry. CH4 and low molecular weight organic acids (e.g., acetate, formate, and propionate) were both near or below the detection limit in July but accumulated later in the season. In contrast, SO42- and Fe(III) concentrations were high in July and low in September, while Fe(II) was higher in September. These results suggest SO42- and Fe(III) reduction were the primary pathways for anaerobic respiration early in the thaw season, while methanogenesis increased in September as labile organic acids accumulated. Second, we assessed the change in DOM composition in a transect of piezometers, capturing the degradation of organic matter during transport down a hillslope. The DOC concentration did not change, but SUVA254 declined and the organic acid concentration increased downslope. In addition, Fourier-transform infrared spectroscopy indicated the ratio of carboxyl to amide and aromatic functional groups increased downslope. These parameters show that although there was no net loss of DOC along the transect, it was transformed to less aromatic and potentially more labile forms. Together, these

  6. Early and late seasonal carbon sequestration and allocation in larch trees growing on permafrost in Central Siberia

    Science.gov (United States)

    Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey

    2014-05-01

    Despite large geographic extent of deciduous conifer species Larix gmelinii, its seasonal photosynthetic activity and translocation of photoassimilated carbon within a tree remain poorly studied. To get better insight into productivity of larch trees growing on permafrost soils in Siberian larch biome we aimed to analyze dynamics of foliage parameters (i.e. leaf area, biomass, %N, %P etc.), seasonal dynamics of photosynthetic activity and apply whole tree labeling by 13CO2, which is powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree (Kagawa et al., 2006; Keel et al., 2012). Experimental plot has been established in mature 105 year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64o17'13" N, 100o11'55" E, 148 m a.s.l.). Trees selected for experiments represented mean tree of the stand. Measurements of seasonal photosynthetic activity and foliar biomass sampling were arranged from early growing season (June 8, 2013) until yellowing and senescence of needles on September 17, 2013. Labeling by 13C in whole tree chamber was conducted by three pulses ([CO2]max ≤ 2,500 ppmv, 13CO2 (30% v/v)) at the early (June) and late (August) phase of growing season for different trees in 3 replicates each time. Both early season and late season labeling experiments demonstrated high rate of 13CO2 assimilation and respective enrichment of needle tissues by 13C: δ13C increased from -28.7 up to +670‰ just after labeling. However, there was distinct post-labeling dynamics of needle δ13C among two seasonal experiments. At the early season 13C depletion in labeled needles was slower, and δ13C approached after 40 days ca. +110 ‰ and remained constant till senescence. In the late season (August) needles were losing labeled C with much faster rate and approached only +1.5 ‰ upon senescence (28 days exposition). These findings suggest that in early season ca. 20% of

  7. Accumulation of strontium 90 and cesium 137 in some hydrobionts

    International Nuclear Information System (INIS)

    Boyadzhiev, A.; Keslev, D.; Kerteva, A.; Novakova, E.

    1974-01-01

    Factors responsible for the accumulation of strontium 90 and cesium 137 in some plant organisms, characteristic for fishes in Bulgarian fresh-water reservoirs and in Black Seawater, were examined. The investigated samples were taken during spring, summer and autumn-winter seasons 1967/1968. Each sample burnt to ashes at 450 0 C was examined for strontium 90 and cesium 137 content as well as stable isotopes of calcuim and potassium. Accumulation factors for strontium 90 and cesium 137 were significantly higher in freshwater hydrobionts than in seawater hydrobionts. This could be explained by variations in the concentration of stable isotopes of calcium and potassium from freshwater reservoirs and from seawater. Potassium and calcium concentrations were relatively constant in seawater while in freshwater they were significantly variable. Accumulation factors for these radionuclides increased according to the amount of rain and the altitude above sea level. Strontium 90 was deposited mostly in fins, less in scales and least in the meat of fishes; cesium 137 was mainly deposited in the meat and less in the other parts of fishes. The highest accumulation factors for strontium 90 were determined in fishes and for cesium 137 in plant organisms. The most convenient plant and fish species for tracing radioactive contamination of freshwater reservoirs and in the Black Sea were indicated. (A.B.)

  8. Plastic accumulation in the Mediterranean sea.

    Directory of Open Access Journals (Sweden)

    Andrés Cózar

    Full Text Available Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2, as well as its frequency of occurrence (100% of the sites sampled, are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  9. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Có zar, André s; Sanz-Martí n, Marina; Martí , Elisa; Gonzá lez-Gordillo, J. Ignacio; Ubeda, Bá rbara; Gá lvez, José Á .; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  10. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Cózar, Andrés

    2015-04-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  11. Plastic accumulation in the Mediterranean sea.

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  12. Plastic Accumulation in the Mediterranean Sea

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129

  13. Seasonal gravity change at Yellowstone caldera

    Science.gov (United States)

    Poland, M. P.; de Zeeuw-van Dalfsen, E.

    2017-12-01

    The driving forces behind Yellowstone's dynamic deformation, vigorous hydrothermal system, and abundant seismicity are usually ascribed to "magmatic fluids," which could refer to magma, water, volatiles, or some combination. Deformation data alone cannot distinguish the relative importance of these fluids. Gravity measurements, however, provide an indication of mass change over time and, when combined with surface displacements, can constrain the density of subsurface fluids. Unfortunately, several decades of gravity surveys at Yellowstone have yielded ambiguous results. We suspect that the difficulty in interpreting Yellowstone gravity data is due to seasonal variations in environmental conditions—especially surface and ground water. Yellowstone gravity surveys are usually carried out at the same time of year (generally late summer) to minimize the impact of seasonality. Nevertheless, surface and subsurface water levels are not likely to be constant from year to year, given annual differences in precipitation. To assess the overall magnitude of seasonal gravity changes, we conducted gravity surveys of benchmarks in and around Yellowstone caldera in May, July, August, and October 2017. Our goal was to characterize seasonal variations due to snow melt/accumulation, changes in river and lake levels, changes in groundwater levels, and changes in hydrothermal activity. We also hope to identify sites that show little variation in gravity over the course of the 2017 surveys, as these locations may be less prone to seasonal changes and more likely to detect small variations due to magmatic processes. Preliminary examination of data collected in May and July 2017 emphasizes the importance of site location relative to sources of water. For example, a site on the banks of the Yellowstone River showed a gravity increase of several hundred microgals associated with a 50 cm increase in the river level. A high-altitude site far from rivers and lakes, in contrast, showed a

  14. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    Science.gov (United States)

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  15. Global warming precipitation accumulation increases above the current-climate cutoff scale

    Science.gov (United States)

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  16. Seasonal and interannual dynamics of soil microbial biomass and available nitrogen in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China

    Science.gov (United States)

    Xu, Bo; Wang, Jinniu; Wu, Ning; Wu, Yan; Shi, Fusun

    2018-01-01

    Soil microbial activity varies seasonally in frozen alpine soils during cold seasons and plays a crucial role in available N pool accumulation in soil. The intra- and interannual patterns of microbial and nutrient dynamics reflect the influences of changing weather factors, and thus provide important insights into the biogeochemical cycles and ecological functions of ecosystems. We documented the seasonal and interannual dynamics of soil microbial and available N in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China, between April 2011 and October 2013. Soil was collected in the middle of each month and analyzed for water content, microbial biomass C (MBC) and N (MBN), dissolved organic C and N, and inorganic N. Soil microbial community composition was measured by the dilution-plate method. Fungi and actinomycetes dominated the microbial community during the nongrowing seasons, and the proportion of bacteria increased considerably during the early growing seasons. Trends of consistently increasing MBC and available N pools were observed during the nongrowing seasons. MBC sharply declined during soil thaw and was accompanied by a peak in available N pool. Induced by changes in soil temperatures, significant shifts in the structures and functions of microbial communities were observed during the winter-spring transition and largely contributed to microbial reduction. The divergent seasonal dynamics of different N forms showed a complementary nutrient supply pattern during the growing season. Similarities between the interannual dynamics of microbial biomass and available N pools were observed, and soil temperature and water conditions were the primary environmental factors driving interannual fluctuations. Owing to the changes in climate, seasonal soil microbial activities and nutrient supply patterns are expected to change further, and these changes may have crucial implications for the productivity and biodiversity of alpine ecosystems.

  17. Features of accumulation of inorganic elements in seeds of white mustard (Sinapis alba L.) and black mustard (Brassica nigra L.)

    OpenAIRE

    О. І. Рудник-Іващенко; Л. М. Михальська; В. В. Швартау

    2016-01-01

    Purpose. To investigate special aspects of accumulation of inorganic elements including heavy metals in seeds of white and black mustard to be grown for obtaining drugs. Methods. Field experiments, microwave digestion, ICP-MS and statistical analysis. Results. The content of inorganic elements including heavy metals was determined in the seeds of white and black mustard grown in Kiev Oblast. It was revealed that during the growing season plants of white mustard were able to accumulate...

  18. Measuring the potential utility of seasonal climate predictions

    Science.gov (United States)

    Tippett, Michael K.; Kleeman, Richard; Tang, Youmin

    2004-11-01

    Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.

  19. Seasonal variation in the growth responses of some chlorophytic algal flora of the Red Sea

    Directory of Open Access Journals (Sweden)

    Abid Ali Ansari

    2017-06-01

    Full Text Available Seasonal variation in growth responses and antioxidant activities of four chlorophytic algal species, namely Ulva lactuca, Enteromorpha flexuoca, Cladophora prolifera, Chaetomorpha linum was investigated. Seasonal variation in the physico-chemical characteristics of water at the study site of the Red Sea was also determined. A significant variation was observed in water quality parameters in different seasons. All the algal species show higher accumulation of photosynthetic and accessory pigments in July and October and a significant decrease in January. Higher NPK content in all the four algal species was recorded in July, however, the contents were low in other months. Total protein contents were higher in July and October. Total carbohydrates in U. lactuca and E. flexuoca were significantly higher in July but in the other two species, C. prolifera and C. linum, maximum accumulation was observed in October. Antioxidant activities in all the species were most significant in January as compared to the other months. All the chlorphytic algae show prominent growth responses and antioxidant activities and are better adapted to changing climatic conditions. Due to their prompt responses even to minor changes in aquatic environment, they can be used as ecological indicators in coastal marine ecosystems.

  20. How and why does tomato accumulate a large amount of GABA in the fruit?

    Directory of Open Access Journals (Sweden)

    Mariko eTakayama

    2015-08-01

    Full Text Available γ-Aminobutyric acid (GABA has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate of the tricarboxylic acid (TCA cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD, GABA transaminase (GABA-T and succinic semialdehyde dehydrogenase (SSADH. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development.

  1. Seasonality of cardiovascular risk factors

    DEFF Research Database (Denmark)

    Marti-Soler, Helena; Gubelmann, Cédric; Aeschbacher, Stefanie

    2014-01-01

    OBJECTIVE: To assess the seasonality of cardiovascular risk factors (CVRF) in a large set of population-based studies. METHODS: Cross-sectional data from 24 population-based studies from 15 countries, with a total sample size of 237 979 subjects. CVRFs included Body Mass Index (BMI) and waist...

  2. Energy Balance over One Athletic Season.

    Science.gov (United States)

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; Müller, Manfred J; Heymsfield, Steven B; Sardinha, Luís B

    2017-08-01

    Magnitude and variation in energy balance (EB) components over an athletic season are largely unknown. We investigated the longitudinal changes in EB over one season and explored the association between EB variation and change in the main fat-free mass (FFM) components in highly trained athletes. Eighty athletes (54 males; handball, volleyball, basketball, triathlete, and swimming) were evaluated from the beginning of the season to the main competition stage. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively. Physical activity energy expenditure was calculated as TEE - 0.1 TEE - REE. Fat mass (FM), FFM, and bone mineral were evaluated with dual-energy x-ray absorptiometry; changed body energy stores were calculated as 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). Total-body water (TBW) and its compartments were assessed through dilution techniques, and total-body protein was calculated from a four-compartment model, with body volume assessed by air displacement plethysmography. Although a negative EB of -17.4 ± 72.7 kcal·d was observed (P sports and across sex groups resulting in a net weight increase (0.7 ± 2.3 kg) that is attributable to significant changes in FFM (1.2 ± 1.6 kg) and FM (-0.7 ± 1.5 kg) (P sports, and age. The mean negative EB observed over the season resulted from the rate of FM use and FFM accretion, but with a large variation by sex and sports. TBW, but not total-body protein or mineral balance, explained the magnitude of EB, which means that athletes under a positive or a negative EB showed a TBW expansion or shrinkage, respectively, specifically within the cells, over one athletic season.

  3. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores

    Science.gov (United States)

    Kozachek, Anna; Mikhalenko, Vladimir; Masson-Delmotte, Valérie; Ekaykin, Alexey; Ginot, Patrick; Kutuzov, Stanislav; Legrand, Michel; Lipenkov, Vladimir; Preunkert, Susanne

    2017-05-01

    A 181.8 m ice core was recovered from a borehole drilled into bedrock on the western plateau of Mt El'brus (43°20'53.9'' N, 42°25'36.0'' E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009 (Mikhalenko et al., 2015). Here, we report on the results of the water stable isotope composition from this ice core with additional data from the shallow cores. The distinct seasonal cycle of the isotopic composition allows dating by annual layer counting. Dating has been performed for the upper 126 m of the deep core combined with 20 m from the shallow cores. The whole record covers 100 years, from 2013 back to 1914. Due to the high accumulation rate (1380 mm w.e. year-1) and limited melting, we obtained isotopic composition and accumulation rate records with seasonal resolution. These values were compared with available meteorological data from 13 weather stations in the region and also with atmosphere circulation indices, back-trajectory calculations, and Global Network of Isotopes in Precipitation (GNIP) data in order to decipher the drivers of accumulation and ice core isotopic composition in the Caucasus region. In the warm season (May-October) the isotopic composition depends on local temperatures, but the correlation is not persistent over time, while in the cold season (November-April), atmospheric circulation is the predominant driver of the ice core's isotopic composition. The snow accumulation rate correlates well with the precipitation rate in the region all year round, which made it possible to reconstruct and expand the precipitation record at the Caucasus highlands from 1914 until 1966, when reliable meteorological observations of precipitation at high elevation began.

  4. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    International Nuclear Information System (INIS)

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-01

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha"−"1. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio, though

  5. Investigations on indoor radon in Austria, Part 1: Seasonality of indoor radon concentration

    International Nuclear Information System (INIS)

    Bossew, Peter; Lettner, Herbert

    2007-01-01

    In general, indoor radon concentration is subject to seasonal variability. The reasons are to be found (1) in meteorological influence on the transport properties of soil, e.g. through temperature, frozen soil layers and soil water saturation; and (2) in living habits, e.g. the tendency to open windows in summer and keep them closed in winter, which in general leads to higher accumulation of geogenic Rn in closed rooms in winter. If one wants to standardize indoor Rn measurements originally performed at different times of the year, e.g. in order to make them comparable, some correction transform as a function of measurement time which accounts for these effects must be estimated. In this paper, the seasonality of indoor Rn concentration measured in Austria is investigated as a function of other factors that influence indoor Rn. Indoor radon concentration is clearly shown to have seasonal variability, with higher Rn levels in winter. However, it is complicated to quantify the effect because, as a consequence of the history of an Rn survey, the measurement season maybe correlated to geological regions, which may introduce a bias in the estimate of the seasonality amplitude

  6. Comparative growth analysis of cool- and warm-season grasses in a cool-temperate environment

    International Nuclear Information System (INIS)

    Belesky, D.P.; Fedders, J.M.

    1995-01-01

    Using both cool-season (C3) and warm-season (C4) species is a viable means of optimizing herbage productivity over varying climatic conditions in temperate environments. Despite well-documented differences in water, N, and radiation use, no consistent evidence demonstrates productivity differences among C3 and C4 perennial grass species under identical management. A field study was conducted to determine relative growth rates (RGR), nitrogen productivity (NP), and mean radiation productivity (RP) (dry matter production as a function of incident radiation) of cool- and warm-season grasses managed identically. Results were used to identify management practices thd could lead to optimal productivity in combinations or mixtures of cool- and warm-season grasses. Dry matter yields of warm-season grasses equaled or surpassed those of cool-season grasses, despite a 40% shorter growth interval. Certain cool- and warm-season grasses appear to be suitable for use in mixtures, based on distribution of herbage production; however, actual compatibility may be altered by defoliation management. Relative growth rates varied among years and were about 40% lower for canopies clipped to a 10-cm residue height each time 20-cm of growth accumulated compared with other treatments. The RGR of warm-season grasses was twice that of cool-season grasses Nitrogen productivity (g DM g-1 N d -1) and mean radiation productivity (g DM MJ-1) for warm-season grasses was also more than twice that of cool-season grasses. Radiation productivity of cool-season grasses was dependent on N, while this was not always the case for warm-season grasses. The superior production capability of certain warm-season compared with cool-season grasses in a cool-temperate environment can be sustained under a range of defoliation treatments and demonstrates suitability for use in frequently defoliated situations

  7. Seasonal changes in the assembly mechanisms structuring tropical fish communities.

    Science.gov (United States)

    Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M

    2017-01-01

    Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems. © 2016 by the Ecological Society of America.

  8. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2013-07-01

    Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.

  9. The importance of forest disturbance for the recruitment of the large arborescent palm Attalea maripa in a seasonally-dry Amazonian forest

    OpenAIRE

    Salm,Rodolfo

    2005-01-01

    The hypothesis that forest disturbance is important for the recruitment of the large arborescent palms Attalea maripa was tested with a natural experiment in the Pinkaití site (7º 46'S; 51º 57'W), a seasonally-dry Amazonian forest. A 8,000 m long trail, that crosses, in its lower half, an open forest along the Pinkaití stream bottomlands and, on its upper half, a dense forest on a hill, was divided in 160 0.15 ha (50x30 m) sampling units. At each unit, adult palms were counted and percentage ...

  10. The Influence of Sex and Season on Conspecific Spatial Overlap in a Large, Actively-Foraging Colubrid Snake.

    Directory of Open Access Journals (Sweden)

    Javan M Bauder

    Full Text Available Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season. We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed.

  11. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy)

    International Nuclear Information System (INIS)

    Adamo, P.; Giordano, S.; Vingiani, S.; Castaldo Cobianchi, R.; Violante, P.

    2003-01-01

    Trace element accumulation by lichen in bags is more affected by meteorological conditions compared with moss. - This paper presents the results of a bioaccumulation study of trace elements in the Naples urban area based on the use of the moss Sphagnum capillifolium (Ehrh.) Hedw. and the lichen Pseudevernia furfuracea (L.) Zopf exposed in bags in 23 sites. Moss and lichen bags were exposed for 4 months starting from the beginning of July 1999. Bags gathering was carried out after 10 weeks of exposure, at the end of the dry season, and after 17 weeks, during the wet season. The elements Al, As, Ca, Cd, Cr, Co, Cu, Fe, K, Mg, Mn, Mo, Ni, Pb, Ti, V and Zn were analysed by inductively coupled plasma-mass spectrometry ICP-MS in both biomonitors. For the majority of the elements the total amounts found in S. capillifolium were higher than in P. furfuracea whether considering the whole period of exposure or the weekly uptake. It was observed that there was a much greater difference in metal accumulation by P. furfuracea between the dry and wet seasons compared with S. capillifolium. In the wet period, the lichen seems to accumulate a larger quantity of metals. With the exception of Mn, trace element concentrations did not appear to be significantly affected by the washing away of rainfall. K loss during exposure suggested cell membrane damage in both organisms. For P. furfuracea the K leakage was limited to the dry period of exposure. A clear distinction between 'lithophilic' and 'anthropogenic' elements was achieved by cluster analysis. Significant correlations were found among Fe-Cu-Cr-Ni, Pb-Cd-Co, V-Cr-Ni, Zn-Ni-Pb, suggesting a common source for each group of elements

  12. Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations

    Science.gov (United States)

    Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.

    2018-05-01

    Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.

  13. Seasonality in the Austrian Economy: Common Seasonals and Forecasting

    OpenAIRE

    Kunst, Robert M.

    1992-01-01

    Abstract: Seasonal cointegration generalizes the idea of cointegration to processes with unit roots at frequencies different from 0. Here, also the dual notion of common trends, "common seasonals", is adopted for the seasonal case. Using a five-variable macroeconomic core system of the Austrian economy, it is demonstrated how common seasonals and seasonal cointegrating vectors look in practice. Statistical tests provide clear evidence on seasonal cointegration in the system. However, it is sh...

  14. Effects of dust accumulation and module cleaning on performance ratio of solar rooftop system and solar power plants

    Science.gov (United States)

    Sakarapunthip, Nattakarn; Chenvidhya, Dhirayut; Chuangchote, Surawut; Kirtikara, Krissanapong; Chenvidhya, Tanokkorn; Onreabroy, Wandee

    2017-08-01

    Thailand is an agricultural country, with rice, sugar, and cassava as the major export products. Production of rice, sugar cane, and cassava entails agricultural activities that give rise to significant airborne dusts. In this work, five photovoltaic (PV) units (one solar rooftop and four power plants) are selected for the study. From the study of dust accumulation on glass surface located near rice farms, it was found that opaque areas due to the deposition of dust are 11-14% after 1-2-week exposure. As a consequence, PV system performance is affected. Performance ratio was calculated to determine these effects. Overall results reveal that during the dry and hot seasons, dust deposition significantly affects the performance ratio. The performance ratio reduces by 1.6-3% for 1-month dust accumulation and reduces by 6-8% for 2-month dust accumulation. After cleaning the dust accumulated, the performance ratio greatly increases, resulting in the increase in the energy output by 10%. This increase provides economic and cost benefits of PV cleaning. The performance ratio is not significantly changed during the rainy season, which PV modules are relatively clean as the dust is washed away by rain. It was also found that most of the solar power plants in Thailand still rely on manual cleaning of PV modules with washing water followed by wiping. However, only one power plant, employs a machine for cleaning, resulting in lower cleaning costs.

  15. Advising caution in studying seasonal oscillations in crime rates.

    Directory of Open Access Journals (Sweden)

    Kun Dong

    Full Text Available Most types of crime are known to exhibit seasonal oscillations, yet the annual variations in the amplitude of this seasonality and their causes are still uncertain. Using a large collection of data from the Houston and Los Angeles Metropolitan areas, we extract and study the seasonal variations in aggravated assault, break in and theft from vehicles, burglary, grand theft auto, rape, robbery, theft, and vandalism for many years from the raw daily data. Our approach allows us to see various long term and seasonal trends and aberrations in crime rates that have not been reported before. We then apply an ecologically motivated stochastic differential equation to reproduce the data. Our model relies only on social interaction terms, and not on any exigent factors, to reproduce both the seasonality, and the seasonal aberrations observed in our data set. Furthermore, the stochasticity in the system is sufficient to reproduce the variations seen in the seasonal oscillations from year to year. Researchers should be very careful about trying to correlate these oscillations with external factors.

  16. Relationship between Protein Accumulation Regulation and Yield Formation in Soybean

    Institute of Scientific and Technical Information of China (English)

    CHEN Lihua; LI Jie; LIU Lijun; ZU Wei

    2006-01-01

    Three different genotypes soybeans were adopted in this experiment under three fertilizer levels.The object of this study was to investigate protein accumulation regulation of soybean cultivars under the condition of different nutrient levels, and their effects on soybean yield and quality, and to provide theoretical evidence for breed, cultivation and agricultural production, also man-powered controllable locations. The concentration of N in the leaves declined after seedling stage, then increased again at stage of early flowering, and started to decrease up to leaf senescence, declined rapidly from seed-filling season to stage of yellow ripeness. The concentration of N in the stems and pod walls declined with growth stage. High seed protein genotypes exhibited higher N assimilating and partitioning during whole growth stages. Pod walls were media of N partitioning. Protein was accumulated mainly during the later period of reproductive growth stage up to harvest, so plant growth after stage of yellow ripeness could not be neglected.

  17. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  18. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacieri region of the southeastern Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo

    2018-05-07

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  19. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    H. Niu

    2018-05-01

    Full Text Available Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016 of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ basin are analyzed. The average elemental carbon (EC and organic carbon (OC concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l.  of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 % to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  20. Application of Seasonal Trend Loess to GPS data in Cascadia

    Science.gov (United States)

    Bal, A.; Bartlow, N. M.

    2016-12-01

    Plate Boundary Observatory GPS stations provide crucial data for the study of slow slip events and volcanic hazards in the Cascadia region. However, these GPS stations also record seasonal changes in deformation caused by hydrologic, atmospheric, and other seasonal loading. Removing these signals is necessary for accurately modeling the tectonic sources of deformation. Traditionally, seasonal trends in data been accounted for by fitting and removing sine curves from the data. However, not all seasonal trends follow a sinusoidal shape. Seasonal Trend Loess, or STL, is a filtering procedure for a decomposing a time series into trend, seasonal, and remainder components (Cleveland et. al, Journal of Official Statistics, 1990). STL has a simple design that consists of a sequence of applications of the loess smoother which allows for fast computation of large amounts of trend and seasonal smoothing. STL allows for non-sinusoidal shapes in seasonal deformation signals, and allows for evolution of seasonal signals over time. We applied Seasonal Trend Loess to GPS data from the Cascadia region. We compared our results to a traditional sine wave fit for seasonal removal at selected stations, including stations with slow slip event and volcanic signals. We hope that the STL method may be able to more accurately differentiate seasonal and tectonic deformation signals.

  1. Impact of Eastern Caribbean Circulation Seasonality on two Reef Organisms

    Science.gov (United States)

    Cherubin, L. M.; Paris, C. B.; Baums, I. B.; Idrisi, N.

    2008-05-01

    The variability of the Caribbean current is under the influence of the fresh water input from the Orinoco and Amazon rivers. Sea Surface Salinity maps of the eastern Caribbean show the seasonal extension of the riverine fresh water across the Caribbean basin, from August to December (wet season). The plume is divided into two main cores: one flows into the Caribbean Sea mostly through the Grenada Passage where it merges with the Caribbean Current while the other core is formed further north by advection of the river plume by the North Brazil Current rings. Due to the presence of fresh water the Caribbean Sea mesoscale activity is strongly increased during the wet season. Therefore, both coral reef ecosystems and coastal flows are under the scope of the large scale flow seasonality. The impact of the flow mesoscale seasonality on reef organisms is studied through two reef organisms: (1) Reef-building coral: Genetic analyzes show that populations of the Caribbean reef-building coral, Acropora palmata, have experienced little or no recent genetic exchange between the western and eastern Caribbean. Western Puerto Rico is identified as an area of mixing between the two subregions. Using a bio- physical coupled model accounting for larvae life history traits, we verify the plausibility of a present day oceanographic barrier caused by the Caribbean Current seasonal variability in the vicinity of Mona Passage. (2) Grouper: Several grouper species form spawning aggregations at the shelf edge of the US Virgin Islands starting at the end of the wet season in December. Using ADCP current measurements and numerical simulations, unusual large 'dispersion' pulses are shown to be associated with the presence of sub-mesoscale coherent features more likely to be formed during the wet season. Spawning occurring during the dry season (January to April) is mostly tide driven, suggesting a limited dispersal.

  2. Field-scale water balance closure in seasonally frozen conditions

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    Full Text Available Hydrological water balance closure is a simple concept, yet in practice it is uncommon to measure every significant term independently in the field. Here we demonstrate the degree to which the field-scale water balance can be closed using only routine field observations in a seasonally frozen prairie pasture field site in Saskatchewan, Canada. Arrays of snow and soil moisture measurements were combined with a precipitation gauge and flux tower evapotranspiration estimates. We consider three hydrologically distinct periods: the snow accumulation period over the winter, the snowmelt period in spring, and the summer growing season. In each period, we attempt to quantify the residual between net precipitation (precipitation minus evaporation and the change in field-scale storage (snow and soil moisture, while accounting for measurement uncertainties. When the residual is negligible, a simple 1-D water balance with no net drainage is adequate. When the residual is non-negligible, we must find additional processes to explain the result. We identify the hydrological fluxes which confound the 1-D water balance assumptions during different periods of the year, notably blowing snow and frozen soil moisture redistribution during the snow accumulation period, and snowmelt runoff and soil drainage during the melt period. Challenges associated with quantifying these processes, as well as uncertainties in the measurable quantities, caution against the common use of water balance residuals to estimate fluxes and constrain models in such a complex environment.

  3. Seasonal variation of infiltration capacities of soils in western Oregon.

    Science.gov (United States)

    Michael G. Johnson; Robert L. Beschta

    1981-01-01

    Infiltration capacities were 50 percent greater during fall than during summer for forest soils of western Oregon. These results contrast with those measured in other studies. In forested areas, investigators should be aware of potentially large seasonal changes in infiltration capacities. Such seasonal changes may exceed effects due to applied treatments (logging,...

  4. ACCUMULATION OF RADIOCESIUM BY MUSHROOMS IN THE ENVIRONMENT: A LITERATURE REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Duff, M

    2007-05-28

    During the last 50 years, a large amount of information on radionuclide accumulators or ''sentinel-type'' organisms in the environment has been published. Much of this work focused on the risks of food-chain transfer of radionuclides to higher organisms such as reindeer and man. However, until the 1980's and 1990's, there has been little published data on the radiocesium ({sup 134}Cs and {sup 137}Cs) accumulation by mushrooms. This presentation will consist of a review of the published data for {sup 134,137}Cs accumulation by mushrooms in nature. This review will discuss the aspects that promote {sup 134,137}Cs uptake by mushrooms and focus on mushrooms that demonstrate a large propensity for use in the environmental biomonitoring of radiocesium contamination. It will also provide descriptions of habitats for many of these mushrooms and discuss on how growth media and other conditions relate to Cs accumulation.

  5. Seasonal changes in the optical properties of dissolved organic matter (DOM) in large Arctic rivers

    DEFF Research Database (Denmark)

    Walker, S.A.; Amon, R.M.; Stedmon, Colin

    Arctic rivers deliver over 10% of the annual global river discharge yet little is known about the seasonal fluctuations in the quantity and quality of terrigenous dissolved organic matter (tDOM). A good constraint on such fluctuations is paramount to understand the role that climate change may have...... on tDOM input to the Arctic Ocean. To understand such changes the optical properties of colored tDOM (tCDOM) were studied. Samples were collected over several seasonal cycles from the six largest Arctic Rivers as part of the PARTNERS project. This unique dataset is the first of its kind capturing...

  6. Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf - is there any recovery after eutrophication?

    Science.gov (United States)

    Capet, A.; Beckers, J.-M.; Grégoire, M.

    2013-06-01

    The Black Sea northwestern shelf (NWS) is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D) coupled physical-biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981-2009), and to differentiate its driving factors (climatic versus eutrophication). Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS - which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers - and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the interannual variability

  7. Development of Seasonal Storage in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    National survey on seasonal (thermal, large-scale) storage activities in Denmark. A storage programme under the Danish Energy Agency. Programme background, objectives, activities, projects and results.Technologies presented: Pit water storage, gravel water storage with pipe heat exchangers, lining...... materials for pit and lid designs....

  8. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: Radically different climate system on the pre-Ediacaran Earth

    Directory of Open Access Journals (Sweden)

    George E. Williams

    2016-07-01

    Full Text Available Proterozoic (pre-Ediacaran glaciations occurred under strongly seasonal climates near sea level in low palaeolatitudes. Metre-scale primary sand wedges in Cryogenian periglacial deposits are identical to those actively forming, through the infilling of seasonal (winter thermal contraction-cracks in permafrost by windblown sand, in present-day polar regions with a mean monthly air temperature range of 40 °C and mean annual air temperatures of −20 °C or lower. Varve-like rhythmites with dropstones in Proterozoic glacial successions are consistent with an active seasonal freeze–thaw cycle. The seasonal (annual oscillation of sea level recorded by tidal rhythmites in Cryogenian glacial successions indicates a significant seasonal cycle and extensive open seas. Palaeomagnetic data determined directly for Proterozoic glacial deposits and closely associated rocks indicate low palaeolatitudes: Cryogenian deposits in South Australia accumulated at ≤10°, most other Cryogenian deposits at 54° during Proterozoic low-latitude glaciations, whereby the equator would be cooler than the poles, on average, and global seasonality would be greatly amplified.

  9. Uncertainty in the Future of Seasonal Snowpack over North America.

    Science.gov (United States)

    McCrary, R. R.; Mearns, L.

    2017-12-01

    The uncertainty in future changes in seasonal snowpack (snow water equivalent, SWE) and snow cover extent (SCE) for North America are explored using the North American Regional Climate Change Assessment Program (NARCCAP) suite of regional climate models (RCMs) and their driving CMIP3 global circulation models (GCMs). The higher resolution of the NARCCAP RCMs is found to add significant value to the details of future projections of SWE in topographically complex regions such as the Pacific Northwest and the Rocky Mountains. The NARCCAP models also add detailed information regarding changes in the southernmost extent of snow cover. 11 of the 12 NARCCAP ensemble members contributed SWE output which we use to explore the uncertainty in future snowpack at higher resolution. In this study, we quantify the uncertainty in future projections by looking at the spread of the interquartile range of the different models. By mid-Century the RCMs consistently predict that winter SWE amounts will decrease over most of North America. The only exception to this is in Northern Canada, where increased moisture supply leads to increases in SWE in all but one of the RCMs. While the models generally agree on the sign of the change in SWE, there is considerable spread in the magnitude (absolute and percent) of the change. The RCMs also agree that the number of days with measureable snow on the ground is projected to decrease, with snow accumulation occurring later in the Fall/Winter and melting starting earlier in the Spring/Summer. As with SWE amount, spread across the models is large for changes in the timing of the snow season and can vary by over a month between models. While most of the NARCCAP models project a total loss of measurable snow along the southernmost edge of their historical range, there is considerable uncertainty about where this will occur within the ensemble due to the bias in snow cover extent in the historical simulations. We explore methods to increase our

  10. Increased health risk in subjects with high self-reported seasonality.

    Directory of Open Access Journals (Sweden)

    Nicolas M Øyane

    Full Text Available BACKGROUND: Seasonal variations in mood and behaviour, termed seasonality, are commonly reported in the general population. As a part of a large cross-sectional health survey in Hordaland, Norway, we investigated the relationship between seasonality, objective health measurements and health behaviours. METHODOLOGY/PRINCIPAL FINDINGS: A total of 11,545 subjects between 40-44 years old participated, completing the Global Seasonality Score, measuring seasonality. Waist/hip circumference, BMI and blood pressure were measured, and blood samples were analyzed for total cholesterol, HDL cholesterol, triglycerides and glucose. Subjects also completed a questionnaire on miscellaneous health behaviours (exercise, smoking, alcohol consumption. Hierarchical linear regression analyses were used to investigate associations between seasonality and objective health measurements, while binary logistic regression was used for analysing associations between seasonality and health behaviours. Analyses were adjusted for sociodemographic factors, month of questionnaire completion and sleep duration. Seasonality was positively associated with high waist-hip-ratio, BMI, triglyceride levels, and in men high total cholesterol. Seasonality was negatively associated with HDL cholesterol. In women seasonality was negatively associated with prevalence of exercise and positively associated with daily cigarette smoking. CONCLUSIONS/SIGNIFICANCE: High seasonality was associated with objective health risk factors and in women also with health behaviours associated with an increased risk for cardiovascular disease.

  11. Trace element seasonality in marine macroalgae of different functional-form groups.

    Science.gov (United States)

    Malea, Paraskevi; Chatziapostolou, Anastasia; Kevrekidis, Theodoros

    2015-02-01

    Novel information on the seasonality of element accumulation in seaweeds is provided. Seasonal patterns of As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Se, Sr, U, V and Zn concentrations in macroalgae belonging to different functional-form groups (Ulva intestinalis, Ulva rigida, Codium fragile, Gracilaria gracilis) from the Thessaloniki Gulf, Aegean Sea were determined and compared. Uni- and multivariate data analyses were applied. Element concentrations generally decreased during spring and/or summer, probably due to the growth effect, but a reverse trend, particularly in Ulva species, was also observed. Most elements (Cd, Co, Cr, Cu, Mo, Ni, Pb, Sr) in Ulva species displayed a comparatively low monthly variability, indicating that the extent of seasonal variation is closely related to thallus morphology and growth strategy. In particular, these data suggest that Cd, Co, Cr, Cu, Mo, Ni, Pb and Sr contents in fast-growing, sheet-like macroalgae are less influenced by the season, compared to their contents in coarsely-branched and thick-leathery macroalgae; therefore, sheet-like macroalgae may be more appropriate to be used in biomonitoring of coastal waters. The data presented could be utilized in the development of biomonitoring programmes for the protection of coastal environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes

    Science.gov (United States)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar

    2018-02-01

    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  13. Seasonal trends of biogenic terpene emissions.

    Science.gov (United States)

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2) with consideration of the seasonal changes in emission factors illustrated large deviations when emission factors are applied for other seasons than those in which they were experimentally

  14. Large-Scale Controls and Characteristics of Fire Activity in Central Chile, 2001-2015

    Science.gov (United States)

    McWethy, D. B.; Pauchard, A.; García, R.; Holz, A.; González, M.; Veblen, T. T.; Stahl, J.

    2016-12-01

    In recent decades, fire activity has increased in many ecosystems worldwide, even where fuel conditions and natural ignitions historically limited fire activity, and this increase begs questions of whether climate change, land-use change, and/or altered vegetation are responsible. Increased frequency of large fires in these settings has been attributed to drier-than-average summers and longer fire seasons as well as fuel accumulation related to ENSO events, raising concerns about the trajectory of post-fire vegetation dynamics and future fire regimes. In temperate and Mediterranean forests of central Chile, recent large fires associated with altered ecosystems, climate variability and land-use change highlight the risk and hazard of increasing fire activity yet the causes and consequences are poorly understood. To better understand characteristics of recent fire activity, key drivers of fire occurrence and the spatial probability of wildfire we examined the relationship between fire activity derived from MODIS satellite imagery and biophysical, land-cover and land-use variables. The probability of fire occurrence and annual area burned was best predicted by seasonal precipitation, annual temperature and land cover type. The likelihood of fire occurrence was greatest in Matorral shrublands, agricultural lands (including pasture lands) and Pinus and Eucalyptus plantations, highlighting the importance of vegetation type and fuel flammability as a critical control on fire activity. Our results suggest that land-use change responsible for the widespread presence of highly flammable vegetation and projections for continued warming and drying will likely combine to promote the occurrence of large fires in central Chile in the future.

  15. Spin-accumulation effect in magnetic nano-bridge

    International Nuclear Information System (INIS)

    Khvalkovskii, A.V.; Zvezdin, A.A.; Zvezdin, K.A.; Pullini, D.; Perlo, P.

    2004-01-01

    Large values of magnetoresistance experimentally observed in magnetic nano-contacts and nano-wires are explained in terms of spin accumulation. The investigation of the spin-accumulation effect in magnetic nano-contacts (Phys. Rev. Lett. 82 (1999) 2923) and nano-bridges (JETP Lett. 75 (10) (2002) 613), which are considered to be very promising for various spintronic applications, is presented. The two-dimensional spin-diffusion problem in a magnetic nano-bridge is solved. Dependences of the specific resistance of the domain wall and of the distribution of non-equilibrium spin density on the nano-bridge geometry and the material parameters are obtained

  16. Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication?

    Directory of Open Access Journals (Sweden)

    A. Capet

    2013-06-01

    Full Text Available The Black Sea northwestern shelf (NWS is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D coupled physical–biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981–2009, and to differentiate its driving factors (climatic versus eutrophication. Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981–2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS – which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers – and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the

  17. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    Section 06 - 08*) of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A vacuum-tank, two bending magnets (BST06 and BST07 in blue) with a quadrupole (QDN07, in red) in between, another vacuum-tank, a wide quadrupole (QFW08) and a further tank . The tanks are covered with heating tape for bake-out. The tank left of BST06 contained the stack core pickup for stochastic cooling (see 7906193, 7906190, 8005051), the two other tanks served mainly as vacuum chambers in the region where the beam was large. Peter Zettwoch works on BST06. *) see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984)

  18. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the

  19. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China

    International Nuclear Information System (INIS)

    Meng, Mei; Li, Bing; Shao, Jun-juan; Wang, Thanh; He, Bin; Shi, Jian-bo; Ye, Zhi-hong; Jiang, Gui-bin

    2014-01-01

    A total of 155 rice plants were collected from ten mining areas in three provinces of China (Hunan, Guizhou and Guangdong), where most of mercury (Hg) mining takes place in China. During the harvest season, whole rice plants were sampled and divided into root, stalk and leaf, husk and seed (brown rice), together with soil from root zone. Although the degree of Hg contamination varied significantly among different mining areas, rice seed showed the highest ability for methylmercury (MeHg) accumulation. Both concentrations of total mercury (THg) and MeHg in rice plants were significantly correlated with Hg levels in soil, indicating soil is still an important source for both inorganic mercury (IHg) and MeHg in rice plants. The obvious discrepancy between the distribution patterns of THg and MeHg reflected different pathways of IHg and MeHg accumulation. Water soluble Hg may play more important role in MeHg accumulation in rice plants. -- Highlights: • Distribution patterns indicated different pathways of IHg and MeHg accumulation. • Soil is an important source for both THg and MeHg to rice plants. • Water soluble Hg may play more important role in MeHg accumulation in rice plants. -- The distribution patterns indicate different pathways of IHg and MeHg accumulation in rice plants

  20. Seasonality of Kawasaki Disease: A Global Perspective

    Science.gov (United States)

    Burns, Jane C.; Herzog, Lauren; Fabri, Olivia; Tremoulet, Adriana H.; Rodó, Xavier; Uehara, Ritei; Burgner, David; Bainto, Emelia; Pierce, David; Tyree, Mary; Cayan, Daniel

    2013-01-01

    Background Understanding global seasonal patterns of Kawasaki disease (KD) may provide insight into the etiology of this vasculitis that is now the most common cause of acquired heart disease in children in developed countries worldwide. Methods Data from 1970-2012 from 25 countries distributed over the globe were analyzed for seasonality. The number of KD cases from each location was normalized to minimize the influence of greater numbers from certain locations. The presence of seasonal variation of KD at the individual locations was evaluated using three different tests: time series modeling, spectral analysis, and a Monte Carlo technique. Results A defined seasonal structure emerged demonstrating broad coherence in fluctuations in KD cases across the Northern Hemisphere extra-tropical latitudes. In the extra-tropical latitudes of the Northern Hemisphere, KD case numbers were highest in January through March and approximately 40% higher than in the months of lowest case numbers from August through October. Datasets were much sparser in the tropics and the Southern Hemisphere extra-tropics and statistical significance of the seasonality tests was weak, but suggested a maximum in May through June, with approximately 30% higher number of cases than in the least active months of February, March and October. The seasonal pattern in the Northern Hemisphere extra-tropics was consistent across the first and second halves of the sample period. Conclusion Using the first global KD time series, analysis of sites located in the Northern Hemisphere extra-tropics revealed statistically significant and consistent seasonal fluctuations in KD case numbers with high numbers in winter and low numbers in late summer and fall. Neither the tropics nor the Southern Hemisphere extra-tropics registered a statistically significant aggregate seasonal cycle. These data suggest a seasonal exposure to a KD agent that operates over large geographic regions and is concentrated during winter

  1. Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources

    Science.gov (United States)

    Yao, Hong; Qian, Xin; Gao, Hailong; Wang, Yulei; Xia, Bisheng

    2014-01-01

    Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season) from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s) at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05). The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River) had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River) had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account. PMID:25407421

  2. Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2014-11-01

    Full Text Available Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05. The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account.

  3. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De; Guo, Hu; Li, Ruiyue [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Li, Lianqing, E-mail: lqli@njau.edu.cn [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Pan, Genxing [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Chang, Andrew [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Joseph, Stephen [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha{sup −1}. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio

  4. Thermal tracing of retained meltwater in the lower accumulation area of the Southwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Charalampidis, Charalampos; Van As, Dirk; Colgan, William T.

    2016-01-01

    We present in situ firn temperatures from the extreme 2012 melt season in the southwestern lower accumulation area of the Greenland ice sheet. The upper 2.5 m of snow and firn was temperate during the melt season, when vertical meltwater percolation was inefficient due to a similar to 5.5 m thick...... no indication of meltwater percolation below 9 m depth or complete filling of pore volume above, firn at 10 and 15 m depth was respectively 4.2-4.5 ºC and 1.7 ºC higher than in a conductivity-only simulation. Even though meltwater percolation in 2012 was inefficient, firn between 2 and 15 m depth the following...

  5. Seasonal Variability in European Radon Measurements

    Science.gov (United States)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2009-04-01

    In temperate climates, domestic radon concentration levels are generally seasonally dependent, the level in the home reflecting the convolution of two time-dependent functions. These are the source soil-gas radon concentration itself, and the principal force driving radon into the building from the soil, namely the pressure-difference between interior and exterior environment. While the meteorological influence can be regarded as relatively uniform on a European scale, its variability being defined largely by the influence of North-Atlantic weather systems, soil-gas radon is generally more variable as it is essentially geologically dependent. Seasonal variability of domestic radon concentration can therefore be expected to exhibit geographical variability, as is indeed the case. To compensate for the variability of domestic radon levels when assessing the long term radon health risks, the results of individual short-term measurements are generally converted to equivalent mean annual levels by application of a Seasonal Correction Factor (SCF). This is a multiplying factor, typically derived from measurements of a large number of homes, applied to the measured short-term radon concentration to provide a meaningful annual mean concentration for dose-estimation purposes. Following concern as to the universal applicability of a single SCF set, detailed studies in both the UK and France have reported location-specific SCF sets for different regions of each country. Further results indicate that SCFs applicable to the UK differ significantly from those applicable elsewhere in Europe and North America in both amplitude and phase, supporting the thesis that seasonal variability in indoor radon concentration cannot realistically be compensated for by a single national or international SCF scheme. Published data characterising the seasonal variability of European national domestic radon concentrations, has been collated and analysed, with the objective of identifying

  6. Fusarium head blight incidence and mycotoxin accumulation in three durum wheat cultivars in relation to sowing date and density

    Science.gov (United States)

    Gorczyca, Anna; Oleksy, Andrzej; Gala-Czekaj, Dorota; Urbaniak, Monika; Laskowska, Magdalena; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2018-02-01

    Durum wheat ( Triticum turgidum var. durum) is an important crop in Europe, particularly in the Mediterranean countries. Fusarium head blight (FHB) is considered as one of the most damaging diseases, resulting in yield and quality reduction as well as contamination of grain with mycotoxins. Three winter durum wheat cultivars originating from Austria, Slovakia, and Poland were analyzed during 2012-2014 seasons for FHB incidence and Fusarium mycotoxin accumulation in harvested grain. Moreover, the effects of sowing density and delayed sowing date were evaluated in the climatic conditions of Southern Poland. Low disease severity was observed in 2011/2012 in all durum wheat cultivars analyzed, and high FHB occurrence was recorded in 2012/2013 and 2013/2014 seasons. Fusarium graminearum was the most abundant pathogen, followed by Fusarium avenaceum. Through all three seasons, cultivar Komnata was the most susceptible to FHB and to mycotoxin accumulation, while cultivars Auradur and IS Pentadur showed less symptoms. High susceptibility of cv. Komnata was reflected by the number of Fusarium isolates and elevated mycotoxin (deoxynivalenol, zearalenone, and moniliformin) content in the grain of this cultivar across all three seasons. Nivalenol was identified in the samples of cv. Komnata only. Genotype-dependent differences in FHB susceptibility were observed for the plants sown at optimal date but not at delayed sowing date. It can be hypothesized that cultivars bred in Austria and Slovakia show less susceptibility towards FHB than the cultivar from Poland because of the environmental conditions allowing for more efficient selection of breeding materials.

  7. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

    Science.gov (United States)

    Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian

    2018-01-01

    Reliable drought prediction is fundamental for water resource managers to develop and implement drought mitigation measures. Considering that drought development is closely related to the spatial-temporal evolution of large-scale circulation patterns, we developed a conceptual prediction model of seasonal drought processes based on atmospheric and oceanic standardized anomalies (SAs). Empirical orthogonal function (EOF) analysis is first applied to drought-related SAs at 200 and 500 hPa geopotential height (HGT) and sea surface temperature (SST). Subsequently, SA-based predictors are built based on the spatial pattern of the first EOF modes. This drought prediction model is essentially the synchronous statistical relationship between 90-day-accumulated atmospheric-oceanic SA-based predictors and SPI3 (3-month standardized precipitation index), calibrated using a simple stepwise regression method. Predictor computation is based on forecast atmospheric-oceanic products retrieved from the NCEP Climate Forecast System Version 2 (CFSv2), indicating the lead time of the model depends on that of CFSv2. The model can make seamless drought predictions for operational use after a year-to-year calibration. Model application to four recent severe regional drought processes in China indicates its good performance in predicting seasonal drought development, despite its weakness in predicting drought severity. Overall, the model can be a worthy reference for seasonal water resource management in China.

  8. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed

    International Nuclear Information System (INIS)

    Bragato, Claudia; Brix, Hans; Malagoli, Mario

    2006-01-01

    A recently constructed wetland, located in the Venice lagoon watershed, was monitored to investigate growth dynamics, nutrient and heavy metal shoot accumulation of the two dominating macrophytes: Phragmites australis and Bolboschoenus maritimus. Investigations were conducted over a vegetative season at three locations with different distance to the inlet point to assess effects on vegetation. The distance from the inlet did not affect either shoot biomass or nutrients (N, P, K and Na) and heavy metals (Cr, Ni, Cu and Zn) shoot content. With the exception of Na, nutrient and heavy metal concentrations were higher in shoots of P. australis than in B. maritimus. Heavy metal concentration in the incoming water and in the soil was not correlated to the plant content of either species. Shoot heavy metal concentrations were similar to those reported in the current literature, but accumulation generally increased towards the end of the growing season. - Heavy metal shoot concentration in Phragmites australis and Bolboschoenus maritimus increased significantly at the end of the growing season

  9. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  10. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  11. Season of Birth and Risk for Adult Onset Glioma

    Directory of Open Access Journals (Sweden)

    Jimmy T. Efird

    2010-04-01

    Full Text Available Adult onset glioma is a rare cancer which occurs more frequently in Caucasians than African Americans, and in men than women. The etiology of this disease is largely unknown. Exposure to ionizing radiation is the only well established environmental risk factor, and this factor explains only a small percentage of cases. Several recent studies have reported an association between season of birth and glioma risk. This paper reviews the plausibility of evidence focusing on the seasonal interrelation of farming, allergies, viruses, vitamin D, diet, birth weight, and handedness. To date, a convincing explanation for the occurrence of adult gliomas decades after a seasonal exposure at birth remains elusive.

  12. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    A section of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A large vacuum-tank, a quadrupole (QDN09*), a bending magnet (BST08), another vacuum-tank, a wide quadrupole (QFW08) and (in the background) a further bending magnet (BST08). The tanks are covered with heating tape for bake-out. The tank left of QDN09 contained the kickers for stochastic pre-cooling (see 790621, 8002234, 8002637X), the other one served mainly as vacuum chamber in the region where the beam was large. Peter Zettwoch works on QFW08. * see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984) See under 7911303, 7911597X, 8004261 and 8202324. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  13. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Schwilk, Dylan W.; Knapp, Eric E.; Ferrenberg, Scott; Keeley, Jon E.; Caprio, Anthony C.

    2006-01-01

    Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used prescription burning. Most fires prior to EuroAmerican settlement occurred during the late summer and early fall and most prescribed burning has taken place during the latter part of this period. Poor air quality and lack of suitable burn windows during the fall, however, have resulted in a need to conduct more prescription burning earlier in the season. Previous reports have suggested that burning during the time when trees are actively growing may increase mortality rates due to fine root damage and/or bark beetle activity. This study examines the effects of fire on tree mortality and bark beetle attacks under prescription burning during early and late season. Replicated early season burn, late season burn and unburned control plots were established in an old-growth mixed conifer forest in the Sierra Nevada that had not experienced a fire in over 120 years. Although prescribed burns resulted in significant mortality of particularly the smallest tree size classes, no difference between early and late season burns was detected. Direct mortality due to fire was associated with fire intensity. Secondary mortality due to bark beetles was not significantly correlated with fire intensity. The probability of bark beetle attack on pines did not differ between early and late season burns, while the probability of bark beetle attack on firs was greater following early season burns. Overall tree mortality appeared to be primarily the result of fire intensity rather than tree phenology at the time of the burns. Early season burns are generally conducted under higher fuel moisture conditions, leading to less fuel

  14. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    Science.gov (United States)

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators ( 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  15. Earlier Snowmelt Changes the Ratio Between Early and Late Season Forest Productivity

    Science.gov (United States)

    Knowles, J. F.; Molotch, N. P.; Trujillo, E.; Litvak, M. E.

    2017-12-01

    Future projections of declining snowpack and increasing potential evaporation associated with climate warming are predicted to advance the timing of snowmelt in mountain ecosystems globally. This scenario has direct implications for snowmelt-driven forest productivity, but the net effect of temporally shifting moisture dynamics is unknown with respect to the annual carbon balance. Accordingly, this study uses both satellite- and tower-based observations to document the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the southern Rocky Mountain ecoregion, USA. These results show that a combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34-year minimum ecosystem productivity that could be indicative of future conditions. Moreover, early and late season productivity were significantly and inversely related, suggesting that future shifts toward earlier or reduced snowmelt could increase late-season moisture stress to vegetation and thus restrict productivity despite a longer growing season. This relationship was further subject to modification by summer precipitation, and the controls on the early/late season productivity ratio are explored within the context of ecosystem carbon storage in the future. Any perturbation to the carbon cycle at this scale represents a potential feedback to climate change since snow-covered forests represent an important global carbon sink.

  16. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air.

    Science.gov (United States)

    Alahabadi, Ahmad; Ehrampoush, Mohammad Hassan; Miri, Mohammad; Ebrahimi Aval, Hamideh; Yousefzadeh, Samira; Ghaffari, Hamid Reza; Ahmadi, Ehsan; Talebi, Parvaneh; Abaszadeh Fathabadi, Zeynab; Babai, Fatemeh; Nikoonahad, Ali; Sharafi, Kiomars; Hosseini-Bandegharaei, Ahmad

    2017-04-01

    Heavy metals (HMs) in the urban environment can be bio-accumulated by plant tissues. The aim of this study was to compare fourteen different tree species in terms of their capability to accumulate four airborne and soilborne HMs including; zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Samplings were performed during spring, summer, and fall seasons. To compare bioaccumulation ability, bio-concentration factor (BCF), comprehensive bio-concentration index (CBCI), and metal accumulation index (MAI) were applied. Species with the highest accumulation for single metal which shown using BCF did not have the highest CBCI and MAI. Based on CBCI and MAI, Pinus eldarica (7.74), Wistaria sinensis (8.82), Morus alba (8.7), and Nigral morus (27.15) had the highest bioaccumulation capacity of HMs, respectively. Therefore, these species can be used for phytoextraction of HMs pollution and green and buffer zone in the urban. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Incorporation of radiometric tracers in peat and implications for estimating accumulation rates

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sophia V., E-mail: sophia.hansson@emg.umu.se [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden); Kaste, James M. [Geology Department, The College of William and Mary, Williamsburg, VA 23187 (United States); Olid, Carolina; Bindler, Richard [Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå (Sweden)

    2014-09-15

    Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides {sup 210}Pb, {sup 137}Cs, {sup 241}Am, and {sup 7}Be, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of {sup 7}Be down to 18–20 cm for some cores, and the broad vertical distribution of {sup 241}Am without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age–depth model leads to unrealistic peat mass accumulation rates (400–600 g m{sup −2} yr{sup −1}), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of {sup 210}Pb through the uppermost peat layers, recent peat accumulation rates (200–300 g m{sup −2} yr{sup −1}) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using {sup 7}Be, and if this information is incorporated into age–depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years. - Highlights: • {sup 210}Pb, {sup 137}Cs, {sup 241}Am and {sup 7}Be, and tot-Pb and tot Hg were measured in 5 peat cores. • Two age–depth models were applied resulting in different accumulation rates

  18. Unrecorded capital flows and accumulation of foreign assets: the case of Croatia

    Directory of Open Access Journals (Sweden)

    Goran Vukšić

    2010-03-01

    Full Text Available This paper evaluates the magnitude of unrecorded capital flows and the resulting unrecorded accumulation of foreign assets for Croatia, over the period between 2000 and 2007. The problem of unrecorded capital outflows, often labeled as capital flight, has gained significance in the present global financial and economic crises, because of increasing capital scarcity in many emerging markets and transition economies including Croatia. The findings reveal relatively large amounts of unrecorded foreign asset accumulation over the observed period. A large portion of this accumulation relates to cumulative amounts of net errors and omissions term, which is interpreted as unrecorded capital flow. There are reasons to believe that this net errors and omissions item in Croatia possibly partly represents the unrecorded accumulation of foreign cash from foreign tourist spending, and/or partly results from overstated tourism income in the official statistics.However, even after excluding this item from the calculation of capital flight, the remaining unrecorded accumulation of foreign assets over the period is still substantial. Consequently, if these unrecorded flows are taken into account, Croatia’s net international investment position is improved.

  19. Simulation of advanced accumulator and its application in CPR1000 LBLOCA analysis

    International Nuclear Information System (INIS)

    Hu, Hongwei; Shan, Jianqiang; Gou, Junli; Cao, Jianhua; Shen, Yonggang; Fu, Xiangang

    2014-01-01

    Highlights: • The analysis model was developed for advanced accumulator. • The sensitivity analysis of each key parameter was performed. • The LBLOCA was analyzed for the CPR1000 with advanced accumulator. • The analysis shows that advanced accumulator can improve CPR1000 safety performance. - Abstract: The advanced accumulator is designed to improve the safety and reliability of CPR1000 by providing a small injection flow to keep the reactor core in flooded condition. Thus, the core still stays in a cooling state without the intervention of low pressure safety injection and the startup grace time of the low pressure safety injection pump can be greatly extended. A new model for the advanced accumulator, which is based on the basic conservation equations, is developed and incorporated into RELAP5/MOD 3.3. The simulation of the advanced accumulator can be carried out and results show that the behavior of the advanced accumulator satisfied its primary design target. There is a large flow in the advanced accumulator at the initial stage. When the accumulator water level is lower than the stand pipe, a vortex appears in the damper, which results in a large pressure drop and a small flow. And then the sensitivity analysis is performed and the major factors which affected the flow rate of the advanced accumulator were obtained, including the damper diameter, the initial volume ratio of the water and the nitrogen and the diameter ratio of the standpipe and the small pipe. Additionally, the primary coolant loop cold leg double-ended guillotine break LBLOCA in CPR1000 with advanced accumulator is analyzed. The results show that the criterion for maximum cladding temperature limit (1477 K) (NRC, 1992) can be met ever with 200 s after the startup of the low pressure safety injection. From this point of view, passive advanced accumulator can strive a longer grace time for LPSI. Thus the reliability, safety and economy of the reactor system can be improved

  20. Key factors that influence for seasonal production of Guinea grass

    Directory of Open Access Journals (Sweden)

    Leandro Coelho de Araujo

    Full Text Available ABSTRACT: Climate, soil and management are the main drives for growth and production of tropical pastures. Thus, a better understanding of the effects of these factors and their interactions under climate conditions is required to obtain effective management options. Here, we used data from two field trials to research on climate and management interactions on the production seasonality of Panicum maximum Jacq. Treatments included four sampling times (250, 500, 750, and 1000 °C accumulated during eight regrowth period, under irrigated and rainfed conditions and, cuts were made to simulate grazing intensity. All treatments were arranged in a completely randomized block design with four replications. At each sampling time, basal tillers were sampled to observe meristematic differentiation and were linked with the respective daylength. Soil moisture was determined, and the water availability index (WAI was calculated. The dry matter production (DMP was taken and relative productivity was calculated. Soil moisture was the key seasonal drive in spring-summer and the WAI could be used to adjust the maximum production for that season. The major drive for DMP in fall was the daylength, which was found at 11.81 h. For all seasons, DMP correlated better with the residues in early regrowth phase (r = 0.82 and p < 0.0001 and with degree-days at final regrowth phase (r = 0.73 p < 0.01. Applying these critical values to management guidelines should make Guinea grass DMP more efficient on tropical farms.

  1. Long-term seasonal nutrient limiting patterns at Meiliang Bay in a large, shallow and subtropical Lake Taihu, China

    Directory of Open Access Journals (Sweden)

    Rui Ye

    2015-04-01

    Full Text Available Lake Taihu has undergone severe eutrophication in the past three decades, and harmful cyanobacteria blooms occur nearly every year in Meiliang Bay at the north end of the lake. To elucidate the potential relationship between seasonal nutrient limitation and phytoplankton proliferation, a 20-year (1991-2012 time series of nutrient limitation in Meiliang Bay was analyzed for deviations between trophic state index (TSI parameters. Results showed that patterns of nutrient limitation in Meiliang Bay were distinctly seasonal, where phytoplankton growth was generally phosphorus (P-limited in winter and spring, but nitrogen (N-limited mainly occurred in summer and fall. This general pattern, however, shifted into N limitation across the four seasons during the mid-1990s because a rapid increase in industrialization led to a significant rise in the input of N and P from inflowing tributaries. The initial patterns were restored by environmental regulation in the end of 1990s, including the Zero Actions plan. Using routine monitoring data, a generalised additive model (GAM with time and deviations between trophic state indexes for nitrogen and phosphorus (TSIN-TSIP as explanatory variables was used to explore which nutrient was responsible for limitation of phytoplankton chlorophyll-a (Chl-a in different seasons. Surprisingly, the model revealed a weak N limitation (TSIN-TSIP = -10 corresponded to peak values of Chl-a in summer-autumn season, which is probably because the phytoplankton community is co-limited by N & P during the period. The shift of nutrition limitation during winter-spring would partially explain high values of Chl-a throughout 1996. This study suggests that seasonal patterns of nutrient limitation must be considered to develop effective management measures to control cyanobacterial blooms.

  2. Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2016-08-01

    Full Text Available The Amazon basin is a vast continental area in which atmospheric composition is relatively unaffected by anthropogenic aerosol particles. Understanding the properties of the natural biogenic aerosol particles over the Amazon rainforest is key to understanding their influence on regional and global climate. While there have been a number of studies during the wet season, and of biomass burning particles in the dry season, there has been relatively little work on the transition period – the start of the dry season in the absence of biomass burning. As part of the Brazil–UK Network for Investigation of Amazonian Atmospheric Composition and Impacts on Climate (BUNIAACIC project, aerosol measurements, focussing on unpolluted biogenic air masses, were conducted at a remote rainforest site in the central Amazon during the transition from wet to dry season in July 2013. This period marks the start of the dry season but before significant biomass burning occurs in the region. Median particle number concentrations were 266 cm−3, with size distributions dominated by an accumulation mode of 130–150 nm. During periods of low particle counts, a smaller Aitken mode could also be seen around 80 nm. While the concentrations were similar in magnitude to those seen during the wet season, the size distributions suggest an enhancement in the accumulation mode compared to the wet season, but not yet to the extent seen later in the dry season, when significant biomass burning takes place. Submicron nonrefractory aerosol composition, as measured by an aerosol chemical speciation monitor (ACSM, was dominated by organic material (around 81 %. Aerosol hygroscopicity was probed using measurements from a hygroscopicity tandem differential mobility analyser (HTDMA, and a quasi-monodisperse cloud condensation nuclei counter (CCNc. The hygroscopicity parameter, κ, was found to be low, ranging from 0.12 for Aitken-mode particles to 0.18 for accumulation

  3. Accumulation of sup(99m)Tc-MDP in pleural effusions and ascites

    International Nuclear Information System (INIS)

    Yokomizo, Yu; Ichiya, Yuichi; Kuwabara, Yasuo; Wada, Makoto; Shiozaki, Hiroshi

    1983-01-01

    In 1500 cases bone scintigraphy was performed. sup(99m)Tc-MDP accumulation were revealed on bone scintigraphy in pleural effusion in 5 cases and that in ascitic effusion in 2 cases. The sensitivity of sup(99m)Tc-MDP accumulation was 5.5% for pleural effusion and 10.0% for ascites. It was noticed that the sup(99m)Tc-MDP accumulation was often associated with retention of a large amount of pleural effusion. (Ueda, J.)

  4. Climatic controls of the interannual to decadal variability in Saudi Arabian dust activity: Towards the development of a seasonal prediction tool

    Science.gov (United States)

    Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.

    2013-12-01

    Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern

  5. Late Cretaceous seasonal ocean variability from the Arctic.

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  6. Climatological studies on precipitation features and large-scale atmospheric fields on the heavy rainfall days in the eastern part of Japan from the Baiu to midsummer season

    Science.gov (United States)

    Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo

    2017-04-01

    In East Asia the significant subtropical frontal zone called the Meiyu (in China) / Baiu (in Japan) appears in early summer (just before the midsummer) and the huge rainfall is brought due to the frequent appearance of the "heavy rainfall days" (referred to as HRDs hereafter) mainly in that western part. On the other hand, large-scale fields around the front in eastern Japan is rather different from that in western Japan but the total precipitation in the eastern Japan is still considerable compared to that in the other midlatitude regions. Thus, it is also interesting to examine how the rainfall characteristics and large-scale atmospheric fields on HRDs (with more than 50 mm/day) in the eastern Japan in the mature stage of the Baiu season (16 June 15 July), together with those in midsummer (1 31 August). Based on such scientific background, further analyses were performed in this study mainly with the daily and the hourly precipitation data and the NCEP/NCAR re-analysis date from 1971 to 2010, succeeding to our previous results (e.g., EGU2015). As reported at EGU2014 and 2015, about half of HRDs at Tokyo (eastern Japan) were related to the typhoon even in the Baiu season. Interestingly, half of HRDs were characterized by the large contribution of moderate rain less than 10 mm/h. While, the precipitation on HRDs at Tokyo in midsummer was mainly brought by the intense rainfall with more than 10 mm/h, in association with the typhoons. In the present study, we examined the composite meridional structure of the rainfall area along 140E. In the pattern only associated with a typhoons in the Baiu season (Pattern A), the heavy rainfall area (more than 50 mm/day) with large contribution of the intense rain (stronger than 10 mm/h) showed rather wide meridional extension. The area was characterized by the duration of the intermittent enhancement of the rainfall. In the pattern associated with a typhoon and a front (Pattern B), while the contribution ratio of the rainfall

  7. Magnets for the national spallation neutron source accumulator ring

    International Nuclear Information System (INIS)

    Tuozzolo, J.; Brodowski, J.; Danby, G.

    1997-01-01

    The National Spallation Neutron Source Accumulator Ring will require large aperture dipole magnets, strong focusing quadrupole magnets, and smaller low field dipole, quadrupole, and sextupole correcting magnets. All of the magnets will provide a fixed magnetic field throughout the accumulator's fill/storage/extraction cycle. Similar fixed field magnets will also be provided for the beam transport systems. Because of the high intensity in the accumulator, the magnets must be designed with high tolerances for optimum field quality and for the high radiation environment which may be present at the injection/extraction areas, near the collimators, and near the target area. Field specifications and field plots are presented as well as planned fabrication methods and procedures, cooling system design, support, and installation

  8. Cold season emissions dominate the Arctic tundra methane budget

    Science.gov (United States)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y-1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  9. Seasonal Differences in Determinants of Time Location Patterns in an Urban Population: A Large Population-Based Study in Korea.

    Science.gov (United States)

    Lee, Sewon; Lee, Kiyoung

    2017-06-22

    Time location patterns are a significant factor for exposure assessment models of air pollutants. Factors associated with time location patterns in urban populations are typically due to high air pollution levels in urban areas. The objective of this study was to determine the seasonal differences in time location patterns in two urban cities. A Time Use Survey of Korean Statistics (KOSTAT) was conducted in the summer, fall, and winter of 2014. Time location data from Seoul and Busan were collected, together with demographic information obtained by diaries and questionnaires. Determinants of the time spent at each location were analyzed by multiple linear regression and the stepwise method. Seoul and Busan participants had similar time location profiles over the three seasons. The time spent at own home, other locations, workplace/school and during walk were similar over the three seasons in both the Seoul and Busan participants. The most significant time location pattern factors were employment status, age, gender, monthly income, and spouse. Season affected the time spent at the workplace/school and other locations in the Seoul participants, but not in the Busan participants. The seasons affected each time location pattern of the urban population slightly differently, but overall there were few differences.

  10. Seasonal Differences in Determinants of Time Location Patterns in an Urban Population: A Large Population-Based Study in Korea

    Directory of Open Access Journals (Sweden)

    Sewon Lee

    2017-06-01

    Full Text Available Time location patterns are a significant factor for exposure assessment models of air pollutants. Factors associated with time location patterns in urban populations are typically due to high air pollution levels in urban areas. The objective of this study was to determine the seasonal differences in time location patterns in two urban cities. A Time Use Survey of Korean Statistics (KOSTAT was conducted in the summer, fall, and winter of 2014. Time location data from Seoul and Busan were collected, together with demographic information obtained by diaries and questionnaires. Determinants of the time spent at each location were analyzed by multiple linear regression and the stepwise method. Seoul and Busan participants had similar time location profiles over the three seasons. The time spent at own home, other locations, workplace/school and during walk were similar over the three seasons in both the Seoul and Busan participants. The most significant time location pattern factors were employment status, age, gender, monthly income, and spouse. Season affected the time spent at the workplace/school and other locations in the Seoul participants, but not in the Busan participants. The seasons affected each time location pattern of the urban population slightly differently, but overall there were few differences.

  11. Further comprehension of natural gas accumulation, distribution, and prediction prospects in China

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-06-01

    Full Text Available In-depth research reveals that the natural gas accumulation and distribution are characterized by cycle, sequence, equilibrium, traceability, and multi-stage. To be specific, every geotectonic cycle represents a gas reservoir forming system where natural gas is generated, migrated, accumulated, and formed into a reservoir in a certain play. Essentially, hydrocarbon accumulation occurs when migration force and resistance reach an equilibrium. In this situation, the closer to the source rock, the higher the accumulation efficiency is. Historically, reservoirs were formed in multiple phases. Moreover, zones in source rocks and adjacent to source rocks, unconformity belts, and faulted anticline belts are favorable areas to finding large gas fields. Apart from the common unconformity belts and faulted anticline belts, in-source and near-source zones should be considered as critical targets for future exploration. Subsequent exploration should focus on Upper Palaeozoic in the southeastern Ordos Basin, Triassic in southwestern Sichuan Basin, Jurassic in the northern section of the Kuqa Depression and other zones where no great breakthroughs have been made. Keywords: Large gas field, Distribution characteristics, Potential zone, Prospect

  12. Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence

    Science.gov (United States)

    Patterson Ross, Zoe; Komadina, Naomi; Deng, Yi-Mo; Spirason, Natalie; Kelly, Heath A.; Sullivan, Sheena G.; Barr, Ian G.; Holmes, Edward C.

    2015-01-01

    The factors that determine the characteristic seasonality of influenza remain enigmatic. Current models predict that occurrences of influenza outside the normal surveillance season within a temperate region largely reflect the importation of viruses from the alternate hemisphere or from equatorial regions in Asia. To help reveal the drivers of seasonality we investigated the origins and evolution of influenza viruses sampled during inter-seasonal periods in Australia. To this end we conducted an expansive phylogenetic analysis of 9912, 3804, and 3941 hemagglutinnin (HA) sequences from influenza A/H1N1pdm, A/H3N2, and B, respectively, collected globally during the period 2009-2014. Of the 1475 viruses sampled from Australia, 396 (26.8% of Australian, or 2.2% of global set) were sampled outside the monitored temperate influenza surveillance season (1 May – 31 October). Notably, rather than simply reflecting short-lived importations of virus from global localities with higher influenza prevalence, we documented a variety of more complex inter-seasonal transmission patterns including “stragglers” from the preceding season and “heralds” of the forthcoming season, and which included viruses sampled from clearly temperate regions within Australia. We also provide evidence for the persistence of influenza B virus between epidemic seasons, in which transmission of a viral lineage begins in one season and continues throughout the inter-seasonal period into the following season. Strikingly, a disproportionately high number of inter-seasonal influenza transmission events occurred in tropical and subtropical regions of Australia, providing further evidence that climate plays an important role in shaping patterns of influenza seasonality. PMID:26107631

  13. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L; Baldocchi, D

    2004-05-01

    Understanding how environmental variables affect the processes that regulate the carbon flux over grassland is critical for large-scale modeling research, since grasslands comprise almost one-third of the earth's natural vegetation. To address this issue, fluxes of CO{sub 2} (F{sub c}, flux toward the surface is negative) were measured over a Mediterranean, annual grassland in California, USA for 2 years with the eddy covariance method. To interpret the biotic and abiotic factors that modulate F{sub c} over the course of a year we decomposed net ecosystem CO{sub 2} exchange into its constituent components, ecosystem respiration (R{sub eco}) and gross primary production (GPP). Daytime R{sub eco} was extrapolated from the relationship between temperature and nighttime F{sub c} under high turbulent conditions. Then, GPP was estimated by subtracting daytime values of F{sub c} from daytime estimates of R{sub eco}. Results show that most of carbon exchange, both photosynthesis and respiration, was limited to the wet season (typically from October to mid-May). Seasonal variations in GPP followed closely to changes in leaf area index, which in turn was governed by soil moisture, available sunlight and the timing of the last frost. In general, R{sub eco} was an exponential function of soil temperature, but with season-dependent values of Q{sub 10}. The temperature-dependent respiration model failed immediately after rain events, when large pulses of R{sub eco} were observed. Respiration pulses were especially notable during the dry season when the grass was dead and were the consequence of quickly stimulated microbial activity. Integrated values of GPP, R{sub eco}, and net ecosystem exchange (NEE) were 867, 735, and -132g C m{sup -2}, respectively, for the 2000-2001 season, and 729, 758, and 29g C m{sup -2} for the 2001-2002 season. Thus, the grassland was a moderate carbon sink during the first season and a weak carbon source during the second season. In contrast to a

  14. LIPID ACCUMULATION OF CHLORELLA VULGARIS UNDER DIFFERENT PHOSPHATE CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    Magdalena Karolina Rokicka

    2017-04-01

    Full Text Available The cultivation and utilization of microalgae is now a intensively developing area of research. Some species of microalgae, under appropriate conditions, accumulate large amounts of lipids in the cells. This lipids have a suitable profile of fatty acids for biodiesel production. The culture of microalgae for lipids accumulation should be performed in certain physicochemical conditions. The aim of the study was to determine the effect of variable ortophophates concentrations in the culture medium for lipids accumulation of microalgae Chlorella vulgaris and to determine of parameters of the phosphoric shock in the medium. The study confirmed the possibility of the use of the phosphoric shock in the medium to maximize lipids accumulation by the microalgae Chlorella vulgaris. In the study, 45.23% of the oil was obtained from the biomass from the culture with phosphoric shock in the medium and 18% less of the oil was obtained from the biomass from the standard culture.

  15. Growth of sugarcane under high input conditions in tropical Australia. 1. Radiation use, biomass accumulation and partitioning

    International Nuclear Information System (INIS)

    Robertson, M.J.; Wood, A.W.; Muchow, R.C.

    1996-01-01

    There is little detailed information on yield accumulation in sugarcane under high-input conditions, which can be used to quantify the key physiological parameters contributing to yield variation. Sugarcane is grown under plant and ratoon crop conditions. This study analysed canopy development, radiation interception and biomass accumulation of two contrasting cultivars of sugarcane under irrigation during the same season under plant and ratoon crop conditions. Over the 15 month season, 11 crop samplings were conducted. Biomass partitioning to stalk was also measured to determine to what extent differences in partitioning between cultivars under ratoon and plant crop conditions contribute to differential productivity. The key findings were: (1) The ratoon crop accumulated biomass more quickly than the plant crop during the first 100 days of growth due to higher stalk number, faster canopy development and greater radiation interception. For similar reasons, cultivar Q138 had higher early biomass production than cultivar Q117 in the plant crop, (2) Early differences in biomass accumulation due to crop class became negligible at about 220 days because maximum RUE of the plant crop (1.72 +/- 0.01 g MJ -1 ) was 8% higher than in the first ratoon crop (1.59 +/- 0.08 g MJ -1 ). The higher maximum RUE in the plant crop was consistent with a higher crop growth rate (35.1 +/- 2.3 versus 31.0 +/- 3.4 g m -2 d -1 ) during the Linear phase of biomass accumulation. (3) Biomass accumulation, which ceased about 300 days after planting/ratooning and 140 days before final harvest, attained similar levels of 53-58 t ha -1 in all four crops. (4) The plateau in biomass was associated with loss of live millable stalks, and not a cessation in the growth rate of individual stalks. The crops continued to intercept radiation while on the biomass plateau, so that average RUEs at final harvest were much lower than the maximum values. (5) There was no effect of crop class or cultivar on the

  16. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    Science.gov (United States)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  17. Diversity of large and medium mammals in Juchitan, Isthmus of Tehuantepec, Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Cortés-Marcial, M

    2014-06-01

    Full Text Available The Isthmus of Tehuantepec in Oaxaca, Mexico, is one of the country’s most important regions from a zoogeographical perspective due to the large number of endemic Neotropical species found there. Between September 2007 and August 2008, we sampled medium–sized and large mammals in the Juchitan municipality and compared their diversity in two areas with distinct levels of anthropogenic impact, defined according to estimates of human activities, livestock density and habitat degradation, We obtained 167 records of 18 species, with a 79% representation according to species accumulation models in both areas. The highest species richness and alpha diversity were recorded in the preserved area, whereas the disturbed area exhibited half the diversity found in the preserved area. A high interchange of species was also observed between zones. The two species with the largest number of records were Urocyon cinereoargenteus (n = 52 and Didelphis virginiana (n = 42. In both areas, the highest relative abundance occurred during the rainy season. Habitat degradation and human activities seem to affect the diversity of mammal species in the region.

  18. RF SYSTEM FOR THE SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    BLASKIEWICZ, M.; BRENNAN, J.M.; BRODOWSKI, J.; DELONG, J.; METH, M.; SMITH, K.; ZALTSMAN, A.

    2001-01-01

    During accumulation the RF beam current in the spallation neutron source ring rises from 0 to 50 amperes. A clean, 250 nanosecond gap is needed for the extraction kicker risetime. Large momentum spread and small peak current are needed to prevent instabilities and stopband related losses. A robust RF system meeting these requirements has been designed

  19. Seasonal clustering of sinopulmonary mucormycosis in patients with hematologic malignancies at a large comprehensive cancer center

    Directory of Open Access Journals (Sweden)

    Shobini Sivagnanam

    2017-12-01

    Full Text Available Abstract Background Invasive Mucorales infections (IMI lead to significant morbidity and mortality in immunocompromised hosts. The role of season and climatic conditions in case clustering of IMI remain poorly understood. Methods Following detection of a cluster of sinopulmonary IMIs in patients with hematologic malignancies, we reviewed center-based medical records of all patients with IMIs and other invasive fungal infections (IFIs between January of 2012 and August of 2015 to assess for case clustering in relation to seasonality. Results A cluster of 7 patients were identified with sinopulmonary IMIs (Rhizopus microsporus/azygosporus, 6; Rhizomucor pusillus, 1 during a 3 month period between June and August of 2014. All patients died or were discharged to hospice. The cluster was managed with institution of standardized posaconazole prophylaxis to high-risk patients and patient use of N-95 masks when outside of protected areas on the inpatient service. Review of an earlier study period identified 11 patients with IMIs of varying species over the preceding 29 months without evidence of clustering. There were 9 total IMIs in the later study period (12 month post-initial cluster with 5 additional cases in the summer months, again suggesting seasonal clustering. Extensive environmental sampling did not reveal a source of mold. Using local climatological data abstracted from National Centers for Environmental Information the clusters appeared to be associated with high temperatures and low precipitation. Conclusions Sinopulmonary Mucorales clusters at our center had a seasonal variation which appeared to be related to temperature and precipitation. Given the significant mortality associated with IMIs, local climatic conditions may need to be considered when considering center specific fungal prevention and prophylaxis strategies for high-risk patients.

  20. Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. under different soil moisture levels near Nairobi, Kenya

    NARCIS (Netherlands)

    Muniafu, M.M.; Macharia, J.N.M.; Stigter, C.J.; Coulson, G.L.

    1999-01-01

    Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. cv GLP-2 under two soil moisture levels in two contrasting seasons near Nairobi, Kenya were investigated. The experiment confirms that dry weights and yields of Phaseolus vulgaris are

  1. Large-scale circulation departures related to wet episodes in northeast Brazil

    Science.gov (United States)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  2. Seasonal variation in the Dutch bovine raw milk composition.

    Science.gov (United States)

    Heck, J M L; van Valenberg, H J F; Dijkstra, J; van Hooijdonk, A C M

    2009-10-01

    In this study, we determined the detailed composition of and seasonal variation in Dutch dairy milk. Raw milk samples representative of the complete Dutch milk supply were collected weekly from February 2005 until February 2006. Large seasonal variation exists in the concentrations of the main components and milk fatty acid composition. Milk lactose concentration was rather constant throughout the season. Milk true protein content was somewhat more responsive to season, with the lowest content in June (3.21 g/100 g) and the highest content in December (3.38 g/100 g). Milk fat concentration increased from a minimum of 4.10 g/100 g in June to a maximum of 4.57 g/100 g in January. The largest (up to 2-fold) seasonal changes in the fatty acid composition were found for trans fatty acids, including conjugated linoleic acid. Milk protein composition was rather constant throughout the season. Milk unsaturation indices, which were used as an indication of desaturase activity, were lowest in spring and highest in autumn. Compared with a previous investigation of Dutch dairy milk in 1992, the fatty acid composition of Dutch raw milk has changed considerably, in particular with a higher content of saturated fatty acids in 2005 milk.

  3. Dynamics of International Reserve Accumulation in Turkish Economy

    Directory of Open Access Journals (Sweden)

    Duygu Ayhan

    2015-05-01

    Full Text Available Many of the emerging market economies embody macroeconomic and structural vulnerabilities due to large deficits, high inflation, slowing growth and heavy reliance on short-term capital inflows. Therefore, accumulation of international reserve holdings has been frequently used by authorities to serve as an insurance against the volatility of the capital flows and strengthen the fragile nature of these economies. Turkish economy, classified as one of the most fragile of the emerging economies, has been experiencing a similar process of international reserve accumulation. The chronically high current account deficit and low savings rate boost the importance of international reserves. Thus, the aim of this paper is to investigate the determinants of international reserves in Turkey. The dataset covers the 2000-2013 period. Consequently, we find that the international reserve accumulation is mainly explained by current account balance, per capita income and past crisis experience.

  4. Seasonal Prediction of Taiwan's Streamflow Using Teleconnection Patterns

    Science.gov (United States)

    Chen, Chia-Jeng; Lee, Tsung-Yu

    2017-04-01

    Seasonal streamflow as an integrated response to complex hydro-climatic processes can be subject to activity of prevailing weather systems potentially modulated by large-scale climate oscillations (e.g., El Niño-Southern Oscillation, ENSO). To develop a seamless seasonal forecasting system in Taiwan, this study assesses how significant Taiwan's precipitation and streamflow in different seasons correlate with selected teleconnection patterns. Long-term precipitation and streamflow data in three major precipitation seasons, namely the spring rains (February to April), Mei-Yu (May and June), and typhoon (July to September) seasons, are derived at 28 upstream and 13 downstream catchments in Taiwan. The three seasons depict a complete wet period of Taiwan as well as many regions bearing similar climatic conditions in East Asia. Lagged correlation analysis is then performed to investigate how the precipitation and streamflow data correlate with predominant teleconnection indices at varied lead times. Teleconnection indices are selected only if they show certain linkage with weather systems and activity in the three seasons based on previous literature. For instance, the ENSO and Quasi-Biennial Oscillation, proven to influence East Asian climate across seasons and summer typhoon activity, respectively, are included in the list of climate indices for correlation analysis. Significant correlations found between Taiwan's precipitation and streamflow and teleconnection indices are further examined by a climate regime shift (CRS) test to identify any abrupt changes in the correlations. The understanding of existing CRS is useful for informing the forecasting system of the changes in the predictor-predictand relationship. To evaluate prediction skill in the three seasons and skill differences between precipitation and streamflow, hindcasting experiments of precipitation and streamflow are conducted using stepwise linear regression models. Discussion and suggestions for coping

  5. Seasonal habitat selection by African buffalo Syncerus caffer in the Savuti–Mababe–Linyanti ecosystem of northern Botswana

    Directory of Open Access Journals (Sweden)

    Keoikantse Sianga

    2017-05-01

    Full Text Available This study aimed to establish seasonal movement and habitat selection patterns of African buffalo Syncerus caffer in relation to a detailed habitat map and according to seasonal changes in forage quality and quantity in the Savuti–Mababe–Linyanti ecosystem (Botswana. Two buffalo were collared in November 2011 and another in October 2012. All three buffalo had greater activities in the mopane–sandveld woodland mosaic during the wet season, which provided high-quality leafy grasses and ephemeral water for drinking, but moved to permanent water and reliable forage of various wetlands (swamps and floodplains and riverine woodlands during the dry season. Wetlands had higher grass greenness, height and biomass than woodlands during the dry season. Buffalo had similar wet season concentration areas in the 2011–2012 and 2012–2013 wet seasons and similar dry season concentration areas over the 2012 and 2013 dry seasons. However, their dry season location of collaring in 2011 differed dramatically from their 2012 and 2013 dry season concentration areas, possibly because of the exceptionally high flood levels in 2011, which reduced accessibility to their usual dry season concentration areas. The study demonstrates that extremely large and heterogeneous landscapes are needed to conserve buffalo in sandy, dystrophic ecosystems with variable rainfall. Conservation implications: This study emphasises the importance of large spatial scale available for movement, which enables adaptation to changing conditions between years and seasons.

  6. Occurrence of PAH in the seasonal snowpack of the Eastern Italian Alps

    Energy Technology Data Exchange (ETDEWEB)

    Gabrieli, Jacopo [Chemical Science Department, University of Padova, via Marzolo 1/A, 35100 Padua (Italy); Environmental Protection Agency of Veneto (ARPAV), Department of Belluno, via Tomea 5, 32100 Belluno (Italy); Department of Environmental Sciences, University Ca' Foscari of Venice, Dorsoduro 2137, 30123 Venice (Italy); Decet, Fabio [Environmental Protection Agency of Veneto (ARPAV), Department of Belluno, via Tomea 5, 32100 Belluno (Italy); Luchetta, Alberto [Environmental Protection Agency of Veneto (ARPAV), Department of Belluno, via Tomea 5, 32100 Belluno (Italy); Arabba Avalanche Center, Environmental Protection Agency of Veneto (ARPAV), via Pradat 5, 32020 Livinallongo del Col di Lana, Belluno (Italy); Valt, Mauro [Arabba Avalanche Center, Environmental Protection Agency of Veneto (ARPAV), via Pradat 5, 32020 Livinallongo del Col di Lana, Belluno (Italy); Pastore, Paolo [Chemical Science Department, University of Padova, via Marzolo 1/A, 35100 Padua (Italy); Barbante, Carlo, E-mail: barbante@unive.i [Department of Environmental Sciences, University Ca' Foscari of Venice, Dorsoduro 2137, 30123 Venice (Italy); Institute for the Dynamics of Environmental Processes - CNR, University of Venice, Dorsoduro 2137, 30123 Venice (Italy)

    2010-10-15

    PAH concentrations have been determined in 47 seasonal snowpack samples collected in the Valbelluna valley and in the Bellunesi Dolomites National Park, in the Italian North-Eastern Alps, during the winter of 2005. The {Sigma}PAH concentration in high-altitude alpine sites (above 1700 m) was 32 {+-} 20 ng/kg while in valley bottom urban areas it was 165 {+-} 54 ng/kg with maximum values of 290 ng/kg. The GIS mapping technique was employed to produce a PAH spatial distribution. The urbanized Valbelluna valley, and in particular the SW part, had the highest accumulation of all PAH, with values an order of magnitude more than those in rural and alpine areas. This behaviour is consistent with urban air quality data, and is due to geo-morphological and meteorological factors such as the deeper shape of the valley at the position of the town of Feltre and the low altitude of the boundary layer during the winter season. - PAH concentrations determined in seasonal snow represent an integration of the winter depositions and can be used to evaluate the pollution levels in an Alpine region.

  7. Occurrence of PAH in the seasonal snowpack of the Eastern Italian Alps

    International Nuclear Information System (INIS)

    Gabrieli, Jacopo; Decet, Fabio; Luchetta, Alberto; Valt, Mauro; Pastore, Paolo; Barbante, Carlo

    2010-01-01

    PAH concentrations have been determined in 47 seasonal snowpack samples collected in the Valbelluna valley and in the Bellunesi Dolomites National Park, in the Italian North-Eastern Alps, during the winter of 2005. The ΣPAH concentration in high-altitude alpine sites (above 1700 m) was 32 ± 20 ng/kg while in valley bottom urban areas it was 165 ± 54 ng/kg with maximum values of 290 ng/kg. The GIS mapping technique was employed to produce a PAH spatial distribution. The urbanized Valbelluna valley, and in particular the SW part, had the highest accumulation of all PAH, with values an order of magnitude more than those in rural and alpine areas. This behaviour is consistent with urban air quality data, and is due to geo-morphological and meteorological factors such as the deeper shape of the valley at the position of the town of Feltre and the low altitude of the boundary layer during the winter season. - PAH concentrations determined in seasonal snow represent an integration of the winter depositions and can be used to evaluate the pollution levels in an Alpine region.

  8. Yield accumulation in irrigated sugarcane. II. Utilization of intercepted radiation

    International Nuclear Information System (INIS)

    Muchow, R.C.; Evensen, C.I.; Osgood, R.V.; Robertson, M.J.

    1997-01-01

    Intercepted radiation is a major driving variable of crop production under high-input irrigated conditions. Quantitative information on the utilization of radiation in yield accumulation allows extrapolation beyond the current season and location, and when this information is incorporated into crop growth simulation models, the effect of crop age on the productivity of different cultivars can be examined under different climatic conditions. This paper examines the differential performance of high-yielding sugarcane (Saccharum spp. hybrids) crops in terms of the amount of short-wave solar radiation intercepted (Si) and the efficiency of use of intercepted radiation (RUE) in biomass production. Biomass accumulation during the 12- to 24-mo crop cycle was examined for two experiments conducted in Hawaii, and three experiments conducted in tropical Australia from 1991 to 1993. The analysis showed that (i) RUE was much less for growth after 12 mo than in the first 12 mo; (ii) maximum RUE of sugarcane approaches 2.0 g MJ(-1); (iii) biomass accumulation beyond 12 mo was not related directly to radiation utilization; and (iv) cultivars differed in Si, but differences in RUE could not be unequivocally assessed due to the confounding effect of variable recovery of trash in biomass estimates. It is concluded that stalk death and consequent biomass loss are important factors contributing to yield variation in sugarcane crops growing for 12 to 24 mo, with a yield plateau occurring at variable crop ages during the second year of growth

  9. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    Science.gov (United States)

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

  10. Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

    Directory of Open Access Journals (Sweden)

    U. Rummel

    2007-10-01

    Full Text Available Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH, we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday maximum deposition velocity of 2.3 cm s−1, and a corresponding O3 flux of −11 nmol m−2 s−1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s−1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified.

    Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3

  11. A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa

    Science.gov (United States)

    Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.

    2015-12-01

    The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.

  12. Relationship Between Accumulation and Influx of Pollutants in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    The paper discusses the long term mass balance of pollutants in highway ponds. The accumulations of five polycyclic aromatic hydrocarbons (PAHs) and six heavy metals have been measured in eight Danish detention ponds, which receive runoff from highways only. For each pollutant the accumulation has...... been compared to the long-term influx, estimated from short-term measurements of concentrations in highway runoff. The results show that a large proportion of the incoming heavy metals in short-term runoff events has accumulated in the ponds. This is not the case for the toxic organic compounds....... The results also show that the accumulation rates for the heavy metals depend significantly on the relative pond area (pond area divided by catchment area). The conclusion is that the mass balances of heavy metals and PAHs in highway ponds can be estimated with acceptable accuracy from a combination of short...

  13. The European Market for Seasonal Gas Storage

    International Nuclear Information System (INIS)

    Mahan, A.

    2006-02-01

    European demand for gas will grow in the years to come. Simultaneously, gas production in Europe will decrease and imported gas will be needed to replace indigenous production. Gas demand is not constant during the year. There are variations in demand on different timescales ranging from seasonal to hourly. Variations in demand are characterised by two main parameters: working volume and deliverability. Working volume - the amount of gas that can be supplied above the baseload production volume during a long (cold) period- is primarily needed to cope with the summer-winter pattern of gas consumption. Most of the summer-winter pattern comes from the temperature sensitive gas consumption by households and service industries. Gas usage by industry and the power sector are more evenly spread throughout the year and need less working volume. Deliverability - the amount of gas per hour that can be generated on a (very) cold day above the baseload capacity - is the ability to produce large volumes during short periods, e.g. for extremely cold days, or during peak periods during a day. In this paper we argue that a large amount of additional working volume will be required over the coming years. First, flexible European production will be replaced by long-distance import gas, and second, the gas market is expected to grow further. Todays market appears focus mainly on cavems for storage volume. Cavems have little working volume but are ideal for trading purposes. Consequently, Europe may be facing a deficit in working volume, i.e. the ability to cope with seasonal changes in demand. This paper aims to widen the discussion of this matter and give rise to this concern by setting out a broad analysis, exploring the market drivers for seasonal storage and identifying the public interest issues for this market. Chapter 2 gives an overview of demand for and supply characteristics of gas flexibility. Chapter 3 describes the role of gas storage facilities in the gas market

  14. An analysis of seasonal predictability in coupled model forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Peng, P.; Wang, W. [NOAA, Climate Prediction Center, Washington, DC (United States); Kumar, A. [NOAA, Climate Prediction Center, Washington, DC (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States)

    2011-02-15

    In the recent decade, operational seasonal prediction systems based on initialized coupled models have been developed. An analysis of how the predictability of seasonal means in the initialized coupled predictions evolves with lead-time is presented. Because of the short lead-time, such an analysis for the temporal behavior of seasonal predictability involves a mix of both the predictability of the first and the second kind. The analysis focuses on the lead-time dependence of ensemble mean variance, and the forecast spread. Further, the analysis is for a fixed target season of December-January-February, and is for sea surface temperature, rainfall, and 200-mb height. The analysis is based on a large set of hindcasts from an initialized coupled seasonal prediction system. Various aspects of predictability of the first and the second kind are highlighted for variables with long (for example, SST), and fast (for example, atmospheric) adjustment time scale. An additional focus of the analysis is how the predictability in the initialized coupled seasonal predictions compares with estimates based on the AMIP simulations. The results indicate that differences in the set up of AMIP simulations and coupled predictions, for example, representation of air-sea interactions, and evolution of forecast spread from initial conditions do not change fundamental conclusion about the seasonal predictability. A discussion of the analysis presented herein, and its implications for the use of AMIP simulations for climate attribution, and for time-slice experiments to provide regional information, is also included. (orig.)

  15. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: A large-scale phytomanagement case study

    International Nuclear Information System (INIS)

    Dominguez, Maria T.; Maranon, Teodoro; Murillo, Jose M.; Schulin, Rainer; Robinson, Brett H.

    2008-01-01

    Phytomanagement employs vegetation and soil amendments to reduce the environmental risk posed by contaminated sites. We investigated the distribution of trace elements in soils and woody plants from a large phytomanaged site, the Guadiamar Valley (SW Spain), 7 years after a mine spill, which contaminated the area in 1998. At spill-affected sites, topsoils (0-25 cm) had elevated concentrations of As (129 mg kg -1 ), Bi (1.64 mg kg -1 ), Cd (1.44 mg kg -1 ), Cu (115 mg kg -1 ), Pb (210 mg kg -1 ), Sb (13.8 mg kg -1 ), Tl (1.17 mg kg -1 ) and Zn (457 mg kg -1 ). Trace element concentrations in the studied species were, on average, within the normal ranges for higher plants. An exception was white poplar (Populus alba), which accumulated Cd and Zn in leaves up to 3 and 410 mg kg -1 respectively. We discuss the results with regard to the phytomanagement of trace element contaminated sites. - There is a low trace element transfer from contaminated soils to the aboveground parts of afforested woody plants under a semi-arid climate

  16. Glenohumeral range of motion (ROM) and isometric strength of professional team handball athletes, part III: changes over the playing season.

    Science.gov (United States)

    Fieseler, Georg; Jungermann, Philipp; Koke, Alexander; Irlenbusch, Lars; Delank, Karl-Stefan; Schwesig, René

    2015-12-01

    The aim of our study was to investigate the relation of workload on range of motion and isometric strength of team handball athletes' shoulders over a competitive season. 31 Professional male handball athletes underwent clinical shoulder examinations. Athletes were examined subsequently during the complete playing season (week 0, 6, 22 and 40) to determine bilateral isometric shoulder rotational strength and active range of motion (ROM). In addition, relative (intraclass correlation coefficients (ICC) and absolute (standard error of measurement) reliability were calculated. Intraobserver reliability was excellent (ICC 0.76-0.98) for isometric strength and flexibility measurements. Internal rotation (IR) and total arc ROM in the throwing shoulder (TS) decreased significantly (p handball players' shoulders changed significantly from the beginning to the end of a season. More specifically, the repetitive forces accumulated during the competitive season resulted in altered GIRD, ERG and isometric strength of the dominant glenohumeral joint.

  17. Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling

    Science.gov (United States)

    Heilig, Achim; Eisen, Olaf; MacFerrin, Michael; Tedesco, Marco; Fettweis, Xavier

    2018-06-01

    Increasing melt over the Greenland Ice Sheet (GrIS) recorded over the past several years has resulted in significant changes of the percolation regime of the ice sheet. It remains unclear whether Greenland's percolation zone will act as a meltwater buffer in the near future through gradually filling all pore space or if near-surface refreezing causes the formation of impermeable layers, which provoke lateral runoff. Homogeneous ice layers within perennial firn, as well as near-surface ice layers of several meter thickness have been observed in firn cores. Because firn coring is a destructive method, deriving stratigraphic changes in firn and allocation of summer melt events is challenging. To overcome this deficit and provide continuous data for model evaluations on snow and firn density, temporal changes in liquid water content and depths of water infiltration, we installed an upward-looking radar system (upGPR) 3.4 m below the snow surface in May 2016 close to Camp Raven (66.4779° N, 46.2856° W) at 2120 m a.s.l. The radar is capable of quasi-continuously monitoring changes in snow and firn stratigraphy, which occur above the antennas. For summer 2016, we observed four major melt events, which routed liquid water into various depths beneath the surface. The last event in mid-August resulted in the deepest percolation down to about 2.3 m beneath the surface. Comparisons with simulations from the regional climate model MAR are in very good agreement in terms of seasonal changes in accumulation and timing of onset of melt. However, neither bulk density of near-surface layers nor the amounts of liquid water and percolation depths predicted by MAR correspond with upGPR data. Radar data and records of a nearby thermistor string, in contrast, matched very well for both timing and depth of temperature changes and observed water percolations. All four melt events transferred a cumulative mass of 56 kg m-2 into firn beneath the summer surface of 2015. We find that

  18. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems

    Science.gov (United States)

    Jensen, Daniel; Reager, John T.; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett

    2018-01-01

    It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with the USDA Forest Service’s historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25 degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship’s utility for the future development of national-scale predictive capability.

  19. Capital versus income breeding in a seasonal environment

    DEFF Research Database (Denmark)

    Sainmont, Julie; Andersen, Ken Haste; Varpe, Oystein

    2014-01-01

    and thereby achieve a high annual growth rate, outcompeting capital breeders in long feeding seasons. Therefore, we expect to find a dominance of small income breeders in temperate waters, while large capital breeders should dominate high latitudes where the spring is short and intense. This pattern...

  20. Understanding Flood Seasonality and Its Temporal Shifts within the Contiguous United States

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Sheng [Institute of Hydrology and Water Resources, School of Civil Engineering, Zhejiang University, Hangzhou, China; Li, Hong-Yi [Pacific Northwest National Laboratory, Richland, Washington; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland, Washington; Guo, Jiali [College of Civil and Hydropower Engineering, China Three Gorges University, Yichang, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China; Ran, Qihua [Institute of Hydrology and Water Resources, School of Civil Engineering, Zhejiang University, Hangzhou, China; Demissie, Yonas [Department of Civil and Environmental Engineering, Washington State University Tri-Cities, Richland, Washington; Sivapalan, Murugesu [Department of Geography and Geographic Information Science, University of Illinois at Urbana–Champaign, Champaign, Illinois; Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois

    2017-07-01

    Understanding the causes of flood seasonality is critical for better flood management. This study examines the seasonality of annual maximum floods (AMF) and its changes before and after 1980 at over 250 natural catchments across the contiguous United States. Using circular statistics to define a seasonality index, our analysis focuses on the variability of the flood occurrence date. Generally, catchments with more synchronized seasonal water and energy cycles largely inherit their seasonality of AMF from that of annual maximum rainfall (AMR). In contrast, the seasonality of AMF in catchments with loosely synchronized water and energy cycles are more influenced by high antecedent storage, which is responsible for the amplification of the seasonality of AMF over that of AMR. This understanding then effectively explains a statistically significant shift of flood seasonality detected in some catchments in the recent decades. Catchments where the antecedent soil water storage has increased since 1980 exhibit increasing flood seasonality while catchments that have experienced increases in storm rainfall before the floods have shifted towards floods occurring more variably across the seasons. In the eastern catchments, a concurrent widespread increase in event rainfall magnitude and reduced soil water storage have led to a more variable timing of floods. Our findings of the role of antecedent storage and event rainfall on the flood seasonality provide useful insights for understanding future changes in flood seasonality as climate models projected changes in extreme precipitation and aridity over land.

  1. Implications of metal accumulation mechanisms to phytoremediation.

    Science.gov (United States)

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For

  2. Metal accumulation in earthworms inhabiting floodplain soils

    International Nuclear Information System (INIS)

    Vijver, Martina G.; Vink, Jos P.M.; Miermans, Cornelis J.H.; Gestel, Cornelis A.M. van

    2007-01-01

    The main factors contributing to variation in metal concentrations in earthworms inhabiting floodplain soils were investigated in three floodplains differing in inundation frequency and vegetation type. Metal concentrations in epigeic earthworms showed larger seasonal variations than endogeic earthworms. Variation in internal levels between sampling intervals were largest in earthworms from floodplain sites frequently inundated. High and low frequency flooding did not result in consistent changes in internal metal concentrations. Vegetation types of the floodplains did not affect metal levels in Lumbricus rubellus, except for internal Cd levels, which were positively related to the presence of organic litter. Internal levels of most essential metals were higher in spring. In general, no clear patterns in metal uptake were found and repetition of the sampling campaign will probably yield different results. - Metal levels in earthworms show large variation among sites, among seasons and among epigeic and endogeic species

  3. Observing the seasonal cycle of the upper ocean in the Ross Sea, Antarctica, with autonomous profiling floats

    Science.gov (United States)

    Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.

    2017-12-01

    The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from

  4. Out-of-season recollection of drug use for seasonal IgE-mediated rhinitis

    DEFF Research Database (Denmark)

    Bødtger, Uffe; Malling, Hans-Jørgen; Poulsen, Lars K

    2005-01-01

    in a double-blind study. Drug use was recorded daily during the season 2000 and out-seasonally 6 months after the seasons 1999 and 2000. The mean daily drug use was transformed into a 4-point categorical scale for simplicity and was calculated for the out-seasonal rating and for 6 in-seasonal periods...

  5. The Advantage of Using International Multimodel Ensemble for Seasonal Precipitation Forecast over Israel

    Directory of Open Access Journals (Sweden)

    Amir Givati

    2017-01-01

    Full Text Available This study analyzes the results of monthly and seasonal precipitation forecasting from seven different global climate forecast models for major basins in Israel within October–April 1982–2010. The six National Multimodel Ensemble (NMME models and the ECMWF seasonal model were used to calculate an International Multimodel Ensemble (IMME. The study presents the performance of both monthly and seasonal predictions of precipitation accumulated over three months, with respect to different lead times for the ensemble mean values, one per individual model. Additionally, we analyzed the performance of different combinations of models. We present verification of seasonal forecasting using real forecasts, focusing on a small domain characterized by complex terrain, high annual precipitation variability, and a sharp precipitation gradient from west to east as well as from south to north. The results in this study show that, in general, the monthly analysis does not provide very accurate results, even when using the IMME for one-month lead time. We found that the IMME outperformed any single model prediction. Our analysis indicates that the optimal combinations with the high correlation values contain at least three models. Moreover, prediction with larger number of models in the ensemble produces more robust predictions. The results obtained in this study highlight the advantages of using an ensemble of global models over single models for small domain.

  6. Seasonality of Yersinia enterocolitica bioserotype 1B/O:8 infections in Poland.

    Science.gov (United States)

    Rastawicki, W; Szych, J; Rokosz, N; Zacharczuk, K; Gierczyński, R

    2013-10-01

    Both serological and bacteriological investigations revealed a cyclic, seasonal pattern of Yersinia enterocolitica 1B/O8 infections in Poland during the years 2008–2011. A large increase in incidence was observed in the second quarter and a decrease in the third quarter of each year. Such seasonal changes were not seen in the case of infections caused by the other enteropathogenic Yersinia bioserotypes.

  7. Seasonal prolactin secretion and its role in seasonal reproduction: a review.

    Science.gov (United States)

    Curlewis, J D

    1992-01-01

    The majority of seasonally breeding mammals show a seasonal pattern of prolactin secretion with peak concentrations in spring or summer and a nadir in autumn or winter. Photoperiod influences prolactin secretion via its effects on the secretion of the pineal hormone melatonin. Preliminary evidence suggests that the effects of melatonin on both prolactin and gonadotrophin secretion are via a common target area, possibly within the anterior hypothalamus, and that differences in response to photoperiod may be due to differences in the processing and/or interpretation of the melatonin signal. In contrast to seasonal gonadotrophin secretion, the seasonal changes in prolactin are not due to changes in the sensitivity of a feedback loop and so must be due to direct effects on the hypothalamic pathways that control prolactin secretion. Little else can be said with confidence about the neuroendocrine mechanisms that lead to the seasonal changes in prolactin secretion. Dopamine and noradrenaline turnover in the arcuate nucleus and median eminence decrease under short daylength. If catecholamine turnover in these structures is positively correlated with catecholamine concentrations in the long or short hypophysial portal vessels, it is unlikely that the decrease in prolactin concentration in winter is due to the effects of increased concentrations of dopamine or noradrenaline in the portal vessels. There is, however, evidence for increased pituitary sensitivity to dopamine under short daylength, so increased dopamine concentrations may not be required for suppression of prolactin secretion at this time. In addition to the diminished secretion of prolactin under short daylength, rate of prolactin synthesis and pituitary content of prolactin also decline although the mechanisms that regulate these changes are poorly understood. Although all seasonal breeders show a seasonal change in prolactin secretion, there are continuously breeding species in which prolactin secretion is

  8. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  9. Structure and dynamics of particle-accumulation in thermocapillary liquid bridges

    International Nuclear Information System (INIS)

    Kuhlmann, Hendrik C; Mukin, Roman V; Sano, Tomoaki; Ueno, Ichiro

    2014-01-01

    The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle accumulation near the center of the toroidal vortex, the so-called toroidal core of particles (COP), and the particle-depletion zone near the axis of the liquid bridge. Based on the acceleration and deceleration of the tangential flow along the thermocapillary free surface it is argued that the interaction of the particles with the free surface is of key importance for the fast particle accumulation within a few characteristic momentum diffusion times. The experimentally determined particle-accumulation times are compared with time-scale estimates for accumulation due to either particle free-surface interaction or due to inertia of particles which are heavier than the liquid. We show that the experimental accumulation times are compatible with the accumulation times predicted by the particle–free-surface interaction (PSI) while the time-scale estimates based on the inertia of the particles are too large to explain the fast de-mixing observed in experiments. The shape of the COP resembles certain KAM tori of the incompressible flow of a hydrothermal wave. Two scenarios are proposed to explain the structure and the dynamics of the COP depending on the existence or non-existence of suitable KAM structures. The shape of the experimental particle-depletion zone agrees well with the release surface which is defined by the particle–free-surface interaction process. The favorable comparison of the dynamics and structure of experimental and numerical accumulation patterns provides strong evidence for the existence and relevance of the PSI as the most rapid physical accumulation mechanism. (paper)

  10. Carbon accumulation in peatlands of West Siberia over the last 2000 years

    Science.gov (United States)

    Beilman, David W.; MacDonald, Glen M.; Smith, Laurence C.; Reimer, Paula J.

    2009-03-01

    We use a network of cores from 77 peatland sites to determine controls on peat C content and peat C accumulation over the last 2000 years (since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region. Our results show a significant influence of fossil plant composition on peat C content, with peats dominated by Sphagnum having a lower C content. Radiocarbon-derived C accumulation since 2 ka at 23 sites is highly variable from site to site, but displays a significant N-S trend of decreasing accumulation at higher latitudes. Northern WSL peatlands show relatively small C accumulation of 7 to 35 kg C m-2 since 2 ka. In contrast, peatlands south of 60°N show larger accumulation of 42 to 88 kg C m-2. Carbon accumulation since 2 ka varies significantly with modern mean annual air temperature, with maximum C accumulation found between -1 and 0°C. Rates of apparent C accumulation since 2 ka show no significant relationship to long-term Holocene averages based on total C accumulation. A GIS-based extrapolation of our site data suggests that a substantial amount (˜40%) of total WSL peat C has accumulated since 2 ka, with much of this accumulation south of 60°N. The large peatlands in the southern WSL may be an important component of the Eurasian terrestrial C sink, and future warming could result in a shift northward in long-term WSL C sequestration.

  11. Changing Seasonality and the Role of the Shoulder Season - Evidence from Denamrk

    DEFF Research Database (Denmark)

    Sørensen, Nils Karl

    2009-01-01

    the issue of the shoulder season in a time series framework. Departing from a discussion of the nature of types of seasonal variation, a test is set up in order to examine the impact of the shoulder season. The test examines the impact on the mean share of hotel nights in the shoulder season months in two...

  12. Seasonal Transport in Mars' Mesosphere-Thermosphere revealed by Nitric Oxide nightglow

    Science.gov (United States)

    Royer, E. M.; Stiepen, A.; Schneider, N. M.; Jain, S.; Milby, Z.; Deighan, J.; Gonzalez-Galindo, F.; Bougher, S. W.; Gerard, J. C. M. C.; Stevens, M. H.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; McClintock, B.; Clarke, J. T.; Montmessin, F.; Holsclaw, G.; Lefèvre, F.; Forget, F.; Lo, D.; Hubert, B. A.; Jakosky, B. M.

    2017-12-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through the Nitric Oxide (NO) δ and γ band emissions observed by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at apoapsis and periapsis. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They descend in the nightside mesosphere, where they can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting UV photons in the δ and γ bands. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017). A large dataset of nightside disk images and vertical limb scans during southern winter, fall equinox and southern summer conditions have been accumulated since the beginning of the mission. We will present a discussion regarding the variability of the brightness and altitude of the emission with season, geographical position (longitude) and local time and possible interpretation for local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves structuring the emission longitudinally and indicating a wave-3 structure in Mars' nightside mesosphere. Quantitative comparison with calculations from the LMD-MGCM (Laboratoire de Météorologie Dynamique-Mars Global Climate Model) show that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation but also indicates large discrepancies (up to a factor 50 fainter in the model) suggesting that the predicted transport is too efficient toward the night winter pole

  13. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape

    Directory of Open Access Journals (Sweden)

    Michael Abedi-Lartey

    2016-07-01

    Full Text Available On-going fragmentation of tropical forest ecosystems and associated depletion of seed dispersers threatens the long-term survival of animal-dispersed plants. These threats do not only affect biodiversity and species abundance, but ultimately ecosystem functions and services. Thus, seed dispersers such as the straw-coloured fruit bat, E. helvum, which traverse long distances across fragmented landscapes, are particularly important for maintaining genetic connectivity and colonizing new sites for plant species. Using high-resolution GPS-tracking of movements, field observations and gut retention experiments, we quantify dispersal distances for small- and large-seeded fruits foraged by E. helvum during periods of colony population low (wet season and high (dry season in an urban and a rural landscape in the forest zone of Ghana. Gut passage time averaged 116 min (range 4–1143 min, comparable to other fruit bats. Movements were generally longer in the urban than in the rural landscape and also longer in the dry than in the wet season. As the majority of seeds are dispersed only to feeding roosts, median dispersal distances were similar for both large (42–67 m and small (42–65 m seeds. However, small seeds were potentially dispersed up to 75.4 km, four times further than the previous maximum distance estimated for a similar-sized frugivore. Maximum seed dispersal distances for small seeds were almost twice as long in the rural (49.7 km compare to the urban (31.2 km landscape. Within the urban landscape, estimated maximum dispersal distances for small seeds were three times longer during the dry season (75.4 km compared to the wet season (22.8 km; in contrast, distances in the rural landscape were three times longer in the wet season (67 km compared to the dry season (24.4. Dispersal distances for large seeds during the dry season (551 m in the rural landscape were almost twice that in the wet season (319 m. We found no influence of food

  14. Seasonal variations of antioxidants in the brown seaweed Saccharina latissima

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Safafar, Hamed; Pedersen, Anja

    Mainly the brown seaweeds are known for their high antioxidative capacity within the specific compounds such as phlorotannins, polyphenols, flavonoids, pigments, and these natural antioxidants are of high industrial interest. Previous studies have shown large seasonal variations in biomass...... composition. The aim of this study was to see if there was a seasonal variation in the antioxidant content of sugar kelp (Saccharina latissima), compare two cultivation sites, REF and IMTA, and test different solvents applied for extractions, methanol or ethyl acetate. Rope cultivated sugar kelp were sampled...

  15. Evaporation components of a boreal forest: variations during the growing season

    Science.gov (United States)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  16. Seasonal effects on great ape health: a case study of wild chimpanzees and Western gorillas.

    Directory of Open Access Journals (Sweden)

    Shelly Masi

    Full Text Available Among factors affecting animal health, environmental influences may directly or indirectly impact host nutritional condition, fecundity, and their degree of parasitism. Our closest relatives, the great apes, are all endangered and particularly sensitive to infectious diseases. Both chimpanzees and western gorillas experience large seasonal variations in fruit availability but only western gorillas accordingly show large changes in their degree of frugivory. The aim of this study is to investigate and compare factors affecting health (through records of clinical signs, urine, and faecal samples of habituated wild ape populations: a community (N = 46 individuals of chimpanzees (Pan troglodytes in Kanyawara, Kibale National Park (Uganda, and a western gorilla (G. gorilla group (N = 13 in Bai Hokou in the Dzanga-Ndoki National Park (Central African Republic. Ape health monitoring was carried out in the wet and dry seasons (chimpanzees: July-December 2006; gorillas: April-July 2008 and December 2008-February 2009. Compared to chimpanzees, western gorillas were shown to have marginally greater parasite diversity, higher prevalence and intensity of both parasite and urine infections, and lower occurrence of diarrhea and wounds. Parasite infections (prevalence and load, but not abnormal urine parameters, were significantly higher during the dry season of the study period for western gorillas, who thus appeared more affected by the large temporal changes in the environment in comparison to chimpanzees. Infant gorillas were the most susceptible among all the age/sex classes (of both apes having much more intense infections and urine blood concentrations, again during the dry season. Long term studies are needed to confirm the influence of seasonal factors on health and parasitism of these great apes. However, this study suggest climate change and forest fragmentation leading to potentially larger seasonal fluctuations of the environment may affect

  17. Mercury content in wetland rice soil and water of two different seasons at small-scale gold mine processing areas

    Directory of Open Access Journals (Sweden)

    T. Sugianti

    2016-04-01

    Full Text Available This study was aimed to identify the impact of small-scale gold processing activities on mercury content in wetland rice soil and water during the rainy and first dry seasons in Central Lombok and West Lombok Districts. The method used for this study was survey method. Measurement of mercury levels in water samples was conducted at Agro Bogor Centre using SNI 6989.77: 2011 methods. The data was collected and processed in a simple statistic presented descriptively, in order to obtain information. Results of the study showed that mercury content soils in the rainy season exceeded the threshold of 0.005 ppm, while in the first dry season the mercury content in soil decreased, but it was still above the threshold value permitted. The contents of mercury in water samples in the rainy season and the first dry season were still at a safe point that was less than 0.05 ppm. The wetland rice soil and water had been polluted with mercury, although the mercury content in the water was still below the threshold, but the accumulation of mercury that could have been absorbed by the plants are of particular concerns. The decrease of mercury content in soil in dry season was due to lack of gold processing activities.

  18. Interannual and seasonal changes in the south seasonal polar cap of Mars: Observations from MY 28-31 using MARCI

    Science.gov (United States)

    Calvin, W. M.; Cantor, B. A.; James, P. B.

    2017-08-01

    The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.

  19. The Influence of Seasonal Frugivory on Nutrient and Energy Intake in Wild Western Gorillas.

    Science.gov (United States)

    Masi, Shelly; Mundry, Roger; Ortmann, Sylvia; Cipolletta, Chloé; Boitani, Luigi; Robbins, Martha M

    2015-01-01

    The daily energy requirements of animals are determined by a combination of physical and physiological factors, but food availability may challenge the capacity to meet nutritional needs. Western gorillas (Gorilla gorilla) are an interesting model for investigating this topic because they are folivore-frugivores that adjust their diet and activities to seasonal variation in fruit availability. Observations of one habituated group of western gorillas in Bai-Hokou, Central African Republic (December 2004-December 2005) were used to examine seasonal variation in diet quality and nutritional intake. We tested if during the high fruit season the food consumed by western gorillas was higher in quality (higher in energy, sugar, fat but lower in fibre and antifeedants) than during the low fruit season. Food consumed during the high fruit season was higher in digestible energy, but not any other macronutrients. Second, we investigated whether the gorillas increased their daily intake of carbohydrates, metabolizable energy (KCal/g OM), or other nutrients during the high fruit season. Intake of dry matter, fibers, fat, protein and the majority of minerals and phenols decreased with increased frugivory and there was some indication of seasonal variation in intake of energy (KCal/g OM), tannins, protein/fiber ratio, and iron. Intake of non-structural carbohydrates and sugars was not influenced by fruit availability. Gorillas are probably able to extract large quantities of energy via fermentation since they rely on proteinaceous leaves during the low fruit season. Macronutrients and micronutrients, but not digestible energy, may be limited for them during times of low fruit availability because they are hind-gut fermenters. We discuss the advantages of seasonal frugivores having large dietary breath and flexibility, significant characteristics to consider in the conservation strategies of endangered species.

  20. The Influence of Seasonal Frugivory on Nutrient and Energy Intake in Wild Western Gorillas.

    Directory of Open Access Journals (Sweden)

    Shelly Masi

    Full Text Available The daily energy requirements of animals are determined by a combination of physical and physiological factors, but food availability may challenge the capacity to meet nutritional needs. Western gorillas (Gorilla gorilla are an interesting model for investigating this topic because they are folivore-frugivores that adjust their diet and activities to seasonal variation in fruit availability. Observations of one habituated group of western gorillas in Bai-Hokou, Central African Republic (December 2004-December 2005 were used to examine seasonal variation in diet quality and nutritional intake. We tested if during the high fruit season the food consumed by western gorillas was higher in quality (higher in energy, sugar, fat but lower in fibre and antifeedants than during the low fruit season. Food consumed during the high fruit season was higher in digestible energy, but not any other macronutrients. Second, we investigated whether the gorillas increased their daily intake of carbohydrates, metabolizable energy (KCal/g OM, or other nutrients during the high fruit season. Intake of dry matter, fibers, fat, protein and the majority of minerals and phenols decreased with increased frugivory and there was some indication of seasonal variation in intake of energy (KCal/g OM, tannins, protein/fiber ratio, and iron. Intake of non-structural carbohydrates and sugars was not influenced by fruit availability. Gorillas are probably able to extract large quantities of energy via fermentation since they rely on proteinaceous leaves during the low fruit season. Macronutrients and micronutrients, but not digestible energy, may be limited for them during times of low fruit availability because they are hind-gut fermenters. We discuss the advantages of seasonal frugivores having large dietary breath and flexibility, significant characteristics to consider in the conservation strategies of endangered species.

  1. Plastic Beaches: occurrence and accumulation of marine debris on barrier islands in the Gulf of Mexico

    Science.gov (United States)

    Wessel, C.; Albins, K.; Cebrian, J.

    2016-02-01

    Marine debris is any persistent solid material that is manufactured or processed and directly or indirectly, intentionally or unintentionally, disposed of or abandoned into the marine environment (33USC§1951). Marine debris is an economic, environmental, human health and aesthetic problem posing a complex challenge. Coastal communities are among the most seriously affected because of increased expenses for beach cleaning, public health and waste disposal, as well as a loss of income from decreased tourism. To better document this problem we are monitoring the occurrence and accumulation rate of marine debris on 6 barrier islands in the northern Gulf of Mexico (nGoM). Surveys are conducted at low tide and consist of 100m-long transects along the shoreline extending from the water edge to the upland shoreline limit. All debris larger than 5 mm is collected and recorded. Debris is then sorted by material, and dry mass is recorded. With this information we are investigating four specific questions: (1) what are the major types and possible sources (land or ocean based) of shoreline debris; (2) does the rate of debris deposition onto the shoreline show seasonal oscillations; (3) how does debris deposition change from east to west in the nGoM; and (4) what are the possible causes of the temporal and spatial trends found (e.g. rainfall and runoff, human population, boat traffic)? During the first year of sampling we are beginning to see trends emerge. More trash consistently washes up on the ocean side versus the sound side of the barrier islands, which suggests either large amounts of trash in the nGoM is ocean-based debris, or it is driven by beach goers, or both. In addition, we have found a significant increase in the amount of trash on the shoreline during tourist/boating season (May to September), although trash items tend to be smaller in size during that season. At the presentation we will discuss these and other trends that emerge with a more complete data set.

  2. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals.

    Science.gov (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2016-12-01

    Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha -1 ) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5-91.2 % and the concentrations of Cd and Pb in brown rice by 20.9-50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha -1 ) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.

  3. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  4. Fructan dynamics in the underground organs of Chresta exsucca (Asteraceae, a dry season flowering species

    Directory of Open Access Journals (Sweden)

    Camila Silva dos Santos

    2017-11-01

    Full Text Available ABSTRACT Climatic seasonality has an influence on the phenology of native Cerrado plants. Herbs and subshrubs tend to flower in the rainy season, although some species of these habits flower in the dry season. Reserve carbohydrates, stored in the underground organs, are used to support phases of high energy-demand, but also may protect plants from damage during periods of environmental limitation. In this study we evaluated variation in fructan levels in the underground organs of field-grown plants of Chresta exsucca among different phenological phases. Chresta exsucca flowers in the dry season and possesses a diffuse underground system, which stores inulin-type fructans. Resprouting was continual during the sampling period. Oligosaccharide content was always higher than polysaccharide content, except during senescence, the only phase with an oligosaccharide: polysaccharide ratio < 1. Fructan accumulation occurred during vegetative growth until flowering. Fructan mobilization was prominent during resprouting until the beginning of vegetative growth. Fructans stored in the underground organs of C. exsucca serve to fulfill the energetic demands of development and maintenance of this complex structure. In this way, fructans are essential to the persistence of this species in the environment of the Cerrado by ensuring reproduction in harsh conditions, such as drought.

  5. Bio-accumulation of lanthanum from lanthanum modified bentonite treatments in lake restoration.

    Science.gov (United States)

    Waajen, G; van Oosterhout, F; Lürling, M

    2017-11-01

    Lanthanum (La) modified bentonite (LMB) is one of the available mitigating agents used for the reduction of the phosphorus (P) recycling in eutrophic lakes. The potential toxicity of the La from LMB to aquatic organisms is a matter of concern. In this study the accumulation of La was investigated in the macrophyte Elodea nuttallii, in chironomid larvae and in several fish species during periods up to five years following in situ LMB applications. The application of LMB increased the La concentration of exposed plants and animals. During the first growing season following LMB applications, the La content of E. nuttallii increased 78 fold (3.98-310.68 μg La g -1 DW) to 127 fold (2.46-311.44 μg La g -1 ). During the second growing season following application, the La content decreased but was still raised compared to plants that had not been exposed. The La content of chironomids was doubled in the two years following LMB application, although the increase was not significant. Raised La concentrations in fish liver, bone, muscle and skin were observed two and five years following to LMB application. Liver tissues showed the highest La increase, ranging from 6 fold (0.046-0.285 μg La g -1 DW) to ∼20 fold (0.080-1.886 μg La g -1 , and 0.122-2.109 μg La g -1 ) two years following application and from 6 fold (0.046-0.262 μg La g -1 ) to 13 fold (0.013-0.167 μg La g -1 ) after five years in pelagic and littoral fish. The La content of the liver from Anguilla anguilla (eel) had increased 94 fold (0.034-3.176 μg La g -1 ) two years and 133 fold (0.034-4.538 μg La g -1 ) five years following LMB application. No acute and chronic effects of La accumulation were observed and human health risks are considered negligible. We advocate the long-term study of effects of La accumulation following future LMB applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.

    Science.gov (United States)

    Wan, Yanan; Camara, Aboubacar Younoussa; Huang, Qingqing; Yu, Yao; Wang, Qi; Li, Huafen

    2018-07-30

    The accumulation of arsenic (As) in rice grain is a potential threat to human health. Our study investigated the possible mediatory role of selenite fertilization on As uptake and accumulation by rice (Oryza sativa L.) under different water management regimes (aerobic or flooded) in a pot experiment. Soil solutions were also extracted during the growing season to monitor As dynamics. Results showed that As contents in the soil solutions, seedlings, and mature rice were higher under flooded than under aerobic water management. Under aerobic conditions, selenite additions slightly increased As concentrations in soil solutions (in the last two samplings), but decreased As levels in rice plants. Relative to the control, 0.5 mg kg -1 selenite decreased rice grain As by 27.5%. Under flooded conditions, however, selenite additions decreased As in soil solutions, while increased As in rice grain. Tendencies also showed that selenite additions decreased the proportion of As in rice shoots both at the seedling stage and maturity, and were more effective in aerobic soil. Our results demonstrate that the effect of selenite fertilizer on As accumulation by rice is related to water management. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Reconstructing the δ(18) O of atmospheric water vapour via the CAM epiphyte Tillandsia usneoides: seasonal controls on δ(18) O in the field and large-scale reconstruction of δ(18) Oa.

    Science.gov (United States)

    Helliker, Brent R

    2014-03-01

    Using both oxygen isotope ratios of leaf water (δ(18) OL ) and cellulose (δ(18) OC ) of Tillandsia usneoides in situ, this paper examined how short- and long-term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ(18) Oa ). During sample-intensive field campaigns, predictions of δ(18) OL matched observations well using a non-steady-state model, but the model required data-rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ(18) OL-M ) matched observed δ(18) OL and observed δ(18) Oa when leaf water turnover was less than 3.5 d. Using the δ(18) OL-M model and weekly samples of δ(18) OL across two growing seasons in Florida, USA, reconstructed δ(18) Oa was -12.6 ± 0.3‰. This is compared with δ(18) Oa of -12.4 ± 0.2‰ resolved from the growing-season-weighted δ(18) OC . Both of these values were similar to δ(18) Oa in equilibrium with precipitation, -12.9‰. δ(18) Oa was also reconstructed through a large-scale transect with δ(18) OL and the growing-season-integrated δ(18) OC across the southeastern United States. There was considerable large-scale variation, but there was regional, weather-induced coherence in δ(18) Oa when using δ(18) OL . The reconstruction of δ(18) Oa with δ(18) OC generally supported the assumption of δ(18) Oa being in equilibrium with precipitation δ(18) O (δ(18) Oppt ), but the pool of δ(18) Oppt with which δ(18) Oa was in equilibrium - growing season versus annual δ(18) Oppt - changed with latitude. © 2013 John Wiley & Sons Ltd.

  8. Spatio-seasonal variability of chromophoric dissolved organic matter absorption and responses to photobleaching in a large shallow temperate lake

    Science.gov (United States)

    Encina Aulló-Maestro, María; Hunter, Peter; Spyrakos, Evangelos; Mercatoris, Pierre; Kovács, Attila; Horváth, Hajnalka; Preston, Tom; Présing, Mátyás; Torres Palenzuela, Jesús; Tyler, Andrew

    2017-03-01

    The development and validation of remote-sensing-based approaches for the retrieval of chromophoric dissolved organic matter (CDOM) concentrations requires a comprehensive understanding of the sources and magnitude of variability in the optical properties of dissolved material within lakes. In this study, spatial and seasonal variability in concentration and composition of CDOM and the origin of its variation was studied in Lake Balaton (Hungary), a large temperate shallow lake in central Europe. In addition, we investigated the effect of photobleaching on the optical properties of CDOM through in-lake incubation experiments. There was marked variability throughout the year in CDOM absorption in Lake Balaton (aCDOM(440) = 0. 06-9.01 m-1). The highest values were consistently observed at the mouth of the main inflow (Zala River), which drains humic-rich material from the adjoining Kis-Balaton wetland, but CDOM absorption decreased rapidly towards the east where it was consistently lower and less variable than in the westernmost lake basins. The spectral slope parameter for the interval of 350-500 nm (SCDOM(350-500)) was more variable with increasing distance from the inflow (observed range 0.0161-0.0181 nm-1 for the mouth of the main inflow and 0.0158-0.0300 nm-1 for waters closer to the outflow). However, spatial variation in SCDOM was more constant exhibiting a negative correlation with aCDOM(440). Dissolved organic carbon (DOC) was strongly positively correlated with aCDOM(440) and followed a similar seasonal trend but it demonstrated more variability than either aCDOM or SCDOM with distance through the system. Photobleaching resulting from a 7-day exposure to natural solar UV radiation resulted in a marked decrease in allochthonous CDOM absorption (7.04 to 3.36 m-1, 42 % decrease). Photodegradation also resulted in an increase in the spectral slope coefficient of dissolved material.

  9. Accumulation mechanism of 67Ga-citrate into malignant tumor

    International Nuclear Information System (INIS)

    Yamada, Norihisa

    1988-01-01

    In an attempt to explore the accumulation mechanism of Ga-67 in malignant tumors, the role of lysosomes was examined in tumor-bearing mice. Both Ga-67 and Sc-46 radioactivities in the lysosomal fraction were measured by the well type scintilation counter. The disruption of lysosome did not occur in the process of the fractionation procedures because Sc-46 was readily taken up by the lysosome of tumor cells. A large quantity of Ga-67 was taken up by the tumor cytosol and a small quantity was taken up by the tumor lysosome. Both of the nuclides were readily taken up by the liver, with almost the same accumulation rates. Ga-67 was bound to acid mucopolysaccharide with a molecular weight of 10,000 dalton, while Sc-46 was bound to acid mucopolysaccharide whose molecular weight exceeds 40,000 dalton. Lysosomal accumulation in tumor tissues depended on binding substances of these nuclides in tissues. Lysosome did not play an important role in the tumor accumulation of Ga-67. Ga-67 is taken up by tumor tissues and connective tissues, and is bound to acid mucopolysaccharide in these tissues. (Namekawa, K)

  10. Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.

    Science.gov (United States)

    Denton, Bethany L; Diese, Leanne E; Firkins, Jeffrey L; Hackmann, Timothy J

    2015-03-01

    The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The Predictability of Dry-Season Precipitation in Tropical West Africa

    Science.gov (United States)

    Knippertz, P.; Davis, J.; Fink, A. H.

    2012-04-01

    Precipitation during the boreal winter dry season in tropical West Africa is rare but occasionally connected to high-impacts for the local population. Previous work has shown that these events are usually connected to a trough over northwestern Africa, an extensive cloud plume on its eastern side, unusual precipitation at the northern and western fringes of the Sahara, and reduced surface pressure over the southern Sahara and Sahel, which allows an inflow of moist southerlies from the Gulf of Guinea to feed the unusual dry-season rainfalls. These results also suggest that the extratropical influence enhances the predictability of these events on the synoptic timescale. Here we further investigate this question for the 11 dry seasons (November-March) 1998/99-2008/09 using rainfall estimates from TRMM (Tropical Rainfall Measuring Mission) and GPCP (Global Precipitation Climatology Project), and operational ensemble predictions from the European Centre for Medium-Range Forecasts (ECMWF). All fields are averaged over the study area 7.5-15°N, 10°W-10°E that spans most of southern West Africa. For each 0000 UTC analysis time, the daily precipitation estimates are accumulated to pentads and compared with 120-hour predictions starting at the same time. Compared to TRMM, the ensemble mean shows a weak positive bias, whereas there is a substantial negative bias with regard to GPCP. Temporal correlations reach a high value of 0.8 for both datasets, showing similar synoptic variability despite the differences in total amount. Standard probabilistic evaluation methods such as relative operating characteristic (ROC) diagrams indicate remarkably good reliability, resolution and skill, particularly for lower precipitation thresholds. Not surprisingly, forecasts cluster at low probabilities for higher thresholds, but the reliability and ROC score are still reasonably high. The results show that global ensemble prediction systems are capable to predict dry-season rainfall events

  12. Seasonal differences in mercury accumulation in Trichiurus lepturus (Cutlassfish) in relation to length and weight in a Northeast Brazilian estuary.

    Science.gov (United States)

    Costa, Monica Ferreira; Barbosa, Scheyla C T; Barletta, Mário; Dantas, David V; Kehrig, Helena A; Seixas, Tércia G; Malm, Olaf

    2009-06-01

    At tropical latitudes, and especially on the semi-arid coasts of the Brazilian Northeast, the rainfall regime governs the water quality of estuaries due to the pronounced difference between the rainy and dry seasons. These changes may be responsible for seasonal changes in bioavailability of mercury (Hg) and other pollutants to the estuarine and coastal biota. Mercury bioaccumulates along estuarine-marine food chains usually result in higher concentrations in tissues of top predators and posing a risk to both marine mammals and humans alike. The Goiana River Estuary (7.5 degrees S) is a typical estuary of the semi-arid tropical regions and supports traditional communities with fisheries (mollusks, fish, and crustacean). It is also responsible for an important part of the biological production of the adjacent coastal waters. Trichiurus lepturus (Actinopterygii: Perciformes) is a pscivorous marine straggler. Fish from this species (n = 104) were captured in a trapping barrier used by the local traditional population and using an otter trawl net along the main channel of the low estuary during two dry seasons (D1 = November, December 2005, January 2006; D2 = November, December 2006, January 2007) and the end of a rainy season (R = August, September, October 2006). Fish muscle samples were preserved cold and then freeze-dried prior to analysis of its total mercury (Hg-T) contents. Total mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. The studied individuals (n = 104) were sub-adult (30-70 cm, 71 ind.) and adult fish (>70 cm, 33 ind.). Weight (W) (204.1 +/- 97.9 g, total biomass = 21,229.7 g) and total length (TL) (63.1 +/- 10.1 cm, range 29.5-89.0 cm) presented a significant (p increase in length and weight during the time they spend in the estuary. Fish from this estuary are shown to be fit for human consumption (125.3 +/- 61.9 microgHg-T kg(-1) w.wt.; n = 104). Fish mercury contents increased

  13. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    Science.gov (United States)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  14. The Contribution of Azolla and Urea in Lowland Rice Growth Production for Three Consecutive Seasons

    International Nuclear Information System (INIS)

    E-L-Sisworo; H-Rasjid; Haryanto; Idawati

    2008-01-01

    Three field experiments have been carried out in three consecutive seasons namely wet season (120 days), dry season (120 days), wet season (120 days) at Pusakanegara. The purpose of this experiment is to test whether urea combined with Azolla could increase lowland rice production and soil quality. The experimental plots have a size of 20 m 2 and in each experimental plot an isotope plot was placed with a size of 1 m 2 . The isotope plots were used to apply labeled 15 N urea. Treatments conducted were lowland varieties: Atomita I (V1) and IR-64 (V2); several levels of urea and Azolla : Pu1 urea-tablets + an Azolla cover (Azc), Pu2 = urea-tablets + Azolla incorporated (Azi ), Pu3 = urea-prill + Azc , Pu4 = urea-prill + Azi; seasons : Ss 1 = wet season, Ss2 = dry season, Ss3 = wet season. The experimental design used was a factorial experiment in a Randomized Block Design, where each treatment was replicated four times. Parameters used were, dry weight of straw (St), grain (G), plant (P1 = St + G) in kg/ha; N-total percentage (% N-to) of St and G, percentage N-derived from urea + Az (% N-Pu) of St and G; percentage N-derived from soil (% N-S) of St and G; uptake of N-Pu and N-S in St, G and P1. Some results of these experiment were, N-Pu play a less important role in growth of lowland crop expressed in several parameters compared to N-soil. The form of N-urea in tablets are superior to that the form of urea in prills. For the last product of lowland rice which is grain obviously V1 (Atomita-1) is better than V2 (IR-64) expressed in t/ha. The progress of seasons showed clearly that there is an N accumulation which might be the increase of soil organic matter (SOM) and that means there is an increase in soil quality in the view point of N. (author)

  15. The Contribution of Azolla and Urea in Lowland Rice Growth Production for Three Consecutive Seasons

    Directory of Open Access Journals (Sweden)

    EL. Sisworo

    2008-01-01

    Full Text Available Three field experiments have been carried out in three consecutive seasons namely wet season (120 days, dry season (120 days, wet season (120 days at Pusakanegara. The purpose of this experiment is to test whether urea combined with Azolla could increase lowland rice production and soil quality. The experimental plots have a size of 20 m2 and in each experimental plot an isotope plot was placed with a size of 1 m2. The isotope plots were used to apply labeled 15N urea. Treatments conducted were lowland varieties: Atomita I (V1 and IR-64 (V2; several levels of urea and Azolla : Pu1 = urea-tablets + an Azolla cover (Azc, Pu2 = urea-tablets + Azolla incorporated (Azi , Pu3 = urea-prill + Azc , Pu4 = urea-prill + Azi; seasons : Ss 1 = wet season, Ss2 = dry season, Ss3 = wet season. The experimental design used was a factorial experiment in a Randomized Block Design, where each treatment was replicated four times. Parameters used were, dry weight of straw (St, grain (G, plant (P1 = St + G in kg/ha; N-total percentage (% N-to of St and G, percentage N-derived from urea + Az (% N-Pu of St and G; percentage N-derived from soil (% N-S of St and G; uptake of N-Pu and N-S in St, G and P1. Some results of these experiment were, N-Pu play a less important role in growth of lowland crop expressed in several parameters compared to N-soil. The form of N-urea in tablets are superior to that the form of urea in prills. For the last product of lowland rice which is grain obviously V1 (Atomita-1 is better than V2 (IR-64 expressed in t/ha. The progress of seasons showed clearly that there is an N accumulation which might be the increase of soil organic matter (SOM and that means there is an increase in soil quality in the view point of N

  16. Influence of ontogeny and environmental exposure on mercury accumulation in muscle and liver of male Round Stingrays.

    Science.gov (United States)

    Lyons, Kady; Carlisle, Aaron B; Lowe, Christopher G

    2017-09-01

    Mercury tissue distribution and its dynamics are poorly understood in elasmobranchs. Total mercury was measured in liver and muscle of male Round Stingrays (Urobatis halleri) from Seal Beach, California, an anthropogenically impacted site, and from the offshore island of Santa Catalina, a less impacted site. Stable isotope analysis was also performed on the muscle and red blood cells (RBCs) of a subset of rays over a range of age classes to investigate mercury accumulation with respect to trophic ecology. Mercury in both tissues was found to be significantly greater in adults than juveniles in mainland rays; however, liver mercury accumulation drastically increased after maturity and was significantly greater in mainland adult rays than Catalina rays. There were no patterns in δ 15 N or δ 13 C with size in muscle; however, there were indications of seasonal changes in RBC δ 15 N, suggesting short term shifts in diet or behavior is likely linked to reproductive status as is mercury accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A comparative study of the accumulation of metals in the barnacle (Tetraclita serrata and the black mussel (Choromytilis meridionalis in False Bay, South Africa

    Directory of Open Access Journals (Sweden)

    Adriaan J. Reinecke

    2014-02-01

    Full Text Available The development of methods to monitor the South African coastal waters offer major challenges. Knowledge and availability of suitable species that may serve as biomonitors will be valuable to obtain information to support good management decisions. It is therefore important to identify local species that show the basic characteristics required for biomonitoring. The aim of this study was to compare, as part of a wider seasonal field study of metals in the intertidal zone of False Bay, South Africa, the body loads of copper (Cu, nickel (Ni, lead (Pb, cadmium (Cd and zinc (Zn in the black mussel (C. meridionalis and the barnacle (T. serrata, and to compare these with environmental concentrations. Also to draw conclusions about the animals’ relative abilities to accumulate priority metals. Specimens of both species were collected over several seasons at different points in False Bay and analysed chemically. The mean body load (soft tissue and shell of metals was higher in the black mussel than in the barnacle during all seasons. A comparison between the body loads and environmental concentrations in water and sediment showed that the priority metals Cd, Ni and Pb are accumulated strongly by both C. meridionalis and T. serrata. The mean Cd body loads varied between 6.43 µg/g and 14.73 µg/g for the various seasons but was not statistically significantly different between seasons. Metal concentrations were in most cases highest during winter. Multiple regression analysis showed a strong correlation between body load of metals in the black mussel and the environmental concentration for most seasons, which indicates that the black mussel can be useful as an active rather than a passive biomonitor. The concept of biomonitoring has merit because it may show long-term tendencies, but it does not offer an absolute measure of immediate, varying pollution levels. It could serve as an additional management tool in a national marine programme for the

  18. Investigation of the seasonal microbiome of Anopheles coluzzii mosquitoes in Mali.

    Directory of Open Access Journals (Sweden)

    Benjamin J Krajacich

    Full Text Available The poorly understood mechanisms of dry season persistence of Anopheles spp. mosquitoes through the dry season in Africa remain a critical gap in our knowledge of Plasmodium disease transmission. While it is thought that adult mosquitoes remain in a dormant state throughout this seven-month dry season, the nature of this state remains unknown and has largely not been recapitulated in laboratory settings. To elucidate possible connections of this state with microbial composition, the whole body microbiomes of adult mosquitoes in the dry and wet seasons in two locations of Mali with varying water availability were compared by sequencing the 16S ribosomal RNA gene. These locations were a village near the Niger River with year-round water sources (N'Gabakoro, "riparian", and a typical Sahelian area with highly seasonal breeding sites (Thierola Area, "Sahelian". The 16S bacterial data consisted of 2057 sequence variants in 426 genera across 184 families. From these data, we found several compositional differences that were seasonally and spatially linked. Counter to our initial hypothesis, there were more pronounced seasonal differences in the bacterial microbiome of riparian, rather than Sahelian areas. These seasonal shifts were primarily in Ralstonia, Sphingorhabdus, and Duganella spp. bacteria that are usually soil and water-associated, indicating these changes may be from bacteria acquired in the larval environment, rather than adulthood. In Sahelian dry season mosquitoes, there was a unique intracellular bacteria, Anaplasma, which likely was acquired through non-human blood feeding. Cytochrome B analysis of blood meals showed greater heterogeneity in host choice of An. coluzzii independent of season in the Thierola area compared to N'Gabakoro (77.5% vs. 94.6% human-origin blood meal, respectively, indicating a relaxation of anthropophily. Overall, this exploratory study provides valuable indications of spatial and seasonal differences in

  19. Hormonal effect on polyphenol accumulation in Cassia tissues cultured in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Shah, R R; Subbaiah, K V; Mehta, A R

    1976-06-01

    Effects of auxin and kinetin on growth and production of phenolic compounds in cultured Cassia fistula L. tissues were examined. Initiation of polyphenols was largely determined by the auxin concentration in the medium. Growth of the cells in relation to accumulation of polyphenols was studied at different auxin and kinetin concentrations. The accumulation of phenolic materials was essentially restricted to the most rapid phase of the growth cycle. Progressive changes in the pattern of peroxidase activity were followed and their relationship with polyphenol synthesis is examined.

  20. Changes in the seasonality of Arctic sea ice and temperature

    Science.gov (United States)

    Bintanja, R.

    2012-04-01

    Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.

  1. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    Science.gov (United States)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  2. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    Science.gov (United States)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward

    2018-01-01

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.

  3. Seasonal changes of fructans in dimorphic roots of Ichthyothere terminalis (Spreng.) Blake (Asteraceae) growing in Cerrado.

    Science.gov (United States)

    de Almeida, Lorrayne Veloso; Ferri, Pedro Henrique; Seraphin, José Carlos; de Moraes, Moemy Gomes

    2017-11-15

    Cerrado is a floristically rich savanna in Brazil, whose vegetation consists of a physiognomic mosaic, influenced by rainfall seasonality. In the dry season rainfall is substantially lower and reduces soil water supply, mainly for herbs and subshrubs. Climatic seasonal variations may well define phenological shifts and induce fluctuations of plant reserve pools. Some Cerrado native species have thickened underground organs that bear buds and store reserves, as adaptive features to enable plant survival following environmental stresses. Asteraceae species accumulate fructans in storage organs, which are not only reserve, but also protecting compounds against the effects of cold and drought. Ichthyothere terminalis is one Asteraceae species abundant in cerrado rupestre, with underground organs consisting of thickened orthogravitropic and diagravitropic roots. The objectives of this study were to analyze how abiotic environmental factors and plant phenology influence fructan dynamics in field grown plants, and verify if fructan metabolism differs in both root types for one year. I. terminalis accumulates inulin-type fructans in 10-40% of the dry mass in both root types. Fructan dynamics have similar patterns described for other Asteraceae species, exhibiting a proportional increase of polysaccharides with the senescence of the aerial organs. Multivariate analyzes showed that, as rainfall decreased, environmental factors had a stronger influence on metabolite levels than phenological shifts in both root types. Only slight differences were found in fructan dynamics between orthogravitropic and diagravitropic roots, suggesting they may have similar fructan metabolism regulation. However, these small differences may reflect distinct microclimatic conditions in both root types and also represent the influence of sink strength. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    Science.gov (United States)

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  5. Environmental niche conservatism explains the accumulation of species richness in Mediterranean-hotspot plant genera.

    Science.gov (United States)

    Skeels, Alexander; Cardillo, Marcel

    2017-03-01

    The causes of exceptionally high plant diversity in Mediterranean-climate biodiversity hotspots are not fully understood. We asked whether a mechanism similar to the tropical niche conservatism hypothesis could explain the diversity of four large genera (Protea, Moraea, Banksia, and Hakea) with distributions within and adjacent to the Greater Cape Floristic Region (South Africa) or the Southwest Floristic Region (Australia). Using phylogenetic and spatial data we estimated the environmental niche of each species, and reconstructed the mode and dynamics of niche evolution, and the geographic history, of each genus. For three genera, there were strong positive relationships between the diversity of clades within a region and their inferred length of occupation of that region. Within genera, there was evidence for strong evolutionary constraint on niche axes associated with climatic seasonality and aridity, with different niche optima for hotspot and nonhotspot clades. Evolutionary transitions away from hotspots were associated with increases in niche breadth and elevated rates of niche evolution. Our results point to a process of "hotspot niche conservatism" whereby the accumulation of plant diversity in Mediterranean-type ecosystems results from longer time for speciation, with dispersal away from hotspots limited by narrow and phylogenetically conserved environmental niches. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Soil and biomass carbon re-accumulation after landslide disturbances

    Science.gov (United States)

    Schomakers, Jasmin; Jien, Shih-Hao; Lee, Tsung-Yu; Huang-Chuan, Jr.; Hseu, Zeng-Yei; Lin, Zan Liang; Lee, Li-Chin; Hein, Thomas; Mentler, Axel; Zehetner, Franz

    2017-07-01

    In high-standing islands of the Western Pacific, typhoon-triggered landslides occasionally strip parts of the landscape of its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC) from land to the ocean. After such disturbances, new vegetation colonizes the landslide scars and OC starts to re-accumulate. In the subtropical mountains of Taiwan and in other parts of the world, bamboo (Bambusoideae) species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, a chronosequence was established on four former landslide scars in the Central Mountain Range of Taiwan, ranging in age from 6 to 41 years post disturbance as determined by landslide mapping from remote sensing. The younger landslide scars were colonized by Miscanthus floridulus, while after approx. 15 to 20 years of succession, bamboo species (Phyllostachys) were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an undisturbed Cryptomeria japonica forest stand in the area. After initially slow re-vegetation, biomass carbon accumulated in Miscanthus stands with mean annual accretion rates of 2 ± 0.5 Mg C ha- 1 yr- 1. Biomass carbon continued to increase after bamboo invasion and reached 40% of that in the reference forest site after 41 years of landslide recovery. Soil OC accumulation rates were 2.0 Mg C ha- 1 yr- 1, 6 to 41 years post disturbance reaching 64% of the level in the reference forest. Our results from this in-situ study suggest that recovering landslide scars are strong carbon sinks once an initial lag period of vegetation re-establishment is overcome.

  7. Seasonal dynamics of atmospheric and river inputs of black carbon, and impacts on biogeochemical cycles in Halong Bay, Vietnam

    Directory of Open Access Journals (Sweden)

    Xavier Mari

    2017-12-01

    Full Text Available Emissions of black carbon (BC, a product of incomplete combustion of fossil fuels, biofuels and biomass, are high in the Asia-Pacific region, yet input pathways and rates to the ocean are not well constrained. Atmospheric and riverine inputs of BC in Halong Bay (Vietnam, a hotspot of atmospheric BC, were studied at monthly intervals during one year. Climate in Halong Bay is governed by the monsoon regime, characterized by a northeast winter monsoon (dry season and southeast summer monsoon (wet season. During the dry season, atmospheric BC concentrations averaged twice those observed during the wet season. In the sea surface microlayer (SML and underlying water (ULW, concentrations of particulate BC (PBC averaged 539 and 11 μmol C L–1, respectively. Dissolved BC (DBC concentrations averaged 2.6 μmol C L–1 in both the SML and ULW. Seasonal variations indicated that PBC concentration in the SML was controlled by atmospheric deposition during the dry season, while riverine inputs controlled both PBC and DBC concentrations in ULW during the wet season. Spatiotemporal variations of PBC and DBC during the wet season suggest that river runoff was efficient in transporting PBC that had accumulated on land during the dry season, and in mobilizing and transporting DBC to the ocean. The annual river flux of PBC was about 3.8 times higher than that of DBC. The monsoon regime controls BC input to Halong Bay by favoring dry deposition of BC originating from the north during the dry season, and wet deposition and river runoff during the wet season. High PBC concentrations seem to enhance the transfer of organic carbon from dissolved to particulate phase by adsorbing dissolved organic carbon and stimulating aggregation. Such processes may impact the availability and biogeochemical cycling of other dissolved substances, including nutrients, for the coastal marine ecosystem.

  8. Foliar accumulation of polycyclic aromatic hydrocarbons in native tree species from the Atlantic Forest (SE-Brazil).

    Science.gov (United States)

    Dias, Ana Paula L; Rinaldi, Mirian C S; Domingos, Marisa

    2016-02-15

    Polycyclic aromatic hydrocarbons (PAHs) are toxic to living organisms. They can accumulate on foliar surfaces due to their affinity with apolar organic compounds, which enables the use of native plant species as sentinels of atmospheric PAH deposition in polluted ecosystems. The present study extends the knowledge about this subject in the tropical region by focusing on the PAH accumulation in the foliage of dominant tree species (Astronium graveolens, Croton floribundus, Piptadenia gonoacantha) in four remnants of Semi-deciduous Atlantic Forest surrounded by diversified sources of PAHs and located in the cities of Campinas, Paulínia, Holambra and Cosmópilis (central-eastern part of São Paulo State, SE-Brazil). Leaves of the tree species were collected in the forest remnants during the wet and dry seasons (2011 to 2013). All samples were analyzed by high performance liquid chromatography (HPLC) coupled to a fluorescence detector for identification of 14 PAHs. The native tree species showed distinct capacities to accumulate PAHs. All of them accumulated proportionally more light PAHs than heavy PAHs, mainly during the dry period. P. gonoacantha was the most effective accumulator species. Higher accumulations of most of the PAHs occurred during the dry periods. The predominance of moderately (1 ≤ EF forest remnants indicated that vehicular sources were widely distributed in the entire region. The predominance of the moderate to high enrichment of ACE in leaf samples from the forest remnants located in Paulínia, Holambra and Cosmópolis indicated that they were also affected by emissions from petrochemical industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A study of regional trends in annual and seasonal precipitation and runoff series

    Energy Technology Data Exchange (ETDEWEB)

    Tveito, O.E.; Hisdal, H.

    1994-03-10

    In this study long and homogeneous time series of runoff and precipitation are studied to identify variations in time and space. The method of empirical orthogonal functions (EOF-method) is applied. Both annual observations, smoothed (using Gauss filter) and seasonal values are analyzed. The analysis shows that the temporal variations in runoff and precipitation coincide. The deviations occurring in the seasonal values are caused by snow accumulation and snow melt. In the filtered series temporal trends are found. A comparison between the different normal periods has been carried out for precipitation. The 1900-30 and 1960-90 periods differ from the 1930-60 period. This may be caused by different weather types dominating the different periods. The different weather types are reflected in different empirical orthogonal functions. This is verified by regional studies. The coinciding patterns in runoff and precipitation are important aspects in climate studies and for extrapolation purposes. 11 refs., 20 figs., 1 tab.

  10. Seasonality, mobility, and livability.

    Science.gov (United States)

    2012-01-31

    Signature project 4a, Seasonality, Mobility, and Livability investigated the effects of weather, season, built environment, community amenities, attitudes, and demographics on mobility and quality of life (QOL). A four season panel survey exami...

  11. Dynamical seasonal climate prediction using an ocean-atmosphere coupled climate model developed in partnership between South Africa and the IRI

    CSIR Research Space (South Africa)

    Beraki, AF

    2014-02-01

    Full Text Available dedicated a large amount of resources to utilize Atmospheric General Circulation Models 66 (AGCMs) as operational seasonal forecast tools (Landman et al. 2012). These models 67 have all been developed outside of South Africa, but have been used extensively... Niña seasons (Landman et al. 2012; Landman and Beraki 2012). As noted above, coupled 99 models are largely assumed or hypothesized to represent the state of the art of seasonal 100 forecasting. In fact, it has been conclusively shown through...

  12. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs

    International Nuclear Information System (INIS)

    Qin, Yinghong; Zhang, Mingyi; Hiller, Jacob E.

    2017-01-01

    Cool roofs are gaining popularity as passive building cooling techniques, but the correlation between energy savings and rooftop albedo has not been understood completely. Here we theoretically model the daily accumulative inward heat (DAIH) from building roofs with different albedo values, correlating the heat gain of the building roof to both the rooftop albedo and the incident solar radiation. According to this model, the DAIH increases linearly with the daily zenith solar radiation, but decreases linearly with the rooftop albedo. A small building cell was constructed to monitor the heat gain of the building under the conditions of non-insulated and insulated roofs. The observational DAIH is highly coincident with the theoretical one, validating the theoretical model. It was found that insulating the roof, increasing the rooftop albedo, or both options can effectively curtail the heat gain in buildings during the summer season. The proposed theoretical model would be a powerful tool for evaluating the heat gain of the buildings and estimating the energy savings potential of high-reflective cool roofs. - Highlights: • Daily accumulative heat gain from a building roof is theoretically modeled. • Daily accumulative heat gain from a building roof increases linearly with rooftop absorptivity. • Increasing the roof insulation tapers the effect of the rooftop absorptivity. • The theoretical model is powerful for estimating energy savings of reflective roofs.

  13. Simple Rain-Shelter Cultivation Prolongs Accumulation Period of Anthocyanins in Wine Grape Berries

    Directory of Open Access Journals (Sweden)

    Xiao-Xi Li

    2014-09-01

    Full Text Available Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L. Cabernet Sauvignon grown in eastern China. The results showed that rain-shelter cultivation, compared with the open-field, extended the period of rapid accumulation of sugar, increased the soluble solid content in the grape berries, and delayed the senescence of the green leaves at harvest. The concentrations of most anthocyanins were significantly enhanced in the rain-shelter cultivated grapes, and their content increases were closely correlated with the accumulation of sugar. However, the compositions of anthocyanins in the berries were not altered. Correspondingly, the expressions of VvF3'H, VvF3'5'H, and VvUFGT were greatly up-regulated and this rising trend appeared to continue until berry maturation. These results suggested that rain-shelter cultivation might help to improve the quality of wine grape berries by prolonging the life of functional leaves and hence increasing the assimilation products.

  14. Impact of climate change on mid-twenty-first century growing seasons in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kerry H.; Vizy, Edward K. [The University of Texas at Austin, Department of Geological Sciences, Jackson School of Geosciences, Austin, TX (United States)

    2012-12-15

    Changes in growing seasons for 2041-2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5-10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5-15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40-80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean. (orig.)

  15. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2012-05-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  16. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park.

    Science.gov (United States)

    Metz, Matthew C; Smith, Douglas W; Vucetich, John A; Stahler, Daniel R; Peterson, Rolf O

    2012-05-01

    1. For large predators living in seasonal environments, patterns of predation are likely to vary among seasons because of related changes in prey vulnerability. Variation in prey vulnerability underlies the influence of predators on prey populations and the response of predators to seasonal variation in rates of biomass acquisition. Despite its importance, seasonal variation in predation is poorly understood. 2. We assessed seasonal variation in prey composition and kill rate for wolves Canis lupus living on the Northern Range (NR) of Yellowstone National Park. Our assessment was based on data collected over 14 winters (1995-2009) and five spring-summers between 2004 and 2009. 3. The species composition of wolf-killed prey and the age and sex composition of wolf-killed elk Cervus elaphus (the primary prey for NR wolves) varied among seasons. 4. One's understanding of predation depends critically on the metric used to quantify kill rate. For example, kill rate was greatest in summer when quantified as the number of ungulates acquired per wolf per day, and least during summer when kill rate was quantified as the biomass acquired per wolf per day. This finding contradicts previous research that suggests that rates of biomass acquisition for large terrestrial carnivores tend not to vary among seasons. 5. Kill rates were not well correlated among seasons. For example, knowing that early-winter kill rate is higher than average (compared with other early winters) provides little basis for anticipating whether kill rates a few months later during late winter will be higher or lower than average (compared with other late winters). This observation indicates how observing, for example, higher-than-average kill rates throughout any particular season is an unreliable basis for inferring that the year-round average kill rate would be higher than average. 6. Our work shows how a large carnivore living in a seasonal environment displays marked seasonal variation in

  17. Multiple anatomy optimization of accumulated dose

    International Nuclear Information System (INIS)

    Watkins, W. Tyler; Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-01-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated

  18. Multiple anatomy optimization of accumulated dose

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V. [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Moore, Joseph A. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Gordon, James [Henry Ford Health System, Detroit, Michigan 48202 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Hugo, Geoffrey D. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  19. Multiple anatomy optimization of accumulated dose.

    Science.gov (United States)

    Watkins, W Tyler; Moore, Joseph A; Gordon, James; Hugo, Geoffrey D; Siebers, Jeffrey V

    2014-11-01

    To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  20. Seasonal predictability of Kiremt rainfall in coupled general circulation models

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen

    2017-11-01

    The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.

  1. Varicella-Zoster Virus in Perth, Western Australia: Seasonality and Reactivation.

    Directory of Open Access Journals (Sweden)

    Igor A Korostil

    Full Text Available Identification of the factors affecting reactivation of varicella-zoster virus (VZV largely remains an open question. Exposure to solar ultra violet (UV radiation is speculated to facilitate reactivation. Should the role of UV in reactivation be significant, VZV reactivation patterns would generally be expected to be synchronous with seasonal UV profiles in temperate climates.We analysed age and gender specific VZV notification time series data from Perth, Western Australia (WA. This city has more daily sunshine hours than any other major Australian city. Using the cosinor and generalized linear models, we tested these data for seasonality and correlation with UV and temperature.We established significant seasonality of varicella notifications and showed that while herpes-zoster (HZ was not seasonal it had a more stable seasonal component in males over 60 than in any other subpopulation tested. We also detected significant association between HZ notifications and UV for the entire Perth population as well as for females and males separately. In most cases, temperature proved to be a significant factor as well.Our findings suggest that UV radiation may be important for VZV reactivation, under the assumption that notification data represent an acceptably accurate qualitative measure of true VZV incidence.

  2. Study of steam condensation in SG tubes with large amount of nitrogen to be accumulated

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S.A.; Sitnik, Y.K. [EDO Gidropress, Podolsk (Russian Federation)

    1997-12-31

    The effect of nitrogen during SG heat transfer under SBLOCA conditions have been studied. Depressurization of the primary side leads to release of nitrogen dissolved in the hydroaccumulator water. Nitrogen can accumulate in SGs and affect adversely heat transfer under reflux condenser conditions. The main objective of the study has been to show that nitrogen does not prevent heat transfer in SGs of the VVER-640 which is reactor plant of new generation. (orig.).

  3. Study of steam condensation in SG tubes with large amount of nitrogen to be accumulated

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S A; Sitnik, Y K [EDO Gidropress, Podolsk (Russian Federation)

    1998-12-31

    The effect of nitrogen during SG heat transfer under SBLOCA conditions have been studied. Depressurization of the primary side leads to release of nitrogen dissolved in the hydroaccumulator water. Nitrogen can accumulate in SGs and affect adversely heat transfer under reflux condenser conditions. The main objective of the study has been to show that nitrogen does not prevent heat transfer in SGs of the VVER-640 which is reactor plant of new generation. (orig.).

  4. Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations.

    Science.gov (United States)

    Oleksyn, J.; Zytkowiak, R.; Karolewski, P.; Reich, P. B.; Tjoelker, M. G.

    2000-06-01

    We explored environmental and genetic factors affecting seasonal dynamics of starch and soluble nonstructural carbohydrates in needle and twig cohorts and roots of Scots pine (Pinus sylvestris L.) trees of six populations originating between 49 degrees and 60 degrees N, and grown under common garden conditions in western Poland. Trees of each population were sampled once or twice per month over a 3-year period from age 15 to 17 years. Based on similarity in starch concentration patterns in needles, two distinct groups of populations were identified; one comprised northern populations from Sweden and Russia (59-60 degrees N), and another comprised central European populations from Latvia, Poland, Germany and France (49-56 degrees N). Needle starch concentrations of northern populations started to decline in late spring and reached minimum values earlier than those of central populations. For all populations, starch accumulation in spring started when minimum air temperature permanently exceeded 0 degrees C. Starch accumulation peaked before bud break and was highest in 1-year-old needles, averaging 9-13% of dry mass. Soluble carbohydrate concentrations were lowest in spring and summer and highest in autumn and winter. There were no differences among populations in seasonal pattern of soluble carbohydrate concentrations. Averaged across all populations, needle soluble carbohydrate concentrations increased from about 4% of needle dry mass in developing current-year needles, to about 9% in 1- and 2-year-old needles. Root carbohydrate concentration exhibited a bimodal pattern with peaks in spring and autumn. Northern populations had higher concentrations of fine-root starch in spring and autumn than central populations. Late-summer carbohydrate accumulation in roots started only after depletion of starch in needles and woody shoots. We conclude that Scots pine carbohydrate dynamics depend partially on inherited properties that are probably related to phenology of root

  5. Seasonal Allergies (Hay Fever)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Seasonal Allergies (Hay Fever) KidsHealth / For Parents / Seasonal Allergies (Hay ... español Alergia estacional (fiebre del heno) About Seasonal Allergies "Achoo!" It's your son's third sneezing fit of ...

  6. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and

  7. Seasonal reproduction of vampire bats and its relation to seasonality of bovine rabies.

    Science.gov (United States)

    Lord, R D

    1992-04-01

    Studies of pregnancy and lactation in vampire bats (Desmodus rotundus) in northern Argentina over a 4 yr period showed an inverse relationship between prevalence of pregnancy and lactation, the consequence of birth and onset of lactation, which was correlated with the wet season. The seasonal influx of young susceptibles into the vampire population in the wet season coincided with the well known increase in vampire transmitted rabies in that season.

  8. Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa

    International Nuclear Information System (INIS)

    Zhang Xin; Uroic, M. Kalle; Xie Wanying; Zhu Yongguan; Chen Baodong; McGrath, Steve P.; Feldmann, Jörg; Zhao Fangjie

    2012-01-01

    The rootless duckweed Wolffia globosa can accumulate and tolerate relatively large amounts of arsenic (As); however, the underlying mechanisms were unknown. W. globosa was exposed to different concentrations of arsenate with or without L-buthionine sulphoximine (BSO), a specific inhibitor of γ-glutamylcysteine synthetase. Free thiol compounds and As(III)–thiol complexes were identified and quantified using HPLC – high resolution ICP-MS – accurate mass ESI-MS. Without BSO, 74% of the As accumulated in the duckweed was complexed with phytochelatins (PCs), with As(III)–PC 4 and As(III)–PC 3 being the main species. BSO was taken up by the duckweed and partly deaminated. The BSO treatment completely suppressed the synthesis of PCs and the formation of As(III)–PC complexes, and also inhibited the reduction of arsenate to arsenite. BSO markedly decreased both As accumulation and As tolerance in W. globosa. The results demonstrate an important role of PCs in detoxifying As and enabling As accumulation in W. globosa. - Highlights: ► W. globosa can accumulate and tolerate relatively large amounts of arsenic. ► Majority of the As accumulated in W. globosa was complexed with phytochelatins (PCs). ► As(III)–PC 4 and As(III)–PC 3 are the main complex species. ► Complexation of arsenite with phytochelatins plays a key role in As tolerance and accumulation. - Complexation of arsenite with phytochelatins plays a key role in both arsenic tolerance and accumulation in the aquatic macrophyte Wolffia globosa.

  9. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  10. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea

    OpenAIRE

    Stief, Peter; Fuchs-Ocklenburg, Silvia; Kamp, Anja; Manohar, Cathrine-Sumathi; Houbraken, Jos; Boekhout, Teun; de Beer, Dirk; Stoeck, Thorsten

    2014-01-01

    Background A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oce...

  11. Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model

    OpenAIRE

    Flavio Justino; Frode Stordal; Edward K. Vizy; Kerry H. Cook; Marcos P. S. Pereira

    2016-01-01

    Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly ...

  12. Auditory Streaming as an Online Classification Process with Evidence Accumulation

    Science.gov (United States)

    Barniv, Dana; Nelken, Israel

    2015-01-01

    When human subjects hear a sequence of two alternating pure tones, they often perceive it in one of two ways: as one integrated sequence (a single "stream" consisting of the two tones), or as two segregated sequences, one sequence of low tones perceived separately from another sequence of high tones (two "streams"). Perception of this stimulus is thus bistable. Moreover, subjects report on-going switching between the two percepts: unless the frequency separation is large, initial perception tends to be of integration, followed by toggling between integration and segregation phases. The process of stream formation is loosely named “auditory streaming”. Auditory streaming is believed to be a manifestation of human ability to analyze an auditory scene, i.e. to attribute portions of the incoming sound sequence to distinct sound generating entities. Previous studies suggested that the durations of the successive integration and segregation phases are statistically independent. This independence plays an important role in current models of bistability. Contrary to this, we show here, by analyzing a large set of data, that subsequent phase durations are positively correlated. To account together for bistability and positive correlation between subsequent durations, we suggest that streaming is a consequence of an evidence accumulation process. Evidence for segregation is accumulated during the integration phase and vice versa; a switch to the opposite percept occurs stochastically based on this evidence. During a long phase, a large amount of evidence for the opposite percept is accumulated, resulting in a long subsequent phase. In contrast, a short phase is followed by another short phase. We implement these concepts using a probabilistic model that shows both bistability and correlations similar to those observed experimentally. PMID:26671774

  13. Ascorbic acid transport and accumulation in human neutrophils

    International Nuclear Information System (INIS)

    Washko, P.; Rotrosen, D.; Levine, M.

    1989-01-01

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake

  14. ACCUMULATION OF RADIOCESIUM BY MUSHROOMS IN THE ENVIRONMENT: A LITERATURE REVIEW AND IMAGE GALLERY

    Energy Technology Data Exchange (ETDEWEB)

    Duff, M; Mary Ramsey, M

    2006-11-05

    During the last 50 years, a large amount of information on radionuclide accumulators or 'sentinel-type' organisms in the environment has been published. Much of this work focused on the risks of food-chain transfer of radionuclides to higher organisms such as reindeer and man. However, until the 1980's and 1990's, there has been little published data on the radiocesium ({sup 134}Cs and {sup 137}Cs) accumulation by mushrooms. This presentation will consist of a review of the published data for {sup 134,137}Cs accumulation by mushrooms in nature. The review will consider the time of sampling, sample location characteristics, the radiocesium source term and other aspects that promote {sup 134,137}Cs uptake by mushrooms. This review will focus on published data for mushrooms that demonstrate a large propensity for use in the environmental biomonitoring of radiocesium contamination. It will also provide photographs and descriptions of habitats for many of these mushrooms to facilitate their collection for biomonitoring.

  15. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    Science.gov (United States)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal

  16. Batteries and accumulators in France

    International Nuclear Information System (INIS)

    2012-12-01

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  17. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR

    Science.gov (United States)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.

    2009-05-01

    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed

  18. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers

    Science.gov (United States)

    Passarelli, Claire; Meziane, Tarik; Thiney, Najet; Boeuf, Dominique; Jesus, Bruno; Ruivo, Mickael; Jeanthon, Christian; Hubas, Cédric

    2015-02-01

    Biofilms, or microbial mats, are common associations of microorganisms in tidal flats; they generally consist of a large diversity of organisms embedded in a matrix of Extracellular Polymeric Substances (EPS). These molecules are mainly composed of carbohydrates and proteins, but their detailed monomer compositions and seasonal variations are currently unknown. Yet this composition determines the numerous roles of biofilms in these systems. This study investigated the changes in composition of carbohydrates in intertidal microbial mats over a year to decipher seasonal variations in biofilms and in varying hydrodynamic conditions. This work also aimed to assess how these compositions are related to microbial assemblages. In this context, natural biofilms whose development was influenced or not by artificial structures mimicking polychaete tubes were sampled monthly for over a year in intertidal flats of the Chausey archipelago. Biofilms were compared through the analysis of their fatty acid and pigment contents, and the monosaccharide composition of their EPS carbohydrates. Carbohydrates from both colloidal and bound EPS contained mainly glucose and, to a lower extent, galactose and mannose but they showed significant differences in their detailed monosaccharide compositions. These two fractions displayed different seasonal evolution, even if glucose accumulated in both fractions in summer; bound EPS only were affected by artificial biogenic structures. Sediment composition in fatty acids and pigments showed that microbial communities were dominated by diatoms and heterotrophic bacteria. Their relative proportions, as well as those of other groups like cryptophytes, changed between times and treatments. The changes in EPS composition were not fully explained by modifications of microbial assemblages but also depended on the processes taking place in sediments and on environmental conditions. These variations of EPS compositions are likely to alter different

  19. Spin heat accumulation induced by tunneling from a ferromagnet.

    Science.gov (United States)

    Vera-Marun, I J; van Wees, B J; Jansen, R

    2014-02-07

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the coexisting electrical spin accumulation and can give a different Hanle spin precession signature. The effect is governed by the spin polarization of the Peltier coefficient of the tunnel contact, its Seebeck coefficient, and the spin heat resistance of the nonmagnetic material, which is related to the electrical spin resistance by a spin-Wiedemann-Franz law. Moreover, spin heat injection is subject to a heat conductivity mismatch that is overcome if the tunnel interface has a sufficiently large resistance.

  20. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Directory of Open Access Journals (Sweden)

    Floris M van Beest

    Full Text Available BACKGROUND: Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. METHODOLOGY/PRINCIPAL FINDINGS: Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer. We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat at low ambient temperatures and mature coniferous forest (thermal shelter during thermally stressful conditions, lost less mass in winter and gained more mass in summer. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in

  1. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Science.gov (United States)

    van Beest, Floris M; Milner, Jos M

    2013-01-01

    Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance are likely contributory factors. Climate-related effects on animal

  2. Seasonality in basal metabolic rate and thermal conductance in a long-distance migrant shorebird, the knot (Calidris canutus)

    NARCIS (Netherlands)

    Piersma, T.; Cadée, N.; Daan, S.

    Knots Calidris canutus live highly seasonal lives, breeding solitarily on high arctic tundra and spending the non-breeding season in large social flocks in temperate to tropical estuaries. Their reproductive activities and physiological preparations for long flights are reflected in pronounced

  3. A central solar-industrial waste heat heating system with large scale borehole thermal storage

    NARCIS (Netherlands)

    Guo, F.; Yang, X.; Xu, L.; Torrens, I.; Hensen, J.L.M.

    2017-01-01

    In this paper, a new research of seasonal thermal storage is introduced. This study aims to maximize the utilization of renewable energy source and industrial waste heat (IWH) for urban district heating systems in both heating and non-heating seasons through the use of large-scale seasonal thermal

  4. Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians

    Directory of Open Access Journals (Sweden)

    David R. Daversa

    2018-05-01

    Full Text Available Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd. Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.

  5. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton

    KAUST Repository

    Alonso-Sáez, Laura

    2015-04-08

    Summary: Rare microbial taxa are increasingly recognized to play key ecological roles, but knowledge of their spatio-temporal dynamics is lacking. In a time-series study in coastal waters, we detected 83 bacterial lineages with significant seasonality, including environmentally relevant taxa where little ecological information was available. For example, Verrucomicrobia had recurrent maxima in summer, while the Flavobacteria NS4, NS5 and NS2b clades had contrasting seasonal niches. Among the seasonal taxa, only 4 were abundant and persistent, 20 cycled between rare and abundant and, remarkably, most of them (59) were always rare (contributing <1% of total reads). We thus demonstrate that seasonal patterns in marine bacterioplankton are largely driven by lineages that never sustain abundant populations. A fewer number of rare taxa (20) also produced episodic \\'blooms\\', and these events were highly synchronized, mostly occurring on a single month. The recurrent seasonal growth and loss of rare bacteria opens new perspectives on the temporal dynamics of the rare biosphere, hitherto mainly characterized by dormancy and episodes of \\'boom and bust\\', as envisioned by the seed-bank hypothesis. The predictable patterns of seasonal reoccurrence are relevant for understanding the ecology of rare bacteria, which may include key players for the functioning of marine ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. 77 FR 75896 - Atlantic Highly Migratory Species; 2013 Atlantic Shark Commercial Fishing Season

    Science.gov (United States)

    2012-12-26

    ... the non-sandbar large coastal shark quotas and retention limits in 2013 and asked for the reasoning... geographical distribution of non-sandbar large coastal shark landings in the Atlantic throughout the season... the 2006 Consolidated HMS FMP on EFH, we reviewed the geographical range of all HMS and analyzed the...

  7. Timing of Seasonal Sales.

    OpenAIRE

    Courty, Pascal; Li, Hao

    1999-01-01

    We present a model of timing of seasonal sales where stores choose several designs at the beginning of the season without knowing wich one, if any, will be fashionable. Fashionable designs have a chance to fetch high prices in fashion markets while non-fashionable ones must be sold in a discount market. In the beginning of the season, stores charge high prices in the hope of capturing their fashion market. As the end of the season approaches with goods still on the shelves, stores adjust down...

  8. Large-scale circulation departures related to wet episodes in north-east Brazil

    Science.gov (United States)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  9. Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr

    Science.gov (United States)

    Cavitte, Marie G. P.; Parrenin, Frédéric; Ritz, Catherine; Young, Duncan A.; Van Liefferinge, Brice; Blankenship, Donald D.; Frezzotti, Massimo; Roberts, Jason L.

    2018-04-01

    We reconstruct the pattern of surface accumulation in the region around Dome C, East Antarctica, since the last glacial. We use a set of 18 isochrones spanning all observable depths of the ice column, interpreted from various ice-penetrating radar surveys and a 1-D ice flow model to invert for accumulation rates in the region. The shallowest four isochrones are then used to calculate paleoaccumulation rates between isochrone pairs using a 1-D assumption where horizontal advection is negligible in the time interval of each layer. We observe that the large-scale (100s km) surface accumulation gradient is spatially stable through the last 73 kyr, which reflects current modeled and observed precipitation gradients in the region. We also observe small-scale (10 s km) accumulation variations linked to snow redistribution at the surface, due to changes in its slope and curvature in the prevailing wind direction that remain spatially stationary since the last glacial.

  10. Discrimination of chicken seasonings and beef seasonings using electronic nose and sensory evaluation.

    Science.gov (United States)

    Tian, Huaixiang; Li, Fenghua; Qin, Lan; Yu, Haiyan; Ma, Xia

    2014-11-01

    This study examines the feasibility of electronic nose as a method to discriminate chicken and beef seasonings and to predict sensory attributes. Sensory evaluation showed that 8 chicken seasonings and 4 beef seasonings could be well discriminated and classified based on 8 sensory attributes. The sensory attributes including chicken/beef, gamey, garlic, spicy, onion, soy sauce, retention, and overall aroma intensity were generated by a trained evaluation panel. Principal component analysis (PCA), discriminant factor analysis (DFA), and cluster analysis (CA) combined with electronic nose were used to discriminate seasoning samples based on the difference of the sensor response signals of chicken and beef seasonings. The correlation between sensory attributes and electronic nose sensors signal was established using partial least squares regression (PLSR) method. The results showed that the seasoning samples were all correctly classified by the electronic nose combined with PCA, DFA, and CA. The electronic nose gave good prediction results for all the sensory attributes with correlation coefficient (r) higher than 0.8. The work indicated that electronic nose is an effective method for discriminating different seasonings and predicting sensory attributes. © 2014 Institute of Food Technologists®

  11. Spatio-temporal seasonal drought patterns in Europe from 1950 to 2015

    Science.gov (United States)

    Spinoni, Jonathan; Naumann, Gustavo; Vogt, Jürgen

    2016-04-01

    Drought is one of the natural disasters with severe impacts in Europe, not only in areas which frequently experience water scarcity such as the Mediterranean, but also in temperate or continental climates such as Central and Eastern Europe and even in cold regions such as Scandinavia and Iceland. In this study the spatio-temporal patterns of seasonal meteorological droughts in Europe between 1950 and 2015 are investigated using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI). Since the focus is on the analysis of seasonal drought trends, indicators were calculated for 3 monthly accumulation periods. The input variables of precipitation and temperature were derived from E-OBS grids (v11-v12) at a spatial resolution of 0.25°x0.25°. Seasonal trends of drought frequency and severity were analyzed for moderate (SPI or SPEI 2.0) events during the periods 1950-2015 and 1981-2015. For the moderate events, results of the SPI analysis (precipitation driven) demonstrate a significant tendency towards less frequent and severe droughts in Northern Europe and Russia, especially in winter and spring; oppositely, an increasing trend is visible in Southern Europe, mainly in spring and summer. According to the SPEI analysis (precipitation and temperature driven) Northern Europe shows wetting patterns, while Southern and Eastern Europe show a more remarkable drying tendency, especially in summer and autumn for drought frequency and in every season for drought severity. The evolution towards drier conditions is more relevant from 1981 onwards, both in terms of frequency and severity. This is especially true for Central Europe in spring, for the Mediterranean in summer, and for Eastern Europe in autumn. Extreme events follow similar patterns, but in autumn no spatially coherent trend can be found.

  12. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood.

    Science.gov (United States)

    Baars, Annemarie; Oosting, Annemarie; Engels, Eefje; Kegler, Diane; Kodde, Andrea; Schipper, Lidewij; Verkade, Henkjan J; van der Beek, Eline M

    2016-06-01

    Epidemiological studies have demonstrated protective effects of breast-feeding on childhood obesity. Differences between human milk and infant milk formula (IMF) in dietary lipid structure may contribute to this effect. In our mouse model, feeding a diet containing large lipid droplets coated with phospholipids (PL) (Nuturis®; PL of milk fat globule membrane (MFGM) fraction origin) in early life protected against excessive body fat accumulation following a diet challenge in adult life. We now set out to determine the relevance of increased droplet size and/or MFGM lipid droplet coating to the observed anti-obesogenic effects in adult life. From day 16 to 42, male mouse pups were exposed to diets with small (S) or large (L) lipid droplets (0·3 v. 2·9 µm average mode diameter, respectively), either without MFGM or with MFGM coating around the lipid droplet, resulting in four groups: S (control diet), L, Scoating and Lcoating (Nuturis® IMF diet). Mice were subsequently challenged with a Western-style diet until dissection at postnatal day 98. A non-challenged group served as reference (REF). We repeatedly determined body composition between postnatal day 42 and 98. At day 98 plasma and gene expression measurements were performed. Only the Nuturis® IMF diet (Lcoating) in early life containing MFGM-coated large lipid droplets reduced body fat mass to a level comparable with the REF group. These data support the notion that the structural aspects of lipids in human milk, for example, both lipid droplet size as well as the MFGM coating, may contribute to its reported protective effect against obesity in later life.

  13. Seasonal variation of the Cs137 contamination of the tree forage of wild hoofed animals of the Pripyat National Park

    International Nuclear Information System (INIS)

    Uglyanets, A.V.

    2011-01-01

    In the conditions of the Republic of Belarus there were presented the results of studies of the 137Cs contamination of the tree forage of wild hoofed animals in the Pripyat national park. The parameters of this radioisotope accumulation in the shoots of different trees, shrubs, dwarf shrubs and bushes were studied in the seasonal and edaphic aspects, and their influencing factors were specified. The 137Cs contamination of the tree forage of wild hoofed animals was determined to be dependent on the soil pollution degree, growth conditions and species composition of plants and their proportion in the phytocenosis, as well as on the edaphic conditions and a season of the year

  14. Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments

    International Nuclear Information System (INIS)

    Zaborska, Agata; Winogradow, Aleksandra; Pempkowiak, Janusz

    2014-01-01

    The Baltic Sea is susceptible to pollution by hazardous substances due to limited water exchange, shallowness, and the large catchment area. Radionuclides, particularly 137 Cs, are one of the most hazardous anthropogenic substances present in the Baltic environment. This study was conducted to present 137 Cs present contamination that should further be a subject of reliable monitoring when the new Nuclear Power Plant is put into operation in the northern Poland. The sea-wide, up to date distribution of 137 Cs activities and inventories in the Baltic Sea bottom sediments are presented. The 137 Cs activity concentrations were measured in 30 cm long sediment cores collected at 22 sampling stations. Sediment accumulation rates were quantified by 210 Pb geochronology to follow the history of 137 Cs accumulation. The 137 Cs inventories and fluxes were calculated. Most of the Baltic Sea sediments accumulated 137 Cs in the range from 750 to 2675 Bq m −2 . The Bothnian Bay is severely contaminated by 137 Cs with inventories up to 95,191 Bq m −2 . This region is moreover characterized by extremely large patchiness of 137 Cs inventories. The 137 Cs annual fluxes are highest at the two stations located at the Bothnian Bay (342 Bq m −2 and 527 Bq m −2 ) due to large Chernobyl 137 Cs contamination of that region and high sediment accumulation rates. When these stations are excluded, the recent, annual mean value of 137 Cs load to the Baltic Sea deposits is 38 ± 22 Bq m −2 . The distribution of radio-caesium inventories over the Baltic Sea nowadays reflects the pattern of Chernobyl contamination. The radio-caesium deposited in surface sediments is not permanently buried, but may be resuspended and redeposited by currents, bioturbation or anthropogenic activities. -- Highlights: • 137 Cs contamination in the Baltic Sea was studied before the new NPP is put into operation. • Bothnian Sea sediments are severely contaminated by 137 Cs (inventories up to 95,191 Bq m

  15. Warm-season severe wind events in Germany

    Science.gov (United States)

    Gatzen, Christoph

    2013-04-01

    A 15-year data set of wind measurements was analyzed with regard to warm season severe wind gusts in Germany. For April to September of the years 1997 to 2011, 1035 wind measurements of 26 m/s or greater were found. These wind reports were associated with 268 wind events. In total, 252 convective wind events contributed to 837 (81%) of the wind reports, 16 non-convective synoptic-scale wind events contributed to 198 reports (19%). Severe wind events were found with synoptic situations characterized by rather strong mid-level flow and advancing mid-level troughs. Severe convective wind events were analyzed using radar images and classified with respect to the observed radar structure. The most important convective mode was squall lines that were associated with one third of all severe wind gusts, followed by groups, bow echo complexes, and bow echoes. Supercells and cells were not associated with many wind reports. The low contribution of isolated cells indicates that rather large-scale forcing by synoptic-scale features like fronts is important for German severe wind events. Bow echoes were found to be present for 58% of all wind reports. The movement speed of bow echoes indicated a large variation with a maximum speed of 33 m/s. Extreme wind events as well as events with more than 15 wind reports were found to be related to higher movement speeds. Concentrating on the most intense events, derechos seem to be very important to the warm season wind threat in Germany. Convective events with a path length of more than 400 km contributed to 36% of all warm-season wind gusts in this data set. Furthermore, eight of nine extreme gusts exceeding 40 m/s were recorded with derecho events.

  16. Inter-seasonal variability in baseflow recession rates: The role of aquifer antecedent storage in central California watersheds

    Science.gov (United States)

    Bart, Ryan; Hope, Allen

    2014-11-01

    Baseflow recession rates vary inter-seasonally in many watersheds. This variability is generally associated with changes in evapotranspiration; however, an additional and less studied control over inter-seasonal baseflow recession rates is the effect of aquifer antecedent storage. Understanding the role of aquifer antecedent storage on baseflow recession rates is crucial for Mediterranean-climate regions, where seasonal asynchronicity of precipitation and energy levels produces large inter-seasonal differences in aquifer storage. The primary objective of this study was to elucidate the relation between aquifer antecedent storage and baseflow recession rates in four central California watersheds using antecedent streamflow as a surrogate for watershed storage. In addition, a parsimonious storage-discharge model consisting of two nonlinear stores in parallel was developed as a heuristic tool for interpreting the empirical results and providing insight into how inter-seasonal changes in aquifer antecedent storage may affect baseflow recession rates. Antecedent streamflow cumulated from the beginning of the wateryear was found to be the strongest predictor of baseflow recession rates, indicating that inter-seasonal differences in aquifer storage are a key control on baseflow recession rates in California watersheds. Baseflow recession rates and antecedent streamflow exhibited a negative power-law relation, with baseflow recession rates decreasing by up to two orders of magnitude as antecedent streamflow levels increased. Inference based on the storage-discharge model indicated that the dominant source of recession flow shifted from small, rapid response aquifers at the beginning of the wet season to large, seasonal aquifers as the wet season progressed. Aquifer antecedent storage in California watersheds should be accounted for along with evapotranspiration when characterizing baseflow recession rates.

  17. Accumulation and distribution 137Сs in predators’ organism

    Directory of Open Access Journals (Sweden)

    A. V. Gulakov

    2007-10-01

    Full Text Available Data of the long-term research of accumulation and distribution 137Cs radionuclide in organisms of predatory wild animals from the alienation zone of the Chernobyl nuclear power station are presented. Essential fluctuations of the 137Cs contents in muscular tissue are noted. The results have large practical value for management of the hunting facilities on the radioactively polluted territories.

  18. Genome-wide analysis of positively selected genes in seasonal and non-seasonal breeding species.

    Directory of Open Access Journals (Sweden)

    Yuhuan Meng

    Full Text Available Some mammals breed throughout the year, while others breed only at certain times of year. These differences in reproductive behavior can be explained by evolution. We identified positively-selected genes in two sets of species with different degrees of relatedness including seasonal and non-seasonal breeding species, using branch-site models. After stringent filtering by sum of pairs scoring, we revealed that more genes underwent positive selection in seasonal compared with non-seasonal breeding species. Positively-selected genes were verified by cDNA mapping of the positive sites with the corresponding cDNA sequences. The design of the evolutionary analysis can effectively lower the false-positive rate and thus identify valid positive genes. Validated, positively-selected genes, including CGA, DNAH1, INVS, and CD151, were related to reproductive behaviors such as spermatogenesis and cell proliferation in non-seasonal breeding species. Genes in seasonal breeding species, including THRAP3, TH1L, and CMTM6, may be related to the evolution of sperm and the circadian rhythm system. Identification of these positively-selected genes might help to identify the molecular mechanisms underlying seasonal and non-seasonal reproductive behaviors.

  19. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Directory of Open Access Journals (Sweden)

    William J Platt

    Full Text Available Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature. We used nonparametric cluster analyses of a 17-year (1993-2009 data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires over a 13-year period with fire records (1997-2009. Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with

  20. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    Science.gov (United States)

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  1. Accumulation of heavy metals (cadmium, zinc, and copper) from smelter in forest ecosystems and their uptakes by Shiitake mushroom (Lentinus edodes (Berk) Sing. ) and Nameko mushroom (Pholiota glutinosa Kawamura) through polluted bed logs

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, T.; Fujita, K.; Furukawa, H.; Yoshimoto, M.

    1977-12-01

    Mushrooms cultivated on sawdust medium which had been innoculated with heavy metals accumulated the metals increasingly in stems, pileus, gill and spores, in that order. There were strain differences, in accumulation, and highest concentration was found in the first-born fruit body. At 2 ppm, cadmium did not affect yield of the fruiting body. At 20 ppm, however, yield was seriously reduced. Species differences in absorption capacity for heavy metals were noted. Seasonal variations in cadmium and copper accumulation were noted, along with zinc. Cadmium concentration in fruiting bodies increased with increase of cadmium concentration in the growth substrate. 23 figures, 16 tables.

  2. Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2012-12-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth’s geomagnetic filed by space weather, we use the international quiet days’ data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components’ quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation’s amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth’s atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

  3. Clostridium difficile infection seasonality: patterns across hemispheres and continents - a systematic review.

    Science.gov (United States)

    Furuya-Kanamori, Luis; McKenzie, Samantha J; Yakob, Laith; Clark, Justin; Paterson, David L; Riley, Thomas V; Clements, Archie C

    2015-01-01

    Studies have demonstrated seasonal variability in rates of Clostridium difficile infection (CDI). Synthesising all available information on seasonality is a necessary step in identifying large-scale epidemiological patterns and elucidating underlying causes. Three medical and life sciences publication databases were searched from inception to October 2014 for longitudinal epidemiological studies written in English, Spanish or Portuguese that reported the incidence of CDI. The monthly frequency of CDI were extracted, standardized and weighted according to the number of follow-up months. Cross correlation coefficients (XCORR) were calculated to examine the correlation and lag between the year-month frequencies of reported CDI across hemispheres and continents. The search identified 13, 5 and 2 studies from North America, Europe, and Oceania, respectively that met the inclusion criteria. CDI had a similar seasonal pattern in the Northern and Southern Hemisphere characterized by a peak in spring and lower frequencies of CDI in summer/autumn with a lag of 8 months (XCORR = 0.60) between hemispheres. There was no difference between the seasonal patterns across European and North American countries. CDI demonstrates a distinct seasonal pattern that is consistent across North America, Europe and Oceania. Further studies are required to identify the driving factors of the observed seasonality.

  4. Seasonality and dietary requirements: will eating seasonal food contribute to health and environmental sustainability?

    Science.gov (United States)

    Macdiarmid, Jennie I

    2014-08-01

    Eating more seasonal food is one proposal for moving towards more sustainable consumption patterns, based on the assumption that it could reduce the environmental impact of the diet. The aim of the present paper is to consider the implications of eating seasonal food on the different elements of sustainability (i.e. health, economics, society), not just the environment. Seasonality can be defined as either globally seasonal (i.e. produced in the natural production season but consumed anywhere in the world) or locally seasonal (i.e. produced in the natural production season and consumed within the same climatic zone). The environmental, health, economic and societal impact varies by the definition used. Global seasonality has the nutritional benefit of providing a more varied and consistent supply of fresh produce year round, but this increases demand for foods that in turn can have a high environmental cost in the country of production (e.g. water stress, land use change with loss of biodiversity). Greenhouse gas emissions of globally seasonal food are not necessarily higher than food produced locally as it depends more on the production system used than transportation. Eating more seasonal food, however, is only one element of a sustainable diet and should not overshadow some of the potentially more difficult dietary behaviours to change that could have greater environmental and health benefits (e.g. reducing overconsumption or meat consumption). For future guidelines for sustainable diets to be realistic they will need to take into account modern lifestyles, cultural and social expectations in the current food environment.

  5. An empirical system for probabilistic seasonal climate prediction

    Science.gov (United States)

    Eden, Jonathan; van Oldenborgh, Geert Jan; Hawkins, Ed; Suckling, Emma

    2016-04-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  6. Seasonal Variation in Epidemiology

    Science.gov (United States)

    Marrero, Osvaldo

    2013-01-01

    Seasonality analyses are important in medical research. If the incidence of a disease shows a seasonal pattern, then an environmental factor must be considered in its etiology. We discuss a method for the simultaneous analysis of seasonal variation in multiple groups. The nuts and bolts are explained using simple trigonometry, an elementary…

  7. Effects of season on the bathypelagic mysid Gnathophausia ingens: water content, respiration, and excretion

    Science.gov (United States)

    Hiller-Adams, Page; Childress, James J.

    1983-06-01

    Water contents, oxygen consumption rates and ammonia excretion rates of individuals of the large bathypelagic mysid Gnathophausia ingens were measured as a function of size and season (winter and summer). Individuals of the sizes studied live permanently beneath the euphotic zone. Water content, as a percent of wet weight, is higher in winter than in summer, suggesting seasonal variability in the midwater environment. Our data suggest that the seasonal change in water content increases with increasing size. We suggest that the changes are due in part to seasonal changes in food intake. Seasonal differences were not observed in wet-weight-specific rates of either respiration or ammonia excretion. Both rates decrease with increasing size. The constancy of the atomic O:N ratio and its high value (geometric mean = 44.3) indicate that the average proportions of lipid and protein metabolized by individuals were independent of size and season and that lipid stores were not sufficiently depleted, even in small animals, to cause a shift to predominantly protein metabolism in winter or summer. On the average, metabolic rates of individuals were unaffected by seasonal variation in the midwater environment.

  8. Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam.

    Science.gov (United States)

    Thai, Pham Quang; Choisy, Marc; Duong, Tran Nhu; Thiem, Vu Dinh; Yen, Nguyen Thu; Hien, Nguyen Tran; Weiss, Daniel J; Boni, Maciej F; Horby, Peter

    2015-12-01

    Experimental and ecological studies have shown the role of climatic factors in driving the epidemiology of influenza. In particular, low absolute humidity (AH) has been shown to increase influenza virus transmissibility and has been identified to explain the onset of epidemics in temperate regions. Here, we aim to study the potential climatic drivers of influenza-like illness (ILI) epidemiology in Vietnam, a tropical country characterized by a high diversity of climates. We specifically focus on quantifying and explaining the seasonality of ILI. We used 18 years (1993-2010) of monthly ILI notifications aggregated by province (52) and monthly climatic variables (minimum, mean, maximum temperatures, absolute and relative humidities, rainfall and hours of sunshine) from 67 weather stations across Vietnam. Seasonalities were quantified from global wavelet spectra, using the value of the power at the period of 1 year as a measure of the intensity of seasonality. The 7 climatic time series were characterized by 534 summary statistics which were entered into a regression tree to identify factors associated with the seasonality of AH. Results were extrapolated to the global scale using simulated climatic times series from the NCEP/NCAR project. The intensity of ILI seasonality in Vietnam is best explained by the intensity of AH seasonality. We find that ILI seasonality is weak in provinces experiencing weak seasonal fluctuations in AH (annual power power >17.6). In Vietnam, AH and ILI are positively correlated. Our results identify a role for AH in driving the epidemiology of ILI in a tropical setting. However, in contrast to temperate regions, high rather than low AH is associated with increased ILI activity. Fluctuation in AH may be the climate factor that underlies and unifies the seasonality of ILI in both temperate and tropical regions. Alternatively, the mechanism of action of AH on disease transmission may be different in cold-dry versus hot-humid settings

  9. Characteristics and seasonal variations of precipitation phenomena at Syowa Station

    Directory of Open Access Journals (Sweden)

    Hiroyuki Konishi

    1997-03-01

    Full Text Available Long-term observations of precipitating clouds were carried out by a vertical pointing radar, PPI radar and a 37 GHz microwave radiometer at Syowa Station (69°00′S, 39°35′E, Antarctica in 1989. It is concluded from the observations that precipitation near Syowa Station, Antarctica is mainly brought by cloud vortices associated with extratropical cyclones which advance to high latitude while developing to a mature stage. The seasonal variations of clouds and precipitation were analyzed corresponding to the seasonal changes of air temperature and sea ice area. The occurrence frequencies of cloud vortices which brought snowfall to Syowa Station increased in the fall and spring seasons corresponding to activity of the circumpolar trough. However, the activities of cloud systems that bring precipitation weaken in spring when the sea ice area expands to low latitudes, because of less supply of heat and vapor. In 1989,the amount of precipitation in spring brought by a few snowfall events was as large as the amount of precipitation in fall brought by frequent snowfall events. Radar observations revealed that there were three abundant snowfall seasons at Syowa Station and the amount of snowfall was uniform in all seasons except summer. The amounts of precipitation in fall, winter and spring were 74,74 and 53mm respectively.

  10. Seasonal Drought Forecasting for Latin America Using the ECMWF S4 Forecast System

    Directory of Open Access Journals (Sweden)

    Hugo Carrão

    2018-06-01

    Full Text Available Meaningful seasonal prediction of drought conditions is key information for end-users and water managers, particularly in Latin America where crop and livestock production are key for many regional economies. However, there are still not many studies of the feasibility of such a forecasts at continental level in the region. In this study, precipitation predictions from the European Centre for Medium Range Weather (ECMWF seasonal forecast system S4 are combined with observed precipitation data to generate forecasts of the standardized precipitation index (SPI for Latin America, and their skill is evaluated over the hindcast period 1981–2010. The value-added utility in using the ensemble S4 forecast to predict the SPI is identified by comparing the skill of its forecasts with a baseline skill based solely on their climatological characteristics. As expected, skill of the S4-generated SPI forecasts depends on the season, location, and the specific aggregation period considered (the 3- and 6-month SPI were evaluated. Added skill from the S4 for lead times equaling the SPI accumulation periods is primarily present in regions with high intra-annual precipitation variability, and is found mostly for the months at the end of the dry seasons for 3-month SPI, and half-yearly periods for 6-month SPI. The ECMWF forecast system behaves better than the climatology for clustered grid points in the North of South America, the Northeast of Argentina, Uruguay, southern Brazil and Mexico. The skillful regions are similar for the SPI3 and -6, but become reduced in extent for the severest SPI categories. Forecasting different magnitudes of meteorological drought intensity on a seasonal time scale still remains a challenge. However, the ECMWF S4 forecasting system does capture the occurrence of drought events for the aforementioned regions and seasons reasonably well. In the near term, the largest advances in the prediction of meteorological drought for Latin

  11. Global Seasonality of Rotavirus Disease

    Science.gov (United States)

    Patel, Manish M.; Pitzer, Virginia; Alonso, Wladimir J.; Vera, David; Lopman, Ben; Tate, Jacqueline; Viboud, Cecile; Parashar, Umesh D.

    2012-01-01

    Background A substantial number of surveillance studies have documented rotavirus prevalence among children admitted for dehydrating diarrhea. We sought to establish global seasonal patterns of rotavirus disease before widespread vaccine introduction. Methods We reviewed studies of rotavirus detection in children with diarrhea published since 1995. We assessed potential relationships between seasonal prevalence and locality by plotting the average monthly proportion of diarrhea cases positive for rotavirus according to geography, country development, and latitude. We used linear regression to identify variables that were potentially associated with the seasonal intensity of rotavirus. Results Among a total of 99 studies representing all six geographical regions of the world, patterns of year-round disease were more evident in low- and low-middle income countries compared with upper-middle and high income countries where disease was more likely to be seasonal. The level of country development was a stronger predictor of strength of seasonality (P=0.001) than geographical location or climate. However, the observation of distinctly different seasonal patterns of rotavirus disease in some countries with similar geographical location, climate and level of development indicate that a single unifying explanation for variation in seasonality of rotavirus disease is unlikely. Conclusion While no unifying explanation emerged for varying rotavirus seasonality globally, the country income level was somewhat more predictive of the likelihood of having seasonal disease than other factors. Future evaluation of the effect of rotavirus vaccination on seasonal patterns of disease in different settings may help understand factors that drive the global seasonality of rotavirus disease. PMID:23190782

  12. A seasonal time history of the size resolved composition of fine aerosol in Manchester UK

    Science.gov (United States)

    Choularton, Thomas; Martin, Claire; Allan, James; Coe, Hugh; Bower, Keith; Gallagher, Martin

    2010-05-01

    Numerous studies have been conducted in urban centres now using sophisticated instruments that measure aerosol properties needed to determine their effects on human health, air quality and climate change) showing that a significant fraction of urban aerosols (mainly from automotive sources) are composed of organic compounds with implications for human health. In this project we have produced the first seasonal aerosol composition and emission database for the City of Manchester in the UK Several recent projects have been conducted by SEAES looking at fundamental properties of urban atmospheric aerosol to understand their influence on climate. This work is now expanding through collaboration with the School of Geography & Centre for Occupational & Environmental Health to investigate urban aerosol emission impacts on human health In this paper we present a compendium of data from field campaigns in Manchester city centre over the past decade. The data are from six different campaigns, between 2001 - 2007, each campaign was between 2 weeks and 2 months long predominantly from January and June periods . The data analysis includes air parcel trajectory examination and comparisons with external data, including PM10, CO and NOx data from AURN fixed monitoring sites Six Manchester fine aerosol datasets from the past decade have been quality controlled and analysed regarding averages of the size distributions of Organic, NO3, NH4 and SO4 mass loadings. It was found that: Organic material is the largest single component of the aerosol with primary aliphatic material dominating the smallest sizes, but with oxygenated secondary organic material being important in the accumulation mode. In the accumulation mode the organic material seems to be internally mixed with sulphate and nitrate. The accumulation mode particles were effective as cloud condensation nuclei. Seasonal effects surrounding atmospheric stability and photochemistry were found to play an important role in the

  13. Nonbreeding-Season Drivers of Population Dynamics in Seasonal Migrants: Conservation Parallels Across Taxa

    Directory of Open Access Journals (Sweden)

    Anna M. Calvert

    2009-12-01

    Full Text Available For seasonal migrants, logistical constraints have often limited conservation efforts to improving survival and reproduction during the breeding season only. Yet, mounting empirical evidence suggests that events occurring throughout the migratory life cycle can critically alter the demography of many migrant species. Herein, we build upon recent syntheses of avian migration research to review the role of non-breeding seasons in determining the population dynamics and fitness of diverse migratory taxa, including salmonid fishes, marine mammals, ungulates, sea turtles, butterflies, and numerous bird groups. We discuss several similarities across these varied migrants: (i non-breeding survivorship tends to be a strong driver of population growth; (ii non-breeding events can affect fitness in subsequent seasons through seasonal interactions at individual- and population-levels; (iii broad-scale climatic influences often alter non-breeding resources and migration timing, and may amplify population impacts through covariation among seasonal vital rates; and (iv changes to both stationary and migratory non-breeding habitats can have important consequences for abundance and population trends. Finally, we draw on these patterns to recommend that future conservation research for seasonal migrants will benefit from: (1 more explicit recognition of the important parallels among taxonomically diverse migratory animals; (2 an expanded research perspective focused on quantification of all seasonal vital rates and their interactions; and (3 the development of detailed population projection models that account for complexity and uncertainty in migrant population dynamics.

  14. A conditional stochastic weather generator for seasonal to multi-decadal simulations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico

    2018-01-01

    We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.

  15. Migration of planetesimals during last stages of giant planet accumulation

    International Nuclear Information System (INIS)

    Ipatov, S.I.

    1989-01-01

    The migration and accumulation of bodies from the giant planet's feeding zones are investigated after the main part of mass of these planets had been formed. These investigations are based on the computer simulation results for the evolving spatial disks which initially consisted of a few almost formed planets and hundreds of identical bodies in Uranus and Neptune zone. It is shown that the total mass of bodies penetrated in the asteroid zone from the giant planet zones could be ten times as large as the Earth mass. The beyond-Neptune belt could form during accumulation of the giant planets. Evolution of the planet orbits under encounters of planets with planetesimals is investigated

  16. Spatial Variation in Seasonal Water Poverty Index for Laos: An Application of Geographically Weighted Principal Component Analysis

    OpenAIRE

    Kallio, Marko; Guillaume, Joseph; Kummu, Matti; Virrantaus, Kirsi-Kanerva

    2017-01-01

    Water poverty, defined as insufficient water of adequate quality to cover basic needs, is an issue that may manifest itself in multiple ways. Extreme seasonal variation in water availability, such as in Laos, located in Monsoon Asia, results in large differences in water poverty conditions between dry and wet seasons. In this study, seasonal Water Poverty Indices (WPI) are developed for 8215 villages in Laos. WPI is a multidimensional composite index integrating five dimensions of water: reso...

  17. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  18. Microstructure and mechanical properties of nickel processed by accumulative roll bonding

    DEFF Research Database (Denmark)

    Zhang, Yubin; Mishin, Oleg; Kamikawa, N.

    2013-01-01

    rolling to an identical nominal strain, the microstructure after ARB is more refined and contains a greater fraction of high angle boundaries. This enhanced refinement is attributed to the geometric accumulation of shear-strain influenced volumes as a result of the ARB process and large-draught rolling...

  19. Marine debris accumulation in the Northwestern Hawaiian Islands: an examination of rates and processes.

    Science.gov (United States)

    Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell

    2007-04-01

    Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total.

  20. Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage

    NARCIS (Netherlands)

    Yan, C.; Shi, W.; Li, X.; Zhao, Y.

    2016-01-01

    Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not

  1. Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: wolves in a coastal archipelago.

    Science.gov (United States)

    Bryan, Heather M; Darimont, Chris T; Hill, Janet E; Paquet, Paul C; Thompson, R C Andrew; Wagner, Brent; Smits, Judit E G

    2012-05-01

    Parasites are increasingly recognized for their profound influences on individual, population and ecosystem health. We provide the first report of gastrointestinal parasites in gray wolves from the central and north coasts of British Columbia, Canada. Across 60 000 km(2), wolf feces were collected from 34 packs in 2005-2008. At a smaller spatial scale (3300 km(2)), 8 packs were sampled in spring and autumn. Parasite eggs, larvae, and cysts were identified using standard flotation techniques and morphology. A subset of samples was analysed by PCR and sequencing to identify tapeworm eggs (n=9) and Giardia cysts (n=14). We detected ≥14 parasite taxa in 1558 fecal samples. Sarcocystis sporocysts occurred most frequently in feces (43·7%), followed by taeniid eggs (23·9%), Diphyllobothrium eggs (9·1%), Giardia cysts (6·8%), Toxocara canis eggs (2·1%), and Cryptosporidium oocysts (1·7%). Other parasites occurred in ≤1% of feces. Genetic analyses revealed Echinococcus canadensis strains G8 and G10, Taenia ovis krabbei, Diphyllobothrium nehonkaiense, and Giardia duodenalis assemblages A and B. Parasite prevalence differed between seasons and island/mainland sites. Patterns in parasite prevalence reflect seasonal and spatial resource use by wolves and wolf-salmon associations. These data provide a unique, extensive and solid baseline for monitoring parasite community structure in relation to environmental change.

  2. How Financial Literacy Affects Household Wealth Accumulation.

    Science.gov (United States)

    Behrman, Jere R; Mitchell, Olivia S; Soo, Cindy K; Bravo, David

    2012-05-01

    This study isolates the causal effects of financial literacy and schooling on wealth accumulation using a new household dataset and an instrumental variables (IV) approach. Financial literacy and schooling attainment are both strongly positively associated with wealth outcomes in linear regression models, whereas the IV estimates reveal even more potent effects of financial literacy. They also indicate that the schooling effect only becomes positive when interacted with financial literacy. Estimated impacts are substantial enough to imply that investments in financial literacy could have large wealth payoffs.

  3. Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches.

    Science.gov (United States)

    King, Doug; Hume, Patria A; Brughelli, Matt; Gissane, Conor

    2015-03-01

    Direct impacts with the head (linear acceleration or pressure) and inertial loading of the head (rotational acceleration or strain) have been postulated as the 2 major mechanisms of head-related injuries such as concussion. Although data are accumulating for soccer and American football, there are no published data for nonhelmeted collision sports such as rugby union. To quantify head impacts via instrumented mouthguard acceleration analyses for rugby union players over a season of matches. Descriptive epidemiology study. Data on impact magnitude and frequency were collected with molded instrumented mouthguards worn by 38 premier amateur senior rugby players participating in the 2013 domestic season of matches. A total of 20,687 impacts >10g (range, 10.0-164.9g) were recorded over the duration of the study. The mean ± SD number of impacts per player over the duration of the season of matches was 564 ± 618, resulting in a mean ± SD of 95 ± 133 impacts to the head per player, per match over the duration of the season of matches. The impact magnitudes for linear accelerations were skewed to the lower values (Sp = 3.7 ± 0.02; P rugby union players over a season of matches, measured via instrumented mouthguard accelerations, were higher than for most sports previously reported. Mean linear acceleration measured over a season of matches was similar to the mean linear accelerations previously reported for youth, high school, and collegiate American football players but lower than that for female youth soccer players. Mean rotational acceleration measured over a season of matches was similar to mean rotational accelerations for youth, high school, and collegiate American football players but less than those for female youth soccer players, concussed American collegiate players, collegiate American football players, and professional American football players. © 2014 The Author(s).

  4. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?

    Science.gov (United States)

    Critchell, Kay; Lambrechts, Jonathan

    2016-03-01

    Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.

  5. Seasonal abundance of the shipworm Neoteredo reynei (Bivalvia, Teredinidae in mangrove driftwood from a northern Brazilian beach

    Directory of Open Access Journals (Sweden)

    Carlos S. Filho

    2008-03-01

    Full Text Available Shipworms are important decomposers of wood, especially in mangrove forests where productivity is high. However, little emphasis has been given to the activity of shipworms in relation to the export of nutrients from mangroves to adjacent coastal areas. As a first step to obtaining such information, the frequency of colonized mangrove driftwood as well as shipworm density and length were studied by collecting washed up logs during a year at Ajuruteua beach, state of Pará, northern Brazil. A single species, Neoteredo reynei (Bartsch, 1920, was found colonizing driftwood. Although large colonized logs were most common on the beach, shipworm density was higher in small logs, especially during the dry season. In general, however, density was higher during the wet season (January to April and lowest in July. Overall shipworm mean length was 9.66cm. In large logs, mean length increased between the wet and dry seasons. However, there was no difference in length among log size categories. Mean shipworm length was similar throughout most of the year but tended to be greater in July. Although salinity varied between 10.9 and 40 during the year, no relationship was found between salinity and density or length. The results suggest that shipworm activity in driftwood logs is relatively constant throughout the year. Increased air humidity and rainfall may promote survival during the wet season. Large logs may take longer to colonize and thus have lower densities than small ones which are scarce probably because they are destroyed rapidly by shipworm activity. However, data on the disintegration of logs would be necessary to test this hypothesis. Larger size of shipworms in the dry season may be related to growth after an earlier recruitment period. Shipworms in large logs during the dry season may be better protected from dessication and high temperatures by the insulating properties of the larger volume of wood.

  6. Analysis of Economic Burden of Seasonal Influenza: An Actuarial Based Conceptual Model

    Directory of Open Access Journals (Sweden)

    S. S. N. Perera

    2017-01-01

    Full Text Available Analysing the economic burden of the seasonal influenza is highly essential due to the large number of outbreaks in recent years. Mathematical and actuarial models can be considered as management tools to understand the dynamical behavior, predict the risk, and compute it. This study is an attempt to develop conceptual model to investigate the economic burden due to seasonal influenza. The compartment SIS (susceptible-infected-susceptible model is used to capture the dynamical behavior of influenza. Considering the current investment and future medical care expenditure as premium payment and benefit (claim, respectively, the insurance and actuarial based conceptual model is proposed to model the present economic burden due to the spread of influenza. Simulation is carried out to demonstrate the variation of the present economic burden with respect to model parameters. The sensitivity of the present economic burden is studied with respect to the risk of disease spread. The basic reproduction is used to identify the risk of disease spread. Impact of the seasonality is studied by introducing the seasonally varying infection rate. The proposed model provides theoretical background to investigate the economic burden of seasonal influenza.

  7. Seasonal variation in biomarker responses of Donax trunculus from the Gulf of Annaba (Algeria): Implication of metal accumulation in sediments

    Science.gov (United States)

    Amira, Akila; Merad, Isma; Almeida, C. Marisa R.; Guimarães, Laura; Soltani, Nourredine

    2018-05-01

    The aim of the present study was to test biomarker responses in an edible mollusk, Donax trunculus L. (Mollusca, Bivalvia) associated with environmental pollution in the Gulf of Annaba (northeastern Algeria). The biomarkers selected were glutathione S-transferase (GST), acetylcholinesterase (AChE) and metallothioneins (MTs). Samples were collected seasonally (September 2014, and January, April and July 2015) from two sites located over the Gulf of Annaba: El Battah and Sidi Salem. The results obtained reveal that autumn and winter were the two seasons that show an increase in GST activity, an inhibition of AChE activity and a high rate of MT. In addition, a decrease in AChE activity, an increase in both GST activity and MT levels in D. Trunculus collected from Sidi Salem in comparison with those of El Battah were observed. The biomarker responses at the Sidi Salem site reflect the presence of certain pro-oxidative compounds such as metals (Cd, Cu, Pb, Zn, Mn and Fe) determined in sediments in winter (January) 2015. Moreover, metal concentrations, except Fe, were higher at Sidi Salem than at El Battah. Overall, the Gulf of Annaba remains contaminated by heavy metal. However, this metallic contamination is relatively low and the risks for local population via this edible species were also low.

  8. Seasonality shows evidence for polygenic architecture and genetic correlation with schizophrenia and bipolar disorder – a meta-analysis of genetic studies

    Science.gov (United States)

    Byrne, Enda M; Raheja, Uttam; Stephens, Sarah H.; Heath, Andrew C; Madden, Pamela AF; Vaswani, Dipika; Nijjar, Gagan V.; Ryan, Kathleen A.; Youssufi, Hassaan; Gehrman, Philip R; Shuldiner, Alan R; Martin, Nicholas G; Montgomery, Grant W; Wray, Naomi R; Nelson, Elliot C; Mitchell, Braxton D; Postolache, Teodor T

    2015-01-01

    Objective To test common genetic variants for association with seasonality (seasonal changes in mood and behavior) and to investigate whether there are shared genetic risk factors between psychiatric disorders and seasonality. Methods A meta-analysis of genome-wide association studies (GWAS) conducted in Australian and Amish populations in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered. The total sample size was 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ) were calculated to test for overlap in risk between psychiatric disorders and seasonality. Results The most significant association was with rs11825064 (p = 1.7 × 10−6, β = 0.64, S.E = 0.13), an intergenic SNP found on chromosome 11. The evidence for overlap in risk factors was strongest for SCZ and seasonality, with the SCZ genetic profile scores explaining 3% of the variance in log-transformed GSS. BD genetic profile scores were also significantly associated with seasonality, although at much weaker levels, and no evidence for overlap in risk was detected between MDD and seasonality. Conclusions Common SNPs of very large effect likely do not exist for seasonality in the populations examined. As expected, there was overlapping genetic risk factors for BD (but not MDD) with seasonality. Unexpectedly, the risk for SCZ and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations, and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and SCZ PMID:25562672

  9. Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea.

    Science.gov (United States)

    Morales, Melanie; Garcia, Queila S; Munné-Bosch, Sergi

    2015-03-01

    The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea, an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12-oxo-phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Radiocarbon dating, chronologic framework, and changes in accumulation rates of holocene estuarine sediments from Chesapeake Bay

    Science.gov (United States)

    Colman, Steven M.; Baucom, P.C.; Bratton, J.F.; Cronin, T. M.; McGeehin, J.P.; Willard, D.; Zimmerman, A.R.; Vogt, P.R.

    2002-01-01

    Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20 m in length and used numerous radiocarbon ages measured by accelarator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210 Pb and 137 Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

  11. Seasonal variation in mitochondrial responses to cadmium and temperature in eastern oysters Crassostrea virginica (Gmelin) from different latitudes

    International Nuclear Information System (INIS)

    Cherkasov, A.S.; Taylor, C.; Sokolova, I.M.

    2010-01-01

    Cadmium (Cd) is an important environmental pollutant that can lead to impairment of cellular functions, energy misbalance and negatively impact survival in estuarine organisms including oysters. Like other marine bivalves, oysters can accumulate high Cd burdens in their tissues and are susceptible to the toxic effects of this metal. Presently, the factors that affect sensitivity to Cd toxicity and its variation in wild oyster populations are poorly understood. We analyzed geographical and seasonal variability of mitochondrial responses to elevated temperatures and Cd stress in eastern oysters Crassostrea virginica from populations adapted to different thermal regimes (subtropical Texas (TX), warm temperate North Carolina (NC) and cold temperate Washington (WA) areas). Seasonality had a strong effect on mitochondrial function in oysters from the two studied southern populations (TX and NC) but not in their northern (WA) counterparts, with decreased mitochondrial abundance and increased rates of mitochondrial proton leak in gill tissues of TX and NC oysters in summer. Compared to WA oysters, oysters from the two southern populations accumulated Cd faster in their tissues, and their mitochondria were more sensitive to Cd inhibition in resting and ADP-stimulated states at 20 and 28 o C. At 12 o C, inter-populational differences in Cd accumulation rates and sensitivity of mitochondrial respiration to Cd were not significant. Within each of the three studied populations, sensitivity of mitochondrial ADP-stimulated respiration to Cd inhibition increased with increasing temperatures (28 > 20 > 12 o C). This indicates that oysters from the two southern sites may be more vulnerable to Cd toxicity due to exposure to high environmental temperatures in summer, elevated rates of Cd accumulation and high intrinsic sensitivity of their mitochondria to Cd. This study suggests that data on sensitivity to pollutants obtained for one population of oysters should be extrapolated to

  12. Seasonal variation in mitochondrial responses to cadmium and temperature in eastern oysters Crassostrea virginica (Gmelin) from different latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Cherkasov, A.S. [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC (United States); Taylor, C. [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC (United States); Johnson C. Smith University, 100 Beatties Ford Rd., Charlotte, NC 28216 (United States); Sokolova, I.M., E-mail: isokolov@uncc.edu [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC (United States)

    2010-04-01

    Cadmium (Cd) is an important environmental pollutant that can lead to impairment of cellular functions, energy misbalance and negatively impact survival in estuarine organisms including oysters. Like other marine bivalves, oysters can accumulate high Cd burdens in their tissues and are susceptible to the toxic effects of this metal. Presently, the factors that affect sensitivity to Cd toxicity and its variation in wild oyster populations are poorly understood. We analyzed geographical and seasonal variability of mitochondrial responses to elevated temperatures and Cd stress in eastern oysters Crassostrea virginica from populations adapted to different thermal regimes (subtropical Texas (TX), warm temperate North Carolina (NC) and cold temperate Washington (WA) areas). Seasonality had a strong effect on mitochondrial function in oysters from the two studied southern populations (TX and NC) but not in their northern (WA) counterparts, with decreased mitochondrial abundance and increased rates of mitochondrial proton leak in gill tissues of TX and NC oysters in summer. Compared to WA oysters, oysters from the two southern populations accumulated Cd faster in their tissues, and their mitochondria were more sensitive to Cd inhibition in resting and ADP-stimulated states at 20 and 28 {sup o}C. At 12 {sup o}C, inter-populational differences in Cd accumulation rates and sensitivity of mitochondrial respiration to Cd were not significant. Within each of the three studied populations, sensitivity of mitochondrial ADP-stimulated respiration to Cd inhibition increased with increasing temperatures (28 > 20 > 12 {sup o}C). This indicates that oysters from the two southern sites may be more vulnerable to Cd toxicity due to exposure to high environmental temperatures in summer, elevated rates of Cd accumulation and high intrinsic sensitivity of their mitochondria to Cd. This study suggests that data on sensitivity to pollutants obtained for one population of oysters should be

  13. Ferti-irrigational impact of sugar mill effluent on agronomical characteristics of Phaseolus vulgaris (L.) in two seasons.

    Science.gov (United States)

    Kumar, Vinod; Chopra, A K

    2014-11-01

    Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P potassium (K(+)), calcium (Ca(2+)), magnesium (Mg(2+)), total Kjeldahl nitrogen (TKN), phosphate (PO4 (3-)), sulfate (SO4 (2-)), ferrous (Fe(2+)), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.

  14. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    Science.gov (United States)

    Huber, John H; Childs, Marissa L; Caldwell, Jamie M; Mordecai, Erin A

    2018-05-01

    Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal

  15. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    Directory of Open Access Journals (Sweden)

    John H Huber

    2018-05-01

    Full Text Available Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (reemerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation. Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting

  16. Monitoring Seasonal Changes in Winery-Resident Microbiota.

    Science.gov (United States)

    Bokulich, Nicholas A; Ohta, Moe; Richardson, Paul M; Mills, David A

    2013-01-01

    During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions.

  17. Monitoring Seasonal Changes in Winery-Resident Microbiota.

    Directory of Open Access Journals (Sweden)

    Nicholas A Bokulich

    Full Text Available During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions.

  18. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies and its application to four recent severe regional drought events in China

    Science.gov (United States)

    Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.

    2017-12-01

    Reliable drought prediction is fundamental for seasonal water management. Considering that drought development is closely related to the spatio-temporal evolution of large-scale circulation patterns, we develop a conceptual prediction model of seasonal drought processes based on atmospheric/oceanic Standardized Anomalies (SA). It is essentially the synchronous stepwise regression relationship between 90-day-accumulated atmospheric/oceanic SA-based predictors and 3-month SPI updated daily (SPI3). It is forced with forecasted atmospheric and oceanic variables retrieved from seasonal climate forecast systems, and it can make seamless drought prediction for operational use after a year-to-year calibration. Simulation and prediction of four severe seasonal regional drought processes in China were forced with the NCEP/NCAR reanalysis datasets and the NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted datasets, respectively. With the help of real-time correction for operational application, model application during four recent severe regional drought events in China revealed that the model is good at development prediction but weak in severity prediction. In addition to weakness in prediction of drought peak, the prediction of drought relief is possible to be predicted as drought recession. This weak performance may be associated with precipitation-causing weather patterns during drought relief. Based on initial virtual analysis on predicted 90-day prospective SPI3 curves, it shows that the 2009/2010 drought in Southwest China and 2014 drought in North China can be predicted and simulated well even for the prospective 1-75 day. In comparison, the prospective 1-45 day may be a feasible and acceptable lead time for simulation and prediction of the 2011 droughts in Southwest China and East China, after which the simulated and predicted developments clearly change.

  19. Meteorological context of the onset and end of the rainy season in Central Amazonia during the GoAmazon2014/5

    Directory of Open Access Journals (Sweden)

    J. A. Marengo

    2017-06-01

    Full Text Available The onset and demise of the rainy season in Amazonia are assessed in this study using meteorological data from the GoAmazon experiment, with a focus on the 2014–2015 rainy season. In addition, global reanalyses are also used to identify changes in circulation leading to the establishment of the rainy season in the region. Our results show that the onset occurred in January 2015, 2–3 pentads later than normal, and the rainy season during the austral summer of 2015 contained several periods with consecutive dry days in both Manacapuru and Manaus, which are not common for the wet season, and resulted in below-normal precipitation. The onset of the rainy season has been strongly associated with changes in large-scale weather conditions in the region due to the effect of the Madden–Julian Oscillation (MJO. Regional thermodynamic indices and the height of the boundary layer did not present a significant difference between the onset and demise of the wet season of 2015. This suggests that local changes, such as those in the regional thermodynamic characteristics, may not have influenced its onset. Thus, variability of the large-scale circulation was responsible for regional convection and rainfall changes in Amazonia during the austral summer of 2014–2015.

  20. Cabernet Sauvignon grapevine grafted onto rootstocks during the autumn-winter season in southeastern Brazilian

    Directory of Open Access Journals (Sweden)

    Claudia Rita de Souza

    2015-02-01

    Full Text Available The change of grape (Vitis vinifera harvest from summer to winter through double pruning management has improved the fine wine quality in southern Brazil. High altitude, late cultivar and grafting combination all need to be investigated to optimize this new viticulture management. For this purpose, this study was carried out during the 2011 and 2012 growing seasons in a high altitude region of the state of Minas Gerais, Brazil, using eight grafting combinations for five year old Cabernet Sauvignon vines. The stem water potential, photosynthetic rate and stomatal conductance were not affected by rootstock type. The rootstocks IAC 766 and 101-14 induced, respectively, the highest and lowest vegetative vigor in Cabernet Sauvignon, as shown by leaf area and pruning weight. In the 2011 growing season, the leaf chlorophyll contents were increased in IAC 766, whereas vines grafted onto 101-14 accumulated more leaf starch, probably due to reduced vegetative and reproductive growth. In general, rootstocks K5BB, 1045P, SO4 and IAC 766 had the highest yield as compared to 1103P and 101-14. Berries from the grapevine with the highest yield did not differ in pH, total soluble solids and acidity. The rootstocks did not influence the anthocyanins and total phenols in both growing seasons. Quality parameters were better in the 2011 than in the 2012 growing season due to better climatic conditions, mainly less rainfall. The best performance of Cabernet Sauvignon was achieved when grafted onto K5BB, 1045P, SO4 and IAC 766 rootstocks.

  1. Urban soils as hotspots of anthropogenic carbon accumulation: Review of stocks, mechanisms and factors

    Science.gov (United States)

    Vasenev, Viacheslav; Kuzyakov, Yakov

    2017-04-01

    Urban soils and cultural layers accumulate carbon (C) over centuries and consequently large C stocks are sequestered below the cities. These C stocks as well as the full range of processes and mechanisms leading to high C accumulation in urban soils remain unknown. We collected data on organic (SOC), inorganic (SOC) and black (pyrogenic) (BC) C content in urban and natural soils from 100 papers based on Scopus and Web-of-Knowledge databases. The yielded database includes 770 values on SOC, SIC and BC stocks from 118 cities worldwide. The collected data were analyzed considering the effects of climatic conditions and urban-specific factors: city size, age and functional zoning. For the whole range of climatic conditions, the C contents in urban soils were 1.5-3 times higher than in respective natural soils. This higher C content and much deeper C accumulation in urban soils resulted in 3 to 5 times higher C stocks compared to natural soils. Urban SOC stocks were positively correlated with latitude, whereas SIC stocks were less affected by climate. The city size and age were the main factors controlling intra-city variability of C stocks with higher stocks in small cities compared to megapolises and in medieval compared to new cities. The inter-city variability of C stocks was dominated by functional zoning: large SOC and N stocks in residential areas and large SIC and BC stocks in industrial zones and roadsides were similar for all climates and for cities of different size and age. Substantial stocks of SOC, SIC and N were sequestered for long-term in the subsoils and cultural layers of the sealed soils, which underline the importance of these 'hidden' stocks for C assessments. Typical and specific for urban soils is that the anthropogenic factor overshadows the other five factors of soil formation. Substantial C stocks in urban soils and cultural layers result from specific mechanisms of C accumulation in cities: i) large and long-term C inputs from outside the

  2. Seasonal and Non-Seasonal Generalized Pareto Distribution to Estimate Extreme Significant Wave Height in The Banda Sea

    Science.gov (United States)

    Nursamsiah; Nugroho Sugianto, Denny; Suprijanto, Jusup; Munasik; Yulianto, Bambang

    2018-02-01

    The information of extreme wave height return level was required for maritime planning and management. The recommendation methods in analyzing extreme wave were better distributed by Generalized Pareto Distribution (GPD). Seasonal variation was often considered in the extreme wave model. This research aims to identify the best model of GPD by considering a seasonal variation of the extreme wave. By using percentile 95 % as the threshold of extreme significant wave height, the seasonal GPD and non-seasonal GPD fitted. The Kolmogorov-Smirnov test was applied to identify the goodness of fit of the GPD model. The return value from seasonal and non-seasonal GPD was compared with the definition of return value as criteria. The Kolmogorov-Smirnov test result shows that GPD fits data very well both seasonal and non-seasonal model. The seasonal return value gives better information about the wave height characteristics.

  3. Quantifying the influence of CO2 seasonality on future ocean acidification

    Science.gov (United States)

    Sasse, T. P.; McNeil, B. I.; Matear, R. J.; Lenton, A.

    2015-04-01

    Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem - from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.

  4. Veterinary dairy herd fertility service provision in seasonal and non-seasonal dairy industries - a comparison

    Directory of Open Access Journals (Sweden)

    Mee JF

    2010-04-01

    Full Text Available Abstract The decline in dairy herd fertility internationally has highlighted the limited impact of traditional veterinary approaches to bovine fertility management. Three questionnaire surveys were conducted at buiatrics conferences attended by veterinary practitioners on veterinary dairy herd fertility services (HFS in countries with a seasonal (Ireland, 47 respondents and non-seasonal breeding model (The Netherlands, 44 respondents and Portugal, 31 respondents. Of the 122 respondents, 73 (60% provided a HFS and 49 (40% did not. The majority (76% of all practitioners who responded stated that bovine fertility had declined in their practice clients' herds with inadequate cow management, inadequate nutrition and increased milk yield as the most important putative causes. The type of clients who adopted a herd fertility service were deemed more educated than average (70% of respondents, and/or had fertility problems (58% and/or large herds (53%. The main components of this service were routine postpartum examinations (95% of respondents, fertility records analysis (75% and ultrasound pregnancy examinations (69%. The number of planned visits per annum varied between an average of four in Ireland, where breeding is seasonal, and 23 in Portugal, where breeding is year-round. The benefits to both the practitioner and their clients from running a HFS were cited as better fertility, financial rewards and job satisfaction. For practitioners who did not run a HFS the main reasons given were no client demand (55% and lack of fertility records (33%. Better economic evidence to convince clients of the cost-benefit of such a service was seen as a major constraint to adoption of this service by 67% of practitioners.

  5. Seasonal Variation in Group Size Is Related to Seasonal Variation in Neuropeptide Receptor Density.

    Science.gov (United States)

    Wilson, Leah C; Goodson, James L; Kingsbury, Marcy A

    2016-01-01

    In many species, seasonal variation in grouping behavior is widespread, with shifts towards territoriality in the breeding season and grouping in the winter. Compared to the hormonal and neural mechanisms of seasonal territorial aggression, the mechanisms that promote seasonal grouping have received little attention. We collected brains in spring and winter from wild-caught males of two species of emberizid sparrows that seasonally flock (the field sparrow, Spizella pusilla, and the dark-eyed junco, Junco hyemalis) and two species that do not seasonally flock (the song sparrow, Melospiza melodia, and the eastern towhee, Pipilo erythrophthalmus). We used receptor autoradiography to quantify seasonal plasticity in available binding sites for three neuropeptides known to influence social behavior. We examined binding sites for 125I-vasoactive intestinal polypeptide (VIP), 125I-sauvagine (SG, a ligand for corticotropin-releasing hormone receptors) and 125I-ornithine vasotocin analog (OVTA, a ligand for the VT3 nonapeptide). For all species and ligands, brain areas that exhibited a seasonal pattern in binding density were characterized by a winter increase. Compared to nonflocking species, seasonally flocking species showed different binding patterns in multiple brain areas. Furthermore, we found that winter flocking was associated with elevated winter 125I-VIP binding density in the medial amygdala, as well as 125I-VIP and 125I-OVTA binding density in the rostral arcopallium. While the functional significance of the avian rostral arcopallium is unclear, it may incorporate parts of the pallial amygdala. Our results point to this previously undescribed area as a likely hot spot of social modulation. © 2016 S. Karger AG, Basel.

  6. Severe damage analysis of VVER 1000 following large break LOCA using Astec code

    International Nuclear Information System (INIS)

    Chatterjee, B.; Mukhopadhyay, D.; Lele, H.G.; Ghosh, A.K.; Kushwaha, H.S.

    2007-01-01

    Severe accident analysis of a reactor is an important aspect in the evaluation of source term. This in turn helps in emergency planning. An analysis has been carried out for VVER-1000 (V320) reactor following Large Break LOCA (loss of coolant accident) along with Station Blackout (SBO). Computer code ASTEC (jointly developed by IRSN, France, and GRS, Germany) is used for analyzing the transient. This integral code has been designed to be used as reference code for PSA2 studies. Severe accident analysis is carried out for an accident initiated by Large break LOCA along with SBO. Two cases have been analysed with the version ASTEC V1.2-rev1. In the first case hydro-accumulators are considered not available while the second case has been analysed with hydro accumulators. In this paper, ASTEC predictions have been studied for the in-vessel phase of the accident till vessel failure. The vessel failure was observed at 6979 s when accumulators were assumed not available. The vessel failure was quite delayed (19294 s) with operating accumulators. The hydrogen production was found to be very large (22% of total Zr inventory) in the case with accumulators compared to the case without accumulators (1.5% of total Zr inventory)

  7. European Wintertime Windstorms and its Links to Large-Scale Variability Modes

    Science.gov (United States)

    Befort, D. J.; Wild, S.; Walz, M. A.; Knight, J. R.; Lockwood, J. F.; Thornton, H. E.; Hermanson, L.; Bett, P.; Weisheimer, A.; Leckebusch, G. C.

    2017-12-01

    Winter storms associated with extreme wind speeds and heavy precipitation are the most costly natural hazard in several European countries. Improved understanding and seasonal forecast skill of winter storms will thus help society, policy-makers and (re-) insurance industry to be better prepared for such events. We firstly assess the ability to represent extra-tropical windstorms over the Northern Hemisphere of three seasonal forecast ensemble suites: ECMWF System3, ECMWF System4 and GloSea5. Our results show significant skill for inter-annual variability of windstorm frequency over parts of Europe in two of these forecast suites (ECMWF-S4 and GloSea5) indicating the potential use of current seasonal forecast systems. In a regression model we further derive windstorm variability using the forecasted NAO from the seasonal model suites thus estimating the suitability of the NAO as the only predictor. We find that the NAO as the main large-scale mode over Europe can explain some of the achieved skill and is therefore an important source of variability in the seasonal models. However, our results show that the regression model fails to reproduce the skill level of the directly forecast windstorm frequency over large areas of central Europe. This suggests that the seasonal models also capture other sources of variability/predictability of windstorms than the NAO. In order to investigate which other large-scale variability modes steer the interannual variability of windstorms we develop a statistical model using a Poisson GLM. We find that the Scandinavian Pattern (SCA) in fact explains a larger amount of variability for Central Europe during the 20th century than the NAO. This statistical model is able to skilfully reproduce the interannual variability of windstorm frequency especially for the British Isles and Central Europe with correlations up to 0.8.

  8. Seasonality of reproduction and production in farm fishes, birds and mammals.

    Science.gov (United States)

    Chemineau, P; Malpaux, B; Brillard, J P; Fostier, A

    2007-03-01

    A very large majority of farm animals express seasonal variations in their production traits, thus inducing seasonal availability of fresh derived animal products (meat, milk, cheese and eggs). This pattern is in part the consequence of the farmer's objective to market his products in the most economically favourable period. It may also be imposed by the season-dependent access to feed resources, as in ruminants, or by the specific requirements derived from adaptation to environmental conditions such as water temperature in fish. But seasonal variations in animal products are also the consequence of constraints resulting from the occurrence of a more or less marked seasonal reproductive season in most farm animal species including fish, poultry and mammals. Like their wild counterparts, at mid and high latitudes, most farm animals normally give birth at the end of winter-early spring, the most favourable period for the progeny to survive and thus promote the next generation. As a consequence, most species show seasonal variations in their ovulation frequency (mammals and fish: presence or absence of ovulation; birds: variations or suppression of laying rates), spermatogenic activity (from moderate to complete absence of sperm production), gamete quality (variations in fertilisation rates and embryo survival), and also sexual behaviour. Among species of interest for animal production, fishes and birds are generally considered as more directly sensitive to external factors (mainly temperature in fish, photoperiod in birds). In all species, it is therefore advisable that artificial photoperiodic treatments consisting of extra-light during natural short days (in chickens, turkeys, guinea fowl, sheep and goats) or melatonin during long days (in goats, sheep) be extensively used to either adjust the breeding season to animal producer needs and/or to completely overcome seasonal variations of sperm production in artificial insemination centres (mammals) and breeder flock

  9. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder

    DEFF Research Database (Denmark)

    Mc Mahon, Brenda; Andersen, Sofie B.; Madsen, Martin K.

    2016-01-01

    controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding...... between summer and winter (Psex-(P = 0.02) and genotype-(P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom...

  10. Re-accumulation of Asteroids to Equilibrium Figures

    Science.gov (United States)

    Hestroffer, D.; Tanga, P.; Richardson, D. C.; Berthier, J.; Cellino, A.; Durech, J.; Michel, P.

    2008-09-01

    Since their formation, asteroids since their formation have experienced little physical, geological or thermal evolution. Like comets they are thought to be among the most pristine remnants of the early solar system. One physical process, however, has played a major role since the ancient times: collisions. Dynamical families were produced by catastrophic collisions involving large enough energy to break the parent body. Other lines of evidence suggest that catastrophic collisions can also produce rubble-piles, i.e., loosely bound of post-collisional aggregates that re-accumulate to form a single body, and are kept together by gravity. The main objective of this work is to understand if—and under what conditions—Jacobi ellipsoids or other equilibrium figures can be obtained naturally by this way. This is done by performing numerical experiments simulating the re-accumulation process, and by performing high-angular resolution observations in order to better constrain the shape and density of the targets. It is shown that the outcomes of reaccumulation events tend to produce a rather narrow variety of possible shapes, and in some cases also binary systems.

  11. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    Science.gov (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  12. Clostridium difficile Infection Seasonality: Patterns across Hemispheres and Continents – A Systematic Review

    Science.gov (United States)

    Furuya-Kanamori, Luis; McKenzie, Samantha J.; Yakob, Laith; Clark, Justin; Paterson, David L.; Riley, Thomas V.; Clements, Archie C.

    2015-01-01

    Background Studies have demonstrated seasonal variability in rates of Clostridium difficile infection (CDI). Synthesising all available information on seasonality is a necessary step in identifying large-scale epidemiological patterns and elucidating underlying causes. Methods Three medical and life sciences publication databases were searched from inception to October 2014 for longitudinal epidemiological studies written in English, Spanish or Portuguese that reported the incidence of CDI. The monthly frequency of CDI were extracted, standardized and weighted according to the number of follow-up months. Cross correlation coefficients (XCORR) were calculated to examine the correlation and lag between the year-month frequencies of reported CDI across hemispheres and continents. Results The search identified 13, 5 and 2 studies from North America, Europe, and Oceania, respectively that met the inclusion criteria. CDI had a similar seasonal pattern in the Northern and Southern Hemisphere characterized by a peak in spring and lower frequencies of CDI in summer/autumn with a lag of 8 months (XCORR = 0.60) between hemispheres. There was no difference between the seasonal patterns across European and North American countries. Conclusion CDI demonstrates a distinct seasonal pattern that is consistent across North America, Europe and Oceania. Further studies are required to identify the driving factors of the observed seasonality. PMID:25775463

  13. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: assessment of treatment performance, biofilm development, and solids accumulation.

    Science.gov (United States)

    Ding, Yanli; Lyu, Tao; Bai, Shaoyuan; Li, Zhenling; Ding, Haijing; You, Shaohong; Xie, Qinglin

    2018-01-01

    This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.

  14. Arctic sea ice trends, variability and implications for seasonal ice forecasting.

    Science.gov (United States)

    Serreze, Mark C; Stroeve, Julienne

    2015-07-13

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    Science.gov (United States)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    in different seasons for different basins. The R2 of drought severity accumulated over USA is higher during winter, and climate models present added value especially at long leads. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the realtime data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for estimating a climatology against which current conditions can be compared. Based on our established experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML), we use the downscaled CFSv2 climate forcings to drive the re-calibrated VIC model and produce 6-month, 20-member ensemble hydrologic forecasts over Africa starting on the 1st of each calendar month during 1982-2007. Our CHM-based seasonal hydrologic forecasts are now being analyzed for its skill in predicting short-term soil moisture droughts over Africa. Besides relying on a single seasonal climate model or a single drought index, preliminary forecast results will be presented using multiple seasonal climate models based on the NOAA-supported National Multi-Model Ensemble (NMME) project, and with multiple drought indices. Results will be presented for the USA NIDIS test beds such as Southeast US and Colorado NIDIS (National Integrated Drought Information System) test beds, and potentially for other regions of the globe.

  16. Prevalence and correlates of binge eating in seasonal affective disorder

    Science.gov (United States)

    Donofry, Shannon D.; Roecklein, Kathryn A.; Rohan, Kelly J.; Wildes, Jennifer E.; Kamarck, Marissa L.

    2014-01-01

    Eating pathology in Seasonal Affective Disorder (SAD) may be more severe than hyperphagia during winter. Although research has documented elevated rates of subclinical binge eating in women with SAD, the prevalence and correlates of BED in SAD remain largely uncharacterized. We examined the prevalence and correlates of binge eating, weekly binge eating with distress, and BED as defined by the DSM-IV-TR in SAD. We also tested whether binge eating exhibits a seasonal pattern among individuals with BED. Two samples were combined to form a sample of individuals with SAD (N = 112). A third sample included non-depressed adults with clinical (n=12) and subclinical (n=11) BED. All participants completed the Questionnaire of Eating and Weight Patterns-Revised (QEWP-R) and modified Seasonal Pattern Assessment Questionnaire (M-SPAQ). In the SAD sample, 26.5% reported binge eating, 11.6% met criteria for weekly binge eating with distress, and 8.9% met criteria for BED. Atypical symptom severity predicted binge eating and BED. In the BED sample, 30% endorsed seasonal worsening of mood, and 26% reported a winter pattern of binge eating. The spectrum of eating pathology in SAD includes symptoms of BED, which are associated with atypical depression symptoms, but typical depression symptoms. PMID:24680872

  17. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan.

    Science.gov (United States)

    Ardö, Jonas; Mölder, Meelis; El-Tahir, Bashir Awad; Elkhidir, Hatim Abdalla Mohammed

    2008-12-01

    Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. The dry season (represented by Julian day 35-46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266-273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 mumol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 mumol m-2s-1 and then levels off. Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season

  18. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan

    Directory of Open Access Journals (Sweden)

    El-Tahir Bashir

    2008-12-01

    Full Text Available Abstract Background Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD. Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. Results The dry season (represented by Julian day 35–46, February 2005 was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1 was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere. The water use efficiency (WUE was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005 was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off. Conclusion Based on data collected during two short periods, the studied ecosystem

  19. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain

    Science.gov (United States)

    Galán, C.; García-Mozo, H.; Cariñanos, P.; Alcázar, P.; Domínguez-Vilches, E.

    Temperature is one of the main factors affecting the flowering of Mediterranean trees. In the case of Olea europaea L., a low-temperature period prior to bud development is essential to interrupt dormancy. After that, and once a base temperature is reached, the plant accumulates heat until flowering starts. Different methods of obtaining the best-forecast model for the onset date of the O. europaea pollen season, using temperature as the predictive parameter, are proposed in this paper. An 18-year pollen and climatic data series (1982-1999) from Cordoba (Spain) was used to perform the study. First a multiple-regression analysis using 15-day average temperatures from the period prior to flowering time was tested. Second, three heat-summation methods were used, determining the the quantities heat units (HU): accumulated daily mean temperature after deducting a threshold, growing degree-days (GDD): proposed by Snyder [J Agric Meteorol 35:353-358 (1985)] as a measure of physiological time, and accumulated maximum temperature. In the first two, the optimum base temperature selected for heat accumulation was 12.5°C. The multiple-regression equation for 1999 gives a 7-day delay from the observed date. The most accurate results were obtained with the GDD method, with a difference of only 4.7 days between predicted and observed dates. The average heat accumulation expressed as GDD was 209.9°C days. The HU method also gives good results, with no significant statistical differences between predictions and observations.

  20. Groundwater dependent pools in seasonal and permanent streams in the Clare Valley of South Australia

    Directory of Open Access Journals (Sweden)

    Erick Bestland

    2017-02-01

    In this Mediterranean climate with cool wet winters and dry hot summers strong salinity changes (up to 2.5 times due to seasonal cycles of wetting and drying were observed in surface water. Oxygen and hydrogen isotope values from pool sites showed strong evaporative enrichment during the dry season with up to 50% net evaporation calculated. Water isotopes from groundwater, however, cluster at the depleted end of the local meteoric water line and most do not show change despite significant seasonal salinity changes. Strontium isotope values and concentrations from the pools over the one year period do not define a mixing relationship. Instead, most pool sites have unchanging strontium isotope values despite the large seasonal change in salinity indicating strong evaporation of groundwater fed pools during this drought year.

  1. Atmospheric deposition of mercury in central Poland: Sources and seasonal trends

    Science.gov (United States)

    Siudek, Patrycja; Kurzyca, Iwona; Siepak, Jerzy

    2016-03-01

    Atmospheric deposition of total mercury was studied at two sites in central Poland, between April 2013 and October 2014. Hg in rainwater (bulk deposition) was analyzed in relation to meteorological parameters and major ions (H+, NO3-, Cl-, SO42 -) in order to investigate seasonal variation, identify sources and determine factors affecting atmospheric Hg chemistry and deposition. Total mercury concentrations varied between 1.24 and 22.1 ng L- 1 at the urban sampling site (Poznań) and between 0.57 and 18.3 ng L- 1 in the woodland protected area (Jeziory), with quite similar mean values of 6.96 and 6.37 ng L- 1, respectively. Mercury in precipitation exhibited lower spatial variability within the study domain (urban/forest transect) than the concentrations determined during other similar observations, reflecting the predominant influence of the same local sources. In our study, a significant seasonal pattern of Hg deposition was observed at both sampling sites, with higher and more variable concentrations of Hg reported for the urban area. In particular, deposition values of Hg were higher in the samples attributed to relatively large precipitation amounts in the summer and in those collected during the winter season (the result of higher contributions from combustion sources, i.e. intensive combustion of fossil fuels in residential and commercial boilers, individual power/heat-generating plants). In addition, a significant relationship between Hg concentration and precipitation amount was found while considering different types of wintertime samples (i.e. rain, snow and mixed precipitation). The analysis of backward trajectories showed that air masses arriving from polluted regions of western Europe and southern Poland largely affected the amount of Hg in rainwater. A seasonal variation in Hg deposition fluxes was also observed, with the maximum value of Hg in spring and minimum in winter. Our results indicated that rainwater Hg and, consequently, the wet deposition

  2. Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments.

    Science.gov (United States)

    Zaborska, Agata; Winogradow, Aleksandra; Pempkowiak, Janusz

    2014-01-01

    The Baltic Sea is susceptible to pollution by hazardous substances due to limited water exchange, shallowness, and the large catchment area. Radionuclides, particularly (137)Cs, are one of the most hazardous anthropogenic substances present in the Baltic environment. This study was conducted to present (137)Cs present contamination that should further be a subject of reliable monitoring when the new Nuclear Power Plant is put into operation in the northern Poland. The sea-wide, up to date distribution of (137)Cs activities and inventories in the Baltic Sea bottom sediments are presented. The (137)Cs activity concentrations were measured in 30 cm long sediment cores collected at 22 sampling stations. Sediment accumulation rates were quantified by (210)Pb geochronology to follow the history of (137)Cs accumulation. The (137)Cs inventories and fluxes were calculated. Most of the Baltic Sea sediments accumulated (137)Cs in the range from 750 to 2675 Bq m(-2). The Bothnian Bay is severely contaminated by (137)Cs with inventories up to 95,191 Bq m(-2). This region is moreover characterized by extremely large patchiness of (137)Cs inventories. The (137)Cs annual fluxes are highest at the two stations located at the Bothnian Bay (342 Bq m(-2) and 527 Bq m(-2)) due to large Chernobyl (137)Cs contamination of that region and high sediment accumulation rates. When these stations are excluded, the recent, annual mean value of (137)Cs load to the Baltic Sea deposits is 38 ± 22 Bq m(-2). The distribution of radio-caesium inventories over the Baltic Sea nowadays reflects the pattern of Chernobyl contamination. The radio-caesium deposited in surface sediments is not permanently buried, but may be resuspended and redeposited by currents, bioturbation or anthropogenic activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  4. Accumulation factors of mercury by King Bolete Boletus edulis

    Science.gov (United States)

    Falandysz, J.; Frankowska, A.

    2003-05-01

    To understand pollution picture with mercury and to examine suitability of King Bolete Boletits edulis Bull.: Fr. as possible bioindicator the total mercurv concentrations were determined both in the fruiting bodies and underlying soil substrate collected from various regions of Poland. There were quite large spatial variations of mercury concentration and some seasonal also were noted. Mercury content of the caps exceeded that of stalks (p<0.05), Nvhile Hg BCF values varied between 9 and 40, and 4 and 40, respectively.

  5. Seasonal genetic influence on serum 25-hydroxyvitamin D levels: a twin study.

    Directory of Open Access Journals (Sweden)

    Greta Snellman

    Full Text Available BACKGROUND: Although environmental factors, mainly nutrition and UV-B radiation, have been considered major determinants of vitamin D status, they have only explained a modest proportion of the variation in serum 25-hydroxyvitamin D. We aimed to study the seasonal impact of genetic factors on serum 25-hydroxyvitamin D concentrations. METHODOLOGY/PRINCIPAL FINDINGS: 204 same-sex twins, aged 39-85 years and living at northern latitude 60 degrees, were recruited from the Swedish Twin Registry. Serum 25-hydroxyvitamin D was analysed by high-pressure liquid chromatography and mass spectrometry. Genetic modelling techniques estimated the relative contributions of genetic, shared and individual-specific environmental factors to the variation in serum vitamin D. The average serum 25-hydroxyvitamin D concentration was 84.8 nmol/l (95% CI 81.0-88.6 but the seasonal variation was substantial, with 24.2 nmol/l (95% CI 16.3-32.2 lower values during the winter as compared to the summer season. Half of the variability in 25-hydroxyvitamin D during the summer season was attributed to genetic factors. In contrast, the winter season variation was largely attributable to shared environmental influences (72%; 95% CI 48-86%, i.e., solar altitude. Individual-specific environmental influences were found to explain one fourth of the variation in serum 25-hydroxyvitamin D independent of season. CONCLUSIONS/SIGNIFICANCE: There exists a moderate genetic impact on serum vitamin D status during the summer season, probably through the skin synthesis of vitamin D. Further studies are warranted to identify the genes impacting on vitamin D status.

  6. Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation

    Directory of Open Access Journals (Sweden)

    W.-J. Zhang

    2011-06-01

    Full Text Available The impact of air temperature in early growing season on the carbon sequestration of a subtropical coniferous plantation was discussed through analyzing the eddy flux observations at Qianyanzhou (QYZ site in southern China from 2003 to 2008. This site experienced two cold early growing seasons (with temperature anomalies of 2–5 °C in 2005 and 2008, and a severe summer drought in 2003.
    Results indicated that the low air temperature from January to March was the major factor controlling the inter-annual variations in net carbon uptake at this site, rather than the previously thought summer drought. The accumulative air temperature from January to February showed high correlation (R2=0.970, p<0.001 with the annual net ecosystem production (NEP. This was due to the controls of early-month temperature on the plant phenology developing and the growing season length at this subtropical site. The cold spring greatly shortened the growing season length and therefore reduced the carbon uptake period. The eddy flux observations showed a carbon loss of 4.04 g C m−2 per growing-season day at this coniferous forest site. On the other hand, the summer drought also reduced the net carbon uptake strength because the photosynthesis was more sensitive to water deficit stress than the ecosystem respiration. However, the impact of summer drought occurred within a relatively shorter period and the carbon sequestration went back to the normal level once the drought was relieved.

  7. Seasonal Temperature Variations controlling Cave Ventilation Processes in Cueva Larga, Puerto Rico

    Science.gov (United States)

    Winter, A.; Vieten, R.; Warken, S. F.; Schrӧder-Ritzrau, A.; Miller, T. E.; Scholz, D.

    2016-12-01

    Two years of monthly monitoring result in much better understanding of ventilation processes in caves. Cueva Larga, a tropical cave in Puerto Rico is 1440 m long with a large main passage (about 116,000 m3). Cave air pCO2 in the main passage varied seasonally, between 600 ppm in winter and 1800 ppm in summer. The seasonal variability in cave pCO2 made it possible to estimate a cave air exchange time of 36±5 days and a winter ventilation rate of 3,200±800 m3/day for the main cave passage. Calculations of virtual temperature and differences between cave and surface temperature show that the seasonal temperature cycle is the main driver of the alternation between a well-ventilated winter mode and a near-stagnant summer mode. The winter mode is characterized by a positive buoyancy contrast at night leading to maximal cave ventilation, while during summer ventilation is at a minimum. Between winter and summer, a transitional mode of partial cave ventilation is observed. On shorter time scales (diurnal to weekly), cave pCO2 is also influenced by atmospheric pressure but this variation is one order of magnitude lower than the seasonal pCO2 change. The cave morphology of Cueva Larga including its large volume, tubular shape and the obstructed cave entrance geometry are important boundary conditions for the observed ventilation patterns. Our findings emphasize that cave systems with varying morphology have to be studied individually in order to correctly describe ventilation processes.

  8. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    Science.gov (United States)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  9. Electric charge accumulation in polar and non-polar polymers under electron beam irradiation

    International Nuclear Information System (INIS)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    2010-01-01

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m 3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m 3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m 3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula. (author)

  10. Short-term forecasting of non-OPEC supply: a test of seasonality and seasonal decomposition

    International Nuclear Information System (INIS)

    Jazayeri, S.M.R.T.; Yahyai, A.

    2002-01-01

    The purpose of this study is, first to find out, based on historical data, whether quarterly averages of non-OPEC supply follow a seasonal pattern. If that is mathematically established, then, secondly, it is attempted to estimate the best seasonal factors to decompose the estimated yearly average into seasonal averages. This study applies the Fourier analysis to quarterly supply series to test for seasonality, and provides estimates of seasonal factors for the year 2001 by applying the so-called X-11 decomposition method to the annual estimate. A set of historical data, consisting of quarterly supply averages of individual countries, regional subtotals and aggregate non-OPEC for the period 1971-2000, forms the basis of the analysis. Through the application of the Fourier analysis and X-11 decomposition method, it is demonstrated that quarterly non-OPEC supply, be it by an individual major producer or regional sub-totals, clearly follows a seasonal pattern. This is a very useful conclusion for the market analyst involved with forecasting the quarterly supply. (author)

  11. What Models and Satellites Tell Us (and Don't Tell Us) About Arctic Sea Ice Melt Season Length

    Science.gov (United States)

    Ahlert, A.; Jahn, A.

    2017-12-01

    Melt season length—the difference between the sea ice melt onset date and the sea ice freeze onset date—plays an important role in the radiation balance of the Arctic and the predictability of the sea ice cover. However, there are multiple possible definitions for sea ice melt and freeze onset in climate models, and none of them exactly correspond to the remote sensing definition. Using the CESM Large Ensemble model simulations, we show how this mismatch between model and remote sensing definitions of melt and freeze onset limits the utility of melt season remote sensing data for bias detection in models. It also opens up new questions about the precise physical meaning of the melt season remote sensing data. Despite these challenges, we find that the increase in melt season length in the CESM is not as large as that derived from remote sensing data, even when we account for internal variability and different definitions. At the same time, we find that the CESM ensemble members that have the largest trend in sea ice extent over the period 1979-2014 also have the largest melt season trend, driven primarily by the trend towards later freeze onsets. This might be an indication that an underestimation of the melt season length trend is one factor contributing to the generally underestimated sea ice loss within the CESM, and potentially climate models in general.

  12. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Longfeng Li

    2012-05-01

    Full Text Available In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD region. Non-methane hydrocarbons (NMHCs, as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou.

  13. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  14. A global empirical system for probabilistic seasonal climate prediction

    Science.gov (United States)

    Eden, J. M.; van Oldenborgh, G. J.; Hawkins, E.; Suckling, E. B.

    2015-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  15. Seasonality of Suicidal Behavior

    Science.gov (United States)

    Woo, Jong-Min; Okusaga, Olaoluwa; Postolache, Teodor T.

    2012-01-01

    A seasonal suicide peak in spring is highly replicated, but its specific cause is unknown. We reviewed the literature on suicide risk factors which can be associated with seasonal variation of suicide rates, assessing published articles from 1979 to 2011. Such risk factors include environmental determinants, including physical, chemical, and biological factors. We also summarized the influence of potential demographic and clinical characteristics such as age, gender, month of birth, socioeconomic status, methods of prior suicide attempt, and comorbid psychiatric and medical diseases. Comprehensive evaluation of risk factors which could be linked to the seasonal variation in suicide is important, not only to identify the major driving force for the seasonality of suicide, but also could lead to better suicide prevention in general. PMID:22470308

  16. 49 CFR 178.935 - Standards for wooden Large Packagings.

    Science.gov (United States)

    2010-10-01

    ... Packagings. (i) Natural wood used in the construction of Large Packagings must be well-seasoned, commercially...) Reconstituted wood used in the construction of Large Packagings must be water resistant reconstituted wood such... Packaging types are designated: (1) 50C natural wood. (2) 50D plywood. (3) 50F reconstituted wood. (b...

  17. Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru

    Science.gov (United States)

    Manzanas, R.; Gutiérrez, J. M.

    2018-05-01

    This work assesses the suitability of a first simple attempt for process-conditioned bias correction in the context of seasonal forecasting. To do this, we focus on the northwestern part of Peru and bias correct 1- and 4-month lead seasonal predictions of boreal winter (DJF) precipitation from the ECMWF System4 forecasting system for the period 1981-2010. In order to include information about the underlying large-scale circulation which may help to discriminate between precipitation affected by different processes, we introduce here an empirical quantile-quantile mapping method which runs conditioned on the state of the Southern Oscillation Index (SOI), which is accurately predicted by System4 and is known to affect the local climate. Beyond the reduction of model biases, our results show that the SOI-conditioned method yields better ROC skill scores and reliability than the raw model output over the entire region of study, whereas the standard unconditioned implementation provides no added value for any of these metrics. This suggests that conditioning the bias correction on simple but well-simulated large-scale processes relevant to the local climate may be a suitable approach for seasonal forecasting. Yet, further research on the suitability of the application of similar approaches to the one considered here for other regions, seasons and/or variables is needed.

  18. Estimation of seasonal atmospheric stability and mixing height by using different schemes

    International Nuclear Information System (INIS)

    Essa, K.S.M.; Embaby, M.; Mubarak, F.; Kamel, I.

    2007-01-01

    Different atmospheric stability schemes were used to characterize the plume growth (dispersion coefficients σ) in the lateral and vertical directions to determine the concentration distribution of pollutants through the PBL. The PBL is the region in which surface friction has a large effect on the mixing of pollutants. It is also suffer large fluctuation in temperature and wind and its depth (mixing depth) changes over a diurnal cycle. In this study, four months of surface meteorological parameters were used (to represent different seasons) to determine seasonal stability, classification. Five different stability schemes were estimated based on temperature gradient, standard deviation of the horizontal wind direction fluctuation, gradient and Bulk Richardson numbers and Monin-Obukhov length. Friction velocity, (u * ) for each stability scheme was estimated for characterizing the hourly, mixing height for each stability class. Also, plume rise was estimated for each stability class depending on the availability of meteorological parameters

  19. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Science.gov (United States)

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    -quality standard for total arsenic of 50 micrograms per liter. All concentrations of dissolved copper, selenium, and zinc measured in samples were below the water-quality standard.Concentrations of dissolved nitrate plus nitrite generally increased from upstream to downstream during all flow periods. The largest downstream increase in dissolved nitrate plus nitrite concentration was measured between sites 07103970 and 07104905 on Monument Creek. All but one tributary that drain into Monument Creek between the two sites had higher median nitrate plus nitrite concentrations than the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). Increases in the concentration of dissolved nitrate plus nitrite were also evident below wastewater treatment plants located on Fountain Creek.Most stormflow concentrations of dissolved trace elements were smaller than concentrations from cold-season flow or warm-season samples. However, median concentrations of total arsenic, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during cold-season flow or warm-season fl. Median concentrations of total arsenic, total copper, total lead, dissolved and total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc concentrations increased from 1.5 to 28.5 times from site 07103700 (FoCr_Manitou) to 07103707 (FoCr_8th) during cold-season and warm-season flows, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek.Median suspended-sediment concentrations and median suspended-sediment loads increased in the downstream direction during all streamflow regimes between Monument Creek sites 07103970 (MoCr_Woodmen) and 07104905 (MoCr_Bijou); however, statistically significant increase (p-value less than 0.05) were only present during warm-season flow and stormflow. Significant increases in median suspended sediment

  20. Evidences of Seasonal Variation in Altimetry Derived Ocean Tides in the Subarctic Ocean

    Directory of Open Access Journals (Sweden)

    Hok Sum Fok

    2013-01-01

    Full Text Available While the barotropic ocean tides in the deep ocean are well modeled to ~2 cm RMS, accurate tidal prediction in the ice-covered polar oceans and near coastal regions remain elusive. A notable reason is that the most accurate satellite altimeters (TOPEX/Jason-1/-2, whose orbits are optimized to minimize the tidal aliasing effect, have spatial coverage limited to largely outside of the polar ocean. Here, we update the assessment of tidal models using 7 contemporary global and regional models, and show that the altimetry sea surface height (SSH anomaly residual after tidal correction is 9 - 12 cm RMS in the Subarctic Ocean. We then address the hypothesis whether plausible evidence of variable tidal signals exist in the seasonally ice-covered Subarctic Ocean, where the sea ice cover is undergoing rapid thinning. We first found a difference in variance reduction for multi-mission altimeter SSH anomaly residuals during the summer and winter seasons, with the residual during winter season 15 - 30% larger than that during the summer season. Experimental seasonal ocean tide solutions derived from satellite altimetry reveals that the recovered winter and summer tidal constituents generally differ by a few cm in amplitude and tens of degrees in phase. Relatively larger seasonal tidal patterns, in particular for M2, S2 and K1 tides, have been identified in the Chukchi Sea study region near eastern Siberia, coincident with the seasonal presence and movement of sea ice.

  1. Winter Insulation By Snow Accumulation in a Subarctic Treeline Ecosystem Increases Summer Carbon Cycling Rates

    Science.gov (United States)

    Parker, T.; Subke, J. A.; Wookey, P. A.

    2014-12-01

    The effect of snow accumulation on soil carbon and nutrient cycling is attracting substantial attention from researchers. We know that deeper snow accumulation caused by high stature vegetation increases winter microbial activity and therefore carbon and nitrogen flux rates. However, until now the effect of snow accumulation, by buffering winter soil temperature, on subsequent summer soil processes, has scarcely been considered. We carried out an experiment at an alpine treeline in subarctic Sweden in which soil monoliths, contained within PVC collars, were transplanted between forest (deep winter snow) and tundra heath (shallow winter snow). We measured soil CO2efflux over two growing seasons and quantified soil microbial biomass after the second winter. We showed that respiration rates of transplanted forest soil were significantly reduced compared with control collars (remaining in the forest) as a consequence of colder, but more variable, winter temperatures. We hypothesised that microbial biomass would be reduced in transplanted forests soils but found there was no difference compared to control. We therefore further hypothesised that the similarly sized microbial pool in the control is assembled differently to the transplant. We believe that the warmer winters in forests foster more active consortia of decomposer microbes as a result of different abiotic selection pressures. Using an ecosystem scale experimental approach, we have identified a mechanism that influences summer carbon cycling rates based solely on the amount of snow that accumulates the previous winter. We conclude that modification of snow depth as a consequence of changes in vegetation structure is an important mechanism influencing soil C stocks in ecosystems where snow persists for a major fraction of the year.

  2. Seasonal variations in VO2max, O2-cost, O2-deficit, and performance in elite cross-country skiers.

    Science.gov (United States)

    Losnegard, Thomas; Myklebust, Håvard; Spencer, Matt; Hallén, Jostein

    2013-07-01

    Long-term effects of training are important information for athletes, coaches, and scientists when associating changes in physiological indices with changes in performance. Therefore, this study monitored changes in aerobic and anaerobic capacities and performance in a group of elite cross-country skiers during a full sport season. Thirteen men (age, 23 ± 2 years; height, 182 ± 6 cm; body mass, 76 ± 8 kg; V2 roller ski skating VO2max, 79.3 ± 4.4 ml·kg·min or 6.0 ± 0.5 L·min) were tested during the early, middle, and late preparation phase: June (T1), August (T2), and October (T3); during the competition phase: January/February (T4); and after early precompetition phase: June (T5). O2-cost during submaximal efforts, V[Combining Dot Above]O2peak, accumulated oxygen deficit (ΣO2-deficit), and performance during a 1,000-m test were determined in the V2 ski skating technique on a roller ski treadmill. Subjects performed their training on an individual basis, and detailed training logs were categorized into different intensity zones and exercise modes. Total training volume was highest during the summer months (early preseason) and decreased toward and through the winter season, whereas the volume of high-intensity training increased (all p size; ES = 0.63-1.37, moderate to large, all p country skiers induced no significant changes in V[Combining Dot Above]O2peak but improved performance, O2-cost, and ΣO2-deficit.

  3. Benefits of seasonal forecasts of crop yields

    Science.gov (United States)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  4. Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries

    Directory of Open Access Journals (Sweden)

    Christopher Nunn

    2017-05-01

    Full Text Available The development of models to predict yield potential and quality of a Miscanthus crop must consider climatic limitations and the duration of growing season. As a biomass crop, yield and quality are impacted by the timing of plant developmental transitions such as flowering and senescence. Growth models are available for the commercially grown clone Miscanthus x giganteus (Mxg, but breeding programs have been working to expand the germplasm available, including development of interspecies hybrids. The aim of this study was to assess the performance of diverse germplasm beyond the range of environments considered suitable for a Miscanthus crop to be grown. To achieve this, six field sites were planted as part of the EU OPTIMISC project in 2012 in a longitudinal gradient from West to East: Wales—Aberystwyth, Netherlands—Wageningen, Stuttgart—Germany, Ukraine—Potash, Turkey—Adana, and Russia—Moscow. Each field trial contained three replicated plots of the same 15 Miscanthus germplasm types. Through the 2014 growing season, phenotypic traits were measured to determine the timing of developmental stages key to ripening; the tradeoff between growth (yield and quality (biomass ash and moisture content. The hottest site (Adana showed an accelerated growing season, with emergence, flowering and senescence occurring before the other sites. However, the highest yields were produced at Potash, where emergence was delayed by frost and the growing season was shortest. Flowering triggers varied with species and only in Mxg was strongly linked to accumulated thermal time. Our results show that a prolonged growing season is not essential to achieve high yields if climatic conditions are favorable and in regions where the growing season is bordered by frost, delaying harvest can improve quality of the harvested biomass.

  5. Influence of seasonal and meteorological factors on nuclear emergency planning. Report by a group of consultants

    International Nuclear Information System (INIS)

    1991-01-01

    The extent of the consequences of an accidental release of radioactivity is strongly dependent upon a wide number of parameters. In particular, the characteristics of the source term, and seasonal, climatic and meteorological conditions have a substantial influence on the physical factors involved in transport and deposition of airborne contaminants, and on the transfer and accumulation of radionuclides in terrestrial and aquatic ecosystems. These environmental conditions also have a significant influence on living habits and practices, and thus on potential radiological and economic impacts. Moreover, these conditions may affect the features and the impact of countermeasures which are adopted for the protection of the public in the event of an accidental release. The NEA organized a workshop to discuss such matters. The workshop provided a review of the influence of such environmental conditions as season, climate and weather on the radiological consequences of an accident, and on the implication of these conditions for the implementation of mitigative measures

  6. Relationship between heavy metal accumulation and morphometric parameters in European hare (Lepus europaeus) inhabiting various types of landscapes in southern Poland.

    Science.gov (United States)

    Wajdzik, Marek; Halecki, Wiktor; Kalarus, Konrad; Gąsiorek, Michał; Pająk, Marek

    2017-11-01

    To evaluate the influence of hazardous substances in the environment, studies of pollutant accumulation in wild living animals are needed. Studies dealing with heavy metal contamination in mammals usually focus on a single organ. We investigated accumulation of heavy metals as well as iron in European hare (Lepus europaeus) living in southern Poland, Małopolska Province. Hares were captured during the hunting season. We tested metal accumulation in 14 organs and tissues using 35 individuals with known body weight and sex inhabiting agricultural, industrial and other types of landscapes. To obtain deeper insight into contamination patterns, we used accumulation data from the liver since it is the most frequently investigated organ and prone to pollution accumulation. Based on the data obtained for the liver, we tested the impact of metal pollution on hare morphology, including body length and several skull cranimetric parameters. Metals content differed between organs. Moreover, individuals from industrial areas had higher Cd content in their body. We distinguished two groups of elements: the first group, Cd, Fe and Zn, revealed the highest toxic effect in the liver and kidneys; the second group, Cr, Ni, and Pb, accumulated primarily in the brain. Hares inhabiting industrial areas had higher concentration of Cd and Pb, and lower levels of Cr and Fe in their liver in comparison with those from agricultural and forest habitats. Heavy metals had an effect on body length that was negatively associated with Cr levels. Skull diastema length was associated positively with accumulation of Cd and Pb. We showed that hare organs and tissues could be used as bioindicators of environmental pollution by heavy metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Bridging the Barriers: Knowledge Connections, Productivity, and Capital Accumulation

    OpenAIRE

    R. Quentin Grafton; Tom Kompas; P. Dorian Owen

    2004-01-01

    The paper explains the large differences in cross-country productivity performance by modeling and testing the effects of social barriers to communication on productivity and capital accumulation. In an optimal growth model, social barriers to communication that impede the formation of knowledge connections are shown to reduce both transitory and steady-state levels of total factor productivity (TFP), per capita consumption, and reproducible capital. A ‘bridging’ parameter in the growth model...

  8. Impacts of mesquite distribution on seasonal space use of lesser prairie-chickens

    Science.gov (United States)

    Boggie, Matthew A.; Strong, Cody R.; Lusk, Daniel; Carleton, Scott A.; Gould, William R.; Howard, Randy L.; Nichols, Clay T.; Falkowski, Michael J.; Hagen, Christian A.

    2017-01-01

    Loss of native grasslands by anthropogenic disturbances has reduced availability and connectivity of habitat for many grassland species. A primary threat to contiguous grasslands is the encroachment of woody vegetation, which is spurred by disturbances that take on many forms from energy development, fire suppression, and grazing. These disturbances are exacerbated by natural- and human-driven cycles of changes in climate punctuated by drought and desertification conditions. Encroachment of honey mesquite (Prosopis glandulosa) into the prairies of southeastern New Mexico has potentially limited habitat for numerous grassland species, including lesser prairie-chickens (Tympanuchus pallidicinctus). To determine the magnitude of impacts of distribution of mesquite and how lesser prairie-chickens respond to mesquite presence on the landscape in southeastern New Mexico, we evaluated seasonal space use of lesser prairie-chickens in the breeding and nonbreeding seasons. We derived several remotely sensed spatial metrics to characterize the distribution of mesquite. We then used these data to create population-level resource utilization functions and predict intensity of use of lesser prairie-chickens across our study area. Home ranges were smaller in the breeding season compared with the nonbreeding season; however, habitat use was similar across seasons. During both seasons, lesser prairie-chickens used areas closer to leks and largely avoided areas with mesquite. Relative to the breeding season, during the nonbreeding season habitat use suggested a marginal increase in mesquite within areas of low intensity of use, yet aversion to mesquite was strong in areas of medium to high intensity of use. To our knowledge, our study is the first to demonstrate a negative behavioral response by lesser prairie-chickens to woody encroachment in native grasslands. To mitigate one of the possible limiting factors for lesser prairie-chickens, we suggest future conservation

  9. Comfort Study of Office Buildings with Large Glazed Areas

    Directory of Open Access Journals (Sweden)

    Violeta Motuzienė

    2017-09-01

    Full Text Available In the buildings with large glazed areas the biggest problem is the space overheating during the warm season. This causes increased energy demand for cooling. The survey was carried out during the warm and cold seasons in two office buildings with large glazed areas. The methodology was prepared for evaluating indoor climate parameters using objective and subjective evaluation. The measurements have shown that there are problems with lighting in workplaces of both buildings during both the warm and cold seasons. The biggest problem is too dry air during the cold period, an acceptable temperature is also not always in the building No. 2. The survey has shown that some employees are dissatisfied with the indoor climate in the workplace, the bigger dissatisfaction is in building No. 2. Assessing according to the O. Fanger methodology was obtained that the number of PPD is in the normal range during the cold period, whereas close to the limit when the building can not be operated in the warm period.

  10. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    Science.gov (United States)

    Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.

    2017-05-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).

  11. Sorting Out Seasonal Allergies

    Science.gov (United States)

    ... Close ‹ Back to Healthy Living Sorting Out Seasonal Allergies Sneezing, runny nose, nasal congestion. Symptoms of the ... How do I know if I have seasonal allergies? According to Dr. Georgeson, the best way to ...

  12. Remote sensing the phytoplankton seasonal succession of the Red Sea.

    Science.gov (United States)

    Raitsos, Dionysios E; Pradhan, Yaswant; Brewin, Robert J W; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  13. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.

    2013-06-05

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  14. Retrospective assessment of seasonal allergic symptoms

    DEFF Research Database (Denmark)

    Bødtger, Uffe; Poulsen, L K; Malling, H-J

    2003-01-01

    in a double-blind study. Assessment of severity of symptoms from the nose, eyes and lungs were performed daily during the season 2000, and post-seasonally 6 months after the season in 1999 and 2000. A four-point verbal descriptor scale (VDS-4) was used at all occasions. A mean in-seasonal symptom rating...

  15. Cadmium uptake and speciation changes in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties

    Institute of Scientific and Technical Information of China (English)

    SU Dechun; XING Jianping; JIAO Weiping; WONG Woonchung

    2009-01-01

    Characteristics of cadmium (Cd) uptake kinetics and distribution of Cd speciation in the rhizosphere for Cd accumulator and non-accumulator oilseed rape varieties were investigated under nutrient solution and rhizobox soil culture conditions.The results showed that the maximal influx (Vmax) for Cd2+ and Km were significantly different for the two oilseed rape varieties.The value of Vmax for Cd accumulator oilseed rape Zhucang Huazi was two-fold greater than that for oilseed rape Chuangyou II-93.The exchangeable Cd concentration in the rhizosphere was significantly lower than in non-rhizospheric soils supplemented with Cd as CdSO4 for both the varieties.Carbonate-bound Cd in the rhizosphere of Cd accumulator oilseed rape was significantly higher than that in the rhizosphere of non-accumulator oilseed rape and non-rhizospheric soil.Cd accumulator oilseed rape had a higher Cd2+ affinity and more ability to uptake insoluble Cd in the soil than the non-accumulator oilseed rape.

  16. Changes in body composition and bone of female collegiate soccer players through the competitive season and off-season

    Science.gov (United States)

    Minett, M.M.; Binkley, T.B.; Weidauer, L.A.; Specker, B.L.

    2017-01-01

    Objectives: To assess body composition and bone changes pre- to post-season (pre-post) and post- to off-season (post-off) in female soccer athletes (SC). Methods: Outcomes were assessed using DXA and pQCT in 23 SC and 17 controls at three times throughout season. Results: SC, non-starters in particular, lost lean mass pre-post (-0.9±0.2 kg, pSoccer players lost lean mass over the competitive season that was not recovered during off-season. Bone size increased pre- to post-season. Female soccer athletes experience body composition and bone geometry changes that differ depending on the time of season and on athlete’s playing status. Evaluations of athletes at key times across the training season are necessary to understand changes that occur. PMID:28250243

  17. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    Directory of Open Access Journals (Sweden)

    Han Li

    2016-01-01

    Full Text Available To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.

  18. Predictability of soil moisture and river flows over France for the spring season

    Science.gov (United States)

    Singla, S.; Céron, J.-P.; Martin, E.; Regimbeau, F.; Déqué, M.; Habets, F.; Vidal, J.-P.

    2012-01-01

    Sources of spring predictability of the hydrological system over France were studied on a seasonal time scale over the 1960-2005 period. Two random sampling experiments were set up in order to test the relative importance of the land surface initial state and the atmospheric forcing. The experiments were based on the SAFRAN-ISBA-MODCOU hydrometeorological suite which computed soil moisture and river flow forecasts over a 8-km grid and more than 880 river-gauging stations. Results showed that the predictability of hydrological variables primarily depended on the seasonal atmospheric forcing (mostly temperature and total precipitation) over most plains, whereas it mainly depended on snow cover over high mountains. However, the Seine catchment area was an exception as the skill mainly came from the initial state of its large and complex aquifers. Seasonal meteorological hindcasts with the Météo-France ARPEGE climate model were then used to force the ISBA-MODCOU hydrological model and obtain seasonal hydrological forecasts from 1960 to 2005 for the entire March-April-May period. Scores from this seasonal hydrological forecasting suite could thus be compared with the random atmospheric experiment. Soil moisture and river flow skill scores clearly showed the added value in seasonal meteorological forecasts in the north of France, contrary to the Mediterranean area where values worsened.

  19. Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration.

    Science.gov (United States)

    Carbone, Mariah S; Still, Christopher J; Ambrose, Anthony R; Dawson, Todd E; Williams, A Park; Boot, Claudia M; Schaeffer, Sean M; Schimel, Joshua P

    2011-09-01

    Moisture inputs drive soil respiration (SR) dynamics in semi-arid and arid ecosystems. However, determining the contributions of root and microbial respiration to SR, and their separate temporal responses to periodic drought and water pulses, remains poorly understood. This study was conducted in a pine forest ecosystem with a Mediterranean-type climate that receives seasonally varying precipitation inputs from both rainfall (in the winter) and fog-drip (primarily in the summer). We used automated SR measurements, radiocarbon SR source partitioning, and a water addition experiment to understand how SR, and its separate root and microbial sources, respond to seasonal and episodic changes in moisture. Seasonal changes in SR were driven by surface soil water content and large changes in root respiration contributions. Superimposed on these seasonal patterns were episodic pulses of precipitation that determined the short-term SR patterns. Warm season precipitation pulses derived from fog-drip, and rainfall following extended dry periods, stimulated the largest SR responses. Microbial respiration dominated these SR responses, increasing within hours, whereas root respiration responded more slowly over days. We conclude that root and microbial respiration sources respond differently in timing and magnitude to both seasonal and episodic moisture inputs. These findings have important implications for the mechanistic representation of SR in models and the response of dry ecosystems to changes in precipitation patterns.

  20. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    Science.gov (United States)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.