WorldWideScience

Sample records for large scale plant

  1. Distributed and hierarchical control techniques for large-scale power plant systems

    International Nuclear Information System (INIS)

    Raju, G.V.S.; Kisner, R.A.

    1985-08-01

    In large-scale systems, integrated and coordinated control functions are required to maximize plant availability, to allow maneuverability through various power levels, and to meet externally imposed regulatory limitations. Nuclear power plants are large-scale systems. Prime subsystems are those that contribute directly to the behavior of the plant's ultimate output. The prime subsystems in a nuclear power plant include reactor, primary and intermediate heat transport, steam generator, turbine generator, and feedwater system. This paper describes and discusses the continuous-variable control system developed to supervise prime plant subsystems for optimal control and coordination

  2. Large scale PV plants - also in Denmark. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P [PA Energy, Malling (Denmark); Vedde, J [SiCon. Silicon and PV consulting, Birkeroed (Denmark)

    2011-04-15

    Large scale PV (LPV) plants, plants with a capacity of more than 200 kW, has since 2007 constituted an increasing share of the global PV installations. In 2009 large scale PV plants with cumulative power more that 1,3 GWp were connected to the grid. The necessary design data for LPV plants in Denmark are available or can be found, although irradiance data could be improved. There seems to be very few institutional barriers for LPV projects, but as so far no real LPV projects have been processed, these findings have to be regarded as preliminary. The fast growing number of very large scale solar thermal plants for district heating applications supports these findings. It has further been investigated, how to optimize the lay-out of LPV plants. Under the Danish irradiance conditions with several winter months with very low solar height PV installations on flat surfaces will have to balance the requirements of physical space - and cost, and the loss of electricity production due to shadowing effects. The potential for LPV plants in Denmark are found in three main categories: PV installations on flat roof of large commercial buildings, PV installations on other large scale infrastructure such as noise barriers and ground mounted PV installations. The technical potential for all three categories is found to be significant and in the range of 50 - 250 km2. In terms of energy harvest PV plants will under Danish conditions exhibit an overall efficiency of about 10 % in conversion of the energy content of the light compared to about 0,3 % for biomass. The theoretical ground area needed to produce the present annual electricity consumption of Denmark at 33-35 TWh is about 300 km2 The Danish grid codes and the electricity safety regulations mention very little about PV and nothing about LPV plants. It is expected that LPV plants will be treated similarly to big wind turbines. A number of LPV plant scenarios have been investigated in detail based on real commercial offers and

  3. Large-scale methanol plants. [Based on Japanese-developed process

    Energy Technology Data Exchange (ETDEWEB)

    Tado, Y

    1978-02-01

    A study was made on how to produce methanol economically which is expected as a growth item for use as a material for pollution-free energy or for chemical use, centering on the following subjects: (1) Improvement of thermal economy, (2) Improvement of process, and (3) Problems of hardware attending the expansion of scale. The results of this study were already adopted in actual plants, obtaining good results, and large-scale methanol plants are going to be realized.

  4. State-of-the-art of large scale biogas plants

    International Nuclear Information System (INIS)

    Prisum, J.M.; Noergaard, P.

    1992-01-01

    A survey of the technological state of large scale biogas plants in Europe treating manure is given. 83 plants are in operation at present. Of these, 16 are centralised digestion plants. Transport costs at centralised digestion plants amounts to between 25 and 40 percent of the total operational costs. Various transport equipment is used. Most large scale digesters are CSTRs, but serial, contact, 2-step, and plug-flow digesters are also found. Construction materials are mostly steel and concrete. Mesophilic digestion is most common (56%), thermophilic digestion is used in 17% of the plants, combined mesophilic and thermophilic digestion is used in 28% of the centralised plants. Mixing of digester content is performed with gas injection, propellers, and gas-liquid displacement. Heating is carried out using external or internal heat exchangers. Heat recovery is only used in Denmark. Gas purification equipment is commonplace, but not often needed. Several plants use separation of the digested manure, often as part of a post-treatment/-purification process or for the production of 'compost'. Screens, sieve belt separaters, centrifuges and filter presses are employed. The use of biogas varies considerably. In some cases, combined heat and power stations are supplying the grid and district heating systems. Other plants use only either the electricity or heat. (au)

  5. Report of the LASCAR forum: Large scale reprocessing plant safeguards

    International Nuclear Information System (INIS)

    1992-01-01

    This report has been prepared to provide information on the studies which were carried out from 1988 to 1992 under the auspices of the multinational forum known as Large Scale Reprocessing Plant Safeguards (LASCAR) on safeguards for four large scale reprocessing plants operated or planned to be operated in the 1990s. The report summarizes all of the essential results of these studies. The participants in LASCAR were from France, Germany, Japan, the United Kingdom, the United States of America, the Commission of the European Communities - Euratom, and the International Atomic Energy Agency

  6. Voltage stability issues in a distribution grid with large scale PV plant

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Alvaro Ruiz; Marinopoulos, Antonios; Reza, Muhamad; Srivastava, Kailash [ABB AB, Vaesteraas (Sweden). Corporate Research Center; Hertem, Dirk van [Katholieke Univ. Leuven, Heverlee (Belgium). ESAT-ELECTA

    2011-07-01

    Solar photovoltaics (PV) has become a competitive renewable energy source. The production of solar PV cells and panels has increased significantly, while the cost is reduced due to economics of scale and technological achievements in the field. At the same time, the increase in efficiency of PV power systems and high energy prices are expected to lead PV systems to grid parity in the coming decade. This is expected to boost even more the large scale implementation of PV power plants (utility scale PV) and therefore the impact of such large scale PV plants to power system needs to be studies. This paper investigates the voltage stability issues arising from the connection of a large PV power plant to the power grid. For this purpose, a 15 MW PV power plant was implemented into a distribution grid, modeled and simulated using DIgSILENT Power Factory. Two scenarios were developed: in the first scenario, active power injected into the grid by the PV power plants was varied and the resulted U-Q curve was analyzed. In the second scenario, the impact of connecting PV power plants to different points in the grid - resulting in different strength of the connection - was investigated. (orig.)

  7. The Plant Phenology Ontology: A New Informatics Resource for Large-Scale Integration of Plant Phenology Data.

    Science.gov (United States)

    Stucky, Brian J; Guralnick, Rob; Deck, John; Denny, Ellen G; Bolmgren, Kjell; Walls, Ramona

    2018-01-01

    Plant phenology - the timing of plant life-cycle events, such as flowering or leafing out - plays a fundamental role in the functioning of terrestrial ecosystems, including human agricultural systems. Because plant phenology is often linked with climatic variables, there is widespread interest in developing a deeper understanding of global plant phenology patterns and trends. Although phenology data from around the world are currently available, truly global analyses of plant phenology have so far been difficult because the organizations producing large-scale phenology data are using non-standardized terminologies and metrics during data collection and data processing. To address this problem, we have developed the Plant Phenology Ontology (PPO). The PPO provides the standardized vocabulary and semantic framework that is needed for large-scale integration of heterogeneous plant phenology data. Here, we describe the PPO, and we also report preliminary results of using the PPO and a new data processing pipeline to build a large dataset of phenology information from North America and Europe.

  8. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    Science.gov (United States)

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  9. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  10. Safeguarding aspects of large-scale commercial reprocessing plants

    International Nuclear Information System (INIS)

    1979-03-01

    The paper points out that several solutions to the problems of safeguarding large-scale plants have been put forward: (1) Increased measurement accuracy. This does not remove the problem of timely detection. (2) Continuous in-process measurement. As yet unproven and likely to be costly. (3) More extensive use of containment and surveillance. The latter appears to be feasible but requires the incorporation of safeguards into plant design and sufficient redundancy to protect the operators interests. The advantages of altering the emphasis of safeguards philosophy from quantitative goals to the analysis of diversion strategies should be considered

  11. Safeguarding of large scale reprocessing and MOX plants

    International Nuclear Information System (INIS)

    Howsley, R.; Burrows, B.; Longevialle, H. de; Kuroi, H.; Izumi, A.

    1997-01-01

    In May 97, the IAEA Board of Governors approved the final measures of the ''93+2'' safeguards strengthening programme, thus improving the international non-proliferation regime by enhancing the effectiveness and efficiency of safeguards verification. These enhancements are not however, a revolution in current practices, but rather an important step in the continuous evolution of the safeguards system. The principles embodied in 93+2, for broader access to information and increased physical access already apply, in a pragmatic way, to large scale reprocessing and MOX fabrication plants. In these plants, qualitative measures and process monitoring play an important role in addition to accountancy and material balance evaluations in attaining the safeguard's goals. This paper will reflect on the safeguards approaches adopted for these large bulk handling facilities and draw analogies, conclusions and lessons for the forthcoming implementation of the 93+2 Programme. (author)

  12. Large-scale Lurgi plant would be uneconomic: study group

    Energy Technology Data Exchange (ETDEWEB)

    1964-03-21

    Gas Council and National Coal Board agreed that building of large scale Lurgi plant on the basis of study is not at present acceptable on economic grounds. The committee considered that new processes based on naphtha offered more economic sources of base and peak load production. Tables listing data provided in contractors' design studies and summary of contractors' process designs are included.

  13. A new proposed approach for future large-scale de-carbonization coal-fired power plants

    International Nuclear Information System (INIS)

    Xu, Gang; Liang, Feifei; Wu, Ying; Yang, Yongping; Zhang, Kai; Liu, Wenyi

    2015-01-01

    The post-combustion CO 2 capture technology provides a feasible and promising method for large-scale CO 2 capture in coal-fired power plants. However, the large-scale CO 2 capture in conventionally designed coal-fired power plants is confronted with various problems, such as the selection of the steam extraction point and steam parameter mismatch. To resolve these problems, an improved design idea for the future coal-fired power plant with large-scale de-carbonization is proposed. A main characteristic of the proposed design is the adoption of a back-pressure steam turbine, which extracts the suitable steam for CO 2 capture and ensures the stability of the integrated system. A new let-down steam turbine generator is introduced to retrieve the surplus energy from the exhaust steam of the back-pressure steam turbine when CO 2 capture is cut off. Results show that the net plant efficiency of the improved design is 2.56% points higher than that of the conventional one when CO 2 capture ratio reaches 80%. Meanwhile, the net plant efficiency of the improved design maintains the same level to that of the conventional design when CO 2 capture is cut off. Finally, the match between the extracted steam and the heat demand of the reboiler is significantly increased, which solves the steam parameter mismatch problem. The techno-economic analysis indicates that the proposed design is a cost-effective approach for the large-scale CO 2 capture in coal-fired power plants. - Highlights: • Problems caused by CO 2 capture in the power plant are deeply analyzed. • An improved design idea for coal-fired power plants with CO 2 capture is proposed. • Thermodynamic, exergy and techno-economic analyses are quantitatively conducted. • Energy-saving effects are found in the proposed coal-fired power plant design idea

  14. Model-based plant-wide optimization of large-scale lignocellulosic bioethanol plants

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2017-01-01

    Second generation biorefineries transform lignocellulosic biomass into chemicals with higher added value following a conversion mechanism that consists of: pretreatment, enzymatic hydrolysis, fermentation and purification. The objective of this study is to identify the optimal operational point...... with respect to maximum economic profit of a large scale biorefinery plant using a systematic model-based plantwide optimization methodology. The following key process parameters are identified as decision variables: pretreatment temperature, enzyme dosage in enzymatic hydrolysis, and yeast loading per batch...... in fermentation. The plant is treated in an integrated manner taking into account the interactions and trade-offs between the conversion steps. A sensitivity and uncertainty analysis follows at the optimal solution considering both model and feed parameters. It is found that the optimal point is more sensitive...

  15. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  16. Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G.F.; Geuverink, E.; Olff, H.

    2012-01-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  17. Global analysis of seagrass restoration: the importance of large-scale planting

    KAUST Repository

    van Katwijk, Marieke M.; Thorhaug, Anitra; Marbà , Nú ria; Orth, Robert J.; Duarte, Carlos M.; Kendrick, Gary A.; Althuizen, Inge H. J.; Balestri, Elena; Bernard, Guillaume; Cambridge, Marion L.; Cunha, Alexandra; Durance, Cynthia; Giesen, Wim; Han, Qiuying; Hosokawa, Shinya; Kiswara, Wawan; Komatsu, Teruhisa; Lardicci, Claudio; Lee, Kun-Seop; Meinesz, Alexandre; Nakaoka, Masahiro; O'Brien, Katherine R.; Paling, Erik I.; Pickerell, Chris; Ransijn, Aryan M. A.; Verduin, Jennifer J.

    2015-01-01

    In coastal and estuarine systems, foundation species like seagrasses, mangroves, saltmarshes or corals provide important ecosystem services. Seagrasses are globally declining and their reintroduction has been shown to restore ecosystem functions. However, seagrass restoration is often challenging, given the dynamic and stressful environment that seagrasses often grow in. From our world-wide meta-analysis of seagrass restoration trials (1786 trials), we describe general features and best practice for seagrass restoration. We confirm that removal of threats is important prior to replanting. Reduced water quality (mainly eutrophication), and construction activities led to poorer restoration success than, for instance, dredging, local direct impact and natural causes. Proximity to and recovery of donor beds were positively correlated with trial performance. Planting techniques can influence restoration success. The meta-analysis shows that both trial survival and seagrass population growth rate in trials that survived are positively affected by the number of plants or seeds initially transplanted. This relationship between restoration scale and restoration success was not related to trial characteristics of the initial restoration. The majority of the seagrass restoration trials have been very small, which may explain the low overall trial survival rate (i.e. estimated 37%). Successful regrowth of the foundation seagrass species appears to require crossing a minimum threshold of reintroduced individuals. Our study provides the first global field evidence for the requirement of a critical mass for recovery, which may also hold for other foundation species showing strong positive feedback to a dynamic environment. Synthesis and applications. For effective restoration of seagrass foundation species in its typically dynamic, stressful environment, introduction of large numbers is seen to be beneficial and probably serves two purposes. First, a large-scale planting

  18. Global analysis of seagrass restoration: the importance of large-scale planting

    KAUST Repository

    van Katwijk, Marieke M.

    2015-10-28

    In coastal and estuarine systems, foundation species like seagrasses, mangroves, saltmarshes or corals provide important ecosystem services. Seagrasses are globally declining and their reintroduction has been shown to restore ecosystem functions. However, seagrass restoration is often challenging, given the dynamic and stressful environment that seagrasses often grow in. From our world-wide meta-analysis of seagrass restoration trials (1786 trials), we describe general features and best practice for seagrass restoration. We confirm that removal of threats is important prior to replanting. Reduced water quality (mainly eutrophication), and construction activities led to poorer restoration success than, for instance, dredging, local direct impact and natural causes. Proximity to and recovery of donor beds were positively correlated with trial performance. Planting techniques can influence restoration success. The meta-analysis shows that both trial survival and seagrass population growth rate in trials that survived are positively affected by the number of plants or seeds initially transplanted. This relationship between restoration scale and restoration success was not related to trial characteristics of the initial restoration. The majority of the seagrass restoration trials have been very small, which may explain the low overall trial survival rate (i.e. estimated 37%). Successful regrowth of the foundation seagrass species appears to require crossing a minimum threshold of reintroduced individuals. Our study provides the first global field evidence for the requirement of a critical mass for recovery, which may also hold for other foundation species showing strong positive feedback to a dynamic environment. Synthesis and applications. For effective restoration of seagrass foundation species in its typically dynamic, stressful environment, introduction of large numbers is seen to be beneficial and probably serves two purposes. First, a large-scale planting

  19. Research and development of safeguards measures for the large scale reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Masahiro; Sato, Yuji; Yokota, Yasuhiro; Masuda, Shoichiro; Kobayashi, Isao; Uchikoshi, Seiji; Tsutaki, Yasuhiro; Nidaira, Kazuo [Nuclear Material Control Center, Tokyo (Japan)

    1994-12-31

    The Government of Japan agreed on the safeguards concepts of commercial size reprocessing plant under the bilateral agreement for cooperation between the Japan and the United States. In addition, the LASCAR, that is the forum of large scale reprocessing plant safeguards, could obtain the fruitful results in the spring of 1992. The research and development of safeguards measures for the Rokkasho Reprocessing Plant should be progressed with every regard to the concepts described in both documents. Basically, the material accountancy and monitoring system should be established, based on the NRTA and other measures in order to obtain the timeliness goal for plutonium, and the un-attended mode inspection approach based on the integrated containment/surveillance system coupled with radiation monitoring in order to reduce the inspection efforts. NMCC has been studying on the following measures for a large scale reprocessing plant safeguards (1) A radiation gate monitor and integrated surveillance system (2) A near real time Shipper and Receiver Difference monitoring (3) A near real time material accountancy system operated for the bulk handling area (4) A volume measurement technique in a large scale input accountancy vessel (5) An in-process inventory estimation technique applied to the process equipment such as the pulse column and evaporator (6) Solution transfer monitoring approach applied to buffer tanks in the chemical process (7) A timely analysis technique such as a hybrid K edge densitometer operated in the on-site laboratory (J.P.N.).

  20. Most experiments done so far with limited plants. Large-scale testing ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Most experiments done so far with limited plants. Large-scale testing needs to be done with objectives such as: Apart from primary transformants, their progenies must be tested. Experiments on segregation, production of homozygous lines, analysis of expression levels in ...

  1. A new framework to increase the efficiency of large-scale solar power plants.

    Science.gov (United States)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  2. Large-scale sulfolane-impacted soil remediation at a gas plant

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, G.; Rockwell, K. [Biogenie Inc., Calgary, AB (Canada)

    2006-07-01

    A large-scale sulfolane-impacted soil remediation project at a gas plant in central Alberta was discussed. The plant was operational from the 1960s to present and the former operation involved the Sulfinol process which resulted in groundwater contamination. In 2005, the client wanted to address the sources area. The Sulfinol process has been used since the 1960s to remove hydrogen sulfide and other corrosive gases from natural gas streams. Sulfinol uses sulfolane and diisopropanolamine. Sulfolane is toxic, non-volatile, and water soluble. The presentation also addressed the remediation objectives and an additional site assessment that was conducted to better delineate the sulfolane and sulphur plume, as well as metals. The findings of the ESA and site specific challenges were presented. These challenges included: plant operation concerns; numerous overhead, surface, and underground structures; large volume of impacted material, limited space available on site; several types of contaminants; and time required to perform the overall work. Next, the sulfolane remediation strategy was discussed including advantages and results of the investigation. Last, the results of the project were presented. It was found that there were no recordable safety incidents and that all remedial objectives were achieved. tabs., figs.

  3. Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production.

    Science.gov (United States)

    Drosg, B; Wirthensohn, T; Konrad, G; Hornbachner, D; Resch, C; Wäger, F; Loderer, C; Waltenberger, R; Kirchmayr, R; Braun, R

    2008-01-01

    A comparison of stillage treatment options for large-scale bioethanol plants was based on the data of an existing plant producing approximately 200,000 t/yr of bioethanol and 1,400,000 t/yr of stillage. Animal feed production--the state-of-the-art technology at the plant--was compared to anaerobic digestion. The latter was simulated in two different scenarios: digestion in small-scale biogas plants in the surrounding area versus digestion in a large-scale biogas plant at the bioethanol production site. Emphasis was placed on a holistic simulation balancing chemical parameters and calculating logistic algorithms to compare the efficiency of the stillage treatment solutions. For central anaerobic digestion different digestate handling solutions were considered because of the large amount of digestate. For land application a minimum of 36,000 ha of available agricultural area would be needed and 600,000 m(3) of storage volume. Secondly membrane purification of the digestate was investigated consisting of decanter, microfiltration, and reverse osmosis. As a third option aerobic wastewater treatment of the digestate was discussed. The final outcome was an economic evaluation of the three mentioned stillage treatment options, as a guide to stillage management for operators of large-scale bioethanol plants. Copyright IWA Publishing 2008.

  4. Operational experinece with large scale biogas production at the promest manure processing plant in Helmond, the Netherlands

    International Nuclear Information System (INIS)

    Schomaker, A.H.H.M.

    1992-01-01

    In The Netherlands a surplus of 15 million tons of liquid pig manure is produced yearly on intensive pig breeding farms. The dutch government has set a three-way policy to reduce this excess of manure: 1. conversion of animal fodder into a product with less and better ingestible nutrients; 2. distribution of the surplus to regions with a shortage of animal manure; 3. processing of the remainder of the surplus in large scale processing plants. The first large scale plant for the processing of liquid pig manure was put in operation in 1988 as a demonstration plant at Promest in Helmond. The design capacity of this plant is 100,000 tons of pig manure per year. The plant was initiated by the Manure Steering Committee of the province Noord-Brabant in order to prove at short notice whether large scale manure processing might contribute to the solution of the problem of the manure surplus in The Netherlands. This steering committee is a corporation of the national and provincial government and the agricultural industrial life. (au)

  5. Discriminant WSRC for Large-Scale Plant Species Recognition

    Directory of Open Access Journals (Sweden)

    Shanwen Zhang

    2017-01-01

    Full Text Available In sparse representation based classification (SRC and weighted SRC (WSRC, it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  6. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    Science.gov (United States)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  7. Fault Transient Analysis and Protection Performance Evaluation within a Large-scale PV Power Plant

    Directory of Open Access Journals (Sweden)

    Wen Jinghua

    2016-01-01

    Full Text Available In this paper, a short-circuit test within a large-scale PV power plant with a total capacity of 850MWp is discussed. The fault currents supplied by the PV generation units are presented and analysed. According to the fault behaviour, the existing protection coordination principles with the plant are considered and their performances are evaluated. Moreover, these protections are examined in simulation platform under different operating situations. A simple measure with communication system is proposed to deal with the foreseeable problem about the current protection scheme in the PV power plant.

  8. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  9. Study on large scale knowledge base with real time operation for autonomous nuclear power plant. 1. Basic concept and expecting performance

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Suda, Kazunori; Yoshikawa, Shinji; Ozawa, Kenji

    1996-04-01

    Since it is desired to enhance availability and safety of nuclear power plants operation and maintenance by removing human factor, there are many researches and developments for intelligent operation or diagnosis using artificial intelligence (AI) technique. We have been developing an autonomous operation and maintenance system for nuclear power plants by substituting AI's and intelligent robots. It is indispensable to use various and large scale knowledge relative to plant design, operation, and maintenance, that is, whole life cycle data of the plant for the autonomous nuclear power plant. These knowledge must be given to AI system or intelligent robots adequately and opportunely. Moreover, it is necessary to insure real time operation using the large scale knowledge base for plant control and diagnosis performance. We have been studying on the large scale and real time knowledge base system for autonomous plant. In the report, we would like to present the basic concept and expecting performance of the knowledge base for autonomous plant, especially, autonomous control and diagnosis system. (author)

  10. Environmental Impacts From the Installation and Operation of Large-scale Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.; Turney, Damon

    2011-04-23

    Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and well-being, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO{sub 2} emissions as high as 36 g CO{sub 2} kW h{sup -1}, which is a significant contribution to the life cycle CO{sub 2} emissions of solar power, but is still low compared to CO{sub 2} emissions from coal-based electricity that are about 1100 g CO{sub 2} kW h{sup -1}.

  11. Use of ABB ADVANT Power for large scale instrumentation and controls replacements in nuclear power plants

    International Nuclear Information System (INIS)

    Pucak, J.L.; Brown, E.M.

    1999-01-01

    One of the major issues facing plants planning for life extension is the viability and feasibility of modernization of a plant's existing I and C systems including the safety systems and the control room. This paper discusses the ABB approach to the implementation of large scale Instrumentation and Controls (I and C) modernization. ABB applies a segmented architecture approach using the ADVANT Power control system to meet the numerous constraints of a major I and C upgrade program. The segmented architecture and how it supports implementation of a complete I and C upgrade either in one outage or in a series of outages is presented. ADVANT Power contains standardized industrial control equipment that is designed to support 1E applications as well as turbine and non-1E process control. This equipment forms the basis for the architecture proposed for future new nuclear plant sales as well as large scale retrofits. (author)

  12. A study of residence time distribution using radiotracer technique in the large scale plant facility

    Science.gov (United States)

    Wetchagarun, S.; Tippayakul, C.; Petchrak, A.; Sukrod, K.; Khoonkamjorn, P.

    2017-06-01

    As the demand for troubleshooting of large industrial plants increases, radiotracer techniques, which have capability to provide fast, online and effective detections to plant problems, have been continually developed. One of the good potential applications of the radiotracer for troubleshooting in a process plant is the analysis of Residence Time Distribution (RTD). In this paper, the study of RTD in a large scale plant facility using radiotracer technique was presented. The objective of this work is to gain experience on the RTD analysis using radiotracer technique in a “larger than laboratory” scale plant setup which can be comparable to the real industrial application. The experiment was carried out at the sedimentation tank in the water treatment facility of Thailand Institute of Nuclear Technology (Public Organization). Br-82 was selected to use in this work due to its chemical property, its suitable half-life and its on-site availability. NH4Br in the form of aqueous solution was injected into the system as the radiotracer. Six NaI detectors were placed along the pipelines and at the tank in order to determine the RTD of the system. The RTD and the Mean Residence Time (MRT) of the tank was analysed and calculated from the measured data. The experience and knowledge attained from this study is important for extending this technique to be applied to industrial facilities in the future.

  13. Karhunen-Loève (PCA) based detection of multiple oscillations in multiple measurement signals from large-scale process plants

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    2007-01-01

     In the perspective of optimizing the control and operation of large scale process plants, it is important to detect and to locate oscillations in the plants. This paper presents a scheme for detecting and localizing multiple oscillations in multiple measurements from such a large-scale power plant....... The scheme is based on a Karhunen-Lo\\`{e}ve analysis of the data from the plant. The proposed scheme is subsequently tested on two sets of data: a set of synthetic data and a set of data from a coal-fired power plant. In both cases the scheme detects the beginning of the oscillation within only a few samples....... In addition the oscillation localization has also shown its potential by localizing the oscillations in both data sets....

  14. 135 tf climbing crane for the construction of large scale plants

    International Nuclear Information System (INIS)

    1981-01-01

    Development of a larger capacity, wider working radius and higher lift climbing crane was in demand since the large block construction method become common in plant construction. At first, scaling up of the conventional climbing crane was planned. But, it turned out that the deflection at the top of the jib would cause the load to drift at takeoff in crane operation. Therefore, the crane was newly designed to solve the problem. Some of its advantage are as follows. (1) This crane can be used as either a climbing or a nonclimbing type depending on installation locations and objective plants. (2) Accurate and easy operation is achieved because of little deflection at the top of the jib. (3) Efficient crane operation is possible through high speed hoisting and slewing motions in frequent auxiliary hoisting operations. (4) The construction time can be shortened by adopting pin joints between the blocks and by reducing the number of assembling parts at the site. A nonclimbing type crane is now in operation at the nuclear power plant in Kashiwazaki and a climbing type will be in operation at the nuclear power plant in Fukushima this year. The report presents an outline of the specifications, structures and advantages. (author)

  15. Decoding Synteny Blocks and Large-Scale Duplications in Mammalian and Plant Genomes

    Science.gov (United States)

    Peng, Qian; Alekseyev, Max A.; Tesler, Glenn; Pevzner, Pavel A.

    The existing synteny block reconstruction algorithms use anchors (e.g., orthologous genes) shared over all genomes to construct the synteny blocks for multiple genomes. This approach, while efficient for a few genomes, cannot be scaled to address the need to construct synteny blocks in many mammalian genomes that are currently being sequenced. The problem is that the number of anchors shared among all genomes quickly decreases with the increase in the number of genomes. Another problem is that many genomes (plant genomes in particular) had extensive duplications, which makes decoding of genomic architecture and rearrangement analysis in plants difficult. The existing synteny block generation algorithms in plants do not address the issue of generating non-overlapping synteny blocks suitable for analyzing rearrangements and evolution history of duplications. We present a new algorithm based on the A-Bruijn graph framework that overcomes these difficulties and provides a unified approach to synteny block reconstruction for multiple genomes, and for genomes with large duplications.

  16. Decomposition of residual oil by large scale HSC plant

    Energy Technology Data Exchange (ETDEWEB)

    Washimi, Koichi; Ogata, Yoshitaka; Limmer, H.; Schuetter, H. (Toyo Engineering Corp., funabashi, Japan VEB Petrolchemisches Kombinat Schwedt, Schwedt (East Germany))

    1989-07-01

    Regarding large scale and high decomposition ratio visbreaker HSC, characteristic points and operation conditions of a new plant in East Germany were introduced. As for the characteristics of the process, high decomposition ratio and stable decpmposed oil, availability of high sulfur content oil or even decomposed residuum of visbreaker, stableness of produced light oil with low content of unsaturated components, low investment with low running cost, were indicated. For the realization of high decomposition ratio, designing for suppressing the decomposition in heating furnace and accelaration of it in soaking drum, high space velocity of gas phase for better agitation, were raised. As the main subject of technical development, design of soaking drum was indicated with main dimensions for the designing. Operation conditions of the process in East Germany using residual oil supplied from already working visbreaker for USSR crude oil were introduced. 6 refs., 4 figs., 2 tabs.

  17. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  18. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  19. Grid Support in Large Scale PV Power Plants using Active Power Reserves

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut

    to validate the performance of the frequency support functions, a flexible grid model with IEEE 12 bus system characteristics has been developed and implemented in RTDS. A power hardware-in-the-loop (PHIL) system composed by 20 kW plant (2 x 10 kW inverters and PV linear simulator) and grid simulator (RTDS......Photovoltaic (PV) systems are in the 3rd place in the renewable energy market, after hydro and wind power. The increased penetration of PV within the electrical power system has led to stability issues of the entire grid in terms of its reliability, availability and security of the supply....... As a consequence, Large scale PV Power Plants (LPVPPs) operating in Maximum Power Point (MPP) are not supporting the electrical network, since several grid triggering events or the increased number of downward regulation procedures have forced European Network of Transmission System Operators for Electricity...

  20. Safety Effect Analysis of the Large-Scale Design Changes in a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan; Lee, Hyun-Gyo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    These activities were predominantly focused on replacing obsolete systems with new systems, and these efforts were not only to prolong the plant life, but also to guarantee the safe operation of the units. This review demonstrates the safety effect evaluation using the probabilistic safety assessment (PSA) of the design changes, system improvements, and Fukushima accident action items for Kori unit 1 (K1). For the large scale of system design changes for K1, the safety effects from the PSA perspective were reviewed using the risk quantification results before and after the system improvements. This evaluation considered the seven significant design changes including the replacement of the control building air conditioning system and the performance improvement of the containment sump using a new filtering system as well as above five system design changes. The analysis results demonstrated that the CDF was reduced by 12% overall from 1.62E-5/y to 1.43E-5/y. The CDF reduction was larger in the transient group than in the loss of coolant accident (LOCA) group. In conclusion, the analysis using the K1 PSA model supports that the plant safety has been appropriately maintained after the large-scale design changes in consideration of the changed operation factors and failure modes due to the system improvements.

  1. Active power reserves evaluation in large scale PVPPs

    DEFF Research Database (Denmark)

    Crăciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    The present trend on investing in renewable ways of producing electricity in the detriment of conventional fossil fuel-based plants will lead to a certain point where these plants have to provide ancillary services and contribute to overall grid stability. Photovoltaic (PV) power has the fastest...... growth among all renewable energies and managed to reach high penetration levels creating instabilities which at the moment are corrected by the conventional generation. This paradigm will change in the future scenarios where most of the power is supplied by large scale renewable plants and parts...... of the ancillary services have to be shared by the renewable plants. The main focus of the proposed paper is to technically and economically analyze the possibility of having active power reserves in large scale PV power plants (PVPPs) without any auxiliary storage equipment. The provided reserves should...

  2. Application of Large-Scale Database-Based Online Modeling to Plant State Long-Term Estimation

    Science.gov (United States)

    Ogawa, Masatoshi; Ogai, Harutoshi

    Recently, attention has been drawn to the local modeling techniques of a new idea called “Just-In-Time (JIT) modeling”. To apply “JIT modeling” to a large amount of database online, “Large-scale database-based Online Modeling (LOM)” has been proposed. LOM is a technique that makes the retrieval of neighboring data more efficient by using both “stepwise selection” and quantization. In order to predict the long-term state of the plant without using future data of manipulated variables, an Extended Sequential Prediction method of LOM (ESP-LOM) has been proposed. In this paper, the LOM and the ESP-LOM are introduced.

  3. A study of safeguards approach for the area of plutonium evaporator in a large scale reprocessing plant

    International Nuclear Information System (INIS)

    Sakai, Hirotada; Ikawa, Koji

    1994-01-01

    A preliminary study on a safeguards approach for the chemical processing area in a large scale reprocessing plant has been carried out. In this approach, plutonium inventory at the plutonium evaporator will not be taken, but containment and surveillance (C/S) measures will be applied to ensure the integrity of an area specifically defined to include the plutonium evaporator. The plutonium evaporator area consists of the evaporator itself and two accounting points, i.e., one before the plutonium evaporator and the other after the plutonium evaporator. For newly defined accounting points, two alternative measurement methods, i.e., accounting vessels with high accuracy and flow meters, were examined. Conditions to provide the integrity of the plutonium evaporator area were also examined as well as other technical aspects associated with this approach. The results showed that an appropriate combination of NRTA and C/S measures would be essential to realize a cost effective safeguards approach to be applied for a large scale reprocessing plant. (author)

  4. Survey on the technological development issues for large-scale methanol engine power generation plant; Ogata methanol engine hatsuden plant ni kansuru gijutsu kaihatsu kadai chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Based on the result of `Survey on the feasibility of large-scale methanol engine power generation plant` in fiscal 1992, concrete technological development issues were studied for its practical use, and the technological R & D scheme was prepared for large-scale methanol engine power plant featured by low NOx and high efficiency. Technological development issues of this plant were as follows: improvement of thermal efficiency, reduction of NOx emission, improvement of the reliability and durability of ignition and fuel injection systems, and reduction of vibration. As the economical effect of the technological development, the profitability of NOx control measures was compared between this methanol engine and conventional heavy oil diesel engines or gas engines. As a result, this engine was more economical than conventional engines. It was suggested that development of the equipment will be completed in nearly 4 years through every component study, single-cylinder model experiment and real engine test. 21 refs., 43 figs., 19 tabs.

  5. Very-large-scale production of antibodies in plants: The biologization of manufacturing.

    Science.gov (United States)

    Buyel, J F; Twyman, R M; Fischer, R

    2017-07-01

    Gene technology has facilitated the biologization of manufacturing, i.e. the use and production of complex biological molecules and systems at an industrial scale. Monoclonal antibodies (mAbs) are currently the major class of biopharmaceutical products, but they are typically used to treat specific diseases which individually have comparably low incidences. The therapeutic potential of mAbs could also be used for more prevalent diseases, but this would require a massive increase in production capacity that could not be met by traditional fermenter systems. Here we outline the potential of plants to be used for the very-large-scale (VLS) production of biopharmaceutical proteins such as mAbs. We discuss the potential market sizes and their corresponding production capacities. We then consider available process technologies and scale-down models and how these can be used to develop VLS processes. Finally, we discuss which adaptations will likely be required for VLS production, lessons learned from existing cell culture-based processes and the food industry, and practical requirements for the implementation of a VLS process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  7. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  8. Advances in Large-Scale Solar Heating and Long Term Storage in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    According to (the) information from the European Large-Scale Solar Heating Network, (See http://www.hvac.chalmers.se/cshp/), the area of installed solar collectors for large-scale application is in Europe, approximately 8 mill m2, corresponding to about 4000 MW thermal power. The 11 plants...... the last 10 years and the corresponding cost per collector area for the final installed plant is kept constant, even so the solar production is increased. Unfortunately large-scale seasonal storage was not able to keep up with the advances in solar technology, at least for pit water and gravel storage...... of the total 51 plants are equipped with long-term storage. In Denmark, 7 plants are installed, comprising of approx. 18,000-m2 collector area with new plants planned. The development of these plants and the involved technologies will be presented in this paper, with a focus on the improvements for Danish...

  9. Phylogenetic distribution of large-scale genome patchiness

    Directory of Open Access Journals (Sweden)

    Hackenberg Michael

    2008-04-01

    Full Text Available Abstract Background The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level. Results The local variations in the scaling exponent of the Detrended Fluctuation Analysis are used here to analyze large-scale genome structure and directly uncover the characteristic scales present in genome sequences. Furthermore, through shuffling experiments of selected genome regions, computationally-identified, isochore-like regions were identified as the biological source for the uncovered large-scale genome structure. The phylogenetic distribution of short- and large-scale patchiness was determined in the best-sequenced genome assemblies from eleven eukaryotic genomes: mammals (Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, and Canis familiaris, birds (Gallus gallus, fishes (Danio rerio, invertebrates (Drosophila melanogaster and Caenorhabditis elegans, plants (Arabidopsis thaliana and yeasts (Saccharomyces cerevisiae. We found large-scale patchiness of genome structure, associated with in silico determined, isochore-like regions, throughout this wide phylogenetic range. Conclusion Large-scale genome structure is detected by directly analyzing DNA sequences in a wide range of eukaryotic chromosome sequences, from human to yeast. In all these genomes, large-scale patchiness can be associated with the isochore-like regions, as directly detected in silico at the sequence level.

  10. Genetic 'fingerprints' to characterise microbial communities during organic overloading and in large-scale biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Kleyboecker, A.; Lerm, S.; Vieth, A.; Wuerdemann, H. [GeoForschungsZentrum Potsdam, Bio-Geo-Engineering, Potsdam (Germany); Miethling-Graff, R. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Agraroekologie; Wittmaier, M. [Institut fuer Kreislaufwirtschaft, Bremen (Germany)

    2007-07-01

    Since fermentation is a complex process, biogas reactors are still known as 'black boxes'. Mostly they are not run at their maximum loading rate due to the possible failure in the process by organic overloading. This means that there are still unused capacities to produce more biogas in less time. Investigations of different large-scale biogas plants showed that fermenters are operated containing different amounts of volatile fatty acids. These amounts can vary so much that one of two digestors, both possessing the same VFA concentration, does not produce gas anymore while the other is still at work. A reason for this phenomenon might be found in the composition of the microbial communities or in differences in the operation of the plants. To gain a better understanding of the 'black box', structural changes in microbial communities during controlled organic overloading in a laboratory and biocenosis of large-scale reactors were investigated. A genetic fingerprint based on 16S rDNA (PCR-SSCP) was used to characterise the microbial community. (orig.)

  11. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    Science.gov (United States)

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2017-01-01

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  13. A review of large-scale solar heating systems in Europe

    International Nuclear Information System (INIS)

    Fisch, M.N.; Guigas, M.; Dalenback, J.O.

    1998-01-01

    Large-scale solar applications benefit from the effect of scale. Compared to small solar domestic hot water (DHW) systems for single-family houses, the solar heat cost can be cut at least in third. The most interesting projects for replacing fossil fuels and the reduction of CO 2 -emissions are solar systems with seasonal storage in combination with gas or biomass boilers. In the framework of the EU-APAS project Large-scale Solar Heating Systems, thirteen existing plants in six European countries have been evaluated. lie yearly solar gains of the systems are between 300 and 550 kWh per m 2 collector area. The investment cost of solar plants with short-term storage varies from 300 up to 600 ECU per m 2 . Systems with seasonal storage show investment costs twice as high. Results of studies concerning the market potential for solar heating plants, taking new collector concepts and industrial production into account, are presented. Site specific studies and predesign of large-scale solar heating plants in six European countries for housing developments show a 50% cost reduction compared to existing projects. The cost-benefit-ratio for the planned systems with long-term storage is between 0.7 and 1.5 ECU per kWh per year. (author)

  14. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    , the impact of large-scale agriculture and outgrower schemes on productivity, household welfare and wages in developing countries is highly contentious. Chapter 1 of this thesis provides an introduction to the study, while also reviewing the key debate in the contemporary land ‘grabbing’ and historical large...... sugarcane outgrower scheme on household income and asset stocks. Chapter 5 examines the wages and working conditions in ‘formal’ large-scale and ‘informal’ small-scale irrigated agriculture. The results in Chapter 2 show that moisture stress, the use of untested planting materials, and conflict over land...... commands a higher wage than ‘formal’ large-scale agriculture, while rather different wage determination mechanisms exist in the two sectors. Human capital characteristics (education and experience) partly explain the differences in wages within the formal sector, but play no significant role...

  15. Emissions from waste combustion. An application of statistical experimental design in a laboratory-scale boiler and an investigation from large-scale incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojing, Zhang

    1997-05-01

    The aim of this thesis is a study of the emissions from the combustion of household refuse. The experiments were both on a laboratory-scale boiler and on full-scale incineration plants. In the laboratory, an artificial household refuse with known composition was fed into a pilot boiler with a stationary grate. Combustion was under non-optimum conditions. Direct sampling with a Tenax adsorbent was used to measure a range of VOCs. Measurements were also made of incompletely burnt hydrocarbons, carbon monoxide, carbon dioxide, oxygen and flue gas temperature. Combustion and emission parameters were recorded continuously by a multi-point data logger. VOCs were analysed by gas chromatography and mass spectrometry (GC/MS). The full-scale tests were on seven Swedish incineration plants. The data were used to evaluate the emissions from large-scale incineration plants with various type of fuels and incinerators, and were also compared with the laboratory results. The response surface model developed from the laboratory experiments was also validated. This thesis also includes studies on the gasification of household refuse pellets, estimations of particulate and soot emissions, and a thermodynamic analysis of PAHs from combustion flue gas. For pellet gasification, experiments were performed on single, well characterised refuse pellets under carefully controlled conditions. The aim was to see if the effects of pellets were different from those of untreated household refuse. The results from both laboratory and full-scale tests showed that the main contributions to emissions from household refuse are plastics and moisture. 142 refs, 82 figs, 51 tabs

  16. Wind and Photovoltaic Large-Scale Regional Models for hourly production evaluation

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Maule, Petr; Hahmann, Andrea N.

    2015-01-01

    This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesosca...... of the transmission system, especially regarding the cross-border power flows. The tuning of these regional models is done using historical meteorological data acquired on a per-country basis and using publicly available data of installed capacity.......This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesoscale...

  17. Prospects for investment in large-scale, grid-connected solar power in Africa

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Nygaard, Ivan; Pedersen, Mathilde Brix

    since the 1990s have changed the competiveness of solar PV in all markets, ranging from individual households via institutions to mini-grids and grid-connected installations. In volume and investment, the market for large-scale grid-connected solar power plants is by far the most important......-scale investments in grid-connected solar power plants and local assembly facilities for PV panels, have exceeded even optimistic scenarios. Finally, therefore, there seem to be bright prospects for investment in large-scale grid-connected solar power in Africa....

  18. A practical process for light-water detritiation at large scales

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Robinson, J., E-mail: jr@tyne-engineering.com [Tyne Engineering, Burlington, ON (Canada); Gnanapragasam, N.V.; Castillo, I.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    AECL and Tyne Engineering have recently completed a preliminary engineering design for a modest-scale tritium removal plant for light water, intended for installation at AECL's Chalk River Laboratories (CRL). This plant design was based on the Combined Electrolysis and Catalytic Exchange (CECE) technology developed at CRL over many years and demonstrated there and elsewhere. The general features and capabilities of this design have been reported as well as the versatility of the design for separating any pair of the three hydrogen isotopes. The same CECE technology could be applied directly to very large-scale wastewater detritiation, such as the case at Fukushima Daiichi Nuclear Power Station. However, since the CECE process scales linearly with throughput, the required capital and operating costs are substantial for such large-scale applications. This paper discusses some options for reducing the costs of very large-scale detritiation. Options include: Reducing tritium removal effectiveness; Energy recovery; Improving the tolerance of impurities; Use of less expensive or more efficient equipment. A brief comparison with alternative processes is also presented. (author)

  19. A Practical Optimization Method for Designing Large PV Plants

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Koutroulis, E.; Eyigun, S.

    2011-01-01

    Nowadays Photovoltaic (PV) plants have multi MW sizes, the biggest plants reaching tens of MW of capacity. Such large-scale PV plants are made up of several thousands of PV panels, each panel being in the range of 150-350W. This means that the design of a Large PV power plant is a big challenge...... and configuring such a plant should be implemented taking into consideration not only the cost of the installation, but also the Annual Energy Production, the Performance Ratio and the Levelized Cost Of Energy. In this paper, an algorithm is presented including the most important models of the PV system...

  20. Validation of the process control system of an automated large scale manufacturing plant.

    Science.gov (United States)

    Neuhaus, H; Kremers, H; Karrer, T; Traut, R H

    1998-02-01

    The validation procedure for the process control system of a plant for the large scale production of human albumin from plasma fractions is described. A validation master plan is developed, defining the system and elements to be validated, the interfaces with other systems with the validation limits, a general validation concept and supporting documentation. Based on this master plan, the validation protocols are developed. For the validation, the system is subdivided into a field level, which is the equipment part, and an automation level. The automation level is further subdivided into sections according to the different software modules. Based on a risk categorization of the modules, the qualification activities are defined. The test scripts for the different qualification levels (installation, operational and performance qualification) are developed according to a previously performed risk analysis.

  1. Factors influencing the decommissioning of large-scale nuclear plants

    International Nuclear Information System (INIS)

    Large, J.H.

    1988-01-01

    The decision-making process involving the decommissioning of the UK graphite moderated, gas-cooled nuclear power stations is complex. There are timing, engineering, waste disposal, cost and lost generation capacity factors to consider and the overall decision of when and how to proceed with decommissioning may include political and public tolerance dimensions. For the final stage of decommissioning the nuclear industry could either completely dismantle the reactor island leaving a green-field site or, alternatively, the reactor island could be maintained indefinitely with additional super- and substructure containment. At this time the first of these options, or deferred decommissioning, prevails and with this the nuclear industry has expressed considerable confidence that the technology required will become available with passing time, that acceptable radioactive waste disposal methods and facilities will be available and that the eventual costs of decommissioning will not escalate without restraint. If the deferred decommissioning strategy is wrong and it is not possible to completely dismantle the reactor islands a century into the future, then it may be too late to effect sufficient longer term containment to maintain the reactor hulks in a reliable condition. With respect to the final decommissioning of large-scale nuclear plant, it is concluded that the nuclear industry does not know quite how to do it, when it will be attempted and when it will be completed, and they do not know how much it will eventually cost. (author)

  2. Profitability and sustainability of small - medium scale palm biodiesel plant

    Science.gov (United States)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  3. Status: Large-scale subatmospheric cryogenic systems

    International Nuclear Information System (INIS)

    Peterson, T.

    1989-01-01

    In the late 1960's and early 1970's an interest in testing and operating RF cavities at 1.8K motivated the development and construction of four large (300 Watt) 1.8K refrigeration systems. in the past decade, development of successful superconducting RF cavities and interest in obtaining higher magnetic fields with the improved Niobium-Titanium superconductors has once again created interest in large-scale 1.8K refrigeration systems. The L'Air Liquide plant for Tore Supra is a recently commissioned 300 Watt 1.8K system which incorporates new technology, cold compressors, to obtain the low vapor pressure for low temperature cooling. CEBAF proposes to use cold compressors to obtain 5KW at 2.0K. Magnetic refrigerators of 10 Watt capacity or higher at 1.8K are now being developed. The state of the art of large-scale refrigeration in the range under 4K will be reviewed. 28 refs., 4 figs., 7 tabs

  4. On the network protocol performance evaluation for large scale communication system of nuclear plant

    International Nuclear Information System (INIS)

    Song, K. S.; Lee, T. H.; Kim, H. R.; Kim, D. H.; Ku, I. S.

    1998-01-01

    Computer technology has been dramatically advanced and it is now natural to apply digital network technology into nuclear plants. Communication architecture for nuclear plant defines the coordination of safety reactor control, balance of plant, subsystem utilities, and plant monitoring functions, and how they are connected and their user interface to guarantee plant performance and guarantee safety requirements. Therefore, to implement a digital network for control and monitoring systems of advanced nuclear plant needs systematic design and evaluation procedures because of responsive and hard real-time process characteristics of nuclear plant. In this paper, we evaluate several digital network protocols in terms of network delay, link failure effects to hard real-time requirements with full scale traffic

  5. Centralized manure digestion. Selection of locations and estimation of costs of large-scale manure storage application

    International Nuclear Information System (INIS)

    1995-03-01

    A study to assess the possibilities and the consequences of the use of existing Dutch large scale manure silos at centralised anaerobic digestion plants (CAD-plants) for manure and energy-rich organic wastes is carried out. Reconstruction of these large scale manure silos into digesters for a CAD-plant is not self-evident due to the high height/diameter ratio of these silos and the extra investments that have to be made for additional facilities for roofing, insulation, mixing and heating. From the results of an inventory and selection of large scale manure silos with a storage capacity above 1,500 m 3 it appeared that there are 21 locations in The Netherlands that can be qualified for realisation of a CAD plant with a processing capacity of 100 m 3 biomass (80% manure, 20% additives) per day. These locations are found in particular at the 'shortage-areas' for manure fertilisation in the Dutch provinces Groningen and Drenthe. Three of these 21 locations with large scale silos are considered to be the most suitable for realisation of a large scale CAD-plant. The selection is based on an optimal scale for a CAD-plant of 300 m 3 material (80% manure, 20% additives) to be processed per day and the most suitable consuming markets for the biogas produced at the CAD-plant. The three locations are at Middelharnis, Veendam, and Klazinaveen. Applying the conditions as used in this study and accounting for all costs for transport of manure, additives and end-product including the costs for the storage facilities, a break-even operation might be realised at a minimum income for the additives of approximately 50 Dutch guilders per m 3 (including TAV). This income price is considerably lower than the prevailing costs for tipping or processing of organic wastes in The Netherlands. This study revealed that a break-even exploitation of a large scale CAD-plant for the processing of manure with energy-rich additives is possible. (Abstract Truncated)

  6. Large-scale straw supplies to existing coal-fired power stations

    International Nuclear Information System (INIS)

    Gylling, M.; Parsby, M.; Thellesen, H.Z.; Keller, P.

    1992-08-01

    It is considered that large-scale supply of straw to power stations and decentral cogeneration plants could open up new economical systems and methods of organization of straw supply in Denmark. This thesis is elucidated and involved constraints are pointed out. The aim is to describe to what extent large-scale straw supply is interesting with regard to monetary savings and available resources. Analyses of models, systems and techniques described in a foregoing project are carried out. It is reckoned that the annual total amount of surplus straw in Denmark is 3.6 million tons. At present, use of straw which is not agricultural is limited to district heating plants with an annual consumption of 2-12 thousand tons. A prerequisite for a significant increase in the use of straw is an annual consumption by power and cogeneration plants of more than 100.000 tons. All aspects of straw management are examined in detail, also in relation to two actual Danish coal-fired plants. The reliability of straw supply is considered. It is concluded that very significant resources of straw are available in Denmark but there remain a number of constraints. Price competitiveness must be considered in relation to other fuels. It is suggested that the use of corn harvests, with whole stems attached (handled as large bales or in the same way as sliced straw alone) as fuel, would result in significant monetary savings in transport and storage especially. An equal status for whole-harvested corn with other forms of biomass fuels, with following changes in taxes and subsidies could possibly reduce constraints on large scale straw fuel supply. (AB) (13 refs.)

  7. Chemical sensing of plant stress at the ecosystem scale

    Directory of Open Access Journals (Sweden)

    T. Karl

    2008-09-01

    Full Text Available Significant ecosystem-scale emissions of methylsalicylate (MeSA, a semivolatile plant hormone thought to act as the mobile signal for systemic acquired resistance (SAR, were observed in an agroforest. Our measurements show that plant internal defence mechanisms can be activated in response to temperature stress and are modulated by water availability on large scales. Highest MeSA fluxes (up to 0.25 mg/m2/h were observed after plants experienced ambient night-time temperatures of ~7.5°C followed by a large daytime temperature increase (e.g. up to 22°C. Under these conditions estimated night-time leaf temperatures were as low as ~4.6°C, likely inducing a response to prevent chilling injury. Our observations imply that plant hormones can be a significant component of ecosystem scale volatile organic compound (VOC fluxes (e.g. as high as the total monoterpene (MT flux and therefore contribute to the missing VOC budget. If generalized to other ecosystems and different types of stresses these findings suggest that semivolatile plant hormones have been overlooked by investigations of the impact of biogenic VOCs on aerosol formation events in forested regions. Our observations show that the presence of MeSA in canopy air serves as an early chemical warning signal indicating ecosystem-scale stresses before visible damage becomes apparent. As a chemical metric, ecosystem emission measurements of MeSA in ambient air could therefore support field studies investigating factors that adversely affect plant growth.

  8. Case Study: Commercialization of sweet sorghum juice clarification for large-scale syrup manufacture

    Science.gov (United States)

    The precipitation and burning of insoluble granules of starch from sweet sorghum juice on heating coils prevented the large scale manufacture of syrup at a new industrial plant in Missouri, USA. To remove insoluble starch granules, a series of small and large-scale experiments were conducted at the...

  9. Delta-Connected Cascaded H-Bridge Multilevel Converters for Large-Scale Photovoltaic Grid Integration

    DEFF Research Database (Denmark)

    Yu, Yifan; Konstantinou, Georgios; Townsend, Christopher D.

    2017-01-01

    The cascaded H-bridge (CHB) converter is becoming a promising candidate for use in next generation large-scale photovoltaic (PV) power plants. However, solar power generation in the three converter phase-legs can be significantly unbalanced, especially in a large geographically-dispersed plant....... The power imbalance between the three phases defines a limit for the injection of balanced three-phase currents to the grid. This paper quantifies the performance of, and experimentally confirms, the recently proposed delta-connected CHB converter for PV applications as an alternative configuration...... for large-scale PV power plants. The required voltage and current overrating for the converter is analytically developed and compared against the star-connected counterpart. It is shown that the delta-connected CHB converter extends the balancing capabilities of the star-connected CHB and can accommodate...

  10. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    Science.gov (United States)

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    Science.gov (United States)

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine

    2016-01-01

    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection.

  12. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...

  13. Solving large scale unit dilemma in electricity system by applying commutative law

    Science.gov (United States)

    Legino, Supriadi; Arianto, Rakhmat

    2018-03-01

    The conventional system, pooling resources with large centralized power plant interconnected as a network. provides a lot of advantages compare to the isolated one include optimizing efficiency and reliability. However, such a large plant need a huge capital. In addition, more problems emerged to hinder the construction of big power plant as well as its associated transmission lines. By applying commutative law of math, ab = ba, for all a,b €-R, the problem associated with conventional system as depicted above, can be reduced. The idea of having small unit but many power plants, namely “Listrik Kerakyatan,” abbreviated as LK provides both social and environmental benefit that could be capitalized by using proper assumption. This study compares the cost and benefit of LK to those of conventional system, using simulation method to prove that LK offers alternative solution to answer many problems associated with the large system. Commutative Law of Algebra can be used as a simple mathematical model to analyze whether the LK system as an eco-friendly distributed generation can be applied to solve various problems associated with a large scale conventional system. The result of simulation shows that LK provides more value if its plants operate in less than 11 hours as peaker power plant or load follower power plant to improve load curve balance of the power system. The result of simulation indicates that the investment cost of LK plant should be optimized in order to minimize the plant investment cost. This study indicates that the benefit of economies of scale principle does not always apply to every condition, particularly if the portion of intangible cost and benefit is relatively high.

  14. Large-scale seismic test for soil-structure interaction research in Hualien, Taiwan

    International Nuclear Information System (INIS)

    Ueshima, T.; Kokusho, T.; Okamoto, T.

    1995-01-01

    It is important to evaluate dynamic soil-structure interaction more accurately in the aseismic design of important facilities such as nuclear power plants. A large-scale model structure with about 1/4th of commercial nuclear power plants was constructed on the gravelly layers in seismically active Hualien, Taiwan. This international joint project is called 'the Hualien LSST Project', where 'LSST' is short for Large-Scale Seismic Test. In this paper, research tasks and responsibilities, the process of the construction work and research tasks along the time-line, main results obtained up to now, and so on in this Project are described. (J.P.N.)

  15. Amplification of Marzagao small scale hydroelectric power plant; Ampliacao da PCH de Marzagao

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.R.; Porto, D.S.; Pinto, F.S. [Leme Engenharia, MG (Brazil); Melo, A.U.; Almeida, A.M.; Pereira, D.R. [Fertiligas Industria e Comercio Ltda., MG (Brazil)

    1991-12-31

    This work presents the modernization and power augmentation of Marzagao small scale hydroelectric power plant. In order that the costs of the project be compatible to the total of investments in the project, it was necessary the adoption of methodologies and time scales different from those used for large and medium scale hydroelectric power plants 5 figs.

  16. Analytical Assessment of the Relationship between 100MWp Large-scale Grid-connected Photovoltaic Plant Performance and Meteorological Parameters

    Science.gov (United States)

    Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang

    2017-05-01

    This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.

  17. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  18. Analysis of supply chain, scale factor, and optimum plant capacity for the production of ethanol from corn stover

    International Nuclear Information System (INIS)

    Leboreiro, Jose; Hilaly, Ahmad K.

    2013-01-01

    A detailed model is used to perform a thorough analysis on ethanol production from corn stover via the dilute acid process. The biomass supply chain cost model accounts for all steps needed to source corn stover including collection, transportation, and storage. The manufacturing cost model is based on work done at NREL; attainable conversions of key process parameters are used to calculate production cost. The choice of capital investment scaling function and scaling parameter has a significant impact on the optimum plant capacity. For the widely used exponential function, the scaling factors are functions of plant capacity. The pre-exponential factor decreases with increasing plant capacity while the exponential factor increases as the plant capacity increases. The use of scaling parameters calculated for small plant capacities leads to falsely large optimum plants; data from a wide range of plant capacities is required to produce accurate results. A mathematical expression to scale capital investment for fermentation-based biorefineries is proposed which accounts for the linear scaling behavior of bio-reactors (such as saccharification vessels and fermentors) as well as the exponential nature of all other plant equipment. Ignoring the linear scaling behavior of bio-reactors leads to artificially large optimum plant capacities. The minimum production cost is found to be in the range of 789–830 $ m −3 which is significantly higher than previously reported. Optimum plant capacities are in the range of 5750–9850 Mg d −1 . The optimum plant capacity and production cost are highly sensitive to farmer participation in biomass harvest for low participation rates. -- Highlights: •A detailed model is used to perform a technoeconomic analysis for the production of ethanol from corn stover. •The capital investment scaling factors were found to be a function of plant capacity. •Bio-reactors (such as saccharification vessels and fermentors) in large size

  19. Large-scale fuel cycle centres

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The US Nuclear Regulatory Commission (NRC) has considered the nuclear energy centre concept for fuel cycle plants in the Nuclear Energy Centre Site Survey 1975 (NECSS-75) Rep. No. NUREG-0001, an important study mandated by the US Congress in the Energy Reorganization Act of 1974 which created the NRC. For this study, the NRC defined fuel cycle centres as consisting of fuel reprocessing and mixed-oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle centre sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000-300,000MW(e). The types of fuel cycle facilities located at the fuel cycle centre permit the assessment of the role of fuel cycle centres in enhancing the safeguard of strategic special nuclear materials - plutonium and mixed oxides. Siting fuel cycle centres presents a smaller problem than siting reactors. A single reprocessing plant of the scale projected for use in the USA (1500-2000t/a) can reprocess fuel from reactors producing 50,000-65,000MW(e). Only two or three fuel cycle centres of the upper limit size considered in the NECSS-75 would be required in the USA by the year 2000. The NECSS-75 fuel cycle centre evaluation showed that large-scale fuel cycle centres present no real technical siting difficulties from a radiological effluent and safety standpoint. Some construction economies may be achievable with fuel cycle centres, which offer opportunities to improve waste-management systems. Combined centres consisting of reactors and fuel reprocessing and mixed-oxide fuel fabrication plants were also studied in the NECSS. Such centres can eliminate shipment not only of Pu but also mixed-oxide fuel. Increased fuel cycle costs result from implementation of combined centres unless the fuel reprocessing plants are commercial-sized. Development of Pu-burning reactors could reduce any economic penalties of combined centres. The need for effective fissile

  20. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes

    Science.gov (United States)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar

    2018-02-01

    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  1. Implications of environmental regulation and coal plant retirements in systems with large scale penetration of wind power

    International Nuclear Information System (INIS)

    Rahmani, Mohsen; Jaramillo, Paulina; Hug, Gabriela

    2016-01-01

    Over the last decade there have been a growing number of federal and state regulations aimed at controlling air emissions at power plants and/or increasing the penetration of renewable resources in the grid. Environmental Protection Agency regulations will likely lead to the retrofit, retirement, or replacement of coal-fired power plants while the state Renewable Portfolio Standards will continue to drive large-scale deployment of renewable energy sources, primarily wind. Combined, these changes in the generation fleet could have profound implications for the operations of the power system. In this paper, we aim to better understand the interaction between coal plant retirements and increased levels of wind power. We extensively analyze the operations of the PJM electricity system under a broad set of scenarios that include varying levels of wind penetration and coal plant retirements. Not surprisingly, we find that without transmission upgrades, retirement of coal-fired power plants will likely result in considerable transmission congestion and higher energy prices. Increased wind penetration, with high geographic diversity, could mitigate some of the negative effects of coal plant retirement and lead to a significant reduction in air emissions, but wind forecast error might impose operational constraints on the system at times of peak load. - Highlights: •Retirement of coal plants may increase transmission congestion and LMP prices. •EPA rules might lead to significant reductions in emission of air pollutants. •Wind geographical diversity may reduce transmission constraints and air emissions. •At times of high peak load, wind may not reduce system stress caused by retirement. •RPS policies can support and mitigate negative impacts of EPA regulations.

  2. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  3. Solar total energy-large scale experiment, Shenandoah, Georgia site. Annual report, June 1977--June 1978. [For Bleyle Knitwear Plant

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1978-06-01

    The site was described in terms of location, suitably, accessibility, and other factors. Detailed descriptions of the Solar Total Energy-Large Scale Experiment Application (STE-LSE) (Bleyle of America, Inc., Knitwear Plant), the DOE owned Meteorology Station operating at the site, and the instrumentation provided by the Georgia Power Company to measure energy usage within the knitwear plant are included. A detailed report of progress is given at the Shenandoah Site, introduced by the STE-LSE schedule and the Cooperative Agreement work tasks. Progress is described in terms of the following major task areas: site/application; instrumentation/data acquisition; meteorology station; site to STES interface; information dissemination. A brief overview of milestones to be accomplished is given, followed by these appendices: solar easement agreement, interface drawing set, and additional site background data. (MHR)

  4. 27 CFR 19.915 - Large plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Large plants. 19.915... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.915 Large plants. Any person wishing to establish a large plant shall make application for and obtain an...

  5. Developing Major Steps for a Feasibility Study for Upgrading I and C Systems in a Large Scale for an Operating Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suh, Yong Suk; Keum, Jong Yong; Kim, Dong Hoon; Kang, Hyeon Tae; Sung, Chan Ho; Lee, Jae Ki; Cho, Chang Hwan

    2009-01-01

    According to the IAEA report as of Jan. 2008, 436 nuclear power reactors are in operation over the world and 368 nuclear power reactors exceed their operating ages by 20 years. The average I and C equipment's life span is 20 years comparing with that the average reactor's life time is 40 to 60 years. This means that a reactor must be faced with I and C equipment obsolescence problems once or twice during its operating years. The I and C equipment is replaced with new equipment only when the obsolescence problem occurs in a nuclear power plant. This is called an equipment basis upgrade in this paper. This replacement is such a general practice that occurs only when needed. We can assume that most of I and C equipment of a plant will meet with the obsolescence problem almost same time since it started operating. Although there must be a little time difference in the occurrence of the problems among I and C equipment, the replacement will be required in consecutive years. With this assumption, it is recommendable to upgrade the equipment, which is to meet with the problem at the same time, with new equipment at the same time. This is called a system basis upgrade in this paper. The system-basis replacement can be achieved in a large scale by coupling systems whose functions are related each other and replacing them together with a new upto- date platform. This paper focuses on the large scale upgrade of I and C systems for existing and operating NPPs. While performing a feasibility study for the large scale upgrade for Korea standard nuclear power plants (KSNPs), six major steps are developed for the study. This paper is to present what to perform in each step

  6. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  7. Decommissioning of nuclear reprocessing plants French past experience and approach to future large scale operations

    International Nuclear Information System (INIS)

    Jean Jacques, M.; Maurel, J.J.; Maillet, J.

    1994-01-01

    Over the years, France has built up significant experience in dismantling nuclear fuel reprocessing facilities or various types of units representative of a modern reprocessing plant. However, only small or medium scale operations have been carried out so far. To prepare the future decommissioning of large size industrial facilities such as UP1 (Marcoule) and UP2 (La Hague), new technologies must be developed to maximize waste recycling and optimize direct operations by operators, taking the integrated dose and cost aspects into account. The decommissioning and dismantling methodology comprises: a preparation phase for inventory, choice and installation of tools and arrangement of working areas, a dismantling phase with decontamination, and a final contamination control phase. Detailed description of dismantling operations of the MA Pu finishing facility (La Hague) and of the RM2 radio metallurgical laboratory (CEA-Fontenay-aux-Roses) are given as examples. (J.S.). 3 tabs

  8. Large-scale fuel cycle centers

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The United States Nuclear Regulatory Commission (NRC) has considered the nuclear energy center concept for fuel cycle plants in the Nuclear Energy Center Site Survey - 1975 (NECSS-75) -- an important study mandated by the U.S. Congress in the Energy Reorganization Act of 1974 which created the NRC. For the study, NRC defined fuel cycle centers to consist of fuel reprocessing and mixed oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle center sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000 - 300,000 MWe. The types of fuel cycle facilities located at the fuel cycle center permit the assessment of the role of fuel cycle centers in enhancing safeguarding of strategic special nuclear materials -- plutonium and mixed oxides. Siting of fuel cycle centers presents a considerably smaller problem than the siting of reactors. A single reprocessing plant of the scale projected for use in the United States (1500-2000 MT/yr) can reprocess the fuel from reactors producing 50,000-65,000 MWe. Only two or three fuel cycle centers of the upper limit size considered in the NECSS-75 would be required in the United States by the year 2000 . The NECSS-75 fuel cycle center evaluations showed that large scale fuel cycle centers present no real technical difficulties in siting from a radiological effluent and safety standpoint. Some construction economies may be attainable with fuel cycle centers; such centers offer opportunities for improved waste management systems. Combined centers consisting of reactors and fuel reprocessing and mixed oxide fuel fabrication plants were also studied in the NECSS. Such centers can eliminate not only shipment of plutonium, but also mixed oxide fuel. Increased fuel cycle costs result from implementation of combined centers unless the fuel reprocessing plants are commercial-sized. Development of plutonium-burning reactors could reduce any

  9. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  10. Large-scale nuclear energy from the thorium cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.; Duret, M.F.; Craig, D.S.; Veeder, J.I.; Bain, A.S.

    1973-02-01

    The thorium fuel cycle in CANDU (Canada Deuterium Uranium) reactors challenges breeders and fusion as the simplest means of meeting the world's large-scale demands for energy for centuries. Thorium oxide fuel allows high power density with excellent neutron economy. The combination of thorium fuel with organic caloporteur promises easy maintenance and high availability of the whole plant. The total fuelling cost including charges on the inventory is estimated to be attractively low. (author) [fr

  11. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada.

    Science.gov (United States)

    Kuzmina, Maria L; Braukmann, Thomas W A; Fazekas, Aron J; Graham, Sean W; Dewaard, Stephanie L; Rodrigues, Anuar; Bennett, Bruce A; Dickinson, Timothy A; Saarela, Jeffery M; Catling, Paul M; Newmaster, Steven G; Percy, Diana M; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R; Zakharov, Evgeny V; Hebert, Paul D N

    2017-12-01

    Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa.

  12. Model development to acceptability-assessment of large scale power plants for electricity generation

    International Nuclear Information System (INIS)

    Schubert, Katharina

    2013-01-01

    An approach to specific assessment of large power plants is presented. This approach is intended to provide the decision which kind of nuclear, fossil and renewable installation operation minimizes unacceptable consequences for the environment, economy, and society. The tool ACCEPPT, which is currently under development for this purpose, allows a comprehensible and quantitative assessment of the reasonableness of unintended side-effects of different power plant types. The flexible design of the tool elements frame conditions and system technology supports a dynamic acceptability assessment under consideration of the particular context and plant configuration. Thus, current conditions can be used for evaluation as well as development scenarios. Finally the comprehensible acceptability results are intended to contribute overcoming of acceptance problems in the society. (orig.)

  13. Large-scale gene expression reveals different adaptations of Hyalopterus persikonus to winter and summer host plants.

    Science.gov (United States)

    Cui, Na; Yang, Peng-Cheng; Guo, Kun; Kang, Le; Cui, Feng

    2017-06-01

    Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large-scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme-copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin-converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR-1-like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  14. Small-Scale Combined Heat and Power Plants Using Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Salomon-Popa, Marianne [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-11-01

    In this time period where energy supply and climate change are of special concern, biomass-based fuels have attracted much interest due to their plentiful supply and favorable environmental characteristics (if properly managed). The effective capture and continued sustainability of this renewable resource requires a new generation of biomass power plants with high fuel energy conversion. At the same time, deregulation of the electricity market offers new opportunities for small-scale power plants in a decentralized scheme. These two important factors have opened up possibilities for small-scale combined heat and power (CHP) plants based on biofuels. The objective of this pre-study is to assess the possibilities and technical limitations for increased efficiency and energy utilization of biofuels in small size plants (approximately 10 MWe or lower). Various energy conversion technologies are considered and proven concepts for large-scale fossil fuel plants are an especially important area. An analysis has been made to identify the problems, technical limitations and different possibilities as recognized in the literature. Beyond published results, a qualitative survey was conducted to gain first-hand, current knowledge from experts in the field. At best, the survey results together with the results of personal interviews and a workshop on the role of small-scale plants in distributed generation will serve a guideline for future project directions and ideas. Conventional and novel technologies are included in the survey such as Stirling engines, combustion engines, gas turbines, steam turbines, steam motors, fuel cells and other novel technologies/cycles for biofuels. State-of-the-art heat and power plants will be identified to clarify of the advantages and disadvantages as well as possible obstacles for their implementation.

  15. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  16. Large-scale grid management

    International Nuclear Information System (INIS)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-01-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series

  17. The viability of balancing wind generation with large scale energy storage

    International Nuclear Information System (INIS)

    Nyamdash, Batsaikhan; Denny, Eleanor; O'Malley, Mark

    2010-01-01

    This paper studies the impact of combining wind generation and dedicated large scale energy storage on the conventional thermal plant mix and the CO 2 emissions of a power system. Different strategies are proposed here in order to explore the best operational strategy for the wind and storage system in terms of its effect on the net load. Furthermore, the economic viability of combining wind and large scale storage is studied. The empirical application, using data for the Irish power system, shows that combined wind and storage reduces the participation of mid-merit plants and increases the participation of base-load plants. Moreover, storage negates some of the CO 2 emissions reduction of the wind generation. It was also found that the wind and storage output can significantly reduce the variability of the net load under certain operational strategies and the optimal strategy depends on the installed wind capacity. However, in the absence of any supporting mechanism none of the storage devices were economically viable when they were combined with the wind generation on the Irish power system. - Research Highlights: → Energy storage would displace the peaking and mid-merit plants generations by the base-load plants generations. Energy storage may negate the CO 2 emissions reduction that is due to the increased wind generations. →Energy storage reduces the variation of the net load. →Under certain market conditions, merchant type energy storage is not viable.

  18. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-02-01

    Full Text Available Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant waste heat as an energy source for horticulture facilities. As a result, it was confirmed that there was a sufficient amount of energy potential for the use of waste heat to supply energy to the assumed area. In Dangjin, an horticultural area of 500 ha could be constructed by utilizing 20% of the energy reserves. In Hadong, a horticulture facility can be set up to be 260 ha with 7.4% of the energy reserves. In Youngdong, an assumed area of 65 ha could be built utilizing about 19% of the energy reserves. Furthermore, the payback period was calculated in order to evaluate the economic feasibility compared with a conventional system. The initial investment costs can be recovered by the approximately 83% reduction in the annual operating costs.

  19. Dose monitoring in large-scale flowing aqueous media

    International Nuclear Information System (INIS)

    Kuruca, C.N.

    1995-01-01

    The Miami Electron Beam Research Facility (EBRF) has been in operation for six years. The EBRF houses a 1.5 MV, 75 KW DC scanned electron beam. Experiments have been conducted to evaluate the effectiveness of high-energy electron irradiation in the removal of toxic organic chemicals from contaminated water and the disinfection of various wastewater streams. The large-scale plant operates at approximately 450 L/min (120 gal/min). The radiation dose absorbed by the flowing aqueous streams is estimated by measuring the difference in water temperature before and after it passes in front of the beam. Temperature measurements are made using resistance temperature devices (RTDs) and recorded by computer along with other operating parameters. Estimated dose is obtained from the measured temperature differences using the specific heat of water. This presentation will discuss experience with this measurement system, its application to different water presentation devices, sources of error, and the advantages and disadvantages of its use in large-scale process applications

  20. WAMS Based Intelligent Operation and Control of Modern Power System with large Scale Renewable Energy Penetration

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain

    security limits. Under such scenario, progressive displacement of conventional generation by wind generation is expected to eventually lead a complex power system with least presence of central power plants. Consequently the support from conventional power plants is expected to reach its all-time low...... system voltage control responsibility from conventional power plants to wind turbines. With increased wind penetration and displaced conventional central power plants, dynamic voltage security has been identified as one of the challenging issue for large scale wind integration. To address the dynamic...... security issue, a WAMS based systematic voltage control scheme for large scale wind integrated power system has been proposed. Along with the optimal reactive power compensation, the proposed scheme considers voltage support from wind farms (equipped with voltage support functionality) and refurbished...

  1. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  2. Partitioned based approach for very large scale database in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Tiwari, Sachin; Upadhyay, Pushp; Sengupta, Nabarun; Bhandarkar, S.G.; Agilandaeswari

    2012-01-01

    This paper presents a partition based approach for handling very large tables with size running in giga-bytes to tera-bytes. The scheme is developed from our experience in handling large signal storage which is required in various computer based data acquisition and control room operator information systems such as Distribution Recording System (DRS) and Computerised Operator Information System (COIS). Whenever there is a disturbance in an operating nuclear power plant, it triggers an action where a large volume of data from multiple sources is generated and this data needs to be stored. Concurrency issues as data is from multiple sources and very large amount of data are the problems which are addressed in this paper by applying partition based approach. Advantages of partition based approach with other techniques are discussed. (author)

  3. Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Gorgens, Johann; Knoetze, Hansie

    2010-01-01

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW th . The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW th to about 6.44 R/l for a 60 MW th and 3.95 R/l for a 400 MW th methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW th , but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW th plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons.

  4. Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole, E-mail: bamigun@csir.co.z [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), Pretoria (South Africa); Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa); Gorgens, Johann; Knoetze, Hansie [Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa)

    2010-01-15

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW{sub th}. The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW{sub th} to about 6.44 R/l for a 60 MW{sub th} and 3.95 R/l for a 400 MW{sub th} methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW{sub th}, but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW{sub th} plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons.

  5. Biomethanol production from gasification of non-woody plant in South Africa. Optimum scale and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), Pretoria (South Africa); Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa); Gorgens, Johann; Knoetze, Hansie [Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa)

    2010-01-15

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW{sub th}. The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW{sub th} to about 6.44 R/l for a 60 MW{sub th} and 3.95 R/l for a 400 MW{sub th} methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW{sub th}, but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW{sub th} plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons. (author)

  6. Volume measurement study for large scale input accountancy tank

    International Nuclear Information System (INIS)

    Uchikoshi, Seiji; Watanabe, Yuichi; Tsujino, Takeshi

    1999-01-01

    Large Scale Tank Calibration (LASTAC) facility, including an experimental tank which has the same volume and structure as the input accountancy tank of Rokkasho Reprocessing Plant (RRP) was constructed in Nuclear Material Control Center of Japan. Demonstration experiments have been carried out to evaluate a precision of solution volume measurement and to establish the procedure of highly accurate pressure measurement for a large scale tank with dip-tube bubbler probe system to be applied to the input accountancy tank of RRP. Solution volume in a tank is determined from substitution the solution level for the calibration function obtained in advance, which express a relation between the solution level and its volume in the tank. Therefore, precise solution volume measurement needs a precise calibration function that is determined carefully. The LASTAC calibration experiments using pure water showed good result in reproducibility. (J.P.N.)

  7. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant

    Science.gov (United States)

    Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei

    2015-01-01

    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase. PMID:25989417

  8. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  9. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada1

    Science.gov (United States)

    Kuzmina, Maria L.; Braukmann, Thomas W. A.; Fazekas, Aron J.; Graham, Sean W.; Dewaard, Stephanie L.; Rodrigues, Anuar; Bennett, Bruce A.; Dickinson, Timothy A.; Saarela, Jeffery M.; Catling, Paul M.; Newmaster, Steven G.; Percy, Diana M.; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P.; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R.; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2017-01-01

    Premise of the study: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Methods: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Results: Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Discussion: Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa. PMID:29299394

  10. Survey on weather changes associated with large-scale tree-planting. 2; Daikibo ryokuka ni tomonau kiko henka ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    An investigational study was made for large-scale tree-planting aiming at CO2 fixation. Water resource and precipitation relating to tree-planting were determined from NASA data and arranged into the global distribution map. It was found that Australia and the Chinese continent are under the relatively favorable condition. As for the soil condition, nutrition resource is short in the desert and unused zone. From the vegetation data obtained from meteorological satellite NOAA, developed was a method for estimating net primary productivity of terrestrial ecosystem and obtained was a global distribution map for the amount of CO2 fixed under the present terrestrial vegetation. At the same time, areas which have great potentiality of tree-planting were selected from the map for estimating potentiality of the global tree-planting. To study the promotion of rainfall as a means of expanding the potential tree-planting area, the conventional meteorological and physical model was improved, and more realistic simulation was made possible. Also as to the water utilization technology, the modeling method was developed. As the area having a potentiality of expanding tree-planting, Australia (especially the west) was cited as the first candidate, and China the second candidate. 108 refs., 128 figs., 49 tabs.

  11. Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant Equisetum hyemale.

    Directory of Open Access Journals (Sweden)

    Tiago Santana Balbuena

    2012-06-01

    Full Text Available Equisetum hyemale is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome- characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both E. hyemale rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the expression of the 87 characteristic proteins and revealed, based on the expression profile, the existence of 9 major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression and nucleotide and protein binding functions. Spatial differences analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH-domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25 and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related

  12. Small-scale power plant potential in Finland

    International Nuclear Information System (INIS)

    Helynen, S.

    1993-01-01

    The presentation discusses the small-scale power plant potential in Finland. The study of the potential is limited to W-scale power plants producing both electric power and heat using solid fuels. The basic power plant dimensioning and electric power load determination is based on traditional boiler and gas turbine technology. The possible sites for power plants are communities using district heating, and industrialized sites needing process steam or heat. In 1990 70 % (17 TWh) of district heat was produced by gas turbines. Ten communities have an own back-pressure power plant, and 40 communities buy heat from industrial plants, owing back-pressure power generation. Additionally about 40 communes buy district heat from companies, owned by power companies and industry. Estimates of small-scale power plant potential has been made plant wise on the basis of district heat loads and industrial heat needs. The scale of the plants has been limited to scale 3 MWe or more. The choosing of the fuel depends on the local conditions. The cheapest indigenous fuels in many communes are industrial wood wastes, and both milled and sod peat. The potential of steam technology based small-scale power plants has been estimated to be about 50 plants in 1992/1993, the total power of which is 220-260 MW. The largest estimate is base situation, in which there would be energy cooperation between the communes and industry. The fuel used by the power plants would be about 5.4-6.6 TWh/a corresponding to 270-330 million FIM/a. The total investment costs of the plants would be about 2.0 billion FIM. The plants would employ about 250 persons, and the fuel supply (wood or peat) about 100 persons

  13. Test on large-scale seismic isolation elements, 2

    International Nuclear Information System (INIS)

    Mazda, T.; Moteki, M.; Ishida, K.; Shiojiri, H.; Fujita, T.

    1991-01-01

    Seismic isolation test program of Central Research Inst. of Electric Power Industry (CRIEPI) to apply seismic isolation to Fast Breeder Reactor (FBR) plant was started in 1987. In this test program, demonstration test of seismic isolation elements was considered as one of the most important research items. Facilities for testing seismic isolation elements were built in Abiko Research Laboratory of CRIEPI. Various tests of large-scale seismic isolation elements were conducted up to this day. Many important test data to develop design technical guidelines was obtained. (author)

  14. Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Agnes; Jerome, Valerie; Freitag, Ruth [Bayreuth Univ. (Germany). Chair for Process Biotechnology; Burghardt, Diana; Likke, Likke; Peiffer, Stefan [Bayreuth Univ. (Germany). Dept. of Hydrology; Hofstetter, Eugen M. [RVT Process Equipment GmbH, Steinwiesen (Germany); Gabler, Ralf [BKW Biokraftwerke Fuerstenwalde GmbH, Fuerstenwalde (Germany)

    2009-10-15

    A continuously operated, thermophilic, municipal biogas plant was observed over 26 months (sampling twice per month) in regard to a number of physicochemical parameters and the biogas production. Biogas yields were put in correlation to parameters such as the volatile fatty acid concentration, the pH and the ammonium concentration. When the residing microbiota was classified via analysis of the 16S rRNA genes, most bacterial sequences matched with unidentified or uncultured bacteria from similar habitats. Of the archaeal sequences, 78.4% were identified as belonging to the genus Methanoculleus, which has not previously been reported for biogas plants, but is known to efficiently use H{sub 2} and CO{sub 2} produced by the degradation of fatty acids by syntrophic microorganisms. In order to further investigate the influence of varied amounts of ammonia (2-8 g/L) and volatile fatty acids on biogas production and composition (methane/CO{sub 2}), laboratory scale satellite experiments were performed in parallel to the technical plant. Finally, ammonia stripping of the process water of the technical plant was accomplished, a measure through which the ammonia entering the biogas reactor via the mash could be nearly halved, which increased the energy output of the biogas plant by almost 20%. (orig.)

  15. Application of plant metabonomics in quality assessment for large-scale production of traditional Chinese medicine.

    Science.gov (United States)

    Ning, Zhangchi; Lu, Cheng; Zhang, Yuxin; Zhao, Siyu; Liu, Baoqin; Xu, Xuegong; Liu, Yuanyan

    2013-07-01

    The curative effects of traditional Chinese medicines are principally based on the synergic effect of their multi-targeting, multi-ingredient preparations, in contrast to modern pharmacology and drug development that often focus on a single chemical entity. Therefore, the method employing a few markers or pharmacologically active constituents to assess the quality and authenticity of the complex preparations has a number of severe challenges. Metabonomics can provide an effective platform for complex sample analysis. It is also reported to be applied to the quality analysis of the traditional Chinese medicine. Metabonomics enables comprehensive assessment of complex traditional Chinese medicines or herbal remedies and sample classification of diverse biological statuses, origins, or qualities in samples, by means of chemometrics. Identification, processing, and pharmaceutical preparation are the main procedures in the large-scale production of Chinese medicinal preparations. Through complete scans, plants metabonomics addresses some of the shortfalls of single analyses and presents a considerable potential to become a sharp tool for traditional Chinese medicine quality assessment. Georg Thieme Verlag KG Stuttgart · New York.

  16. Mixed-power scaling of whole-plant respiration from seedlings to giant trees.

    Science.gov (United States)

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G; Masyagina, Oxana V; Hagihara, Akio; Hoque, A T M Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A; Abaimov, Anatoly P; Awaya, Yoshio; Araki, Masatake G; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-26

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

  17. Plant trait detection with multi-scale spectrometry

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.

  18. Political consultation and large-scale research

    International Nuclear Information System (INIS)

    Bechmann, G.; Folkers, H.

    1977-01-01

    Large-scale research and policy consulting have an intermediary position between sociological sub-systems. While large-scale research coordinates science, policy, and production, policy consulting coordinates science, policy and political spheres. In this very position, large-scale research and policy consulting lack of institutional guarantees and rational back-ground guarantee which are characteristic for their sociological environment. This large-scale research can neither deal with the production of innovative goods under consideration of rentability, nor can it hope for full recognition by the basis-oriented scientific community. Policy consulting knows neither the competence assignment of the political system to make decisions nor can it judge succesfully by the critical standards of the established social science, at least as far as the present situation is concerned. This intermediary position of large-scale research and policy consulting has, in three points, a consequence supporting the thesis which states that this is a new form of institutionalization of science: These are: 1) external control, 2) the organization form, 3) the theoretical conception of large-scale research and policy consulting. (orig.) [de

  19. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  20. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  1. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens.

    Science.gov (United States)

    Jiang, Zhenhong; He, Fei; Zhang, Ziding

    2017-07-01

    Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study

  2. Large scale solar district heating. Evaluation, modelling and designing

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the tool for design studies and on a local energy planning case. The evaluation of the central solar heating technology is based on measurements on the case plant in Marstal, Denmark, and on published and unpublished data for other, mainly Danish, CSDHP plants. Evaluations on the thermal, economical and environmental performances are reported, based on the experiences from the last decade. The measurements from the Marstal case are analysed, experiences extracted and minor improvements to the plant design proposed. For the detailed designing and energy planning of CSDHPs, a computer simulation model is developed and validated on the measurements from the Marstal case. The final model is then generalised to a 'generic' model for CSDHPs in general. The meteorological reference data, Danish Reference Year, is applied to find the mean performance for the plant designs. To find the expectable variety of the thermal performance of such plants, a method is proposed where data from a year with poor solar irradiation and a year with strong solar irradiation are applied. Equipped with a simulation tool design studies are carried out spreading from parameter analysis over energy planning for a new settlement to a proposal for the combination of plane solar collectors with high performance solar collectors, exemplified by a trough solar collector. The methodology of utilising computer simulation proved to be a cheap and relevant tool in the design of future solar heating plants. The thesis also exposed the demand for developing computer models for the more advanced solar collector designs and especially for the control operation of CSHPs. In the final chapter the CSHP technology is put into perspective with respect to other possible technologies to find the relevance of the application

  3. Large scale solar thermal power for the European Union{exclamation_point}

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    Southern Europe, on the edge of the sunbelt, represents the ideal location for solar thermal generated power. Last year. SAWIE reported on the THESEUS project, a proposed 50 MWe solar thermal power plant for Frangokastello, southern Crete, which was submitted for support under the European Union`s THERMIE Programme. Funding was approved for the design phase for this innovative power plant, the first large-scale SEGS-style plant on European soil, at the end of last year. However, the THERMIE Programme also provided support for another Southern European plant, proposed by Colon Solar for Huelva in Southern Spain. Whilst hurdles remain to be overcome before both plants are built and commissioned, there is an excellent chance that by the start of the new Millennium, the solar collectors from these two plants could be generating over half a million MWh of energy a year. SAWIE compares the two projects. (author)

  4. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  5. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World.

    Science.gov (United States)

    Di Silvestre, Dario; Bergamaschi, Andrea; Bellini, Edoardo; Mauri, PierLuigi

    2018-06-03

    The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.

  6. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  7. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    Science.gov (United States)

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Advanced circulating fluidised bed technology (CFB) for large-scale solid biomass fuel firing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jaentti, Timo; Zabetta, Edgardo Coda; Nuortimo, Kalle [Foster Wheeler Energia Oy, Varkaus (Finland)

    2013-04-01

    Worldwide the nations are taking initiatives to counteract global warming by reducing their greenhouse gas emissions. Efforts to increase boiler efficiency and the use of biomass and other solid renewable fuels are well in line with these objectives. Circulating fluidised bed boilers (CFB) are ideal for efficient power generation, capable to fire a broad variety of solid biomass fuels from small CHP plants to large utility power plants. Relevant boiler references in commercial operation are made for Finland and Poland.

  9. Large Pilot Scale Testing of Linde/BASF Post-Combustion CO2 Capture Technology at the Abbott Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Kevin C. [University of Illinois, Champaign, IL (United States)

    2017-08-18

    The work summarized in this report is the first step towards a project that will re-train and create jobs for personnel in the coal industry and continue regional economic development to benefit regions impacted by previous downturns. The larger project is aimed at capturing ~300 tons/day (272 metric tonnes/day) CO2 at a 90% capture rate from existing coal- fired boilers at the Abbott Power Plant on the campus of University of Illinois (UI). It will employ the Linde-BASF novel amine-based advanced CO2 capture technology, which has already shown the potential to be cost-effective, energy efficient and compact at the 0.5-1.5 MWe pilot scales. The overall objective of the project is to design and install a scaled-up system of nominal 15 MWe size, integrate it with the Abbott Power Plant flue gas, steam and other utility systems, and demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity. The project will also begin to build a workforce that understands how to operate and maintain the capture plants by including students from regional community colleges and universities in the operation and evaluation of the capture system. This project will also lay the groundwork for follow-on projects that pilot utilization of the captured CO2 from coal-fired power plants. The net impact will be to demonstrate a replicable means to (1) use a standardized procedure to evaluate power plants for their ability to be retrofitted with a pilot capture unit; (2) design and construct reliable capture systems based on the Linde-BASF technology; (3) operate and maintain these systems; (4) implement training programs with local community colleges and universities to establish a workforce to operate and maintain the systems; and (5) prepare to evaluate at the large pilot scale level various methods to utilize the resulting captured CO2. Towards the larger project goal, the UI-led team, together

  10. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  11. Investigations on efficiency of the emergency cooling by means of large-scale tests

    International Nuclear Information System (INIS)

    Hicken, E.F.

    1982-01-01

    The RSK guidelines contain the maximum permissible loads (max. cladding tube temperature 1200 0 C, max. Zr/H 2 O-reaction of 1% Zr). Their observance implies that only a small number of fuel rods fail. The safety research has to produce the evidence that the limiting loads are not exceeded. The analytical investigations on the emergency cooling behaviour could so far only be verified in scaled-down test facilities. After about 100 tests in four different large-scale test facilities the experimental investigations on the blow-down phase for large cracks are finished in the main. With the refill- and flood process the systems behaviour in scaled down test stands, the multidimensional conditions in the reactor pressure vessel can, however, only be simulated on the original scale. More experiments are planned as part of the 2D/3D-project (CCTF , SCTF, UPTF) and as part of the PKL-tests, so that more than 200 tests in seven plants will be available then. As to the small cracks the physical phenomena are known. The current investigations are used to increase the reliability of statement. After their being finished approximately 300 tests in seven plants will be available. (orig./HP) [de

  12. Investigation of the modes of origin of attitudes concerning the risks of large-scale technical plants

    International Nuclear Information System (INIS)

    Gutmann, G.; Huschke, P.

    1980-12-01

    A hypothetical framework of the modes of origin of attitudes concerning the risks of large-scale industrial plants is developed. The hypotheses regarding the assessment of nuclear energy are empirically investigated in several schools, the pupils being between 14 and 16 years old. Results: 1. the ''polarity'' of opinion patterns on the problem of nuclear energy ''brought along'', i.e. already coined within the families could not be reversed by school instruction. 2. Instruction can possibly differentiate attitudes (assessments and cognitions). 3. Obviously the teaching style of the teacher is more determining for a differentiated attitude towards nuclear energy than the instruction material used. 4. A teaching style supporting and activating differentiation can be called partner-orientated and ''provocative'' and be considered as taking into consideration the communicative situations in school classes in a flexible manner. 5. On the other hand, a frontal and monologizing teaching style which does not respond to the changing communicative structures in school classes can block all interest and thus the possibility of influencing attitudes. (orig./HP) [de

  13. Development of inspection data collection and evaluation system for large scale MOX fuel fabrication plant safeguards (3)

    International Nuclear Information System (INIS)

    Kumakura, Shinichi; Masuda, Shoichiro; Iso, Shoko; Hisamatsu, Yoshinori; Kurobe, Hiroko; Nakajima, Shinji

    2015-01-01

    Inspection Data Collection and Evaluation System is the system to store inspection data and operator declaration data collected from various measurement equipment, which is installed in fuel fabrication processes of the large-scale MOX fuel fabrication plant, and to make safeguards evaluation based on Near Real Time Accountancy (NRTA) using these data. Nuclear Material Control Center developed the simulator to simulate fuel fabrication process, in-process material inventory/flow data and the measurement data and the adequacy/impact to the uncertainty of the material balance using the simulation results, such as the facility operation and the operational status, has been reviewed. Following the 34th INMM Japan chapter presentation, the model similar to the real nuclear material accountancy during the fuel fabrication process was simulated and the nuclear material accountancy and its uncertainty (Sigma MUF) have been reviewed. Some findings have been obtained, such as regarding evaluation related indicators for verification under a more realistic accountancy which could be applied by operator. (author)

  14. Comparing the life cycle costs of using harvest residue as feedstock for small- and large-scale bioenergy systems (part II)

    International Nuclear Information System (INIS)

    Cleary, Julian; Wolf, Derek P.; Caspersen, John P.

    2015-01-01

    In part II of our two-part study, we estimate the nominal electricity generation and GHG (greenhouse gas) mitigation costs of using harvest residue from a hardwood forest in Ontario, Canada to fuel (1) a small-scale (250 kW e ) combined heat and power wood chip gasification unit and (2) a large-scale (211 MW e ) coal-fired generating station retrofitted to combust wood pellets. Under favorable operational and regulatory conditions, generation costs are similar: 14.1 and 14.9 cents per kWh (c/kWh) for the small- and large-scale facilities, respectively. However, GHG mitigation costs are considerably higher for the large-scale system: $159/tonne of CO 2 eq., compared to $111 for the small-scale counterpart. Generation costs increase substantially under existing conditions, reaching: (1) 25.5 c/kWh for the small-scale system, due to a regulation mandating the continual presence of an operating engineer; and (2) 22.5 c/kWh for the large-scale system due to insufficient biomass supply, which reduces plant capacity factor from 34% to 8%. Limited inflation adjustment (50%) of feed-in tariff rates boosts these costs by 7% to 11%. Results indicate that policy generalizations based on scale require careful consideration of the range of operational/regulatory conditions in the jurisdiction of interest. Further, if GHG mitigation is prioritized, small-scale systems may be more cost-effective. - Highlights: • Generation costs for two forest bioenergy systems of different scales are estimated. • Nominal electricity costs are 14.1–28.3 cents/kWh for the small-scale plant. • Nominal electricity costs are 14.9–24.2 cents/kWh for the large-scale plant. • GHG mitigation costs from displacing coal and LPG are $111-$281/tonne of CO 2 eq. • High sensitivity to cap. factor (large-scale) and labor requirements (small-scale)

  15. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    1981-05-01

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  16. Large Scale Self-Organizing Information Distribution System

    National Research Council Canada - National Science Library

    Low, Steven

    2005-01-01

    This project investigates issues in "large-scale" networks. Here "large-scale" refers to networks with large number of high capacity nodes and transmission links, and shared by a large number of users...

  17. Cerebral methodology based computing to estimate real phenomena from large-scale nuclear simulation

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2011-01-01

    Our final goal is to estimate real phenomena from large-scale nuclear simulations by using computing processes. Large-scale simulations mean that they include scale variety and physical complexity so that corresponding experiments and/or theories do not exist. In nuclear field, it is indispensable to estimate real phenomena from simulations in order to improve the safety and security of nuclear power plants. Here, the analysis of uncertainty included in simulations is needed to reveal sensitivity of uncertainty due to randomness, to reduce the uncertainty due to lack of knowledge and to lead a degree of certainty by verification and validation (V and V) and uncertainty quantification (UQ) processes. To realize this, we propose 'Cerebral Methodology based Computing (CMC)' as computing processes with deductive and inductive approaches by referring human reasoning processes. Our idea is to execute deductive and inductive simulations contrasted with deductive and inductive approaches. We have established its prototype system and applied it to a thermal displacement analysis of a nuclear power plant. The result shows that our idea is effective to reduce the uncertainty and to get the degree of certainty. (author)

  18. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  19. Automatic management software for large-scale cluster system

    International Nuclear Information System (INIS)

    Weng Yunjian; Chinese Academy of Sciences, Beijing; Sun Gongxing

    2007-01-01

    At present, the large-scale cluster system faces to the difficult management. For example the manager has large work load. It needs to cost much time on the management and the maintenance of large-scale cluster system. The nodes in large-scale cluster system are very easy to be chaotic. Thousands of nodes are put in big rooms so that some managers are very easy to make the confusion with machines. How do effectively carry on accurate management under the large-scale cluster system? The article introduces ELFms in the large-scale cluster system. Furthermore, it is proposed to realize the large-scale cluster system automatic management. (authors)

  20. Control Algorithms for Large-scale Single-axis Photovoltaic Trackers

    Directory of Open Access Journals (Sweden)

    Dorian Schneider

    2012-01-01

    Full Text Available The electrical yield of large-scale photovoltaic power plants can be greatly improved by employing solar trackers. While fixed-tilt superstructures are stationary and immobile, trackers move the PV-module plane in order to optimize its alignment to the sun. This paper introduces control algorithms for single-axis trackers (SAT, including a discussion for optimal alignment and backtracking. The results are used to simulate and compare the electrical yield of fixed-tilt and SAT systems. The proposed algorithms have been field tested, and are in operation in solar parks worldwide.

  1. Expected Future Conditions for Secure Power Operation with Large Scale of RES Integration

    International Nuclear Information System (INIS)

    Majstrovic, G.; Majstrovic, M.; Sutlovic, E.

    2015-01-01

    EU energy strategy is strongly focused on the large scale integration of renewable energy sources. The most dominant part here is taken by variable sources - wind power plants. Grid integration of intermittent sources along with keeping the system stable and secure is one of the biggest challenges for the TSOs. This part is often neglected by the energy policy makers, so this paper deals with expected future conditions for secure power system operation with large scale wind integration. It gives an overview of expected wind integration development in EU, as well as expected P/f regulation and control needs. The paper is concluded with several recommendations. (author).

  2. MEASUREMENT OF LARGE-SCALE SOLAR POWER PLANT BY USING IMAGES ACQUIRED BY NON-METRIC DIGITAL CAMERA ON BOARD UAV

    Directory of Open Access Journals (Sweden)

    R. Matsuoka

    2012-07-01

    Full Text Available This paper reports an experiment conducted in order to investigate the feasibility of the deformation measurement of a large-scale solar power plant on reclaimed land by using images acquired by a non-metric digital camera on board a micro unmanned aerial vehicle (UAV. It is required that a root mean squares of errors (RMSE in height measurement should be less than 26 mm that is 1/3 of the critical limit of deformation of 78 mm off the plane of a solar panel. Images utilized in the experiment have been obtained by an Olympus PEN E-P2 digital camera on board a Microdrones md4-1000 quadrocopter. The planned forward and side overlap ratios of vertical image acquisition have been 60 % and 60 % respectively. The planned flying height of the UAV has been 20 m above the ground level and the ground resolution of an image is approximately 5.0 mm by 5.0 mm. 8 control points around the experiment area are utilized for orientation. Measurement results are evaluated by the space coordinates of 220 check points which are corner points of 55 solar panels selected from 1768 solar panels in the experiment area. Two teams engage in the experiment. One carries out orientation and measurement by using 171 images following the procedure of conventional aerial photogrammetry, and the other executes those by using 126 images in the manner of close range photogrammetry. The former fails to satisfy the required accuracy, while the RMSE in height measurement by the latter is 8.7 mm that satisfies the required accuracy. From the experiment results, we conclude that the deformation measurement of a large-scale solar power plant on reclaimed land by using images acquired by a nonmetric digital camera on board a micro UAV would be feasible if points utilized in orientation and measurement have a sufficient number of bundles in good geometry and self-calibration in orientation is carried out.

  3. Large-scale dynamic compaction of natural salt

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.

    1996-01-01

    A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m 3 of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10 -14 m 2 . This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant

  4. Potential advantages and disadvantages of sequentially building small nuclear units instead of a large nuclear plant

    International Nuclear Information System (INIS)

    Feretic, D.; Cavlina, N.; Grgic, D.

    2008-01-01

    Renewal of nuclear power programs in countries with modest electricity consumptions and weak electrical grid interconnections has raised the question of optimal nuclear power plants sizes for such countries. The same question would be also valid for isolated or weakly connected regions within a large country. Building large size nuclear power plant could be prevented by technical or financial limits. Research programs have been initiated in the International Atomic Energy Agency and in the USA (within the framework of the Global Nuclear Energy Partnership (GNEP) program) with the aim to inspect under which circumstances small and medium reactors could be the preferred option compared to large nuclear plants. The economy of scale is a clear advantage of large plants. This paper compares, by using probabilistic methods, the net cash flow of large and medium size plants, taking as example a large nuclear plant (around 1200 MW) and four sequentially built smaller plants (300 MW). Potential advantages and disadvantageous of both options have been considered. Main advantages of the sequential construction of several identical small units could be the reduced investor risk and reduced investment costs due to the learning effect. This analysis is a part of studies for the Croatian power generating system development. (orig.)

  5. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  6. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....

  7. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  8. Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Ouyang, Shuo; Ding, Xiaoling; Chen, Lu

    2014-01-01

    Highlights: • Optimization of large-scale hydropower system in the Yangtze River basin. • Improved decomposition–coordination and discrete differential dynamic programming. • Generating initial solution randomly to reduce generation time. • Proposing relative coefficient for more power generation. • Proposing adaptive bias corridor technology to enhance convergence speed. - Abstract: With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition–coordination and discrete differential dynamic programming (IDC–DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC–DDDP has competitive performances in not only total power generation but also convergence speed, which provides a new method to solve the OLHS problem

  9. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  10. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Science.gov (United States)

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  11. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  12. The application of liquid air energy storage for large scale long duration solutions to grid balancing

    Science.gov (United States)

    Brett, Gareth; Barnett, Matthew

    2014-12-01

    Liquid Air Energy Storage (LAES) provides large scale, long duration energy storage at the point of demand in the 5 MW/20 MWh to 100 MW/1,000 MWh range. LAES combines mature components from the industrial gas and electricity industries assembled in a novel process and is one of the few storage technologies that can be delivered at large scale, with no geographical constraints. The system uses no exotic materials or scarce resources and all major components have a proven lifetime of 25+ years. The system can also integrate low grade waste heat to increase power output. Founded in 2005, Highview Power Storage, is a UK based developer of LAES. The company has taken the concept from academic analysis, through laboratory testing, and in 2011 commissioned the world's first fully integrated system at pilot plant scale (300 kW/2.5 MWh) hosted at SSE's (Scottish & Southern Energy) 80 MW Biomass Plant in Greater London which was partly funded by a Department of Energy and Climate Change (DECC) grant. Highview is now working with commercial customers to deploy multi MW commercial reference plants in the UK and abroad.

  13. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  14. A feasibility assessment for incorporating of passive RHRS into large scale active PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S O; Sub, S Y; Kim, Y S; Chang, M H; Park, J K [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1996-12-01

    A feasibility study was carried out for the possible incorporation of passive RHRS (Residual Heat Removal System) into a large-scale of active PWR plant. Four kinds of system configurations were considered. For each case its performance and impacts on plant safety, cost, licensing, operation and maintenance were evaluated. The evaluation came up with a finding of PRHRS with a gravity feed tank as most probable design concept. However, considering rearrangement of structure and pipe routing inside and outside containment, it is concluded that implementation of the PRHRS concept into well developed active plants is not desirable at present. (author). 6 refs, 7 figs, 1 tab.

  15. A feasibility assessment for incorporating of passive RHRS into large scale active PWR

    International Nuclear Information System (INIS)

    Kim, S.O.; Sub, S.Y.; Kim, Y.S.; Chang, M.H.; Park, J.K.

    1996-01-01

    A feasibility study was carried out for the possible incorporation of passive RHRS (Residual Heat Removal System) into a large-scale of active PWR plant. Four kinds of system configurations were considered. For each case its performance and impacts on plant safety, cost, licensing, operation and maintenance were evaluated. The evaluation came up with a finding of PRHRS with a gravity feed tank as most probable design concept. However, considering rearrangement of structure and pipe routing inside and outside containment, it is concluded that implementation of the PRHRS concept into well developed active plants is not desirable at present. (author). 6 refs, 7 figs, 1 tab

  16. Insight into economies of scale for waste packaging sorting plants

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik; Maul, Anja

    2015-01-01

    of economies of scale and discussed complementary relations occurring between capacity size, technology level and operational practice. Processing costs (capital and operational expenditure) per unit waste input were found to decrease from above 100 € for small plants with a basic technology level to 60......This contribution presents the results of a techno-economic analysis performed for German Materials Recovery Facilities (MRFs) which sort commingled lightweight packaging waste (consisting of plastics, metals, beverage cartons and other composite packaging). The study addressed the importance......-70 € for large plants employing advanced process flows. Typical operational practice, often riddled with inadequate process parameters was compared with planned or designed operation. The former was found to significantly influence plant efficiency and therefore possible revenue streams from the sale of output...

  17. Inlfuence of grants and taxes on the final energy costs from selected bioenergy carrier - case study for heat from large scale plants in Germany

    International Nuclear Information System (INIS)

    Haerdtlein, M.; Kaltschmitt, M.; Braun, A.

    1996-01-01

    Biogenic fuels represent a promising possibility for the supply of the energy demand and thereby show many advantages. However, there is little use of solid bioenergy carriers in many countries of the EU. Mainly this is caused by the high costs of the provision of energy from organic material compared to the costs of the substitutable fossil energy carriers. Against this background the following paper investigates governmental possibilities to make biomass as a fuel economical competitive for a potential plant operator. For that purpose large scale biomass combustion plants only fired by energy crops are investigated exemplaryly for Germany. Firstly a detailed analysis of the energy provision costs from energy crops is carried out. The results are compared to similar fossil fired plants. Then the influence of governmental guiding instruments for a wider market access of biofuels on the heat production costs will be shown. Finally the results are summarised and the some conclusions are discussed. (Author)

  18. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that

  19. Algorithm 896: LSA: Algorithms for Large-Scale Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009

  20. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  1. Large-scale demonstration of reliability centered maintenance at two nuclear generating stations

    International Nuclear Information System (INIS)

    Gaertner, J.P.; Edgar, C.; Rodin, M.E.

    1989-01-01

    This paper reports that after successful single-system pilot applications of Reliability Centered Maintenance (RCM) at various utilities, EPRI with Rochester Gas and Electric and Southern California Edison is undertaking multiple-system applications of RCM at their respective nuclear plants. The objective is to demonstrate the feasibility and cost-effectiveness of large-scale RCM application. In addition, each utility has plant-specific objectives to improve maintenance and plant availability. Each project has selected a prioritized list of some 15-20 systems on which to perform RCM. Each project is employing somewhat different RCM analysis methods, both of which conform to a global RCM definition applicable to all EPRI RCM work to date. Each project has developed important insights for improving cost and value of future analyses. Both projects will have applied the RCM process, including implementation, on several plant systems by April 1989

  2. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  3. Large-scale heat pumps in sustainable energy systems: System and project perspectives

    Directory of Open Access Journals (Sweden)

    Blarke Morten B.

    2007-01-01

    Full Text Available This paper shows that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps (HP with existing combined heat and power (CHP plants, is critically sensitive to the operational mode of the HP vis-à-vis the operational coefficient of performance, mainly given by the temperature level of the heat source. When using ground source for low-temperature heat source, heat production costs increases by about 10%, while partial use of condensed flue gasses for low-temperature heat source results in an 8% cost reduction. Furthermore, the analysis shows that when a large-scale HP is integrated with an existing CHP plant, the projected spot market situation in The Nordic Power Exchange (Nord Pool towards 2025, which reflects a growing share of wind power and heat-supply constrained power generation electricity, further reduces the operational hours of the CHP unit over time, while increasing the operational hours of the HP unit. In result, an HP unit at half the heat production capacity as the CHP unit in combination with a heat-only boiler represents as a possibly financially feasible alternative to CHP operation, rather than a supplement to CHP unit operation. While such revised operational strategy would have impacts on policies to promote co-generation, these results indicate that the integration of large-scale HP may jeopardize efforts to promote co-generation. Policy instruments should be designed to promote the integration of HP with lower than half of the heating capacity of the CHP unit. Also it is found, that CHP-HP plant designs should allow for the utilization of heat recovered from the CHP unit’s flue gasses for both concurrent (CHP unit and HP unit and independent operation (HP unit only. For independent operation, the recovered heat is required to be stored. .

  4. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  5. Restoring Eelgrass (Zostera marina) from Seed: A Comparison of Planting Methods for Large-Scale Projects

    National Research Council Canada - National Science Library

    Orth, Robert; Marion, Scott; Granger, Steven; Traber, Michael

    2008-01-01

    Eelgrass (Zostera marina) seeds are being used in a variety of both small- and large-scale restoration activities and have been successfully used to initiate recovery of eelgrass in the Virginia seaside coastal lagoons...

  6. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China.

    Science.gov (United States)

    Zeng, Jianfei; Shen, Xiuli; Sun, Xiaoxi; Liu, Ning; Han, Lujia; Huang, Guangqun

    2018-05-01

    With the advantages of high treatment capacity and low operational cost, large-scale trough composting has become one of the mainstream composting patterns in composting plants in China. This study measured concentrations of O 2 , CO 2 , CH 4 and NH 3 on-site to investigate the spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. The results showed that the temperature in the center of the pile was obviously higher than that in the side of the pile. Pore O 2 concentration rapidly decreased and maintained composting process during large-scale trough composting when the pile was naturally aerated, which will contribute to improving the current undesirable atmosphere environment in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Large nuclear steam turbine plants

    International Nuclear Information System (INIS)

    Urushidani, Haruo; Moriya, Shin-ichi; Tsuji, Kunio; Fujita, Isao; Ebata, Sakae; Nagai, Yoji.

    1986-01-01

    The technical development of the large capacity steam turbines for ABWR plants was partially completed, and that in progress is expected to be completed soon. In this report, the outline of those new technologies is described. As the technologies for increasing the capacity and heightening the efficiency, 52 in long blades and moisture separating heaters are explained. Besides, in the large bore butterfly valves developed for making the layout compact, the effect of thermal efficiency rise due to the reduction of pressure loss can be expected. As the new technology on the system side, the simplification of the turbine system and the effect of heightening the thermal efficiency by high pressure and low pressure drain pumping-up method based on the recent improvement of feed water quality are discussed. As for nuclear steam turbines, the actual records of performance of 1100 MW class, the largest output at present, have been obtained, and as a next large capacity machine, the development of a steam turbine of 1300 MWe class for an ABWR plant is in progress. It can be expected that by the introduction of those new technologies, the plants having high economical efficiency are realized. (Kako, I.)

  8. Large-Scale Spray Releases: Additional Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  9. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  10. A Numeric Scorecard Assessing the Mental Health Preparedness for Large-Scale Crises at College and University Campuses: A Delphi Study

    Science.gov (United States)

    Burgin, Rick A.

    2012-01-01

    Large-scale crises continue to surprise, overwhelm, and shatter college and university campuses. While the devastation to physical plants and persons is often evident and is addressed with crisis management plans, the number of emotional casualties left in the wake of these large-scale crises may not be apparent and are often not addressed with…

  11. A test trial irradiation of natural rubber latex on large scale for the production of examination gloves in a production scale

    International Nuclear Information System (INIS)

    Devendra, R.; Kulatunge, S.; Chandralal, H.N.K.K.; Kalyani, N.M.V.; Seneviratne, J.; Wellage, S.

    1996-01-01

    Radiation Vulcanization of natural rubber latex has been developed extensively through various research and development programme. During these investigations many data was collected and from these data it was proved that radiation vulcanized natural rubber latex (RVNRL) can be used as a new material for industry (RVNRL symposium 1989; Makuuchi IAEA report). This material has been extensively tested in making of dipped goods and extruded products. However these investigations were confined only to laboratory experiments and these experiments mainly reflected material properties of RVNRL and only a little was observed about its behavior in actual production scale operation. The present exercise was carried out mainly to study the behavior of the material in production scale by irradiating latex on a large scale and producing gloves in a production scale plant. It was found that RVNRL can be used in conventional glove plants without making major alteration to the plant. Quality of the gloves that were produced using RVNRL is acceptable. It was also found that the small deviation of vulcanization dose will affect the crosslinking density of films. This will drastically reduce the tensile strength of the film. Crosslinking density or pre-vulcanized relax modulus (PRM) at 100% is a reliable property to control the pre vulcanization of latex by radiation

  12. Large-scale grid management; Storskala Nettforvaltning

    Energy Technology Data Exchange (ETDEWEB)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-07-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series.

  13. Large-scale additive manufacturing with bioinspired cellulosic materials.

    Science.gov (United States)

    Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G

    2018-06-05

    Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.

  14. Investigating the Impact of Shading Effect on the Characteristics of a Large-Scale Grid-Connected PV Power Plant in Northwest China

    Directory of Open Access Journals (Sweden)

    Yunlin Sun

    2014-01-01

    Full Text Available Northwest China is an ideal region for large-scale grid-connected PV system installation due to its abundant solar radiation and vast areas. For grid-connected PV systems in this region, one of the key issues is how to reduce the shading effect as much as possible to maximize their power generation. In this paper, a shading simulation model for PV modules is established and its reliability is verified under the standard testing condition (STC in laboratory. Based on the investigation result of a 20 MWp grid-connected PV plant in northwest China, the typical shading phenomena are classified and analyzed individually, such as power distribution buildings shading and wire poles shading, plants and birds droppings shading, and front-row PV arrays shading. A series of experiments is also conducted on-site to evaluate and compare the impacts of different typical shading forms. Finally, some feasible solutions are proposed to avoid or reduce the shading effect of PV system during operation in such region.

  15. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  16. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  17. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  18. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  19. Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen.

    Science.gov (United States)

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Almeida, Rodrigo P P

    2014-02-01

    The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats). Results show that populations of X. fastidiosa were regionally isolated, and that isolation was maintained for populations analyzed a decade apart from each other. However, despite such geographic isolation, local populations present in year 2000 were largely replaced by novel genotypes in 2009 but not as a result of migration. At a smaller spatial scale (individual trees), results suggest that isolates within plants originated from a shared common ancestor. In summary, new insights on the ecology of this economically important plant pathogen were obtained by sampling populations at different spatial scales and two different time points.

  20. Economic viability of large-scale fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helsley, Charles E., E-mail: cehelsley@fusionpowercorporation.com; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system

  1. Economic viability of large-scale fusion systems

    International Nuclear Information System (INIS)

    Helsley, Charles E.; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system economically

  2. A large-scale soil-structure interaction experiment: Design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Stepp, J.C.; Wall, I.B.; Lin, E.; Cheng, S.C.; Lee, S.K.

    1989-01-01

    This paper describes the design and construction phase of the Large-Scale Soil-Structure Interaction Experiment project jointly sponsored by EPRI and Taipower. The project has two objectives: 1. to obtain an earthquake database which can be used to substantiate soil-structure interaction (SSI) models and analysis methods; and 2. to quantify nuclear power plant reactor containment and internal components seismic margin based on earthquake experience data. These objectives were accomplished by recording and analyzing data from two instrumented, scaled down, reinforced concrete containment structures during seismic events. The two model structures are sited in a high seismic region in Taiwan (SMART-1). A strong-motion seismic array network is located at the site. The containment models (1/4- and 1/12-scale) were constructed and instrumented specially for this experiment. Construction was completed and data recording began in September 1985. By November 1986, 18 strong motion earthquakes ranging from Richter magnitude 4.5 to 7.0 were recorded. (orig./HP)

  3. Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe

    Directory of Open Access Journals (Sweden)

    Fei Teng

    2018-01-01

    Full Text Available This paper analyses the impacts and benefits of the pumped storage plant (PSP and its upgrade to variable speed on generation and transmission capacity requirements, capital costs, system operating costs and carbon emissions in the future European electricity system. The combination of a deterministic system planning tool, Whole-electricity System Investment Model (WeSIM, and a stochastic system operation optimisation tool, Advanced Stochastic Unit Commitment (ASUC, is used to analyse the whole-system value of PSP technology and to quantify the impact of European balancing market integration and other competing flexible technologies on the value of the PSP. Case studies on the Pan-European system demonstrate that PSPs can reduce the total system cost by up to €13 billion per annum by 2050 in a scenario with a high share of renewables. Upgrading the PSP to variable-speed drive enhances its long-term benefits by 10–20%. On the other hand, balancing market integration across Europe may potentially reduce the overall value of the variable-speed PSP, although the effect can vary across different European regions. The results also suggest that large-scale deployment of demand-side response (DSR leads to a significant reduction in the value of PSPs, while the value of PSPs increases by circa 18% when the total European interconnection capacity is halved. The benefit of PSPs in reducing emissions is relatively negligible by 2030 but constitutes around 6–10% of total annual carbon emissions from the European power sector by 2050.

  4. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele; Attili, Antonio; Bisetti, Fabrizio; Elsinga, Gerrit E.

    2015-01-01

    from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  5. Techno-economic analysis of large-scale integration of solar power plants in the European grid

    Energy Technology Data Exchange (ETDEWEB)

    Tielens, Pieter; Ergun, Hakan; Hertem, Dirk van [Katholieke Universiteit Leuven (Belgium). Electrical Engineering Dept.

    2012-07-01

    In this paper different options to connect large solar power plants in North Africa to the European power system are compared from a transmission system investment point of view. Three different possible DC connections from Tunisia to Italy are investigated from a cost-based perspective. In the second part of the paper, the impact of the power fluctuations from CSP and PV power plants on the frequency control is examined in a qualitative manner. It is shown that the frequency response mainly depends on the amount of PV installed and the inertia present in the grid. The results of the simulations give a first estimation of the maximum amount of PV integration in the Tunisian grid without reaching certain frequency limits after a sudden power fluctuation. (orig.)

  6. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  7. Research on large-scale wind farm modeling

    Science.gov (United States)

    Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng

    2017-01-01

    Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.

  8. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  9. Large-Scale 3D Printing: The Way Forward

    Science.gov (United States)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  10. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its......The Subject of large scale networks is approached from the perspective of the network planner. An analysis of the long term planning problems is presented with the main focus on the changing requirements for large scale networks and the potential problems in meeting these requirements. The problems...... the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...

  11. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  12. Large scale reflood test

    International Nuclear Information System (INIS)

    Hirano, Kemmei; Murao, Yoshio

    1980-01-01

    The large-scale reflood test with a view to ensuring the safety of light water reactors was started in fiscal 1976 based on the special account act for power source development promotion measures by the entrustment from the Science and Technology Agency. Thereafter, to establish the safety of PWRs in loss-of-coolant accidents by joint international efforts, the Japan-West Germany-U.S. research cooperation program was started in April, 1980. Thereupon, the large-scale reflood test is now included in this program. It consists of two tests using a cylindrical core testing apparatus for examining the overall system effect and a plate core testing apparatus for testing individual effects. Each apparatus is composed of the mock-ups of pressure vessel, primary loop, containment vessel and ECCS. The testing method, the test results and the research cooperation program are described. (J.P.N.)

  13. Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Pilch, M.M.; Allen, M.D.

    1997-02-01

    The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs

  14. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  15. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  16. Incipient multiple fault diagnosis in real time with applications to large-scale systems

    International Nuclear Information System (INIS)

    Chung, H.Y.; Bien, Z.; Park, J.H.; Seon, P.H.

    1994-01-01

    By using a modified signed directed graph (SDG) together with the distributed artificial neutral networks and a knowledge-based system, a method of incipient multi-fault diagnosis is presented for large-scale physical systems with complex pipes and instrumentations such as valves, actuators, sensors, and controllers. The proposed method is designed so as to (1) make a real-time incipient fault diagnosis possible for large-scale systems, (2) perform the fault diagnosis not only in the steady-state case but also in the transient case as well by using a concept of fault propagation time, which is newly adopted in the SDG model, (3) provide with highly reliable diagnosis results and explanation capability of faults diagnosed as in an expert system, and (4) diagnose the pipe damage such as leaking, break, or throttling. This method is applied for diagnosis of a pressurizer in the Kori Nuclear Power Plant (NPP) unit 2 in Korea under a transient condition, and its result is reported to show satisfactory performance of the method for the incipient multi-fault diagnosis of such a large-scale system in a real-time manner

  17. Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Yeh, Y.S.

    1991-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The objectives of the LSST project is as follows: To obtain earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. To confirm the findings and methodologies validated against the Lotung soft soil SSI data for prototypical plant condition applications. To further validate the technical basis of realistic SSI analysis approaches. To further support the resolution of USI A-40 Seismic Design Criteria issue. These objectives will be accomplished through an integrated and carefully planned experimental program consisting of: soil characterization, test model design and field construction, instrumentation layout and deployment, in-situ geophysical information collection, forced vibration test, and synthesis of results and findings. The LSST is a joint effort among many interested parties. EPRI and Taipower are the organizers of the program and have the lead in planning and managing the program

  18. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  19. Large-Scale Evolutionary Patterns of Host Plant Associations in the Lepidoptera

    DEFF Research Database (Denmark)

    Menken, S.B.J.; Boomsma, J.J.; van Nieukerken, E.J.

    2010-01-01

    We characterized evolutionary patterns of host plant use across about 2500 species of British Lepidoptera, using character optimization and independent phylogenetic contrasts among 95 operational taxa, and evaluated the extent to which caterpillars are monophagous, use woody host plants, and feed...

  20. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  1. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  2. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    1975-01-01

    Applications of superconductors capable of carrying large current densities in large-scale electrical devices are examined. Discussions are included on critical current density, superconducting materials available, and future prospects for improved superconducting materials. (JRD)

  3. Large-scale influences in near-wall turbulence.

    Science.gov (United States)

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  4. Large scale breeder reactor plant prototype mechanical pump conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    This report includes engineering memorandums, drawings, key feature descriptions, and other data. Some of the reports, such as manufacturability and some stress analysis, were done by consultants for Byron Jackson. Review of this report indicates that the design is feasible. The pump can be manufactured to system and specification requirements. The overall length and weight of some pieces will require special consideration, but is within the scope of equipment and technology available today. The fabricated parts are large and heavy, but can be manufactured and machined. Only the high temperature is unique to this size, since previous sodium pumps were smaller. Nondestructive tests as required by the Code are described and are feasible. The performance test of the prototype has been studied thoroughly. It is feasible for a cold water test. There are some problem areas. However, all of them can be solved. Development needs include building and testing a small scale model.

  5. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien; Nada, Nabil A.; Khan, Muhammad; Croue, Jean-Philippe

    2015-01-01

    -scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF

  6. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    Science.gov (United States)

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  7. Grid Integration Issues for Large Scale Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    transmission system operators (TSOs) over the world have come up the grid codes to request the wind power plants (WPPs) to have more or less the same operating capability as the conventional power plants. The grid codes requirements from other TSOs are under development. This paper covers the steady state......The penetration level of wind power into the power system over the world have been increasing very fast in the last few years and is still keeping the fast growth rate. It is just a matter of time that the wind power will be comparable to the conventional power generation. Therefore, many...

  8. Seismic proving tests on the reliability for large components and equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Ohno, Tokue; Tanaka, Nagatoshi

    1988-01-01

    Since Japan has destructive earthquakes frequently, the structural reliability for large components and equipment of nuclear power plants are rigorously required. They are designed using sophisticated seismic analyses and have not yet encountered a destructive earthquake. When nuclear power plants are planned, it is very important that the general public understand the structural reliability during and after an earthquake. Seismic Proving Tests have been planned by Ministry of International Trade and Industry (Miti) to comply with public requirement in Japan. A large-scale high-performance vibration table was constructed at Tasted Engineering Laboratory of Nuclear Power Engineering Test Center (NU PEC), in order to prove the structural reliability by vibrating the test model (of full scale or close to the actual size) in the condition of a destructive earthquake. As for the test models, the following four items were selected out of large components and equipment important to the safety: Reactor Containment Vessel; Primary Coolant Loop or Primary Loop Recirculation System; Reactor Pressure Vessel; and Reactor Core Internals. Here is described a brief of the vibration table, the test method and the results of the tests on PWR Reactor Containment Vessel and BWR Primary Loop Recirculation System (author)

  9. PKI security in large-scale healthcare networks.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  10. Small-scale, joule-heated melting of Savannah River Plant waste glass. I. Factors affecting large-scale vitrification tests

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Chismar, P.H.

    1979-10-01

    A promising method of immobilizing SRP radioactive waste solids is incorporation in borosilicate glass. In the reference vitrification process, called joule-heated melting, a mixture of glass frit and calcined waste is heated by passage of an electric current. Two problems observed in large-scale tests are foaming and formation of an insoluble slag. A small joule-heated melter was designed and built to study problems such as these. This report describes the melter, identifies factors involved in foaming and slag formation, and proposes ways to overcome these problems

  11. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  12. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  13. Scheduling of power generation a large-scale mixed-variable model

    CERN Document Server

    Prékopa, András; Strazicky, Beáta; Deák, István; Hoffer, János; Németh, Ágoston; Potecz, Béla

    2014-01-01

    The book contains description of a real life application of modern mathematical optimization tools in an important problem solution for power networks. The objective is the modelling and calculation of optimal daily scheduling of power generation, by thermal power plants,  to satisfy all demands at minimum cost, in such a way that the  generation and transmission capacities as well as the demands at the nodes of the system appear in an integrated form. The physical parameters of the network are also taken into account. The obtained large-scale mixed variable problem is relaxed in a smart, practical way, to allow for fast numerical solution of the problem.

  14. New scale-down methodology from commercial to lab scale to optimize plant-derived soft gel capsule formulations on a commercial scale.

    Science.gov (United States)

    Oishi, Sana; Kimura, Shin-Ichiro; Noguchi, Shuji; Kondo, Mio; Kondo, Yosuke; Shimokawa, Yoshiyuki; Iwao, Yasunori; Itai, Shigeru

    2018-01-15

    A new scale-down methodology from commercial rotary die scale to laboratory scale was developed to optimize a plant-derived soft gel capsule formulation and eventually manufacture superior soft gel capsules on a commercial scale, in order to reduce the time and cost for formulation development. Animal-derived and plant-derived soft gel film sheets were prepared using an applicator on a laboratory scale and their physicochemical properties, such as tensile strength, Young's modulus, and adhesive strength, were evaluated. The tensile strength of the animal-derived and plant-derived soft gel film sheets was 11.7 MPa and 4.41 MPa, respectively. The Young's modulus of the animal-derived and plant-derived soft gel film sheets was 169 MPa and 17.8 MPa, respectively, and both sheets showed a similar adhesion strength of approximately 4.5-10 MPa. Using a D-optimal mixture design, plant-derived soft gel film sheets were prepared and optimized by varying their composition, including variations in the mass of κ-carrageenan, ι-carrageenan, oxidized starch and heat-treated starch. The physicochemical properties of the sheets were evaluated to determine the optimal formulation. Finally, plant-derived soft gel capsules were manufactured using the rotary die method and the prepared soft gel capsules showed equivalent or superior physical properties compared with pre-existing soft gel capsules. Therefore, we successfully developed a new scale-down methodology to optimize the formulation of plant-derived soft gel capsules on a commercial scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Construction works of large scale impervious wall in construction of No.2 plant in Onagawa Nuclear Power Station, Tohoku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Ueda, Kozaburo; Sugeno, Yoshisada; Takahashi, Hitoshi

    1991-01-01

    The main buildings for No. 2 plant in Onagawa Nuclear Power Station are constructed on the bedrocks about 14 m below the sea surface. Therefore, for the purpose of executing the works by shutting seawater off and dry work, the large scale impervious wall of about 500 m extension was installed underground. The feature of this impervious wall is the depth of embedment of about 3 m into the hard bedrocks having the uniaxial compressive strength of 2000 kg/cm 2 at maximum, carried out with the newly developed hard rock excavator. The outline of these construction works is reported. No. 2 plant in Onagawa Nuclear Power Station is the BWR plant of 825 MWe output. The construction works of the power station were began in August, 1989, and the rate of progress in civil engineering works as of the end of September, 1990 was 21.3%. The planning of the impervious wall, the geological features at the site, the method of shutting seawater off, the selection of wall materials, the design of the wall body, the investigation of the quantity of spring water, the execution of the construction and execution management, and the confirmation of the effect of the wall are reported. (K.I.)

  16. Material balance areas and frequencies for large reprocessing plants

    International Nuclear Information System (INIS)

    Burr, T.

    1994-01-01

    It has long been recognized that facilities with a large nuclear material throughput will probably not meet the International Atomic Energy Agency (IAEA) goal for detecting trickle diversion of plutonium over periods of about one year. The reason is that measurement errors for plutonium concentration and for liquid volume are often approximately relative over a fairly wide range of true values. Therefore, large throughput facilities will tend to have large uncertainties assigned to their annual throughput. By the same argument, if frequent balances are performed over small material balance areas, then the uncertainty associated with each balance period for each balance area will be small. However, trickle diversion would still be difficult to detect statistically. Because the IAEA will soon be faced with safeguarding a new large-scale reprocessing plant in Japan, it is timely to reconsider the advantages and disadvantages of performing frequent material balances over small balance areas (individual tanks where feasible). Therefore, in this paper the authors present some simulation results to study the effect of balance frequency on loss detection probability, and further simulation results to study possibilities introduced by choosing small balance areas. They conclude by recommending frequent balances over small areas

  17. Sodium-immersed self-cooled electromagnetic pump design and development of a large-scale coil for high temperature

    International Nuclear Information System (INIS)

    Oto, Akihiro; Naohara, Nobuyuki; Ishida, Masayoshi; Katsuki, Kenji; Kumazawa, Ryouji

    1995-01-01

    A sodium-immersed, self-cooled electromagnetic (EM) pump was recently studied as a prospective innovative technology to simplify a fast breeder reactor plant system. The EM pump for a primary pump, a pump type, was designed, and the structural concept and the system performance were clarified. For the flow control method, a constant voltage/frequency method was preferable from the point of view of pump performance and efficiency. The insulation life was tested on a large-scale coil at high temperature as part of the development of a large-capacity EM pump. Mechanical and electrical damage were not observed, and the insulation performance was quite good. The insulation system could also be applied to large-scale coils

  18. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kenison, LaVesta [URS, Pittsburgh, PA (United States); Flanigan, Thomas [URS, Pittsburgh, PA (United States); Hagerty, Gregg [URS, Pittsburgh, PA (United States); Gorrie, James [Air Liquide, Kennesaw, GA (United States); Leclerc, Mathieu [Air Liquide, Kennesaw, GA (United States); Lockwood, Frederick [Air Liquide, Kennesaw, GA (United States); Falla, Lyle [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Macinnis, Jim [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Fedak, Mathew [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Yakle, Jeff [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Williford, Mark [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States); Wood, Paul [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States)

    2016-04-01

    The primary objectives of the FutureGen 2.0 CO2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO2 capture in steady-state operations. The project was to be fully integrated in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will

  19. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    Science.gov (United States)

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  20. Large-scale regions of antimatter

    International Nuclear Information System (INIS)

    Grobov, A. V.; Rubin, S. G.

    2015-01-01

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era

  1. Large-scale regions of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  2. A Dynamic Optimization Strategy for the Operation of Large Scale Seawater Reverses Osmosis System

    Directory of Open Access Journals (Sweden)

    Aipeng Jiang

    2014-01-01

    Full Text Available In this work, an efficient strategy was proposed for efficient solution of the dynamic model of SWRO system. Since the dynamic model is formulated by a set of differential-algebraic equations, simultaneous strategies based on collocations on finite element were used to transform the DAOP into large scale nonlinear programming problem named Opt2. Then, simulation of RO process and storage tanks was carried element by element and step by step with fixed control variables. All the obtained values of these variables then were used as the initial value for the optimal solution of SWRO system. Finally, in order to accelerate the computing efficiency and at the same time to keep enough accuracy for the solution of Opt2, a simple but efficient finite element refinement rule was used to reduce the scale of Opt2. The proposed strategy was applied to a large scale SWRO system with 8 RO plants and 4 storage tanks as case study. Computing result shows that the proposed strategy is quite effective for optimal operation of the large scale SWRO system; the optimal problem can be successfully solved within decades of iterations and several minutes when load and other operating parameters fluctuate.

  3. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    Science.gov (United States)

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  4. Study on large release frequency of nuclear power plants

    International Nuclear Information System (INIS)

    Chen Yan; Song Wei; Li Chaojun; Fu Zhiwei; Wang Zhe; Zuo Jiaxu; Tong Jiejuan

    2014-01-01

    There are several definitions of large release frequency of nuclear power plant. This paper reviews the meanings of large release and requirement of large release frequency provided by IAEA, NRC and WENRA, analyses the relationship between the meanings of large release, compares the calculations of several large release frequencies, It is different frequency that the definition of LRF is not same. Last we discuss the difference between large release frequency and large early release frequency and explore the suitable definitions of LRF for nuclear power plants in China. (authors)

  5. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  6. The Expanded Large Scale Gap Test

    Science.gov (United States)

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  7. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  8. Large scale cluster computing workshop

    International Nuclear Information System (INIS)

    Dane Skow; Alan Silverman

    2002-01-01

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community

  9. Aging assessment of large electric motors in nuclear power plants

    International Nuclear Information System (INIS)

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry's large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs

  10. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  11. The permissibility of power plants and other large-scale projects outside densely populated areas from the point of view of planning legislation

    International Nuclear Information System (INIS)

    Hoppe, W.

    1978-01-01

    For the licensing of power plants, nuclear power plants and other industrial large projects, the question of the building law admissibility gains more and more importance in the licensing procedure. According to paragraph 6 of the Fed. Immission Protection, it is not only necessary that immission protection duties of the operator of plants which are subject to licensing are fulfilled, but other public law regulations must be in correspondance with the construction and operation of the plant. In this connection, the planning law admissibility of the project must also be examined. This is also valid for nuclear power plants. In the practical application of licensing such plants are treated in different ways, as far as terms of building planning are concerned. Some licensing authorities regard them as priviledged outskirts projects, others demand a zoning plan of the community. The author pleads for such large projects to be licensed only on the basis of a zoning plan set up by the community. (orig.) [de

  12. Large Scale Processes and Extreme Floods in Brazil

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  13. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data

  14. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  15. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  16. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  17. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed; Elsawy, Hesham; Gharbieh, Mohammad; Alouini, Mohamed-Slim; Adinoyi, Abdulkareem; Alshaalan, Furaih

    2017-01-01

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end

  18. Large-scale projects between regional planning and environmental protection

    International Nuclear Information System (INIS)

    Schmidt, G.

    1984-01-01

    The first part of the work discusses the current law of land-use planning, municipal and technical construction planning, and licensing under the atomic energy law and the federal law on immission protection. In the second part some theses suggesting modifications are submitted. In the sector of land-use planning substantial contributions to the protection of the environment can only be expected from programs and plans (aims). For the environmental conflicts likely to arise from large-scale projects (nuclear power plant, fossil-fuel power plant) this holds good for the most part of site selection plans. They have bearings on environmental protection in that they presuppose thorough examination of facts, help to recognize possible conflicts at an early date and provide a frame for solving those problems. Municipal construction planning is guided by the following principles: Environmental protection is an equivalent planning target. Environmental data and facts and their methodical processing play a fundamental part as they constitute the basis of evaluation. Under the rules and regulations of the federal law on immission protection, section 5, number 2 - prevention of nuisances - operators are obliged to take preventive care of risks. That section is not concerned with planning or distribution. Neither does the licensing of nuclear plants have planning character. So far as the legal preconditions of licensing are fulfilled, the scope for rejection of an application under section 7, subsection 2 of the atomic energy law in view of site selection and requirement of a plant hardly carries any practical weight. (orig./HP) [de

  19. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising w...

  20. Biotechnological lignite conversion - a large-scale concept

    Energy Technology Data Exchange (ETDEWEB)

    Reich-Walber, M.; Meyrahn, H.; Felgener, G.W. [Rheinbraun AG, Koeln (Germany). Fuel Technology and Lab. Dept.

    1997-12-31

    Concerning the research on biotechnological lignite upgrading, Rheinbraun`s overall objective is the large-scale production of liquid and gaseous products for the energy and chemical/refinery sectors. The presentation outlines Rheinbraun`s technical concept for electricity production on the basis of biotechnologically solubilized lignite. A first rough cost estimate based on the assumptions described in the paper in detail and compared with the latest power plant generation shows the general cost efficiency of this technology despite the additional costs in respect of coal solubilization. The main reasons are low-cost process techniques for coal conversion on the one hand and cost reductions mainly in power plant technology (more efficient combustion processes and simplified gas clean-up) but also in coal transport (easy fuel handling) on the other hand. Moreover, it is hoped that an extended range of products will make it possible to widen the fields of lignite application. The presentation also points out that there is still a huge gap between this scenario and reality by limited microbiological knowledge. To close this gap Rheinbraun started a research project supported by the North-Rhine Westphalian government in 1995. Several leading biotechnological companies and institutes in Germany and the United States are involved in the project. The latest results of the current project will be presented in the paper. This includes fundamental research activities in the field of microbial coal conversion as well as investigations into bioreactor design and product treatment (dewatering, deashing and desulphurization). (orig.)

  1. Optimization of FTA technology for large scale plant DNA isolation ...

    African Journals Online (AJOL)

    GRACE

    2006-05-02

    May 2, 2006 ... product yields and quality are sufficient for reliable scoring, distinguishing heterozygous from homozygous plants ... food and agriculture, testing drug discovery, transgenic, ... container. For QPM ... mM EDTA, pH 8). The FTA ...

  2. Application of large-scaled pre-cast components for the construction of water intake for a nuclear power plant

    International Nuclear Information System (INIS)

    Topolnicki, M.

    1976-01-01

    Problem of the construction of water intake for a 4000 MW nuclear power plant located at the seashore is solved. The advantages of application of large-size pre-cast components are presented,. The constructional solutions and proposed technologies are described in detail. (A.S.)

  3. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    Science.gov (United States)

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  4. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  5. Experimental study on dynamic behavior of large scale foundation, 1

    International Nuclear Information System (INIS)

    Hanada, Kazufumi; Sawada, Yoshihiro; Esashi, Yasuyuki; Ueshima, Teruyuki; Nakamura, Hideharu

    1983-01-01

    The large-sized, high performance vibrating table in the Nuclear Power Engineering Test Center is installed on a large-scale concrete foundation of length 90.9 m, width 44.8 m and maximum thickness 21 m, weighing 150,000 tons. Through the experimental study on the behavior of the foundation, which is set on gravel ground, useful information should be obtained on the siting of a nuclear power plant on the Quaternary stratum ground. The objective of research is to grasp the vibration characteristics of the foundation during the vibration of the table to evaluate the interaction between the foundation and the ground, and to evaluate an analytical method for numerically simulating the vibration behavior. In the present study, the vibration behavior of the foundation was clarified by measurement, and in order to predict the vibration behavior, the semi-infinite theory of elasticity was applied. The accuracy of this analytical method was demonstrated by comparison with the measured results. (Mori, K.)

  6. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia...... control strategies are effective means for providing ancillary frequency control of variable speed wind turbines with full-scale back-to-back power converters....... emulation, primary frequency control and secondary frequency control, are proposed in order to improve the frequency stability of power systems. The modified IEEE 39-bus test system with a large-scale wind power penetration is chosen as the studied power system. Simulation results show that the proposed...

  7. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  8. Large-scale fracture mechancis testing -- requirements and possibilities

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1993-01-01

    Application of fracture mechanics to very important and/or complicated structures, like reactor pressure vessels, brings also some questions about the reliability and precision of such calculations. These problems become more pronounced in cases of elastic-plastic conditions of loading and/or in parts with non-homogeneous materials (base metal and austenitic cladding, property gradient changes through material thickness) or with non-homogeneous stress fields (nozzles, bolt threads, residual stresses etc.). For such special cases some verification by large-scale testing is necessary and valuable. This paper discusses problems connected with planning of such experiments with respect to their limitations, requirements to a good transfer of received results to an actual vessel. At the same time, an analysis of possibilities of small-scale model experiments is also shown, mostly in connection with application of results between standard, small-scale and large-scale experiments. Experience from 30 years of large-scale testing in SKODA is used as an example to support this analysis. 1 fig

  9. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  10. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.

    Science.gov (United States)

    Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N

    2014-07-01

    Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    Science.gov (United States)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  12. Ventilating plant in the large concert hall of the music centre at Vredenburg/Utrecht, Holland

    Energy Technology Data Exchange (ETDEWEB)

    Brockmeyer, H.; Detzer, R.; van Dijk, A.E.; Kouffeld, R.W.J.

    1979-01-01

    To form an opinion on the thermo-dynamic and flow-pattern conditions in large halls for air conditioning like e.g. concert halls, one will refer to the study of models which normally are prepared in a reduced scale. Comparisons between model studies and the executed object indicate that, even with difficult boundary conditions, reproducible data can be prepared the deviations being only minute. Presented are the results of a model study and the data of the executed plant of a large music centre in the Netherlands.

  13. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  14. Needs, opportunities, and options for large scale systems research

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  15. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  16. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  17. Design of novel DME/methanol synthesis plants based on gasification of biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    -scale DME plants based on gasification of torrefied biomass. 2. Small-scale DME/methanol plants based on gasification of wood chips. 3. Alternative methanol plants based on electrolysis of water and gasification of biomass. The plants were modeled by using the component based thermodynamic modeling...... why the differences, in biomass to DME/methanol efficiency, between the small-scale and the large-scale plants, showed not to be greater, was the high cold gas efficiency of the gasifier used in the small-scale plants (93%). By integrating water electrolysis in a large-scale methanol plant, an almost...... large-scale DME plant) to 63%, due to the relatively inefficient electrolyser....

  18. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  19. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  20. Describing a multitrophic plant-herbivore-parasitoid system at four spatial scales

    Science.gov (United States)

    Cuautle, M.; Parra-Tabla, V.

    2014-02-01

    Herbivore-parasitoid interactions must be studied using a multitrophic and multispecies approach. The strength and direction of multiple effects through trophic levels may change across spatial scales. In this work, we use the herbaceous plant Ruellia nudiflora, its moth herbivore Tripudia quadrifera, and several parasitoid morphospecies that feed on the herbivore to answer the following questions: Do herbivore and parasitoid attack levels vary depending on the spatial scale considered? With which plant characteristics are the parasitoid and the herbivore associated? Do parasitoid morphospecies vary in the magnitude of their positive indirect effect on plant reproduction? We evaluated three approximations of herbivore and parasitoid abundance (raw numbers, ratios, and attack rates) at four spatial scales: regional (three different regions which differ in terms of abiotic and biotic characteristics); population (i.e. four populations within each region); patch (four 1 m2 plots in each population); and plant level (using a number of plant characteristics). Finally, we determined whether parasitoids have a positive indirect effect on plant reproductive success (seed number). Herbivore and parasitoid numbers differed at three of the spatial scales considered. However, herbivore/fruit ratio and attack rates did not differ at the population level. Parasitoid/host ratio and attack rates did not differ at any scale, although there was a tendency of a higher attack in one region. At the plant level, herbivore and parasitoid abundances were related to different plant traits, varying the importance and the direction (positive or negative) of those traits. In addition, only one parasitoid species (Bracon sp.) had a positive effect on plant fitness saving up to 20% of the seeds in a fruit. These results underline the importance of knowing the scales that are relevant to organisms at different trophic levels and distinguish between the specific effects of species.

  1. Large Scale Screening of Ethnomedicinal Plants for Identification of Potential Antibacterial Compounds

    Directory of Open Access Journals (Sweden)

    Sujogya Kumar Panda

    2016-03-01

    Full Text Available The global burden of bacterial infections is very high and has been exacerbated by increasing resistance to multiple antibiotics. Antibiotic resistance leads to failed treatment of infections, which can ultimately lead to death. To overcome antibiotic resistance, it is necessary to identify new antibacterial agents. In this study, a total of 662 plant extracts (diverse parts from 222 plant species (82 families, 177 genera were screened for antibacterial activity using the agar cup plate method. The aqueous and methanolic extracts were prepared from diverse plant parts and screened against eight bacterial (two Gram-positive and six Gram-negative species, most of which are involved in common infections with multiple antibiotic resistance. The methanolic extracts of several plants were shown to have zones of inhibition ≥ 12 mm against both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration was calculated only with methanolic extracts of selected plants, those showed zone of inhibition ≥ 12 mm against both Gram-positive and Gram-negative bacteria. Several extracts had minimum inhibitory concentration ≤ 1 mg/mL. Specifically Adhatoda vasica, Ageratum conyzoides, Alangium salvifolium, Alpinia galanga, Andrographis paniculata, Anogeissus latifolia, Annona squamosa, A. reticulate, Azadirachta indica, Buchanania lanzan, Cassia fistula, Celastrus paniculatus, Centella asiatica, Clausena excavate, Cleome viscosa, Cleistanthus collinus, Clerodendrum indicum, Croton roxburghii, Diospyros melanoxylon, Eleutherine bulbosa, Erycibe paniculata, Eryngium foetidum, Garcinia cowa, Helicteres isora, Hemidesmus indicus, Holarrhena antidysenterica, Lannea coromandelica, Millettia extensa, Mimusops elengi, Nyctanthes arbor-tristis, Oroxylum indicum, Paederia foetida, Pterospermum acerifolium, Punica granatum, Semecarpus anacardium, Spondias pinnata, Terminalia alata and Vitex negundo were shown to have significant antimicrobial

  2. Large Scale Screening of Ethnomedicinal Plants for Identification of Potential Antibacterial Compounds.

    Science.gov (United States)

    Panda, Sujogya Kumar; Mohanta, Yugal Kishore; Padhi, Laxmipriya; Park, Young-Hwan; Mohanta, Tapan Kumar; Bae, Hanhong

    2016-03-14

    The global burden of bacterial infections is very high and has been exacerbated by increasing resistance to multiple antibiotics. Antibiotic resistance leads to failed treatment of infections, which can ultimately lead to death. To overcome antibiotic resistance, it is necessary to identify new antibacterial agents. In this study, a total of 662 plant extracts (diverse parts) from 222 plant species (82 families, 177 genera) were screened for antibacterial activity using the agar cup plate method. The aqueous and methanolic extracts were prepared from diverse plant parts and screened against eight bacterial (two Gram-positive and six Gram-negative) species, most of which are involved in common infections with multiple antibiotic resistance. The methanolic extracts of several plants were shown to have zones of inhibition ≥ 12 mm against both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration was calculated only with methanolic extracts of selected plants, those showed zone of inhibition ≥ 12 mm against both Gram-positive and Gram-negative bacteria. Several extracts had minimum inhibitory concentration ≤ 1 mg/mL. Specifically Adhatoda vasica, Ageratum conyzoides, Alangium salvifolium, Alpinia galanga, Andrographis paniculata, Anogeissus latifolia, Annona squamosa, A. reticulate, Azadirachta indica, Buchanania lanzan, Cassia fistula, Celastrus paniculatus, Centella asiatica, Clausena excavate, Cleome viscosa, Cleistanthus collinus, Clerodendrum indicum, Croton roxburghii, Diospyros melanoxylon, Eleutherine bulbosa, Erycibe paniculata, Eryngium foetidum, Garcinia cowa, Helicteres isora, Hemidesmus indicus, Holarrhena antidysenterica, Lannea coromandelica, Millettia extensa, Mimusops elengi, Nyctanthes arbor-tristis, Oroxylum indicum, Paederia foetida, Pterospermum acerifolium, Punica granatum, Semecarpus anacardium, Spondias pinnata, Terminalia alata and Vitex negundo were shown to have significant antimicrobial activity. The species

  3. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  4. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  5. The role of large-scale, extratropical dynamics in climate change

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop's University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database

  6. Large and small baseload power plants: Drivers to define the optimal portfolios

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2011-01-01

    Despite the growing interest in Small Medium sized Power Plants (SMPP) international literature provides only studies related to portfolios of large plants in infinite markets/grids with no particular attention given to base load SMPP. This paper aims to fill this gap, investigating the attractiveness of SMPP portfolios respect to large power plant portfolios. The analysis includes nuclear, coal and combined cycle gas turbines (CCGT) of different plant sizes. The Mean Variance Portfolio theory (MVP) is used to define the best portfolio according to Internal Rate of Return (IRR) and Levelised Unit Electricity Cost (LUEC) considering the life cycle costs of each power plant, Carbon Tax, Electricity Price and grid dimension. The results show how large plants are the best option for large grids, while SMPP are as competitive as large plants in small grids. In fact, in order to achieve the highest profitability with the lowest risk it is necessary to build several types of different plants and, in case of small grids, this is possible only with SMPP. A further result is the application of the framework to European OECD countries and the United States assessing their portfolios. - Highlights: ► The literature about power plant portfolios does not consider small grids and IRR. ► We evaluated Base load portfolios respect to IRR and LUEC. ► We assessed the influence of grid and plant size, CO 2 cost and Electricity Price. ► Large plants are optimal for large markets even if small plants have similar IRR. ► Small plants are suitable to diversify portfolios in small grids reducing the risk.

  7. Large-scale weakly supervised object localization via latent category learning.

    Science.gov (United States)

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  8. A novel design approach for small scale low enthalpy binary geothermal power plants

    International Nuclear Information System (INIS)

    Gabbrielli, Roberto

    2012-01-01

    Highlights: ► Off-design analysis of ORC geothermal power plants through the years and the days. ► Thermal degradation of the geothermal source reduces largely the plant performances. ► The plant capacity factor is low if the brine temperature is far from the design value. ► The performances through the life are more important than those at the design point. ► ORC geothermal power plants should be designed with the end-life brine temperature. - Abstract: In this paper a novel design approach for small scale low enthalpy binary geothermal power plants is proposed. After the suction, the hot water (brine) superheats an organic fluid (R134a) in a Rankine cycle and, then, is injected back underground. This fact causes the well-known thermal degradation of the geothermal resource during the years. Hence, the binary geothermal power plants have to operate with conditions that largely vary during their life and, consequently, the most part of their functioning is executed in off-design conditions. So, as the novel approach here proposed, the design temperature of the geothermal resource is selected between its highest and lowest values, that correspond to the beginning and the end of the operative life of the geothermal power plant, respectively. Hence, using a detailed off-design performance model, the optimal design point of the geothermal power plant is evaluated maximizing the total actualized cash flow from the incentives for renewable power generation. Under different renewable energy incentive scenarios, the power plant that is designed using the lowest temperature of the geothermal resource always results the best option.

  9. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  10. 9{sup th} international workshop on large-scale integration of wind power into power systems as well as on transmission networks for offshore wind power plants. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, Uta; Ackermann, Thomas (eds.)

    2010-07-01

    Within the 9th International Workshop on large-scale integration of wind power into power systems as well as on transmission networks for offshore wind power plants at 18th to 19th October, 2010 in Quebec (Canada), lectures and poster papers were presented to the following themes: (1) Keynote session and panel; (2) European grid integration studies; (3) Modeling; (4) Wind forecasting; (5) North American grid integration studies; (6) Voltage stability and control; (7) Grid codes and impact studies; (8) Canadian University research (WESNet); (9) Operation and dispatch; (9) Offshore wind power plants; (10) Frequency Control; (11) Methodologies to estimate wind power impacts on power systems, summaries from IEAWIND collaboration; (12) HVDC; (13) Grid codes and system impact studies; (14) Modeling and validation; (15) Regulations, markets and offshore wind energy; (16) Integration issues; (17) Wind turbine control system; (18) Energy management and IT solutions.

  11. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-01-01

    Abstract Background Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. PMID:29186447

  12. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns.

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-02-01

    Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. © The Authors 2017. Published by Oxford University Press.

  13. An Novel Architecture of Large-scale Communication in IOT

    Science.gov (United States)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  14. Benefits of transactive memory systems in large-scale development

    OpenAIRE

    Aivars, Sablis

    2016-01-01

    Context. Large-scale software development projects are those consisting of a large number of teams, maybe even spread across multiple locations, and working on large and complex software tasks. That means that neither a team member individually nor an entire team holds all the knowledge about the software being developed and teams have to communicate and coordinate their knowledge. Therefore, teams and team members in large-scale software development projects must acquire and manage expertise...

  15. Study of a large scale neutron measurement channel

    International Nuclear Information System (INIS)

    Amarouayache, Anissa; Ben Hadid, Hayet.

    1982-12-01

    A large scale measurement channel allows the processing of the signal coming from an unique neutronic sensor, during three different running modes: impulses, fluctuations and current. The study described in this note includes three parts: - A theoretical study of the large scale channel and its brief description are given. The results obtained till now in that domain are presented. - The fluctuation mode is thoroughly studied and the improvements to be done are defined. The study of a fluctuation linear channel with an automatic commutation of scales is described and the results of the tests are given. In this large scale channel, the method of data processing is analogical. - To become independent of the problems generated by the use of a an analogical processing of the fluctuation signal, a digital method of data processing is tested. The validity of that method is improved. The results obtained on a test system realized according to this method are given and a preliminary plan for further research is defined [fr

  16. Acceptability analysis of technical-scale plants for electricity generation; Ansatz zur Akzeptabilitaetsanalyse grosstechnischer Anlagen zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Katharina; Koch, Marco K. [Bochum Univ. (Germany). AG Reaktorsimulation und -sicherheit

    2013-03-15

    Public acceptance of technical-scale plants for electricity generation is an indispensable prerequisite for the long-term continuity of supply of electricity. Even though nuclear power in Germany continues to meet with particularly grave objections, this is no longer an exception. Problems associated with the rapidly declining willingness of the public to accept specific disadvantages connected with electricity generation are confronting not only nuclear, but also large fossil-fired and renewable-resource power plants. To investigate to what extent these objections based on subjective heuristics are justified, a model is developed for analyzing the objective acceptability of electricity-producing large power plants, which allows the assessment of their acceptability to be measured on the basis of quantitative analysis of the discrepancies between acceptability and acceptance and may serve as a tool for promoting public acceptance. (orig.)

  17. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  18. Capabilities of the Large-Scale Sediment Transport Facility

    Science.gov (United States)

    2016-04-01

    pump flow meters, sediment trap weigh tanks , and beach profiling lidar. A detailed discussion of the original LSTF features and capabilities can be...ERDC/CHL CHETN-I-88 April 2016 Approved for public release; distribution is unlimited. Capabilities of the Large-Scale Sediment Transport...describes the Large-Scale Sediment Transport Facility (LSTF) and recent upgrades to the measurement systems. The purpose of these upgrades was to increase

  19. Spatiotemporal property and predictability of large-scale human mobility

    Science.gov (United States)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  20. Test on large-scale seismic isolation elements

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.; Oka, Y.; Fujita, T.; Seki, M.

    1989-01-01

    Demonstration test of seismic isolation elements is considered as one of the most important items in the application of seismic isolation system to fast breeder reactor (FBR) plant. Facilities for testing seismic isolation elements have been built. This paper reports on tests for fullscale laminated rubber bearing and reduced scale models are conducted. From the result of the tests, the laminated rubber bearings turn out to satisfy the specification. Their basic characteristics are confirmed from the tests with fullscale and reduced scale models. The ultimate capacity of the bearings under the condition of ordinary temperature are evaluated

  1. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    Science.gov (United States)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  2. Problems of large-scale vertically-integrated aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Webber, H H; Riordan, P F

    1976-01-01

    The problems of vertically-integrated aquaculture are outlined; they are concerned with: species limitations (in the market, biological and technological); site selection, feed, manpower needs, and legal, institutional and financial requirements. The gaps in understanding of, and the constraints limiting, large-scale aquaculture are listed. Future action is recommended with respect to: types and diversity of species to be cultivated, marketing, biotechnology (seed supply, disease control, water quality and concerted effort), siting, feed, manpower, legal and institutional aids (granting of water rights, grants, tax breaks, duty-free imports, etc.), and adequate financing. The last of hard data based on experience suggests that large-scale vertically-integrated aquaculture is a high risk enterprise, and with the high capital investment required, banks and funding institutions are wary of supporting it. Investment in pilot projects is suggested to demonstrate that large-scale aquaculture can be a fully functional and successful business. Construction and operation of such pilot farms is judged to be in the interests of both the public and private sector.

  3. Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Hejnfelt, Anette; Ellegaard, L.

    2006-01-01

    industry to generate biogas, which is used for electricity and thermal energy. A total of 20 such plants are currently active in Denmark, most of which were included in the investigation. From the plants, samples were obtained from various steps of the process. Samples were analysed and the residual biogas......The main objective of this study was to investigate the degradation efficiency of centralized biogas plants and provide guidance for the design of more efficient digester and post-digestion systems. These centralized biogas plants in Denmark digest manure together with organic waste from the food...... potential determined by batch post-digestion at various temperature levels. Results were correlated with plant characteristics and production statistics in order to judge the efficiency of various digestion concepts. A simplified model based on a two-step biogas production process was developed...

  4. Large-scale computing with Quantum Espresso

    International Nuclear Information System (INIS)

    Giannozzi, P.; Cavazzoni, C.

    2009-01-01

    This paper gives a short introduction to Quantum Espresso: a distribution of software for atomistic simulations in condensed-matter physics, chemical physics, materials science, and to its usage in large-scale parallel computing.

  5. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.

    Science.gov (United States)

    Hakkenberg, C R; Zhu, K; Peet, R K; Song, C

    2018-02-01

    The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly

  6. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Directory of Open Access Journals (Sweden)

    Husted Søren

    2009-09-01

    Full Text Available Abstract Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight. A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds, the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at

  7. JOINT ECONOMIC AND ENVIRONMENTAL OPTIMIZATION OF HYBRID POWER SUPPLY FOR LARGE SCALE RO-DESALINATION PLANT: WITH AND WITHOUT CO2 SEQUESTRATION

    Directory of Open Access Journals (Sweden)

    EMAN A. TORA

    2016-07-01

    Full Text Available In this paper, a multi- objective optimization approach is introduced to define a hybrid power supply system for a large scale RO- desalination plant. The target is to integrate a number of locally available energy resources to generate the electricity demand of the RO- desalination plant with minimizing both the electricity generation cost and the greenhouse gas emissions whereby carbon dioxide sequestration may be an option. The considered energy resources and technologies are wind turbines, solar PV, combined cycles with natural gas turbines, combined cycles with coal gasification, pulverized coal with flue gas desulfurization, and biomass combined heat and power CHP. These variable energy resources are investigated under different constraints on the renewable energy contribution. Likewise, the effect of carbon dioxide sequestration is included. Accordingly, five scenarios have been analyzed. Trade- offs between the minimum electricity generation cost and the minimum greenhouse gas emissions have been determined and represented in Pareto curves using the constraint method (. The results highlight that among the studied fossil fuel technologies, the integrated combined cycle natural gas turbines can provide considerable fraction of the needed power supply. Likewise, wind turbines are the most effective technology among renewable energy options. When CO2 sequestration applied, the costs increase and significant changes in the optimum combination of renewable energy resources have been monitored. In that case, solar PV starts to appreciably compete. The optimum mix of energy resources extends to include biomass CHP as well.

  8. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    Science.gov (United States)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  9. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    International Nuclear Information System (INIS)

    Kurucz, Charles N.; Waite, Thomas D.; Otano, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-01-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1 ) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60 Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater

  10. Large eddy simulation of new subgrid scale model for three-dimensional bundle flows

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    2004-01-01

    Having led to increased inefficiencies and power plant shutdowns fluid flow induced vibrations within heat exchangers are of great concern due to tube fretting-wear or fatigue failures. Historically, scaling law and measurement accuracy problems were encountered for experimental analysis at considerable effort and expense. However, supercomputers and accurate numerical methods have provided reliable results and substantial decrease in cost. In this investigation Large Eddy Simulation has been successfully used to simulate turbulent flow by the numeric solution of the incompressible, isothermal, single phase Navier-Stokes equations. The eddy viscosity model and a new subgrid scale model have been utilized to model the smaller eddies in the flow domain. A triangular array flow field was considered and numerical simulations were performed in two- and three-dimensional fields, and were compared to experimental findings. Results show good agreement of the numerical findings to that of the experimental, and solutions obtained with the new subgrid scale model represent better energy dissipation for the smaller eddies. (author)

  11. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  12. Integrating large-scale data and RNA technology to protect crops from fungal pathogens

    Directory of Open Access Journals (Sweden)

    Ian Joseph Girard

    2016-05-01

    Full Text Available With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA.

  13. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  14. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Administrator

    structure and chemical purity of 99⋅1% by inductively coupled plasma optical emission spectroscopy on a large scale. Keywords. Sol–gel; yttria-stabilized zirconia; large scale; nanopowder; Pechini method. 1. Introduction. Zirconia has attracted the attention of many scientists because of its tremendous thermal, mechanical ...

  15. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  16. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    Science.gov (United States)

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  17. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    Directory of Open Access Journals (Sweden)

    Alex Theodosiou

    Full Text Available This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF. Particulate samples of Magnox Reactor Pile Grade-A (PGA graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  18. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Quinby, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Caulfield, Emmet [Stanford Univ., CA (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Diffendorfer, Jay [U.S. Geological Survey, Boulder, CO (United States); Haines, Seth [U.S. Geological Survey, Boulder, CO (United States)

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  19. Economy of scale: third partner strengthens a keystone ant-plant mutualism.

    Science.gov (United States)

    Prior, Kirsten M; Palmer, Todd M

    2018-02-01

    While foundation species can stabilize ecosystems at landscape scales, their ability to persist is often underlain by keystone interactions occurring at smaller scales. Acacia drepanolobium is a foundation tree, comprising >95% of woody cover in East African black-cotton savanna ecosystems. Its dominance is underlain by a keystone mutualistic interaction with several symbiotic ant species in which it provides housing (swollen thorns) and carbohydrate-rich nectar from extra-floral nectaries (EFN). In return, it gains protection from catastrophic damage from mega-herbivores. Crematogaster mimosae is the ecologically dominant symbiotic ant in this system, also providing the highest protection services. In addition to tending EFN, C. mimosae tend scale insects for carbohydrate-rich honeydew. We investigated the role of scale insects in this specialized ant-plant interaction. Specifically, does this putatively redundant third partner strengthen the ant-plant mutualism by making the ant a better protector of the tree? Or does it weaken the mutualism by being costly to the tree while providing no additional benefit to the ant-plant mutualism? We coupled observational surveys with two scale-manipulation experiments and found evidence that this third partner strengthens the ant-plant mutualism. Trees with scale insects experimentally removed experienced a 2.5X increase in elephant damage compared to trees with scale insects present over 10 months. Reduced protection was driven by scale removal causing a decrease in ant colony size and per capita baseline activity and defensive behavior. We also found that ants increased scale-tending and the density of scale insects on trees when EFN were experimentally reduced. Thus, in this system, scale insects and EFN are likely complementary, rather than redundant, resources with scale insects benefitting ants when EFN production is low (such as during annual dry periods in this semi-arid ecosystem). This study reveals that a third

  20. Large-scale Agricultural Land Acquisitions in West Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will examine large-scale agricultural land acquisitions in nine West African countries -Burkina Faso, Guinea-Bissau, Guinea, Benin, Mali, Togo, Senegal, Niger, and Côte d'Ivoire. ... They will use the results to increase public awareness and knowledge about the consequences of large-scale land acquisitions.

  1. Properties and Performance of SOFCs Produced on a Pre-Pilot Plant Scale

    DEFF Research Database (Denmark)

    Hagen, Anke; Menon, Mohan; Barfod, Rasmus

    2006-01-01

    specific cell resistance at 850 °C was found to be 0.24 Ω cm2 with a standard deviation of 0.05 Ω cm2. The variation in performance between the cells can be largely attributed to variations in the cathode performance. Experimental evidence will be presented on full 4 × 4 cm2 cells, symmetric cells with two......In the present paper, anode supported solid oxide fuel cells (SOFCs), produced on a pre-pilot plant scale in ten batches of ∼100 cells, are characterised with respect to performance. The main purpose was to evaluate the reproducibility of the scaled-up process. Based on 20 tests, the average area...

  2. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  3. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  4. Compressor-less Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost

    International Nuclear Information System (INIS)

    W Leighty; J Holloway; R Merer; B Somerday; C San Marchi; G Keith; D White

    2006-01-01

    We assume a transmission-constrained world, where large new wind plants and other renewable energies must pay all transmission costs for delivering their energy to distant markets. We modeled a 1,000 MW (1 GW) (name plate) wind plant in the large wind resource of the North America Great Plains, delivering exclusively hydrogen fuel, via a new gaseous hydrogen (GH2) pipeline, to an urban market at least 300 km distant. All renewable electric energy output would be converted, at the source, to hydrogen, via 100 bar output electrolyzers, directly feeding the GH2 transmission pipeline without costly compressor stations at inlet or at midline. The new GH2 pipeline is an alternative to new electric transmission lines. We investigate whether the pipeline would provide valuable energy storage. We present a simple model by which we estimate the cost of wind-source hydrogen fuel delivered to the distant city gate in year 2010, at GW scale. Ammonia, synthetic hydrocarbons, and other substances may also be attractive renewable-source energy carriers, storage media, and fuels; they are not considered in this paper. (authors)

  5. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  6. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  7. PV power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the international seminar of the Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI) at 11th June, 2012 in Munich (Federal Republic of Germany), the following lectures were held: (1) Technical due diligence (Dietmar Obst); (2) Certification / rating system for large PV plants (Robert Pfatischer); (3) O and M requirements (Lars Rulf); (4) IR photography for large scale systems (Bernhard Weinreich); (5) New market models for PV systems - direct marketing and sales of PV electricity (Martin Schneider); (6) Needs and benefits for plant certification for grid connection and operation (Christoph Luetke-Lengerich); (7) Lare volume module testing / Screening in the field and workshop (Semir Merzoug); (8) Dismantling costs of large scale PV plants (Siegfried Schimpf).

  8. Considerations of scale in the analysis of spatial pattern of plant disease epidemics.

    Science.gov (United States)

    Turechek, William W; McRoberts, Neil

    2013-01-01

    Scale is an important but somewhat neglected subject in plant pathology. Scale serves as an abstract concept, providing a framework for organizing observations and theoretical models, and plays a functional role in the organization of ecological communities and physical processes. Rich methodological resources are available to plant pathologists interested in considering either or both aspects of scale in their research. We summarize important concepts in both areas of the literature, particularly as they apply to the spatial pattern of plant disease, and highlight some new results that emphasize the importance of scaling on the emergence of different types of probability distribution in empirical observation. We also highlight the important links between heterogeneity and scale, which are of central importance in plant disease epidemiology and the analysis of spatial pattern. We consider statistical approaches that are available, where actual physical scale is known, and for more conceptual research on hierarchies, where scale plays a more abstract role, particularly for field-based research. For the latter, we highlight methods that plant pathologists could consider to account for the effect of scale in the design of field studies.

  9. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  10. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  11. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  12. Impacts of large-scale offshore wind farm integration on power systems through VSC-HVDC

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2013-01-01

    The potential of offshore wind energy has been commonly recognized and explored globally. Many countries have implemented and planned offshore wind farms to meet their increasing electricity demands and public environmental appeals, especially in Europe. With relatively less space limitation......, an offshore wind farm could have a capacity rating to hundreds of MWs or even GWs that is large enough to compete with conventional power plants. Thus the impacts of a large offshore wind farm on power system operation and security should be thoroughly studied and understood. This paper investigates...... the impacts of integrating a large-scale offshore wind farm into the transmission system of a power grid through VSC-HVDC connection. The concerns are focused on steady-state voltage stability, dynamic voltage stability and transient angle stability. Simulation results based on an exemplary power system...

  13. Large-scale numerical simulations of plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2004-01-01

    The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)

  14. Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.; Shaikh, D.

    2006-01-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  15. Beets as a future substrate for biogas plants. Results from a large-scale use in a biogas plant; Rueben als Zukunftssubstrat fuer Biogasanlagen. Ergebnisse aus der grosstechnischen Nutzung in einer Biogasanlage zur Optimierung der Rohbiogasproduktion zur Gaseinspeisung in das Erdgasnetz

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Ralph [R and S ENERGY GmbH, Detmold (Germany); Liebetrau, Jan; Nelles, Michael; Scholwin, Frank

    2011-07-01

    The nuclear disaster in Fukushima prompted the German Federal Government on 30 May 2011 to implement a phase-out of the use of nuclear energy by 2022. The resulting shortfall in supply is mainly to be made up by the use of renewable energies and fossil fuels, especially natural gas (ethics K. 2011). In Germany there are now more than 5,900 biogas plants (DBFZ 2010) with an installed capacity of 2,300 megawatts of electrical power from biogas generation, but only 47 projects (Dena 2011) use biomethane to replace the use of natural gas. As of December 2010, the entire crude biogas capacity of these facilities amounted to 270 million cubic meters. This represents 0.4% of German natural gas consumption. This corresponds to about 4.5% of the expansion target for 2020 (GasNZV 2008, BNA 2011). Hence the challenge is to operate the biogas process as efficiently as possible in order to generate a large amount of biogas with a high quality from renewable resources. The investigated large-scale biogas plant, in which only renewable materials (corn, corn silage, forage rye, corn, beet) are processed, supplies two cogeneration plants (CHP) and a biogas conditioning plant. The crude biogas is processed into biomethane gas through a chemical absorption process using pressure-free amine scrubbing (Martens 2007). With the currently possible thermal energy production of 400 million MJ/a, the biogas plant supports the objective of the German Federal Government to increase the substitution of natural gas. (orig.)

  16. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  17. Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture

    Science.gov (United States)

    Bassiouni, M.; Good, S. P.; Higgins, C. W.

    2017-12-01

    Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.

  18. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many ...

  19. State of the art of large combustion plants and reference plants in Austria

    International Nuclear Information System (INIS)

    Boehmer, S.; Schindler, I.; Szednyj, I.; Winter, B.

    2003-01-01

    The aim of this study is to describe the state of the art of large combustion plants with respect to the European directive on integrated pollution prevention and control (IPPC-Directive 96/61/EG). For this purpose 10 sites where one or more thermal power or district heating plants with a rated thermal input of > 50 MW are operated were selected and described in detail. Only coal and oil fired power plants were chosen because of the larger environmental impacts compared to gas fired combustion units. Large industrial combustion plants, where in addition to regular fuels also special fuels and wastes are combusted (e.g. power plants from refineries and from the pulp and paper industry), and waste incineration plants are not treated in this study. The depiction of power plants comprises the whole chain of operation, starting from the description of the type and composition of fuels, the pretreatment and introduction into the boiler, the firing technology, measures for emission reduction (both into air and water) and treatment of solid waste and residues from combustion. Furthermore possibilities to increase energy efficiency and economic aspects are examined in this study. Also legal aspects are shortly described at the beginning of the respective chapters. An actual topic is co-combustion of biomass and waste in thermal power plants. Results of trial operation in Austrian power plants are summarized and conclusions were drawn with respect to environmental impacts of co-incineration, such as emissions into air and water, quality of solid wastes and residues from co-incineration. Important aspects such as shifting of pollutants and dilution effects are discussed. The study concludes with the chapter 'State of the art for power plants', which gives a survey of the relevant measures with particular attention to above mentioned crucial points. (author)

  20. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: A large-scale phytomanagement case study

    International Nuclear Information System (INIS)

    Dominguez, Maria T.; Maranon, Teodoro; Murillo, Jose M.; Schulin, Rainer; Robinson, Brett H.

    2008-01-01

    Phytomanagement employs vegetation and soil amendments to reduce the environmental risk posed by contaminated sites. We investigated the distribution of trace elements in soils and woody plants from a large phytomanaged site, the Guadiamar Valley (SW Spain), 7 years after a mine spill, which contaminated the area in 1998. At spill-affected sites, topsoils (0-25 cm) had elevated concentrations of As (129 mg kg -1 ), Bi (1.64 mg kg -1 ), Cd (1.44 mg kg -1 ), Cu (115 mg kg -1 ), Pb (210 mg kg -1 ), Sb (13.8 mg kg -1 ), Tl (1.17 mg kg -1 ) and Zn (457 mg kg -1 ). Trace element concentrations in the studied species were, on average, within the normal ranges for higher plants. An exception was white poplar (Populus alba), which accumulated Cd and Zn in leaves up to 3 and 410 mg kg -1 respectively. We discuss the results with regard to the phytomanagement of trace element contaminated sites. - There is a low trace element transfer from contaminated soils to the aboveground parts of afforested woody plants under a semi-arid climate

  1. A Statistical Model for Hourly Large-Scale Wind and Photovoltaic Generation in New Locations

    DEFF Research Database (Denmark)

    Ekstrom, Jussi; Koivisto, Matti Juhani; Mellin, Ilkka

    2017-01-01

    The analysis of large-scale wind and photovoltaic (PV) energy generation is of vital importance in power systems where their penetration is high. This paper presents a modular methodology to assess the power generation and volatility of a system consisting of both PV plants (PVPs) and wind power...... of new PVPs and WPPs in system planning. The model is verified against hourly measured wind speed and solar irradiance data from Finland. A case study assessing the impact of the geographical distribution of the PVPs and WPPs on aggregate power generation and its variability is presented....

  2. Learning from large scale neural simulations

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Large-scale neural simulations have the marks of a distinct methodology which can be fruitfully deployed to advance scientific understanding of the human brain. Computer simulation studies can be used to produce surrogate observational data for better conceptual models and new how...

  3. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek; Verma, Mahendra K.; Sukhatme, Jai

    2017-01-01

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  4. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek

    2017-01-11

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  5. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  6. Design verification for large reprocessing plants (Proposed procedures)

    International Nuclear Information System (INIS)

    Rolandi, G.

    1988-07-01

    In the 1990s, four large commercial reprocessing plants will progressively come into operation: If an effective and efficient safeguards system is to be applied to these large and complex plants, several important factors have to be considered. One of these factors, addressed in the present report, concerns plant design verification. Design verification provides an overall assurance on plant measurement data. To this end design verification, although limited to the safeguards aspects of the plant, must be a systematic activity, which starts during the design phase, continues during the construction phase and is particularly performed during the various steps of the plant's commissioning phase. The detailed procedures for design information verification on commercial reprocessing plants must be defined within the frame of the general provisions set forth in INFCIRC/153 for any type of safeguards related activities and specifically for design verification. The present report is intended as a preliminary contribution on a purely technical level, and focusses on the problems within the Agency. For the purpose of the present study the most complex case was assumed: i.e. a safeguards system based on conventional materials accountancy, accompanied both by special input and output verification and by some form of near-real-time accountancy involving in-process inventory taking, based on authenticated operator's measurement data. C/S measures are also foreseen, where necessary to supplement the accountancy data. A complete ''design verification'' strategy comprehends: informing the Agency of any changes in the plant system which are defined as ''safeguards relevant''; ''reverifying by the Agency upon receiving notice from the Operator on any changes, on ''design information''. 13 refs

  7. Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

    International Nuclear Information System (INIS)

    Ahrens, E.H.; Hansen, F.D.

    1995-10-01

    Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results

  8. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  9. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  10. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  11. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  12. Methodology for Scaling Fusion Power Plant Availability

    International Nuclear Information System (INIS)

    Waganer, Lester M.

    2011-01-01

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, 'Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the 'teething' problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated 'mature' subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  13. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  14. Large-scale retrieval for medical image analytics: A comprehensive review.

    Science.gov (United States)

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale

    OpenAIRE

    Bernardo, Pauline; Charles-Dominique, Tristan; Barakat, Mohamed; Ortet, Philippe; Fernandez, Emmanuel; Filloux, Denis; Hartnady, Penelope; Rebelo, Tony A; Cousins, Stephen R; Mesleard, François; Cohez, Damien; Yavercovski, Nicole; Varsani, Arvind; Harkins, Gordon W; Peterschmitt, Michel

    2017-01-01

    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine rela...

  16. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale

    OpenAIRE

    Bernardo, Pauline; Charles-Dominique, Tristan; Barakat, Mohamed; Ortet, Philippe; Fernandez, Emmanuel; Filloux, Denis; Hartnady, Penelope; Rebelo, Tony A.; Cousins, Stephen; Mesleard, François; Cohez, Damien; Yaverkovski, Nicole; Varsani, Arvind; Harkins, Gordon William; Peterschmitt, Michel

    2018-01-01

    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine rela...

  17. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  18. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    Science.gov (United States)

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    Science.gov (United States)

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  20. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  1. Legal aspects of public participation in the planning/licensing of environmentally related large-scale projects

    International Nuclear Information System (INIS)

    Kurz, A.

    1991-01-01

    A variety of legal problems arise in the planning/licensing of environmentally related large-scale projects associated with the control and evaluation of technical conditions and the ramifications in social and legal policy of the acceptance of, and resistance to, such projects. On the basis of a number of partial studies e.g. of the licensing procedure of a nuclear power plant (Neckar-2 reactor) the author examines the legal aspects of public participation in the administrative procedures of licensing/plans approval. The dichotomy of law and technology is covered, and public participation in administrative procedures is derived legally from the basic constitutional rights and the principle of fair hearing. After an outline of specific administrative procedures, public participation as part of administrative procedures is included in the broad legal framework of licensing/plans approval of environmentally related large-scale projects. The author concludes that public participation, within the framework of the basic decisions established by legislature, is not a tool to be used in deciding basic political conflicts. Instead, public participations in the application of law serves to protect the rights of the individual by ensuring fair proceedings paying attention to the subjective rights of the individual. As it is unable to decide political conflicts, it is also an unsuitable means of establishing of basic societal consensus, or of seeking acceptance of large-scale projects. (orig./HP) [de

  2. Evaluation of creep-fatigue crack growth for large-scale FBR reactor vessel and NDE assessment

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Jong Bum; Kim, Seok Hun; Yoo, Bong

    2001-03-01

    Creep fatigue crack growth contributes to the failure of FRB reactor vessels in high temperature condition. In the design stage of reactor vessel, crack growth evaluation is very important to ensure the structural safety and setup the in-service inspection strategy. In this study, creep-fatigue crack growth evaluation has been performed for the semi-elliptical surface cracks subjected to thermal loading. The thermal stress analysis of a large-scale FBR reactor vessel has been carried out for the load conditions. The distributions of axial, radial, hoop, and Von Mises stresses were obtained for the loading conditions. At the maximum point of the axial and hoop stress, the longitudinal and circumferential surface cracks (i.e. PTS crack, NDE short crack and shallow long crack) were postulated. Using the maximum and minimum values of stresses, the creep-fatigue crack growth of the proposed cracks was simulated. The crack growth rate of circumferential cracks becomes greater than that of longitudinal cracks. The total crack growth of the largest PTS crack is very small after 427 cycles. The structural integrity of a large-scale reactor can be maintained for the plant life. The crack depth growth of the shallow long crack is faster than that of the NDE short crack. In the ISI of the large-scale FBR reactor vessel, the ultrasonic inspection is beneficial to detect the shallow circumferential cracks.

  3. A large-scale soil-structure interaction experiment: Part I design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Wall, I.B.; Lin, E.

    1987-01-01

    In the simulated earthquake experiments (SIMQUAKE) sponsored by EPRI, the detonation of vertical arrays of explosives propagated wave motions through the ground to the model structures. Although such a simulation can provide information about dynamic soil-structure interaction (SSI) characteristics in a strong motion environment, it lacks seismic wave scattering characteristics for studying seismic input to the soil-structure system and the effect of different kinds of wave composition to the soil-structure response. To supplement the inadequacy of the simulated earthquake SSI experiment, the Electric Power Research Institute (EPRI) and the Taiwan Power Company (Taipower) jointly sponsored a large scale SSI experiment in the field. The objectives of the experiment are: (1) to obtain actual strong motion earthquakes induced database in a soft-soil environment which will substantiate predictive and design SSI models;and (2) to assess nuclear power plant reactor containment internal components dynamic response and margins relating to actual earthquake-induced excitation. These objectives are accomplished by recording and analyzing data from two instrumented, scaled down, (1/4- and 1/12-scale) reinforced concrete containments sited in a high seismic region in Taiwan where a strong-motion seismic array network is located

  4. Study on saccharification of cellulosic wastes with bench scale test plant, (5)

    International Nuclear Information System (INIS)

    Kasai, Noboru; Tamada, Masao; Kumakura, Minoru

    1989-05-01

    This report completed the results that were obtained on the studies of continuous saccharification of radiation pretreated chaff with a saccharification equipment unit of bench scale test plant for cellulosic wastes. The problem on the continuous saccharification in bench scale and its countermeasure were clarified. The glucose concentration obtained in the continuous saccharification was examined from the point of a scale up effect. It was found that there are not a scale up effect between flask scale (100 ml) and bench scale (50 l) and then the same concentration of glucose was obtained in both scales. It was clarified that the contamination of the process let decrease markedly the concentration of produced glucose solution and brings on a large trouble for the saccharification. The addition of 1 % ethyl acetate made it possible to prevent the contamination of the saccharification process in flask scale. However, in the case of continuous saccharification in bench scale, the addition of ethyl acetate in nitrogen gas atmosphere was necessary to prevent the contamination. It was found that the solution of 1.7 % glucose concentration was continuously produced in the continuous saccharification with the most longest period for 26 days. It was, also, suggested that the selection of a suitable retention time is necessary to attain a high glucose productivity in the continuous saccharification. (author)

  5. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    Science.gov (United States)

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  6. The Hualien Large-Scale Seismic Test for soil-structure interaction research

    International Nuclear Information System (INIS)

    Tang, H.T.; Stepp, J.C.; Cheng, Y.H.

    1991-01-01

    A Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, has been initiated with the primary objective of obtaining earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. Preliminary soil boring, geophysical testing and ambient and earthquake-induced ground motion monitoring have been conducted to understand the experiment site conditions. More refined field and laboratory tests will be conducted such as the state-of-the-art freezing sampling technique and the large penetration test (LPT) method to characterize the soil constitutive behavior. The test model to be constructed will be similar to the Lotung model. The instrumentation layout will be designed to provide data for studies of SSI, spatial incoherence, soil stability, foundation uplifting, ground motion wave field and structural response. A consortium consisting of EPRI, Taipower, CRIEPI, TEPCO, CEA, EdF and Framatome has been established to carry out the project. It is envisaged that the Hualien SSI array will be ready to record earthquakes by the middle of 1992. The duration of the recording scheduled for five years. (author)

  7. Accelerating Relevance Vector Machine for Large-Scale Data on Spark

    Directory of Open Access Journals (Sweden)

    Liu Fang

    2017-01-01

    Full Text Available Relevance vector machine (RVM is a machine learning algorithm based on a sparse Bayesian framework, which performs well when running classification and regression tasks on small-scale datasets. However, RVM also has certain drawbacks which restricts its practical applications such as (1 slow training process, (2 poor performance on training large-scale datasets. In order to solve these problem, we propose Discrete AdaBoost RVM (DAB-RVM which incorporate ensemble learning in RVM at first. This method performs well with large-scale low-dimensional datasets. However, as the number of features increases, the training time of DAB-RVM increases as well. To avoid this phenomenon, we utilize the sufficient training samples of large-scale datasets and propose all features boosting RVM (AFB-RVM, which modifies the way of obtaining weak classifiers. In our experiments we study the differences between various boosting techniques with RVM, demonstrating the performance of the proposed approaches on Spark. As a result of this paper, two proposed approaches on Spark for different types of large-scale datasets are available.

  8. Study on the combustion behavior of radiolytically generated hydrogen explosion in small scale annular vessels at the reprocessing plant

    International Nuclear Information System (INIS)

    Kudo, Tatsuya; Tamauchi, Yoshikazu; Arai, Nobuyuki; Dai, Wenbin; Sakaihara, Motohiro; Kanehira, Osamu

    2017-01-01

    Hydrogen is generated by radiolysis of water, etc. in process vessels in reprocessing plant. Usually, the hydrogen is scavenged by compressed air into vessels to prevent hydrogen explosion. When an earthquake beyond design based occurs, for example, the compressed air may stop and the hydrogen starts accumulating in the vessels, and under this condition, an ignition source might set off hydrogen explosion. Therefore, the explosion derived by the radiolytically generated hydrogen is designated as one of severe accidents on Rokkasho Reprocessing Plant in new regulatory requirements. It is important to understand the combustion behavior of hydrogen explosion inside a vessel for consideration of safety measures against the severe accident, because the influences of detonation are not considered in the design basis of vessels. Especially, the investigations about the combustion behavior which considered influence of interior obstacles inside the vessel are not performed yet. In order to investigate the combustion behavior comprehensively, explosion experiment, combustion analysis and structural analysis are carried out using the representative vessels (small scale annular vessel, small scale plate vessel, large scale annular vessel and large scale cylindrical vessel) selected from Rokkasho Reprocessing Plant. In this paper, the results of experiments and analysis of small scale annular vessel (as one of representative vessel, imitated a pulsed column in the reprocessing plant) are reported. As imitated vessels, three vessels are manufactured with different interior obstacle arrangements as follows, A) cylindrical obstacles are faithfully reproduced and are arranged based on the actual vessel, B) cylindrical obstacles are arranged more densely than the actual vessel, and C) there are no obstacles inside the vessel. Experiments of hydrogen explosion are performed under condition of stoichiometric hydrogen-air ratio (premixed hydrogen-air is used). As a result of

  9. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  10. Creating Large Scale Database Servers

    International Nuclear Information System (INIS)

    Becla, Jacek

    2001-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region

  11. Creating Large Scale Database Servers

    Energy Technology Data Exchange (ETDEWEB)

    Becla, Jacek

    2001-12-14

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region.

  12. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  13. Decentralised stabilising controllers for a class of large-scale linear ...

    Indian Academy of Sciences (India)

    subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...

  14. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    1996-01-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  15. Large Scale Survey Data in Career Development Research

    Science.gov (United States)

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  16. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  17. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  18. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  19. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  20. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  1. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  2. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  3. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  4. Fusion power economy of scale

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1993-01-01

    In the next 50 yr, the world will need to develop hundreds of gigawatts of non-fossil-fuel energy sources for production of electricity and fuels. Nuclear fusion can probably provide much of the required energy economically, if large single-unit power plants are acceptable. Large power plants are more common than most people realize: There are already many multiple-unit power plants producing 2 to 5 GW(electric) at a single site. The cost of electricity (COE) from fusion energy is predicted to scale as COE ∼ COE 0 (P/P 0 ) -n , where P is the electrical power, the subscript zero denotes reference values, and the exponent n ∼ 0.36 to 0.7 in various designs. The validity ranges of these scalings are limited and need to be extended by future work. The fusion power economy of scale derives from four interrelated effects: improved operations and maintenance costs; scaling of equipment unit costs; a geometric effect that increases the mass power density; and reduction of the recirculating power fraction. Increased plasma size also relaxes the required confinement parameters: For the same neutron wall loading, larger tokamaks can use lower magnetic fields. Fossil-fuel power plants have a weaker economy of scale than fusion because the fuel costs constitute much of their COE. Solar and wind power plants consist of many small units, so they have little economy of scale. Fission power plants have a strong economy of scale but are unable to exploit it because the maximum unit size is limited by safety concerns. Large, steady-state fusion reactors generating 3 to 6 GW(electric) may be able to produce electricity for 4 to 5 cents/kW·h, which would be competitive with other future energy sources. 38 refs., 6 figs., 6 tabs

  5. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  6. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  7. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  8. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  9. A method for the assessment of the visual impact caused by the large-scale deployment of renewable-energy facilities

    International Nuclear Information System (INIS)

    Rodrigues, Marcos; Montanes, Carlos; Fueyo, Norberto

    2010-01-01

    The production of energy from renewable sources requires a significantly larger use of the territory compared with conventional (fossil and nuclear) sources. For large penetrations of renewable technologies, such as wind power, the overall visual impact at the national level can be substantial, and may prompt public reaction. This study develops a methodology for the assessment of the visual impact that can be used to measure and report the level of impact caused by several renewable technologies (wind farms, solar photovoltaic plants or solar thermal ones), both at the local and regional (e.g. national) scales. Applications are shown to several large-scale, hypothetical scenarios of wind and solar-energy penetration in Spain, and also to the vicinity of an actual, single wind farm.

  10. Time-scale effects in the interaction between a large and a small herbivore

    NARCIS (Netherlands)

    Kuijper, D. P. J.; Beek, P.; van Wieren, S.E.; Bakker, J. P.

    2008-01-01

    In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition

  11. Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion: Design and Comparison With Other Scales.

    Science.gov (United States)

    Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe

    2016-07-01

    We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.

  12. Liquid metal fast breeder reactor steam generator survey of the consequences of large scale sodium water reaction

    International Nuclear Information System (INIS)

    Vambenepe, G.

    1978-01-01

    The ''Retona'' three-dimensional hydrodynamic computing code is being developed by Electricity de France to survey the consequences, on the very plant, of a large scale sodium water reaction in liquid metal steam generators. In this communication, the heat-exchanger geometry is schematized and the problem solving process briefly described under assumed simplifying hypotheses. The application of the results to the Creusot-Loire steam generator selected for Super-Phenix are given as an example. (author)

  13. Effects of microhabitat and large-scale land use on stream salamander occupancy in the coalfields of Central Appalachia

    Science.gov (United States)

    Sweeten, Sara E.; Ford, W. Mark

    2016-01-01

    Large-scale coal mining practices, particularly surface coal extraction and associated valley fills as well as residential wastewater discharge, are of ecological concern for aquatic systems in central Appalachia. Identifying and quantifying alterations to ecosystems along a gradient of spatial scales is a necessary first-step to aid in mitigation of negative consequences to aquatic biota. In central Appalachian headwater streams, apart from fish, salamanders are the most abundant vertebrate predator that provide a significant intermediate trophic role linking aquatic and terrestrial food webs. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, as past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging, and salamander abundances. However, there is little information examining these relationships between environmental conditions and salamander occupancy in the coalfields of central Appalachia. In the summer of 2013, 70 sites (sampled two to three times each) in the southwest Virginia coalfields were visited to collect salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework, effects of microhabitat and large-scale land use on stream salamander occupancy were compared. The findings indicate that Desmognathus spp. occupancy rates are more correlated to microhabitat parameters such as canopy cover than to large-scale land uses. However, Eurycea spp. occupancy rates had a strong association with large-scale land uses, particularly recent mining and forest cover within the watershed. These findings suggest that protection of riparian habitats is an important consideration for maintaining aquatic systems in central Appalachia. If this is not possible, restoration riparian areas should follow guidelines using quick-growing tree species that are native to Appalachian riparian areas. These types of trees

  14. Power plant economy of scale and cost trends: further analyses and review of empirical studies

    International Nuclear Information System (INIS)

    Fisher, C.F. Jr.; Paik, S.; Schriver, W.R.

    1986-07-01

    Multiple regression analyses were performed on capital cost data for nuclear and coal-fired power plants in an extension of an earlier study which indicated that nuclear units completed prior to the accident at Three-Mile Island (TMI) have no economy of scale, and that units completed after that event have a weak economy of scale (scaling exponent of about 0.81). The earlier study also indicated that the scaling exponent for coal-fired units is about 0.92, compared with conceptual models which project scaling exponents in a range from about 0.5 to 0.9. Other empirical studies have indicated poor economy of scale, but a large range of cost-size scaling exponents has been reported. In the present study, the results for nuclear units indicate a scaling exponent of about 0.94 but with no economy of scale for large units, that a first unit costs 17% more than a second unit, that a unit in the South costs 20% less than others, that a unit completed after TMI costs 33% more than one completed before TMI, and that costs are increasing at 9.3% per year. In the present study, the results for coal-fired units indicate a scaling exponent of 0.93 but with better scaling economy in the larger units, that a first unit costs 38.5% more, a unit in the South costs 10% less, flue-gas desulfurization units cost 23% more, and that costs are increasing at 4% per year

  15. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    Full Text Available Birds are highly mobile organisms and there is increasing evidence that studies at large spatial scales are needed if we are to properly understand their population dynamics. While classical metapopulation models have rarely proved useful for birds, more general metapopulation ideas involving collections of populations interacting within spatially structured landscapes are highly relevant (Harrison, 1994. There is increasing interest in understanding patterns of synchrony, or lack of synchrony, between populations and the environmental and dispersal mechanisms that bring about these patterns (Paradis et al., 2000. To investigate these processes we need to measure abundance, demographic rates and dispersal at large spatial scales, in addition to gathering data on relevant environmental variables. There is an increasing realisation that conservation needs to address rapid declines of common and widespread species (they will not remain so if such trends continue as well as the management of small populations that are at risk of extinction. While the knowledge needed to support the management of small populations can often be obtained from intensive studies in a few restricted areas, conservation of widespread species often requires information on population trends and processes measured at regional, national and continental scales (Baillie, 2001. While management prescriptions for widespread populations may initially be developed from a small number of local studies or experiments, there is an increasing need to understand how such results will scale up when applied across wider areas. There is also a vital role for monitoring at large spatial scales both in identifying such population declines and in assessing population recovery. Gathering data on avian abundance and demography at large spatial scales usually relies on the efforts of large numbers of skilled volunteers. Volunteer studies based on ringing (for example Constant Effort Sites [CES

  16. Testing and qualification of CIRCE venturi-nozzle flow meter for large scale experiments

    International Nuclear Information System (INIS)

    Ambrosini, W.; Forgione, N.; Oriolo, F.; Tarantino, M.; Agostini, P.; Benamati, G.; Bertacci, G.; Elmi, N.; Alemberti, A.; Cinotti, L.; Scaddozzo, G.

    2005-01-01

    This paper is focused on the tests carried out at the ENEA Brasimone Centre for the qualification of a large Venturi-Nozzle flow meter operating in Lead Bismuth Eutectic (LBE). Such flow meter has been selected to provide flow rate measurements during the thermal-hydraulic tests that will be performed on the experimental facility CIRCE. This large-scale facility is installed at the ENEA Brasimone Centre for studying the fluid-dynamics and operating behaviour of ADS reactor plants, as well as to qualify several components intended to be used in the LBE technology. The Venturi-Nozzle flow meter has been supplied by the Euromisure s.r.l., together with the calculated theoretical characteristic equation. The results obtained by the tests performed allowed to qualify this theoretical curve supplied by the manufacturer, that presents a very good agreement especially at high flow rate values. (authors)

  17. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  18. Managing Risk and Uncertainty in Large-Scale University Research Projects

    Science.gov (United States)

    Moore, Sharlissa; Shangraw, R. F., Jr.

    2011-01-01

    Both publicly and privately funded research projects managed by universities are growing in size and scope. Complex, large-scale projects (over $50 million) pose new management challenges and risks for universities. This paper explores the relationship between project success and a variety of factors in large-scale university projects. First, we…

  19. Parallel clustering algorithm for large-scale biological data sets.

    Science.gov (United States)

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.

  20. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  1. Modeling the Economic Feasibility of Large-Scale Net-Zero Water Management: A Case Study.

    Science.gov (United States)

    Guo, Tianjiao; Englehardt, James D; Fallon, Howard J

      While municipal direct potable water reuse (DPR) has been recommended for consideration by the U.S. National Research Council, it is unclear how to size new closed-loop DPR plants, termed "net-zero water (NZW) plants", to minimize cost and energy demand assuming upgradient water distribution. Based on a recent model optimizing the economics of plant scale for generalized conditions, the authors evaluated the feasibility and optimal scale of NZW plants for treatment capacity expansion in Miami-Dade County, Florida. Local data on population distribution and topography were input to compare projected costs for NZW vs the current plan. Total cost was minimized at a scale of 49 NZW plants for the service population of 671,823. Total unit cost for NZW systems, which mineralize chemical oxygen demand to below normal detection limits, is projected at ~$10.83 / 1000 gal, approximately 13% above the current plan and less than rates reported for several significant U.S. cities.

  2. Adaptive visualization for large-scale graph

    International Nuclear Information System (INIS)

    Nakamura, Hiroko; Shinano, Yuji; Ohzahata, Satoshi

    2010-01-01

    We propose an adoptive visualization technique for representing a large-scale hierarchical dataset within limited display space. A hierarchical dataset has nodes and links showing the parent-child relationship between the nodes. These nodes and links are described using graphics primitives. When the number of these primitives is large, it is difficult to recognize the structure of the hierarchical data because many primitives are overlapped within a limited region. To overcome this difficulty, we propose an adaptive visualization technique for hierarchical datasets. The proposed technique selects an appropriate graph style according to the nodal density in each area. (author)

  3. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  4. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  5. Linking plant functional trait plasticity and the large increase in forest water use efficiency

    Science.gov (United States)

    Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Gough, Christopher M.; Fatichi, Simone

    2017-09-01

    Elevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux observations from Northern Hemisphere forests showed a large increase in inherent water use efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered by environmental change. We found that IWUE increased by 1.3% yr-1, which is less than previously reported but still larger than theoretical expectations. Numerical simulations with the Tethys-Chloris ecosystem model using temporally static plant functional traits cannot explain this increase. Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results show that trends in plant functional traits, equal to 1.0% yr-1, can explain the observed IWUE trends. Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, and energy fluxes with profound implications for both the monitoring of temporal changes in plant functional traits and their representation in Earth system models.

  6. Power Ramp Limitation capabilities of Large PV Power Plants with Active Power Reserves

    DEFF Research Database (Denmark)

    Bogdan, Craciun; Kerekes, Tamas; Sera, Dezso

    2017-01-01

    Power Ramp Limitation (PRL) is likely to become a requirement for large scale photovoltaic power plants (LPVPPs) in order to allow the increase of PV penetration levels. Especially in islands with reduced inertia capability, this problem is more stringent: high power ramp can be caused by either...... fast irradiance changes or other participant generators for example wind power, or loads. In order to compensate for the power mismatch, LPVPPs must use Active Power Reserve (APR), by either curtailment or auxiliary storage. The paper proposes a PRL control structure for dynamic APR sizing...... and deployment. The selected test case is the power system of Puerto Rico (PREPA), modeled using the modified IEEE 12 bus benchmark system, with different levels of PV penetration. It is shown that LPVPP with PRL can effectively reduce the ramping rate of the participating generators. Considering that the large...

  7. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    NARCIS (Netherlands)

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  8. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  9. Power improvement and modernization of small scale hydroelectric power plants in Brazil; Recapacitacao e modernizacao de PCH`s no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jose Guilherme Antioga do [Departamento Nacional de Aguas e Energia Eletrica (DNAEE), Brasilia, DF (Brazil); Amaral, Cristiano Abijaode [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1995-12-31

    Several small scale hydroelectric power plants existing in Brazil have been abandoned due to recent projects of large scale units, however, some of than still present workable conditions. Due to that fact, several Brazilian electric power companies have been considering the possibility of modernizing such old units as an alternative for regional electric power generation. This work discusses the above mentioned issues 3 refs., 5 figs., 9 tabs.

  10. Development of large scale and wind energy conservation system. Operational studies on a large-scale wind energy conservation system; Ogata furyoku hatsuden system no kaihatsu. Ogata furyoku hatsuden system no unten kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for operational studies on a large-scale wind energy conversion system. A total of 8 domestic and foreign cases are studied for wind energy conversion cost, to clarify the causes for higher cost of the Japanese system. The wind power systems studied include Japanese (5 units at Tappi Wind Park, the same type supplied by company M), US (California Wind Farm, 300 units) and UK (Wales Wind Farm, 103 units) systems. The investment costs are 639, 285 and 189 thousand yen/kW for the Japanese, US and UK systems, respectively. It is also revealed that the power plant itself and assembling costs account for a majority (70 to 88%) of the total investment cost. The higher cost of the Japanese system results from a smaller number of units installed, and the power plant cost can be drastically reduced by mass production. Increasing size also reduces cost greatly.

  11. Setting up fuel supply strategies for large-scale bio-energy projects using agricultural and forest residues. A methodology for developing countries

    International Nuclear Information System (INIS)

    Junginger, M.

    2000-08-01

    The objective of this paper is to develop a coherent methodology to set up fuel supply strategies for large-scale biomass-conversion units. This method will explicitly take risks and uncertainties regarding availability and costs in relation to time into account. This paper aims at providing general guidelines, which are not country-specific. These guidelines cannot provide 'perfect fit'-solutions, but aim to give general help to overcome barriers and to set up supply strategies. It will mainly focus on residues from the agricultural and forestry sector. This study focuses on electricity or both electricity and heat production (CHP) with plant scales between 1040 MWe. This range is chosen due to rules of economies of scale. In large-scale plants the benefits of increased efficiency outweigh increased transportation costs, allowing a lower price per kWh which in turn may allow higher biomass costs. However, fuel-supply risks tend to get higher with increasing plant size, which makes it more important to assess them for large(r) conversion plants. Although the methodology does not focus on a specific conversion technology, it should be stressed that the technology must be able to handle a wide variety of biomass fuels with different characteristics because many biomass residues are not available the year round and various fuels are needed for a constant supply. The methodology allows for comparing different technologies (with known investment and operational and maintenance costs from literature) and evaluation for different fuel supply scenarios. In order to demonstrate the methodology, a case study was carried out for the north-eastern part of Thailand (Isaan), an agricultural region. The research was conducted in collaboration with the Regional Wood Energy Development Programme in Asia (RWEDP), a project of the UN Food and Agricultural Organization (FAO) in Bangkok, Thailand. In Section 2 of this paper the methodology will be presented. In Section 3 the economic

  12. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    International Nuclear Information System (INIS)

    Fonseca, R A; Vieira, J; Silva, L O; Fiuza, F; Davidson, A; Tsung, F S; Mori, W B

    2013-01-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ∼10 6 cores and sustained performance over ∼2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios. (paper)

  13. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  14. Spatiotemporal patterns of plant water isotope values from a continental-scale sample network in Europe as a tool to improve hydroclimate proxies

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2016-12-01

    The hydrogen and oxygen isotopic composition of water available for biosynthetic processes in vascular plants plays an important role in shaping the isotopic composition of organic compounds that these organisms produce, including leaf waxes and cellulose in leaves and tree rings. Characterizing changes in large scale spatial patterns of precipitation, soil water, stem water, and leaf water isotope values over time is therefore useful for evaluating how plants reflect changes in the isotopic composition of these source waters in different environments. This information can, in turn, provide improved calibration targets for understanding the environmental signals that plants preserve. The pathway of water through this continuum can include several isotopic fractionations, but the extent to which the isotopic composition of each of these water pools varies under normal field conditions and over space and time has not been systematically and concurrently evaluated at large spatial scales. Two season-long sampling campaigns were conducted at nineteen sites throughout Europe over the 2014 and 2015 growing seasons to track changes in the isotopic composition of plant-relevant waters. Samples of precipitation, soil water, stem water, and leaf water were collected over more than 200 field days and include more than 500 samples from each water pool. Measurements were used to validate continent-wide gridded estimates of leaf water isotope values derived from a combination of mechanistic and statistical modeling conducted with temperature, precipitation, and relative humidity data. Data-model comparison shows good agreement for summer leaf waters, and substantiates the incorporation of modeled leaf waters in evaluating how plants respond to hydroclimate changes at large spatial scales. These results also suggest that modeled leaf water isotope values might be used in future studies in similar ecosystems to improve the coverage density of spatial or temporal data.

  15. Influence of biofilm formation on corrosion and scaling in geothermal plants

    Science.gov (United States)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  16. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif

    2017-01-07

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  17. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif; Orakzai, Faisal Moeen; Abdelaziz, Ibrahim; Khayyat, Zuhair

    2017-01-01

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  18. An interactive display system for large-scale 3D models

    Science.gov (United States)

    Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman

    2018-04-01

    With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.

  19. Large-scale hydrology in Europe : observed patterns and model performance

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Lukas

    2011-06-15

    In a changing climate, terrestrial water storages are of great interest as water availability impacts key aspects of ecosystem functioning. Thus, a better understanding of the variations of wet and dry periods will contribute to fully grasp processes of the earth system such as nutrient cycling and vegetation dynamics. Currently, river runoff from small, nearly natural, catchments is one of the few variables of the terrestrial water balance that is regularly monitored with detailed spatial and temporal coverage on large scales. River runoff, therefore, provides a foundation to approach European hydrology with respect to observed patterns on large scales, with regard to the ability of models to capture these.The analysis of observed river flow from small catchments, focused on the identification and description of spatial patterns of simultaneous temporal variations of runoff. These are dominated by large-scale variations of climatic variables but also altered by catchment processes. It was shown that time series of annual low, mean and high flows follow the same atmospheric drivers. The observation that high flows are more closely coupled to large scale atmospheric drivers than low flows, indicates the increasing influence of catchment properties on runoff under dry conditions. Further, it was shown that the low-frequency variability of European runoff is dominated by two opposing centres of simultaneous variations, such that dry years in the north are accompanied by wet years in the south.Large-scale hydrological models are simplified representations of our current perception of the terrestrial water balance on large scales. Quantification of the models strengths and weaknesses is the prerequisite for a reliable interpretation of simulation results. Model evaluations may also enable to detect shortcomings with model assumptions and thus enable a refinement of the current perception of hydrological systems. The ability of a multi model ensemble of nine large-scale

  20. Quantifying the Impacts of Large Scale Integration of Renewables in Indian Power Sector

    Science.gov (United States)

    Kumar, P.; Mishra, T.; Banerjee, R.

    2017-12-01

    India's power sector is responsible for nearly 37 percent of India's greenhouse gas emissions. For a fast emerging economy like India whose population and energy consumption are poised to rise rapidly in the coming decades, renewable energy can play a vital role in decarbonizing power sector. In this context, India has targeted 33-35 percent emission intensity reduction (with respect to 2005 levels) along with large scale renewable energy targets (100GW solar, 60GW wind, and 10GW biomass energy by 2022) in INDCs submitted at Paris agreement. But large scale integration of renewable energy is a complex process which faces a number of problems like capital intensiveness, matching intermittent loads with least storage capacity and reliability. In this context, this study attempts to assess the technical feasibility of integrating renewables into Indian electricity mix by 2022 and analyze its implications on power sector operations. This study uses TIMES, a bottom up energy optimization model with unit commitment and dispatch features. We model coal and gas fired units discretely with region-wise representation of wind and solar resources. The dispatch features are used for operational analysis of power plant units under ramp rate and minimum generation constraints. The study analyzes India's electricity sector transition for the year 2022 with three scenarios. The base case scenario (no RE addition) along with INDC scenario (with 100GW solar, 60GW wind, 10GW biomass) and low RE scenario (50GW solar, 30GW wind) have been created to analyze the implications of large scale integration of variable renewable energy. The results provide us insights on trade-offs involved in achieving mitigation targets and investment decisions involved. The study also examines operational reliability and flexibility requirements of the system for integrating renewables.

  1. Large-scale perturbations from the waterfall field in hybrid inflation

    International Nuclear Information System (INIS)

    Fonseca, José; Wands, David; Sasaki, Misao

    2010-01-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10 −54 on cosmological scales

  2. Financial analysis of large versus small nuclear power plants

    International Nuclear Information System (INIS)

    Louh, R.F.; Becker, M.; Wicks, F.

    1986-01-01

    There have been no new orders for nuclear plants and many nuclear plants under construction have been cancelled in recent years in the United States. Financing problems have been a major factor in this slow down of new nuclear plant activity. Meanwhile, the nuclear plants that have been completed have been operating cost effectively and yielding fossil fuel conservation and air quality benefits. Smaller plants have been designed in the past for the purpose of penetrating markets in developing countries and countries with relatively small utility systems. This paper examines the question of whether these smaller plants would be a viable option to large nuclear plants in the United States. Although the smaller plants are estimated to have a somewhat higher capital cost on a $/k W basis, they have the potential advantage of a lower total financial committment. The computational tools required for this evaluation are optimal generation planning and financial simulation programs and the corresponding generation and financial data bases for a variety of systems

  3. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  4. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  5. Strategies for Financing Large-scale Carbon Capture and Storage Power Plants in China

    OpenAIRE

    Liang, X.; Liu, H.; Reiner, D.

    2014-01-01

    Building on previous stakeholder consultations from 2006 to 2010, we conduct a financial analysis for a generic CCS power plant in China. In comparison with conventional thermal generation technologies, a coal-fired power plant with CCS requires either a 70% higher on-grid electricity tariff or carbon price support of approximately US$50/tonne CO2 in the absence of any other incentive mechanisms or financing strategies. Given the difficulties of relying on any one single measure to finance a ...

  6. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...

  7. Low-Complexity Transmit Antenna Selection and Beamforming for Large-Scale MIMO Communications

    Directory of Open Access Journals (Sweden)

    Kun Qian

    2014-01-01

    Full Text Available Transmit antenna selection plays an important role in large-scale multiple-input multiple-output (MIMO communications, but optimal large-scale MIMO antenna selection is a technical challenge. Exhaustive search is often employed in antenna selection, but it cannot be efficiently implemented in large-scale MIMO communication systems due to its prohibitive high computation complexity. This paper proposes a low-complexity interactive multiple-parameter optimization method for joint transmit antenna selection and beamforming in large-scale MIMO communication systems. The objective is to jointly maximize the channel outrage capacity and signal-to-noise (SNR performance and minimize the mean square error in transmit antenna selection and minimum variance distortionless response (MVDR beamforming without exhaustive search. The effectiveness of all the proposed methods is verified by extensive simulation results. It is shown that the required antenna selection processing time of the proposed method does not increase along with the increase of selected antennas, but the computation complexity of conventional exhaustive search method will significantly increase when large-scale antennas are employed in the system. This is particularly useful in antenna selection for large-scale MIMO communication systems.

  8. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... in human has been paralleled by the simultaneous develop- ment of ... In crop plants, the development of large genotyping arrays started much ..... via deep resequencing of reduced representation libraries with the Illumina ...

  9. Theory and evidence for using the economy-of-scale law in power plant economics

    International Nuclear Information System (INIS)

    Phung, D.L.

    1987-05-01

    This report compiles theory and evidence for the use of the economy-of-scale law in energy economics, particularly in the estimation of capital costs for coal-fired and nuclear power plants. The economy-of-scale law is widely used in its simplest form: cost is directly proportional to capacity raised to an exponent. An additive constant is an important component that is not generally taken into account. Also, the economy of scale is perforce valid only over a limited size range. The majority of engineering studies have estimated an economy of scale exponent of 0.7 to 0.9 for coal-fired plants and an exponent of 0.4 to 0.6 for nuclear plants in the capacity ranges of 400 to 1000 MWe. However, the majority of econometric analyses found little or no economy of scale for coal-fired plants and only a slight economy of scale for nuclear plants. This disparity is explained by the fact that economists have included regulatory and time-related costs in addition to the direct and indirect costs used by the engineers. Regulatory and time-related costs have become an increasingly larger portion of total costs during the last decade. In addition, these costs appeared to have either a very small economy of scale or to be increasing as the size of the power plant increased. We conclude that gains in economy of scale can only be made by reducing regulatory and time-related costs through design standardization and regulatory stability, in combination with more favorable economic conditions. 59 refs

  10. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  11. Temporal flexibility and careers: The role of large-scale organizations for physicians

    OpenAIRE

    Forrest Briscoe

    2006-01-01

    Temporal flexibility and careers: The role of large-scale organizations for physicians. Forrest Briscoe Briscoe This study investigates how employment in large-scale organizations affects the work lives of practicing physicians. Well-established theory associates larger organizations with bureaucratic constraint, loss of workplace control, and dissatisfaction, but this author finds that large scale is also associated with greater schedule and career flexibility. Ironically, the bureaucratic p...

  12. The role of large scale motions on passive scalar transport

    Science.gov (United States)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  13. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  14. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    Science.gov (United States)

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  16. Configuration management in large scale infrastructure development

    NARCIS (Netherlands)

    Rijn, T.P.J. van; Belt, H. van de; Los, R.H.

    2000-01-01

    Large Scale Infrastructure (LSI) development projects such as the construction of roads, rail-ways and other civil engineering (water)works is tendered differently today than a decade ago. Traditional workflow requested quotes from construction companies for construction works where the works to be

  17. Dual Decomposition for Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Vandenberghe, Lieven

    2013-01-01

    Dual decomposition is applied to power balancing of exible thermal storage units. The centralized large-scale problem is decomposed into smaller subproblems and solved locallyby each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption through a negotiation...

  18. Generation of large-scale vortives in compressible helical turbulence

    International Nuclear Information System (INIS)

    Chkhetiani, O.G.; Gvaramadze, V.V.

    1989-01-01

    We consider generation of large-scale vortices in compressible self-gravitating turbulent medium. The closed equation describing evolution of the large-scale vortices in helical turbulence with finite correlation time is obtained. This equation has the form similar to the hydromagnetic dynamo equation, which allows us to call the vortx genertation effect the vortex dynamo. It is possible that principally the same mechanism is responsible both for amplification and maintenance of density waves and magnetic fields in gaseous disks of spiral galaxies. (author). 29 refs

  19. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  20. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale.

    Science.gov (United States)

    Bernardo, Pauline; Charles-Dominique, Tristan; Barakat, Mohamed; Ortet, Philippe; Fernandez, Emmanuel; Filloux, Denis; Hartnady, Penelope; Rebelo, Tony A; Cousins, Stephen R; Mesleard, François; Cohez, Damien; Yavercovski, Nicole; Varsani, Arvind; Harkins, Gordon W; Peterschmitt, Michel; Malmstrom, Carolyn M; Martin, Darren P; Roumagnac, Philippe

    2018-01-01

    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km 2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature.

  1. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien

    2015-03-01

    The aim of this study was to assess the formation and the behavior of halogenated byproducts (regulated THMs and HAAs, as well as nitrogenous, brominated and iodinated DBPs including the emerging iodo-THMs) along the treatment train of full-scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF or RO). Desalination plants fed with good seawater quality and using intermittent chlorine injection did not show high DBP formation and discharge. One RO plant with a lower raw water quality and using continuous chlorination at the intake formed more DBPs. In this plant, some non-regulated DBPs (e.g., dibromoacetonitrile and iodo-THMs) reached the product water in low concentrations (< 1.5 μg/L). Regulated THMs and HAAs were far below their maximum contamination levels set by the US Environmental Protection Agency. Substantial amounts of DBPs are disposed to the sea; low concentrations of DBPs were indeed detected in the water on shore of the desalination plants.

  2. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    Science.gov (United States)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  3. Large-scale Intelligent Transporation Systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  4. Large Scale Screening of Southern African Plant Extracts for the Green Synthesis of Gold Nanoparticles Using Microtitre-Plate Method

    Directory of Open Access Journals (Sweden)

    Abdulrahman M. Elbagory

    2016-11-01

    Full Text Available The preparation of gold nanoparticles (AuNPs involves a variety of chemical and physical methods. These methods use toxic and environmentally harmful chemicals. Consequently, the synthesis of AuNPs using green chemistry has been under investigation to develop eco-friendly nanoparticles. One approach to achieve this is the use of plant-derived phytochemicals that are capable of reducing gold ions to produce AuNPs. The aim of this study was to implement a facile microtitre-plate method to screen a large number of aqueous plant extracts to determine the optimum concentration (OC for the bio-synthesis of the AuNPs. Several AuNPs of different sizes and shapes were successfully synthesized and characterized from 17 South African plants. The characterization was done using Ultra Violet-Visible Spectroscopy, Dynamic Light Scattering, High Resolution Transmission Electron Microscopy and Energy-Dispersive X-ray Spectroscopy. We also studied the effects of temperature on the synthesis of the AuNPs and showed that changes in temperatures affect the size and dispersity of the generated AuNPs. We also evaluated the stability of the synthesized AuNPs and showed that some of them are stable in biological buffer solutions.

  5. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  6. Large-scale demonstration of disposal of decontaminated salt as saltstone. Part I. Construction, loading, and capping of lysimeters

    International Nuclear Information System (INIS)

    Wolf, H.C.

    1984-06-01

    The installation phase of a large-scale demonstration of the disposal concept for decontaminated, low-level radioactive salt waste at the Savannah River Plant was completed in December 1983 and January 1984. The installation entailed immobilizing 7500 gallons of decontaminated salt solution with a blended cement formulation and pouring the resulting grout, saltstone, into three specially designed lysimeters for extended in-field leaching tests under natural conditions. 4 references, 35 figures, 4 tables

  7. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  8. Pro website development and operations streamlining DevOps for large-scale websites

    CERN Document Server

    Sacks, Matthew

    2012-01-01

    Pro Website Development and Operations gives you the experience you need to create and operate a large-scale production website. Large-scale websites have their own unique set of problems regarding their design-problems that can get worse when agile methodologies are adopted for rapid results. Managing large-scale websites, deploying applications, and ensuring they are performing well often requires a full scale team involving the development and operations sides of the company-two departments that don't always see eye to eye. When departments struggle with each other, it adds unnecessary comp

  9. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  10. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  11. Evaluation of Large-scale Public Sector Reforms

    DEFF Research Database (Denmark)

    Breidahl, Karen Nielsen; Gjelstrup, Gunnar; Hansen, Hanne Foss

    2017-01-01

    and more delimited policy areas take place. In our analysis we apply four governance perspectives (rational-instrumental, rational-interest based, institutional-cultural and a chaos perspective) in a comparative analysis of the evaluations of two large-scale public sector reforms in Denmark and Norway. We...

  12. Highly Scalable Trip Grouping for Large Scale Collective Transportation Systems

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach; Risch, Tore

    2008-01-01

    Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost...... and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous...

  13. Penalized Estimation in Large-Scale Generalized Linear Array Models

    DEFF Research Database (Denmark)

    Lund, Adam; Vincent, Martin; Hansen, Niels Richard

    2017-01-01

    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

  14. Large-scale coastal impact induced by a catastrophic storm

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Johannessen, Peter N

    breaching. Our results demonstrate that violent, millennial-scale storms can trigger significant large-scale and long-term changes on barrier coasts, and that coastal changes assumed to take place over centuries or even millennia may occur in association with a single extreme storm event....

  15. Large-eddy simulation with accurate implicit subgrid-scale diffusion

    NARCIS (Netherlands)

    B. Koren (Barry); C. Beets

    1996-01-01

    textabstractA method for large-eddy simulation is presented that does not use an explicit subgrid-scale diffusion term. Subgrid-scale effects are modelled implicitly through an appropriate monotone (in the sense of Spekreijse 1987) discretization method for the advective terms. Special attention is

  16. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  17. Macroecological factors explain large-scale spatial population patterns of ancient agriculturalists

    NARCIS (Netherlands)

    Xu, C.; Chen, B.; Abades, S.; Reino, L.; Teng, S.; Ljungqvist, F.C.; Huang, Z.Y.X.; Liu, X.

    2015-01-01

    Aim: It has been well demonstrated that the large-scale distribution patterns of numerous species are driven by similar macroecological factors. However, understanding of this topic remains limited when applied to our own species. Here we take a large-scale look at ancient agriculturalist

  18. Large Scale Investments in Infrastructure : Competing Policy regimes to Control Connections

    NARCIS (Netherlands)

    Otsuki, K.; Read, M.L.; Zoomers, E.B.

    2016-01-01

    This paper proposes to analyse implications of large-scale investments in physical infrastructure for social and environmental justice. While case studies on the global land rush and climate change have advanced our understanding of how large-scale investments in land, forests and water affect

  19. Rotation invariant fast features for large-scale recognition

    Science.gov (United States)

    Takacs, Gabriel; Chandrasekhar, Vijay; Tsai, Sam; Chen, David; Grzeszczuk, Radek; Girod, Bernd

    2012-10-01

    We present an end-to-end feature description pipeline which uses a novel interest point detector and Rotation- Invariant Fast Feature (RIFF) descriptors. The proposed RIFF algorithm is 15× faster than SURF1 while producing large-scale retrieval results that are comparable to SIFT.2 Such high-speed features benefit a range of applications from Mobile Augmented Reality (MAR) to web-scale image retrieval and analysis.

  20. Plant interactions alter the predictions of metabolic scaling theory

    DEFF Research Database (Denmark)

    Lin, Yue; Berger, Uta; Grimm, Volker

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive....... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories...

  1. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the

  2. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  3. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  4. International safeguards in large-scale nuclear facilities

    International Nuclear Information System (INIS)

    Gupta, D.; Heil, J.

    1977-01-01

    The trend in the energy sector in most of the world's industrialized areas shows rather clearly that the rate of installing nuclear plants will be very high and that the largest possible units of nuclear material handling and storage facilities will be built. Various experiments and analyses of measurement methods relevant to safeguards in typical nuclear facilities such as a fuel reprocessing or a fabrication plant have shown that the associated measurement errors as obtained under normal operating conditions are such that they are mainly dominated by systematic errors, which may lie in the range of percentages of the measured amount so that a material balance in such a plant could not normally be closed with any higher accuracy. For example, in a reprocessing plant with a throughput of 1500t U/a and a corresponding throughput of 15t Pu/a, a systematic error of 1% would cause a measurement uncertainty of around 70kg Pu in case a material balance is struck twice a year. Such a large amount may be considered to be unacceptable from the point of view of international safeguards since it arises out of a single plant. The simplest way of getting around the problem would be to strike a material balance more frequently over a given period. This could, however, lead to an enormous increase in the technical and financial burden for the operator of a facility. This paper analyses this problem in some detail for some facilities and shows that, for example, with a properly developed information system in such plants and a combination of containment, surveillance and accountancy measures, a safeguards system can be built up for such facilities. (author)

  5. Ecosystem Responses To Plant Phenology Across Scales And Trophic Levels

    Science.gov (United States)

    Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.

    2015-12-01

    Plant phenology in arid and semi-arid ecoregions is constrained by water availability and governs the life history characteristics of primary and secondary consumers. We related the behavior, demography, and distribution of mammalian herbivores and their principal predator to remotely sensed vegetation and climatological indices across the western United States for the period 2000-2014. Across scales, terrain and topographic position moderates the effects of climatological drought on primary productivity, resulting in differential susceptibility among plant functional types to water stress. At broad scales, herbivores tie parturition to moist sites during the period of maximum increase in local forage production. Consequently, juvenile mortality is highest in regions of extreme phenological variability. Although decoupled from primary production by one or more trophic levels, carnivore home range size and density is negatively correlated to plant productivity and growing season length. At the finest scales, predation influences the behavior of herbivore prey through compromised habitat selection, in which maternal females trade nutritional benefits of high plant biomass for reduced mortality risk associated with increased visibility. Climate projections for the western United States predict warming combined with shifts in the timing and form of precipitation. Our analyses suggest that these changes will propagate through trophic levels as increased phenological variability and shifts in plant distributions, larger consumer home ranges, altered migration behavior, and generally higher volatility in wildlife populations. Combined with expansion and intensification of human land use across the region, these changes will likely have economic implications stemming from increased human-wildlife conflict (e.g., crop damage, vehicle collisions) and changes in wildlife-related tourism.

  6. Large-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  7. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  8. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids

    Directory of Open Access Journals (Sweden)

    Sheng Jie Shao

    2010-06-01

    Full Text Available The ever increasing development and availability of power electronic systems is the underpinning technology that enables large scale integration of wind generation plants with the electricity grid. As the size and power capacity of the wind turbine continues to increase, so is the need to place these significantly large structures at off-shore locations. DC grids and associated power transmission technologies provide opportunities for cost reduction and electricity grid impact minimization as the bulk power is concentrated at single point of entry. As a result, planning, optimization and impact can be studied and carefully controlled minimizing the risk of the investment as well as power system stability issues. This paper discusses the key technologies associated with DC grids for offshore wind farm applications.

  9. Legal aspects of public participation in the planning/licensing of environmentally related large-scale projects

    International Nuclear Information System (INIS)

    Kurz, A.

    1992-02-01

    A variety of legal problems arise in the planning/licensing of environmentally related large-scale projects associated with the control and evaluation of technical conditions and the ramifications in social and legal policy of the acceptance of, and resistance to, such projects. On the basis of a number of partial studies e.g. of the licensing procedure of a nuclear power plant (Neckar-2 reactor), the author examines the legal aspects of public participation in the administrative procedure of licensing/plans approval. The dichotomy of law and technology is covered, and public participation in administrative procedures is derived legally from the basic constitutional rights and the principle of fair hearing. After an outline of specific administrative procedures, public participation as part of administrative procedures is included in the broad legal framework of licensing/plans approval of environmentally related large-scale projects. The author concludes that public participation, within the framework of the basic decisions established by legislature, is not a tool to be used in deciding basic political conflicts. Instead, public participations in the application of law serves to protect the rights of the individual by ensuring fair proceedings paying attention to the subjective rights of the individual. As it is unable to decide political conflicts, it is also an unsuitable means of establishing of basic societal consensus, or of seeking acceptance of large-scale projects. This is reflected also in studies of the legal functions of public participation, according to which the lawfulness of procedures is observed without, however, the legitimacy of the project being achieved. (orig./HP) [de

  10. Application of large-scale sequencing to marker discovery in plants

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... mate-pair libraries (large insert libraries), RNA-Seq data, reduced ... range of different applications for SGS have been developed and applied to marker ..... duced by human selection for desirable grain qualities. A total of 399 ...

  11. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  12. Toward Instructional Leadership: Principals' Perceptions of Large-Scale Assessment in Schools

    Science.gov (United States)

    Prytula, Michelle; Noonan, Brian; Hellsten, Laurie

    2013-01-01

    This paper describes a study of the perceptions that Saskatchewan school principals have regarding large-scale assessment reform and their perceptions of how assessment reform has affected their roles as principals. The findings revealed that large-scale assessments, especially provincial assessments, have affected the principal in Saskatchewan…

  13. A large scale field experiment in the Amazon basin (LAMBADA/BATERISTA)

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C.

    1995-01-01

    A description is given of a large-scale field experiment planned in the Amazon basin, aimed at assessing the large-scale balances of energy, water and carbon dioxide. The embedding of this experiment in global change programmes is described, viz. the Biospheric Aspects of the Hydrological Cycle

  14. Large-scale derived flood frequency analysis based on continuous simulation

    Science.gov (United States)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  15. Procedure for estimating nonfuel operation and maintenance costs for large steam-electric power plants

    International Nuclear Information System (INIS)

    Myers, M.L.; Fuller, L.C.

    1979-01-01

    Revised guidelines are presented for estimating annual nonfuel operation and maintenance costs for large steam-electric power plants, specifically light-water-reactor plants and coal-fired plants. Previous guidelines were published in October 1975 in ERDA 76-37, a Procedure for Estimating Nonfuel Operating and Maintenance Costs for Large Steam-Electric Power Plants. Estimates for coal-fired plants include the option of limestone slurry scrubbing for flue gas desulfurization. A computer program, OMCOST, is also presented which covers all plant options

  16. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nusser, Adi [Physics Department and the Asher Space Science Institute-Technion, Haifa 32000 (Israel); Branchini, Enzo [Department of Physics, Universita Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Davis, Marc, E-mail: adi@physics.technion.ac.il, E-mail: branchin@fis.uniroma3.it, E-mail: mdavis@berkeley.edu [Departments of Astronomy and Physics, University of California, Berkeley, CA 94720 (United States)

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  17. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  18. Planck intermediate results XLII. Large-scale Galactic magnetic fields

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured ...

  19. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Directory of Open Access Journals (Sweden)

    Hui He

    2013-01-01

    Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  20. Artificial neural network modelling of a large-scale wastewater treatment plant operation.

    Science.gov (United States)

    Güçlü, Dünyamin; Dursun, Sükrü

    2010-11-01

    Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

  1. No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation

    OpenAIRE

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2010-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the clas...

  2. Large Scale Emerging Properties from Non Hamiltonian Complex Systems

    Directory of Open Access Journals (Sweden)

    Marco Bianucci

    2017-06-01

    Full Text Available The concept of “large scale” depends obviously on the phenomenon we are interested in. For example, in the field of foundation of Thermodynamics from microscopic dynamics, the spatial and time large scales are order of fraction of millimetres and microseconds, respectively, or lesser, and are defined in relation to the spatial and time scales of the microscopic systems. In large scale oceanography or global climate dynamics problems the time scales of interest are order of thousands of kilometres, for space, and many years for time, and are compared to the local and daily/monthly times scales of atmosphere and ocean dynamics. In all the cases a Zwanzig projection approach is, at least in principle, an effective tool to obtain class of universal smooth “large scale” dynamics for few degrees of freedom of interest, starting from the complex dynamics of the whole (usually many degrees of freedom system. The projection approach leads to a very complex calculus with differential operators, that is drastically simplified when the basic dynamics of the system of interest is Hamiltonian, as it happens in Foundation of Thermodynamics problems. However, in geophysical Fluid Dynamics, Biology, and in most of the physical problems the building block fundamental equations of motions have a non Hamiltonian structure. Thus, to continue to apply the useful projection approach also in these cases, we exploit the generalization of the Hamiltonian formalism given by the Lie algebra of dissipative differential operators. In this way, we are able to analytically deal with the series of the differential operators stemming from the projection approach applied to these general cases. Then we shall apply this formalism to obtain some relevant results concerning the statistical properties of the El Niño Southern Oscillation (ENSO.

  3. Optimization of FTA technology for large scale plant DNA isolation ...

    African Journals Online (AJOL)

    Conventional methods for DNA acquisition and storage require expensive reagents and equipments. Experimental fields located in remote areas and large sample size presents greater challenge to developing country institutions constrained financially. FTATM technology uses a single format utilizing basic tools found in ...

  4. A new system of labour management in African large-scale agriculture?

    DEFF Research Database (Denmark)

    Gibbon, Peter; Riisgaard, Lone

    2014-01-01

    This paper applies a convention theory (CT) approach to the analysis of labour management systems in African large-scale farming. The reconstruction of previous analyses of high-value crop production on large-scale farms in Africa in terms of CT suggests that, since 1980–95, labour management has...

  5. Pseudoscalar-photon mixing and the large scale alignment of QsO ...

    Indian Academy of Sciences (India)

    physics pp. 679-682. Pseudoscalar-photon mixing and the large scale alignment of QsO optical polarizations. PANKAJ JAIN, sUKANTA PANDA and s sARALA. Physics Department, Indian Institute of Technology, Kanpur 208 016, India. Abstract. We review the observation of large scale alignment of QSO optical polariza-.

  6. On the universal character of the large scale structure of the universe

    International Nuclear Information System (INIS)

    Demianski, M.; International Center for Relativistic Astrophysics; Rome Univ.; Doroshkevich, A.G.

    1991-01-01

    We review different theories of formation of the large scale structure of the Universe. Special emphasis is put on the theory of inertial instability. We show that for a large class of initial spectra the resulting two point correlation functions are similar. We discuss also the adhesion theory which uses the Burgers equation, Navier-Stokes equation or coagulation process. We review the Zeldovich theory of gravitational instability and discuss the internal structure of pancakes. Finally we discuss the role of the velocity potential in determining the global characteristics of large scale structures (distribution of caustics, scale of voids, etc.). In the last chapter we list the main unsolved problems and main successes of the theory of formation of large scale structure. (orig.)

  7. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    . It is concluded that the CCGT CHP plant is the most feasible both from a technical analysis and a market economic analysis with electricity exchange. It is found that the current economic framework for large CHP plants in Denmark generates a mismatch between socio economy and business economy as well...

  8. LAVA: Large scale Automated Vulnerability Addition

    Science.gov (United States)

    2016-05-23

    LAVA: Large-scale Automated Vulnerability Addition Brendan Dolan -Gavitt∗, Patrick Hulin†, Tim Leek†, Fredrich Ulrich†, Ryan Whelan† (Authors listed...released, and thus rapidly become stale. We can expect tools to have been trained to detect bugs that have been released. Given the commercial price tag...low TCN) and dead (low liveness) program data is a powerful one for vulnera- bility injection. The DUAs it identifies are internal program quantities

  9. Large-Scale Transit Signal Priority Implementation

    OpenAIRE

    Lee, Kevin S.; Lozner, Bailey

    2018-01-01

    In 2016, the District Department of Transportation (DDOT) deployed Transit Signal Priority (TSP) at 195 intersections in highly urbanized areas of Washington, DC. In collaboration with a broader regional implementation, and in partnership with the Washington Metropolitan Area Transit Authority (WMATA), DDOT set out to apply a systems engineering–driven process to identify, design, test, and accept a large-scale TSP system. This presentation will highlight project successes and lessons learned.

  10. Probing cosmology with the homogeneity scale of the Universe through large scale structure surveys

    International Nuclear Information System (INIS)

    Ntelis, Pierros

    2017-01-01

    This thesis exposes my contribution to the measurement of homogeneity scale using galaxies, with the cosmological interpretation of results. In physics, any model is characterized by a set of principles. Most models in cosmology are based on the Cosmological Principle, which states that the universe is statistically homogeneous and isotropic on a large scales. Today, this principle is considered to be true since it is respected by those cosmological models that accurately describe the observations. However, while the isotropy of the universe is now confirmed by many experiments, it is not the case for the homogeneity. To study cosmic homogeneity, we propose to not only test a model but to test directly one of the postulates of modern cosmology. Since 1998 the measurements of cosmic distances using type Ia supernovae, we know that the universe is now in a phase of accelerated expansion. This phenomenon can be explained by the addition of an unknown energy component, which is called dark energy. Since dark energy is responsible for the expansion of the universe, we can study this mysterious fluid by measuring the rate of expansion of the universe. The universe has imprinted in its matter distribution a standard ruler, the Baryon Acoustic Oscillation (BAO) scale. By measuring this scale at different times during the evolution of our universe, it is then possible to measure the rate of expansion of the universe and thus characterize this dark energy. Alternatively, we can use the homogeneity scale to study this dark energy. Studying the homogeneity and the BAO scale requires the statistical study of the matter distribution of the universe at large scales, superior to tens of Mega-parsecs. Galaxies and quasars are formed in the vast over densities of matter and they are very luminous: these sources trace the distribution of matter. By measuring the emission spectra of these sources using large spectroscopic surveys, such as BOSS and eBOSS, we can measure their positions

  11. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  12. Response of deep and shallow tropical maritime cumuli to large-scale processes

    Science.gov (United States)

    Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.

    1976-01-01

    The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.

  13. Accuracy assessment of planimetric large-scale map data for decision-making

    Directory of Open Access Journals (Sweden)

    Doskocz Adam

    2016-06-01

    Full Text Available This paper presents decision-making risk estimation based on planimetric large-scale map data, which are data sets or databases which are useful for creating planimetric maps on scales of 1:5,000 or larger. The studies were conducted on four data sets of large-scale map data. Errors of map data were used for a risk assessment of decision-making about the localization of objects, e.g. for land-use planning in realization of investments. An analysis was performed for a large statistical sample set of shift vectors of control points, which were identified with the position errors of these points (errors of map data.

  14. Reviving large-scale projects

    International Nuclear Information System (INIS)

    Desiront, A.

    2003-01-01

    For the past decade, most large-scale hydro development projects in northern Quebec have been put on hold due to land disputes with First Nations. Hydroelectric projects have recently been revived following an agreement signed with Aboriginal communities in the province who recognized the need to find new sources of revenue for future generations. Many Cree are working on the project to harness the waters of the Eastmain River located in the middle of their territory. The work involves building an 890 foot long dam, 30 dikes enclosing a 603 square-km reservoir, a spillway, and a power house with 3 generating units with a total capacity of 480 MW of power for start-up in 2007. The project will require the use of 2,400 workers in total. The Cree Construction and Development Company is working on relations between Quebec's 14,000 Crees and the James Bay Energy Corporation, the subsidiary of Hydro-Quebec which is developing the project. Approximately 10 per cent of the $735-million project has been designated for the environmental component. Inspectors ensure that the project complies fully with environmental protection guidelines. Total development costs for Eastmain-1 are in the order of $2 billion of which $735 million will cover work on site and the remainder will cover generating units, transportation and financial charges. Under the treaty known as the Peace of the Braves, signed in February 2002, the Quebec government and Hydro-Quebec will pay the Cree $70 million annually for 50 years for the right to exploit hydro, mining and forest resources within their territory. The project comes at a time when electricity export volumes to the New England states are down due to growth in Quebec's domestic demand. Hydropower is a renewable and non-polluting source of energy that is one of the most acceptable forms of energy where the Kyoto Protocol is concerned. It was emphasized that large-scale hydro-electric projects are needed to provide sufficient energy to meet both

  15. Large-scale Flow and Transport of Magnetic Flux in the Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Horizontal large-scale velocity field describes horizontal displacement of the photospheric magnetic flux in zonal and meridian directions. The flow systems of solar plasma, constructed according to the velocity field, create the large-scale cellular-like patterns with up-flow in the center and the down-flow on the ...

  16. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity

    Directory of Open Access Journals (Sweden)

    Nabati Farzaneh

    2012-10-01

    Full Text Available Abstract Background and purpose of the study H. pylori infection is an important etiologic impetus usually leading to gastric disease and urease enzyme is the most crucial role is to protect the bacteria in the acidic environment of the stomach. Then urease inhibitors would increase sensitivity of the bacteria in acidic medium. Methods 137 Iranian traditional medicinal plants were examined against Jack bean urease activity by Berthelot reaction. Each herb was extracted using 50% aqueous methanol. The more effective extracts were further tested and their IC50 values were determined. Results 37 plants out of the 137 crude extracts revealed strong urease inhibitory activity (more than 70% inhibition against urease activity at 10 mg/ml concentration. Nine of the whole studied plants crude extracts were found as the most effective with IC50 values less than 500 μg/ml including; Rheum ribes, Sambucus ebulus, Pistachia lentiscus, Myrtus communis, Areca catechu, Citrus aurantifolia, Myristica fragrans, Cinnamomum zeylanicum and Nicotiana tabacum. Conclusions The most potent urease inhibitory was observed for Sambucus ebulus and Rheum ribes extracts with IC50 values of 57 and 92 μg/ml, respectively.

  17. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    Science.gov (United States)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  18. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  19. The economics and environmental impacts of large-scale wind power in a carbon constrained world

    Science.gov (United States)

    Decarolis, Joseph Frank

    Serious climate change mitigation aimed at stabilizing atmospheric concentrations of CO2 will require a radical shift to a decarbonized energy supply. The electric power sector will be a primary target for deep reductions in CO2 emissions because electric power plants are among the largest and most manageable point sources of emissions. With respect to new capacity, wind power is currently one of the most inexpensive ways to produce electricity without CO2 emissions and it may have a significant role to play in a carbon constrained world. Yet most research in the wind industry remains focused on near term issues, while energy system models that focus on century-long time horizons undervalue wind by imposing exogenous limits on growth. This thesis fills a critical gap in the literature by taking a closer look at the cost and environmental impacts of large-scale wind. Estimates of the average cost of wind generation---now roughly 4¢/kWh---do not address the cons arising from the spatial distribution and intermittency of wind. This thesis develops a theoretical framework for assessing the intermittency cost of wind. In addition, an economic characterization of a wind system is provided in which long-distance electricity transmission, storage, and gas turbines are used to supplement variable wind power output to meet a time-varying load. With somewhat optimistic assumptions about the cost of wind turbines, the use of wind to serve 50% of demand adds ˜1--2¢/kWh to the cost of electricity, a cost comparable to that of other large-scale low carbon technologies. This thesis also explores the environmental impacts posed by large-scale wind. Though avian mortality and noise caused controversy in the early years of wind development, improved technology and exhaustive siting assessments have minimized their impact. The aesthetic valuation of wind farms can be improved significantly with better design, siting, construction, and maintenance procedures, but opposition may

  20. Facile Large-scale synthesis of stable CuO nanoparticles

    Science.gov (United States)

    Nazari, P.; Abdollahi-Nejand, B.; Eskandari, M.; Kohnehpoushi, S.

    2018-04-01

    In this work, a novel approach in synthesizing the CuO nanoparticles was introduced. A sequential corrosion and detaching was proposed in the growth and dispersion of CuO nanoparticles in the optimum pH value of eight. The produced CuO nanoparticles showed six nm (±2 nm) in diameter and spherical feather with a high crystallinity and uniformity in size. In this method, a large-scale production of CuO nanoparticles (120 grams in an experimental batch) from Cu micro-particles was achieved which may met the market criteria for large-scale production of CuO nanoparticles.

  1. Large-Scale Cooperative Task Distribution on Peer-to-Peer Networks

    Science.gov (United States)

    2012-01-01

    SUBTITLE Large-scale cooperative task distribution on peer-to-peer networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...disadvantages of ML- Chord are its fixed size (two layers), and limited scala - bility for large-scale systems. RC-Chord extends ML- D. Karrels et al...configurable before runtime. This can be improved by incorporating a distributed learning algorithm to tune the number and range of the DLoE tracking

  2. Comparative Analysis of Different Protocols to Manage Large Scale Networks

    OpenAIRE

    Anil Rao Pimplapure; Dr Jayant Dubey; Prashant Sen

    2013-01-01

    In recent year the numbers, complexity and size is increased in Large Scale Network. The best example of Large Scale Network is Internet, and recently once are Data-centers in Cloud Environment. In this process, involvement of several management tasks such as traffic monitoring, security and performance optimization is big task for Network Administrator. This research reports study the different protocols i.e. conventional protocols like Simple Network Management Protocol and newly Gossip bas...

  3. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  4. Personalized Opportunistic Computing for CMS at Large Scale

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    **Douglas Thain** is an Associate Professor of Computer Science and Engineering at the University of Notre Dame, where he designs large scale distributed computing systems to power the needs of advanced science and...

  5. Stability of large scale interconnected dynamical systems

    International Nuclear Information System (INIS)

    Akpan, E.P.

    1993-07-01

    Large scale systems modelled by a system of ordinary differential equations are considered and necessary and sufficient conditions are obtained for the uniform asymptotic connective stability of the systems using the method of cone-valued Lyapunov functions. It is shown that this model significantly improves the existing models. (author). 9 refs

  6. Long-term modelling of Carbon Capture and Storage, Nuclear Fusion, and large-scale District Heating

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Korsholm, Søren Bang; Lüthje, Mikael

    2011-01-01

    before 2050. The modelling tools developed by the International Energy Agency (IEA) Implementing Agreement ETSAP include both multi-regional global and long-term energy models till 2100, as well as national or regional models with shorter time horizons. Examples are the EFDA-TIMES model, focusing...... on nuclear fusion and the Pan European TIMES model, respectively. In the next decades CCS can be a driver for the development and expansion of large-scale district heating systems, which are currently widespread in Europe, Korea and China, and with large potentials in North America. If fusion will replace...... fossil fuel power plants with CCS in the second half of the century, the same infrastructure for heat distribution can be used which will support the penetration of both technologies. This paper will address the issue of infrastructure development and the use of CCS and fusion technologies using...

  7. Large scale cross hole testing

    International Nuclear Information System (INIS)

    Ball, J.K.; Black, J.H.; Doe, T.

    1991-05-01

    As part of the Site Characterisation and Validation programme the results of the large scale cross hole testing have been used to document hydraulic connections across the SCV block, to test conceptual models of fracture zones and obtain hydrogeological properties of the major hydrogeological features. The SCV block is highly heterogeneous. This heterogeneity is not smoothed out even over scales of hundreds of meters. Results of the interpretation validate the hypothesis of the major fracture zones, A, B and H; not much evidence of minor fracture zones is found. The uncertainty in the flow path, through the fractured rock, causes sever problems in interpretation. Derived values of hydraulic conductivity were found to be in a narrow range of two to three orders of magnitude. Test design did not allow fracture zones to be tested individually. This could be improved by testing the high hydraulic conductivity regions specifically. The Piezomac and single hole equipment worked well. Few, if any, of the tests ran long enough to approach equilibrium. Many observation boreholes showed no response. This could either be because there is no hydraulic connection, or there is a connection but a response is not seen within the time scale of the pumping test. The fractional dimension analysis yielded credible results, and the sinusoidal testing procedure provided an effective means of identifying the dominant hydraulic connections. (10 refs.) (au)

  8. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  9. Multi-scale Modeling of Power Plant Plume Emissions and Comparisons with Observations

    Science.gov (United States)

    Costigan, K. R.; Lee, S.; Reisner, J.; Dubey, M. K.; Love, S. P.; Henderson, B. G.; Chylek, P.

    2011-12-01

    The Remote Sensing Verification Project (RSVP) test-bed located in the Four Corners region of Arizona, Utah, Colorado, and New Mexico offers a unique opportunity to develop new approaches for estimating emissions of CO2. Two major power plants located in this area produce very large signals of co-emitted CO2 and NO2 in this rural region. In addition to the Environmental Protection Agency (EPA) maintaining Continuous Emissions Monitoring Systems (CEMS) on each of the power plant stacks, the RSVP program has deployed an array of in-situ and remote sensing instruments, which provide both point and integrated measurements. To aid in the synthesis and interpretation of the measurements, a multi-scale atmospheric modeling approach is implemented, using two atmospheric numerical models: the Weather Research and Forecasting Model with chemistry (WRF-Chem; Grell et al., 2005) and the HIGRAD model (Reisner et al., 2003). The high fidelity HIGRAD model incorporates a multi-phase Lagrangian particle based approach to track individual chemical species of stack plumes at ultra-high resolution, using an adaptive mesh. It is particularly suited to model buoyancy effects and entrainment processes at the edges of the power plant plumes. WRF-Chem is a community model that has been applied to a number of air quality problems and offers several physical and chemical schemes that can be used to model the transport and chemical transformation of the anthropogenic plumes out of the local region. Multiple nested grids employed in this study allow the model to incorporate atmospheric variability ranging from synoptic scales to micro-scales (~200 m), while including locally developed flows influenced by the nearby complex terrain of the San Juan Mountains. The simulated local atmospheric dynamics are provided to force the HIGRAD model, which links mesoscale atmospheric variability to the small-scale simulation of the power plant plumes. We will discuss how these two models are applied and

  10. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  11. Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data.

    Science.gov (United States)

    Gray, Vanessa E; Hause, Ronald J; Luebeck, Jens; Shendure, Jay; Fowler, Douglas M

    2018-01-24

    Large datasets describing the quantitative effects of mutations on protein function are becoming increasingly available. Here, we leverage these datasets to develop Envision, which predicts the magnitude of a missense variant's molecular effect. Envision combines 21,026 variant effect measurements from nine large-scale experimental mutagenesis datasets, a hitherto untapped training resource, with a supervised, stochastic gradient boosting learning algorithm. Envision outperforms other missense variant effect predictors both on large-scale mutagenesis data and on an independent test dataset comprising 2,312 TP53 variants whose effects were measured using a low-throughput approach. This dataset was never used for hyperparameter tuning or model training and thus serves as an independent validation set. Envision prediction accuracy is also more consistent across amino acids than other predictors. Finally, we demonstrate that Envision's performance improves as more large-scale mutagenesis data are incorporated. We precompute Envision predictions for every possible single amino acid variant in human, mouse, frog, zebrafish, fruit fly, worm, and yeast proteomes (https://envision.gs.washington.edu/). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Methods for Large-Scale Nonlinear Optimization.

    Science.gov (United States)

    1980-05-01

    STANFORD, CALIFORNIA 94305 METHODS FOR LARGE-SCALE NONLINEAR OPTIMIZATION by Philip E. Gill, Waiter Murray, I Michael A. Saunden, and Masgaret H. Wright...typical iteration can be partitioned so that where B is an m X m basise matrix. This partition effectively divides the vari- ables into three classes... attention is given to the standard of the coding or the documentation. A much better way of obtaining mathematical software is from a software library

  13. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  14. Startup and operation of a plant-scale continuous glass melter for vitrification of Savannah River Plant simulated waste

    International Nuclear Information System (INIS)

    Willis, T.A.

    1980-01-01

    The reference process for disposal of radioactive waste from the Savannah River Plant is vitrification of the waste in borosilicate glass in a continuous glass melter. Design, startup, and operation of a plant-scale developmental melter system are discussed

  15. Recent Advances in Understanding Large Scale Vapour Explosions

    International Nuclear Information System (INIS)

    Board, S.J.; Hall, R.W.

    1976-01-01

    In foundries, violent explosions occur occasionally when molten metal comes into contact with water. If similar explosions can occur with other materials, hazardous situations may arise for example in LNG marine transportation accidents, or in liquid cooled reactor incidents when molten UO 2 contacts water or sodium coolant. Over the last 10 years a large body of experimental data has been obtained on the behaviour of small quantities of hot material in contact with a vaporisable coolant. Such experiments generally give low energy yields, despite producing fine fragmentation of the molten material. These events have been interpreted in terms of a wide range of phenomena such as violent boiling, liquid entrainment, bubble collapse, superheat, surface cracking and many others. Many of these studies have been aimed at understanding the small scale behaviour of the particular materials of interest. However, understanding the nature of the energetic events which were the original cause for concern may also be necessary to give confidence that violent events cannot occur for these materials in large scale situations. More recently, there has been a trend towards larger experiments and some of these have produced explosions of moderately high efficiency. Although occurrence of such large scale explosions can depend rather critically on initial conditions in a way which is not fully understood, there are signs that the interpretation of these events may be more straightforward than that of the single drop experiments. In the last two years several theoretical models for large scale explosions have appeared which attempt a self contained explanation of at least some stages of such high yield events: these have as their common feature a description of how a propagating breakdown of an initially quasi-stable distribution of materials is induced by the pressure and flow field caused by the energy release in adjacent regions. These models have led to the idea that for a full

  16. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  17. Large Scale GW Calculations on the Cori System

    Science.gov (United States)

    Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven

    The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.

  18. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  19. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  20. Electron drift in a large scale solid xenon

    International Nuclear Information System (INIS)

    Yoo, J.; Jaskierny, W.F.

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon