WorldWideScience

Sample records for large scale physical

  1. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    S F King

    2004-02-01

    We review experimental and theoretical developments in inflation and its application to structure formation, including the curvation idea. We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which the Higgs scalar field is responsible for large scale structure, show how such a theory is completely natural in the framework extra dimensions with an intermediate string scale.

  2. Large-scale physical activity data reveal worldwide activity inequality.

    Science.gov (United States)

    Althoff, Tim; Sosič, Rok; Hicks, Jennifer L; King, Abby C; Delp, Scott L; Leskovec, Jure

    2017-07-20

    To be able to curb the global pandemic of physical inactivity and the associated 5.3 million deaths per year, we need to understand the basic principles that govern physical activity. However, there is a lack of large-scale measurements of physical activity patterns across free-living populations worldwide. Here we leverage the wide usage of smartphones with built-in accelerometry to measure physical activity at the global scale. We study a dataset consisting of 68 million days of physical activity for 717,527 people, giving us a window into activity in 111 countries across the globe. We find inequality in how activity is distributed within countries and that this inequality is a better predictor of obesity prevalence in the population than average activity volume. Reduced activity in females contributes to a large portion of the observed activity inequality. Aspects of the built environment, such as the walkability of a city, are associated with a smaller gender gap in activity and lower activity inequality. In more walkable cities, activity is greater throughout the day and throughout the week, across age, gender, and body mass index (BMI) groups, with the greatest increases in activity found for females. Our findings have implications for global public health policy and urban planning and highlight the role of activity inequality and the built environment in improving physical activity and health.

  3. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  4. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  5. Polymer physics of chromosome large-scale 3D organisation.

    Science.gov (United States)

    Chiariello, Andrea M; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-13

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  6. Polymer physics of chromosome large-scale 3D organisation

    Science.gov (United States)

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  7. Believability in simplifications of large scale physically based simulation

    KAUST Repository

    Han, Donghui

    2013-01-01

    We verify two hypotheses which are assumed to be true only intuitively in many rigid body simulations. I: In large scale rigid body simulation, viewers may not be able to perceive distortion incurred by an approximated simulation method. II: Fixing objects under a pile of objects does not affect the visual plausibility. Visual plausibility of scenarios simulated with these hypotheses assumed true are measured using subjective rating from viewers. As expected, analysis of results supports the truthfulness of the hypotheses under certain simulation environments. However, our analysis discovered four factors which may affect the authenticity of these hypotheses: number of collisions simulated simultaneously, homogeneity of colliding object pairs, distance from scene under simulation to camera position, and simulation method used. We also try to find an objective metric of visual plausibility from eye-tracking data collected from viewers. Analysis of these results indicates that eye-tracking does not present a suitable proxy for measuring plausibility or distinguishing between types of simulations. © 2013 ACM.

  8. Physically-consistent subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    CERN Document Server

    Silvis, Maurits H

    2015-01-01

    Assuming a general constitutive relation for the turbulent stresses in terms of the local large-scale velocity gradient, we constructed a class of subgrid-scale models for large-eddy simulation that are consistent with important physical and mathematical properties. In particular, they preserve symmetries of the Navier-Stokes equations and exhibit the proper near-wall scaling. They furthermore show desirable dissipation behavior and are capable of describing nondissipative effects. We provided examples of such physically-consistent models and showed that existing subgrid-scale models do not all satisfy the desired properties.

  9. A Reduced Basis Framework: Application to large scale non-linear multi-physics problems

    Directory of Open Access Journals (Sweden)

    Daversin C.

    2013-12-01

    Full Text Available In this paper we present applications of the reduced basis method (RBM to large-scale non-linear multi-physics problems. We first describe the mathematical framework in place and in particular the Empirical Interpolation Method (EIM to recover an affine decomposition and then we propose an implementation using the open-source library Feel++ which provides both the reduced basis and finite element layers. Large scale numerical examples are shown and are connected to real industrial applications arising from the High Field Resistive Magnets development at the Laboratoire National des Champs Magnétiques Intenses.

  10. The use of production management techniques in the construction of large scale physics detectors

    CERN Document Server

    Bazan, A; Estrella, F; Kovács, Z; Le Flour, T; Le Goff, J M; Lieunard, S; McClatchey, R; Murray, S; Varga, L Z; Vialle, J P; Zsenei, M

    1999-01-01

    The construction process of detectors for the Large Hadron Collider (LHC) experiments is large scale, heavily constrained by resource availability and evolves with time. As a consequence, changes in detector component design need to be tracked and quickly reflected in the construction process. With similar problems in industry engineers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so- called Workflow Management software (WfMS) to coordinate production work processes. However, PDM and WfMS software are not generally integrated in industry. The scale of LHC experiments, like CMS, demands that industrial production techniques be applied in detector construction. This paper outlines the major functions and applications of the CRISTAL system (Cooperating Repositories and an information System for Tracking Assembly Lifecycles) in use in CMS which successfully integrates PDM and WfMS techniques in managing large scale physics detector ...

  11. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    Science.gov (United States)

    Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel

    2017-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.

  12. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    CERN Document Server

    Cardall, Christian Y

    2015-01-01

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. These classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

  13. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    CERN Document Server

    Silvis, Maurits H; Verstappen, Roel

    2016-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is p...

  14. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    Science.gov (United States)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; Calabrese, E.; Carlstrom, J.E.; Carvalho, C.S.; Chang, C.L.; Chiang, H.C.; Church, S.; Cooray, A.; Crawford, T.M.; Crill, B.P.; Dawson, K.S.; Das, S.; Devline, M.J.; Dobbs, M.; Dodelson, S; Wollack, E. J.

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  15. Inflation physics from the cosmic microwave background and large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments—the theory of cosmic inflation—and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B -mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  16. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    Science.gov (United States)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  17. Cohort Profile of The GOALS Study: A Large-scale Research of Physical Activity in Dutch Students

    NARCIS (Netherlands)

    De Groot, Renate; Van Dijk, Martin; Kirschner, Paul A.

    2016-01-01

    The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and

  18. AN IMPROVED PTV SYSTEM FOR LARGE-SCALE PHYSICAL RIVER MODEL

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To measure the surface flow in a physical river model, an improved system of Large-Scale Particle Tracking Velocimetry (LSPTV) was proposed and the elements of the PTV system were described. Usually the tracer particles of a PTV system seeded on water surface tend to form conglomerates due to surface tension of water. In addition, they can not float on water surface when water flow is shallow. Ellipsoid particles were used to avoid the above problems. Another important issue is particle recognition. In order to eliminate the influence of noise, particles were recognized by the processing of multi-frame images. The kernel of the improved PTV system is the algorithm for particle tracking. A new 3-frame PTV algorithm was developed. The performance of this algorithm was compared with the conventional 4-frame PTV algorithm and 2-frame PTV algorithm by means of computer simulation using synthetically generated images. The results show that the new 3-frame PTV algorithm can recover more velocity vectors and have lower relative error. In addition, in order to attain the whole flow field from individual flow fields, the method of stitching individual flow fields by obvious marks was worked out. Then the improved PTV system was applied to the measurement of surface flow field in Model Yellow River and shows good performance.

  19. High-Energy Physics Strategies and Future Large-Scale Projects

    CERN Document Server

    Zimmermann, F

    2015-01-01

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  20. High-energy physics strategies and future large-scale projects

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.

    2015-07-15

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e{sup +}e{sup −} collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  1. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    Science.gov (United States)

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  2. Cohort Profile of the Goals Study: A Large-Scale Research of Physical Activity in Dutch Students

    Science.gov (United States)

    de Groot, Renate H. M.; van Dijk, Martin L.; Kirschner, Paul A.

    2015-01-01

    The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and mental well-being. It was conducted at a…

  3. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    Science.gov (United States)

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  4. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study

    Science.gov (United States)

    Jackson, Dan; Hammerla, Nils; Granat, Malcolm H.; van Hees, Vincent T.; Trenell, Michael I.; Owen, Christoper G.; Preece, Stephen J.; Peakman, Tim; Brage, Soren

    2017-01-01

    Background Physical activity has not been objectively measured in prospective cohorts with sufficiently large numbers to reliably detect associations with multiple health outcomes. Technological advances now make this possible. We describe the methods used to collect and analyse accelerometer measured physical activity in over 100,000 participants of the UK Biobank study, and report variation by age, sex, day, time of day, and season. Methods Participants were approached by email to wear a wrist-worn accelerometer for seven days that was posted to them. Physical activity information was extracted from 100Hz raw triaxial acceleration data after calibration, removal of gravity and sensor noise, and identification of wear / non-wear episodes. We report age- and sex-specific wear-time compliance and accelerometer measured physical activity, overall and by hour-of-day, week-weekend day and season. Results 103,712 datasets were received (44.8% response), with a median wear-time of 6.9 days (IQR:6.5–7.0). 96,600 participants (93.3%) provided valid data for physical activity analyses. Vector magnitude, a proxy for overall physical activity, was 7.5% (2.35mg) lower per decade of age (Cohen’s d = 0.9). Women had a higher vector magnitude than men, apart from those aged 45-54yrs. There were major differences in vector magnitude by time of day (d = 0.66). Vector magnitude differences between week and weekend days (d = 0.12 for men, d = 0.09 for women) and between seasons (d = 0.27 for men, d = 0.15 for women) were small. Conclusions It is feasible to collect and analyse objective physical activity data in large studies. The summary measure of overall physical activity is lower in older participants and age-related differences in activity are most prominent in the afternoon and evening. This work lays the foundation for studies of physical activity and its health consequences. Our summary variables are part of the UK Biobank dataset and can be used by researchers as

  5. Bloom Filter-Based Secure Data Forwarding in Large-Scale Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Siyu Lin

    2015-01-01

    Full Text Available Cyber-physical systems (CPSs connect with the physical world via communication networks, which significantly increases security risks of CPSs. To secure the sensitive data, secure forwarding is an essential component of CPSs. However, CPSs require high dimensional multiattribute and multilevel security requirements due to the significantly increased system scale and diversity, and hence impose high demand on the secure forwarding information query and storage. To tackle these challenges, we propose a practical secure data forwarding scheme for CPSs. Considering the limited storage capability and computational power of entities, we adopt bloom filter to store the secure forwarding information for each entity, which can achieve well balance between the storage consumption and query delay. Furthermore, a novel link-based bloom filter construction method is designed to reduce false positive rate during bloom filter construction. Finally, the effects of false positive rate on the performance of bloom filter-based secure forwarding with different routing policies are discussed.

  6. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

    CERN Document Server

    Benza, Vincenzo G; Dorfman, Kevin D; Scolari, Vittore F; Bromek, Krystyna; Cicuta, Pietro; Lagomarsino, Marco Cosentino

    2012-01-01

    Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organised at various length scales. This has implications on modulating (when not enabling) the core biological processes of replication, transcription, segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. We also discuss some attempts of interpretation that unify different results, highlighting the role that statistical and soft co...

  7. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    Science.gov (United States)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  8. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

    Science.gov (United States)

    Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2012-07-01

    Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.

  9. Physical origin of the large-scale conformity in the specific star formation rates of galaxies

    CERN Document Server

    Kauffmann, Guinevere

    2015-01-01

    Two explanations have been put forward to explain the observed conformity between the colours and specific star formation rates (SFR/$M_*$) of galaxies on large scales: 1) the formation times of their surrounding dark matter halos are correlated (commonly referred to as "assembly bias"), 2) gas is heated over large scales at early times, leading to coherent modulation of cooling and star formation between well-separated galaxies (commonly referred to as "pre-heating") . To distinguish between the pre-heating and assembly bias scenarios, we search for relics of energetic feedback events in the neighbourhood of central galaxies with different specific star formation rates. We find a significant excess of very high mass ($\\log M_* > 11.3$) galaxies out to a distance of 2.5 Mpc around low SFR/$M_*$ central galaxies compared to control samples of higher SFR/$M_*$ central galaxies with the same stellar mass and redshift. We also find that very massive galaxies in the neighbourhood of low SFR/$M_*$ galaxies have muc...

  10. Solving Large-Scale Computational Problems Using Insights from Statistical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Selman, Bart [Cornell University

    2012-02-29

    Many challenging problems in computer science and related fields can be formulated as constraint satisfaction problems. Such problems consist of a set of discrete variables and a set of constraints between those variables, and represent a general class of so-called NP-complete problems. The goal is to find a value assignment to the variables that satisfies all constraints, generally requiring a search through and exponentially large space of variable-value assignments. Models for disordered systems, as studied in statistical physics, can provide important new insights into the nature of constraint satisfaction problems. Recently, work in this area has resulted in the discovery of a new method for solving such problems, called the survey propagation (SP) method. With SP, we can solve problems with millions of variables and constraints, an improvement of two orders of magnitude over previous methods.

  11. Microfluidic very large scale integration (VLSI) modeling, simulation, testing, compilation and physical synthesis

    CERN Document Server

    Pop, Paul; Madsen, Jan

    2016-01-01

    This book presents the state-of-the-art techniques for the modeling, simulation, testing, compilation and physical synthesis of mVLSI biochips. The authors describe a top-down modeling and synthesis methodology for the mVLSI biochips, inspired by microelectronics VLSI methodologies. They introduce a modeling framework for the components and the biochip architecture, and a high-level microfluidic protocol language. Coverage includes a topology graph-based model for the biochip architecture, and a sequencing graph to model for biochemical application, showing how the application model can be obtained from the protocol language. The techniques described facilitate programmability and automation, enabling developers in the emerging, large biochip market. · Presents the current models used for the research on compilation and synthesis techniques of mVLSI biochips in a tutorial fashion; · Includes a set of "benchmarks", that are presented in great detail and includes the source code of several of the techniques p...

  12. Valuing physically and financially-induced flexibility in large-scale water resources systems

    Science.gov (United States)

    Tilmant, Amaury; Pina, Jasson; Côté, Pascal

    2017-04-01

    In a world characterized by rapid changes in terms of water demands and supplies, there is a growing and persistent need for institutional reforms that promote cross-sectoral, adaptive management processes and policies. Yet, in many regions throughout the world, the continued expansion of supply-side infrastructure is still perceived as the way to go despite the rising financial, social and environmental costs. This trend is further compounded by the risks posed by climate change; reservoir storage, for example, is still perceived as a key element of climate change adaptation strategies in many countries. There is a growing concern that such strategies may result in a rigidity trap whereby the physical and institutional infrastructure become inflexible and unable to adapt to changes because they are mutually reinforcing each other. However, several authors have recently advocated for adaptive, flexible, management techniques involving a more diversified portfolio of measures whose management is regularly updated as new information about supplies and demands becomes available. Despite being conceptually attractive, such a management approach presents several challenges to policy makers. One of them is the sheer amount of information that must be processed each time a management decision must be taken. To address this issue, we propose an optimization framework that can be used to determine the optimal management of a large portfolio of physical and financial assets using various hydro-climatic information. This optimization framework is illustrated with the management of a power system in Quebec involving various power stations, reservoirs, power and energy contracts as well as hydrologic and climatic data. The results can be used to assess the economic value of the flexibility induced by either the physical assets (power stations and reservoirs) or by the financial ones (contracts), an information we believe is important to highlight the benefits of adaptive

  13. The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure

    Science.gov (United States)

    Mummery, Benjamin O.; McCarthy, Ian G.; Bird, Simeon; Schaye, Joop

    2017-10-01

    We use the cosmo-OWLS and bahamas suites of cosmological hydrodynamical simulations to explore the separate and combined effects of baryon physics (particularly feedback from active galactic nuclei, AGN) and free streaming of massive neutrinos on large-scale structure. We focus on five diagnostics: (i) the halo mass function, (ii) halo mass density profiles, (iii) the halo mass-concentration relation, (iv) the clustering of haloes and (v) the clustering of matter, and we explore the extent to which the effects of baryon physics and neutrino free streaming can be treated independently. Consistent with previous studies, we find that both AGN feedback and neutrino free streaming suppress the total matter power spectrum, although their scale and redshift dependences differ significantly. The inclusion of AGN feedback can significantly reduce the masses of groups and clusters, and increase their scale radii. These effects lead to a decrease in the amplitude of the mass-concentration relation and an increase in the halo autocorrelation function at fixed mass. Neutrinos also lower the masses of groups and clusters while having no significant effect on the shape of their density profiles (thus also affecting the mass-concentration relation and halo clustering in a qualitatively similar way to feedback). We show that, with only a small number of exceptions, the combined effects of baryon physics and neutrino free streaming on all five diagnostics can be estimated to typically better than a few per cent accuracy by treating these processes independently (i.e. by multiplying their separate effects).

  14. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    Science.gov (United States)

    Gerszewski, Daniel James

    Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present

  15. Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling

    Directory of Open Access Journals (Sweden)

    D. Bachmann

    2004-01-01

    Full Text Available Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the 'gravity acceleration' up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength σl. The deeper (core part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength layer. In another set of experiments, low strength (σw narrow planar zones sub-parallel to the slope surface (σwl were introduced into the model's superficial low strength layer to simulate localized highly weathered zones. In this configuration landslides were initiated much easier (at lower 'gravity force', were shallower and had smaller horizontal size largely defined by the weak zone size. Pre-existing fractures were introduced into the model by cutting it along a given plan. They have proved to be of small influence on the slope stability, except when they were associated to highly weathered zones. In this latter case the fractures laterally limited the slides. Deep seated rockslides initiation is thus directly defined by the mechanical structure of the hillslope's uppermost levels and especially by the presence of the weak zones due to the weathering. The large scale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

  16. ANL/Star project: a new architecture for large scale theoretical physics computations

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, A.M.

    1985-01-01

    The project reported consists of two phases, each of which has goals of substantial physics content on its own. In Phase 1, we have selected Star Technologies' ST-100 as the array processor for the prototype coupled system and have installed one on a Vax 11/750 host. Our goals with this system are to institute a substantial program in computational physics at Argonne based on the power provided by this system and thereby to gain experience with both the hardware and software architecture of the ST-100. In Phase II, we propose to build a prototype consisting of two coupled array processors with shared memory to prove that this design can achieve high speed and efficiency in a readily extensible and cost-effective manner. This will implement all of the hardware and software modifications necessary to extend this design to as many as 64 (or more) nodes. In our design, we seek to minimize the changes made in the standard system hardware and software; this drastically reduces the effort required by our group to implement such a design and enables us to more readily incorporate the companies' upgrades to the array processor. It should be emphasized that our design is intended as a special purpose system for theoretical calculations; however it can be efficiently applied to a surprisingly broad class of problems. I shall discuss first the architecture of the ST-100 and then the physics program being currently implemented on a single system. Finally the proposed design of the coupled system is presented.

  17. Hybrid Physical Chemical Vapor Deposition of Superconducting Magnesium Diboride Coatings for Large Scale Radio Frequency Cavities

    Science.gov (United States)

    Lee, Namhoon; Withanage, Wenura; Tan, Teng; Wolak, Matthaeus; Xi, Xiaoxing

    2016-03-01

    Magnesium diboride (MgB2) is considered to be a great candidate for next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature Tc (40 K) and increased thermodynamic critical field Hc compared to other conventional superconductors. These properties significantly reduce the BCS surface resistance (RsBCS)and residual resistance (Rres) according to theoretical studies and suggest the possibility of an enhanced accelerating field (Eacc) . We have investigated the possibility of coating the inner surface of a 3 GHz SRF cavity with MgB2 by using a hybrid physical-vapor deposition (HPCVD) system which was modified for this purpose. To simulate a real 3 GHz SRF cavity, a stainless steel mock cavity has been employed for the study. The film quality was characterized on small substrates that were placed at selected locations within the cavity. MgB2 films on stainless steel foils, niobium pieces and SiC substrates showed transition temperatures of above 36 K. Dielectric resonance measurements resulted in promising Q values as obtained for the MgB2 films grown on the various substrates. By employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB2 coatings for SRF cavities.

  18. Neutrino physics from the cosmic microwave background and large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.

    2015-03-01

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmν) = 16 meV and σ (Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν , whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff=3.046 .

  19. The next step in real time data processing for large scale physics experiments

    CERN Document Server

    Paramesvaran, Sudarshan

    2016-01-01

    Run 2 of the LHC represents one of the most challenging scientific environments for real time data analysis and processing. The steady increase in instantaneous luminosity will result in the CMS detector producing around 150 TB/s of data, only a small fraction of which is useful for interesting Physics studies. During 2015 the CMS collaboration will be completing a total upgrade of its Level 1 Trigger to deal with these conditions. In this talk a description of the major components of this complex system will be described. This will include a discussion of custom-designed electronic processing boards, built to the uTCA specification with AMC cards based on Xilinx 7 FPGAs and a network of high-speed optical links. In addition, novel algorithms will be described which deliver excellent performance in FPGAs and are combined with highly stable software frameworks to ensure a minimal risk of downtime. This upgrade is planned to take data from 2016. However a system of parallel running has been developed that will ...

  20. Neutrino physics from the cosmic microwave background and large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, K. N.; Arnold, K.; Austermann, J. E.; Benson, B. A.; Bischoff, C.; Brock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Chang, C. L.

    2015-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmν)(σmν) = 16 meV and σ (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of NeffNeff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that View the MathML sourceNeff=3.046.

  1. Handbook of Large-Scale Random Networks

    CERN Document Server

    Bollobas, Bela; Miklos, Dezso

    2008-01-01

    Covers various aspects of large-scale networks, including mathematical foundations and rigorous results of random graph theory, modeling and computational aspects of large-scale networks, as well as areas in physics, biology, neuroscience, sociology and technical areas

  2. [Physical, chemical and biological study of dust from large-scale pig farms].

    Science.gov (United States)

    Raszyk, J

    1986-04-01

    Dust deposition in 16 halls of two large pig-fattening farms with dry or wet feeding systems was analyzed. In the halls with wet feeding the samples contained maximally 28 dust particles up to 10 micron and 17 particles up to 5 micron per cm3 of air, in the halls with dry feeding 220 particles smaller than 10 micron and 205 particles smaller than 5 micron per cm3 of air. The total amino acid content in the dust deposition was 17.440 +/- 1.820 g per 100 g of sample and the content of nitrogen compounds (N X X 6.25, %), was 24.170 +/- 2.910. The contents of chemical elements were as follows (mg per kg): zinc 448 +/- 151; manganese 109.9 +/- 49.5; copper 40.5 +/- 12.1; lead 4.77 +/- +/- 4.79; chromium 1.64 +/- 1.47; cadmium 1.61 +/- 1.62; mercury 0.36 +/- 0.39. Chlorinated carbohydrates and triazine and diazine herbicides were present in the following amounts (mg per kg): HCB 0.0023 +/- 0.0021; Lindane 0.0058 +/- 0.0079; DDE 0.0048 +/- +/- 0.0024; DDT 0.0065 +/- 0.0015; Simazine 0.060 +/- 0.020; Atrazine 0.083 +/- 0.059; Prometryn 0.093 +/- 0.040; Chloridazon 0.036 +/- 0.008; Terbutryn 0.085 +/- 0.029. The content of aflatoxin B1 was 12.89 +/- 9.31 micrograms per kg and the maximum amount of polychlorinated biphenyls was 8 mg per kg. Nitrovin was found out only in the dust of two halls: 4.0 and 7.9 mg per kg. The dust deposition also contained 21 genera and species of moulds, six species of mites, numerous saprophytic bacteria and, in some cases, Staphylococcus aureus. For the time being, no viruses have been detected in the dust samples.

  3. A Large-Scale Study of Surrogate Physicality and Gesturing on Human–Surrogate Interactions in a Public Space

    Directory of Open Access Journals (Sweden)

    Kangsoo Kim

    2017-07-01

    Full Text Available Technological human surrogates, including robotic and virtual humans, have been popularly used in various scenarios, including training, education, and entertainment. Prior research has investigated the effects of the surrogate’s physicality and gesturing in human perceptions and social influence of the surrogate. However, those studies have been carried out in research laboratories, where the participants were aware that it was an experiment, and the participant demographics are typically relatively narrow—e.g., college students. In this paper, we describe and share results from a large-scale exploratory user study involving 7,685 people in a public space, where they were unaware of the experimental nature of the setting, to investigate the effects of surrogate physicality and gesturing on their behavior during human–surrogate interactions. We evaluate human behaviors using several variables, such as proactivity and reactivity, and proximity. We have identified several interesting phenomena that could lead to hypotheses developed as part of future hypothesis-based studies. Based on the measurements of the variables, we believe people are more likely to be engaged in a human–surrogate interaction when the surrogate is physically present, but movements and gesturing with its body parts have not shown the expected benefits for the interaction engagement. Regarding the demographics of the people in the study, we found higher overall engagement for females than males, and higher reactivity for younger than older people. We discuss implications for practitioners aiming to design a technological surrogate that will directly interact with real humans.

  4. High-Resiliency and Auto-Scaling of Large-Scale Cloud Computing for OCO-2 L2 Full Physics Processing

    Science.gov (United States)

    Hua, H.; Manipon, G.; Starch, M.; Dang, L. B.; Southam, P.; Wilson, B. D.; Avis, C.; Chang, A.; Cheng, C.; Smyth, M.; McDuffie, J. L.; Ramirez, P.

    2015-12-01

    Next generation science data systems are needed to address the incoming flood of data from new missions such as SWOT and NISAR where data volumes and data throughput rates are order of magnitude larger than present day missions. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. We present our experiences on deploying a hybrid-cloud computing science data system (HySDS) for the OCO-2 Science Computing Facility to support large-scale processing of their Level-2 full physics data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer ~10X costs savings but with an unpredictable computing environment based on market forces. We will present how we enabled high-tolerance computing in order to achieve large-scale computing as well as operational cost savings.

  5. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    Science.gov (United States)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  6. LARGE SCALE GLAZED

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    WORLD FAMOUS ARCHITECTS CHALLENGE TODAY THE EXPOSURE OF CONCRETE IN THEIR ARCHITECTURE. IT IS MY HOPE TO BE ABLE TO COMPLEMENT THESE. I TRY TO DEVELOP NEW AESTHETIC POTENTIALS FOR THE CONCRETE AND CERAMICS, IN LARGE SCALES THAT HAS NOT BEEN SEEN BEFORE IN THE CERAMIC AREA. IT IS EXPECTED TO RESULT...

  7. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    Science.gov (United States)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    Context. We present a study of the 3D environment for a sample of 386 galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the Ninth Data Release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the CIG, as well as the effects of the large-scale structure (LSS). Methods: To recover the physically bound galaxies we first focused on the satellites that are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy were estimated to quantify the effects of the local and LSS environments. We also defined the projected number density parameter at the fifth nearest neighbour to characterise the LSS around the CIG galaxies. Results: Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Following the more conservative Gaussian distribution of physical satellites around the CIG galaxies leads to upper limits. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. When present around a CIG galaxy, the effect of physically bound galaxies largely dominates (typically by more than 90%) the tidal strengths generated by the LSS. Conclusions: The CIG samples a variety of environments, from galaxies with physical satellites to galaxies without neighbours within 3 Mpc. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with probably younger stellar populations and very high star formation compared with older

  8. An integrated study of physical precursors of failure in relation to earthquake prediction, using large scale rock blocks

    Directory of Open Access Journals (Sweden)

    A. V. Ponomarev

    1999-06-01

    Full Text Available This paper is multi-analysis approach to rock failure using metric size rock samples. The use of large-scale models permits simulation of the seismic process (including internal rupture on several scales and utilization of a dense network for observation of the spatial variations of several physical parameters. The experiments were performed both on solid rock blocks and on concrete blocks with artificial defects, which enabled simulation of internal shear fracture. The number of various precursors appears to rise up to failure, all of them clearly manifest at the stage of a rapid drop in the applied stress (unstable deformation. The experiment suggests that rocks under strain and prior to failure must be characterized by a heterogeneous field of strains. This means that the strain is distributed mosaically, dilatancy does not generate uniformly and areas where it occurs are likely to be structurally mosaic themselves. To reinforce the prediction of micro- and macrofailure, we have realized simultaneous processing of the obtained data, using sophisticated multidimensional orthogonal functions to represent the different precursors. The possibility to identify the early stages of microfailures and to predict the macrofailure by means of statistical complex parameters derived from data on local deformations, acoustic emissions, elastic waves velocities, electric resistivity and self electric potentials is shown. Despite a considerable dissimilarity in mechanical properties of granite basalt and concrete, the complex parameter proves morphologically identical. Parameter S1 reveals exponential rise up to failure in all cases, and parameter S2 is bay-shaped in form, which makes it more promising in terms of prognosis.

  9. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  10. Interfacing Detectors and Collecting Data for Large-Scale Experiments in High Energy Physics Using COTS Technology

    CERN Document Server

    Schumacher, Jorn; Wandelli, Wainer

    Data-acquisition systems for high-energy physics experiments like the ATLAS experiment at the European particle-physics research institute CERN are used to record experimental physics data and are essential for the effective operation of an experiment. Located in underground facilities with limited space, power, cooling, and exposed to ionizing radiation and strong magnetic fields, data-acquisition systems have unique requirements and are challenging to design and build. Traditionally, these systems have been composed of custom-designed electronic components to be able to cope with the large data volumes that high-energy physics experiments generate and at the same time meet technological and environmental requirements. Custom-designed electronics is costly to develop, effortful to maintain and typically not very flexible. This thesis explores an alternative architecture for data-acquisition systems based on commercial off-the-shelf (COTS) components. A COTS-based data distribution device called FELIX that w...

  11. Models of large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, C.S. (Physics Dept., Univ. of Durham (UK))

    1991-01-01

    The ingredients required to construct models of the cosmic large scale structure are discussed. Input from particle physics leads to a considerable simplification by offering concrete proposals for the geometry of the universe, the nature of the dark matter and the primordial fluctuations that seed the growth of structure. The remaining ingredient is the physical interaction that governs dynamical evolution. Empirical evidence provided by an analysis of a redshift survey of IRAS galaxies suggests that gravity is the main agent shaping the large-scale structure. In addition, this survey implies large values of the mean cosmic density, {Omega}> or approx.0.5, and is consistent with a flat geometry if IRAS galaxies are somewhat more clustered than the underlying mass. Together with current limits on the density of baryons from Big Bang nucleosynthesis, this lends support to the idea of a universe dominated by non-baryonic dark matter. Results from cosmological N-body simulations evolved from a variety of initial conditions are reviewed. In particular, neutrino dominated and cold dark matter dominated universes are discussed in detail. Finally, it is shown that apparent periodicities in the redshift distributions in pencil-beam surveys arise frequently from distributions which have no intrinsic periodicity but are clustered on small scales. (orig.).

  12. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    OpenAIRE

    Masetti, Lorenzo

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a signicant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specic requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but present...

  13. Large scale tracking algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  14. Large scale tracking algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  15. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Understanding Nano-scale Electronic Systems via Large-scale Computation

    Science.gov (United States)

    Cao, Chao

    2009-03-01

    Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.

  16. Large-Scale Galaxy Bias

    CERN Document Server

    Desjacques, Vincent; Schmidt, Fabian

    2016-01-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a pedagogical proof of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which includes the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in i...

  17. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs.

    Science.gov (United States)

    Lockley, Martin G; McCrea, Richard T; Buckley, Lisa G; Lim, Jong Deock; Matthews, Neffra A; Breithaupt, Brent H; Houck, Karen J; Gierliński, Gerard D; Surmik, Dawid; Kim, Kyung Soo; Xing, Lida; Kong, Dal Yong; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-07

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of "display arenas" or leks, and consistent with "nest scrape display" behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  18. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    Science.gov (United States)

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  19. Biological scaling and physics

    Indian Academy of Sciences (India)

    A R P Rau

    2002-09-01

    Kleiber’s law in biology states that the specific metabolic rate (metabolic rate per unit mass) scales as -1/4 in terms of the mass of the organism. A long-standing puzzle is the (- 1/4) power in place of the usual expectation of (- 1/3) based on the surface to volume ratio in three-dimensions. While recent papers by physicists have focused exclusively on geometry in attempting to explain the puzzle, we consider here a specific law of physics that governs fluid flow to show how the (- 1/4) power arises under certain conditions. More generally, such a line of approach that identifies a specific physical law as involved and then examines the implications of a power law may illuminate better the role of physics in biology.

  20. Biological scaling and physics.

    Science.gov (United States)

    Rau, A R P

    2002-09-01

    Kleiber's law in biology states that the specific metabolic rate (metabolic rate per unit mass) scales as M- 1/4 in terms of the mass M of the organism. A long-standing puzzle is the (- 1/4) power in place of the usual expectation of (- 1/3) based on the surface to volume ratio in three-dimensions. While recent papers by physicists have focused exclusively on geometry in attempting to explain the puzzle, we consider here a specific law of physics that governs fluid flow to show how the (- 1/4) power arises under certain conditions. More generally, such a line of approach that identifies a specific physical law as involved and then examines the implications of a power law may illuminate better the role of physics in biology.

  1. Large scale cluster computing workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dane Skow; Alan Silverman

    2002-12-23

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community.

  2. Network robustness under large-scale attacks

    CERN Document Server

    Zhou, Qing; Liu, Ruifang; Cui, Shuguang

    2014-01-01

    Network Robustness under Large-Scale Attacks provides the analysis of network robustness under attacks, with a focus on large-scale correlated physical attacks. The book begins with a thorough overview of the latest research and techniques to analyze the network responses to different types of attacks over various network topologies and connection models. It then introduces a new large-scale physical attack model coined as area attack, under which a new network robustness measure is introduced and applied to study the network responses. With this book, readers will learn the necessary tools to evaluate how a complex network responds to random and possibly correlated attacks.

  3. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  4. Large Scale Structure Observations

    CERN Document Server

    Percival, Will J

    2015-01-01

    Galaxy Surveys are enjoying a renaissance thanks to the advent of multi-object spectrographs on ground-based telescopes. The last 15 years have seen the fruits of this experimental advance, including the 2-degree Field Galaxy Redshift Survey (2dFGRS; Colless et al. 2003) and the Sloan Digital Sky Survey (SDSS; York et al. 2000). Most recently, the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013), part of the SDSS-III project (Eisenstein et al. 2011), has provided the largest volume of the low-redshift Universe ever surveyed with a galaxy density useful for high-precision cosmology. This set of lecture notes looks at some of the physical processes that underpin these measurements, the evolution of measurements themselves, and looks ahead to the next 15 years and the advent of surveys such as the enhanced Baryon Oscillation Spectroscopic Survey (eBOSS), the Dark Energy Spectroscopic Instrument (DESI) and the ESA Euclid satellite mission.

  5. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  6. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  7. Large scale-small scale duality and cosmological constant

    CERN Document Server

    Darabi, F

    1999-01-01

    We study a model of quantum cosmology originating from a classical model of gravitation where a self interacting scalar field is coupled to gravity with the metric undergoing a signature transition. We show that there are dual classical signature changing solutions, one at large scales and the other at small scales. It is possible to fine-tune the physics in both scales with an infinitesimal effective cosmological constant.

  8. Very Large Scale Integration (VLSI).

    Science.gov (United States)

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  9. Large-Scale Studies on the Transferability of General Problem-Solving Skills and the Pedagogic Potential of Physics

    Science.gov (United States)

    Mashood, K. K.; Singh, Vijay A.

    2013-01-01

    Research suggests that problem-solving skills are transferable across domains. This claim, however, needs further empirical substantiation. We suggest correlation studies as a methodology for making preliminary inferences about transfer. The correlation of the physics performance of students with their performance in chemistry and mathematics in…

  10. Large-Scale Studies on the Transferability of General Problem-Solving Skills and the Pedagogic Potential of Physics

    Science.gov (United States)

    Mashood, K. K.; Singh, Vijay A.

    2013-01-01

    Research suggests that problem-solving skills are transferable across domains. This claim, however, needs further empirical substantiation. We suggest correlation studies as a methodology for making preliminary inferences about transfer. The correlation of the physics performance of students with their performance in chemistry and mathematics in…

  11. Large-scale survey of Chinese precollege students' epistemological beliefs about physics: A progression or a regression?

    Science.gov (United States)

    Zhang, Ping; Ding, Lin

    2013-06-01

    This paper reports a cross-grade comparative study of Chinese precollege students’ epistemological beliefs about physics by using the Colorado Learning Attitudes Survey about Sciences (CLASS). Our students of interest are middle and high schoolers taking traditional lecture-based physics as a mandatory science course each year from the 8th grade to the 12th grade in China. The original CLASS was translated into Mandarin through a rigorous transadaption process, and then it was administered as a pencil-and-paper in-class survey to a total of 1318 students across all the five grade levels (8-12). Our results showed that although in general student epistemological beliefs became less expertlike after receiving more years of traditional instruction (a trend consistent with what was reported in the previous literature), the cross-grade change was not a monotonous decrease. Instead, students at grades 9 and 12 showed a slight positive shift in their beliefs measured by CLASS. Particularly, when compared to the 8th graders, students at the 9th grade demonstrated a significant increase in their views about the conceptual nature of physics and problem-solving sophistication. We hypothesize that both pedagogical and nonpedagogical factors may have contributed to these positive changes. Our results cast light on the complex nature of the relationship between formal instruction and student epistemological beliefs.

  12. Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties

    Directory of Open Access Journals (Sweden)

    C. A. Quesada

    2009-04-01

    Full Text Available Forest structure and dynamics have been noted to vary across the Amazon Basin in an east-west gradient in a pattern which coincides with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates.

    To test this hypothesis and assess the importance of edaphic properties in affect forest structure and dynamics, soil and plant samples were collected in a total of 59 different forest plots across the Amazon Basin. Samples were analysed for exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality developed.

    Overall, forest structure and dynamics were found to be strongly and quantitatively related to edaphic conditions. Tree turnover rates emerged to be mostly influenced by soil physical properties whereas forest growth rates were mainly related to a measure of available soil phosphorus, although also dependent on rainfall amount and distribution. On the other hand, large scale variations in forest biomass could not be explained by any of the edaphic properties measured, nor by variation in climate.

    A new hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining forest disturbance levels, species composition and forest productivity on a Basin wide scale.

  13. Large Scale Dynamos in Stars

    Science.gov (United States)

    Vishniac, Ethan T.

    2015-01-01

    We show that a differentially rotating conducting fluid automatically creates a magnetic helicity flux with components along the rotation axis and in the direction of the local vorticity. This drives a rapid growth in the local density of current helicity, which in turn drives a large scale dynamo. The dynamo growth rate derived from this process is not constant, but depends inversely on the large scale magnetic field strength. This dynamo saturates when buoyant losses of magnetic flux compete with the large scale dynamo, providing a simple prediction for magnetic field strength as a function of Rossby number in stars. Increasing anisotropy in the turbulence produces a decreasing magnetic helicity flux, which explains the flattening of the B/Rossby number relation at low Rossby numbers. We also show that the kinetic helicity is always a subdominant effect. There is no kinematic dynamo in real stars.

  14. Large-scale circuit simulation

    Science.gov (United States)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  15. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  16. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  17. Strings and large scale magnetohydrodynamics

    CERN Document Server

    Olesen, P

    1995-01-01

    From computer simulations of magnetohydrodynamics one knows that a turbulent plasma becomes very intermittent, with the magnetic fields concentrated in thin flux tubes. This situation looks very "string-like", so we investigate whether strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the string equations (with non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magnetic and electric string fields.

  18. Testing gravity on Large Scales

    OpenAIRE

    Raccanelli Alvise

    2013-01-01

    We show how it is possible to test general relativity and different models of gravity via Redshift-Space Distortions using forthcoming cosmological galaxy surveys. However, the theoretical models currently used to interpret the data often rely on simplifications that make them not accurate enough for precise measurements. We will discuss improvements to the theoretical modeling at very large scales, including wide-angle and general relativistic corrections; we then show that for wide and deep...

  19. Physical capability scale: psychometric testing.

    Science.gov (United States)

    Resnick, Barbara; Boltz, Marie; Galik, Elizabeth; Wells, Chris

    2013-02-01

    The purpose of this study was to describe the psychometric testing of the Basic Physical Capability Scale. The study was a secondary data analysis of combined data sets from three studies. Study participants included 93 older adults, recruited from 2 acute-care settings and 110 older adults living in long-term care facilities. Rasch analysis was used for the testing of the measurement model. There was some support for construct validity based on the fit of the items to the scale across both samples. In addition, there was support for hypothesis testing as physical function was significantly associated with physical capability. There was evidence for internal consistency (Alpha coefficients of .77-.83) and interrater reliability based on an intraclass correlation of .81. This study provided preliminary support for the reliability and validity of the Basic Physical Capability Scale, and guidance for scale revisions and continued use.

  20. PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

    2002-09-26

    The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of

  1. Physics with large extra dimensions

    Indian Academy of Sciences (India)

    Ignatios Antoniadis

    2004-02-01

    The recent understanding of string theory opens the possibility that the string scale can be as low as a few TeV. The apparent weakness of gravitational interactions can then be accounted by the existence of large internal dimensions, in the sub-millimeter region. Furthermore, our world must be confined to live on a brane transverse to these large dimensions, with which it interacts only gravitationally. In my lecture, I describe briefly this scenario which gives a new theoretical framework for solving the gauge hierarchy problem and the unification of all interactions. I also discuss a minimal embedding of the standard model, gauge coupling unification and proton stability.

  2. Scaling of Metabolic Scaling within Physical Limits

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2014-10-01

    Full Text Available Both the slope and elevation of scaling relationships between log metabolic rate and log body size vary taxonomically and in relation to physiological or developmental state, ecological lifestyle and environmental conditions. Here I discuss how the recently proposed metabolic-level boundaries hypothesis (MLBH provides a useful conceptual framework for explaining and predicting much, but not all of this variation. This hypothesis is based on three major assumptions: (1 various processes related to body volume and surface area exert state-dependent effects on the scaling slope for metabolic rate in relation to body mass; (2 the elevation and slope of metabolic scaling relationships are linked; and (3 both intrinsic (anatomical, biochemical and physiological and extrinsic (ecological factors can affect metabolic scaling. According to the MLBH, the diversity of metabolic scaling relationships occurs within physical boundary limits related to body volume and surface area. Within these limits, specific metabolic scaling slopes can be predicted from the metabolic level (or scaling elevation of a species or group of species. In essence, metabolic scaling itself scales with metabolic level, which is in turn contingent on various intrinsic and extrinsic conditions operating in physiological or evolutionary time. The MLBH represents a “meta-mechanism” or collection of multiple, specific mechanisms that have contingent, state-dependent effects. As such, the MLBH is Darwinian in approach (the theory of natural selection is also meta-mechanistic, in contrast to currently influential metabolic scaling theory that is Newtonian in approach (i.e., based on unitary deterministic laws. Furthermore, the MLBH can be viewed as part of a more general theory that includes other mechanisms that may also affect metabolic scaling.

  3. Neutrino footprint in large scale structure

    Science.gov (United States)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  4. Quantum Signature of Cosmological Large Scale Structures

    CERN Document Server

    Capozziello, S; De Siena, S; Illuminati, F; Capozziello, Salvatore; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1998-01-01

    We demonstrate that to all large scale cosmological structures where gravitation is the only overall relevant interaction assembling the system (e.g. galaxies), there is associated a characteristic unit of action per particle whose order of magnitude coincides with the Planck action constant $h$. This result extends the class of physical systems for which quantum coherence can act on macroscopic scales (as e.g. in superconductivity) and agrees with the absence of screening mechanisms for the gravitational forces, as predicted by some renormalizable quantum field theories of gravity. It also seems to support those lines of thought invoking that large scale structures in the Universe should be connected to quantum primordial perturbations as requested by inflation, that the Newton constant should vary with time and distance and, finally, that gravity should be considered as an effective interaction induced by quantization.

  5. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  6. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  7. Energetics, Physics and Impact of Large-Scale Jets: Fast and Super-Eddington or Slow and Multi-TeV Accelerators?

    Science.gov (United States)

    Georganopoulos, Markos

    We propose to answer a long-standing, important question on the nature of quasar largescale jets: are they fast (Lorentz factors 10-20) and powerful (in many cases superEddington) or slow, sub-Eddington, and multi-TeV particle accelerators?. The answer has direct bearing on the physics of cluster gas heating by powerful jets, an important feedback mechanism in the structure formation process. Also, for slow jets the beamingcorrected radiated power of the large scale jet may be comparable to, or even exceed that of the blazar (core) with important implications for the GeV background radiation and the heating of intergalactic gas by TeV photons, something that has been suggested as the reason for the dearth of dwarf galaxies compared with the cold dark matter predictions. The question of the jet nature has been open since the 2000s, when Chandra detected anomalously high levels of X-rays from dozens of powerful kpc-scale radio/optical jets, indicating a separate origin from the radio-optical synchrotron emission. The widely accepted model for these X-rays has been a very powerful highly-relativistic kpc-scale jet producing inverse Compton emission by up-scattering the cosmic microwave background (IC/CMB), though the X-rays could also be synchrotron emission from a multi-TeV electron population accelerated in situ, as both models can reproduce the observed radio to X-ray spectra. However, very recent work by our group has ruled out the IC/CMB model in two cases. In the case of 3C 273, the uniquely determined GeV flux predicted by the IC/CMB model overproduces the 99.9% flux limit obtained from Fermi gamma-ray observations. These results do not, however, rule out IC/CMB in general, although they do bring synchrotron, slow, multi-TeV accelerator jets to the forefront. In conjunction with radio-to-X-ray multi-wavelength archival imaging, we will extend our study to a much larger sample of over 70 quasar-hosted jets, using the Fermi method we pioneered, while also

  8. Testing gravity on Large Scales

    Directory of Open Access Journals (Sweden)

    Raccanelli Alvise

    2013-09-01

    Full Text Available We show how it is possible to test general relativity and different models of gravity via Redshift-Space Distortions using forthcoming cosmological galaxy surveys. However, the theoretical models currently used to interpret the data often rely on simplifications that make them not accurate enough for precise measurements. We will discuss improvements to the theoretical modeling at very large scales, including wide-angle and general relativistic corrections; we then show that for wide and deep surveys those corrections need to be taken into account if we want to measure the growth of structures at a few percent level, and so perform tests on gravity, without introducing systematic errors. Finally, we report the results of some recent cosmological model tests carried out using those precise models.

  9. Conference on Large Scale Optimization

    CERN Document Server

    Hearn, D; Pardalos, P

    1994-01-01

    On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con­ ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program­ ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At­ tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com­ puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abro...

  10. Large Scale Correlation Clustering Optimization

    CERN Document Server

    Bagon, Shai

    2011-01-01

    Clustering is a fundamental task in unsupervised learning. The focus of this paper is the Correlation Clustering functional which combines positive and negative affinities between the data points. The contribution of this paper is two fold: (i) Provide a theoretic analysis of the functional. (ii) New optimization algorithms which can cope with large scale problems (>100K variables) that are infeasible using existing methods. Our theoretic analysis provides a probabilistic generative interpretation for the functional, and justifies its intrinsic "model-selection" capability. Furthermore, we draw an analogy between optimizing this functional and the well known Potts energy minimization. This analogy allows us to suggest several new optimization algorithms, which exploit the intrinsic "model-selection" capability of the functional to automatically recover the underlying number of clusters. We compare our algorithms to existing methods on both synthetic and real data. In addition we suggest two new applications t...

  11. The large-scale structure of vacuum

    CERN Document Server

    Albareti, F D; Maroto, A L

    2014-01-01

    The vacuum state in quantum field theory is known to exhibit an important number of fundamental physical features. In this work we explore the possibility that this state could also present a non-trivial space-time structure on large scales. In particular, we will show that by imposing the renormalized vacuum energy-momentum tensor to be conserved and compatible with cosmological observations, the vacuum energy of sufficiently heavy fields behaves at late times as non-relativistic matter rather than as a cosmological constant. In this limit, the vacuum state supports perturbations whose speed of sound is negligible and accordingly allows the growth of structures in the vacuum energy itself. This large-scale structure of vacuum could seed the formation of galaxies and clusters very much in the same way as cold dark matter does.

  12. Wireless Secrecy in Large-Scale Networks

    CERN Document Server

    Pinto, Pedro C; Win, Moe Z

    2011-01-01

    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper provides an overview of the main properties of this new class of random graphs. We first analyze the local properties of the iS-graph, namely the degree distributions and their dependence on fading, target secrecy rate, and eavesdropper collusion. To mitigate the effect of the eavesdroppers, we propose two techniques that improve secure connectivity. Then, we analyze the global properties of the iS-graph, namely percolation on the infinite plane, and full connectivity on a finite region. These results help clarify how the presence of eavesdroppers can compromise secure communication in a large-scale network.

  13. Large-Scale Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  14. Large Scale Magnetostrictive Valve Actuator

    Science.gov (United States)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  15. Hiearchical Engine for Large Scale Infrastructure Simulation

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-15

    HELICS ls a new open-source, cyber-physlcal-energy co-simulation framework for electric power systems. HELICS Is designed to support very-large-scale (100,000+ federates) co­simulations with off-the-shelf power-system, communication, market, and end-use tools. Other key features Include cross platform operating system support, the integration of both eventdrlven (e.g., packetlzed communication) and time-series (e.g.,power flow) simulations, and the ability to co-Iterate among federates to ensure physical model convergence at each time step.

  16. Conundrum of the Large Scale Streaming

    CERN Document Server

    Malm, T M

    1999-01-01

    The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

  17. Large-scale Globally Propagating Coronal Waves

    Directory of Open Access Journals (Sweden)

    Alexander Warmuth

    2015-09-01

    Full Text Available Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the “classical” interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which “pseudo waves” are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  18. An Evaluation Framework for Large-Scale Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    An evaluation framework for large-scale network structures is presented, which facilitates evaluations and comparisons of different physical network structures. A number of quantitative and qualitative parameters are presented, and their importance to networks discussed. Choosing a network...

  19. Supporting large-scale computational science

    Energy Technology Data Exchange (ETDEWEB)

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  20. Large-Scale Damage Control Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs large‑scale fire protection experiments that simulate actual Navy platform conditions. Remote control firefighting systems are also tested....

  1. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  2. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Today, there is a lot of focus on concrete surface’s aesthitic potential, both globally and locally. World famous architects such as Herzog De Meuron, Zaha Hadid, Richard Meyer and David Chippenfield challenge the exposure of concrete in their architecture. At home, this trend can be seen...... existing buildings in and around Copenhagen that are covered with mosaic tiles or glazed tiles; buildings such as Nanna Ditzel’s House in Klareboderne, Arne Jacobsen’s gas station, Erik Møller’s Industriens Hus, Bent Helweg Møller’s Berlingske Hus, Arne Jacobsen’s Stellings Hus and Toms Chocolate Factories...... and finally Lene Tranberg and Bøje Lungård’s Elsinore water purification plant. These buildings have qualities that I would like applied, perhaps transformed or most preferably, if possible, interpreted anew, for the large glazed concrete panels I shall develop. The article is ended and concluded...

  3. A relativistic signature in large-scale structure

    Science.gov (United States)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  4. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  5. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that cont

  6. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  7. Large Scale Metal Additive Techniques Review

    Energy Technology Data Exchange (ETDEWEB)

    Nycz, Andrzej [ORNL; Adediran, Adeola I [ORNL; Noakes, Mark W [ORNL; Love, Lonnie J [ORNL

    2016-01-01

    In recent years additive manufacturing made long strides toward becoming a main stream production technology. Particularly strong progress has been made in large-scale polymer deposition. However, large scale metal additive has not yet reached parity with large scale polymer. This paper is a review study of the metal additive techniques in the context of building large structures. Current commercial devices are capable of printing metal parts on the order of several cubic feet compared to hundreds of cubic feet for the polymer side. In order to follow the polymer progress path several factors are considered: potential to scale, economy, environment friendliness, material properties, feedstock availability, robustness of the process, quality and accuracy, potential for defects, and post processing as well as potential applications. This paper focuses on current state of art of large scale metal additive technology with a focus on expanding the geometric limits.

  8. What is a large-scale dynamo?

    Science.gov (United States)

    Nigro, G.; Pongkitiwanichakul, P.; Cattaneo, F.; Tobias, S. M.

    2017-01-01

    We consider kinematic dynamo action in a sheared helical flow at moderate to high values of the magnetic Reynolds number (Rm). We find exponentially growing solutions which, for large enough shear, take the form of a coherent part embedded in incoherent fluctuations. We argue that at large Rm large-scale dynamo action should be identified by the presence of structures coherent in time, rather than those at large spatial scales. We further argue that although the growth rate is determined by small-scale processes, the period of the coherent structures is set by mean-field considerations.

  9. Probabilistic cartography of the large-scale structure

    CERN Document Server

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin

    2015-01-01

    The BORG algorithm is an inference engine that derives the initial conditions given a cosmological model and galaxy survey data, and produces physical reconstructions of the underlying large-scale structure by assimilating the data into the model. We present the application of BORG to real galaxy catalogs and describe the primordial and late-time large-scale structure in the considered volumes. We then show how these results can be used for building various probabilistic maps of the large-scale structure, with rigorous propagation of uncertainties. In particular, we study dynamic cosmic web elements and secondary effects in the cosmic microwave background.

  10. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  11. Large-scale dynamics of magnetic helicity

    Science.gov (United States)

    Linkmann, Moritz; Dallas, Vassilios

    2016-11-01

    In this paper we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a nonlocal inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic field. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.

  12. Teaching a Large Physics Class at Cornell.

    Science.gov (United States)

    Orear, Jay

    1979-01-01

    A professor discusses the advantages and disadvantages of teaching a physics class in a large research-oriented university. Various innovative teaching techniques and the ways in which they benefit the students, are presented. (SA)

  13. ENA of heterocyclic hydrocarbons by adding hydrogen peroxide in groundwater circulation wells - a field-based study on a large physical model scale

    Energy Technology Data Exchange (ETDEWEB)

    Sagner, A.; Tiehm, A. [Technologiezentrum Wasser, Karlsruhe (Germany); Trotschler, O.; Haslwimmer, Th.; Koschitzky, H.P. [Stuttgart Univ., VEGAS, Institut fur Wasserbau (Germany)

    2005-07-01

    Heterocyclic Hydrocarbons (NSO-HET) are ingredients of tar oil, commonly found down-gradient of former gasworks sites. Typical NSO-HET are benzofurans, methyl-benzofurans, methylquinoline, acridine or carbazole. During investigations of MNA (monitored natural attenuation) remediation strategies, it was found that most NSO-HET are highly mobile due to their high water solubility and low biodegradation rates. In addition, some were found to be highly toxic and carcinogenic. In particular under anaerobic conditions, NSO-HET biodegradation rates are low. However, aerobic biological degradation was found to be effective. Based on the extension and contaminant distribution of the plume ({approx} 800 m long) down-gradient of a former gasworks 'Testfeld Sued' (TFS) in Southern Germany, the most applicable technology for enhancing the natural degradation of PAH, BTEX and NSO-HET was selected and tested under controlled conditions in a large physical model (Large Flume of VEGAS). The investigations focused on a technology for a homogeneous infiltration of electron acceptor solutions such as oxygen and hydrogen peroxide to provide the bacteria with molecular oxygen. An initial infiltration of oxygen (air-saturated water) during the adaptation of microorganism to aerobic biodegradation was followed by a time-limited addition of hydrogen peroxide to achieve an oxygen concentration up to 23 mg/L in the model aquifer. An almost complete degradation of NSO-HET was found. On the basis of numerical simulations and lab experiments, it was found that natural dispersion will not lead to a wide-ranging homogeneous distribution and mixing of the oxygen in the aquifer. The Groundwater Circulation Wells technology (GCW) can be applied to achieve a maximum mixing of the electron acceptor solution with the groundwater. A spherical groundwater circulation is induced by means of ex- and infiltration ports in vertical wells. Infiltration and ex-filtration ports are located in

  14. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  15. Ultra-Large-Scale Systems: Scale Changes Everything

    Science.gov (United States)

    2008-03-06

    Statistical Mechanics, Complexity Networks Are Everywhere Recurring “scale free” structure • internet & yeast protein structures Analogous dynamics...Design • Design Representation and Analysis • Assimilation • Determining and Managing Requirements 43 Ultra-Large-Scale Systems Linda Northrop: March

  16. What Sort of Girl Wants to Study Physics after the Age of 16? Findings from a Large-Scale UK Survey

    Science.gov (United States)

    Mujtaba, Tamjid; Reiss, Michael J.

    2013-01-01

    This paper investigates the characteristics of 15-year-old girls who express an intention to study physics post-16. This paper unpacks issues around within-girl group differences and similarities between boys and girls in survey responses about physics. The analysis is based on the year 10 (age 15 years) responses of 5,034 students from 137 UK…

  17. Large-scale Complex IT Systems

    CERN Document Server

    Sommerville, Ian; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challenges and issues in the development of large-scale complex, software-intensive systems. Central to this is the notion that we cannot separate software from the socio-technical environment in which it is used.

  18. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.

  19. Evaluating Large-Scale Interactive Radio Programmes

    Science.gov (United States)

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  20. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data dissem

  1. Topological Routing in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    A new routing scheme, Topological Routing, for large-scale networks is proposed. It allows for efficient routing without large routing tables as known from traditional routing schemes. It presupposes a certain level of order in the networks, known from Structural QoS. The main issues in applying...... Topological Routing to large-scale networks are discussed. Hierarchical extensions are presented along with schemes for shortest path routing, fault handling and path restoration. Further reserach in the area is discussed and perspectives on the prerequisites for practical deployment of Topological Routing...

  2. Topological Routing in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    A new routing scheme, Topological Routing, for large-scale networks is proposed. It allows for efficient routing without large routing tables as known from traditional routing schemes. It presupposes a certain level of order in the networks, known from Structural QoS. The main issues in applying...... Topological Routing to large-scale networks are discussed. Hierarchical extensions are presented along with schemes for shortest path routing, fault handling and path restoration. Further reserach in the area is discussed and perspectives on the prerequisites for practical deployment of Topological Routing...

  3. A study of MLFMA for large-scale scattering problems

    Science.gov (United States)

    Hastriter, Michael Larkin

    This research is centered in computational electromagnetics with a focus on solving large-scale problems accurately in a timely fashion using first principle physics. Error control of the translation operator in 3-D is shown. A parallel implementation of the multilevel fast multipole algorithm (MLFMA) was studied as far as parallel efficiency and scaling. The large-scale scattering program (LSSP), based on the ScaleME library, was used to solve ultra-large-scale problems including a 200lambda sphere with 20 million unknowns. As these large-scale problems were solved, techniques were developed to accurately estimate the memory requirements. Careful memory management is needed in order to solve these massive problems. The study of MLFMA in large-scale problems revealed significant errors that stemmed from inconsistencies in constants used by different parts of the algorithm. These were fixed to produce the most accurate data possible for large-scale surface scattering problems. Data was calculated on a missile-like target using both high frequency methods and MLFMA. This data was compared and analyzed to determine possible strategies to increase data acquisition speed and accuracy through multiple computation method hybridization.

  4. Neutrino footprint in Large Scale Structure

    CERN Document Server

    Jimenez, Raul; Verde, Licia

    2016-01-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys, implying a direct determination of the absolute neutrino mass scale. The measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. Detection of a lack of small-scale power, however, could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties can be related to the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature can not be easily mimicked by systematic uncertainties or modifications in ...

  5. Large-scale instabilities of helical flows

    CERN Document Server

    Cameron, Alexandre; Brachet, Marc-Étienne

    2016-01-01

    Large-scale hydrodynamic instabilities of periodic helical flows are investigated using $3$D Floquet numerical computations. A minimal three-modes analytical model that reproduce and explains some of the full Floquet results is derived. The growth-rate $\\sigma$ of the most unstable modes (at small scale, low Reynolds number $Re$ and small wavenumber $q$) is found to scale differently in the presence or absence of anisotropic kinetic alpha (\\AKA{}) effect. When an $AKA$ effect is present the scaling $\\sigma \\propto q\\; Re\\,$ predicted by the $AKA$ effect theory [U. Frisch, Z. S. She, and P. L. Sulem, Physica D: Nonlinear Phenomena 28, 382 (1987)] is recovered for $Re\\ll 1$ as expected (with most of the energy of the unstable mode concentrated in the large scales). However, as $Re$ increases, the growth-rate is found to saturate and most of the energy is found at small scales. In the absence of \\AKA{} effect, it is found that flows can still have large-scale instabilities, but with a negative eddy-viscosity sca...

  6. Transition from large-scale to small-scale dynamo.

    Science.gov (United States)

    Ponty, Y; Plunian, F

    2011-04-15

    The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The dynamo mechanism is governed by a generalized α effect, which includes both the usual α effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized α effect scales as O(Rm(-1)), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.

  7. Dimensional scaling in chemical physics

    CERN Document Server

    Avery, John; Goscinski, Osvaldo

    1993-01-01

    Dimensional scaling offers a new approach to quantum dynamical correlations. This is the first book dealing with dimensional scaling methods in the quantum theory of atoms and molecules. Appropriately, it is a multiauthor production, derived chiefly from papers presented at a workshop held in June 1991 at the Ørsted Institute in Copenhagen. Although focused on dimensional scaling, the volume includes contributions on other unorthodox methods for treating nonseparable dynamical problems and electronic correlation. In shaping the book, the editors serve three needs: an introductory tutorial for this still fledgling field; a guide to the literature; and an inventory of current research results and prospects. Part I treats basic aspects of dimensional scaling. Addressed to readers entirely unfamiliar with the subject, it provides both a qualitative overview, and a tour of elementary quantum mechanics. Part II surveys the research frontier. The eight chapters exemplify current techniques and outline results. Part...

  8. Large-scale simulations of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Katharina; /JILA, Boulder /Fermilab; Gnedin, Nickolay Y.; /Fermilab; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  9. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  10. Large-scale structure of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Shandarin, S.F.; Doroshkevich, A.G.; Zel' dovich, Ya.B. (Inst. Prikladnoj Matematiki, Moscow, USSR)

    1983-01-01

    A review of theory of the large-scale structure of the Universe is given, including formation of clusters and superclusters of galaxies as well as large voids. Particular attention is paid to the theory of neutrino dominated Universe - the cosmological model where neutrinos with the rest mass of several tens eV dominate the mean density. Evolution of small perturbations is discussed, estimates of microwave backgorund radiation fluctuations is given for different angular scales. Adiabatic theory of the Universe structure formation, known as ''cake'' scenario and their successive fragmentation is given. This scenario is based on approximate nonlinear theory of gravitation instability. Results of numerical experiments, modeling the processes of large-scale structure formation are discussed.

  11. Primordial non-Gaussianity from the large scale structure

    CERN Document Server

    Desjacques, Vincent

    2010-01-01

    Primordial non-Gaussianity is a potentially powerful discriminant of the physical mechanisms that generated the cosmological fluctuations observed today. Any detection of non-Gaussianity would have profound implications for our understanding of cosmic structure formation. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large scale structure of the Universe.

  12. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  13. Large scale topic modeling made practical

    DEFF Research Database (Denmark)

    Wahlgreen, Bjarne Ørum; Hansen, Lars Kai

    2011-01-01

    Topic models are of broad interest. They can be used for query expansion and result structuring in information retrieval and as an important component in services such as recommender systems and user adaptive advertising. In large scale applications both the size of the database (number of docume......Topic models are of broad interest. They can be used for query expansion and result structuring in information retrieval and as an important component in services such as recommender systems and user adaptive advertising. In large scale applications both the size of the database (number...... topics at par with a much larger case specific vocabulary....

  14. Large-scale multimedia modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications.

  15. Large-scale neuromorphic computing systems

    Science.gov (United States)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  16. Configuration management in large scale infrastructure development

    NARCIS (Netherlands)

    Rijn, T.P.J. van; Belt, H. van de; Los, R.H.

    2000-01-01

    Large Scale Infrastructure (LSI) development projects such as the construction of roads, rail-ways and other civil engineering (water)works is tendered differently today than a decade ago. Traditional workflow requested quotes from construction companies for construction works where the works to be

  17. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  18. Ensemble methods for large scale inverse problems

    NARCIS (Netherlands)

    Heemink, A.W.; Umer Altaf, M.; Barbu, A.L.; Verlaan, M.

    2013-01-01

    Variational data assimilation, also sometimes simply called the ‘adjoint method’, is used very often for large scale model calibration problems. Using the available data, the uncertain parameters in the model are identified by minimizing a certain cost function that measures the difference between t

  19. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  20. Large-scale structure of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Shandarin, S.F.; Doroshkevich, A.G.; Zel' dovich, Y.B.

    1983-01-01

    A survey is given of theories for the origin of large-scale structure in the universe: clusters and superclusters of galaxies, and vast black regions practically devoid of galaxies. Special attention is paid to the theory of a neutrino-dominated universe: a cosmology in which electron neutrinos with a rest mass of a few tens of electron volts would contribute the bulk of the mean density. The evolution of small perturbations is discussed, and estimates are made for the temperature anisotropy of the microwave background radiation on various angular scales. The nonlinear stage in the evolution of smooth irrotational perturbations in a low-pressure medium is described in detail. Numerical experiments simulating large-scale structure formation processes are discussed, as well as their interpretation in the context of catastrophe theory.

  1. Atomic physics using large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.

    1989-01-01

    This article surveys some areas of atomic physics using large electro-static accelerators. Brief overviews of ion-atom collisions and ion-solid collisions are followed by a classified listing of recent paper. A single line, correlated electron ion recombination, is chosen to show the recent development of techniques to study various aspects of this phenomenon. 21 refs., 11 figs., 1 tab.

  2. Design techniques for large scale linear measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented.

  3. Sensitivity technologies for large scale simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias (Rice University, Houston, TX); Wilcox, Lucas C. (Brown University, Providence, RI); Hill, Judith C. (Carnegie Mellon University, Pittsburgh, PA); Ghattas, Omar (Carnegie Mellon University, Pittsburgh, PA); Berggren, Martin Olof (University of UppSala, Sweden); Akcelik, Volkan (Carnegie Mellon University, Pittsburgh, PA); Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    order approximation of the Euler equations and used as a preconditioner. In comparison to other methods, the AD preconditioner showed better convergence behavior. Our ultimate target is to perform shape optimization and hp adaptivity using adjoint formulations in the Premo compressible fluid flow simulator. A mathematical formulation for mixed-level simulation algorithms has been developed where different physics interact at potentially different spatial resolutions in a single domain. To minimize the implementation effort, explicit solution methods can be considered, however, implicit methods are preferred if computational efficiency is of high priority. We present the use of a partial elimination nonlinear solver technique to solve these mixed level problems and show how these formulation are closely coupled to intrusive optimization approaches and sensitivity analyses. Production codes are typically not designed for sensitivity analysis or large scale optimization. The implementation of our optimization libraries into multiple production simulation codes in which each code has their own linear algebra interface becomes an intractable problem. In an attempt to streamline this task, we have developed a standard interface between the numerical algorithm (such as optimization) and the underlying linear algebra. These interfaces (TSFCore and TSFCoreNonlin) have been adopted by the Trilinos framework and the goal is to promote the use of these interfaces especially with new developments. Finally, an adjoint based a posteriori error estimator has been developed for discontinuous Galerkin discretization of Poisson's equation. The goal is to investigate other ways to leverage the adjoint calculations and we show how the convergence of the forward problem can be improved by adapting the grid using adjoint-based error estimates. Error estimation is usually conducted with continuous adjoints but if discrete adjoints are available it may be possible to reuse the discrete

  4. Sensitivity technologies for large scale simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias (Rice University, Houston, TX); Wilcox, Lucas C. (Brown University, Providence, RI); Hill, Judith C. (Carnegie Mellon University, Pittsburgh, PA); Ghattas, Omar (Carnegie Mellon University, Pittsburgh, PA); Berggren, Martin Olof (University of UppSala, Sweden); Akcelik, Volkan (Carnegie Mellon University, Pittsburgh, PA); Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    order approximation of the Euler equations and used as a preconditioner. In comparison to other methods, the AD preconditioner showed better convergence behavior. Our ultimate target is to perform shape optimization and hp adaptivity using adjoint formulations in the Premo compressible fluid flow simulator. A mathematical formulation for mixed-level simulation algorithms has been developed where different physics interact at potentially different spatial resolutions in a single domain. To minimize the implementation effort, explicit solution methods can be considered, however, implicit methods are preferred if computational efficiency is of high priority. We present the use of a partial elimination nonlinear solver technique to solve these mixed level problems and show how these formulation are closely coupled to intrusive optimization approaches and sensitivity analyses. Production codes are typically not designed for sensitivity analysis or large scale optimization. The implementation of our optimization libraries into multiple production simulation codes in which each code has their own linear algebra interface becomes an intractable problem. In an attempt to streamline this task, we have developed a standard interface between the numerical algorithm (such as optimization) and the underlying linear algebra. These interfaces (TSFCore and TSFCoreNonlin) have been adopted by the Trilinos framework and the goal is to promote the use of these interfaces especially with new developments. Finally, an adjoint based a posteriori error estimator has been developed for discontinuous Galerkin discretization of Poisson's equation. The goal is to investigate other ways to leverage the adjoint calculations and we show how the convergence of the forward problem can be improved by adapting the grid using adjoint-based error estimates. Error estimation is usually conducted with continuous adjoints but if discrete adjoints are available it may be possible to reuse the discrete

  5. Cluster Galaxy Dynamics and the Effects of Large Scale Environment

    CERN Document Server

    White, Martin; Smit, Renske

    2010-01-01

    We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters. We pay particular attention to velocity dispersions, matching galaxies to subhalos which are explicitly tracked in the simulation. We find that not only do halos persist as subhalos when they fall into a larger host, groups of subhalos retain their identity for long periods within larger host halos. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and ...

  6. Galaxy alignment on large and small scales

    Science.gov (United States)

    Kang, X.; Lin, W. P.; Dong, X.; Wang, Y. O.; Dutton, A.; Macciò, A.

    2016-10-01

    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.

  7. Galaxy alignment on large and small scales

    CERN Document Server

    Kang, X; Wang, Y O; Dutton, A; Macciò, A

    2014-01-01

    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some ex...

  8. Development of Physics Self-Efficacy Scale

    Science.gov (United States)

    Çalişkan, Serap; Selçuk, Gamze S.; Erol, Mustafa

    2007-04-01

    In this article, we describe development of a Physics Self-Efficacy Scale (PSES) that is a self-administered measure to assess physics self-efficacy beliefs regarding one's ability to successfully perform physics tasks in physics classroom. The scale is initially composed of 56 items prepared following a brief scrutiny of relating literature on self-efficacy. It was initially administered 30 physics teacher candidates and was also examined by 6 experts of physics education, then ambiguous or incomprehensible 6 items were dismissed. This PSES was tested on 558 undergraduate students all completed fundamental physics courses. Cronbach's Alpha reliability coefficient of the PSES was calculated as 0.94. The final version of the PSES contained 30 items with 5 dimensions namely, 1. Self-efficacy towards solving physics problems, 2. Self-efficacy towards physics laboratory, 3. Self-efficacy towards learning physics, 4. Self-efficacy towards application of physics knowledge and 5. Self-efficacy towards memorizing physics knowledge.

  9. Large-Scale PV Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  10. Large-Scale Collective Entity Matching

    CERN Document Server

    Rastogi, Vibhor; Garofalakis, Minos

    2011-01-01

    There have been several recent advancements in Machine Learning community on the Entity Matching (EM) problem. However, their lack of scalability has prevented them from being applied in practical settings on large real-life datasets. Towards this end, we propose a principled framework to scale any generic EM algorithm. Our technique consists of running multiple instances of the EM algorithm on small neighborhoods of the data and passing messages across neighborhoods to construct a global solution. We prove formal properties of our framework and experimentally demonstrate the effectiveness of our approach in scaling EM algorithms.

  11. The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution

    Science.gov (United States)

    O'Dea, Enda; Furner, Rachel; Wakelin, Sarah; Siddorn, John; While, James; Sykes, Peter; King, Robert; Holt, Jason; Hewitt, Helene

    2017-08-01

    We describe the physical model component of the standard Coastal Ocean version 5 configuration (CO5) of the European north-west shelf (NWS). CO5 was developed jointly between the Met Office and the National Oceanography Centre. CO5 is designed with the seamless approach in mind, which allows for modelling of multiple timescales for a variety of applications from short-range ocean forecasting to climate projections. The configuration constitutes the basis of the latest update to the ocean and data assimilation components of the Met Office's operational Forecast Ocean Assimilation Model (FOAM) for the NWS. A 30.5-year non-assimilating control hindcast of CO5 was integrated from January 1981 to June 2012. Sensitivity simulations were conducted with reference to the control run. The control run is compared against a previous non-assimilating Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) hindcast of the NWS. The CO5 control hindcast is shown to have much reduced biases compared to POLCOMS. Emphasis in the system description is weighted to updates in CO5 over previous versions. Updates include an increase in vertical resolution, a new vertical coordinate stretching function, the replacement of climatological riverine sources with the pan-European hydrological model E-HYPE, a new Baltic boundary condition and switching from directly imposed atmospheric model boundary fluxes to calculating the fluxes within the model using a bulk formula. Sensitivity tests of the updates are detailed with a view toward attributing observed changes in the new system from the previous system and suggesting future directions of research to further improve the system.

  12. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  13. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  14. Computational applications of DNA physical scales

    DEFF Research Database (Denmark)

    Baldi, Pierre; Chauvin, Yves; Brunak, Søren

    1998-01-01

    The authors study from a computational standpoint several different physical scales associated with structural features of DNA sequences, including dinucleotide scales such as base stacking energy and propellor twist, and trinucleotide scales such as bendability and nucleosome positioning. We show...... that these scales provide an alternative or complementary compact representation of DNA sequences. As an example we construct a strand invariant representation of DNA sequences. The scales can also be used to analyze and discover new DNA structural patterns, especially in combinations with hidden Markov models...

  15. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...... limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its...... main focus. Here the general perception of the nature and role in society of large scale networks as a fundamental infrastructure is analysed. This analysis focuses on the effects of the technical DDN projects and on the perception of network infrastructure as expressed by key decision makers...

  16. Process Principles for Large-Scale Nanomanufacturing.

    Science.gov (United States)

    Behrens, Sven H; Breedveld, Victor; Mujica, Maritza; Filler, Michael A

    2017-06-07

    Nanomanufacturing-the fabrication of macroscopic products from well-defined nanoscale building blocks-in a truly scalable and versatile manner is still far from our current reality. Here, we describe the barriers to large-scale nanomanufacturing and identify routes to overcome them. We argue for nanomanufacturing systems consisting of an iterative sequence of synthesis/assembly and separation/sorting unit operations, analogous to those used in chemicals manufacturing. In addition to performance and economic considerations, phenomena unique to the nanoscale must guide the design of each unit operation and the overall process flow. We identify and discuss four key nanomanufacturing process design needs: (a) appropriately selected process break points, (b) synthesis techniques appropriate for large-scale manufacturing, (c) new structure- and property-based separations, and (d) advances in stabilization and packaging.

  17. Condition Monitoring of Large-Scale Facilities

    Science.gov (United States)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  18. ELASTIC: A Large Scale Dynamic Tuning Environment

    Directory of Open Access Journals (Sweden)

    Andrea Martínez

    2014-01-01

    Full Text Available The spectacular growth in the number of cores in current supercomputers poses design challenges for the development of performance analysis and tuning tools. To be effective, such analysis and tuning tools must be scalable and be able to manage the dynamic behaviour of parallel applications. In this work, we present ELASTIC, an environment for dynamic tuning of large-scale parallel applications. To be scalable, the architecture of ELASTIC takes the form of a hierarchical tuning network of nodes that perform a distributed analysis and tuning process. Moreover, the tuning network topology can be configured to adapt itself to the size of the parallel application. To guide the dynamic tuning process, ELASTIC supports a plugin architecture. These plugins, called ELASTIC packages, allow the integration of different tuning strategies into ELASTIC. We also present experimental tests conducted using ELASTIC, showing its effectiveness to improve the performance of large-scale parallel applications.

  19. Observational signatures of modified gravity on ultra-large scales

    CERN Document Server

    Baker, Tessa

    2015-01-01

    Extremely large surveys with future experiments like Euclid and the SKA will soon allow us to access perturbation modes close to the Hubble scale, with wavenumbers $k \\sim {\\cal H}$. If a modified gravity theory is responsible for cosmic acceleration, the Hubble scale is a natural regime for deviations from General Relativity (GR) to become manifest. The majority of studies to date have concentrated on the consequences of alternative gravity theories for the subhorizon, quasi-static regime, however. We investigate how modifications to the gravitational field equations affect perturbations around the Hubble scale, and how this translates into deviations of ultra large-scale relativistic observables from their GR behaviour. Adopting a model-independent ethos that relies only on the broad physical properties of gravity theories, we find that the deviations of the observables are small unless modifications to GR are drastic. The angular dependence and redshift evolution of the deviations is highly parameterisatio...

  20. Measuring Bulk Flows in Large Scale Surveys

    CERN Document Server

    Feldman, H A; Feldman, Hume A.; Watkins, Richard

    1993-01-01

    We follow a formalism presented by Kaiser to calculate the variance of bulk flows in large scale surveys. We apply the formalism to a mock survey of Abell clusters \\'a la Lauer \\& Postman and find the variance in the expected bulk velocities in a universe with CDM, MDM and IRAS--QDOT power spectra. We calculate the velocity variance as a function of the 1--D velocity dispersion of the clusters and the size of the survey.

  1. Statistical characteristics of Large Scale Structure

    OpenAIRE

    Demianski; Doroshkevich

    2002-01-01

    We investigate the mass functions of different elements of the Large Scale Structure -- walls, pancakes, filaments and clouds -- and the impact of transverse motions -- expansion and/or compression -- on their statistical characteristics. Using the Zel'dovich theory of gravitational instability we show that the mass functions of all structure elements are approximately the same and the mass of all elements is found to be concentrated near the corresponding mean mass. At high redshifts, both t...

  2. Topologies for large scale photovoltaic power plants

    OpenAIRE

    Cabrera Tobar, Ana; Bullich Massagué, Eduard; Aragüés Peñalba, Mònica; Gomis Bellmunt, Oriol

    2016-01-01

    © 2016 Elsevier Ltd. All rights reserved. The concern of increasing renewable energy penetration into the grid together with the reduction of prices of photovoltaic solar panels during the last decade have enabled the development of large scale solar power plants connected to the medium and high voltage grid. Photovoltaic generation components, the internal layout and the ac collection grid are being investigated for ensuring the best design, operation and control of these power plants. This ...

  3. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  4. Large-Scale Visual Data Analysis

    Science.gov (United States)

    Johnson, Chris

    2014-04-01

    Modern high performance computers have speeds measured in petaflops and handle data set sizes measured in terabytes and petabytes. Although these machines offer enormous potential for solving very large-scale realistic computational problems, their effectiveness will hinge upon the ability of human experts to interact with their simulation results and extract useful information. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most most important tools in helping to understand such large-scale information. Our research at the Scientific Computing and Imaging (SCI) Institute at the University of Utah has focused on innovative, scalable techniques for large-scale 3D visual data analysis. In this talk, I will present state- of-the-art visualization techniques, including scalable visualization algorithms and software, cluster-based visualization methods and innovate visualization techniques applied to problems in computational science, engineering, and medicine. I will conclude with an outline for a future high performance visualization research challenges and opportunities.

  5. 1st Large Hadron Collider Physics Conference

    CERN Document Server

    Juste, A; Martínez, M; Riu, I; Sorin, V

    2013-01-01

    The conference is the result of merging two series of international conferences, "Physics at Large Hadron Collider" (PLHC2012) and "Hadron Collider Physics Symposium" (HCP2012). With a program devoted to topics such as the Standard Model and Beyond, the Higgs Boson, Supersymmetry, Beauty and Heavy Ion Physics, the conference aims at providing a lively forum for discussion between experimenters and theorists of the latest results and of new ideas. LHCP 2013 will be hosted by IFAE (Institut de Fisica d'Altes Energies) in Barcelona (Spain), and will take place from May 13 to 18, 2013. The venue will be the Hotel Catalonia Plaza, Plaza España (Barcelona). More information will be posted soon. For questions, please contact lhcp2013@ifae.es.

  6. Dark Matter on small scales; Telescopes on large scales

    CERN Document Server

    Gilmore, G

    2007-01-01

    This article reviews recent progress in observational determination of the properties of dark matter on small astrophysical scales, and progress towards the European Extremely Large Telescope. Current results suggest some surprises: the central DM density profile is typically cored, not cusped, with scale sizes never less than a few hundred pc; the central densities are typically 10-20GeV/cc; no galaxy is found with a dark mass halo less massive than $\\sim5.10^7M_{\\odot}$. We are discovering many more dSphs, which we are analysing to test the generality of these results. The European Extremely Large Telescope Design Study is going forward well, supported by an outstanding scientific case, and founded on detailed industrial studies of the technological requirements.

  7. Industrial Physics Careers: A Large Company Perspective

    Science.gov (United States)

    Zollner, Stefan

    2009-03-01

    Statistical data from the American Institute of Physics and the National Science Foundation show that only about a third of physics graduates get permanent jobs in academia. A few work in government labs and hospitals. The majority of physics Ph.D.s, however, find employment in the private sector (industry). This trend has been increasing, i.e., recent Ph.D.s are even more likely to start careers in industry. Industrial physicists work in small, medium or large companies in a broad range of fields, including aerospace, semiconductors, automotive, energy, information technology, contract research, medical, chemical, optics, etc. They are also represented in fields outside of physics, such as finance. Even the ``inventor'' of the Powerball lottery game is a Ph.D. physicist. In my talk, I will describe pathways to success for an industrial physicist, from the perspective of employment in three different large corporations. Based on the NIST Baldridge criteria of Performance Excellence, I will discuss how to achieve and measure organizational success through focus on products and customers. Individual performance is linked to the goals of the organization. Performance has two components: Goals and behaviors. Both are key to success as an individual contributor or manager.[4pt] References: [0pt] http://www.aip.org/statistics/trends/emptrends.html [0pt] http://www.aps.org/about/governance/committees/commemb/index.cfm [0pt] http://www.quality.nist.gov/

  8. The Large Scale Organization of Turbulent Channels

    CERN Document Server

    del Alamo, Juan C

    2013-01-01

    We have investigated the organization and dynamics of the large turbulent structures that develop in the logarithmic and outer layers of high-Reynolds-number wall flows. These structures have sizes comparable to the flow thickness and contain most of the turbulent kinetic energy. They produce a substantial fraction of the skin friction and play a key role in turbulent transport. In spite of their significance, there is much less information about the large structures far from the wall than about the small ones of the near-wall region. The main reason for this is the joint requirements of large measurement records and high Reynolds numbers for their experimental analysis. Their theoretical analysis has been hampered by the lack of succesful models for their interaction with the background small-scale turbulence.

  9. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  10. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  11. Large Scale CW ECRH Systems: Some considerations

    Directory of Open Access Journals (Sweden)

    Turkin Y.

    2012-09-01

    Full Text Available Electron Cyclotron Resonance Heating (ECRH is a key component in the heating arsenal for the next step fusion devices like W7-X and ITER. These devices are equipped with superconducting coils and are designed to operate steady state. ECRH must thus operate in CW-mode with a large flexibility to comply with various physics demands such as plasma start-up, heating and current drive, as well as configurationand MHD - control. The request for many different sophisticated applications results in a growing complexity, which is in conflict with the request for high availability, reliability, and maintainability. ‘Advanced’ ECRH-systems must, therefore, comply with both the complex physics demands and operational robustness and reliability. The W7-X ECRH system is the first CW- facility of an ITER relevant size and is used as a test bed for advanced components. Proposals for future developments are presented together with improvements of gyrotrons, transmission components and launchers.

  12. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias; McMahon, Jeff; Miller, Nathan; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2017-01-01

    The Cosmology Large Angular Scale Surveryor (CLASS) is a ground based telescope array designed to measure the large-angular scale polarization signal of the Cosmic Microwave Background (CMB). The large-angular scale CMB polarization measurement is essential for a precise determination of the optical depth to reionization (from the E-mode polarization) and a characterization of inflation from the predicted polarization pattern imprinted on the CMB by gravitational waves in the early universe (from the B-mode polarization). CLASS will characterize the primordial tensor-to-scalar ratio, r, to 0.01 (95% CL).CLASS is uniquely designed to be sensitive to the primordial B-mode signal across the entire range of angular scales where it could possibly dominate over the lensing signal that converts E-modes to B-modes while also making multi-frequency observations both high and low of the frequency where the CMB-to-foreground signal ratio is at its maximum. The design enables CLASS to make a definitive cosmic-variance-limited measurement of the optical depth to scattering from reionization.CLASS is an array of 4 telescopes operating at approximately 40, 90, 150, and 220 GHz. CLASS is located high in the Andes mountains in the Atacama Desert of northern Chile. The location of the CLASS site at high altitude near the equator minimizes atmospheric emission while allowing for daily mapping of ~70% of the sky.A rapid front end Variable-delay Polarization Modulator (VPM) and low noise Transition Edge Sensor (TES) detectors allow for a high sensitivity and low systematic error mapping of the CMB polarization at large angular scales. The VPM, detectors and their coupling structures were all uniquely designed and built for CLASS.We present here an overview of the CLASS scientific strategy, instrument design, and current progress. Particular attention is given to the development and status of the Q-band receiver currently surveying the sky from the Atacama Desert and the development of

  13. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  14. Hierarchical Engine for Large-scale Infrastructure Co-Simulation

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-24

    HELICS is designed to support very-large-scale (100,000+ federates) cosimulations with off-the-shelf power-system, communication, market, and end-use tools. Other key features include cross platform operating system support, the integration of both event driven (e.g., packetized communication) and time-series (e.g., power flow) simulations, and the ability to co-iterate among federates to ensure physical model convergence at each time step.

  15. Cold flows and large scale tides

    Science.gov (United States)

    van de Weygaert, R.; Hoffman, Y.

    1999-01-01

    Within the context of the general cosmological setting it has remained puzzling that the local Universe is a relatively cold environment, in the sense of small-scale peculiar velocities being relatively small. Indeed, it has since long figured as an important argument for the Universe having a low Ω, or if the Universe were to have a high Ω for the existence of a substantial bias between the galaxy and the matter distribution. Here we investigate the dynamical impact of neighbouring matter concentrations on local small-scale characteristics of cosmic flows. While regions where huge nearby matter clumps represent a dominating component in the local dynamics and kinematics may experience a faster collapse on behalf of the corresponding tidal influence, the latter will also slow down or even prevent a thorough mixing and virialization of the collapsing region. By means of N-body simulations starting from constrained realizations of regions of modest density surrounded by more pronounced massive structures, we have explored the extent to which the large scale tidal fields may indeed suppress the `heating' of the small-scale cosmic velocities. Amongst others we quantify the resulting cosmic flows through the cosmic Mach number. This allows us to draw conclusions about the validity of estimates of global cosmological parameters from local cosmic phenomena and the necessity to take into account the structure and distribution of mass in the local Universe.

  16. Large-Scale Quasi-geostrophic Magnetohydrodynamics

    Science.gov (United States)

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the "shallow water" beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  17. Large Scale Quasi-geostrophic Magnetohydrodynamics

    CERN Document Server

    Balk, Alexander M

    2014-01-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the "shallow water" beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra invariant. Its presence is shown to imply energy accumulation ...

  18. Planck scale effects and the suppression of power on the large scales in the primordial spectrum

    CERN Document Server

    Shankaranarayanan, S

    2005-01-01

    The enormous red-shifting of the modes during the inflationary epoch suggests that physics at the very high energy scales may modify the primordial perturbation spectrum. Therefore, the measurements of the anisotropies in the Cosmic Microwave Background (CMB) could provide us with clues to understanding physics beyond the Planck scale. In this proceeding, we study the Planck scale effects on the primordial spectrum in the power-law inflation using a model which preserves local Lorentz invariance. While our model reproduces the standard spectrum on small scales, it naturally predicts a suppression of power on the large scales -- a feature that seems to be necessary to explain deficit of power in the lower multipoles of the CMB.

  19. Clumps in large scale relativistic jets

    CERN Document Server

    Tavecchio, F; Celotti, A

    2003-01-01

    The relatively intense X-ray emission from large scale (tens to hundreds kpc) jets discovered with Chandra likely implies that jets (at least in powerful quasars) are still relativistic at that distances from the active nucleus. In this case the emission is due to Compton scattering off seed photons provided by the Cosmic Microwave Background, and this on one hand permits to have magnetic fields close to equipartition with the emitting particles, and on the other hand minimizes the requirements about the total power carried by the jet. The emission comes from compact (kpc scale) knots, and we here investigate what we can predict about the possible emission between the bright knots. This is motivated by the fact that bulk relativistic motion makes Compton scattering off the CMB photons efficient even when electrons are cold or mildly relativistic in the comoving frame. This implies relatively long cooling times, dominated by adiabatic losses. Therefore the relativistically moving plasma can emit, by Compton sc...

  20. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  1. Conformal Anomaly and Large Scale Gravitational Coupling

    CERN Document Server

    Salehi, H

    2000-01-01

    We present a model in which the breackdown of conformal symmetry of a quantum stress-tensor due to the trace anomaly is related to a cosmological effect in a gravitational model. This is done by characterizing the traceless part of the quantum stress-tensor in terms of the stress-tensor of a conformal invariant classical scalar field. We introduce a conformal frame in which the anomalous trace is identified with a cosmological constant. In this conformal frame we establish the Einstein field equations by connecting the quantum stress-tensor with the large scale distribution of matter in the universe.

  2. Large Scale Quantum Simulations of Nuclear Pasta

    Science.gov (United States)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 pasta configurations. This work is supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  3. Large scale wind power penetration in Denmark

    DEFF Research Database (Denmark)

    Karnøe, Peter

    2013-01-01

    he Danish electricity generating system prepared to adopt nuclear power in the 1970s, yet has become the world's front runner in wind power with a national plan for 50% wind power penetration by 2020. This paper deploys a sociotechnical perspective to explain the historical transformation of "net...... expertise evolves and contributes to the normalization and large-scale penetration of wind power in the electricity generating system. The analysis teaches us how technological paths become locked-in, but also indicates keys for locking them out....

  4. Large scale phononic metamaterials for seismic isolation

    Energy Technology Data Exchange (ETDEWEB)

    Aravantinos-Zafiris, N. [Department of Sound and Musical Instruments Technology, Ionian Islands Technological Educational Institute, Stylianou Typaldou ave., Lixouri 28200 (Greece); Sigalas, M. M. [Department of Materials Science, University of Patras, Patras 26504 (Greece)

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  5. Colloquium: Large scale simulations on GPU clusters

    Science.gov (United States)

    Bernaschi, Massimo; Bisson, Mauro; Fatica, Massimiliano

    2015-06-01

    Graphics processing units (GPU) are currently used as a cost-effective platform for computer simulations and big-data processing. Large scale applications require that multiple GPUs work together but the efficiency obtained with cluster of GPUs is, at times, sub-optimal because the GPU features are not exploited at their best. We describe how it is possible to achieve an excellent efficiency for applications in statistical mechanics, particle dynamics and networks analysis by using suitable memory access patterns and mechanisms like CUDA streams, profiling tools, etc. Similar concepts and techniques may be applied also to other problems like the solution of Partial Differential Equations.

  6. Accelerated large-scale multiple sequence alignment

    Directory of Open Access Journals (Sweden)

    Lloyd Scott

    2011-12-01

    Full Text Available Abstract Background Multiple sequence alignment (MSA is a fundamental analysis method used in bioinformatics and many comparative genomic applications. Prior MSA acceleration attempts with reconfigurable computing have only addressed the first stage of progressive alignment and consequently exhibit performance limitations according to Amdahl's Law. This work is the first known to accelerate the third stage of progressive alignment on reconfigurable hardware. Results We reduce subgroups of aligned sequences into discrete profiles before they are pairwise aligned on the accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been demonstrated on a large data set when compared to a 2.4 GHz Core2 processor. Conclusions Our parallel algorithm and architecture accelerates large-scale MSA with reconfigurable computing and allows researchers to solve the larger problems that confront biologists today. Program source is available from http://dna.cs.byu.edu/msa/.

  7. Large-scale ATLAS production on EGEE

    Science.gov (United States)

    Espinal, X.; Campana, S.; Walker, R.

    2008-07-01

    In preparation for first data at the LHC, a series of Data Challenges, of increasing scale and complexity, have been performed. Large quantities of simulated data have been produced on three different Grids, integrated into the ATLAS production system. During 2006, the emphasis moved towards providing stable continuous production, as is required in the immediate run-up to first data, and thereafter. Here, we discuss the experience of the production done on EGEE resources, using submission based on the gLite WMS, CondorG and a system using Condor Glide-ins. The overall wall time efficiency of around 90% is largely independent of the submission method, and the dominant source of wasted cpu comes from data handling issues. The efficiency of grid job submission is significantly worse than this, and the glide-in method benefits greatly from factorising this out.

  8. Large-scale ATLAS production on EGEE

    CERN Document Server

    Espinal, X; Walker, R

    2008-01-01

    In preparation for first data at the LHC, a series of Data Challenges, of increasing scale and complexity, have been performed. Large quantities of simulated data have been produced on three different Grids, integrated into the ATLAS production system. During 2006, the emphasis moved towards providing stable continuous production, as is required in the immediate run-up to first data, and thereafter. Here, we discuss the experience of the production done on EGEE resources, using submission based on the gLite WMS, CondorG and a system using Condor Glide-ins. The overall wall time efficiency of around 90% is largely independent of the submission method, and the dominant source of wasted cpu comes from data handling issues. The efficiency of grid job submission is significantly worse than this, and the glide-in method benefits greatly from factorising this out.

  9. Large-scale ATLAS production on EGEE

    Energy Technology Data Exchange (ETDEWEB)

    Espinal, X [PIC - Port d' Informacio cientifica, Universitat Autonoma de Barcelona, Edifici D 08193 Bellaterra, Barcelona (Spain); Campana, S [CERN, European Laboratory for Particle Physics, Rue de Geneve 23 CH 1211 Geneva (Switzerland); Walker, R [TRIUMF, Tri - University Meson Facility, 4004 Wesbrook Mall Vancouver, BC (Canada)], E-mail: espinal@ifae.es

    2008-07-15

    In preparation for first data at the LHC, a series of Data Challenges, of increasing scale and complexity, have been performed. Large quantities of simulated data have been produced on three different Grids, integrated into the ATLAS production system. During 2006, the emphasis moved towards providing stable continuous production, as is required in the immediate run-up to first data, and thereafter. Here, we discuss the experience of the production done on EGEE resources, using submission based on the gLite WMS, CondorG and a system using Condor Glide-ins. The overall wall time efficiency of around 90% is largely independent of the submission method, and the dominant source of wasted cpu comes from data handling issues. The efficiency of grid job submission is significantly worse than this, and the glide-in method benefits greatly from factorising this out.

  10. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    Full Text Available Birds are highly mobile organisms and there is increasing evidence that studies at large spatial scales are needed if we are to properly understand their population dynamics. While classical metapopulation models have rarely proved useful for birds, more general metapopulation ideas involving collections of populations interacting within spatially structured landscapes are highly relevant (Harrison, 1994. There is increasing interest in understanding patterns of synchrony, or lack of synchrony, between populations and the environmental and dispersal mechanisms that bring about these patterns (Paradis et al., 2000. To investigate these processes we need to measure abundance, demographic rates and dispersal at large spatial scales, in addition to gathering data on relevant environmental variables. There is an increasing realisation that conservation needs to address rapid declines of common and widespread species (they will not remain so if such trends continue as well as the management of small populations that are at risk of extinction. While the knowledge needed to support the management of small populations can often be obtained from intensive studies in a few restricted areas, conservation of widespread species often requires information on population trends and processes measured at regional, national and continental scales (Baillie, 2001. While management prescriptions for widespread populations may initially be developed from a small number of local studies or experiments, there is an increasing need to understand how such results will scale up when applied across wider areas. There is also a vital role for monitoring at large spatial scales both in identifying such population declines and in assessing population recovery. Gathering data on avian abundance and demography at large spatial scales usually relies on the efforts of large numbers of skilled volunteers. Volunteer studies based on ringing (for example Constant Effort Sites [CES

  11. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2011-05-01

    In this talk I shall begin by summarizing the importance of the Higgs physics studies at the Large Hadron Collider (LHC). I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. I have added to the writeup, recent experimental results from the LHC which have become available since the time of the workshop.

  12. Internationalization Measures in Large Scale Research Projects

    Science.gov (United States)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  13. The Large-Scale Polarization Explorer (LSPE)

    CERN Document Server

    Aiola, S; Battaglia, P; Battistelli, E; Baù, A; de Bernardis, P; Bersanelli, M; Boscaleri, A; Cavaliere, F; Coppolecchia, A; Cruciani, A; Cuttaia, F; Addabbo, A D'; D'Alessandro, G; De Gregori, S; Del Torto, F; De Petris, M; Fiorineschi, L; Franceschet, C; Franceschi, E; Gervasi, M; Goldie, D; Gregorio, A; Haynes, V; Krachmalnicoff, N; Lamagna, L; Maffei, B; Maino, D; Masi, S; Mennella, A; Wah, Ng Ming; Morgante, G; Nati, F; Pagano, L; Passerini, A; Peverini, O; Piacentini, F; Piccirillo, L; Pisano, G; Ricciardi, S; Rissone, P; Romeo, G; Salatino, M; Sandri, M; Schillaci, A; Stringhetti, L; Tartari, A; Tascone, R; Terenzi, L; Tomasi, M; Tommasi, E; Villa, F; Virone, G; Withington, S; Zacchei, A; Zannoni, M

    2012-01-01

    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar sh...

  14. Large-scale BAO signatures of the smallest galaxies

    CERN Document Server

    Dalal, Neal; Seljak, Uros

    2010-01-01

    Recent work has shown that at high redshift, the relative velocity between dark matter and baryonic gas is typically supersonic. This relative velocity suppresses the formation of the earliest baryonic structures like minihalos, and the suppression is modulated on large scales. This effect imprints a characteristic shape in the clustering power spectrum of the earliest structures, with significant power on 100 Mpc scales featuring highly pronounced baryon acoustic oscillations. The amplitude of these oscillations is orders of magnitude larger at z=20 than previously expected. This characteristic signature can allow us to distinguish the effects of minihalos on intergalactic gas at times preceding and during reionization. We illustrate this effect with the example of 21 cm emission and absorption from redshifts during and before reionization. This effect can potentially allow us to probe physics on kpc scales using observations on 100 Mpc scales. We present sensitivity forecasts for FAST and Arecibo. Depending...

  15. The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...

  16. Large scale scientific computing - future directions

    Science.gov (United States)

    Patterson, G. S.

    1982-06-01

    Every new generation of scientific computers has opened up new areas of science for exploration through the use of more realistic numerical models or the ability to process ever larger amounts of data. Concomitantly, scientists, because of the success of past models and the wide range of physical phenomena left unexplored, have pressed computer designers to strive for the maximum performance that current technology will permit. This encompasses not only increased processor speed, but also substantial improvements in processor memory, I/O bandwidth, secondary storage and facilities to augment the scientist's ability both to program and to understand the results of a computation. Over the past decade, performance improvements for scientific calculations have come from algoeithm development and a major change in the underlying architecture of the hardware, not from significantly faster circuitry. It appears that this trend will continue for another decade. A future archetectural change for improved performance will most likely be multiple processors coupled together in some fashion. Because the demand for a significantly more powerful computer system comes from users with single large applications, it is essential that an application be efficiently partitionable over a set of processors; otherwise, a multiprocessor system will not be effective. This paper explores some of the constraints on multiple processor architecture posed by these large applications. In particular, the trade-offs between large numbers of slow processors and small numbers of fast processors is examined. Strategies for partitioning range from partitioning at the language statement level (in-the-small) and at the program module level (in-the-large). Some examples of partitioning in-the-large are given and a strategy for efficiently executing a partitioned program is explored.

  17. Introducing Large-Scale Innovation in Schools

    Science.gov (United States)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  18. Fast large-scale reionization simulations

    Science.gov (United States)

    Thomas, Rajat M.; Zaroubi, Saleem; Ciardi, Benedetta; Pawlik, Andreas H.; Labropoulos, Panagiotis; Jelić, Vibor; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Harker, Geraint J. A.; Koopmans, Leon V. E.; Mellema, Garrelt; Pandey, V. N.; Schaye, Joop; Yatawatta, Sarod

    2009-02-01

    We present an efficient method to generate large simulations of the epoch of reionization without the need for a full three-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21-cm emission from neutral hydrogen. Dark matter haloes are embedded with sources of radiation whose properties are either based on semi-analytical prescriptions or derived from hydrodynamical simulations. These sources could either be stars or power-law sources with varying spectral indices. Assuming spherical symmetry, ionized bubbles are created around these sources, whose radial ionized fraction and temperature profiles are derived from a catalogue of one-dimensional radiative transfer experiments. In case of overlap of these spheres, photons are conserved by redistributing them around the connected ionized regions corresponding to the spheres. The efficiency with which these maps are created allows us to span the large parameter space typically encountered in reionization simulations. We compare our results with other, more accurate, three-dimensional radiative transfer simulations and find excellent agreement for the redshifts and the spatial scales of interest to upcoming 21-cm experiments. We generate a contiguous observational cube spanning redshift 6 to 12 and use these simulations to study the differences in the reionization histories between stars and quasars. Finally, the signal is convolved with the Low Frequency Array (LOFAR) beam response and its effects are analysed and quantified. Statistics performed on this mock data set shed light on possible observational strategies for LOFAR.

  19. The large-scale properties of simulated cosmic magnetic fields

    CERN Document Server

    Marinacci, Federico; Mocz, Philip; Pakmor, Ruediger

    2015-01-01

    We perform uniformly sampled large-scale cosmological simulations including magnetic fields with the moving mesh code AREPO. We run two sets of MHD simulations: one including adiabatic gas physics only; the other featuring the fiducial feedback model of the Illustris simulation. In the adiabatic case, the magnetic field amplification follows the $B \\propto \\rho^{2/3}$ scaling derived from `flux-freezing' arguments, with the seed field strength providing an overall normalisation factor. At high baryon overdensities the amplification is enhanced by shear flows and turbulence. Feedback physics and the inclusion of radiative cooling change this picture dramatically. Gas collapses to much larger densities and the magnetic field is amplified strongly, reaching saturation and losing memory of the initial seed field. At lower densities a dependence on the seed field strength and orientation, which in principle can be used to constrain models of cosmological magnetogenesis, is still present. Inside the most massive ha...

  20. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  1. Large-scale parametric survival analysis.

    Science.gov (United States)

    Mittal, Sushil; Madigan, David; Cheng, Jerry Q; Burd, Randall S

    2013-10-15

    Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only a small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor variables and the number of observations range between 10(4) and 10(6). In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models.

  2. The Large Scale Structure: Polarization Aspects

    Indian Academy of Sciences (India)

    R. F. Pizzo

    2011-12-01

    Polarized radio emission is detected at various scales in the Universe. In this document, I will briefly review our knowledge on polarized radio sources in galaxy clusters and at their outskirts, emphasizing the crucial information provided by the polarized signal on the origin and evolution of such sources. Successively, I will focus on Abell 2255, which is known in the literature as the first cluster for which filamentary polarized emission associated with the radio halo has been detected. By using RM synthesis on our multi-wavelength WSRT observations, we studied the 3-dimensional geometry of the cluster, unveiling the nature of the polarized filaments at the borders of the central radio halo. Our analysis points out that these structures are relics lying at large distance from the cluster center.

  3. Curvature constraints from Large Scale Structure

    CERN Document Server

    Di Dio, Enea; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-01-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter $\\Omega_K$ with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on the spatial curvature parameter estimation. We show that constraints on the curvature para...

  4. Large-Scale Tides in General Relativity

    CERN Document Server

    Ip, Hiu Yan

    2016-01-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the "separate universe" paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation ...

  5. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  6. Large scale water lens for solar concentration.

    Science.gov (United States)

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation.

  7. Constructing sites on a large scale

    DEFF Research Database (Denmark)

    Braae, Ellen Marie; Tietjen, Anne

    2011-01-01

    for setting the design brief in a large scale urban landscape in Norway, the Jaeren region around the city of Stavanger. In this paper, we first outline the methodological challenges and then present and discuss the proposed method based on our teaching experiences. On this basis, we discuss aspects...... within the development of our urban landscapes. At the same time, urban and landscape designers are confronted with new methodological problems. Within a strategic transformation perspective, the formulation of the design problem or brief becomes an integrated part of the design process. This paper...... discusses new design (education) methods based on a relational concept of urban sites and design processes. Within this logic site survey is not simply a pre-design activity nor is it a question of comprehensive analysis. Site survey is an integrated part of the design process. By means of active site...

  8. From Systematic Errors to Cosmology Using Large-Scale Structure

    Science.gov (United States)

    Hunterer, Dragan

    We propose to carry out a two-pronged program to significantly improve links between galaxy surveys and constraints on primordial cosmology and fundamental physics. We will first develop the methodology to self-calibrate the survey, that is, determine the large-angle calibration systematics internally from the survey. We will use this information to correct biases that propagate from the largest to smaller angular scales. Our approach for tackling the systematics is very complementary to existing ones, in particular in the sense that it does not assume knowledge of specific systematic maps or templates. It is timely to undertake these analyses, since none of the currently known methods addresses the multiplicative effects of large-angle calibration errors that contaminate the small-scale signal and present one of the most significant sources of error in the large-scale structure. The second part of the proposal is to precisely quantify the statistical and systematic errors in the reconstruction of the Integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) sky map using information from galaxy surveys. Unlike the ISW contributions to CMB power, the ISW map reconstruction has not been studied in detail to date. We will create a nimble plug-and-play pipeline to ascertain how reliably a map from an arbitrary LSS survey can be used to separate the late-time and early-time contributions to CMB anisotropy at large angular scales. We will pay particular attention to partial sky coverage, incomplete redshift information, finite redshift range, and imperfect knowledge of the selection function for the galaxy survey. Our work should serve as the departure point for a variety of implications in cosmology, including the physical origin of the large-angle CMB "anomalies".

  9. Large-scale sequential quadratic programming algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  10. Large scale mechanical metamaterials as seismic shields

    Science.gov (United States)

    Miniaci, Marco; Krushynska, Anastasiia; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

  11. Large scale probabilistic available bandwidth estimation

    CERN Document Server

    Thouin, Frederic; Rabbat, Michael

    2010-01-01

    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a pa...

  12. Gravitational redshifts from large-scale structure

    CERN Document Server

    Croft, Rupert A C

    2013-01-01

    The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak et al. has opened a new observational window on dark matter and modified gravity. By stacking clusters this determination effectively used the line of sight distortion of the cross-correlation function of massive galaxies and lower mass galaxies to estimate the gravitational redshift profile of clusters out to 4 Mpc/h. Here we use a halo model of clustering to predict the distortion due to gravitational redshifts of the cross-correlation function on scales from 1 - 100 Mpc/h. We compare our predictions to simulations and use the simulations to make mock catalogues relevant to current and future galaxy redshift surveys. Without formulating an optimal estimator, we find that the full BOSS survey should be able to detect gravitational redshifts from large-scale structure at the ~4 sigma level. Upcoming redshift surveys will greatly increase the number of galaxies useable in such studies and the BigBOSS and Euclid exper...

  13. Large-scale GW software development

    Science.gov (United States)

    Kim, Minjung; Mandal, Subhasish; Mikida, Eric; Jindal, Prateek; Bohm, Eric; Jain, Nikhil; Kale, Laxmikant; Martyna, Glenn; Ismail-Beigi, Sohrab

    Electronic excitations are important in understanding and designing many functional materials. In terms of ab initio methods, the GW and Bethe-Saltpeter Equation (GW-BSE) beyond DFT methods have proved successful in describing excited states in many materials. However, the heavy computational loads and large memory requirements have hindered their routine applicability by the materials physics community. We summarize some of our collaborative efforts to develop a new software framework designed for GW calculations on massively parallel supercomputers. Our GW code is interfaced with the plane-wave pseudopotential ab initio molecular dynamics software ``OpenAtom'' which is based on the Charm++ parallel library. The computation of the electronic polarizability is one of the most expensive parts of any GW calculation. We describe our strategy that uses a real-space representation to avoid the large number of fast Fourier transforms (FFTs) common to most GW methods. We also describe an eigendecomposition of the plasmon modes from the resulting dielectric matrix that enhances efficiency. This work is supported by NSF through Grant ACI-1339804.

  14. CLASS: The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Essinger-Hileman, Thomas; Amiri, Mandana; Appel, John W; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseley, Samuel H; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70\\% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $\\ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmi...

  15. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Large-scale wind turbine structures

    Science.gov (United States)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  17. Large-scale screens of metagenomic libraries.

    Science.gov (United States)

    Pham, Vinh D; Palden, Tsultrim; DeLong, Edward F

    2007-01-01

    Metagenomic libraries archive large fragments of contiguous genomic sequences from microorganisms without requiring prior cultivation. Generating a streamlined procedure for creating and screening metagenomic libraries is therefore useful for efficient high-throughput investigations into the genetic and metabolic properties of uncultured microbial assemblages. Here, key protocols are presented on video, which we propose is the most useful format for accurately describing a long process that alternately depends on robotic instrumentation and (human) manual interventions. First, we employed robotics to spot library clones onto high-density macroarray membranes, each of which can contain duplicate colonies from twenty-four 384-well library plates. Automation is essential for this procedure not only for accuracy and speed, but also due to the miniaturization of scale required to fit the large number of library clones into highly dense spatial arrangements. Once generated, we next demonstrated how the macroarray membranes can be screened for genes of interest using modified versions of standard protocols for probe labeling, membrane hybridization, and signal detection. We complemented the visual demonstration of these procedures with detailed written descriptions of the steps involved and the materials required, all of which are available online alongside the video.

  18. Physics at the Large Hadron Collider

    CERN Document Server

    Mukhopadhyaya, Biswarup; Raychaudhari, Amitava

    2009-01-01

    In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expert...

  19. Physical limits for scaling of integrated circuits

    Science.gov (United States)

    Nawrocki, Waldemar

    2010-11-01

    In this paper we discuss some physical limits for scaling of devices and conducting paths inside of semiconductor integrated circuits (ICs). Since 40 years only a semiconductor technology, mostly the CMOS and the TTL technologies, are used for fabrication of integrated circuits in the industrial scale. Miniaturization of electronic devices in integrated circuits has technological limits and physical limits as well. In 2010 best parameters of commercial ICs shown the dual-core Intel Core i5-670 processor manufactured in the technology of 32 nm. Its clock frequency in turbo mode is 3.73 GHz. A forecast of the development of the semiconductor industry (ITRS 2009) predicts that sizes of electronic devices in ICs circuits will be smaller than 10 nm in the next 10 years. The physical gate length in a MOSFET will even amount 7 nm in the year 2024. At least 5 physical effects should be taken into account if we discuss limits of scaling of integrated circuits.

  20. "I Fall Asleep in Class … but Physics Is Fascinating": The Use of Large-Scale Longitudinal Data to Explore the Educational Experiences of Aspiring Girls in Mathematics and Physics

    Science.gov (United States)

    Mujtaba, Tamjid; Reiss, Michael J.

    2016-01-01

    This article explores how students' aspirations to study mathematics or physics in post-16 education are associated with their perceptions of their education, their motivations, and the support they feel they received. The analysis is based on the responses of around 10,000 students in England in Year 8 (age 12-13) and then in Year 10 (age 14-15).…

  1. "I Fall Asleep in Class … but Physics Is Fascinating": The Use of Large-Scale Longitudinal Data to Explore the Educational Experiences of Aspiring Girls in Mathematics and Physics

    Science.gov (United States)

    Mujtaba, Tamjid; Reiss, Michael J.

    2016-01-01

    This article explores how students' aspirations to study mathematics or physics in post-16 education are associated with their perceptions of their education, their motivations, and the support they feel they received. The analysis is based on the responses of around 10,000 students in England in Year 8 (age 12-13) and then in Year 10 (age 14-15).…

  2. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  3. Small-Scale Variability of Large Cloud Drops

    Science.gov (United States)

    Marshak, Alexander; Knyazikhin, Y.; Wiscombe, Warren

    2004-01-01

    Cloud droplet size distribution is one of the most fundamental subjects in cloud physics. Understanding of spatial distribution and small-scale fluctuations of cloud droplets is essential for both cloud physics and atmospheric radiation. For cloud physics, it relates to the coalescence growth of raindrops while for radiation, it has a strong impact on a cloud's radiative properties. Most of the existing cloud radiation and precipitation formation models assume that the mean number of drops with a given radius varies proportionally to volume. The analysis of microphysical data on liquid water drop sizes shows that, for sufficiently small volumes, the number is proportional to the drop size dependent power of the volume. For abundant small drops present, the exponent is 1 as assumed in the conventional approach. However, for rarer large drops, the exponents fall below unity. At small scales, therefore, the mean number of large drops decreases with volume at a slower rate than the conventional approach assumes, suggesting more large drops at these scales than conventional models account for; their impact is consequently underestimated. Size dependent models of spatial distribution of cloud drops that simulate the observed power laws show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. Current theories of photon-cloud interaction and warm rain formation will need radical revision in order to produce these statistics; their underlying equations are unable to yield the observed power law.

  4. GPU-based large-scale visualization

    KAUST Repository

    Hadwiger, Markus

    2013-11-19

    Recent advances in image and volume acquisition as well as computational advances in simulation have led to an explosion of the amount of data that must be visualized and analyzed. Modern techniques combine the parallel processing power of GPUs with out-of-core methods and data streaming to enable the interactive visualization of giga- and terabytes of image and volume data. A major enabler for interactivity is making both the computational and the visualization effort proportional to the amount of data that is actually visible on screen, decoupling it from the full data size. This leads to powerful display-aware multi-resolution techniques that enable the visualization of data of almost arbitrary size. The course consists of two major parts: An introductory part that progresses from fundamentals to modern techniques, and a more advanced part that discusses details of ray-guided volume rendering, novel data structures for display-aware visualization and processing, and the remote visualization of large online data collections. You will learn how to develop efficient GPU data structures and large-scale visualizations, implement out-of-core strategies and concepts such as virtual texturing that have only been employed recently, as well as how to use modern multi-resolution representations. These approaches reduce the GPU memory requirements of extremely large data to a working set size that fits into current GPUs. You will learn how to perform ray-casting of volume data of almost arbitrary size and how to render and process gigapixel images using scalable, display-aware techniques. We will describe custom virtual texturing architectures as well as recent hardware developments in this area. We will also describe client/server systems for distributed visualization, on-demand data processing and streaming, and remote visualization. We will describe implementations using OpenGL as well as CUDA, exploiting parallelism on GPUs combined with additional asynchronous

  5. Bayesian large-scale structure inference and cosmic web analysis

    CERN Document Server

    Leclercq, Florent

    2015-01-01

    Surveys of the cosmic large-scale structure carry opportunities for building and testing cosmological theories about the origin and evolution of the Universe. This endeavor requires appropriate data assimilation tools, for establishing the contact between survey catalogs and models of structure formation. In this thesis, we present an innovative statistical approach for the ab initio simultaneous analysis of the formation history and morphology of the cosmic web: the BORG algorithm infers the primordial density fluctuations and produces physical reconstructions of the dark matter distribution that underlies observed galaxies, by assimilating the survey data into a cosmological structure formation model. The method, based on Bayesian probability theory, provides accurate means of uncertainty quantification. We demonstrate the application of BORG to the Sloan Digital Sky Survey data and describe the primordial and late-time large-scale structure in the observed volume. We show how the approach has led to the fi...

  6. Applications of large-scale density functional theory in biology

    Science.gov (United States)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  7. Communities, modules and large-scale structure in networks

    Science.gov (United States)

    Newman, M. E. J.

    2012-01-01

    Networks, also called graphs by mathematicians, provide a useful abstraction of the structure of many complex systems, ranging from social systems and computer networks to biological networks and the state spaces of physical systems. In the past decade there have been significant advances in experiments to determine the topological structure of networked systems, but there remain substantial challenges in extracting scientific understanding from the large quantities of data produced by the experiments. A variety of basic measures and metrics are available that can tell us about small-scale structure in networks, such as correlations, connections and recurrent patterns, but it is considerably more difficult to quantify structure on medium and large scales, to understand the `big picture'. Important progress has been made, however, within the past few years, a selection of which is reviewed here.

  8. Physical Basis of Large Microtubule Aster Growth

    CERN Document Server

    Ishihara, Keisuke; Mitchison, Timothy J

    2016-01-01

    Microtubule asters - radial arrays of microtubules organized by centrosomes - play a fundamental role in the spatial coordination of animal cells. The standard model of aster growth assumes a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we recently found evidence for non-centrosomal microtubule nucleation. Here, we combine autocatalytic nucleation and polymerization dynamics to develop a biophysical model of aster growth. Our model predicts that asters expand as traveling waves and recapitulates all major aspects of aster growth. As the nucleation rate increases, the model predicts an explosive transition from stationary to growing asters with a discontinuous jump of the growth velocity to a nonzero value. Experiments in frog egg extract confirm the main theoretical predictions. Our results suggest that asters observed in large frog and amphibian eggs are a meshwork of short, unstable microtubules maintained by autoca...

  9. Multi-physics/scale simulations using particles

    Science.gov (United States)

    Koumoutsakos, Petros

    2006-03-01

    Particle simulations of continuum and discrete phenomena can be formulated by following the motion of interacting particles that carry the physical properties of the systems that is being approximated (continuum) or modeled (discrete) by the particles. We identify the common computational characteristics of particle methods and emphasize their key properties that enable the formulation of a novel, systematic framework for multiscale simulations, that can be applicable to the simulation of diverse physical problems. We present novel multiresolution particle methods for continuum (fluid/solid) simulations, using adaptive mesh refinement and wavelets, by relaxing the grid-free character of particle methods and discuss the coupling of scales in continuum-atomistic flow simulations.

  10. Flavor physics and the TeV scale

    CERN Document Server

    Hou, George W S

    2009-01-01

    This monograph treats the effectiveness of useing flavor physics in offering probes of the TeV scale, while providing a timely interface during the emerging LHC era. By concentrating only with the TeV-scale connection, a large part of the B factory output can be bypassed, and emphasis is placed on loop-induced processes, i.e. virtual, quantum processes that probe TeV-scale physics. The experimental perspective is taken, resulting in selecting processes, rather than the theories or models, as the basis to exploration. Two-thirds of the book is therefore concerned with b -> s or bs sb transitions. The guiding principle is: unless it can be identified as the smoking gun, it is better to stick to the simplest, rather than elaborate, explanation of an effect that may call for New Physics. By focusing on heavy flavor as a probe of TeV-scale physics, technicalities can be employed to unveil their beauty, without getting ensnared in them, while aiming for the deeper, higher-scale physics that such probes provide. Th...

  11. Large-scale autostereoscopic outdoor display

    Science.gov (United States)

    Reitterer, Jörg; Fidler, Franz; Saint Julien-Wallsee, Ferdinand; Schmid, Gerhard; Gartner, Wolfgang; Leeb, Walter; Schmid, Ulrich

    2013-03-01

    State-of-the-art autostereoscopic displays are often limited in size, effective brightness, number of 3D viewing zones, and maximum 3D viewing distances, all of which are mandatory requirements for large-scale outdoor displays. Conventional autostereoscopic indoor concepts like lenticular lenses or parallax barriers cannot simply be adapted for these screens due to the inherent loss of effective resolution and brightness, which would reduce both image quality and sunlight readability. We have developed a modular autostereoscopic multi-view laser display concept with sunlight readable effective brightness, theoretically up to several thousand 3D viewing zones, and maximum 3D viewing distances of up to 60 meters. For proof-of-concept purposes a prototype display with two pixels was realized. Due to various manufacturing tolerances each individual pixel has slightly different optical properties, and hence the 3D image quality of the display has to be calculated stochastically. In this paper we present the corresponding stochastic model, we evaluate the simulation and measurement results of the prototype display, and we calculate the achievable autostereoscopic image quality to be expected for our concept.

  12. Management of large-scale multimedia conferencing

    Science.gov (United States)

    Cidon, Israel; Nachum, Youval

    1998-12-01

    The goal of this work is to explore management strategies and algorithms for large-scale multimedia conferencing over a communication network. Since the use of multimedia conferencing is still limited, the management of such systems has not yet been studied in depth. A well organized and human friendly multimedia conference management should utilize efficiently and fairly its limited resources as well as take into account the requirements of the conference participants. The ability of the management to enforce fair policies and to quickly take into account the participants preferences may even lead to a conference environment that is more pleasant and more effective than a similar face to face meeting. We suggest several principles for defining and solving resource sharing problems in this context. The conference resources which are addressed in this paper are the bandwidth (conference network capacity), time (participants' scheduling) and limitations of audio and visual equipment. The participants' requirements for these resources are defined and translated in terms of Quality of Service requirements and the fairness criteria.

  13. Large-scale tides in general relativity

    Science.gov (United States)

    Ip, Hiu Yan; Schmidt, Fabian

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the "separate universe" paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  14. Food appropriation through large scale land acquisitions

    Science.gov (United States)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2014-05-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300-550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190-370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations.

  15. Large-scale clustering of cosmic voids

    Science.gov (United States)

    Chan, Kwan Chuen; Hamaus, Nico; Desjacques, Vincent

    2014-11-01

    We study the clustering of voids using N -body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii ≳30 Mpc h-1 , especially when the void biasing model is extended to 1-loop order. However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are sensitive to the techniques used to identify voids.

  16. Large scale digital atlases in neuroscience

    Science.gov (United States)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  17. Economies of scale: The physics basis

    Science.gov (United States)

    Bejan, A.; Almerbati, A.; Lorente, S.

    2017-01-01

    Why is size so important? Why are "economies of scale" a universal feature of all flow systems, animate, inanimate, and human made? The empirical evidence is clear: the bigger are more efficient carriers (per unit) than the smaller. This natural tendency is observed across the board, from animal design to technology, logistics, and economics. In this paper, we rely on physics (thermodynamics) to determine the relation between the efficiency and size. Here, the objective is to predict a natural phenomenon, which is universal. It is not to model a particular type of device. The objective is to demonstrate based on physics that the efficiencies of diverse power plants should increase with size. The analysis is performed in two ways. First is the tradeoff between the "external" irreversibilities due to the temperature differences that exist above and below the temperature range occupied by the circuit executed by the working fluid. Second is the allocation of the fluid flow irreversibility between the hot and cold portions of the fluid flow circuit. The implications of this report in economics and design science (scaling up, scaling down) and the necessity of multi-scale design with hierarchy are discussed.

  18. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  19. An Evaluation Framework for Large-Scale Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    structure is a matter of trade-offs between different desired properties, and given a specific case with specific known or expected demands and constraints, the parameters presented will be weighted differently. The decision of such a weighting is supported by a discussion of each parameter. The paper......An evaluation framework for large-scale network structures is presented, which facilitates evaluations and comparisons of different physical network structures. A number of quantitative and qualitative parameters are presented, and their importance to networks discussed. Choosing a network...

  20. Large-Scale Self-Consistent Nuclear Mass Calculations

    CERN Document Server

    Stoitsov, M V; Dobaczewski, J; Nazarewicz, W

    2006-01-01

    The program of systematic large-scale self-consistent nuclear mass calculations that is based on the nuclear density functional theory represents a rich scientific agenda that is closely aligned with the main research directions in modern nuclear structure and astrophysics, especially the radioactive nuclear beam physics. The quest for the microscopic understanding of the phenomenon of nuclear binding represents, in fact, a number of fundamental and crucial questions of the quantum many-body problem, including the proper treatment of correlations and dynamics in the presence of symmetry breaking. Recent advances and open problems in the field of nuclear mass calculations are presented and discussed.

  1. Large Scale Emerging Properties from Non Hamiltonian Complex Systems

    Directory of Open Access Journals (Sweden)

    Marco Bianucci

    2017-06-01

    Full Text Available The concept of “large scale” depends obviously on the phenomenon we are interested in. For example, in the field of foundation of Thermodynamics from microscopic dynamics, the spatial and time large scales are order of fraction of millimetres and microseconds, respectively, or lesser, and are defined in relation to the spatial and time scales of the microscopic systems. In large scale oceanography or global climate dynamics problems the time scales of interest are order of thousands of kilometres, for space, and many years for time, and are compared to the local and daily/monthly times scales of atmosphere and ocean dynamics. In all the cases a Zwanzig projection approach is, at least in principle, an effective tool to obtain class of universal smooth “large scale” dynamics for few degrees of freedom of interest, starting from the complex dynamics of the whole (usually many degrees of freedom system. The projection approach leads to a very complex calculus with differential operators, that is drastically simplified when the basic dynamics of the system of interest is Hamiltonian, as it happens in Foundation of Thermodynamics problems. However, in geophysical Fluid Dynamics, Biology, and in most of the physical problems the building block fundamental equations of motions have a non Hamiltonian structure. Thus, to continue to apply the useful projection approach also in these cases, we exploit the generalization of the Hamiltonian formalism given by the Lie algebra of dissipative differential operators. In this way, we are able to analytically deal with the series of the differential operators stemming from the projection approach applied to these general cases. Then we shall apply this formalism to obtain some relevant results concerning the statistical properties of the El Niño Southern Oscillation (ENSO.

  2. Developing Large-Scale Bayesian Networks by Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale...

  3. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  4. High Speed Networking and Large-scale Simulation in Geodynamics

    Science.gov (United States)

    Kuang, Weijia; Gary, Patrick; Seablom, Michael; Truszkowski, Walt; Odubiyi, Jide; Jiang, Weiyuan; Liu, Dong

    2004-01-01

    Large-scale numerical simulation has been one of the most important approaches for understanding global geodynamical processes. In this approach, peta-scale floating point operations (pflops) are often required to carry out a single physically-meaningful numerical experiment. For example, to model convective flow in the Earth's core and generation of the geomagnetic field (geodynamo), simulation for one magnetic free-decay time (approximately 15000 years) with a modest resolution of 150 in three spatial dimensions would require approximately 0.2 pflops. If such a numerical model is used to predict geomagnetic secular variation over decades and longer, with e.g. an ensemble Kalman filter assimilation approach, approximately 30 (and perhaps more) independent simulations of similar scales would be needed for one data assimilation analysis. Obviously, such a simulation would require an enormous computing resource that exceeds the capacity of a single facility currently available at our disposal. One solution is to utilize a very fast network (e.g. 10Gb optical networks) and available middleware (e.g. Globus Toolkit) to allocate available but often heterogeneous resources for such large-scale computing efforts. At NASA GSFC, we are experimenting with such an approach by networking several clusters for geomagnetic data assimilation research. We shall present our initial testing results in the meeting.

  5. Large Scale, High Resolution, Mantle Dynamics Modeling

    Science.gov (United States)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  6. Large Scale Flame Spread Environmental Characterization Testing

    Science.gov (United States)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  7. Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach

    CERN Document Server

    Haddad, Wassim M

    2011-01-01

    Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami

  8. Synchronization of coupled large-scale Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangfei, E-mail: li-fangfei@163.com [Department of Mathematics, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, Shanghai 200237 (China)

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  9. Synchronization of coupled large-scale Boolean networks

    Science.gov (United States)

    Li, Fangfei

    2014-03-01

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  10. Foundational perspectives on causality in large-scale brain networks

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  11. Foundational perspectives on causality in large-scale brain networks.

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  12. Lessons from a Large-Scale Assessment: Results from Conceptual Inventories

    Science.gov (United States)

    Thacker, Beth; Dulli, Hani; Pattillo, Dave; West, Keith

    2014-01-01

    We report conceptual inventory results of a large-scale assessment project at a large university. We studied the introduction of materials and instructional methods informed by physics education research (PER) (physics education research-informed materials) into a department where most instruction has previously been traditional and a significant…

  13. Large scale protein separations: engineering aspects of chromatography.

    Science.gov (United States)

    Chisti, Y; Moo-Young, M

    1990-01-01

    The engineering considerations common to large scale chromatographic purification of proteins are reviewed. A discussion of the industrial chromatography fundamentals is followed by aspects which affect the scale of separation. The separation column geometry, the effect of the main operational parameters on separation performance, and the physical characteristics of column packing are treated. Throughout, the emphasis is on ion exchange and size exclusion techniques which together constitute the major portion of commercial chromatographic protein purifications. In all cases, the state of current technology is examined and areas in need of further development are noted. The physico-chemical advances now underway in chromatographic separation of biopolymers would ensure a substantially enhanced role for these techniques in industrial production of products of new biotechnology.

  14. Magnetic fields and the large-scale structure

    CERN Document Server

    Battaner, E

    1999-01-01

    The large-scale structure of the Universe has been observed to be characterized by long filaments, forming polyhedra, with a remarkable 100-200 Mpc periodicity, suggesting a regular network. The introduction of magnetic fields into the physics of the evolution of structure formation provides some clues to understanding this unexpected lattice structure. A relativistic treatment of the evolution of pre-recombination inhomogeneities, including magnetic fields, is presented to show that equivalent-to-present field strengths of the order of $10^{-8}$ G could have played an important role. Primordial magnetic tubes generated at inflation, at scales larger than the horizon before recombination, could have produced filamentary density structures, with comoving lengths larger than about 10 Mpc. Structures shorter than this would have been destroyed by diffusion due to the small pre-recombination conductivity. If filaments constitute a lattice, the primordial magnetic field structures that produced the post-recombinat...

  15. Multitree Algorithms for Large-Scale Astrostatistics

    Science.gov (United States)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    Common astrostatistical operations. A number of common "subroutines" occur over and over again in the statistical analysis of astronomical data. Some of the most powerful, and computationally expensive, of these additionally share the common trait that they involve distance comparisons between all pairs of data points—or in some cases, all triplets or worse. These include: * All Nearest Neighbors (AllNN): For each query point in a dataset, find the k-nearest neighbors among the points in another dataset—naively O(N2) to compute, for O(N) data points. * n-Point Correlation Functions: The main spatial statistic used for comparing two datasets in various ways—naively O(N2) for the 2-point correlation, O(N3) for the 3-point correlation, etc. * Euclidean Minimum Spanning Tree (EMST): The basis for "single-linkage hierarchical clustering,"the main procedure for generating a hierarchical grouping of the data points at all scales, aka "friends-of-friends"—naively O(N2). * Kernel Density Estimation (KDE): The main method for estimating the probability density function of the data, nonparametrically (i.e., with virtually no assumptions on the functional form of the pdf)—naively O(N2). * Kernel Regression: A powerful nonparametric method for regression, or predicting a continuous target value—naively O(N2). * Kernel Discriminant Analysis (KDA): A powerful nonparametric method for classification, or predicting a discrete class label—naively O(N2). (Note that the "two datasets" may in fact be the same dataset, as in two-point autocorrelations, or the so-called monochromatic AllNN problem, or the leave-one-out cross-validation needed in kernel estimation.) The need for fast algorithms for such analysis subroutines is particularly acute in the modern age of exploding dataset sizes in astronomy. The Sloan Digital Sky Survey yielded hundreds of millions of objects, and the next generation of instruments such as the Large Synoptic Survey Telescope will yield roughly

  16. Large Scale Investments in Infrastructure : Competing Policy regimes to Control Connections

    NARCIS (Netherlands)

    Otsuki, K.; Read, M.L.; Zoomers, E.B.

    2016-01-01

    This paper proposes to analyse implications of large-scale investments in physical infrastructure for social and environmental justice. While case studies on the global land rush and climate change have advanced our understanding of how large-scale investments in land, forests and water affect natur

  17. Large scale dynamics of protoplanetary discs

    Science.gov (United States)

    Béthune, William

    2017-08-01

    Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from

  18. CAS to set up large-scale gardens for energy-rich plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Studies under the title of "Screening & Assessment of Energy Plants & Core Technology for Large-Scale Plantation of the Physic Nut Tree" have recently been initiated as a major project at the CAS Science Cluster for Advanced Industrial Biotechnology.

  19. The dynamics of large-scale arrays of coupled resonators

    Science.gov (United States)

    Borra, Chaitanya; Pyles, Conor S.; Wetherton, Blake A.; Quinn, D. Dane; Rhoads, Jeffrey F.

    2017-03-01

    This work describes an analytical framework suitable for the analysis of large-scale arrays of coupled resonators, including those which feature amplitude and phase dynamics, inherent element-level parameter variation, nonlinearity, and/or noise. In particular, this analysis allows for the consideration of coupled systems in which the number of individual resonators is large, extending as far as the continuum limit corresponding to an infinite number of resonators. Moreover, this framework permits analytical predictions for the amplitude and phase dynamics of such systems. The utility of this analytical methodology is explored through the analysis of a system of N non-identical resonators with global coupling, including both reactive and dissipative components, physically motivated by an electromagnetically-transduced microresonator array. In addition to the amplitude and phase dynamics, the behavior of the system as the number of resonators varies is investigated and the convergence of the discrete system to the infinite-N limit is characterized.

  20. A first large-scale flood inundation forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode

  1. Large scale structure from viscous dark matter

    Science.gov (United States)

    Blas, Diego; Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-11-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale km for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale km, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with N-body simulations up to scales k=0.2 h/Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.

  2. Large Scale Land Acquisition as a driver of slope instability

    Science.gov (United States)

    Danilo Chiarelli, Davide; Rulli, Maria Cristina; Davis, Kyle F.; D'Odorico, Paolo

    2017-04-01

    Forests play a key role in preventing shallow landslides and deforestation has been analyzed as one of the main causes of increased mass wasting in hillsplopes undergoing land cover change. In the last few years vast tracts of lands have been acquired by foreign investors to satisfy an increasing demand for agricultural products. Large Scale Land Acquisitions (LSLA) often entail the conversion of forested landscapes into agricultural fields. Mozambique has been a major target of LSLAs and there is evidence that many of the acquired land have recently undergone forest clearing. The Zambezia Province in Mozambique has lost more than 500000ha of forest from 2000 to 2014; 25.4% of them were in areas acquired by large scale land investors. According to Land Matrix, an open-source database of reported land deals, there are currently 123 intended and confirmed deals in Mozambique; collectively, they account for 2.34million ha, the majority of which are located in forested areas. This study analyses the relationship between deforestation taking place inside LSLA areas(usually for agricultural purpose) and the likelihood of landslides occurrence in the Zambezia province in Mozambique. To this aim we use a spatially distributed and physically based model that couples slope stability analysis with a hillslope scale hydrological model and we compare the change in slope stability associated the forest loss documented by satellite imagery.

  3. Large scale petroleum reservoir simulation and parallel preconditioning algorithms research

    Institute of Scientific and Technical Information of China (English)

    SUN Jiachang; CAO Jianwen

    2004-01-01

    Solving large scale linear systems efficiently plays an important role in a petroleum reservoir simulator, and the key part is how to choose an effective parallel preconditioner. Properly choosing a good preconditioner has been beyond the pure algebraic field. An integrated preconditioner should include such components as physical background, characteristics of PDE mathematical model, nonlinear solving method, linear solving algorithm, domain decomposition and parallel computation. We first discuss some parallel preconditioning techniques, and then construct an integrated preconditioner, which is based on large scale distributed parallel processing, and reservoir simulation-oriented. The infrastructure of this preconditioner contains such famous preconditioning construction techniques as coarse grid correction, constraint residual correction and subspace projection correction. We essentially use multi-step means to integrate totally eight types of preconditioning components in order to give out the final preconditioner. Million-grid cell scale industrial reservoir data were tested on native high performance computers. Numerical statistics and analyses show that this preconditioner achieves satisfying parallel efficiency and acceleration effect.

  4. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...... are presented as the small-scale model underpredicts the overtopping discharge....

  5. On the scaling of small-scale jet noise to large scale

    Science.gov (United States)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or perceived noise level (PNL) noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10(exp 6) based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using a small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  6. Fast large-scale reionization simulations

    NARCIS (Netherlands)

    Thomas, Rajat M.; Zaroubi, Saleem; Ciardi, Benedetta; Pawlik, Andreas H.; Labropoulos, Panagiotis; Jelic, Vibor; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Harker, Geraint J. A.; Koopmans, Leon V. E.; Pandey, V. N.; Schaye, Joop; Yatawatta, Sarod; Mellema, G.

    2009-01-01

    We present an efficient method to generate large simulations of the epoch of reionization without the need for a full three-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21-cm emission from neutral hydrogen. Dark matter h

  7. Large scale parallel document image processing

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Valentijn, Edwin; Yanikoglu, BA; Berkner, K

    2008-01-01

    Building a system which allows to search a very large database of document images. requires professionalization of hardware and software, e-science and web access. In astrophysics there is ample experience dealing with large data sets due to an increasing number of measurement instruments. The probl

  8. Fast large-scale reionization simulations

    NARCIS (Netherlands)

    Thomas, Rajat M.; Zaroubi, Saleem; Ciardi, Benedetta; Pawlik, Andreas H.; Labropoulos, Panagiotis; Jelic, Vibor; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Harker, Geraint J. A.; Koopmans, Leon V. E.; Pandey, V. N.; Schaye, Joop; Yatawatta, Sarod; Mellema, G.

    2009-01-01

    We present an efficient method to generate large simulations of the epoch of reionization without the need for a full three-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21-cm emission from neutral hydrogen. Dark matter

  9. Large scale parallel document image processing

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Valentijn, Edwin; Yanikoglu, BA; Berkner, K

    2008-01-01

    Building a system which allows to search a very large database of document images. requires professionalization of hardware and software, e-science and web access. In astrophysics there is ample experience dealing with large data sets due to an increasing number of measurement instruments. The

  10. Large scale structure from viscous dark matter

    CERN Document Server

    Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...

  11. Maestro: an orchestration framework for large-scale WSN simulations.

    Science.gov (United States)

    Riliskis, Laurynas; Osipov, Evgeny

    2014-03-18

    Contemporary wireless sensor networks (WSNs) have evolved into large and complex systems and are one of the main technologies used in cyber-physical systems and the Internet of Things. Extensive research on WSNs has led to the development of diverse solutions at all levels of software architecture, including protocol stacks for communications. This multitude of solutions is due to the limited computational power and restrictions on energy consumption that must be accounted for when designing typical WSN systems. It is therefore challenging to develop, test and validate even small WSN applications, and this process can easily consume significant resources. Simulations are inexpensive tools for testing, verifying and generally experimenting with new technologies in a repeatable fashion. Consequently, as the size of the systems to be tested increases, so does the need for large-scale simulations. This article describes a tool called Maestro for the automation of large-scale simulation and investigates the feasibility of using cloud computing facilities for such task. Using tools that are built into Maestro, we demonstrate a feasible approach for benchmarking cloud infrastructure in order to identify cloud Virtual Machine (VM)instances that provide an optimal balance of performance and cost for a given simulation.

  12. Large-scale BAO signatures of the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Neal; Pen, Ue-Li [Canadian Institute for Theoretical Astrophyics, University of Toronto, 60 St. George St., Toronto, Ontario M5S 3H8 (Canada); Seljak, Uros, E-mail: neal@cita.utoronto.ca, E-mail: pen@cita.utoronto.ca, E-mail: useljak@berkeley.edu [Physics Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2010-11-01

    Recent work has shown that at high redshift, the relative velocity between dark matter and baryonic gas is typically supersonic. This relative velocity suppresses the formation of the earliest baryonic structures like minihalos, and the suppression is modulated on large scales. This effect imprints a characteristic shape in the clustering power spectrum of the earliest structures, with significant power on ∼ 100 Mpc scales featuring highly pronounced baryon acoustic oscillations. The amplitude of these oscillations is orders of magnitude larger at z ∼ 20 than previously expected. This characteristic signature can allow us to distinguish the effects of minihalos on intergalactic gas at times preceding and during reionization. We illustrate this effect with the example of 21 cm emission and absorption from redshifts during and before reionization. This effect can potentially allow us to probe physics on kpc scales using observations on 100 Mpc scales. We present sensitivity forecasts for FAST and Arecibo. Depending on parameters, this enhanced structure may be detectable by Arecibo at z ∼ 15−20, and with appropriate instrumentation FAST could measure the BAO power spectrum with high precision. In principle, this effect could also pose a serious challenge for efforts to constrain dark energy using observations of the BAO feature at low redshift.

  13. Management Structures and Large-Scale Studies.

    Science.gov (United States)

    Welty, Gordon; Lundin, Edward

    The structure of an organization plays a vital role in the evaluation of the organization. Social science researchers often assume that controls inherent in the physical sciences are as applicable to human subjects. Evaluation of Head Start is an example of the social relation of investigator to subject matter and of the variables introduced by…

  14. Large scale wind power penetration in Denmark

    DEFF Research Database (Denmark)

    Karnøe, Peter

    2013-01-01

    of "networks of power" via the interactions of politics, the techno-physics of electrons, and the market setting. The Danish case is about how an assemblage of new agencies has reorganized and reshaped society by building a new sociotechnical network. This has rendered developments highly unpredictable...

  15. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    CERN Document Server

    Fonseca, Ricardo A; Fiúza, Frederico; Davidson, Asher; Tsung, Frank S; Mori, Warren B; Silva, Luís O

    2013-01-01

    A new generation of laser wakefield accelerators, supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modeling for further understanding of the underlying physics and identification of optimal regimes, but large scale modeling of these scenarios is computationally heavy and requires efficient use of state-of-the-art Petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed / shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modeling of LWFA, demonstrating speedups of over 1 order of magni...

  16. Statistical equilibria of large scales in dissipative hydrodynamic turbulence

    CERN Document Server

    Dallas, Vassilios; Alexakis, Alexandros

    2015-01-01

    We present a numerical study of the statistical properties of three-dimensional dissipative turbulent flows at scales larger than the forcing scale. Our results indicate that the large scale flow can be described to a large degree by the truncated Euler equations with the predictions of the zero flux solutions given by absolute equilibrium theory, both for helical and non-helical flows. Thus, the functional shape of the large scale spectra can be predicted provided that scales sufficiently larger than the forcing length scale but also sufficiently smaller than the box size are examined. Deviations from the predictions of absolute equilibrium are discussed.

  17. The fractal octahedron network of the large scale structure

    CERN Document Server

    Battaner, E

    1998-01-01

    In a previous article, we have proposed that the large scale structure network generated by large scale magnetic fields could consist of a network of octahedra only contacting at their vertexes. Assuming such a network could arise at different scales producing a fractal geometry, we study here its properties, and in particular how a sub-octahedron network can be inserted within an octahedron of the large network. We deduce that the scale of the fractal structure would range from $\\approx$100 Mpc, i.e. the scale of the deepest surveys, down to about 10 Mpc, as other smaller scale magnetic fields were probably destroyed in the radiation dominated Universe.

  18. Large-Scale Spray Releases: Additional Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  19. Electrodialysis system for large-scale enantiomer separation

    NARCIS (Netherlands)

    Ent, van der E.M.; Thielen, T.P.H.; Cohen Stuart, M.A.; Padt, van der A.; Keurentjes, J.T.F.

    2001-01-01

    In contrast to analytical methods, the range of technologies currently applied for large-scale enantiomer separations is not very extensive. Therefore, a new system has been developed for large-scale enantiomer separations that can be regarded as the scale-up of a capillary electrophoresis system. I

  20. Electrodialysis system for large-scale enantiomer separation

    NARCIS (Netherlands)

    Ent, van der E.M.; Thielen, T.P.H.; Cohen Stuart, M.A.; Padt, van der A.; Keurentjes, J.T.F.

    2001-01-01

    In contrast to analytical methods, the range of technologies currently applied for large-scale enantiomer separations is not very extensive. Therefore, a new system has been developed for large-scale enantiomer separations that can be regarded as the scale-up of a capillary electrophoresis system.

  1. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...

  2. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  3. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    Pavel Ambrož; Alfred Schroll

    2000-09-01

    Precise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.

  4. Modified gravity and large scale flows, a review

    Science.gov (United States)

    Mould, Jeremy

    2017-02-01

    Large scale flows have been a challenging feature of cosmography ever since galaxy scaling relations came on the scene 40 years ago. The next generation of surveys will offer a serious test of the standard cosmology.

  5. Metastrategies in large-scale bargaining settings

    NARCIS (Netherlands)

    Hennes, D.; Jong, S. de; Tuyls, K.; Gal, Y.

    2015-01-01

    This article presents novel methods for representing and analyzing a special class of multiagent bargaining settings that feature multiple players, large action spaces, and a relationship among players' goals, tasks, and resources. We show how to reduce these interactions to a set of bilateral

  6. Large-Scale Organizational Performance Improvement.

    Science.gov (United States)

    Pilotto, Rudy; Young, Jonathan O'Donnell

    1999-01-01

    Describes the steps involved in a performance improvement program in the context of a large multinational corporation. Highlights include a training program for managers that explained performance improvement; performance matrices; divisionwide implementation, including strategic planning; organizationwide training of all personnel; and the…

  7. Optimization of Large-Scale Structural Systems

    DEFF Research Database (Denmark)

    Jensen, F. M.

    solutions to small problems with one or two variables to the optimization of large structures such as bridges, ships and offshore structures. The methods used for salving these problems have evolved from being classical differential calculus and calculus of variation to very advanced numerical techniques...

  8. Physically based landslide warning at regional scale

    Science.gov (United States)

    Canli, Ekrem; Mergili, Martin; Glade, Thomas

    2017-04-01

    Albeit advancements in the past within the field of geotechnical engineering have led to an increasing in situ damage control in many parts of the world, heavy rainstorms still cause severe damage by triggering landslides. Landslides are usually restricted to the local scale when taking into consideration single events, however, they often tend to occur spatially abundant which makes them a regional phenomenon. This makes the necessity of regional-scale early warning systems (EWS) indispensable. When dealing with landslide EWS, it is impossible to cover all potential early warning situations. Although the calculation of rainfall thresholds is the most common approach for assessing regional landslide early warning, they only represent a simplification of the physical processes involved. In most cases, indeed, there is more than just this one causative factor involved. Here, we present an early prototype for a regional, physically based landslide EWS driven by real-time spatio-temporal rainfall data. Instead of assuming uniform rainfall over a certain area, an automated geostatistical approach is suggested which allows approximating real-time spatially distributed, hourly rainfall predictions based on gauged rainfall data available on the internet. The methodology presented in this study is especially suitable for the implementation in warning systems that contain predefined thresholds and for landslides related to a progressive increase of soil saturation and/or a rising groundwater table. The transient rainfall infiltration and grid-based slope stability (TRIGRS) model is used in a modified way to compute transient pore-pressure changes and associated changes in the factor of safety due to rainfall infiltration. The geotechnical properties involved are probabilistically integrated within certain predefined ranges to account for the inherent spatial uncertainties. The result is an automatically generated probability of failure raster map that is updated hourly based

  9. The predictability of large-scale wind-driven flows

    Directory of Open Access Journals (Sweden)

    A. Mahadevan

    2001-01-01

    Full Text Available The singular values associated with optimally growing perturbations to stationary and time-dependent solutions for the general circulation in an ocean basin provide a measure of the rate at which solutions with nearby initial conditions begin to diverge, and hence, a measure of the predictability of the flow. In this paper, the singular vectors and singular values of stationary and evolving examples of wind-driven, double-gyre circulations in different flow regimes are explored. By changing the Reynolds number in simple quasi-geostrophic models of the wind-driven circulation, steady, weakly aperiodic and chaotic states may be examined. The singular vectors of the steady state reveal some of the physical mechanisms responsible for optimally growing perturbations. In time-dependent cases, the dominant singular values show significant variability in time, indicating strong variations in the predictability of the flow. When the underlying flow is weakly aperiodic, the dominant singular values co-vary with integral measures of the large-scale flow, such as the basin-integrated upper ocean kinetic energy and the transport in the western boundary current extension. Furthermore, in a reduced gravity quasi-geostrophic model of a weakly aperiodic, double-gyre flow, the behaviour of the dominant singular values may be used to predict a change in the large-scale flow, a feature not shared by an analogous two-layer model. When the circulation is in a strongly aperiodic state, the dominant singular values no longer vary coherently with integral measures of the flow. Instead, they fluctuate in a very aperiodic fashion on mesoscale time scales. The dominant singular vectors then depend strongly on the arrangement of mesoscale features in the flow and the evolved forms of the associated singular vectors have relatively short spatial scales. These results have several implications. In weakly aperiodic, periodic, and stationary regimes, the mesoscale energy

  10. Second-order perturbation theory: Problems on large scales

    Science.gov (United States)

    Pound, Adam

    2015-11-01

    In general-relativistic perturbation theory, a point mass accelerates away from geodesic motion due to its gravitational self-force. Because the self-force is small, one can often approximate the motion as geodesic. However, it is well known that self-force effects accumulate over time, making the geodesic approximation fail on long time scales. It is less well known that this failure at large times translates to a failure at large distances as well. At second perturbative order, two large-distance pathologies arise: spurious secular growth and infrared-divergent retarded integrals. Both stand in the way of practical computations of second-order self-force effects. Utilizing a simple flat-space scalar toy model, I develop methods to overcome these obstacles. The secular growth is tamed with a multiscale expansion that captures the system's slow evolution. The divergent integrals are eliminated by matching to the correct retarded solution at large distances. I also show how to extract conservative self-force effects by taking local-in-time "snapshots" of the global solution. These methods are readily adaptable to the physically relevant case of a point mass orbiting a black hole.

  11. Parallel cluster labeling for large-scale Monte Carlo simulations

    CERN Document Server

    Flanigan, M; Flanigan, M; Tamayo, P

    1995-01-01

    We present an optimized version of a cluster labeling algorithm previously introduced by the authors. This algorithm is well suited for large-scale Monte Carlo simulations of spin models using cluster dynamics on parallel computers with large numbers of processors. The algorithm divides physical space into rectangular cells which are assigned to processors and combines a serial local labeling procedure with a relaxation process across nearest-neighbor processors. By controlling overhead and reducing inter-processor communication this method attains good computational speed-up and efficiency. Large systems of up to 65536 X 65536 spins have been simulated at updating speeds of 11 nanosecs/site (90.7 million spin updates/sec) using state-of-the-art supercomputers. In the second part of the article we use the cluster algorithm to study the relaxation of magnetization and energy on large Ising models using Swendsen-Wang dynamics. We found evidence that exponential and power law factors are present in the relaxatio...

  12. On the Phenomenology of an Accelerated Large-Scale Universe

    Directory of Open Access Journals (Sweden)

    Martiros Khurshudyan

    2016-10-01

    Full Text Available In this review paper, several new results towards the explanation of the accelerated expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated expansion of is one of the long standing problems in modern cosmology, and physics in general. There are several well defined approaches to solve this problem. One of them is an assumption concerning the existence of dark energy in recent universe. It is believed that dark energy is responsible for antigravity, while dark matter has gravitational nature and is responsible, in general, for structure formation. A different approach is an appropriate modification of general relativity including, for instance, f ( R and f ( T theories of gravity. On the other hand, attempts to build theories of quantum gravity and assumptions about existence of extra dimensions, possible variability of the gravitational constant and the speed of the light (among others, provide interesting modifications of general relativity applicable to problems of modern cosmology, too. In particular, here two groups of cosmological models are discussed. In the first group the problem of the accelerated expansion of large-scale universe is discussed involving a new idea, named the varying ghost dark energy. On the other hand, the second group contains cosmological models addressed to the same problem involving either new parameterizations of the equation of state parameter of dark energy (like varying polytropic gas, or nonlinear interactions between dark energy and dark matter. Moreover, for cosmological models involving varying ghost dark energy, massless particle creation in appropriate radiation dominated universe (when the background dynamics is due to general relativity is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale universe involving generalized

  13. Simulation and experiment for large scale space structure

    Science.gov (United States)

    Sun, Hongbo; Zhou, Jian; Zha, Zuoliang

    2013-04-01

    The future space structures are relatively large, flimsy, and lightweight. As a result, they are more easily affected or distortion by space environments compared to other space structures. This study examines the structural integrity of a large scale space structure. A new design of transient temperature field analysis method of the developable reflector on orbit environment is presented, which simulates physical characteristic of developable antenna reflector with a high precision. The different kinds of analysis denote that different thermal elastic characteristics of different materials. The three-dimension multi-physics coupling transient thermal distortion equations for the antenna are founded based on the Galerkins method. For a reflector on geosynchronous orbit, the transient temperature field results from this method are compared with these from NASA. It follows from the analysis that the precision of this method is high. An experimental system is established to verify the control mechanism with IEBIS and thermal sensor technique. The shape control experiments are finished by measuring and analyzing developable tube. Results reveal that the temperature levels of the developable antenna reflector alternate greatly in the orbital period, which is about ±120° when considering solar flux ,earth radiating flux and albedo scattering flux.

  14. Large scale PV plants - also in Denmark. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P. (PA Energy, Malling (Denmark)); Vedde, J. (SiCon. Silicon and PV consulting, Birkeroed (Denmark))

    2011-04-15

    Large scale PV (LPV) plants, plants with a capacity of more than 200 kW, has since 2007 constituted an increasing share of the global PV installations. In 2009 large scale PV plants with cumulative power more that 1,3 GWp were connected to the grid. The necessary design data for LPV plants in Denmark are available or can be found, although irradiance data could be improved. There seems to be very few institutional barriers for LPV projects, but as so far no real LPV projects have been processed, these findings have to be regarded as preliminary. The fast growing number of very large scale solar thermal plants for district heating applications supports these findings. It has further been investigated, how to optimize the lay-out of LPV plants. Under the Danish irradiance conditions with several winter months with very low solar height PV installations on flat surfaces will have to balance the requirements of physical space - and cost, and the loss of electricity production due to shadowing effects. The potential for LPV plants in Denmark are found in three main categories: PV installations on flat roof of large commercial buildings, PV installations on other large scale infrastructure such as noise barriers and ground mounted PV installations. The technical potential for all three categories is found to be significant and in the range of 50 - 250 km2. In terms of energy harvest PV plants will under Danish conditions exhibit an overall efficiency of about 10 % in conversion of the energy content of the light compared to about 0,3 % for biomass. The theoretical ground area needed to produce the present annual electricity consumption of Denmark at 33-35 TWh is about 300 km2 The Danish grid codes and the electricity safety regulations mention very little about PV and nothing about LPV plants. It is expected that LPV plants will be treated similarly to big wind turbines. A number of LPV plant scenarios have been investigated in detail based on real commercial offers and

  15. GPS for large-scale aerotriangulation

    Science.gov (United States)

    Rogowksi, Jerzy B.

    The application of GPS (Global Positioning System) measurements to photogrammetry is presented. The technology of establishment of a GPS network for aerotriangulation as a base for mapping at scales from 1:1000 has been worked out at the Institute of Geodesy and Geodetical Astronomy of the Warsaw University of Technology. This method consists of the design, measurement, and adjustment of this special network. The results of several pilot projects confirm the possibility of improving the aerotriangulation accuracy. A few-centimeter accuracy has been achieved.

  16. Development of large-scale structure in the Universe

    CERN Document Server

    Ostriker, J P

    1991-01-01

    This volume grew out of the 1988 Fermi lectures given by Professor Ostriker, and is concerned with cosmological models that take into account the large scale structure of the universe. He starts with homogeneous isotropic models of the universe and then, by considering perturbations, he leads us to modern cosmological theories of the large scale, such as superconducting strings. This will be an excellent companion for all those interested in the cosmology and the large scale nature of the universe.

  17. Small Particle May Answer Large Physics Questions

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2005-09-20

    In one of those interesting intersections of particle physics, astrophysics, and cosmology, scientists from Lawrence Livermore National Laboratory, the University of California at Berkeley (UCB), the University of Florida (UF), and the National Radio Astronomy Observatory (NRAO) have joined together to try to pin down an elusive particle. This particle, called the axion, if it is found to exist and is not just a hypothesis, would be a long-sought relic from the first fractional second of the birth of the universe and one of the most weakly interacting particles known. Experimental verification of the existence of the axion would not only help ''balance the budget'' for the missing mass of the universe but also clear up one of the thorniest issues in particle physics.

  18. Large-scale structure and matter in the Universe.

    Science.gov (United States)

    Peacock, J A

    2003-11-15

    This paper summarizes the physical mechanisms that encode the type and quantity of cosmological matter in the properties of large-scale structure, and reviews the application of such tests to current datasets. The key lengths of the horizon size at matter-radiation equality and at last scattering determine the total matter density and its ratio to the relativistic density; acoustic oscillations can diagnose whether the matter is collisionless, and small-scale structure or its absence can limit the mass of any dark-matter relic particle. The most stringent constraints come from combining data on present-day galaxy clustering with data on CMB anisotropies. Such an analysis breaks the degeneracies inherent in either dataset alone, and proves that the Universe is very close to flat. The matter content is accurately consistent with pure cold dark matter, with ca. 25% of the critical density, and fluctuations that are scalar only, adiabatic and scale invariant. It is demonstrated that these conclusions cannot be evaded by adjusting either the equation of state of the vacuum, or the total relativistic density.

  19. Physical scale experiments on torrential filter structures

    Science.gov (United States)

    Chiari, Michael; Moser, Markus; Trojer, Martin; Hübl, Johannes

    2016-04-01

    In the framework of the INTERREG Project "SedAlp" physical scale model experiments are carried out in the hydraulic laboratory of the Institute of Mountain Risk Engineering at the University of Life Sciences in Vienna in order to optimize torrent protection structures. Two different types of check dams are investigated. A screen-dam with inclined vertical beams is compared with a beam-dam with horizontal beams. The experiments evaluate the variation of sediment transport of these structures including the influence of coarse woody debris. Therefore the distance between the steel elements can be adjusted to show their ability to filter sediment. The physical scale of the experiments is 1:30. All experimental runs are Froude scaled. Both dams are tested in elongated and pear-shaped sediment retention basins in order to investigate the shape effect of the deposition area. For a systematic comparison of the two check dams experiments with fluvial bedload transport are made. First a typical hydrograph for an extreme flood with unlimited sediment supply is modelled. A typical torrential sediment mixture with a wide grain-size distribution is fed by a conveyor belt according the transport capacity of the upstream reach. Then the deposition is scanned with a laser-scan device in order to analyse the deposition pattern and the deposited volume. Afterwards a flood with a lower reoccurrence period without sediment transport from upstream is modelled to investigate the ability of the protection structure for self-emptying. To investigate the influence of driftwood on the deposition behaviour experiments with logs are made. Different log diameters and lengths are added upstream the basin. The results show, that the deposition during the experiments was not controlled by sorting-effects at the location of the dam. The deposition always started from upstream, where the transport capacity was reduced due to the milder slope and the widening of the basin. No grain sorting effects

  20. Large-scale comparative visualisation of sets of multidimensional data

    CERN Document Server

    Vohl, Dany; Fluke, Christopher J; Poudel, Govinda; Georgiou-Karistianis, Nellie; Hassan, Amr H; Benovitski, Yuri; Wong, Tsz Ho; Kaluza, Owen; Nguyen, Toan D; Bonnington, C Paul

    2016-01-01

    We present encube $-$ a qualitative, quantitative and comparative visualisation and analysis system, with application to high-resolution, immersive three-dimensional environments and desktop displays. encube extends previous comparative visualisation systems by considering: 1) the integration of comparative visualisation and analysis into a unified system; 2) the documentation of the discovery process; and 3) an approach that enables scientists to continue the research process once back at their desktop. Our solution enables tablets, smartphones or laptops to be used as interaction units for manipulating, organising, and querying data. We highlight the modularity of encube, allowing additional functionalities to be included as required. Additionally, our approach supports a high level of collaboration within the physical environment. We show how our implementation of encube operates in a large-scale, hybrid visualisation and supercomputing environment using the CAVE2 at Monash University, and on a local deskt...

  1. A Large-Scale 3D Object Recognition dataset

    DEFF Research Database (Denmark)

    Sølund, Thomas; Glent Buch, Anders; Krüger, Norbert

    2016-01-01

    This paper presents a new large scale dataset targeting evaluation of local shape descriptors and 3d object recognition algorithms. The dataset consists of point clouds and triangulated meshes from 292 physical scenes taken from 11 different views; a total of approximately 3204 views. Each...... geometric groups; concave, convex, cylindrical and flat 3D object models. The object models have varying amount of local geometric features to challenge existing local shape feature descriptors in terms of descriptiveness and robustness. The dataset is validated in a benchmark which evaluates the matching...... performance of 7 different state-of-the-art local shape descriptors. Further, we validate the dataset in a 3D object recognition pipeline. Our benchmark shows as expected that local shape feature descriptors without any global point relation across the surface have a poor matching performance with flat...

  2. Automatic Installation and Configuration for Large Scale Farms

    CERN Document Server

    Novák, J

    2005-01-01

    Since the early appearance of commodity hardware, the utilization of computers rose rapidly, and they became essential in all areas of life. Soon it was realized that nodes are able to work cooperatively, in order to solve new, more complex tasks. This conception got materialized in coherent aggregations of computers called farms and clusters. Collective application of nodes, being efficient and economical, was adopted in education, research and industry before long. But maintainance, especially in large scale, appeared as a problem to be resolved. New challenges needed new methods and tools. Development work has been started to build farm management applications and frameworks. In the first part of the thesis, these systems are introduced. After a general description of the matter, a comparative analysis of different approaches and tools illustrates the practical aspects of the theoretical discussion. CERN, the European Organization of Nuclear Research is the largest Particle Physics laboratory in the world....

  3. Isolating relativistic effects in large-scale structure

    CERN Document Server

    Bonvin, Camille

    2014-01-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons' direction, is distorted by inhomogeneities in our universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  4. Measurement of ionospheric large-scale irregularity

    Institute of Scientific and Technical Information of China (English)

    韩文焌; 郑怡嘉; 张喜镇

    1996-01-01

    Based on the observations of a meter-wave aperture synthesis radio telescope,as the scale length of ionospheric irregularity is greatly larger than the baseline length of interferometer,the phase error induced by the output signal of interferometer due to ionosphere is proportional to the baseline length and accordingly the expressions for extracting the information about ionosphere are derived.By using the ray theory and considering that the antenna is always tracking to the radio source in astronomical observation,the wave motion expression of traveling ionospheric disturbance observed in the total electron content is also derived,which is consistent with that obtained from the conception of thin-phase screen;then the Doppler velocity due to antenna tracking is introduced.Finally the inversion analysis for the horizontal phase velocity of TID from observed data is given.

  5. Large Scale Demand Response of Thermostatic Loads

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana

    This study is concerned with large populations of residential thermostatic loads (e.g. refrigerators, air conditioning or heat pumps). The purpose is to gain control over the aggregate power consumption in order to provide balancing services for the electrical grid. Without affecting...... the temperature limits and other operational constraints, and by using only limited communication, it is possible to make use of the individual thermostat deadband flexibility to step-up or step-down the power consumption of the population as if it were a power plant. The individual thermostatic loads experience...

  6. Goethite Bench-scale and Large-scale Preparation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the

  7. Carbon dioxide recovery: large scale design trends

    Energy Technology Data Exchange (ETDEWEB)

    Mariz, C. L.

    1998-07-01

    Carbon dioxide recovery from flue gas streams for use in enhanced oil recovery were examined, focusing on key design and operating issues and trends that appear promising in reducing plant investment and operating costs associated with this source of carbon dioxide. The emphasis was on conventional processes using chemical solvents, such as the Fluor Daniel ECONAMINE FG{sup S}M process. Developments in new tower packings and solvents and their potential impact on plant and operating costs were reviewed, along with the effects on these costs of the flue gas source. Sample operating and capital recovery cost data is provided for a 1,000 tonne/day plant. This size plant would be one large enough to support an enhanced oil recovery project. 11 refs., 4 figs.

  8. Python for large-scale electrophysiology

    Directory of Open Access Journals (Sweden)

    Martin A Spacek

    2009-01-01

    Full Text Available Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54 channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analyzing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation (dimstim; one for electrophysiological waveform visualization and spike sorting (spyke; and one for spike train and stimulus analysis (neuropy. All three are open source and available for download (http://swindale.ecc.ubc.ca/code. The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience.

  9. Python for large-scale electrophysiology.

    Science.gov (United States)

    Spacek, Martin; Blanche, Tim; Swindale, Nicholas

    2008-01-01

    Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation ("dimstim"); one for electrophysiological waveform visualization and spike sorting ("spyke"); and one for spike train and stimulus analysis ("neuropy"). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience.

  10. Optimizing Large-Scale ODE Simulations

    CERN Document Server

    Mulansky, Mario

    2014-01-01

    We present a strategy to speed up Runge-Kutta-based ODE simulations of large systems with nearest-neighbor coupling. We identify the cache/memory bandwidth as the crucial performance bottleneck. To reduce the required bandwidth, we introduce a granularity in the simulation and identify the optimal cluster size in a performance study. This leads to a considerable performance increase and transforms the algorithm from bandwidth bound to CPU bound. By additionally employing SIMD instructions we are able to boost the efficiency even further. In the end, a total performance increase of up to a factor three is observed when using cache optimization and SIMD instructions compared to a standard implementation. All simulation codes are written in C++ and made publicly available. By using the modern C++ libraries Boost.odeint and Boost.SIMD, these optimizations can be implemented with minimal programming effort.

  11. Galaxy Formation and Large Scale Structure

    CERN Document Server

    Ellis, R

    1999-01-01

    Galaxies represent the visible fabric of the Universe and there has been considerable progress recently in both observational and theoretical studies. The underlying goal is to understand the present-day diversity of galaxy forms, masses and luminosities in the context of theories for the growth of structure. Popular models predict the bulk of the galaxy population assembled recently, in apparent agreement with optical and near-infrared observations. However, detailed conclusions rely crucially on the choice of the cosmological parameters. Although the star formation history has been sketched to early times, uncertainties remain, particularly in connecting to the underlying mass assembly rate. I discuss the expected progress in determining the cosmological parameters and address the question of which observations would most accurately check contemporary models for the origin of the Hubble sequence. The new generation of ground-based and future space-based large telescopes, equipped with instrumentation approp...

  12. Large-Scale Pattern Discovery in Music

    Science.gov (United States)

    Bertin-Mahieux, Thierry

    This work focuses on extracting patterns in musical data from very large collections. The problem is split in two parts. First, we build such a large collection, the Million Song Dataset, to provide researchers access to commercial-size datasets. Second, we use this collection to study cover song recognition which involves finding harmonic patterns from audio features. Regarding the Million Song Dataset, we detail how we built the original collection from an online API, and how we encouraged other organizations to participate in the project. The result is the largest research dataset with heterogeneous sources of data available to music technology researchers. We demonstrate some of its potential and discuss the impact it already has on the field. On cover song recognition, we must revisit the existing literature since there are no publicly available results on a dataset of more than a few thousand entries. We present two solutions to tackle the problem, one using a hashing method, and one using a higher-level feature computed from the chromagram (dubbed the 2DFTM). We further investigate the 2DFTM since it has potential to be a relevant representation for any task involving audio harmonic content. Finally, we discuss the future of the dataset and the hope of seeing more work making use of the different sources of data that are linked in the Million Song Dataset. Regarding cover songs, we explain how this might be a first step towards defining a harmonic manifold of music, a space where harmonic similarities between songs would be more apparent.

  13. Higgs Physics at the Large Hadron Collider

    CERN Document Server

    Godbole, Rohini M

    2011-01-01

    In this talk I will begin by summarising the importance of the Higgs physics studies at the LHC. I will then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. In addition to the material covered in the presented talk, I have included in the writeup, a critical appraisal of the theoretical uncertainties in the Higgs cross-sections at the Tevatron as well as a discussion of the recent experimental results from the LHC which have become available since the time of the workshop.

  14. Large-Scale Graphene Film Deposition for Monolithic Device Fabrication

    Science.gov (United States)

    Al-shurman, Khaled

    Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors. The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an urgent need for a new platform material to replace Si. Graphene is considered a promising material with enormous potential applications in many electronic and optoelectronics devices due to its superior properties. There are several techniques to produce graphene films. Among these techniques, chemical vapor deposition (CVD) offers a very convenient method to fabricate films for large-scale graphene films. Though CVD method is suitable for large area growth of graphene, the need for transferring a graphene film to silicon-based substrates is required. Furthermore, the graphene films thus achieved are, in fact, not single crystalline. Also, graphene fabrication utilizing Cu and Ni at high growth temperature contaminates the substrate that holds Si CMOS circuitry and CVD chamber as well. So, lowering the deposition temperature is another technological milestone for the successful adoption of graphene in integrated circuits fabrication. In this research, direct large-scale graphene film fabrication on silicon based platform (i.e. SiO2 and Si3N4) at low temperature was achieved. With a focus on low-temperature graphene growth, hot-filament chemical vapor deposition (HF-CVD) was utilized to synthesize graphene film using 200 nm thick nickel film. Raman spectroscopy was utilized to examine graphene formation on the bottom side of the Ni film

  15. Experimental investigation on rapid filling of a large-scale pipeline

    NARCIS (Netherlands)

    Hou, Q.; Tijsseling, A.S.; Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vučković, S.; Anderson, A.; Westende, J.M.C. van 't

    2014-01-01

    This study presents the results from detailed experiments of the two-phase pressurized flow behavior during the rapid filling of a large-scale pipeline. The physical scale of this experiment is close to the practical situation in many industrial plants. Pressure transducers, water-level meters, ther

  16. Experimental investigation on rapid filling of a large-scale pipeline

    NARCIS (Netherlands)

    Hou, Q.; Tijsseling, A.S.; Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vučković, S.; Anderson, A.; Westende, J.M.C. van 't

    2014-01-01

    This study presents the results from detailed experiments of the two-phase pressurized flow behavior during the rapid filling of a large-scale pipeline. The physical scale of this experiment is close to the practical situation in many industrial plants. Pressure transducers, water-level meters, ther

  17. Arrangement of scale-interaction and large-scale modulation in high Reynolds number turbulent boundary layers

    Science.gov (United States)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2015-11-01

    Interactions between small- and large-scale motions are inherent in the near-wall dynamics of wall-bounded flows. We here examine the scale-interaction embedded within the streamwise velocity component. Data were acquired using hot-wire anemometry in ZPG turbulent boundary layers, for Reynolds numbers ranging from Reτ ≡ δUτ / ν ~ 2800 to 22800. After first decomposing velocity signals into contributions from small- and large-scales, we then represent the time-varying small-scale energy with time series of its instantaneous amplitude and instantaneous frequency, via a wavelet-based method. Features of the scale-interaction are inferred from isocorrelation maps, formed by correlating the large-scale velocity with its concurrent small-scale amplitude and frequency. Below the onset of the log-region, the physics constitutes aspects of amplitude modulation and frequency modulation. Time shifts, associated with the correlation extrema--representing the lead/lag of the small-scale signatures relative to the large-scales--are shown to be governed by inner-scaling. Wall-normal trends of time shifts are explained by considering the arrangement of scales in the log- and intermittent-regions, and how they relate to stochastic top-down and bottom-up processes.

  18. Irradiation of onions on a large scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Koji; Hayashi, Toru; Uozumi, J.; Sugimoto, Toshio; Aoki, Shohei

    1984-03-01

    A large number of onions of var. Kitamiki and Ohotsuku were irradiated in September followed by storage at 0 deg C or 5 deg C. The onions were shifted from cold-storage facilities to room temperature in mid-March or in mid-April in the following year. Their sprouting, rooting, spoilage characteristics and sugar content were observed during storage at room temperature. Most of the unirradiated onions sprouted either outside or inside bulbs during storage at room temperature, and almost all of the irradiated ones showed small buds with browning inside the bulb in mid-April irrespective of the storage temperature. Rooting and/or expansion of bottom were observed in the unirradiated samples. Although the irradiated materials did not have root, they showed expansion of bottom to some extent. Both the irradiated and unirradiated onions spoiled slightly unless they sprouted, and sprouted onions were easily spoiled. There was no difference in the glucose content between the unirradiated and irradiated onions, but the irradiated ones yielded higher sucrose content when stored at room temperature. Irradiation treatment did not have an obvious effect on the quality of freeze-dried onion slices. (author).

  19. A Large Scale Virtual Gas Sensor Array

    Science.gov (United States)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  20. Superconducting materials for large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  1. Large Scale Flows from Orion-South

    CERN Document Server

    Henney, W J; Zapata, L A; Garcia-Diaz, M T; Rodríguez, L F; Robberto, M; Zapata, Luis A.; Garcia-Diaz, Ma. T.; Rodriguez, Luis F.; Robberto, Massimo

    2007-01-01

    Multiple optical outflows are known to exist in the vicinity of the active star formation region called Orion-South (Orion-S). We have mapped the velocity of low ionization features in the brightest part of the Orion Nebula, including Orion-S, and imaged the entire nebula with the Hubble Space Telescope. These new data, combined with recent high resolution radio maps of outflows from the Orion-S region, allow us to trace the origin of the optical outflows. It is confirmed that HH 625 arises from the blueshifted lobe of the CO outflow from 136-359 in Orion-S while it is likely that HH 507 arises from the blueshifted lobe of the SiO outflow from the nearby source 135-356. It is likely that redshifted lobes are deflected within the photon dominated region behind the optical nebula. This leads to a possible identification of a new large shock to the southwest from Orion-S as being driven by the redshifted CO outflow arising from 137-408. The distant object HH 400 is seen to have two even further components and th...

  2. Safeguards instruments for Large-Scale Reprocessing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A. [Los Alamos National Lab., NM (United States); Case, R.S.; Sonnier, C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    Between 1987 and 1992 a multi-national forum known as LASCAR (Large Scale Reprocessing Plant Safeguards) met to assist the IAEA in development of effective and efficient safeguards for large-scale reprocessing plants. The US provided considerable input for safeguards approaches and instrumentation. This paper reviews and updates instrumentation of importance in measuring plutonium and uranium in these facilities.

  3. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising w...

  4. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  5. Distribution probability of large-scale landslides in central Nepal

    Science.gov (United States)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  6. Distorted Froude-scaled Flume Analysis of Large Woody Debris

    Science.gov (United States)

    Wallerstein, N. P.; Alonso, C. V.; Bennett, S. J.; Thorne, C. R.

    2001-12-01

    This paper presents the results of a movable-boundary, distorted, Froude-scaled hydraulic model based on Abiaca Creek, a sand-bedded channel in northern Mississippi. The model was used to examine the geomorphic and hydraulic impact of simplified Large Woody Debris (LWD) elements. The theory of physical scale models is discussed and the method used to construct the LWD test channel is developed. The channel model had bed and banks molded from 0.8 mm sand, and flow conditions were just below the threshold of motion so that any sediment transport and channel adjustment were the result of the debris element. Dimensions and positions of LWD elements were determined using a Debris Jam Classification Model (Wallerstein et al., 1997). Elements were attached to a dynamometer to measure element drag forces, and channel adjustment was determined through detailed topographic surveys. The fluid drag force on the element decreased asymptotically over time as the channel boundary eroded around the element due to locally increased boundary shear stress. Total time for geomorphic adjustment computed for the prototype channel at the Q2 discharge (discharge occurring once every two years on average) was as short as 45 hours. The size, depth and position of scour holes, bank erosion and bars created by flow acceleration past the elements were found to be related to element length and position within the channel cross-section. Morphologies created by each debris element in the model channel were comparable with similar jams observed in the prototype channel.

  7. Balancing modern Power System with large scale of wind power

    OpenAIRE

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the s...

  8. The application of computational fluid dynamics and small-scale physical models to assess the effects of operational practices on the risk to public health within large indoor swimming pools.

    Science.gov (United States)

    Lewis, Lowell; Chew, John; Woodley, Iain; Colbourne, Jeni; Pond, Katherine

    2015-12-01

    Swimming pools provide an excellent facility for exercise and leisure but are also prone to contamination from microbial pathogens. The study modelled a 50-m × 20-m swimming pool using both a small-scale physical model and computational fluid dynamics to investigate how water and pathogens move around a pool in order to identify potential risk spots. Our study revealed a number of lessons for pool operators, designers and policy-makers: disinfection reaches the majority of a full-scale pool in approximately 16 minutes operating at the maximum permissible inlet velocity of 0.5 m/s. This suggests that where a pool is designed to have 15 paired inlets it is capable of distributing disinfectant throughout the water body within an acceptable time frame. However, the study also showed that the exchange rate of water is not uniform across the pool tank and that there is potential for areas of the pool tank to retain contaminated water for significant periods of time. 'Dead spots' exist at either end of the pool where pathogens could remain. This is particularly significant if there is a faecal release into the pool by bathers infected with Cryptosporidium parvum, increasing the potential for waterborne disease transmission.

  9. Large-scale-vortex dynamos in planar rotating convection

    CERN Document Server

    Guervilly, Céline; Jones, Chris A

    2016-01-01

    Several recent studies have demonstrated how large-scale vortices may arise spontaneously in rotating planar convection. Here we examine the dynamo properties of such flows in rotating Boussinesq convection. For moderate values of the magnetic Reynolds number ($100 \\lesssim Rm \\lesssim 550$, with $Rm$ based on the box depth and the convective velocity), a large-scale (i.e. system-size) magnetic field is generated. The amplitude of the magnetic energy oscillates in time, out of phase with the oscillating amplitude of the large-scale vortex. The dynamo mechanism relies on those components of the flow that have length scales lying between that of the large-scale vortex and the typical convective cell size; smaller-scale flows are not required. The large-scale vortex plays a crucial role in the magnetic induction despite being essentially two-dimensional. For larger magnetic Reynolds numbers, the dynamo is small scale, with a magnetic energy spectrum that peaks at the scale of the convective cells. In this case, ...

  10. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  11. Needs, opportunities, and options for large scale systems research

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  12. Organised convection embedded in a large-scale flow

    Science.gov (United States)

    Naumann, Ann Kristin; Stevens, Bjorn; Hohenegger, Cathy

    2017-04-01

    In idealised simulations of radiative convective equilibrium, convection aggregates spontaneously from randomly distributed convective cells into organized mesoscale convection despite homogeneous boundary conditions. Although these simulations apply very idealised setups, the process of self-aggregation is thought to be relevant for the development of tropical convective systems. One feature that idealised simulations usually neglect is the occurrence of a large-scale background flow. In the tropics, organised convection is embedded in a large-scale circulation system, which advects convection in along-wind direction and alters near surface convergence in the convective areas. A large-scale flow also modifies the surface fluxes, which are expected to be enhanced upwind of the convective area if a large-scale flow is applied. Convective clusters that are embedded in a large-scale flow therefore experience an asymmetric component of the surface fluxes, which influences the development and the pathway of a convective cluster. In this study, we use numerical simulations with explicit convection and add a large-scale flow to the established setup of radiative convective equilibrium. We then analyse how aggregated convection evolves when being exposed to wind forcing. The simulations suggest that convective line structures are more prevalent if a large-scale flow is present and that convective clusters move considerably slower than advection by the large-scale flow would suggest. We also study the asymmetric component of convective aggregation due to enhanced surface fluxes, and discuss the pathway and speed of convective clusters as a function of the large-scale wind speed.

  13. Developments in large-scale coastal flood hazard mapping

    Science.gov (United States)

    Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Dottori, Francesco; Giardino, Alessio; Bouziotas, Dimitrios; Bianchi, Alessandra; Salamon, Peter; Feyen, Luc

    2016-08-01

    Coastal flooding related to marine extreme events has severe socioeconomic impacts, and even though the latter are projected to increase under the changing climate, there is a clear deficit of information and predictive capacity related to coastal flood mapping. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining (i) the contribution of waves to the total water level; (ii) improved inundation modeling; and (iii) an open, physics-based framework which can be constantly upgraded, whenever new and more accurate data become available. Four inundation approaches of gradually increasing complexity and computational costs were evaluated in terms of their applicability to large-scale coastal flooding mapping: static inundation (SM); a semi-dynamic method, considering the water volume discharge over the dykes (VD); the flood intensity index approach (Iw); and the model LISFLOOD-FP (LFP). A validation test performed against observed flood extents during the Xynthia storm event showed that SM and VD can lead to an overestimation of flood extents by 232 and 209 %, while Iw and LFP showed satisfactory predictive skill. Application at pan-European scale for the present-day 100-year event confirmed that static approaches can overestimate flood extents by 56 % compared to LFP; however, Iw can deliver results of reasonable accuracy in cases when reduced computational costs are a priority. Moreover, omitting the wave contribution in the extreme total water level (TWL) can result in a ˜ 60 % underestimation of the flooded area. The present findings have implications for impact assessment studies, since combination of the estimated inundation maps with population exposure maps revealed differences in the estimated number of people affected within the 20-70 % range.

  14. Large-scale streaming motions and microwave background anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, E.; Sanz, J.L. (Cantabria Universidad, Santander (Spain))

    1989-12-01

    The minimal microwave background radiation is calculated on each angular scale implied by the existence of large-scale streaming motions. These minimal anisotropies, due to the Sachs-Wolfe effect, are obtained for different experiments, and give quite different results from those found in previous work. They are not in conflict with present theories of galaxy formation. Upper limits are imposed on the scale at which large-scale streaming motions can occur by extrapolating results from present double-beam-switching experiments. 17 refs.

  15. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  16. Relativistic Fluid Dynamics: Physics for Many Different Scales

    Directory of Open Access Journals (Sweden)

    Comer Gregory L.

    2007-01-01

    Full Text Available The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion interesting and relevant applications of the general theory.

  17. Modeling Physical Processes at Galactic Scales and Above

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-16

    What should these lectures be? The subject is so broad that many books can be written about it. I decided to prepare these lectures as if I were teaching my own graduate student. Given my research interests, I selected what the student would need to know to be able to discuss science with me and to work on joint research projects. So, the story presented below is both personal and incomplete, but it does cover several subjects that are poorly represented in the existing textbooks (if at all). Some of topics I focus on below are closely connected, others are disjoint, some are just side detours on specific technical questions. There is an overlapping theme, however. Our goal is to follow the cosmic gas from large scales, low densities, (relatively) simple physics to progressively smaller scales, higher densities, closer relation to galaxies, and more complex and uncertain physics. We follow a "yellow brick road" from the gas well beyond any galaxy confines to the actual sites of star formation and stellar feedback. On the way we will stop at some places for a tour and run without looking back through some others. So, the road will be uneven. The organization of the material is as follows: physics of the intergalactic medium, from intergalactic medium to circumgalactic medium, interstellar medium: gas in galaxies, star formation, and stellar feedback.

  18. Challenges of Modeling Flood Risk at Large Scales

    Science.gov (United States)

    Guin, J.; Simic, M.; Rowe, J.

    2009-04-01

    Flood risk management is a major concern for many nations and for the insurance sector in places where this peril is insured. A prerequisite for risk management, whether in the public sector or in the private sector is an accurate estimation of the risk. Mitigation measures and traditional flood management techniques are most successful when the problem is viewed at a large regional scale such that all inter-dependencies in a river network are well understood. From an insurance perspective the jury is still out there on whether flood is an insurable peril. However, with advances in modeling techniques and computer power it is possible to develop models that allow proper risk quantification at the scale suitable for a viable insurance market for flood peril. In order to serve the insurance market a model has to be event-simulation based and has to provide financial risk estimation that forms the basis for risk pricing, risk transfer and risk management at all levels of insurance industry at large. In short, for a collection of properties, henceforth referred to as a portfolio, the critical output of the model is an annual probability distribution of economic losses from a single flood occurrence (flood event) or from an aggregation of all events in any given year. In this paper, the challenges of developing such a model are discussed in the context of Great Britain for which a model has been developed. The model comprises of several, physically motivated components so that the primary attributes of the phenomenon are accounted for. The first component, the rainfall generator simulates a continuous series of rainfall events in space and time over thousands of years, which are physically realistic while maintaining the statistical properties of rainfall at all locations over the model domain. A physically based runoff generation module feeds all the rivers in Great Britain, whose total length of stream links amounts to about 60,000 km. A dynamical flow routing

  19. Constraining cosmological ultra-large scale structure using numerical relativity

    CERN Document Server

    Braden, Jonathan; Peiris, Hiranya V; Aguirre, Anthony

    2016-01-01

    Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultra-large scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultra-large scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full General Relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically significant number of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given...

  20. The large-scale dynamics of magnetic helicity

    CERN Document Server

    Linkmann, Moritz

    2016-01-01

    In this Letter we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a non-local inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic fields. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero-flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.

  1. A relativistic signature in large-scale structure: Scale-dependent bias from single-field inflation

    CERN Document Server

    Bartolo, Nicola; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2015-01-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the density field on large scales -- even if the primordial metric perturbation is Gaussian. This imprints a relativistic signature in large-scale structure which is potentially observable, for example via a scale-dependent galaxy bias. The effect has been derived and then confirmed by independent calculations, using second-order perturbation theory. Recently, the physical reality of this relativistic effect has been disputed. The counter-argument is based on the claim that a very long wavelength curvature perturbation can be removed by a coordinate transformation. We argue that while this is true locally, the large-scale curvature cannot be removed by local coordinate transformations. The transformation itself contains the long-wavelength modes and thus includes the correlation. We show how the separate universe approach can be used to understand this co...

  2. USAGE OF DISSIMILARITY MEASURES AND MULTIDIMENSIONAL SCALING FOR LARGE SCALE SOLAR DATA ANALYSIS

    Data.gov (United States)

    National Aeronautics and Space Administration — USAGE OF DISSIMILARITY MEASURES AND MULTIDIMENSIONAL SCALING FOR LARGE SCALE SOLAR DATA ANALYSIS Juan M Banda, Rafal Anrgyk ABSTRACT: This work describes the...

  3. The theory of large-scale ocean circulation

    National Research Council Canada - National Science Library

    Samelson, R. M

    2011-01-01

    "This is a concise but comprehensive introduction to the basic elements of the theory of large-scale ocean circulation for advanced students and researchers"-- "Mounting evidence that human activities...

  4. Learning networks for sustainable, large-scale improvement.

    Science.gov (United States)

    McCannon, C Joseph; Perla, Rocco J

    2009-05-01

    Large-scale improvement efforts known as improvement networks offer structured opportunities for exchange of information and insights into the adaptation of clinical protocols to a variety of settings.

  5. Personalized Opportunistic Computing for CMS at Large Scale

    CERN Document Server

    CERN. Geneva

    2015-01-01

    **Douglas Thain** is an Associate Professor of Computer Science and Engineering at the University of Notre Dame, where he designs large scale distributed computing systems to power the needs of advanced science and...

  6. Some perspective on the Large Scale Scientific Computation Research

    Institute of Scientific and Technical Information of China (English)

    DU Qiang

    2004-01-01

    @@ The "Large Scale Scientific Computation (LSSC) Research"project is one of the State Major Basic Research projects funded by the Chinese Ministry of Science and Technology in the field ofinformation science and technology.

  7. Some perspective on the Large Scale Scientific Computation Research

    Institute of Scientific and Technical Information of China (English)

    DU; Qiang

    2004-01-01

    The "Large Scale Scientific Computation (LSSC) Research"project is one of the State Major Basic Research projects funded by the Chinese Ministry of Science and Technology in the field ofinformation science and technology.……

  8. PetroChina to Expand Dushanzi Refinery on Large Scale

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ A large-scale expansion project for PetroChina Dushanzi Petrochemical Company has been given the green light, a move which will make it one of the largest refineries and petrochemical complexes in the country.

  9. Do land parameters matter in large-scale hydrological modelling?

    Science.gov (United States)

    Gudmundsson, Lukas; Seneviratne, Sonia I.

    2013-04-01

    Many of the most pending issues in large-scale hydrology are concerned with predicting hydrological variability at ungauged locations. However, current-generation hydrological and land surface models that are used for their estimation suffer from large uncertainties. These models rely on mathematical approximations of the physical system as well as on mapped values of land parameters (e.g. topography, soil types, land cover) to predict hydrological variables (e.g. evapotranspiration, soil moisture, stream flow) as a function of atmospheric forcing (e.g. precipitation, temperature, humidity). Despite considerable progress in recent years, it remains unclear whether better estimates of land parameters can improve predictions - or - if a refinement of model physics is necessary. To approach this question we suggest scrutinizing our perception of hydrological systems by confronting it with the radical assumption that hydrological variability at any location in space depends on past and present atmospheric forcing only, and not on location-specific land parameters. This so called "Constant Land Parameter Hypothesis (CLPH)" assumes that variables like runoff can be predicted without taking location specific factors such as topography or soil types into account. We demonstrate, using a modern statistical tool, that monthly runoff in Europe can be skilfully estimated using atmospheric forcing alone, without accounting for locally varying land parameters. The resulting runoff estimates are used to benchmark state-of-the-art process models. These are found to have inferior performance, despite their explicit process representation, which accounts for locally varying land parameters. This suggests that progress in the theory of hydrological systems is likely to yield larger improvements in model performance than more precise land parameter estimates. The results also question the current modelling paradigm that is dominated by the attempt to account for locally varying land

  10. Efficient algorithms for collaborative decision making for large scale settings

    DEFF Research Database (Denmark)

    Assent, Ira

    2011-01-01

    Collaborative decision making is a successful approach in settings where data analysis and querying can be done interactively. In large scale systems with huge data volumes or many users, collaboration is often hindered by impractical runtimes. Existing work on improving collaboration focuses...... to bring about more effective and more efficient retrieval systems that support the users' decision making process. We sketch promising research directions for more efficient algorithms for collaborative decision making, especially for large scale systems....

  11. Large-scale microwave anisotropy from gravitating seeds

    Science.gov (United States)

    Veeraraghavan, Shoba; Stebbins, Albert

    1992-01-01

    Topological defects could have seeded primordial inhomogeneities in cosmological matter. We examine the horizon-scale matter and geometry perturbations generated by such seeds in an expanding homogeneous and isotropic universe. Evolving particle horizons generally lead to perturbations around motionless seeds, even when there are compensating initial underdensities in the matter. We describe the pattern of the resulting large angular scale microwave anisotropy.

  12. Temporal Variation of Large Scale Flows in the Solar Interior

    Indian Academy of Sciences (India)

    Sarbani Basu; H. M. Antia

    2000-09-01

    We attempt to detect short-term temporal variations in the rotation rate and other large scale velocity fields in the outer part of the solar convection zone using the ring diagram technique applied to Michelson Doppler Imager (MDI) data. The measured velocity field shows variations by about 10 m/s on the scale of few days.

  13. Large-scale coastal impact induced by a catastrophic storm

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Johannessen, Peter N

    breaching. Our results demonstrate that violent, millennial-scale storms can trigger significant large-scale and long-term changes on barrier coasts, and that coastal changes assumed to take place over centuries or even millennia may occur in association with a single extreme storm event....

  14. Vector dissipativity theory for large-scale impulsive dynamical systems

    Directory of Open Access Journals (Sweden)

    Haddad Wassim M.

    2004-01-01

    Full Text Available Modern complex large-scale impulsive systems involve multiple modes of operation placing stringent demands on controller analysis of increasing complexity. In analyzing these large-scale systems, it is often desirable to treat the overall impulsive system as a collection of interconnected impulsive subsystems. Solution properties of the large-scale impulsive system are then deduced from the solution properties of the individual impulsive subsystems and the nature of the impulsive system interconnections. In this paper, we develop vector dissipativity theory for large-scale impulsive dynamical systems. Specifically, using vector storage functions and vector hybrid supply rates, dissipativity properties of the composite large-scale impulsive systems are shown to be determined from the dissipativity properties of the impulsive subsystems and their interconnections. Furthermore, extended Kalman-Yakubovich-Popov conditions, in terms of the impulsive subsystem dynamics and interconnection constraints, characterizing vector dissipativeness via vector system storage functions, are derived. Finally, these results are used to develop feedback interconnection stability results for large-scale impulsive dynamical systems using vector Lyapunov functions.

  15. Development of an Attitude Scale towards High School Physics Lessons

    Science.gov (United States)

    Yavas, Pervin Ünlü; Çagan, Sultan

    2017-01-01

    The aim of this study was to develop a Likert type attitude scale for high school students with regard to high school physics lessons. The research was carried out with high school students who were studying in Ankara. First, the opinions of 105 high school students about physics lessons were obtained and then 55 scale items were determined from…

  16. New physics at the TeV scale

    Science.gov (United States)

    Chakdar, Shreyashi

    The Standard Model of particle physics is assumed to be a low-energy effective theory with new physics theoretically motivated to be around TeV scale. The thesis presents theories with new physics beyond the Standard Model in the TeV scale testable in the colliders. Work done in chapters 2, 3 and 5 in this thesis present some models incorporating different approaches of enlarging the Standard Model gauge group to a grand unified symmetry with each model presenting its unique signatures in the colliders. The study on leptoquarks gauge bosons in reference to TopSU(5) model in chapter 2 showed that their discovery mass range extends up to 1.5 TeV at 14 TeV LHC with luminosity of 100 fb--1. On the other hand, in chapter 3 we studied the collider phenomenology of TeV scale mirror fermions in Left-Right Mirror model finding that the reaches for the mirror quarks goes upto 750 GeV at the 14 TeV LHC with 300 fb--1 luminosity. In chapter 4 we have enlarged the bosonic symmetry to fermi-bose symmetry e.g. supersymmetry and have shown that SUSY with non-universalities in gaugino or scalar masses within high scale SUGRA set up can still be accessible at LHC with 14 TeV. In chapter 5, we performed a study in respect to the e+e-- collider and find that precise measurements of the higgs boson mass splittings up to ˜ 100 MeV may be possible with high luminosity in the International Linear Collider (ILC). In chapter 6 we have shown that the experimental data on neutrino masses and mixings are consistent with the proposed 4/5 parameter Dirac neutrino models yielding a solution for the neutrino masses with inverted mass hierarchy and large CP violating phase delta and thus can be tested experimentally. Chapter 7 of the thesis incorporates a warm dark matter candidate in context of two Higgs doublet model. The model has several testable consequences at colliders with the charged scalar and pseudoscalar being in few hundred GeV mass range. This thesis presents an endeavor to study

  17. Algorithm of simulation time synchronization over large-scale nodes

    Institute of Scientific and Technical Information of China (English)

    ZHAO QinPing; ZHOU Zhong; Lü Fang

    2008-01-01

    In distributed simulation, there is no uniform physical clock. And delay cannot be estimated because of jitter. So simulation time synchronization is essential for the event consistency among nodes. This paper investigates time synchronization algorithms over large-scale distributed nodes, analyzes LBTS (lower bound time stamp) computation model described in IEEE HLA standard, and then presents a grouped LBTS model. In fact, there is a default premise for existing algorithms that control packets must be delivered via reliable transportation. Although, a theorem of time synchronization message's reliability is proposed, which proves that only those control messages that constrain time advance need reliability. It breaks out the default premise for reliability. Then multicast is introduced into the transmission of control messages, and algorithm MCTS (multi-node coordination time synchronization) is proposed based on multicast. MCTS not only promotes the time advance efficiency, but also reduces the occupied network bandwidth. Experiment results demonstrate that the algorithm is better than others in both time advance speed and occupied network bandwidth. Its time advance speed is about 50 times per second when there are 1000 nodes, approximately equal to that of similar systems when there are 100 nodes.

  18. Weighted social networks for a large scale artificial society

    Science.gov (United States)

    Fan, Zong Chen; Duan, Wei; Zhang, Peng; Qiu, Xiao Gang

    2016-12-01

    The method of artificial society has provided a powerful way to study and explain how individual behaviors at micro level give rise to the emergence of global social phenomenon. It also creates the need for an appropriate representation of social structure which usually has a significant influence on human behaviors. It has been widely acknowledged that social networks are the main paradigm to describe social structure and reflect social relationships within a population. To generate social networks for a population of interest, considering physical distance and social distance among people, we propose a generation model of social networks for a large-scale artificial society based on human choice behavior theory under the principle of random utility maximization. As a premise, we first build an artificial society through constructing a synthetic population with a series of attributes in line with the statistical (census) data for Beijing. Then the generation model is applied to assign social relationships to each individual in the synthetic population. Compared with previous empirical findings, the results show that our model can reproduce the general characteristics of social networks, such as high clustering coefficient, significant community structure and small-world property. Our model can also be extended to a larger social micro-simulation as an input initial. It will facilitate to research and predict some social phenomenon or issues, for example, epidemic transition and rumor spreading.

  19. Large-scale comparative visualisation of sets of multidimensional data

    Directory of Open Access Journals (Sweden)

    Dany Vohl

    2016-10-01

    Full Text Available We present encube—a qualitative, quantitative and comparative visualisation and analysis system, with application to high-resolution, immersive three-dimensional environments and desktop displays. encube extends previous comparative visualisation systems by considering: (1 the integration of comparative visualisation and analysis into a unified system; (2 the documentation of the discovery process; and (3 an approach that enables scientists to continue the research process once back at their desktop. Our solution enables tablets, smartphones or laptops to be used as interaction units for manipulating, organising, and querying data. We highlight the modularity of encube, allowing additional functionalities to be included as required. Additionally, our approach supports a high level of collaboration within the physical environment. We show how our implementation of encube operates in a large-scale, hybrid visualisation and supercomputing environment using the CAVE2 at Monash University, and on a local desktop, making it a versatile solution. We discuss how our approach can help accelerate the discovery rate in a variety of research scenarios.

  20. Large Scale Structure in the SDSS Galaxy Survey

    CERN Document Server

    Doroshkevich, A G; Tucker, D L

    2004-01-01

    The Large Scale Structure (LSS) in the galaxy distribution is investigated using the Sloan Digital Sky Survey Early Data Release (SDSS EDR). Using the Minimal Spanning Tree technique we have extracted sets of filaments, of wall-like structures, of galaxy groups, and of rich clusters from this unique sample. The physical properties of these structures were then measured and compared with the expectations from Zel'dovich' theory. The measured characteristics of galaxy walls were found to be consistent with those for a spatially flat $\\Lambda$CDM cosmological model with $\\Omega_m\\approx$ 0.3 and $\\Omega_\\Lambda \\approx$ 0.7, and for Gaussian initial perturbations with a Harrison -- Zel'dovich power spectrum. Furthermore, we found that the mass functions of groups and of unrelaxed structure elements generally fit well with the expectations from Zel'dovich' theory, although there was some discrepancy for lower mass groups which may be due to incompleteness in the selected sample of groups. We also note that both g...

  1. Large Scale Structure in the SDSS DR1 Galaxy Survey

    CERN Document Server

    Doroshkevich, A G; Allam, S S; Way, M J

    2003-01-01

    The Large Scale Structure in the galaxy distribution is investigated using The First Data Release of the Sloan Digital Sky Survey. Using the Minimal Spanning Tree technique we have extracted sets of filaments, of wall--like structures, of galaxy groups, and of rich clusters from this unique sample. The physical properties of these structures were then measured and compared with the statistical expectations based on the Zel'dovich' theory. The measured characteristics of galaxy walls were found to be consistent with those for a spatially flat $\\Lambda$CDM cosmological model with $\\Omega_m\\approx$ 0.3 and $\\Omega_\\Lambda \\approx$ 0.7, and for Gaussian initial perturbations with a Harrison -- Zel'dovich power spectrum. Furthermore, we found that the mass functions of groups and of unrelaxed structure elements generally fit well with the expectations from Zel'dovich' theory. We also note that both groups and rich clusters tend to prefer the environments of walls, which tend to be of higher density, rather than th...

  2. Investigation of Coronal Large Scale Structures Utilizing Spartan 201 Data

    Science.gov (United States)

    Guhathakurta, Madhulika

    1998-01-01

    Two telescopes aboard Spartan 201, a small satellite has been launched from the Space Shuttles, on April 8th, 1993, September 8th, 1994, September 7th, 1995 and November 20th, 1997. The main objective of the mission was to answer some of the most fundamental unanswered questions of solar physics-What accelerates the solar wind and what heats the corona? The two telescopes are 1) Ultraviolet Coronal Spectrometer (UVCS) provided by the Smithsonian Astrophysical Observatory which uses ultraviolet emissions from neutral hydrogen and ions in the corona to determine velocities of the coronal plasma within the solar wind source region, and the temperature and density distributions of protons and 2) White Light Coronagraph (WLC) provided by NASA's Goddard Space Flight Center which measures visible light to determine the density distribution of coronal electrons within the same region. The PI has had the primary responsibility in the development and application of computer codes necessary for scientific data analysis activities, end instrument calibration for the white-light coronagraph for the entire Spartan mission. The PI was responsible for the science output from the WLC instrument. PI has also been involved in the investigation of coronal density distributions in large-scale structures by use of numerical models which are (mathematically) sufficient to reproduce the details of the observed brightness and polarized brightness distributions found in SPARTAN 201 data.

  3. Conjecture on the physical implications of the scale anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.; /Fermilab

    2005-10-01

    Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.

  4. Reliability Evaluation considering Structures of a Large Scale Wind Farm

    DEFF Research Database (Denmark)

    Shin, Je-Seok; Cha, Seung-Tae; Wu, Qiuwei

    2012-01-01

    evaluation on wind farm is necessarily required. Also, because large scale offshore wind farm has a long repair time and a high repair cost as well as a high investment cost, it is essential to take into account the economic aspect. One of methods to efficiently build and to operate wind farm is to construct......Wind energy is one of the most widely used renewable energy resources. Wind power has been connected to the grid as large scale wind farm which is made up of dozens of wind turbines, and the scale of wind farm is more increased recently. Due to intermittent and variable wind source, reliability...

  5. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    Science.gov (United States)

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  6. GroFi: Large-scale fiber placement research facility

    Directory of Open Access Journals (Sweden)

    Christian Krombholz

    2016-03-01

    and processes for large-scale composite components. Due to the use of coordinated and simultaneously working layup units a high exibility of the research platform is achieved. This allows the investigation of new materials, technologies and processes on both, small coupons, but also large components such as wing covers or fuselage skins.

  7. Large Scale Survey Data in Career Development Research

    Science.gov (United States)

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  8. Cost Overruns in Large-scale Transportation Infrastructure Projects

    DEFF Research Database (Denmark)

    Cantarelli, Chantal C; Flyvbjerg, Bent; Molin, Eric J. E

    2010-01-01

    Managing large-scale transportation infrastructure projects is difficult due to frequent misinformation about the costs which results in large cost overruns that often threaten the overall project viability. This paper investigates the explanations for cost overruns that are given in the literature...

  9. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  10. How large-scale subsidence affects stratocumulus transitions (discussion paper)

    NARCIS (Netherlands)

    Van der Dussen, J.J.; De Roode, S.R.; Siebesma, A.P.

    2015-01-01

    Some climate modeling results suggest that the Hadley circulation might weaken in a future climate, causing a subsequent reduction in the large-scale subsidence velocity in the subtropics. In this study we analyze the cloud liquid water path (LWP) budget from large-eddy simulation (LES) results of

  11. Planck intermediate results XLII. Large-scale Galactic magnetic fields

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured...

  12. Working group report: Physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    D K Ghosh; A Nyffeler; V Ravindran

    2011-05-01

    This is a summary of the activities of the Physics at the LHC working group in the XIth Workshop on High Energy Physics Phenomenology (WHEPP-XI) held at the Physical Research Laboratory, Ahmedabad, India in January 2010. We discuss the activities of each sub-working group on physics issues at colliders such as Tevatron and Large Hadron Collider (LHC). The main issues discussed involve (1) results on W mass measurement and associated QCD uncertainties, (2) an attempt to understand the asymmetry measured at Tevatron in the top quark production, and (3) phenomenology of warped space dimension model.

  13. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  14. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  15. Magnetic fields of our Galaxy on large and small scales

    CERN Document Server

    Han, Jinlin

    2007-01-01

    Magnetic fields have been observed on all scales in our Galaxy, from AU to kpc. With pulsar dispersion measures and rotation measures, we can directly measure the magnetic fields in a very large region of the Galactic disk. The results show that the large-scale magnetic fields are aligned with the spiral arms but reverse their directions many times from the inner-most arm (Norma) to the outer arm (Perseus). The Zeeman splitting measurements of masers in HII regions or star-formation regions not only show the structured fields inside clouds, but also have a clear pattern in the global Galactic distribution of all measured clouds which indicates the possible connection of the large-scale and small-scale magnetic fields.

  16. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.

    2012-07-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act over multiple spatial and temporal scales. One example involves centimeter-scale density instabilities in the dissolved CO 2 region leading to large-scale convective mixing that can be a significant driver for CO 2 dissolution. Another example is the potentially important effect of capillary forces, in addition to buoyancy and viscous forces, on the evolution of mobile CO 2. Local capillary effects lead to a capillary transition zone, or capillary fringe, where both fluids are present in the mobile state. This small-scale effect may have a significant impact on large-scale plume migration as well as long-term residual and dissolution trapping. Computational models that can capture both large and small-scale effects are essential to predict the role of these processes on the long-term storage security of CO 2 sequestration operations. Conventional modeling tools are unable to resolve sufficiently all of these relevant processes when modeling CO 2 migration in large-scale geological systems. Herein, we present a vertically-integrated approach to CO 2 modeling that employs upscaled representations of these subgrid processes. We apply the model to the Johansen formation, a prospective site for sequestration of Norwegian CO 2 emissions, and explore the sensitivity of CO 2 migration and trapping to subscale physics. Model results show the relative importance of different physical processes in large-scale simulations. The ability of models such as this to capture the relevant physical processes at large spatial and temporal scales is important for prediction and analysis of CO 2 storage sites. © 2012 Elsevier Ltd.

  17. Revealing the physical properties of molecular gas in Orion with a large scale survey in J=2-1 lines of 12CO, 13CO and C18O

    CERN Document Server

    Nishimura, Atsushi; Kimura, Kimihiro; Muraoka, Kazuyuki; Maezawa, Hiroyuki; Ogawa, Hideo; Dobashi, Kazuhito; Shimoikura, Tomomi; Mizuno, Akira; Fukui, Yasuo; Onishi, Toshikazu

    2014-01-01

    We present fully sampled ~3' resolution images of the 12CO(J=2-1), 13CO(J=2-1), and C18O(J=2-1) emission taken with the newly developed 1.85-m mm-submm telescope toward the entire area of the Orion A and B giant molecular clouds. The data were compared with the J=1-0 of the 12CO, 13CO, and C18O data taken with the Nagoya 4-m telescope and the NANTEN telescope at the same angular resolution to derive the spatial distributions of the physical properties of the molecular gas. We explore the large velocity gradient formalism to determine the gas density and temperature by using the line combinations of 12CO(J=2-1), 13CO(J=2-1), and 13CO(J=1-0) assuming uniform velocity gradient and abundance ratio of CO. The derived gas density is in the range of 500 to 5000 cm-3, and the derived gas temperature is mostly in the range of 20 to 50 K along the cloud ridge with a temperature gradient depending on the distance from the star forming region. We found the high-temperature region at the cloud edge facing to the HII regio...

  18. Large-Scale Inverse Problems and Quantification of Uncertainty

    CERN Document Server

    Biegler, Lorenz; Ghattas, Omar

    2010-01-01

    Large-scale inverse problems and associated uncertainty quantification has become an important area of research, central to a wide range of science and engineering applications. Written by leading experts in the field, Large-scale Inverse Problems and Quantification of Uncertainty focuses on the computational methods used to analyze and simulate inverse problems. The text provides PhD students, researchers, advanced undergraduate students, and engineering practitioners with the perspectives of researchers in areas of inverse problems and data assimilation, ranging from statistics and large-sca

  19. Highly Scalable Trip Grouping for Large Scale Collective Transportation Systems

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach; Risch, Tore

    2008-01-01

    Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost...... and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous...

  20. FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter Brewer; Dr. James Barry

    2002-09-30

    We have continued to carry out creative small-scale experiments in the deep ocean to investigate the science underlying questions of possible future large-scale deep-ocean CO{sub 2} sequestration as a means of ameliorating greenhouse gas growth rates in the atmosphere. This project is closely linked to additional research funded by the DoE Office of Science, and to support from the Monterey Bay Aquarium Research Institute. The listing of project achievements here over the past year reflects these combined resources. Within the last project year we have: (1) Published a significant workshop report (58 pages) entitled ''Direct Ocean Sequestration Expert's Workshop'', based upon a meeting held at MBARI in 2001. The report is available both in hard copy, and on the NETL web site. (2) Carried out three major, deep ocean, (3600m) cruises to examine the physical chemistry, and biological consequences, of several liter quantities released on the ocean floor. (3) Carried out two successful short cruises in collaboration with Dr. Izuo Aya and colleagues (NMRI, Osaka, Japan) to examine the fate of cold (-55 C) CO{sub 2} released at relatively shallow ocean depth. (4) Carried out two short cruises in collaboration with Dr. Costas Tsouris, ORNL, to field test an injection nozzle designed to transform liquid CO{sub 2} into a hydrate slurry at {approx}1000m depth. (5) In collaboration with Prof. Jill Pasteris (Washington University) we have successfully accomplished the first field test of a deep ocean laser Raman spectrometer for probing in situ the physical chemistry of the CO{sub 2} system. (6) Submitted the first major paper on biological impacts as determined from our field studies. (7) Submitted a paper on our measurements of the fate of a rising stream of liquid CO{sub 2} droplets to Environmental Science & Technology. (8) Have had accepted for publication in Eos the first brief account of the laser Raman spectrometer success. (9) Have had two

  1. Large-Scale Integrated Carbon Nanotube Gas Sensors

    OpenAIRE

    Kim, Joondong

    2012-01-01

    Carbon nanotube (CNT) is a promising one-dimensional nanostructure for various nanoscale electronics. Additionally, nanostructures would provide a significant large surface area at a fixed volume, which is an advantage for high-responsive gas sensors. However, the difficulty in fabrication processes limits the CNT gas sensors for the large-scale production. We review the viable scheme for large-area application including the CNT gas sensor fabrication and reaction mechanism with a practical d...

  2. Acoustic Studies of the Large Scale Ocean Circulation

    Science.gov (United States)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  3. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  4. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...

  5. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  6. The Effect of Large Scale Magnetic Turbulence on the Acceleration of Electrons by Perpendicular Collisionless Shocks

    CERN Document Server

    Guo, Fan

    2010-01-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time dependent electric and magnetic fields determined from 2-D hybrid simulations (kinetic ions, fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occuring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the inje...

  7. Physical Modeling of Scaled Water Distribution System Networks.

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  8. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  9. Towards computational insights into the large-scale structure of spin foams

    CERN Document Server

    Dittrich, Bianca

    2011-01-01

    Understanding the large-scale physics is crucial for the spin foam approach to quantum gravity. We tackle this challenge from a statistical physics perspective using simplified, yet feature-rich models. In particular, this allows us to explicitly answer whether broken symmetries will be restored by renormalization: We observe a weak phase transition in both Migdal-Kadanoff and tensor network renormalization. In this work we give a concise presentation of the concepts, results and promises of this new direction of research.

  10. REVEALING THE PHYSICAL PROPERTIES OF MOLECULAR GAS IN ORION WITH A LARGE-SCALE SURVEY IN J = 2-1 LINES OF {sup 12}CO, {sup 13}CO, AND C{sup 18}O

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Atsushi; Tokuda, Kazuki; Kimura, Kimihiro; Muraoka, Kazuyuki; Maezawa, Hiroyuki; Ogawa, Hideo; Onishi, Toshikazu [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo 184-8501 (Japan); Mizuno, Akira [Solar-terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Fukui, Yasuo, E-mail: atsushi.nishimura@nao.ac.jp [Department of Physics and Astrophysics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2015-01-01

    We present fully sampled ∼3' resolution images of {sup 12}CO(J = 2-1), {sup 13}CO(J = 2-1), and C{sup 18}O(J = 2-1) emission taken with the newly developed 1.85 m millimeter-submillimeter telescope over the entire area of the Orion A and B giant molecular clouds. The data were compared with J = 1-0 of the {sup 12}CO, {sup 13}CO, and C{sup 18}O data taken with the Nagoya 4 m telescope and the NANTEN telescope at the same angular resolution to derive the spatial distributions of the physical properties of the molecular gas. We explore the large velocity gradient formalism to determine the gas density and temperature using line combinations of {sup 12}CO(J = 2-1), {sup 13}CO(J = 2-1), and {sup 13}CO(J = 1-0) assuming a uniform velocity gradient and abundance ratio of CO. The derived gas density is in the range of 500 to 5000 cm{sup –3}, and the derived gas temperature is mostly in the range of 20 to 50 K along the cloud ridge with a temperature gradient depending on the distance from the star forming region. We found that the high-temperature region at the cloud edge faces the H II region, indicating that the molecular gas is interacting with the stellar wind and radiation from the massive stars. In addition, we compared the derived gas properties with the young stellar objects distribution obtained with the Spitzer telescope to investigate the relationship between the gas properties and the star formation activity therein. We found that the gas density and star formation efficiency are positively well correlated, indicating that stars form effectively in the dense gas region.

  11. Revealing the Physical Properties of Molecular Gas in Orion with a Large-scale Survey in J = 2-1 Lines of 12CO, 13CO, and C18O

    Science.gov (United States)

    Nishimura, Atsushi; Tokuda, Kazuki; Kimura, Kimihiro; Muraoka, Kazuyuki; Maezawa, Hiroyuki; Ogawa, Hideo; Dobashi, Kazuhito; Shimoikura, Tomomi; Mizuno, Akira; Fukui, Yasuo; Onishi, Toshikazu

    2015-01-01

    We present fully sampled ~3' resolution images of 12CO(J = 2-1), 13CO(J = 2-1), and C18O(J = 2-1) emission taken with the newly developed 1.85 m millimeter-submillimeter telescope over the entire area of the Orion A and B giant molecular clouds. The data were compared with J = 1-0 of the 12CO, 13CO, and C18O data taken with the Nagoya 4 m telescope and the NANTEN telescope at the same angular resolution to derive the spatial distributions of the physical properties of the molecular gas. We explore the large velocity gradient formalism to determine the gas density and temperature using line combinations of 12CO(J = 2-1), 13CO(J = 2-1), and 13CO(J = 1-0) assuming a uniform velocity gradient and abundance ratio of CO. The derived gas density is in the range of 500 to 5000 cm-3, and the derived gas temperature is mostly in the range of 20 to 50 K along the cloud ridge with a temperature gradient depending on the distance from the star forming region. We found that the high-temperature region at the cloud edge faces the H II region, indicating that the molecular gas is interacting with the stellar wind and radiation from the massive stars. In addition, we compared the derived gas properties with the young stellar objects distribution obtained with the Spitzer telescope to investigate the relationship between the gas properties and the star formation activity therein. We found that the gas density and star formation efficiency are positively well correlated, indicating that stars form effectively in the dense gas region.

  12. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  13. Large extra dimensions a new arena for particle physics

    CERN Multimedia

    Arkani-Hamed, N; Savas-Divali, G

    2002-01-01

    "This article examines the information accumulated so far and the impact of forthcoming new advances in particle physics research on the current supersymmetric standard model. The new premise is that there is no desert at all and that the electroweak unification energy is the only fundamental energy scale in nature" (2 pages).

  14. Large-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  15. Ultra-large scale cosmology with next-generation experiments

    CERN Document Server

    Alonso, David; Ferreira, Pedro G; Maartens, Roy; Santos, Mario G

    2015-01-01

    Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for a range of future large-scale structure surveys: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and continuum surveys of radio galaxies. Our forecasts show that next-generation experiments, reaching out to redshifts z ~ 4, will not be able to detect previously-undetected general-relativistic effects from the single-tracer power spectra alone, although they may be able to measure the lensing magnification in the auto-correlation. We also perform a rigorous joint forecast for the detection of primordial non-...

  16. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    CERN Document Server

    Chuss, D T; Amiri, M; Appel, J; Bennett, C L; Colazo, F; Denis, K L; Dünner, R; Essinger-Hileman, T; Eimer, J; Fluxa, P; Gothe, D; Halpern, M; Harrington, K; Hilton, G; Hinshaw, G; Hubmayr, J; Iuliano, J; Marriage, T A; Miller, N; Moseley, S H; Mumby, G; Petroff, M; Reintsema, C; Rostem, K; U-Yen, K; Watts, D; Wagner, E; Wollack, E J; Xu, Z; Zeng, L

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe $\\sim$70% of the sky. A variable-delay polarization modulator (VPM) modulates the polarization at $\\sim$10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that span both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously d...

  17. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  18. Human pescadillo induces large-scale chromatin unfolding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; FANG Yan; HUANG Cuifen; YANG Xiao; YE Qinong

    2005-01-01

    The human pescadillo gene encodes a protein with a BRCT domain. Pescadillo plays an important role in DNA synthesis, cell proliferation and transformation. Since BRCT domains have been shown to induce chromatin large-scale unfolding, we tested the role of Pescadillo in regulation of large-scale chromatin unfolding. To this end, we isolated the coding region of Pescadillo from human mammary MCF10A cells. Compared with the reported sequence, the isolated Pescadillo contains in-frame deletion from amino acid 580 to 582. Targeting the Pescadillo to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity maps to the BRCT domain of Pescadillo. These data provide a new clue to understanding the vital role of Pescadillo.

  19. Transport of Large Scale Poloidal Flux in Black Hole Accretion

    CERN Document Server

    Beckwith, Kris; Krolik, Julian H

    2009-01-01

    We perform a global, three-dimensional GRMHD simulation of an accretion torus embedded in a large scale vertical magnetic field orbiting a Schwarzschild black hole. This simulation investigates how a large scale vertical field evolves within a turbulent accretion disk and whether global magnetic field configurations suitable for launching jets and winds can develop. We identify a ``coronal mechanism'' of magnetic flux motion, which dominates the global flux evolution. In this coronal mechanism, magnetic stresses driven by orbital shear create large-scale half-loops of magnetic field that stretch radially inward and then reconnect, leading to discontinuous jumps in the location of magnetic flux. This mechanism is supplemented by a smaller amount of flux advection in the accretion flow proper. Because the black hole in this case does not rotate, the magnetic flux on the horizon determines the mean magnetic field strength in the funnel around the disk axis; this field strength is regulated by a combination of th...

  20. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  1. Large Scale Anomalies of the Cosmic Microwave Background with Planck

    DEFF Research Database (Denmark)

    Frejsel, Anne Mette

    This thesis focuses on the large scale anomalies of the Cosmic Microwave Background (CMB) and their possible origins. The investigations consist of two main parts. The first part is on statistical tests of the CMB, and the consistency of both maps and power spectrum. We find that the Planck data...... is very consistent, while the WMAP 9 year release appears more contaminated by non-CMB residuals than the 7 year release. The second part is concerned with the anomalies of the CMB from two approaches. One is based on an extended inflationary model as the origin of one specific large scale anomaly, namely....... Here we find evidence that the Planck CMB maps contain residual radiation in the loop areas, which can be linked to some of the large scale CMB anomalies: the point-parity asymmetry, the alignment of quadrupole and octupole and the dipolemodulation....

  2. Large Scale Magnetohydrodynamic Dynamos from Cylindrical Differentially Rotating Flows

    CERN Document Server

    Ebrahimi, F

    2015-01-01

    For cylindrical differentially rotating plasmas threaded with a uniform vertical magnetic field, we study large-scale magnetic field generation from finite amplitude perturbations using analytic theory and direct numerical simulations. Analytically, we impose helical fluctuations, a seed field, and a background flow and use quasi-linear theory for a single mode. The predicted large-scale field growth agrees with numerical simulations in which the magnetorotational instability (MRI) arises naturally. The vertically and azimuthally averaged toroidal field is generated by a fluctuation-induced EMF that depends on differential rotation. Given fluctuations, the method also predicts large-scale field growth for MRI-stable rotation profiles and flows with no rotation but shear.

  3. Large Scale Anomalies of the Cosmic Microwave Background with Planck

    DEFF Research Database (Denmark)

    Frejsel, Anne Mette

    This thesis focuses on the large scale anomalies of the Cosmic Microwave Background (CMB) and their possible origins. The investigations consist of two main parts. The first part is on statistical tests of the CMB, and the consistency of both maps and power spectrum. We find that the Planck data...... is very consistent, while the WMAP 9 year release appears more contaminated by non-CMB residuals than the 7 year release. The second part is concerned with the anomalies of the CMB from two approaches. One is based on an extended inflationary model as the origin of one specific large scale anomaly, namely....... Here we find evidence that the Planck CMB maps contain residual radiation in the loop areas, which can be linked to some of the large scale CMB anomalies: the point-parity asymmetry, the alignment of quadrupole and octupole and the dipolemodulation....

  4. Using Multimedia in Large-Scale Computer-Based Testing Programs.

    Science.gov (United States)

    Bennett, R. E.; Goodman, M.; Hessinger, J.; Kahn, H.; Ligget, J.; Marshall, G.; Zack, J.

    1999-01-01

    Discusses the use of multimedia in large-scale computer-based testing programs to measure problem solving and related cognitive constructs more effectively. Considers the incorporation of dynamic stimuli such as audio, video, and animation, and gives examples in history, physical education, and the sciences. (Author/LRW)

  5. Strategic and Collaborative Crisis Management: A Partnership Approach to Large-Scale Crisis

    Science.gov (United States)

    Mann, Timothy

    2007-01-01

    Large-scale crisis such as natural disasters and acts of terrorism can have a paralyzing effect on the campus community and business continuity. Campus officials in these situations face significant challenges that go beyond the immediate response including re-building the physical plant, restoring campus infrastructure, retaining displaced…

  6. Large-scale microwave anisotropy from gravitating seeds

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, S.; Stebbins, A. (Massachusetts, University, Amherst (United States) NASA/Fermilab Astrophysics Center, Batavia, Il (United States))

    1992-08-01

    Topological defects could have seeded primordial inhomogeneities in cosmological matter. The authors examine the horizon-scale matter and geometry perturbations generated by such seeds in an expanding homogeneous and isotropic universe. Evolving particle horizons generally lead to perturbations around motionless seeds, even when there are compensating initial underdensities in the matter. The authors describe the pattern of the resulting large angular scale microwave anisotropy. 17 refs.

  7. Information Tailoring Enhancements for Large-Scale Social Data

    Science.gov (United States)

    2016-09-26

    Social Data Final Report Reporting Period: September 22, 2015 – September 16, 2016 Contract No. N00014-15-P-5138 Sponsored by ONR...Report September 22, 20 15 - September 16, 20 16 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Information Tailoring Enhancements for Large-Scale Social ...goals of(i) further enhancing capability to analyze unstructured social media data at scale and rapidly, and (ii) improving IAI social media software

  8. Systematic Literature Review of Agile Scalability for Large Scale Projects

    Directory of Open Access Journals (Sweden)

    Hina saeeda

    2015-09-01

    Full Text Available In new methods, “agile” has come out as the top approach in software industry for the development of the soft wares. With different shapes agile is applied for handling the issues such as low cost, tight time to market schedule continuously changing requirements, Communication & Coordination, team size and distributed environment. Agile has proved to be successful in the small and medium size project, however, it have several limitations when applied on large size projects. The purpose of this study is to know agile techniques in detail, finding and highlighting its restrictions for large size projects with the help of systematic literature review. The systematic literature review is going to find answers for the Research questions: 1 How to make agile approaches scalable and adoptable for large projects?2 What are the existing methods, approaches, frameworks and practices support agile process in large scale projects? 3 What are limitations of existing agile approaches, methods, frameworks and practices with reference to large scale projects? This study will identify the current research problems of the agile scalability for large size projects by giving a detail literature review of the identified problems, existed work for providing solution to these problems and will find out limitations of the existing work for covering the identified problems in the agile scalability. All the results gathered will be summarized statistically based on these finding remedial work will be planned in future for handling the identified limitations of agile approaches for large scale projects.

  9. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Morteza Hajizadeh-Oghaz; Reza Shoja Razavi; Mohammadreza Loghman Estarki

    2014-08-01

    Yttria–stabilized zirconia nanopowders were synthesized on a relatively large scale using Pechini method. In the present paper, nearly spherical yttria-stabilized zirconia nanopowders with tetragonal structure were synthesized by Pechini process from zirconium oxynitrate hexahydrate, yttrium nitrate, citric acid and ethylene glycol. The phase and structural analyses were accomplished by X-ray diffraction; morphological analysis was carried out by field emission scanning electron microscopy and transmission electron microscopy. The results revealed nearly spherical yttria–stabilized zirconia powder with tetragonal crystal structure and chemical purity of 99.1% by inductively coupled plasma optical emission spectroscopy on a large scale.

  10. Practical Large Scale Syntheses of New Drug Candidates

    Institute of Scientific and Technical Information of China (English)

    Hui-Yin; Li

    2001-01-01

    This presentation will be focus on Practical large scale syntheses of lead compounds and drug candidates from three major therapeutic areas from DuPont Pharmaceuticals Research Laboratory: 1). DMP777-a selective, non-toxic, orally active human elastase inhibitor; 2). DMP754-a potent glycoprotein IIb/IIIa antagonist; 3). R-Wafarin-the pure enantiomeric form of wafarin. The key technology used for preparation these drug candidates is asymmetric hydrogenation under very mild reaction conditions, which produced very high quality final products at large scale (>99% de, >99 A% and >99 wt%). Some practical and GMP aspects of process development will be also discussed.……

  11. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  12. [Issues of large scale tissue culture of medicinal plant].

    Science.gov (United States)

    Lv, Dong-Mei; Yuan, Yuan; Zhan, Zhi-Lai

    2014-09-01

    In order to increase the yield and quality of the medicinal plant and enhance the competitive power of industry of medicinal plant in our country, this paper analyzed the status, problem and countermeasure of the tissue culture of medicinal plant on large scale. Although the biotechnology is one of the most efficient and promising means in production of medicinal plant, it still has problems such as stability of the material, safety of the transgenic medicinal plant and optimization of cultured condition. Establishing perfect evaluation system according to the characteristic of the medicinal plant is the key measures to assure the sustainable development of the tissue culture of medicinal plant on large scale.

  13. Generation Expansion Planning Considering Integrating Large-scale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob

    2013-01-01

    Generation expansion planning (GEP) is the problem of finding the optimal strategy to plan the Construction of new generation while satisfying technical and economical constraints. In the deregulated and competitive environment, large-scale integration of wind generation (WG) in power system has...... necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production...

  14. Distributed chaos tuned to large scale coherent motions in turbulence

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using direct numerical simulations and laboratory experiments data, that distributed chaos is often tuned to large scale coherent motions in anisotropic inhomogeneous turbulence. The examples considered are: fully developed turbulent boundary layer (range of coherence: $14 < y^{+} < 80$), turbulent thermal convection (in a horizontal cylinder), and Cuette-Taylor flow. Two ways of the tuning have been described: one via fundamental frequency (wavenumber) and another via subharmonic (period doubling). For the second way the large scale coherent motions are a natural component of distributed chaos. In all considered cases spontaneous breaking of space translational symmetry is accompanied by reflexional symmetry breaking.

  15. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  16. Large-scale liquid scintillation detectors for solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, Jay B.; Calaprice, Frank P. [Princeton University Princeton, Princeton, NJ (United States)

    2016-04-15

    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed. (orig.)

  17. Optimal Dispatching of Large-scale Water Supply System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.

  18. Practical Large Scale Syntheses of New Drug Candidates

    Institute of Scientific and Technical Information of China (English)

    Hui-Yin Li

    2001-01-01

    @@ This presentation will be focus on Practical large scale syntheses of lead compounds and drug candidates from three major therapeutic areas from DuPont Pharmaceuticals Research Laboratory: 1). DMP777-a selective, non-toxic, orally active human elastase inhibitor; 2). DMP754-a potent glycoprotein IIb/IIIa antagonist; 3). R-Wafarin-the pure enantiomeric form of wafarin. The key technology used for preparation these drug candidates is asymmetric hydrogenation under very mild reaction conditions, which produced very high quality final products at large scale (>99% de, >99 A% and >99 wt%). Some practical and GMP aspects of process development will be also discussed.

  19. Fast paths in large-scale dynamic road networks

    CERN Document Server

    Nannicini, Giacomo; Barbier, Gilles; Krob, Daniel; Liberti, Leo

    2007-01-01

    Efficiently computing fast paths in large scale dynamic road networks (where dynamic traffic information is known over a part of the network) is a practical problem faced by several traffic information service providers who wish to offer a realistic fast path computation to GPS terminal enabled vehicles. The heuristic solution method we propose is based on a highway hierarchy-based shortest path algorithm for static large-scale networks; we maintain a static highway hierarchy and perform each query on the dynamically evaluated network.

  20. Conference on physics from large {gamma}-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    The conference on {open_quotes}Physics from Large {gamma}-ray Detector Arrays{close_quotes} is a continuation of the series of conferences that have been organized every two years by the North American Heavy-ion Laboratories. The aim of the conference this year was to encourage discussion of the physics that can be studied with such large arrays. This volume is the collected proceedings from this conference. It discusses properties of nuclear states which can be created in heavy-ion reactions, and which can be observed via such detector systems.

  1. Cinlar Subgrid Scale Model for Large Eddy Simulation

    CERN Document Server

    Kara, Rukiye

    2016-01-01

    We construct a new subgrid scale (SGS) stress model for representing the small scale effects in large eddy simulation (LES) of incompressible flows. We use the covariance tensor for representing the Reynolds stress and include Clark's model for the cross stress. The Reynolds stress is obtained analytically from Cinlar random velocity field, which is based on vortex structures observed in the ocean at the subgrid scale. The validity of the model is tested with turbulent channel flow computed in OpenFOAM. It is compared with the most frequently used Smagorinsky and one-equation eddy SGS models through DNS data.

  2. Visualizing large-scale uncertainty in astrophysical data.

    Science.gov (United States)

    Li, Hongwei; Fu, Chi-Wing; Li, Yinggang; Hanson, Andrew

    2007-01-01

    Visualization of uncertainty or error in astrophysical data is seldom available in simulations of astronomical phenomena, and yet almost all rendered attributes possess some degree of uncertainty due to observational error. Uncertainties associated with spatial location typically vary signicantly with scale and thus introduce further complexity in the interpretation of a given visualization. This paper introduces effective techniques for visualizing uncertainty in large-scale virtual astrophysical environments. Building upon our previous transparently scalable visualization architecture, we develop tools that enhance the perception and comprehension of uncertainty across wide scale ranges. Our methods include a unified color-coding scheme for representing log-scale distances and percentage errors, an ellipsoid model to represent positional uncertainty, an ellipsoid envelope model to expose trajectory uncertainty, and a magic-glass design supporting the selection of ranges of log-scale distance and uncertainty parameters, as well as an overview mode and a scalable WIM tool for exposing the magnitudes of spatial context and uncertainty.

  3. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    As a result of the growing demand for food, feed and industrial raw materials in the first decade of this century, and the usually welcoming policies regarding investors amongst the governments of developing countries, there has been a renewed interest in agriculture and an increase in large...... to ‘land grabbing’ for large-scale farming (i.e. outgrower schemes and contract farming could modernise agricultural production while allowing smallholders to maintain their land ownership), to integrate them into global agro-food value chains and to increase their productivity and welfare. However......, the impact of large-scale agriculture and outgrower schemes on productivity, household welfare and wages in developing countries is highly contentious. Chapter 1 of this thesis provides an introduction to the study, while also reviewing the key debate in the contemporary land ‘grabbing’ and historical large...

  4. The Internet As a Large-Scale Complex System

    Science.gov (United States)

    Park, Kihong; Willinger, Walter

    2005-06-01

    The Internet may be viewed as a "complex system" with diverse features and many components that can give rise to unexpected emergent phenomena, revealing much about its own engineering. This book brings together chapter contributions from a workshop held at the Santa Fe Institute in March 2001. This volume captures a snapshot of some features of the Internet that may be fruitfully approached using a complex systems perspective, meaning using interdisciplinary tools and methods to tackle the subject area. The Internet penetrates the socioeconomic fabric of everyday life; a broader and deeper grasp of the Internet may be needed to meet the challenges facing the future. The resulting empirical data have already proven to be invaluable for gaining novel insights into the network's spatio-temporal dynamics, and can be expected to become even more important when tryin to explain the Internet's complex and emergent behavior in terms of elementary networking-based mechanisms. The discoveries of fractal or self-similar network traffic traces, power-law behavior in network topology and World Wide Web connectivity are instances of unsuspected, emergent system traits. Another important factor at the heart of fair, efficient, and stable sharing of network resources is user behavior. Network systems, when habited by selfish or greedy users, take on the traits of a noncooperative multi-party game, and their stability and efficiency are integral to understanding the overall system and its dynamics. Lastly, fault-tolerance and robustness of large-scale network systems can exhibit spatial and temporal correlations whose effective analysis and management may benefit from rescaling techniques applied in certain physical and biological systems. The present book will bring together several of the leading workers involved in the analysis of complex systems with the future development of the Internet.

  5. Multi-Resolution Modeling of Large Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, C; Abdulla, G; Critchlow, T

    2002-02-25

    Data produced by large scale scientific simulations, experiments, and observations can easily reach tera-bytes in size. The ability to examine data-sets of this magnitude, even in moderate detail, is problematic at best. Generally this scientific data consists of multivariate field quantities with complex inter-variable correlations and spatial-temporal structure. To provide scientists and engineers with the ability to explore and analyze such data sets we are using a twofold approach. First, we model the data with the objective of creating a compressed yet manageable representation. Second, with that compressed representation, we provide the user with the ability to query the resulting approximation to obtain approximate yet sufficient answers; a process called adhoc querying. This paper is concerned with a wavelet modeling technique that seeks to capture the important physical characteristics of the target scientific data. Our approach is driven by the compression, which is necessary for viable throughput, along with the end user requirements from the discovery process. Our work contrasts existing research which applies wavelets to range querying, change detection, and clustering problems by working directly with a decomposition of the data. The difference in this procedures is due primarily to the nature of the data and the requirements of the scientists and engineers. Our approach directly uses the wavelet coefficients of the data to compress as well as query. We will provide some background on the problem, describe how the wavelet decomposition is used to facilitate data compression and how queries are posed on the resulting compressed model. Results of this process will be shown for several problems of interest and we will end with some observations and conclusions about this research.

  6. Multi-Resolution Modeling of Large Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, C; Abdulla, G; Critchlow, T

    2002-02-25

    Data produced by large scale scientific simulations, experiments, and observations can easily reach tera-bytes in size. The ability to examine data-sets of this magnitude, even in moderate detail, is problematic at best. Generally this scientific data consists of multivariate field quantities with complex inter-variable correlations and spatial-temporal structure. To provide scientists and engineers with the ability to explore and analyze such data sets we are using a twofold approach. First, we model the data with the objective of creating a compressed yet manageable representation. Second, with that compressed representation, we provide the user with the ability to query the resulting approximation to obtain approximate yet sufficient answers; a process called adhoc querying. This paper is concerned with a wavelet modeling technique that seeks to capture the important physical characteristics of the target scientific data. Our approach is driven by the compression, which is necessary for viable throughput, along with the end user requirements from the discovery process. Our work contrasts existing research which applies wavelets to range querying, change detection, and clustering problems by working directly with a decomposition of the data. The difference in this procedures is due primarily to the nature of the data and the requirements of the scientists and engineers. Our approach directly uses the wavelet coefficients of the data to compress as well as query. We will provide some background on the problem, describe how the wavelet decomposition is used to facilitate data compression and how queries are posed on the resulting compressed model. Results of this process will be shown for several problems of interest and we will end with some observations and conclusions about this research.

  7. A Review of Scaling Agile Methods in Large Software Development

    Directory of Open Access Journals (Sweden)

    Mashal Alqudah

    2016-12-01

    Full Text Available Agile methods such as Dynamic Systems Development Method (DSDM, Extreme Programming (XP, SCRUM, Agile Modeling (AM and Crystal Clear enable small teams to execute assigned task at their best. However, larger organizations aim at incorporating more Agile methods owing to the fact that its application is prevalently tailored for small teams. The scope in which large firms are interested will extend the original Agile methods to include larger teams, coordination, communication among teams and customers as well as oversight. Determining particular software method is always challenging for software companies especially when considering start-up, small to medium or large enterprises. Most of large organizations develop large-scale projects by teams of teams or teams of teams of teams. Therefore, most recognized Agile methods or first-generation methods such as XP and SCRUM need to be modified before they are employed in large organizations; which is not an easy task. Accomplishing said task would necessitate large organizations to pick and select from the scaling Agile methods in accommodating a single vision for large and multiple teams. Deciding the right choice requires wholesome understanding of the method including its strengths and weaknesses as well as when and how it makes sense. Therefore, the main aim of this paper is to review the existing literature of the utilized scaling Agile methods by defining, discussing and comparing them. In-depth reviews on the literature were performed to juxtapose the methods in impartial manner. In addition, the content analysis was used to analyse the resultant data. The result indicated that the DAD, LeSS, LeSS huge, SAFe, Spotify, Nexus and RAGE are the adopted scaling Agile methods at large organizations. They seem to be similar but there are discrepancies among them that take the form of team size, training and certification, methods and practices adopted, technical practices required and organizational

  8. Local and Regional Impacts of Large Scale Wind Energy Deployment

    Science.gov (United States)

    Michalakes, J.; Hammond, S.; Lundquist, J. K.; Moriarty, P.; Robinson, M.

    2010-12-01

    The U.S. is currently on a path to produce 20% of its electricity from wind energy by 2030, almost a 10-fold increase over present levels of electricity generated from wind. Such high-penetration wind energy deployment will entail extracting elevated energy levels from the planetary boundary layer and preliminary studies indicate that this will have significant but uncertain impacts on the local and regional environment. State and federal regulators have raised serious concerns regarding potential agricultural impacts from large farms deployed throughout the Midwest where agriculture is the basis of the local economy. The effects of large wind farms have been proposed to be both beneficial (drying crops to reduce occurrences of fungal diseases, avoiding late spring freezes, enhancing pollen viability, reducing dew duration) and detrimental (accelerating moisture loss during drought) with no conclusive investigations thus far. As both wind and solar technologies are deployed at scales required to replace conventional technologies, there must be reasonable certainty that the potential environmental impacts at the micro, macro, regional and global scale do not exceed those anticipated from carbon emissions. Largely because of computational limits, the role of large wind farms in affecting regional-scale weather patterns has only been investigated in coarse simulations and modeling tools do not yet exist which are capable of assessing the downwind affects of large wind farms may have on microclimatology. In this presentation, we will outline the vision for and discuss technical and scientific challenges in developing a multi-model high-performance simulation capability covering the range of mesoscale to sub-millimeter scales appropriate for assessing local, regional, and ultimately global environmental impacts and quantifying uncertainties of large scale wind energy deployment scenarios. Such a system will allow continuous downscaling of atmospheric processes on wind

  9. Large eddy simulation of the atmosphere on various scales.

    Science.gov (United States)

    Cullen, M J P; Brown, A R

    2009-07-28

    Numerical simulations of the atmosphere are routinely carried out on various scales for purposes ranging from weather forecasts for local areas a few hours ahead to forecasts of climate change over periods of hundreds of years. Almost without exception, these forecasts are made with space/time-averaged versions of the governing Navier-Stokes equations and laws of thermodynamics, together with additional terms representing internal and boundary forcing. The calculations are a form of large eddy modelling, because the subgrid-scale processes have to be modelled. In the global atmospheric models used for long-term predictions, the primary method is implicit large eddy modelling, using discretization to perform the averaging, supplemented by specialized subgrid models, where there is organized small-scale activity, such as in the lower boundary layer and near active convection. Smaller scale models used for local or short-range forecasts can use a much smaller averaging scale. This allows some of the specialized subgrid models to be dropped in favour of direct simulations. In research mode, the same models can be run as a conventional large eddy simulation only a few orders of magnitude away from a direct simulation. These simulations can then be used in the development of the subgrid models for coarser resolution models.

  10. Integrated Large-Scale Environmental Information Systems: A Short Survey

    OpenAIRE

    Kolios, Stavros; Maurodimou, Olga; Stylios, Chrysostomos

    2013-01-01

    Part 6: Performance Management; International audience; The installation and operation of instrument/sensor networks has great importance in monitoring the physical environment from local to global scale. Nowadays, such networks comprise vital parts of integrated information systems that are called Environmental Information Systems (EIS). Such systems provide real time monitoring, forecasts and interesting conclusions extracted from the collected data sets that are stored in huge databases. T...

  11. Turbulent large-scale structure effects on wake meandering

    Science.gov (United States)

    Muller, Y.-A.; Masson, C.; Aubrun, S.

    2015-06-01

    This work studies effects of large-scale turbulent structures on wake meandering using Large Eddy Simulations (LES) over an actuator disk. Other potential source of wake meandering such as the instablility mechanisms associated with tip vortices are not treated in this study. A crucial element of the efficient, pragmatic and successful simulations of large-scale turbulent structures in Atmospheric Boundary Layer (ABL) is the generation of the stochastic turbulent atmospheric flow. This is an essential capability since one source of wake meandering is these large - larger than the turbine diameter - turbulent structures. The unsteady wind turbine wake in ABL is simulated using a combination of LES and actuator disk approaches. In order to dedicate the large majority of the available computing power in the wake, the ABL ground region of the flow is not part of the computational domain. Instead, mixed Dirichlet/Neumann boundary conditions are applied at all the computational surfaces except at the outlet. Prescribed values for Dirichlet contribution of these boundary conditions are provided by a stochastic turbulent wind generator. This allows to simulate large-scale turbulent structures - larger than the computational domain - leading to an efficient simulation technique of wake meandering. Since the stochastic wind generator includes shear, the turbulence production is included in the analysis without the necessity of resolving the flow near the ground. The classical Smagorinsky sub-grid model is used. The resulting numerical methodology has been implemented in OpenFOAM. Comparisons with experimental measurements in porous-disk wakes have been undertaken, and the agreements are good. While temporal resolution in experimental measurements is high, the spatial resolution is often too low. LES numerical results provide a more complete spatial description of the flow. They tend to demonstrate that inflow low frequency content - or large- scale turbulent structures - is

  12. Flexibility in design of large-scale methanol plants

    Institute of Scientific and Technical Information of China (English)

    Esben Lauge Sφrensen; Helge Holm-Larsen; Haldor Topsφe A/S

    2006-01-01

    This paper presents a cost effective design for large-scale methanol production. It is demonstrated how recent technological progress can be utilised to design a methanol plant,which is inexpensive and easy to operate, while at the same time very robust towards variations in feed-stock composition and product specifications.

  13. Large-scale search for dark-matter axions

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C.A., LLNL; Kinion, D.; Stoeffl, W.; Van Bibber, K.; Daw, E.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McBride, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peng, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Rosenberg, L.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Xin, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Laveigne, J. [Florida Univ., Gainesville, FL (United States); Sikivie, P. [Florida Univ., Gainesville, FL (United States); Sullivan, N.S. [Florida Univ., Gainesville, FL (United States); Tanner, D.B. [Florida Univ., Gainesville, FL (United States); Moltz, D.M. [Lawrence Berkeley Lab., CA (United States); Powell, J. [Lawrence Berkeley Lab., CA (United States); Clarke, J. [Lawrence Berkeley Lab., CA (United States); Nezrick, F.A. [Fermi National Accelerator Lab., Batavia, IL (United States); Turner, M.S. [Fermi National Accelerator Lab., Batavia, IL (United States); Golubev, N.A. [Russian Academy of Sciences, Moscow (Russia); Kravchuk, L.V. [Russian Academy of Sciences, Moscow (Russia)

    1998-01-01

    Early results from a large-scale search for dark matter axions are presented. In this experiment, axions constituting our dark-matter halo may be resonantly converted to monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. Sensitivity at the level of one important axion model (KSVZ) has been demonstrated.

  14. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the homogeniza

  15. Large Scale Magnetic Fields: Density Power Spectrum in Redshift Space

    Indian Academy of Sciences (India)

    Rajesh Gopal; Shiv K. Sethi

    2003-09-01

    We compute the density redshift-space power spectrum in the presence of tangled magnetic fields and compare it with existing observations. Our analysis shows that if these magnetic fields originated in the early universe then it is possible to construct models for which the shape of the power spectrum agrees with the large scale slope of the observed power spectrum. However requiring compatibility with observed CMBR anisotropies, the normalization of the power spectrum is too low for magnetic fields to have significant impact on the large scale structure at present. Magnetic fields of a more recent origin generically give density power spectrum ∝ 4 which doesn’t agree with the shape of the observed power spectrum at any scale. Magnetic fields generate curl modes of the velocity field which increase both the quadrupole and hexadecapole of the redshift space power spectrum. For curl modes, the hexadecapole dominates over quadrupole. So the presence of curl modes could be indicated by an anomalously large hexadecapole, which has not yet been computed from observation. It appears difficult to construct models in which tangled magnetic fields could have played a major role in shaping the large scale structure in the present epoch. However if they did, one of the best ways to infer their presence would be from the redshift space effects in the density power spectrum.

  16. Quantized pressure control in large-scale nonlinear hydraulic networks

    NARCIS (Netherlands)

    Persis, Claudio De; Kallesøe, Carsten Skovmose; Jensen, Tom Nørgaard

    2010-01-01

    It was shown previously that semi-global practical pressure regulation at designated points of a large-scale nonlinear hydraulic network is guaranteed by distributed proportional controllers. For a correct implementation of the control laws, each controller, which is located at these designated poin

  17. Efficient Selection of Multiple Objects on a Large Scale

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    2012-01-01

    The task of multiple object selection (MOS) in immersive virtual environments is important and still largely unexplored. The diffi- culty of efficient MOS increases with the number of objects to be selected. E.g. in small-scale MOS, only a few objects need to be simultaneously selected. This may ...

  18. Main Achievements of Cotton Large-scale Transformation System

    Institute of Scientific and Technical Information of China (English)

    LI Fu-guang; LIU Chuan-liang; WU Zhi-xia; ZHANG Chao-jun; ZHANG Xue-yan

    2008-01-01

    @@ Cotton large-scale transformation methods system was established based on innovation of cotton transformation methods.It obtains 8000 transgenic cotton plants per year by combining Agrobacteriurn turnefaciens-mediated,pollen-tube pathway and biolistic methods together efficiently.More than 1000 transgenie lines are selected from the transgenic plants with molecular assistant breeding and conventional breeding methods.

  19. Segmentation by Large Scale Hypothesis Testing - Segmentation as Outlier Detection

    DEFF Research Database (Denmark)

    Darkner, Sune; Dahl, Anders Lindbjerg; Larsen, Rasmus

    2010-01-01

    locally. We propose a method based on large scale hypothesis testing with a consistent method for selecting an appropriate threshold for the given data. By estimating the background distribution we characterize the segment of interest as a set of outliers with a certain probability based on the estimated...

  20. Regeneration and propagation of reed grass for large-scale ...

    African Journals Online (AJOL)

    전서범

    2012-01-26

    Jan 26, 2012 ... containing different sucrose concentrations; this experiment found that 60 g L-1 ... All these uses of reeds require the large-scale rege- ... numbers of plant in a small space within a short time ... callus stock and grown in vitro were used in this study. .... presence of 4-FA were converted to friable and light-.

  1. Dual Decomposition for Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Vandenberghe, Lieven

    2013-01-01

    Dual decomposition is applied to power balancing of exible thermal storage units. The centralized large-scale problem is decomposed into smaller subproblems and solved locallyby each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption through a negotiation...

  2. Large-Scale Assessment and English Language Learners with Disabilities

    Science.gov (United States)

    Liu, Kristin K.; Ward, Jenna M.; Thurlow, Martha L.; Christensen, Laurene L.

    2017-01-01

    This article highlights a set of principles and guidelines, developed by a diverse group of specialists in the field, for appropriately including English language learners (ELLs) with disabilities in large-scale assessments. ELLs with disabilities make up roughly 9% of the rapidly increasing ELL population nationwide. In spite of the small overall…

  3. Large scale radial stability density of Hill's equation

    NARCIS (Netherlands)

    Broer, Henk; Levi, Mark; Simo, Carles

    2013-01-01

    This paper deals with large scale aspects of Hill's equation (sic) + (a + bp(t)) x = 0, where p is periodic with a fixed period. In particular, the interest is the asymptotic radial density of the stability domain in the (a, b)-plane. It turns out that this density changes discontinuously in a certa

  4. Water Implications of Large-Scale Land Acquisitions in Ghana

    Directory of Open Access Journals (Sweden)

    Timothy Olalekan Williams

    2012-06-01

    The paper offers recommendations which can help the government to achieve its stated objective of developing a "policy framework and guidelines for large-scale land acquisitions by both local and foreign investors for biofuels that will protect the interests of investors and the welfare of Ghanaian farmers and landowners".

  5. Evaluating Large-scale National Public Management Reforms

    DEFF Research Database (Denmark)

    Breidahl, Karen Nielsen; Gjelstrup, Gunnar; Hansen, Morten Balle

    This article explores differences and similarities between two evaluations of large-scale administrative reforms which were carried out in the 2000s: The evaluation of the Norwegian NAV reform (EVANAV) and the evaluation of the Danish Local Government Reform (LGR). We provide a comparative analys...

  6. A Chain Perspective on Large-scale Number Systems

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    2012-01-01

    As large-scale number systems gain significance in social and economic life (electronic communication, remote electronic authentication), the correct functioning and the integrity of public number systems take on crucial importance. They are needed to uniquely indicate people, objects or phenomena i

  7. Main Achievements of Cotton Large-scale Transformation System

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cotton large-scale transformation methods system was established based on innovation of cotton transformation methods.It obtains 8000 transgenic cotton plants per year by combining Agrobacterium tumefaciens-mediated,pollen-tube pathway and biolistic methods together efficiently.More than

  8. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  9. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  10. The Role of Plausible Values in Large-Scale Surveys

    Science.gov (United States)

    Wu, Margaret

    2005-01-01

    In large-scale assessment programs such as NAEP, TIMSS and PISA, students' achievement data sets provided for secondary analysts contain so-called "plausible values." Plausible values are multiple imputations of the unobservable latent achievement for each student. In this article it has been shown how plausible values are used to: (1) address…

  11. Large-scale data analysis using the Wigner function

    Science.gov (United States)

    Earnshaw, R. A.; Lei, C.; Li, J.; Mugassabi, S.; Vourdas, A.

    2012-04-01

    Large-scale data are analysed using the Wigner function. It is shown that the 'frequency variable' provides important information, which is lost with other techniques. The method is applied to 'sentiment analysis' in data from social networks and also to financial data.

  12. High-Throughput, Large-Scale SNP Genotyping: Bioinformatics Considerations

    OpenAIRE

    Margetic, Nino

    2004-01-01

    In order to provide a high-throughput, large-scale genotyping facility at the national level we have developed a set of inter-dependent information systems. A combination of commercial, publicly-available and in-house developed tools links a series of data repositories based both on flat files and relational databases providing an almost complete semi-automated pipeline.

  13. Chain Analysis for large-scale Communication systems

    NARCIS (Netherlands)

    Grijpink, Jan

    2010-01-01

    The chain concept is introduced to explain how large-scale information infrastructures so often fail and sometimes even backfire. Next, the assessment framework of the doctrine of Chain-computerisation and its chain analysis procedure are outlined. In this procedure chain description precedes assess

  14. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  15. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  16. Participatory Design of Large-Scale Information Systems

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Hertzum, Morten

    2008-01-01

    In this article we discuss how to engage in large-scale information systems development by applying a participatory design (PD) approach that acknowledges the unique situated work practices conducted by the domain experts of modern organizations. We reconstruct the iterative prototyping approach...

  17. Large-Scale Innovation and Change in UK Higher Education

    Science.gov (United States)

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  18. Measurement, Sampling, and Equating Errors in Large-Scale Assessments

    Science.gov (United States)

    Wu, Margaret

    2010-01-01

    In large-scale assessments, such as state-wide testing programs, national sample-based assessments, and international comparative studies, there are many steps involved in the measurement and reporting of student achievement. There are always sources of inaccuracies in each of the steps. It is of interest to identify the source and magnitude of…

  19. A Chain Perspective on Large-scale Number Systems

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    2012-01-01

    As large-scale number systems gain significance in social and economic life (electronic communication, remote electronic authentication), the correct functioning and the integrity of public number systems take on crucial importance. They are needed to uniquely indicate people, objects or phenomena i

  20. Large-Scale Innovation and Change in UK Higher Education

    Science.gov (United States)

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  1. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik

    2013-01-01

    was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power...

  2. Large scale solar district heating. Evaluation, modelling and designing - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)

  3. The Cosmology Large Angular Scale Surveyor (CLASS) Telescope Architecture

    Science.gov (United States)

    Chuss, David T.; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Colazo, Felipe; Crowe, Erik; Denis, Kevin L.; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Stevenson, Thomas; Miller, Nathan J.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    We describe the instrument architecture of the Johns Hopkins University-led CLASS instrument, a groundbased cosmic microwave background (CMB) polarimeter that will measure the large-scale polarization of the CMB in several frequency bands to search for evidence of inflation.

  4. New Visions for Large Scale Networks: Research and Applications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This paper documents the findings of the March 12-14, 2001 Workshop on New Visions for Large-Scale Networks: Research and Applications. The workshops objectives were...

  5. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  6. Large-scale magnetic fields in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Alexakis, Alexandros

    2013-02-22

    High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations, the energy dissipation rate [symbol: see text] follows the scaling [Symbol: see text] proportional U(rms)(3)/ℓ even when the large-scale magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic energy showed a transition to the [Symbol: see text] proportional U(rms)(2) B(rms)/ℓ scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum k(-5/3) while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k(-3/2) as observed in the solar wind.

  7. Active Learning in a Large General Physics Classroom.

    Science.gov (United States)

    Trousil, Rebecca

    2008-04-01

    In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.

  8. Development of a Scale Measuring Trait Anxiety in Physical Education

    Science.gov (United States)

    Barkoukis, Vassilis; Rodafinos, Angelos; Koidou, Eirini; Tsorbatzoudis, Haralambos

    2012-01-01

    The aim of the present study was to examine the validity and reliability of a multi-dimensional measure of trait anxiety specifically designed for the physical education lesson. The Physical Education Trait Anxiety Scale was initially completed by 774 high school students during regular school classes. A confirmatory factor analysis supported the…

  9. Supermassive black holes, large scale structure and holography

    CERN Document Server

    Mongan, T R

    2013-01-01

    A holographic analysis of large scale structure in the universe estimates the mass of supermassive black holes at the center of large scale structures with matter density varying inversely as the square of the distance from their center. The estimate is consistent with two important test cases involving observations of the supermassive black hole with mass 3.6\\times10^{-6} times the galactic mass in Sagittarius A^{*} near the center of our Milky Way and the 2\\times10^{9} solar mass black hole in the quasar ULAS J112001.48+064124.3 at redshift z=7.085. It is also consistent with upper bounds on central black hole masses in globular clusters M15, M19 and M22 developed using the Jansky Very Large Array in New Mexico.

  10. Distant galaxy clusters in the XMM Large Scale Structure survey

    CERN Document Server

    Willis, J P; Bremer, M N; Pierre, M; Adami, C; Ilbert, O; Maughan, B; Maurogordato, S; Pacaud, F; Valtchanov, I; Chiappetti, L; Thanjavur, K; Gwyn, S; Stanway, E R; Winkworth, C

    2012-01-01

    (Abridged) Distant galaxy clusters provide important tests of the growth of large scale structure in addition to highlighting the process of galaxy evolution in a consistently defined environment at large look back time. We present a sample of 22 distant (z>0.8) galaxy clusters and cluster candidates selected from the 9 deg2 footprint of the overlapping X-ray Multi Mirror (XMM) Large Scale Structure (LSS), CFHTLS Wide and Spitzer SWIRE surveys. Clusters are selected as extended X-ray sources with an accompanying overdensity of galaxies displaying optical to mid-infrared photometry consistent with z>0.8. Nine clusters have confirmed spectroscopic redshifts in the interval 0.80.8 clusters.

  11. Quantum noise in large-scale coherent nonlinear photonic circuits

    CERN Document Server

    Santori, Charles; Beausoleil, Raymond G; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo

    2014-01-01

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A netlist-based circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasi-probability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total, and functions as a 4-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important...

  12. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  13. Forcings and Feedbacks on Convection in the 2010 Pakistan Flood: Modeling Extreme Precipitation with Interactive Large-Scale Ascent

    CERN Document Server

    Nie, Ji; Sobel, Adam H

    2016-01-01

    Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent and large latent heat release. The causal relationships between these factors are often not obvious, however, and the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here, we examine the large-scale forcings and convective heating feedback in the precipitation events which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic li...

  14. Large N phase transitions under scaling and their uses

    CERN Document Server

    Neuberger, H

    2009-01-01

    The eigenvalues of Wilson loop matrices in SU(N) gauge theories in dimensions 2,3,4 at infinite N are supported on a small arc on the unit circle centered at $z=1$ for small loops, but expand to the entire unit circle for large loops. These two regimes are separated by a large N phase transition whose universal properties are the same in d=2,3 and 4. Hopefully, this large N universality could be exploited to bridge traditional perturbation theory calculations, valid for small loops, with effective string calculations for large loops. A concrete case of such a calculation would obtain analytically an estimate of the large N string tension in terms of the perturbative scale Lambda(QCD,N).

  15. Modeling Physical Processes at Galactic Scales and Above

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-16

    What should these lectures be? The subject assigned to us is so broad that many books can be written about it. So, in planning these lectures I had several options. One would be to focus on a narrow subset of topics and to cover them in great detail. Such a subset necessarily would be highly personal and useful to a few readers at best. Another option would be to give a very shallow overview of the whole field, but then it wouldn't be very much different from a highly compressed version of a university course (which anyone can take if they wish so). So, I decided to be selfish and to prepare these lectures as if I were teaching my own graduate student. Given my research interests, I selected what the student would need to know to be able to discuss science with me and to work on joint research projects. So, the story presented below is both personal and incomplete, but it does cover several subjects that are poorly represented in the existing textbooks (if at all). Some of topics I focus on below are closely connected, others are disjoint, some are just side detours on specific technical questions. There is an overlapping theme, however. Our goal is to follow the cosmic gas from large scales, low densities, (relatively) simple physics to progressively smaller scales, higher densities, closer relation to galaxies, and more complex and uncertain physics. So, we (you - the reader, and I - the author) are going to follow a "yellow brick road" from the gas well beyond any galaxy confines to the actual sites of star formation and stellar feedback. On the way we will stop at some places for a tour and run without looking back through some others. So, the road will be uneven, but I hope that some readers find it useful.

  16. A visualization framework for large-scale virtual astronomy

    Science.gov (United States)

    Fu, Chi-Wing

    Motivated by advances in modern positional astronomy, this research attempts to digitally model the entire Universe through computer graphics technology. Our first challenge is space itself. The gigantic size of the Universe makes it impossible to put everything into a typical graphics system at its own scale. The graphics rendering process can easily fail because of limited computational precision, The second challenge is that the enormous amount of data could slow down the graphics; we need clever techniques to speed up the rendering. Third, since the Universe is dominated by empty space, objects are widely separated; this makes navigation difficult. We attempt to tackle these problems through various techniques designed to extend and optimize the conventional graphics framework, including the following: power homogeneous coordinates for large-scale spatial representations, generalized large-scale spatial transformations, and rendering acceleration via environment caching and object disappearance criteria. Moreover, we implemented an assortment of techniques for modeling and rendering a variety of astronomical bodies, ranging from the Earth up to faraway galaxies, and attempted to visualize cosmological time; a method we call the Lightcone representation was introduced to visualize the whole space-time of the Universe at a single glance. In addition, several navigation models were developed to handle the large-scale navigation problem. Our final results include a collection of visualization tools, two educational animations appropriate for planetarium audiences, and state-of-the-art-advancing rendering techniques that can be transferred to practice in digital planetarium systems.

  17. Impact of Large-scale Geological Architectures On Recharge

    Science.gov (United States)

    Troldborg, L.; Refsgaard, J. C.; Engesgaard, P.; Jensen, K. H.

    Geological and hydrogeological data constitutes the basis for assessment of ground- water flow pattern and recharge zones. The accessibility and applicability of hard ge- ological data is often a major obstacle in deriving plausible conceptual models. Nev- ertheless focus is often on parameter uncertainty caused by the effect of geological heterogeneity due to lack of hard geological data, thus neglecting the possibility of alternative conceptualizations of the large-scale geological architecture. For a catchment in the eastern part of Denmark we have constructed different geologi- cal models based on different conceptualization of the major geological trends and fa- cies architecture. The geological models are equally plausible in a conceptually sense and they are all calibrated to well head and river flow measurements. Comparison of differences in recharge zones and subsequently well protection zones emphasize the importance of assessing large-scale geological architecture in hydrological modeling on regional scale in a non-deterministic way. Geostatistical modeling carried out in a transitional probability framework shows the possibility of assessing multiple re- alizations of large-scale geological architecture from a combination of soft and hard geological information.

  18. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  19. Searching for Large Scale Structure in Deep Radio Surveys

    CERN Document Server

    Baleisis, A; Loan, A J; Wall, J V; Baleisis, Audra; Lahav, Ofer; Loan, Andrew J.; Wall, Jasper V.

    1997-01-01

    (Abridged Abstract) We calculate the expected amplitude of the dipole and higher spherical harmonics in the angular distribution of radio galaxies. The median redshift of radio sources in existing catalogues is z=1, which allows us to study large scale structure on scales between those accessible to present optical and infrared surveys, and that of the Cosmic Microwave Background (CMB). The dipole is due to 2 effects which turn out to be of comparable magnitude: (i) our motion with respect to the CMB, and (ii) large scale structure, parameterised here by a family of Cold Dark Matter power-spectra. We make specific predictions for the Green Bank (87GB) and Parkes-MIT-NRAO (PMN) catalogues. For these relatively sparse catalogues both the motion and large scale structure dipole effects are expected to be smaller than the Poisson shot-noise. However, we detect dipole and higher harmonics in the combined 87GB-PMN catalogue which are far larger than expected. We attribute this to a 2 % flux mismatch between the two...

  20. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  1. Modelling large-scale halo bias using the bispectrum

    CERN Document Server

    Pollack, Jennifer E; Porciani, Cristiano

    2011-01-01

    We study the relation between the halo and matter density fields -- commonly termed bias -- in the LCDM framework. In particular, we examine the local model of biasing at quadratic order in matter density. This model is characterized by parameters b_1 and b_2. Using an ensemble of N-body simulations, we apply several statistical methods to estimate the parameters. We measure halo and matter fluctuations smoothed on various scales and find that the parameters vary with smoothing scale. We argue that, for real-space measurements, owing to the mixing of wavemodes, no scale can be found for which the parameters are independent of smoothing. However, this is not the case in Fourier space. We measure halo power spectra and construct estimates for an effective large-scale bias. We measure the configuration dependence of the halo bispectra B_hhh and reduced bispectra Q_hhh for very large-scale k-space triangles. From this we constrain b_1 and b_2. Using the lowest-order perturbation theory, we find that for B_hhh the...

  2. UAV Data Processing for Large Scale Topographical Mapping

    Science.gov (United States)

    Tampubolon, W.; Reinhardt, W.

    2014-06-01

    Large scale topographical mapping in the third world countries is really a prominent challenge in geospatial industries nowadays. On one side the demand is significantly increasing while on the other hand it is constrained by limited budgets available for mapping projects. Since the advent of Act Nr.4/yr.2011 about Geospatial Information in Indonesia, large scale topographical mapping has been on high priority for supporting the nationwide development e.g. detail spatial planning. Usually large scale topographical mapping relies on conventional aerial survey campaigns in order to provide high resolution 3D geospatial data sources. Widely growing on a leisure hobby, aero models in form of the so-called Unmanned Aerial Vehicle (UAV) bring up alternative semi photogrammetric aerial data acquisition possibilities suitable for relatively small Area of Interest (AOI) i.e. Indonesia this area size can be used as a mapping unit since it usually concentrates on the basis of sub district area (kecamatan) level. In this paper different camera and processing software systems will be further analyzed for identifying the best optimum UAV data acquisition campaign components in combination with the data processing scheme. The selected AOI is covering the cultural heritage of Borobudur Temple as one of the Seven Wonders of the World. A detailed accuracy assessment will be concentrated within the object feature of the temple at the first place. Feature compilation involving planimetric objects (2D) and digital terrain models (3D) will be integrated in order to provide Digital Elevation Models (DEM) as the main interest of the topographic mapping activity. By doing this research, incorporating the optimum amount of GCPs in the UAV photo data processing will increase the accuracy along with its high resolution in 5 cm Ground Sampling Distance (GSD). Finally this result will be used as the benchmark for alternative geospatial data acquisition in the future in which it can support

  3. Multivariate Clustering of Large-Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi-Rad, T; Critchlow, T

    2003-06-13

    Simulations of complex scientific phenomena involve the execution of massively parallel computer programs. These simulation programs generate large-scale data sets over the spatio-temporal space. Modeling such massive data sets is an essential step in helping scientists discover new information from their computer simulations. In this paper, we present a simple but effective multivariate clustering algorithm for large-scale scientific simulation data sets. Our algorithm utilizes the cosine similarity measure to cluster the field variables in a data set. Field variables include all variables except the spatial (x, y, z) and temporal (time) variables. The exclusion of the spatial dimensions is important since ''similar'' characteristics could be located (spatially) far from each other. To scale our multivariate clustering algorithm for large-scale data sets, we take advantage of the geometrical properties of the cosine similarity measure. This allows us to reduce the modeling time from O(n{sup 2}) to O(n x g(f(u))), where n is the number of data points, f(u) is a function of the user-defined clustering threshold, and g(f(u)) is the number of data points satisfying f(u). We show that on average g(f(u)) is much less than n. Finally, even though spatial variables do not play a role in building clusters, it is desirable to associate each cluster with its correct spatial region. To achieve this, we present a linking algorithm for connecting each cluster to the appropriate nodes of the data set's topology tree (where the spatial information of the data set is stored). Our experimental evaluations on two large-scale simulation data sets illustrate the value of our multivariate clustering and linking algorithms.

  4. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  5. Robust regression for large-scale neuroimaging studies.

    Science.gov (United States)

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies.

  6. Intensive agriculture erodes β-diversity at large scales.

    Science.gov (United States)

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity.

  7. Large-scale magnetic fields from inflation in teleparallel gravity

    CERN Document Server

    Bamba, Kazuharu; Luo, Ling-Wei

    2013-01-01

    Generation of large-scale magnetic fields in inflationary cosmology is studied in teleparallelism, where instead of the scalar curvature in general relativity, the torsion scalar describes the gravity theory. In particular, we investigate a coupling of the electromagnetic field to the torsion scalar during inflation, which leads to the breaking of conformal invariance of the electromagnetic field. We demonstrate that for a power-law type coupling, the current magnetic field strength of $\\sim 10^{-9}$ G on 1 Mpc scale can be generated, if the backreaction effects and strong coupling problem are not taken into consideration.

  8. Clusters as cornerstones of large-scale structure.

    Science.gov (United States)

    Gottlöber, S.; Retzlaff, J.; Turchaninov, V.

    1997-04-01

    Galaxy clusters are one of the best tracers of large-scale structure in the Universe on scales well above 100 Mpc. The authors investigate here the clustering properties of a redshift sample of Abell/ACO clusters and compare the observational sample with mock samples constructed from N-body simulations on the basis of four different cosmological models. The authors discuss the power spectrum, the Minkowski functionals and the void statistics of these samples and conclude, that the SCDM and TCDM models are ruled out whereas the ACDM and BSI models are in agreement with the observational data.

  9. Large-Scale Patterns of Filament Channels and Filaments

    Science.gov (United States)

    Mackay, Duncan

    2016-07-01

    In this review the properties and large-scale patterns of filament channels and filaments will be considered. Initially, the global formation locations of filament channels and filaments are discussed, along with their hemispheric pattern. Next, observations of the formation of filament channels and filaments are described where two opposing views are considered. Finally, the wide range of models that have been constructed to consider the formation of filament channels and filaments over long time-scales are described, along with the origin of the hemispheric pattern of filaments.

  10. Less is more: regularization perspectives on large scale machine learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Deep learning based techniques provide a possible solution at the expanse of theoretical guidance and, especially, of computational requirements. It is then a key challenge for large scale machine learning to devise approaches guaranteed to be accurate and yet computationally efficient. In this talk, we will consider a regularization perspectives on machine learning appealing to classical ideas in linear algebra and inverse problems to scale-up dramatically nonparametric methods such as kernel methods, often dismissed because of prohibitive costs. Our analysis derives optimal theoretical guarantees while providing experimental results at par or out-performing state of the art approaches.

  11. Destruction of Be star disk by large scale magnetic fields

    Science.gov (United States)

    Ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel; Vanyo, Michael

    2017-01-01

    Classical Be stars are rapidly rotating stars with circumstellar disks that come and go on time scale of years. Recent observational data strongly suggests that these stars lack the ~10% incidence of global magnetic fields observed in other main-sequence B stars. Such an apparent lack of magnetic fields may indicate that Be disks are fundamentally incompatible with a significant large scale magnetic field. In this work, using numerical magnetohydrodynamics (MHD) simulations, we show that a dipole field of only 100G can lead to the quick disruption of a Be disk. Such a limit is in line with the observational upper limits for these objects.

  12. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif

    2017-01-07

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  13. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  14. Improved learning in a large-enrollment physics class.

    Science.gov (United States)

    Deslauriers, Louis; Schelew, Ellen; Wieman, Carl

    2011-05-13

    We compared the amounts of learning achieved using two different instructional approaches under controlled conditions. We measured the learning of a specific set of topics and objectives when taught by 3 hours of traditional lecture given by an experienced highly rated instructor and 3 hours of instruction given by a trained but inexperienced instructor using instruction based on research in cognitive psychology and physics education. The comparison was made between two large sections (N = 267 and N = 271) of an introductory undergraduate physics course. We found increased student attendance, higher engagement, and more than twice the learning in the section taught using research-based instruction.

  15. Localization Algorithm Based on a Spring Model (LASM for Large Scale Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2008-03-01

    Full Text Available A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1 for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

  16. Scale Development for Perceived School Climate for Girls’ Physical Activity

    Science.gov (United States)

    Birnbaum, Amanda S.; Evenson, Kelly R.; Motl, Robert W.; Dishman, Rod K.; Voorhees, Carolyn C.; Sallis, James F.; Elder, John P.; Dowda, Marsha

    2008-01-01

    Objectives To test an original scale assessing perceived school climate for girls’ physical activity in middle school girls. Methods Confirmatory factor analysis (CFA) and structural equation modeling (SEM). Results CFA retained 5 of 14 original items. A model with 2 correlated factors, perceptions about teachers’ and boys’ behaviors, respectively, fit the data well in both sixth and eighth graders. SEM detected a positive, significant direct association of the teacher factor, but not the boy factor, with girls’ self-reported physical activity. Conclusions School climate for girls’ physical activity is a measurable construct, and preliminary evidence suggests a relationship with physical activity. PMID:15899688

  17. Resolving the paradox of oceanic large-scale balance and small-scale mixing.

    Science.gov (United States)

    Marino, R; Pouquet, A; Rosenberg, D

    2015-03-20

    A puzzle of oceanic dynamics is the contrast between the observed geostrophic balance, involving gravity, pressure gradient, and Coriolis forces, and the necessary turbulent transport: in the former case, energy flows to large scales, leading to spectral condensation, whereas in the latter, it is transferred to small scales, where dissipation prevails. The known bidirectional constant-flux energy cascade maintaining both geostrophic balance and mixing tends towards flux equilibration as turbulence strengthens, contradicting models and recent observations which find a dominant large-scale flux. Analyzing a large ensemble of high-resolution direct numerical simulations of the Boussinesq equations in the presence of rotation and no salinity, we show that the ratio of the dual energy flux to large and to small scales agrees with observations, and we predict that it scales with the inverse of the Froude and Rossby numbers when stratification is (realistically) stronger than rotation. Furthermore, we show that the kinetic and potential energies separately undergo a bidirectional transfer to larger and smaller scales. Altogether, this allows for small-scale mixing which drives the global oceanic circulation and will thus potentially lead to more accurate modeling of climate dynamics.

  18. The physics of transverse mode instability-induced nonlinear phase distortions in large area optical fiber amplifiers and their mitigation with applications in scaling of pulsed and continuous wave high-energy lasers

    Science.gov (United States)

    2016-12-13

    their mitigation with applications in scaling of pulsed and continuous- wave high- energy lasers Balaji Srinivasan INDIAN INSTITUTE OF TECHNOLOGY...high- energy lasers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-5044 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Balaji Srinivasan 5d...use of vortex beams to mitigate thermal mode instability in high energy fiber amplifiers. The investigation is carried out through (1) the

  19. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  20. Generation of large-scale winds in horizontally anisotropic convection

    CERN Document Server

    von Hardenberg, J; Provenzale, A; Spiegel, E A

    2015-01-01

    We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.