WorldWideScience

Sample records for large rivers field

  1. The Planform Mobility of Large River Channel Confluences

    Science.gov (United States)

    Sambrook Smith, Greg; Dixon, Simon; Nicholas, Andrew; Bull, Jon; Vardy, Mark; Best, James; Goodbred, Steven; Sarker, Maminul

    2017-04-01

    Large river confluences are widely acknowledged as exerting a controlling influence upon both upstream and downstream morphology and thus channel planform evolution. Despite their importance, little is known concerning their longer-term evolution and planform morphodynamics, with much of the literature focusing on confluences as representing fixed, nodal points in the fluvial network. In contrast, some studies of large sand bed rivers in India and Bangladesh have shown large river confluences can be highly mobile, although the extent to which this is representative of large confluences around the world is unknown. Confluences have also been shown to generate substantial bed scours, and if the confluence location is mobile these scours could 'comb' across wide areas. This paper presents field data of large confluences morphologies in the Ganges-Brahmaputra-Meghna river basin, illustrating the spatial extent of large river bed scours and showing scour depth can extend below base level, enhancing long term preservation potential. Based on a global review of the planform of large river confluences using Landsat imagery from 1972 to 2014 this study demonstrates such scour features can be highly mobile and there is an array of confluence morphodynamic types: from freely migrating confluences, through confluences migrating on decadal timescales to fixed confluences. Based on this analysis, a conceptual model of large river confluence types is proposed, which shows large river confluences can be sites of extensive bank erosion and avulsion, creating substantial management challenges. We quantify the abundance of mobile confluence types by classifying all large confluences in both the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two large rivers have contrasting confluence morphodynamics. We show large river confluences have multiple scales of planform adjustment with important implications for river management, infrastructure and interpretation of the rock

  2. Global Bedload Flux Modeling and Analysis in Large Rivers

    Science.gov (United States)

    Islam, M. T.; Cohen, S.; Syvitski, J. P.

    2017-12-01

    Proper sediment transport quantification has long been an area of interest for both scientists and engineers in the fields of geomorphology, and management of rivers and coastal waters. Bedload flux is important for monitoring water quality and for sustainable development of coastal and marine bioservices. Bedload measurements, especially for large rivers, is extremely scarce across time, and many rivers have never been monitored. Bedload measurements in rivers, is particularly acute in developing countries where changes in sediment yields is high. The paucity of bedload measurements is the result of 1) the nature of the problem (large spatial and temporal uncertainties), and 2) field costs including the time-consuming nature of the measurement procedures (repeated bedform migration tracking, bedload samplers). Here we present a first of its kind methodology for calculating bedload in large global rivers (basins are >1,000 km. Evaluation of model skill is based on 113 bedload measurements. The model predictions are compared with an empirical model developed from the observational dataset in an attempt to evaluate the differences between a physically-based numerical model and a lumped relationship between bedload flux and fluvial and basin parameters (e.g., discharge, drainage area, lithology). The initial study success opens up various applications to global fluvial geomorphology (e.g. including the relationship between suspended sediment (wash load) and bedload). Simulated results with known uncertainties offers a new research product as a valuable resource for the whole scientific community.

  3. A critical review of field techniques employed in the survey of large woody debris in river corridors: a central European perspective.

    Science.gov (United States)

    Máčka, Zdeněk; Krejčí, Lukáš; Loučková, Blanka; Peterková, Lucie

    2011-10-01

    In forested watersheds, large woody debris (LWD) is an integral component of river channels and floodplains. Fallen trees have a significant impact on physical and ecological processes in fluvial ecosystems. An enormous body of literature concerning LWD in river corridors is currently available. However, synthesis and statistical treatment of the published data are hampered by the heterogeneity of methodological approaches. Likewise, the precision and accuracy of data arising out of published surveys have yet to be assessed. For this review, a literature scrutiny of 100 randomly selected research papers was made to examine the most frequently surveyed LWD variables and field procedures. Some 29 variables arose for individual LWD pieces, and 15 variables for wood accumulations. The literature survey revealed a large variability in field procedures for LWD surveys. In many studies (32), description of field procedure proved less than adequate, rendering the results impossible to reproduce in comparable fashion by other researchers. This contribution identifies the main methodological problems and sources of error associated with the mapping and measurement of the most frequently surveyed variables of LWD, both as individual pieces and in accumulations. The discussion stems from our own field experience with LWD survey in river systems of various geomorphic styles and types of riparian vegetation in the Czech Republic in the 2004-10 period. We modelled variability in terms of LWD number, volume, and biomass for three geomorphologically contrasting river systems. The results appeared to be sensitive, in the main, to sampling strategy and prevailing field conditions; less variability was produced by errors of measurement. Finally, we propose a comprehensive standard field procedure for LWD surveyors, including a total of 20 variables describing spatial position, structural characteristics and the functions and dynamics of LWD. However, resources are only rarely

  4. Quantifying hyporheic exchange dynamics in a highly regulated large river reach.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Zhou, T; Huang, M; Hou, Z; Bao, J; Arntzen, E; Mackley, R; Harding, S; Titzler, S; Murray, C; Perkins, W; Chen, X; Stegen, J; Thorne, P; Zachara, J

    2017-03-01

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where river water and shallow groundwater mix and interact with each other. The direction, magnitude, and residence time of the hyporheic flux that penetrates the river bed are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Many approaches including field measurements and numerical methods have been developed to quantify the hyporheic exchanges in relatively small rivers. However, the spatial and temporal distributions of hyporheic exchanges in a large, regulated river reach remain less explored due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great pressure gradient variations at the riverbed created by dam operations.

  5. Preface to the volume Large Rivers

    Science.gov (United States)

    Latrubesse, Edgardo M.; Abad, Jorge D.

    2018-02-01

    The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).

  6. Can we predict the response of large sand bed rivers to changes in flow and sediment supply? The case of the Missouri River.

    Science.gov (United States)

    Viparelli, E.; Blum, M. D.

    2015-12-01

    In the past century engineering projects and changes in land use significantly modified the hydrology and the sediment supply of large sand bed rivers all over the world. Field studies documented the river responses to the imposed changes, which can be summarized as adjustments in channel geometry, slope, and/or characteristics of the bed material. Further, one-, two- and three-dimensional river morphodynamic models were used to predict the fluvial system response to the imposed changes at time scales ranging from few months up to several decades. Notwithstading this previous research effort, the spatial and temporal scales of river adjustment, as well as quantitative predictions of the river responses, are still a matter of debate due to the difficulties associated with the interpretation of limited field datasets and with the large scale sediment transport modeling. Here we present the preliminary results of a study of the Missouri River response to the construction of dams, i.e. reduction in flood flow and sediment supply. In particular, we first compare the numerical results of a one-dimensional model of river morphodynamics for large, low slope sand bed rivers with field data to validate the model. The validated model is then used to constrain the spatial and temporal scales of the river adjustment, i.e. bed degradation in the Missouri River case. In other words, our numerical work focuses on how the magnitude and speed of the wave of channel bed degradation changes in time and space for the Missouri River case and how these scales change for different values of the ratio between pre- and pos-dam flow rates, and pre- and post-dam sediment loads.

  7. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  8. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    Science.gov (United States)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years.

  9. Dynamic aspects of large woody debris in river channels

    Science.gov (United States)

    Vergaro, Alexandra; Caporali, Enrica; Becchi, Ignazio

    2015-04-01

    Large Woody Debris (LWD) are an integral component of the fluvial environment. They represent an environmental resource, but without doubt they represent also a risk factor for the amplification that could give to the destructive power of a flood event. While countless intervention in river channels have reintroduced wood in rivers with restoration and banks protection aims, during several flash flood events LWD have had a great part in catastrophic consequences, pointing out the urgency of an adequate risk assessment procedure. At present wood dynamics in rivers is not systematically considered within the procedures for the elaboration of hazard maps resulting in loss of prediction accuracy and underestimation of hazard impacts. The assessment inconsistency comes from the complexity of the question: several aspects in wood processes are not yet well known and the superposition of different physical phenomena results in great difficulty to predict critical scenarios. The presented research activity has been aimed to improve management skills for the assessment of the hydrologic risk associated to the presence of large woody debris in rivers, improving knowledge about LWD dynamic processes and proposing effective tools for monitoring and mapping river catchments vulnerability. Utilizing critical review of the published works, field surveys and experimental investigations LWD damaging potential has been analysed to support the identification of the exposed sites and the redaction of hazard maps, taking into account that a comprehensive procedure has to involve: a) Identification of the critical cross sections; b) Evaluation of wood availability in the river catchment; c) Prediction of hazard scenarios through the estimation of water discharge, wood recruitment and entrainment, wood transport and destination. Particularly, a survey sheets form for direct measurements has been implemented and tested in field to provide an investigation instruments for wood and river

  10. Restoration strategies for river floodplains along large lowland rivers in Europe

    NARCIS (Netherlands)

    Buijse, A.D.; Coops, H.; Staras, M.; Jans, L.H.; Van Geest, G.J.; Grift, R.E.; Ibelings, B.W.; Oosterberg, W.; Roozen, F.C.J.M.

    2002-01-01

    1. Most temperate rivers are heavily regulated and characterised by incised channels, aggradated floodplains and modified hydroperiods. As a consequence, former extensive aquatic /terrestrial transition zones lack most of their basic ecological functions. 2. Along large rivers in Europe and North

  11. Restoration strategies for river floodplains along large lowland rivers in Europe

    NARCIS (Netherlands)

    Buijse, A.D.; Coops, H.; Staras, M.; Jans, L.H.; Geest, van G.; Grift, R.E.; Ibelings, B.W.; Oosterberg, W.; Roozen, F.C.J.M.

    2002-01-01

    1. Most temperate rivers are heavily regulated and characterised by incised channels, aggradated floodplains and modified hydroperiods. As a consequence, former extensive aquatic/terrestrial transition zones lack most of their basic ecological functions. 2. Along large rivers in Europe and North

  12. Large wood in the Snowy River estuary, Australia

    Science.gov (United States)

    Hinwood, Jon B.; McLean, Errol J.

    2017-02-01

    In this paper we report on 8 years of data collection and interpretation of large wood in the Snowy River estuary in southeastern Australia, providing quantitative data on the amount, sources, transport, decay, and geomorphic actions. No prior census data for an estuary is known to the authors despite their environmental and economic importance and the significant differences between a fluvial channel and an estuarine channel. Southeastern Australian estuaries contain a significant quantity of large wood that is derived from many sources, including river flood flows, local bank erosion, and anthropogenic sources. Wind and tide are shown to be as important as river flow in transporting and stranding large wood. Tidal action facilitates trapping of large wood on intertidal bars and shoals; but channels are wider and generally deeper, so log jams are less likely than in rivers. Estuarine large wood contributes to localised scour and accretion and hence to the modification of estuarine habitat, but in the study area it did not have large-scale impacts on the hydraulic gradients nor the geomorphology.

  13. Longitudinal heterogeneity of flow and heat fluxes in a large lowland river: A study of the San Joaquin River, CA, USA during a large-scale flow experiment

    Science.gov (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2011-12-01

    Systematic downstream variation of channel characteristics, scaled by flow affects the transport and distribution of heat throughout a large river. As water moves through a river channel, streamflow and velocity may fluctuate by orders of magnitude primarily due to channel geometry, slope and resistance to flow, and the time scales of those fluctuations range from days to decades (Constantz et al., 1994; Lundquist and Cayan, 2002; McKerchar and Henderson, 2003). It is well understood that the heat budget of a river is primarily governed by surface exchanges, with the most significant surface flux coming from net shortwave radiation. The absorption of radiation at a given point in a river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient (Dozier, 1980). Few studies consider the influence of hydrologic alteration to the optical properties governing net radiative heat transfer in a large lowland river, yet it is the most significant component of the heat budget and definitive to a river's thermal regime. We seek a physically based model without calibration to incorporate scale-dependent physical processes governing heat and flow dynamics in large rivers, how they change across the longitudinal profile, and how they change under different flow regimes. Longitudinal flow and heat flux analyses require synoptic flow time series from multiple sites along rivers, and few hydrometric networks meet this requirement (Larned et al, 2011). We model the energy budget in a regulated 240-km mainstem reach of the San Joaquin River California, USA equipped with multiple gaging stations from Friant Dam to its confluence with the Merced River during a large-scale flow experiment. We use detailed hydroclimatic observations distributed across the longitudinal gradient creating a non-replicable field experiment of heat fluxes across a range of flow regime

  14. Coupled large-eddy simulation and morphodynamics of a large-scale river under extreme flood conditions

    Science.gov (United States)

    Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team

    2016-11-01

    We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.

  15. Disentangling multiple pressures on fish assemblages in large rivers.

    Science.gov (United States)

    Zajicek, Petr; Radinger, Johannes; Wolter, Christian

    2018-06-15

    European large rivers are exposed to multiple human pressures and maintained as waterways for inland navigation. However, little is known on the dominance and interactions of multiple pressures in large rivers and in particular inland navigation has been ignored in multi-pressure analyzes so far. We determined the response of ten fish population metrics (FPM, related to densities of diagnostic guilds and biodiversity) to 11 prevailing pressures including navigation intensity at 76 sites in eight European large rivers. Thereby, we aimed to derive indicative FPM for the most influential pressures that can serve for fish-based assessments. Pressures' influences, impacts and interactions were determined for each FPM using bootstrapped regression tree models. Increased flow velocity, navigation intensity and the loss of floodplains had the highest influences on guild densities and biodiversity. Interactions between navigation intensity and loss of floodplains and between navigation intensity and increased flow velocity were most frequent, each affecting 80% of the FPM. Further, increased sedimentation, channelization, organic siltation, the presence of artificial embankments and the presence of barriers had strong influences on at least one FPM. Thereby, each FPM was influenced by up to five pressures. However, some diagnostic FPM could be derived: Species richness, Shannon and Simpson Indices, the Fish Region Index and lithophilic and psammophilic guilds specifically indicate rhithralisation of the potamal region of large rivers. Lithophilic, phytophilic and psammophilic guilds indicate disturbance of shoreline habitats through both (i) wave action induced by passing vessels and (ii) hydromorphological degradation of the river channel that comes along with inland navigation. In European large rivers, inland navigation constitutes a highly influential pressure that adds on top of the prevailing hydromorphological degradation. Therefore, river management has to consider

  16. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    Science.gov (United States)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  17. Flow and suspended-sand behavior in large rivers after dredging.

    Science.gov (United States)

    Yuill, B. T.; Wang, Y.; Allison, M. A.; Meselhe, E. A.

    2017-12-01

    Dredging is commonly used in large rivers to promote navigation and provide sediment for engineering projects. Channel bars typically have thicker, coarser sediment deposits than elsewhere on the channel bed and are often the focus of dredging projects. Bar dredging may create deep pits ("borrow pits") that significantly alter flow and sediment transport. Locally, the pit acts as a large bedform, contracting and expanding the flow field and enhancing turbulence. At the reach scale, the pit acts as a new sediment sink and disrupts the sediment budget which may have consequences for channel stability and aquatic ecosystem health. In this study, we focus on the local impact of the borrow pit and how it, similar to dunes, creates a turbulent wake within the downstream flow column. We hypothesize that this wake may have implications for the overlapping suspended-sediment transport fields. Efficient dredging operations requires the ability to predict channel infilling/recovery timescales and in large, sandy rivers, a substantial fraction of the sediment infilling results from the settling of suspended sediment. However, if the turbulent wake significantly alters pathways of sediment settling within the borrow pit, typical models of sediment deposition that do not account for the wake effects may not apply. To explore this problem, we use numerical modelling to predict sand behavior with and without resolving the effects of wake turbulence. Wake turbulence is resolved using detached-eddy simulation and sand settling is simulated using Lagrangian particle tracking. Our study area is a >1 km2 channel bar in the lower Mississippi River, which was dredged in October 2016. We used vessel-based measurements (MBES, ADCP) to characterize the post-dredge hydrodynamic environment. Study results indicate that the turbulent wake significantly impacted suspended-sand behavior as it entered the borrow pit and large eddies increased the vertical grain velocities, mean grain settling was

  18. Dynamics of 30 large channel bars in the Lower Mississippi River in response to river engineering from 1985 to 2015

    Science.gov (United States)

    Wang, Bo; Xu, Y. Jun

    2018-01-01

    Channel bars are a major depositional feature in alluvial rivers and their morphodynamics has been investigated intensively in the past several decades. However, relatively less is known about how channel bars in alluvial rivers respond to river engineering and regulations. In this study, we assessed 30-yr morphologic changes of 30 large emerged bars located in a 223 km reach of the highly regulated Lower Mississippi River from Vicksburg, Mississippi, to the Mississippi-Atchafalaya River diversion. Landsat imagery and river stage data between 1985 and 2015 were utilized to characterize bar morphologic features and quantify decadal changes. Based on bar surface areas estimated with the satellite images at different river stages, a rating curve was developed for each of the 30 bars to determine their volumes. Results from this study show that the highly regulated river reach favored the growth of mid-channel and attached bars, while more than half of the point bars showed degradation. Currently, the mid-channel and attached bars accounted for 38% and 34% of the total volume of the 30 bars. The average volume of a single mid-channel bar is over two times that of an attached bar and over four times that of a point bar. Overall, in the past three decades, the total volume of the studied 30 bars increased by 110,118,000 m3 (41%). Total dike length in a dike field was found mostly contributing to the bar volume increase. Currently, the emerged volume of the 30 bars was estimated approximately 378,183,000 m3. The total bar volume is equivalent to 530 million metric tons of coarse sand, based on an average measured bulk density of 1.4 t/m3 for the bar sediment. The findings show that these bars are large sediment reservoirs.

  19. Large-scale river regulation

    International Nuclear Information System (INIS)

    Petts, G.

    1994-01-01

    Recent concern over human impacts on the environment has tended to focus on climatic change, desertification, destruction of tropical rain forests, and pollution. Yet large-scale water projects such as dams, reservoirs, and inter-basin transfers are among the most dramatic and extensive ways in which our environment has been, and continues to be, transformed by human action. Water running to the sea is perceived as a lost resource, floods are viewed as major hazards, and wetlands are seen as wastelands. River regulation, involving the redistribution of water in time and space, is a key concept in socio-economic development. To achieve water and food security, to develop drylands, and to prevent desertification and drought are primary aims for many countries. A second key concept is ecological sustainability. Yet the ecology of rivers and their floodplains is dependent on the natural hydrological regime, and its related biochemical and geomorphological dynamics. (Author)

  20. Imaging beneath the skin of large tropical rivers: System morphodynamics of the Fly and Beni Rivers revealed by novel sub-surface sonar, deep coring, and modelling

    Science.gov (United States)

    Aalto, R. E.; Grenfell, M.; Lauer, J. W.

    2011-12-01

    Tropical rivers dominate Earth's fluvial fluxes for water, carbon, and mineral sediment. They are characterized by large channels and floodplains, old system histories, prolonged periods of flooding, and a clay-dominated sediment flux. However, the underlying bed & floodplain strata are poorly understood. Available data commonly stem from skin-deep approaches such as GIS analysis of imagery, shallow sampling & topographic profiling during lower river stages. Given the large temporal & spatial scales, new approaches are needed to see below lag deposits on mobile sandy beds & deep into expansive floodbasins. Furthermore, such data are needed to test whether we can interpret large tropical river morphology using analogies to small temperate systems. Systems in a dynamic state of response to sea level rise or an increase/contrast in sediment load would provide especially valuable insight. Last August we conducted a field campaign along the Fly and Strickland Rivers in Papua New Guinea (discharge ~5,350 CMS) and this September we investigated the Beni River in Northern Bolivia (discharge ~3,500 CMS). Results were obtained using a novel measurement method: a high-power (>4kW) dual-frequency SyQwest sub-bottom profiler customized to best image 10-20m below the river/lake bed in shallow water. We were able to distinguish sandy deposits from harder clay and silt lenses and also collected bed grab samples to verify our sonar results. Deep borehole samples (5-15m), bank samples, and push cores confirmed observations from the sonar profiling. We simultaneously collected side-scan sonar imagery plus DGPS records of water/bed elevations that could be used to parameterize numerical models. We have now analyzed these results in some detail. Findings for the Fly River include: 1) The prevalence of hard clay beneath the bed of the Lower Fly River and many locations along the Strickland River, retarding migration; 2) Unusual bed morphology along the lower Middle Fly River, where the

  1. Model based estimation of sediment erosion in groyne fields along the River Elbe

    International Nuclear Information System (INIS)

    Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard

    2008-01-01

    River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.

  2. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  3. About temporal evolution of the geomagnetic field in the River Plate region

    International Nuclear Information System (INIS)

    Gianibelli, J.; Quaglino, L.

    2010-01-01

    Permanent Observatories network allows to study the total intensity of the magnetic field of the Earth surface to assess its annual change and inductive effects on networks of large pipes and pipelines. This paper is about the results of the significant decline in the River Plate region. The effects observed in this surface anomaly continue amplified and reaching minimum values

  4. Evaluation of the depth-integration method of measuring water discharge in large rivers

    Science.gov (United States)

    Moody, J.A.; Troutman, B.M.

    1992-01-01

    The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural

  5. Effects of large floods on channel width: recent insights from Italian rivers

    Science.gov (United States)

    Scorpio, Vittoria; Righini, Margherita; Amponsah, William; Crema, Stefano; Ciccarese, Giuseppe; Nardi, Laura; Zoccatelli, Davide; Borga, Marco; Cavalli, Marco; Comiti, Francesco; Corsini, Alessandro; Marchi, Lorenzo; Rinaldi, Massimo; Surian, Nicola

    2017-04-01

    Variations of channel morphology occurring during large flood events (recurrence interval > 50-100 years.) are very often the cause of damages to buildings and infrastructures, as well as of casualties. However, our knowledge of such processes remains poor, as is our capability to predict them. Post-event campaigns documenting channel changes and linking them to hydrological and morphological factors thus bear an enormous value for both the scientific community and river management agencies. We present the results of an analysis on the geomorphic response associated to 4 large floods that occurred between October 2011 and September 2015, affecting several catchments in Northern Italy (Magra-Vara, Trebbia, Nure rivers) and Sardinia (Posada and Mannu di Bitti rivers), characterized by different climatic, lithological and geomorphological settings. The analysis considered more than 400 channel reaches characterized by a drainage area ranging from 39 to 1,100 km2 and featuring a wide range of lateral confinement, mostly within the partly- and unconfined conditions. The approach to flood analysis encompassed: (i) hydrological and hydraulic analysis; (ii) analysis of sediment delivery by landslides to the channel network; (iii) GIS-based and field assessment of morphological channel modifications. For the Nure River flood event (September 2015) a quantitative assessment on average bed level variations was also carried out. Return period for maximum hourly rainfall intensities and peak water discharges exceeded in all basins 100 yr, in some cases even 300 yr. Very high unit peak discharges were estimated, reaching 8.8 m3 s-1km-2 in the Nure River (205 km2) and up to 30 m3 s-1km-2in few Magra River tributaries (5-10 km2). Notable channel widening (post-flood width / pre-flood width > 1.1) occurred in 83% of studied reaches, and it was found more relevant in the channels with narrower initial width, i.e. along the relatively steep tributaries. For these tributaries, the

  6. Valuing trade-offs of river ecosystem services in large hydropower development in Tibet, China

    Science.gov (United States)

    Yu, B.; Xu, L.

    2015-12-01

    Hydropower development can be considered as a kind of trade-offs of ecosystem services generated by human activity for their economic and energy demand, because it can increase some river ecosystem services but decrease others. In this context, an ecosystem service trade-off framework in hydropower development was proposed in this paper. It aims to identify the ecological cost of river ecosystem and serve for the ecological compensation during hydropower development, for the hydropower services cannot completely replace the regulating services of river ecosystem. The valuing trade-offs framework was integrated by the influenced ecosystem services identification and ecosystem services valuation, through ecological monitoring and ecological economic methods, respectively. With a case study of Pondo hydropower project in Tibet, China, the valuing trade-offs of river ecosystem services in large hydropower development was illustrated. The typical ecological factors including water, sediment and soil were analyzed in this study to identify the altered river ecosystem services by Pondo hydropower project. Through the field monitoring and valuation, the results showed that the Lhasa River ecosystem services value could be changed annually by Pondo hydropower project with the increment of 5.7E+8CNY, and decrement of 5.1E+7CNY. The ecological compensation for river ecosystem should be focus on water and soil conservation, reservoir dredging and tributaries habitat protection.

  7. Large thermo-erosional tunnel for a river in northeast Greenland

    Science.gov (United States)

    Docherty, Catherine L.; Hannah, David M.; Riis, Tenna; Rosenhøj Leth, Simon; Milner, Alexander M.

    2017-12-01

    Thermo-erosional river bank undercutting is caused by the combined action of thermal and mechanical erosion of the permafrost by Arctic rivers whilst the overlying sediment withstands collapse temporarily. Here, we report the discovery of a large thermo-erosional tunnel that formed in the banks of a meltwater-fed stream in northeast Greenland in summer 2015. The tunnel was observed over eight days (14-22 July), during which period the tunnel remained open but bank-side slumping increased. Stream solute load increased immediately downstream and remained high 800 m from the tunnel. Whilst this field observation was opportunistic and information somewhat limited, our study provides a rare insight into an extreme event impacting permafrost, local geomorphology and stream habitat. With accelerated climate change in Arctic regions, increased permafrost degradation and warmer stream water temperature are predicted thereby enhancing potential for thermo-erosional niche development and associated stream bank slumping. This change could have significant implications for stream physicochemical habitat and, in turn, stream benthic communities, through changes in aquatic habitat conditions.

  8. Heat Transport In The Streambed Of A Large Regulated River.

    Science.gov (United States)

    Munoz, S.; Ferencz, S. B.; Neilson, B. T.; Cardenas, M. B.

    2017-12-01

    Dams affect over half of the Earth's large river systems. In large river systems, regulation such as hydropeaking may even have more obvious and profound effects than global warming. The downstream effects of dams are not limited only to the fluvial system, but also propagate into aquifers and hyporheic zones. Despite this, little is known about how dams affect downstream surface and subsurface temperatures. This study investigates surface and groundwater interactions in the thermal regime of a 5th order dam-regulated river on several spatial scales. Two transects of thermistors recorded temperature gradients in the riverbed over the course of several flood pulses at 5 minute intervals. One transect was perpendicular to the river flow spanning the 68 m from bank to bank with sensors spaced every 2.75 m at depths of 0.1, 0.2, 0.3 and 0.5 m in the river bed. The second was parallel to the bank with 72 thermistors spaced every meter and at the same depths as the perpendicular transect. The cross channel transect had 5 piezometers installed at 0.5 m depth at regular intervals across half the channel with instruments collecting temperature, pressure and conductivity. Flood pulses reverse head gradients daily and cause the river to fluctuate between gaining and losing on hour timescales. When the stage increases, warmer surface water penetrates into the subsurface and during the receding limb, cooler groundwater upwells as the river returns to base flow conditions. The USGS flow modeling program 1DTempPro demonstrated that the infiltration rates did not match the large head gradients associated with dam regulated stage differences, and this effect is likely due to pore pressure increases or so-called poroelastic effects. Similar responses of pore pressure increases with diminishing infiltration has been observed in shallow salt marshes with quickly increasing head gradients.

  9. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    Science.gov (United States)

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  10. Practice of Field learning and its effect by using Hiikawa river distributed over Shimane prefecture, southwest Japan

    Science.gov (United States)

    Tomoyuki, U.; Matsumoto, I.

    2013-12-01

    The importance of field learning about geological feature has been increasing from a elementary to a undergraduate (university) student. Especially the field learning for elementary and junior high school student is important in it. However, the implementation rate of the field learning in an elementary and a junior high school is a low very much. The trend for a school with such a situation nearer to a large city to be stronger is recognized. They learn the erosion, transportation, and sedimentation by river water as science unite of grade 5 "Function of running water" of elementary school in Japan. As for Hii river, the granitoids is widely distributed over most of the basin from the upper stream to the down stream. Therefore, the most is the granitoids origin and we can look upon the clastic grains observed to the river floor and bank as a series of rocks and minerals from the upper stream to the lower stream. That is, since a student can make observation learning of the function of a river through grain size change of a granitoids and the mineral which constitutes it, Hii river is very good teaching material in this unit. Moreover, in this study, we carried out the questionnaire of the free description format including the general impression against a this field learning. The result of these questionnaires showed that student not only having studying the function of running water 'weathering', 'transportation' and 'sedimentation' with actual feelings, but also the actions of the river having spent tremendous time and having studied dominating the Space.

  11. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  12. Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)

    Science.gov (United States)

    Patalano, Antoine; García, Carlos Marcelo; Rodríguez, Andrés

    2017-12-01

    LSPIV (Large Scale Particle Image Velocimetry) and LSPTV (Large Scale Particle Tracking Velocimetry) are used as relatively low-cost and non-intrusive techniques for water-surface velocity analysis and flow discharge measurements in rivers or large-scale hydraulic models. This paper describes a methodology based on state-of-the-art tools (for example, that apply classical PIV/PTV analysis) resulting in large-scale surface-flow characterization according to the first operational version of the RIVeR (Rectification of Image Velocity Results). RIVeR is developed in Matlab and is designed to be user-friendly. RIVeR processes large-scale water-surface characterization such as velocity fields or individual trajectories of floating tracers. This work describes the wide range of application of the techniques for comparing measured surface flows in hydraulic physical models to flow discharge estimates for a wide range of flow events in rivers (for example, low and high flows).

  13. Survival of migrating salmon smolts in large rivers with and without dams.

    Directory of Open Access Journals (Sweden)

    David W Welch

    2008-10-01

    Full Text Available The mortality of salmon smolts during their migration out of freshwater and into the ocean has been difficult to measure. In the Columbia River, which has an extensive network of hydroelectric dams, the decline in abundance of adult salmon returning from the ocean since the late 1970s has been ascribed in large measure to the presence of the dams, although the completion of the hydropower system occurred at the same time as large-scale shifts in ocean climate, as measured by climate indices such as the Pacific Decadal Oscillation. We measured the survival of salmon smolts during their migration to sea using elements of the large-scale acoustic telemetry system, the Pacific Ocean Shelf Tracking (POST array. Survival measurements using acoustic tags were comparable to those obtained independently using the Passive Integrated Transponder (PIT tag system, which is operational at Columbia and Snake River dams. Because the technology underlying the POST array works in both freshwater and the ocean, it is therefore possible to extend the measurement of survival to large rivers lacking dams, such as the Fraser, and to also extend the measurement of survival to the lower Columbia River and estuary, where there are no dams. Of particular note, survival during the downstream migration of at least some endangered Columbia and Snake River Chinook and steelhead stocks appears to be as high or higher than that of the same species migrating out of the Fraser River in Canada, which lacks dams. Equally surprising, smolt survival during migration through the hydrosystem, when scaled by either the time or distance migrated, is higher than in the lower Columbia River and estuary where dams are absent. Our results raise important questions regarding the factors that are preventing the recovery of salmon stocks in the Columbia and the future health of stocks in the Fraser River.

  14. Large floods and climatic change during the Holocene on the Ara River, Central Japan

    Science.gov (United States)

    Grossman, Michael J.

    2001-07-01

    A reconstruction of part of the Holocene large flood record for the Ara River in central Japan is presented. Maximum intermediate gravel-size dimensions of terrace and modern floodplain gravels were measured along an 18-km reach of the river and were used in tractive force equations to estimate minimum competent flood depths. Results suggest that the magnitudes of large floods on the Ara River have varied in a non-random fashion since the end of the last glacial period. Large floods with greater magnitudes occurred during the warming period of the post-glacial and the warmer early to middle Holocene (to ˜5500 years BP). A shift in the magnitudes of large floods occurred ˜5500-5000 years BP. From this time, during the cooler middle to late Holocene, large floods generally had lower magnitudes. In the modern period, large flood magnitudes are the largest in the data set. As typhoons are the main cause of large floods on the Ara River in the modern record, the variation in large flood magnitudes suggests that the incidence of typhoon visits to the central Japan changed as the climate changed during the Holocene. Further, significant dates in the large flood record on the Ara River correspond to significant dates in Europe and the USA.

  15. Large wood budget and transport dynamics on a large river using radio telemetry

    Science.gov (United States)

    Schenk, Edward R.; Moulin, Bertrand; Hupp, Cliff R.; Richte, Jean M.

    2014-01-01

    Despite the abundance of large wood (LW) river studies there is still a lack of understanding of LW transport dynamics on large low gradient rivers. This study used 290 radio frequency identification tagged (RFID) LW and 54 metal (aluminum) tagged LW, to quantify the percent of in-channel LW that moves per year and what variables play a role in LW transport dynamics. Aluminum tags were installed and monitored on LW in-transit during the rising limb of a flood, the mean distance traveled by those pieces during the week was 13.3 river kilometers (km) with a maximum distance of 72 km. RFID tagged LW moved a mean of 11.9 km/yr with a maximum observed at 101.1 km/yr. Approximately 41% of LW low on the bank moves per year. The high rate of transport and distance traveled is likely due to the lack of interaction between LW floating in the channel and the channel boundaries, caused primarily by the width of the channel relative to length of the LW. Approximately 80% of the RFID tags moved past a fixed reader during the highest 20% of river stage per year. LW transport and logjam dynamics are complicated at high flows as pieces form temporary jams that continually expand and contract. Unlike most other studies, key members that create a logjam were defined more by stability than jam size or channel/hydrologic conditions. Finally, using an existing geomorphic database for the river, and data from this study, we were able to develop a comprehensive LW budget showing that 5% of the in-channel LW population turns over each year (input from mass wasting and fluvial erosion equals burial, decomposition, and export out of system) and another 16% of the population moving within the system.

  16. Geochemical loading of suspended sediment carried by large monsoonal rivers in Burma

    Science.gov (United States)

    Robinson, R. A.; Tipper, E.; Bird, M. I.; Oo, N.

    2013-12-01

    The Irrawaddy and Salween rivers of Burma drain the most rapidly exhuming region in the Himalayas, the eastern syntaxis zone. These monsoonal rivers have catchment areas of 0.413 x 106 km2 and 0.272 x 106 km2, respectively, and approximately 95% of the Irrawaddy catchment lies within Burma, while the catchment of the Salween flows through China, Thailand and Burma. They are long rivers (~2000 and ~2800 km) which have steep and narrow bedrock gorges along much of their length, and different amounts of floodplain in their lower reaches. These rivers have been less studied than other large Asian systems because of political instability in Burma and restricted access. Based on available historical data, and field work in 2005-2008, Robinson et al. (2007) estimated that the Irrawaddy is likely to be the 3rd largest river globally in terms of sediment load and when the Irrawaddy and Salween estimated fluxes are combined, they together contribute 4.6 Mt/yr of particulate organic carbon (POC) and an additional 1.1Mt/yr of dissolved organic carbon (DOC) to the ocean. When estimated yields of total organic carbon are calculated, the Irrawaddy-Salween system ranks alongside the Amazon as one of the largest yields of organic carbon, and is higher than the yield for the Ganges-Brahmaptura (Bird et al., 2008). Here we present preliminary geochemical data for water and sediment from the Irrawaddy and Salween rivers, and demonstrate the variability in elemental concentrations of water between the rivers and the summer and winter monsoon seasons, and differences in suspended sediment geochemistry as a function of water depth. The variability and magnitude of weathering products carried by such significant systems need to be quantified in order to understand their contribution to global element cycling (Tipper et al., 2006) and sedimentary depocentres. Our data highlight that further study of the geochemistry of such large rivers will significantly improve our understanding of the

  17. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  18. Initial field measurements on the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Chan, K.C.; Hill, J.H.

    1980-12-01

    The midplane magnetic field of the Chalk River superconducting cyclotron has been mapped in detail over the full operating range of 2.5 to 5 tesla. The field measuring apparatus is described and results given include measurements of the field stability, reproducibility and harmonic content. (author)

  19. The susceptibility of large river basins to orogenic and climatic drivers

    Science.gov (United States)

    Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm

    2017-04-01

    Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect

  20. The morphodynamics and sedimentology of large river confluences

    Science.gov (United States)

    Nicholas, Andrew; Sambrook Smith, Greg; Best, James; Bull, Jon; Dixon, Simon; Goodbred, Steven; Sarker, Mamin; Vardy, Mark

    2017-04-01

    Confluences are key locations within large river networks, yet surprisingly little is known about how they migrate and evolve through time. Moreover, because confluence sites are associated with scour pools that are typically several times the mean channel depth, the deposits associated with such scours should have a high potential for preservation within the rock record. However, paradoxically, such scours are rarely observed, and the sedimentological characteristics of such deposits are poorly understood. This study reports results from a physically-based morphodynamic model, which is applied to simulate the evolution and resulting alluvial architecture associated with large river junctions. Boundary conditions within the model simulation are defined to approximate the junction of the Ganges and Jamuna rivers, in Bangladesh. Model results are supplemented by geophysical datasets collected during boat-based surveys at this junction. Simulated deposit characteristics and geophysical datasets are compared with three existing and contrasting conceptual models that have been proposed to represent the sedimentary architecture of confluence scours. Results illustrate that existing conceptual models may be overly simplistic, although elements of each of the three conceptual models are evident in the deposits generated by the numerical simulation. The latter are characterised by several distinct styles of sedimentary fill, which can be linked to particular morphodynamic behaviours. However, the preserved characteristics of simulated confluence deposits vary substantial according to the degree of reworking by channel migration. This may go some way towards explaining the confluence scour paradox; while abundant large scours might be expected in the rock record, they are rarely reported.

  1. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    Science.gov (United States)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the

  2. Water-energy-food nexus in Large Asian River Basins

    OpenAIRE

    Keskinen, Marko; Varis, Olli

    2016-01-01

    The water-energy-food nexus ("nexus") is promoted as an approach to look at the linkages between water, energy and food. The articles of Water's Special Issue "Water-Energy-Food Nexus in Large Asian River Basins" look at the applicability of the nexus approach in different regions and rivers basins in Asia. The articles provide practical examples of the various roles and importance of water-energy-food linkages, but also discuss the theoretical aspects related to the nexus. While it is eviden...

  3. Interaction of Aquifer and River-Canal Network near Well Field.

    Science.gov (United States)

    Ghosh, Narayan C; Mishra, Govinda C; Sandhu, Cornelius S S; Grischek, Thomas; Singh, Vikrant V

    2015-01-01

    The article presents semi-analytical mathematical models to asses (1) enhancements of seepage from a canal and (2) induced flow from a partially penetrating river in an unconfined aquifer consequent to groundwater withdrawal in a well field in the vicinity of the river and canal. The nonlinear exponential relation between seepage from a canal reach and hydraulic head in the aquifer beneath the canal reach is used for quantifying seepage from the canal reach. Hantush's (1967) basic solution for water table rise due to recharge from a rectangular spreading basin in absence of pumping well is used for generating unit pulse response function coefficients for water table rise in the aquifer. Duhamel's convolution theory and method of superposition are applied to obtain water table position due to pumping and recharge from different canal reaches. Hunt's (1999) basic solution for river depletion due to constant pumping from a well in the vicinity of a partially penetrating river is used to generate unit pulse response function coefficients. Applying convolution technique and superposition, treating the recharge from canal reaches as recharge through conceptual injection wells, river depletion consequent to variable pumping and recharge is quantified. The integrated model is applied to a case study in Haridwar (India). The well field consists of 22 pumping wells located in the vicinity of a perennial river and a canal network. The river bank filtrate portion consequent to pumping is quantified. © 2014, National GroundWater Association.

  4. Investigating historical changes in morphodynamic processes associated with channelization of a large Alpine river: the Etsch/Adige River, NE Italy

    Science.gov (United States)

    Zen, Simone; Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zolezzi, Guido; Bertoldi, Walter; Comiti, Francesco; Surian, Nicola; Prà, Elena Dai

    2016-04-01

    River channel management within the last centuries has largely modified fluvial processes and morphodynamic evolution of most large European rivers. Several river systems experienced extensive channelization early in the 19th century, thus strongly challenging our present ability to detect their morphodynamic functioning with contemporary photogrammetry or cartographical sources. This consequently leaves open questions about their potential future response, especially to management strategies that "give more room" to the river, aiming at partially rehabilitating their natural functioning. The Adige River (Etsch in German), the second longest Italian river, is an exemplary case where channelization occurred more than 150 years ago, and is the focus of the present work. This work aims (i) to explore changes in fundamental morphodynamic processes associated with massive channelization of the Adige River and (ii) to quantify the alteration in river bars characteristics, by using morphodynamic models of bars and meandering. To fulfil our aims we combine the analysis of historical data with morphodynamic mathematical modelling. Historical sources (recovered in a number of European archives), such as hydrotopographical maps, airborne photogrammetry and hydrological datasets were collected to investigate channel morphology before and after the channelization. Information extracted from this analysis was combined with morphodynamic linear models of free migrating and forced steady bars, to investigate river bars and bend stability properties under different hydromorphological scenarios. Moreover, a morphodynamic model for meandering channel was applied to investigate the influence of river channel planform on the evolution of the fluvial bars. Results from the application of morphodynamic models allowed to predict the type, position and geometry of bars characterizing the channelized configuration of the river, and to explain the presently observed relative paucity of bars

  5. Air-water oxygen exchange in a large whitewater river

    Science.gov (United States)

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  6. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    Science.gov (United States)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is

  7. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  8. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2017-06-01

    Full Text Available Introduction: The critical role of the rivers in supplying water for various needs of life has led to engineering identification of the hydraulic regime and flow condition of the rivers. Hydraulic structures such dams have inevitable effects on their downstream that should be well investigated. The reservoir dams are the most important hydraulic structures which are the cause of great changes in river flow conditions. Materials and Methods: In this research, an accurate assessment was performed to study the flow regime of Karkheh river at downstream of Karkheh Reservoir Dam as the largest dam in Middle East. Karkheh River is the third waterful river of Iran after Karun and Dez and the third longest river after the Karun and Sefidrud. The Karkheh Dam is a large reservoir dam built in Iran on the Karkheh River in 2000. The Karkheh Reservoir Dam is on the Karkheh River in the Northwestern Khouzestan Province, the closest city being Andimeshk to the east. The part of Karkheh River, which was studied in this research is located at downstream of Karkheh Reservoir Dam. This interval is approximately 94 km, which is located between PayePol and Abdolkhan hydrometric stations. In this research, 138 cross sections were used along Karkheh River. Distance of cross sections from each other was 680m in average. The efficient model of HEC-RAS has been utilized to simulate the Karkheh flow conditions before and after the reservoir dam construction using of hydrometric stations data included annually and monthly mean discharges, instantaneous maximum discharges, water surface profiles and etc. Three defined discharges had been chosen to simulate the Karkheh River flow; maximum defined discharge, mean defined discharge and minimum defined discharge. For each of these discharges values, HEC-RAS model was implemented as a steady flow of the Karkheh River at river reach of study. Water surface profiles of flow, hydraulic parameters and other results of flow regime in

  9. Runoff and degradation of aerially applied dinotefuran in paddy fields and river.

    Science.gov (United States)

    Yokoyama, Sayako; Ito, Masataka; Nagasawa, Shunsuke; Morohashi, Masayuki; Ohno, Masaki; Todate, Yukitaka; Kose, Tomohiro; Kawata, Kuniaki

    2015-06-01

    Variation, run-off and degradation characteristics of the insecticide dinotefuran, (EZ)-(RS)-1-methyl-2-nitro-3-(tetrahydro-3-furyl-methyl)guanidine, in water and soil from two paddy fields after aerial application was investigated as well as in river water. Maximum concentrations of dinotefuran were 290 and 720 µg/L in the two paddy waters, 25 and 28 µg/kg dry in the two paddy soils, and 10 µg/L in the river water. Runoff ratios of dinotefuran from the paddy fields were calculated as 14%-41%. Mean half-lives of dinotefuran were 5.4 days in the paddy water and 12 days in the paddy soil. Results obtained in this study are important for the evaluation of the actual behavior of dinotefuran in paddy fields and rivers.

  10. Artificial sweeteners in a large Canadian river reflect human consumption in the watershed.

    Directory of Open Access Journals (Sweden)

    John Spoelstra

    Full Text Available Artificial sweeteners have been widely incorporated in human food products for aid in weight loss regimes, dental health protection and dietary control of diabetes. Some of these widely used compounds can pass non-degraded through wastewater treatment systems and are subsequently discharged to groundwater and surface waters. Measurements of artificial sweeteners in rivers used for drinking water production are scarce. In order to determine the riverine concentrations of artificial sweeteners and their usefulness as a tracer of wastewater at the scale of an entire watershed, we analyzed samples from 23 sites along the entire length of the Grand River, a large river in Southern Ontario, Canada, that is impacted by agricultural activities and urban centres. Municipal water from household taps was also sampled from several cities within the Grand River Watershed. Cyclamate, saccharin, sucralose, and acesulfame were found in elevated concentrations despite high rates of biological activity, large daily cycles in dissolved oxygen and shallow river depth. The maximum concentrations that we measured for sucralose (21 µg/L, cyclamate (2.4 µg/L [corrected], and saccharin (7.2 µg/L are the highest reported concentrations of these compounds in surface waters to date anywhere in the world. Acesulfame persists at concentrations that are up to several orders of magnitude above the detection limit over a distance of 300 km and it behaves conservatively in the river, recording the wastewater contribution from the cumulative population in the basin. Acesulfame is a reliable wastewater effluent tracer in rivers. Furthermore, it can be used to assess rates of nutrient assimilation, track wastewater plume dilution, separate human and animal waste contributions and determine the relative persistence of emerging contaminants in impacted watersheds where multiple sources confound the usefulness of other tracers. The effects of artificial sweeteners on aquatic biota

  11. Controls on gas transfer velocities in a large river

    Science.gov (United States)

    The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estim...

  12. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    Science.gov (United States)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  13. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches...... of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements...... improved model performance considerably. The Nash-Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet....

  14. Long-term scheduling of large cascade hydropower stations in Jinsha River, China

    International Nuclear Information System (INIS)

    Wang, Chao; Zhou, Jianzhong; Lu, Peng; Yuan, Liu

    2015-01-01

    Highlights: • Proposing a Gaussian group selection strategy to overcome premature convergence. • Multi-population ant are developed to enhance the search ability. • Proposing a circulatory solution correction to handle constraints. • Numerical and real hydropower system simulation are used to verify its performance. • Compensation analysis has been done to large hydropower stations in Jinsha River. - Abstract: The Jinsha River is the third longest river in the world. It consists of four large hydropower stations with total installed capacity 42,960 MW lying on the upper stretches of the Yangtze River, which is the longest river in the word. Due to the great potential of large cascade hydropower stations on power generation, long-term scheduling of large cascade hydropower stations (LSLCHS) plays an important role in electrical power system. As more and more concentrations focused on the optimal operation of large cascade hydropower stations, the LSLCHS has been taken into a multi-dimensional, non-convex and non-linear optimization problem due to its complicated hydraulic connection relationships and varieties of complex constraints with considering its power generation, shipping and ecological characteristics. In order to solve this problem, a multi-population ant colony optimization for continuous domain (MACO R ) is proposed in this paper. A Gaussian group selection strategy is applied to overcome premature convergence and ants with different characteristics are employed to enhance search ability, and circulatory solution correction strategy is presented to handle outflow, water level and output constraints. Furthermore, the efficiency and stability of MACO R are verified by its more desirable results in comparison to other latest works in numerical simulation, and it can be a viable alternative for solving those complicated optimal problems. With the applications in hydropower operation, LSLCHS can obtain more power generation benefit than other

  15. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  16. Mixing zone hydrodynamics in a large confluence: a case study of the Snake and Clearwater Rivers confluence

    Science.gov (United States)

    Shehata, M. M.; Petrie, J.

    2015-12-01

    Confluences are a basic component in all fluvial systems, which are often characterized by complex flow and sediment transport patterns. Addressing confluences, however, started only recently in parallel with new advances of flow measurement tools and computational techniques. A limited number of field studies exist investigating flow hydrodynamics through confluences, particularly for large confluences with central zone widths of 100 m or greater. Previous studies have indicated that the size of the confluent rivers and the post-confluence zone may impact flow and sediment transport processes in the confluence zone, which consequently could impact the biodiversity within the river network. This study presents the results of a field study conducted at the confluence of the Snake and the Clearwater rivers near the towns of Clarkston, WA and Lewiston, ID (average width of 700 m at the confluence center). This confluence supports many different and, sometimes, conflicting purposes including commercial navigation, recreation, and fish and wildlife conservation. The confluence properties are affected by dredging operations carried out periodically to maintain the minimum water depth required for safe flow conveyance and navigation purposes. Also, a levee system was constructed on the confluence banks as an extra flood control measure. In the recent field work, an Acoustic Doppler Current Profiler was used to measure water velocity profiles at cross sections in the confluence region. Fixed and moving vessel measurements were taken at selected locations to evaluate both the spatial and temporal variation in velocity throughout the confluence. The confluence bathymetry was surveyed with a multi-beam sonar to investigate existent bed morphological elements. The results identify the velocity pattern in the mixing zone between the two rivers. The present findings are compared to previous studies on small confluences to demonstrate the influence of scale on flow processes.

  17. Anuran community composition along two large rivers in a tropical disturbed landscape

    Directory of Open Access Journals (Sweden)

    Mauricio Almeida-Gomes

    2015-02-01

    Full Text Available In this study we evaluated how anuran species were distributed in riparian habitats along two large rivers. Sampling was carried out between January and March 2012 in the municipality of Cachoeiras de Macacu, state of Rio de Janeiro. We delimited 20 plots along each river, ten in portions inside the forest of the Reserva Ecológica de Guapiaçu (REGUA, and with comparatively greater amount of forest cover, and ten outside REGUA, with comparatively lesser forest cover surrounding the rivers. We recorded 70 individuals from 14 frog species in the Manoel Alexandre River and 63 individuals from 15 frog species in the Guapiaçu River. The most abundant species in both rivers was Cycloramphus brasiliensis (Steindachner, 1864, and it was more abundant in sections with greater amount of forest cover. This information, coupled with the occurrence of species that are more adapted to open and more disturbed habitats in river sections that harbor lesser riparian vegetation, help to explain differences in amphibian species composition between river sections with greater and lesser forest cover. The results of our study highlight the importance of preserving riparian vegetation associated with rivers in the Atlantic Forest for the conservation of amphibians.

  18. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences

    Science.gov (United States)

    Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.

    2018-01-01

    Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.

  19. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  20. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.

    2014-09-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  1. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson

    2014-01-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  2. How Do Morphodynamic Signatures Vary Along the Ucayali, a Large Transitional River?

    Science.gov (United States)

    Dauer, K.; Frias, C. E.; Abad, J. D.; Paredes, J.; Vizcarra, J.; Holguin, C.

    2013-12-01

    The Ucayali River, with an average discharge of 11, 260 m3 ● s-1 at the Requena station, is one of the largest rivers in Peru, and at its confluence with the Maranon River, the Amazon River is born. The Ucayali River transitions from purely meandering to quasi-anabranching planform near the confluence with the Marañon River. In addition, it carries large amounts of suspended sediment and has been shown to display high rates of migration. Prompted by evidence of changing trends in rainfall and discharge in the Amazon basin, where the Ucayali is located, we have performed a baseline characterization of the planform metrics, thus to determine if effects of climatic change on the morphodynamics are happening in this transitional river, which is a vital transportation route for cities in the jungle such as Iquitos, Peru. Herein, the morphodynamics of the Ucayali River are characterized from its upstream end in Atalaya, Peru to its confluence with the Marañon near Nauta City. First, the migration rates along the Ucayali River are calculated from temporal Landsat images. Then migration rates and planform characteristics, such as wavelength and sinuosity, along the river are compared with the slope along the river to distinguish spatial dominant scales. In addition, bathymetry and velocity measurements taken in 2013 along the Ucayali River help us to understand the complex morphodynamics of the river. Specific case studies have been done at Pucallpa and Jenaro-Herrera, Peru using hydrodynamic and bathymetric measurements complemented with high-resolution shallow water modeling to understand the process of cutoff formation in different locations along the river. This study discusses the frequency at which meanders along the Ucayali River shift from low sinuosity to complete maturity in order to produce cutoffs.

  3. Colorful niches of phytoplankton shaped by the spatial connectivity in a large river ecosystem: a riverscape perspective.

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Frenette

    Full Text Available Large rivers represent a significant component of inland waters and are considered sentinels and integrators of terrestrial and atmospheric processes. They represent hotspots for the transport and processing of organic and inorganic material from the surrounding landscape, which ultimately impacts the bio-optical properties and food webs of the rivers. In large rivers, hydraulic connectivity operates as a major forcing variable to structure the functioning of the riverscape, and--despite increasing interest in large-river studies--riverscape structural properties, such as the underwater spectral regime, and their impact on autotrophic ecological processes remain poorly studied. Here we used the St. Lawrence River to identify the mechanisms structuring the underwater spectral environment and their consequences on pico- and nanophytoplankton communities, which are good biological tracers of environmental changes. Our results, obtained from a 450 km sampling transect, demonstrate that tributaries exert a profound impact on the receiving river's photosynthetic potential. This occurs mainly through injection of chromophoric dissolved organic matter (CDOM and non-algal material (tripton. CDOM and tripton in the water column selectively absorbed wavelengths in a gradient from blue to red, and the resulting underwater light climate was in turn a strong driver of the phytoplankton community structure (prokaryote/eukaryote relative and absolute abundances at scales of many kilometers from the tributary confluence. Our results conclusively demonstrate the proximal impact of watershed properties on underwater spectral composition in a highly dynamic river environment characterized by unique structuring properties such as high directional connectivity, numerous sources and forms of carbon, and a rapidly varying hydrodynamic regime. We surmise that the underwater spectral composition represents a key integrating and structural property of large, heterogeneous

  4. Stochastic structure of annual discharges of large European rivers

    Directory of Open Access Journals (Sweden)

    Stojković Milan

    2015-03-01

    Full Text Available Water resource has become a guarantee for sustainable development on both local and global scales. Exploiting water resources involves development of hydrological models for water management planning. In this paper we present a new stochastic model for generation of mean annul flows. The model is based on historical characteristics of time series of annual flows and consists of the trend component, long-term periodic component and stochastic component. The rest of specified components are model errors which are represented as a random time series. The random time series is generated by the single bootstrap model (SBM. Stochastic ensemble of error terms at the single hydrological station is formed using the SBM method. The ultimate stochastic model gives solutions of annual flows and presents a useful tool for integrated river basin planning and water management studies. The model is applied for ten large European rivers with long observed period. Validation of model results suggests that the stochastic flows simulated by the model can be used for hydrological simulations in river basins.

  5. Thinking big: linking rivers to landscapes

    Science.gov (United States)

    Joan O’Callaghan; Ashley E. Steel; Kelly M. Burnett

    2012-01-01

    Exploring relationships between landscape characteristics and rivers is an emerging field, enabled by the proliferation of satellite date, advances in statistical analysis, and increased emphasis on large-scale monitoring. Landscapes features such as road networks, underlying geology, and human developments, determine the characteristics of the rivers flowing through...

  6. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    Science.gov (United States)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  7. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    Science.gov (United States)

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  8. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  9. Large shift in source of fine sediment in the upper Mississippi River

    Science.gov (United States)

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  10. An Apparatus for Bed Material Sediment Extraction From Coarse River Beds in Large Alluvial Rivers

    Science.gov (United States)

    Singer, M. B.; Adam, H.; Cooper, J.; Cepello, S.

    2005-12-01

    Grain size distributions of bed material sediment in large alluvial rivers are required in applications ranging from habitat mapping, calibration of sediment transport models, high resolution sediment routing, and testing of existing theories of longitudinal and cross steam sediment sorting. However, characterizing bed material sediment from coarse river beds is hampered by difficulties in sediment extraction, a challenge that is generally circumvented via pebble counts on point bars, even though it is unclear whether the bulk grain size distribution of bed sediments is well represented by pebble counts on bars. We have developed and tested a boat-based sampling apparatus and methodology for extracting bulk sediment from a wide range of riverbed materials. It involves the use of a 0.4 x 0.4 x 0.2 meter stainless steel toothed sampler, called the Cooper Scooper, which is deployed from and dragged downstream by the weight of a jet boat. The design is based on that of a river anchor such that a rotating center bar connected to a rope line in the boat aligns the sampler in the downstream direction, the teeth penetrate the bed surface, and the sampler digs into the bed. The sampler is fitted with lead weights to keep it from tipping over. The force of the sampler `biting' into the bed can be felt on the rope line held by a person in the boat at which point they let out slack. The boat then motors to the spot above the embedded sampler, which is hoisted to the water surface via a system of pulleys. The Cooper Scooper is then clipped into a winch and boom assembly by which it is brought aboard. This apparatus improves upon commonly used clamshell dredge samplers, which are unable to penetrate coarse or mixed bed surfaces. The Cooper Scooper, by contrast, extracts statistically representative bed material sediment samples of up to 30 kilograms. Not surprisingly, the sampler does not perform well in very coarse or armored beds (e.g. where surface material size is on the

  11. Tracking groundwater discharge to a large river using tracers and geophysics.

    Science.gov (United States)

    Harrington, Glenn A; Gardner, W Payton; Munday, Tim J

    2014-01-01

    Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north-western Australia. Synoptic regional-scale sampling of both river water and groundwater for a suite of environmental tracers ((4) He, (87) Sr/(86) Sr, (222) Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow "local" groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high-flow events, and old "regional" groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background (222) Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types-including stable and radioactive isotopes, dissolved gases and major ions-can significantly improve conceptualization of groundwater-surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings. © 2013, National Ground Water Association.

  12. Field measurement for large bending magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S.

    2008-01-01

    The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms

  13. Imaging beneath the skin of large tropical rivers: Clay controls on system morphodynamics revealed by novel CHIRP sub-surface sonar and deep coring along the Fly and Strickland Rivers, Papua New Guinea (Invited)

    Science.gov (United States)

    Aalto, R. E.; Grenfell, M.; Lauer, J. W.

    2010-12-01

    Tropical rivers dominate Earth’s fluvial fluxes for water, carbon, and mineral sediment. They are characterized by large channels and floodplains, old system histories (in comparison to many temperate rivers), frequent and prolonged periods of flooding, and a clay-dominated sediment flux transported above a sandy bed. However, limited insight is available regarding the underlying bed & floodplain strata -- material that underpins system mobility and morphodynamics. Available data commonly stems from “skin-deep” approaches such as GIS analysis of imagery, shallow sampling of a surface veneer, & topographic profiling during lower river stages. Given the large temporal & spatial scales of such systems, new approaches are needed to see below lag deposits on mobile sandy beds & deep into expansive floodbasins. Furthermore, such data are needed to test whether we can usefully interpret large tropical river morphology using direct analogies to observations from small temperate sytems. Systems responding to sea level rise, pending avulsions, or an increase/contrast in sediment load would provide especially valuable insight. We conducted a field campaign along the Fly and Strickland Rivers in Papua New Guinea (discharge ~ 5,400 CMS). Immediate results were obtained using a dual-frequency CHIRP sub-bottom profiler optimized for fluvial environments, with which we were able to image 10-20m below the river/lake bed. We were able to distinguish sandy deposits from harder clay and silt lenses and also collected bed grab samples to verify our sonar results. Deep borehole samples (5-15m), push cores, and cutbank profiles of material strength confirmed observations from the sonar profiling. We simultaneously collected side-scan sonar imagery plus DGPS water/bed elevations. Findings include: 1) The prevalence of hard clay beneath the bed at many locations along the Lower Fly and Strickland Rivers, retarding migration; 2) Unusual bed morphology along the lower Middle Fly River

  14. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  15. Turbidity and plant growth in large slow-flowing lowland rivers: progress report March 1989

    OpenAIRE

    Marker, A.F.H.

    1989-01-01

    The River Great Ouse is a highly managed large lowland river in eastern England. It drains rich arable land in the Midlands and Eastern England and over the years nutrient concentrations have increased and there is a general perception that the clarity of the water has decreased. The main river channels have been dredged a number of times partly for flood control reasons but also for recreational boating and navigation activities. The period covered by this first report has been used to devel...

  16. Coevolution of floodplain and riparian forest dynamics on large, meandering rivers

    Science.gov (United States)

    Stella, J. C.; Riddle, J. D.; Battles, J. J.

    2012-12-01

    On large meandering rivers, riparian forests coevolve with the floodplains that support them. Floodplain characteristics such as local disturbance regime, deposition rates and sediment texture drive plant community dynamics, which in turn feed back to the abiotic processes. We investigated floodplain and riparian forest coevolution along the along the Sacramento River (California, USA), a large, mediterranean-climate river that has been extensively regulated for 70 years, but whose 160-km middle reach (Red Bluff to Colusa) retains some channel mobility and natural forest stands. Guided by maps of floodplain change over time and current vegetation cover, we conducted an extensive forest inventory and chronosequence analysis to quantify how abiotic conditions and forest structural characteristics such as tree density, basal area and biomass vary with floodplain age. We inventoried 285 fixed-area plots distributed across 19 large point bars within vegetation patches ranging in age from 4 to 107 years. Two successional trajectories were evident: (1) shifting species dominance over time within forested areas, from willow to cottonwood to walnut, boxelder and valley oak; and (2) patches of shrub willow (primarily Salix exigua) that maintained dominance throughout time. Sediment accretion was reduced in the persistent willow plots compared to the successional forest stands, suggesting an association between higher flood energy and arrested succession. Forested stands 40-60 years old were the most extensive across the chronosequence in terms of floodplain area, and supported the highest biomass, species diversity, and functional wildlife habitat. These stands were dominated by Fremont cottonwood (Populus fremontii) and reached their maxima in terms of tree size and biomass at age 50 years. The persistent willow stands reached their structural maxima earlier (32 years) and supported lower biomass. Basal area and abundance of large trees decreased in stands >90 years old

  17. Anuran community composition along two large rivers in a tropical disturbed landscape

    OpenAIRE

    Almeida-Gomes,Mauricio; Rocha,Carlos Frederico Duarte; Vieira,Marcus Vinícius

    2015-01-01

    In this study we evaluated how anuran species were distributed in riparian habitats along two large rivers. Sampling was carried out between January and March 2012 in the municipality of Cachoeiras de Macacu, state of Rio de Janeiro. We delimited 20 plots along each river, ten in portions inside the forest of the Reserva Ecológica de Guapiaçu (REGUA), and with comparatively greater amount of forest cover, and ten outside REGUA, with comparatively lesser forest cover surrounding the ...

  18. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Directory of Open Access Journals (Sweden)

    Husin Alatas

    2015-01-01

    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  19. Tide-Dominated Tract (TDT) as a key sedimentary zone characterizing tide-dominated large-river delta and estuary systems

    Science.gov (United States)

    Saito, Y.

    2017-12-01

    Large rivers in continents have a characteristic of slow rise and fall in water levels during floods or the wet season due to a wide drainage basin. A gentle river gradient and large water discharge have relatively large tidal ranges at the river mouth, resulting in large backwater effects further upstream. The result of the Mekong River survey (386 riverbed sediments, river topography, CTD, and biofacies) shows that the distributary channels of the Mekong River delta in Vietnam are divided into two parts: the landward river-dominated tract (RDT) and seaward tide-dominated tract (TDT). The RDT is characterized by a highly variable and deepening trend in water depth and coarse-grained sediments with a fining trend downstream. The TDT is characterized by a shallowing trend in water depth with river-widening, smooth riverbeds, a straight shape, and heterolithic f- to vf-sand and mud alternation (tidal thythmite). The boundary of both tracts is sharply identified by sediment facies and river morphology. Sediment facies indicates that the dominant sedimentary process of bottom sediments is "bedload" in the RDT and "suspension" in the TDT. Daily tidal changes are observed through the year, while water-level changes during the flood/wet season are limited in the TDT. Saltwater intrusion is limited within the seaward part of the TDT alone ( 50 km), close to final bifurcation points. However, brackish-water biofacies is observed in the TDT mainly due to diluted brackish water and/or tolerance to the freshwater environment. These characteristics are also found in the Yangtze; the distance of the TDT/RDT boundary from the river mouth is ca. 100 km in the Mekong, and 200 km in the Yangtze. The preservation potential of sediments in a TDT is low in a progradational system, and high in abandoned channels. The early Holocene transgressive estuary system in the incised valley of the Yangtze formed during the Last Glacial Maximum was composed of 20 m-thick fine-grained heterolithic

  20. Strategies and equipment for sampling suspended sediment and associated toxic chemicals in large rivers - with emphasis on the Mississippi River

    Science.gov (United States)

    Meade, R.H.; Stevens, H.H.

    1990-01-01

    A Lagrangian strategy for sampling large rivers, which was developed and tested in the Orinoco and Amazon Rivers of South America during the early 1980s, is now being applied to the study of toxic chemicals in the Mississippi River. A series of 15-20 cross-sections of the Mississippi mainstem and its principal tributaries is sampled by boat in downstream sequence, beginning upriver of St. Louis and concluding downriver of New Orleans 3 weeks later. The timing of the downstream sampling sequence approximates the travel time of the river water. Samples at each cross-section are discharge-weighted to provide concentrations of dissolved and suspended constituents that are converted to fluxes. Water-sediment mixtures are collected from 10-40 equally spaced points across the river width by sequential depth integration at a uniform vertical transit rate. Essential equipment includes (i) a hydraulic winch, for sensitive control of vertical transit rates, and (ii) a collapsible-bag sampler, which allows integrated samples to be collected at all depths in the river. A section is usually sampled in 4-8 h, for a total sample recovery of 100-120 l. Sampled concentrations of suspended silt and clay are reproducible within 3%.

  1. Balancing riparian management and river recreation: methods and applications for exploring floater behavior and their interaction with large wood.

    Science.gov (United States)

    Biedenweg, Kelly; Akyuz, Kate; Skeele, Rebecca

    2012-08-01

    River managers are tasked with meeting both ecological and human needs. In the Puget Sound lowland, riparian management often includes placing or allowing the presence of large wood to stabilize riverbanks and enhance salmon habitat. Although this practice benefits humans by protecting infrastructure and natural resources, it is unclear how such practices interact with an additional human interest, recreation. Furthermore, we were unable to find studies that describe how an agency can go about researching the interaction between recreation and large wood management practices. This study tested methods for describing and estimating the number of river floaters, where they float in relationship to river projects, the risks they take while floating, and their perceptions of large wood in the river. Selecting a high-use suburban river in Washington State, we used riverside observations, interviews, and an infrared counter to gather data in the summer of 2010. Statistical analyses provided general characteristics of users, trends in engaging in risky behaviors, and estimates of use for the entire season and on the busiest day. Data mapping with GIS presented the density of use along the river and frequency of use of specific float routes. Finally, qualitative analysis of interviews clarified floaters' perspectives of large wood. To address the multiple mandates of river managers, it is important to understand recreation users, the factors that could be putting them at risk, and how the actual users perceive large wood in the river. This study demonstrates methods for scientifically gathering such information and applying it when making riparian management decisions.

  2. Assessment of Large Wood budget in the gravel-bed Piave River: first attempt

    Science.gov (United States)

    Tonon, Alessia; Picco, Lorenzo; Ravazzolo, Diego; Aristide Lenzi, Mario

    2015-04-01

    During the last decades, the dynamics of large wood (LW) in rivers were analyzed to consider and define the LW budget. The space-time variations of LW amount results from the differences among input (e.g. fluvial transport, lateral recruitment) and output (e.g. fluvial transport, overbank deposition, natural chronic dead) of LW along a riverine environment. Different methodologies were applied in several fluvial environments, however in large river systems characterized by complex LW dynamics, the processes are still poor quantified. Aim of this contribution is to perform a LW budget estimation over the short period, assessing the effect of an over bankfull flood (Q=1039 m3 s-1; R.I=3.5 years). The research was carried out along a 1 km-long reach (around 15 ha) located into the middle course of the large gravel-bed Piave River (North East of Italy). The LW budget has been defined considering the recruitment through bank erosion and the fluvial transport of LW into and out of the study reach. The former factor was achieved integrating field data on riparian vegetation with the monitoring of riverbanks with a Differential Global Positioning System (DGPS). The latter was obtained detecting all LW elements (diameter ≥ 0.10 m and/or length ≥ 1 m) stored along the study reach, before and after the flood. For each LW the GPS position was recorded and a numbered tag was installed with the addition of colored paint to permit a rapid post-event recovery. Preliminary results indicate that, along the study area, the floating transport of LW is one of the most significant processes able to modify the amount of LW deposited along a riverine system. In fact, considering the input of LW, the 99.4 % (102 m3 km-1) comes from upstream due to floating, whereas the 0.6% (0.17 m3 km-1) was recruited through bank erosion. Analyzing the output, 94.3% (40.26 m3 km-1) of LW was transported downstream of the study area, whereas only the 5.7 % (2.43 m3 km-1) of LW was involved in the

  3. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    Science.gov (United States)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  4. Field simulations for large dipole magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Khouaja, A.; Orrigo, S.E.A.; Winfield, J.S.

    2007-01-01

    The problem of the description of magnetic field for large bending magnets is addressed in relation to the requirements of modern techniques of trajectory reconstruction. The crucial question of the interpolation and extrapolation of fields known at a discrete number of points is analysed. For this purpose a realistic field model of the large dipole of the MAGNEX spectrometer, obtained with finite elements three dimensional simulations, is used. The influence of the uncertainties in the measured field to the quality of the trajectory reconstruction is treated in detail. General constraints for field measurements in terms of required resolutions, step sizes and precisions are thus extracted

  5. Structure from Motion vs. the Kinect: Comparisons of River Field Measurements at the 10-2 to 102 meter Scales

    Science.gov (United States)

    Fonstad, M. A.; Dietrich, J. T.

    2014-12-01

    At the very smallest spatial scales of fluvial field analysis, measurements made historically in situ are often now supplemented, or even replaced by, remote sensing methods. This is particularly true in the case of topographic and particle size measurement. In the field, the scales of in situ observation usually range from millimeters up to hundreds of meters. Two recent approaches for remote mapping of river environments at the scales of historical in situ observations are (1) camera-based structure from motion (SfM), and (2) active patterned-light measurement with devices such as the Kinect. Even if only carried by hand, these two approaches can produce topographic datasets over three to four orders of magnitude of spatial scale. Which approach is most useful? Previous studies have demonstrated that both SfM and the Kinect are precise and accurate over in situ field measurement scales; we instead turn to alternate comparative metrics to help determine which tools might be best for our river measurement tasks. These metrics might include (1) the ease of field use, (2) which general environments are or are not amenable to measurement, (3) robustness to changing environmental conditions, (4) ease of data processing, and (5) cost. We test these metrics in a variety of bar-scale fluvial field environments, including a large-river cobble bar, a sand-bedded river point bar, and a complex mountain stream bar. The structure from motion approach is field-equipment inexpensive, is viable over a wide range of environmental conditions, and is highly spatially scalable. The approach requires some type of spatial referencing to make the data useful. The Kinect has the advantages of an almost real-time display of collected data, so problems can be detected quickly, being fast and easy to use, and the data are collected with arbitrary but metric coordinates, so absolute referencing isn't needed to use the data for many problems. It has the disadvantages of its light field

  6. Savannah River Plant environment

    International Nuclear Information System (INIS)

    Dukes, E.K.

    1984-03-01

    On June 20, 1972, the Atomic Energy Commission designated 192,323 acres of land near Aiken, SC, as the nation's first National Environmental Research Park. The designated land surrounds the Department of Energy's Savannah River Plant production complex. The site, which borders the Savannah River for 17 miles, includes swampland, pine forests, abandoned town sites, a large man-made lake for cooling water impoundment, fields, streams, and watersheds. This report is a description of the geological, hydrological, meteorological, and biological characteristics of the Savannah River Plant site and is intended as a source of information for those interested in environmental research at the site. 165 references, 68 figures, 52 tables

  7. Alluvial flash-flood stratigraphy of a large dryland river: the Luni River, Thar Desert, Western India

    Science.gov (United States)

    Carling, Paul; Leclair, Suzanne; Robinson, Ruth

    2017-04-01

    Detailed descriptions of the fluvial architecture of large dryland rivers are few, which hinders the understanding of stratigraphic development in aggradational settings. The aim of this study was to obtain new generic insight of the fluvial dynamics and resultant stratigraphy of such a river. The novelty of this investigation is that an unusually extensive and deep section across a major active dryland river was logged and the dated stratigraphy related to the behaviour of the discharge regimen. The results should help improve understanding of the stratigraphic development in modern dryland rivers and in characterizing oil, gas and groundwater reservoirs in the dryland geological record more generally. The Luni River is the largest river in the Thar desert, India, but yet details of the channel stratigraphy are sparse. Discharges can reach 14,000 m3s-1 but the bed is dry most of the year. GPS positioning and mm-resolution surveys within a 700m long, 5m deep trench enabled logging and photography of the strata associations, dated using optically-stimulated luminescence (OSL). The deposits consist of planar, sandy, upper-stage plane bed lamination and low-angle stratification, sandwiching less-frequent dune trough cross-sets. Mud clasts are abundant at any elevation. Water-ripple cross-sets or silt-clay layers occur rarely, usually near the top of sections. Aeolian dune cross-sets also appear sparsely at higher elevations. Consequently, the majority of preserved strata are due to supercritical flows. Localized deep scour causes massive collapse and soft-sediment deformation. Scour holes are infilled by rapidly-deposited massive sands adjacent to older bedded-deposits. Within bedform phase diagrams, estimated hydraulic parameters indicate a dominance of the upper-stage plane bed state, but the presence of dune cross-sets is also related to the flood hydrograph. Repeated deep scour results in units of deposition of different OSL ages (50 to 500 years BP) found at

  8. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  9. GIS Framework for Large River Geomorphic Classification to Aid in the Evaluation of Flow-Ecology Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Christopher R.; Arntzen, Evan V.; Richmond, Marshall C.; McManamay, R. A.; Hanrahan, Timothy P.; Rakowski, Cynthia L.

    2013-02-01

    Assessing the environmental benefits of proposed flow modification to large rivers provides invaluable insight into future hydropower project operations and relicensing activities. Providing a means to quantitatively define flow-ecology relationships is integral in establishing flow regimes that are mutually beneficial to power production and ecological needs. To compliment this effort an opportunity to create versatile tools that can be applied to broad geographic areas has been presented. In particular, integration with efforts standardized within the ecological limits of hydrologic alteration (ELOHA) is highly advantageous (Poff et al. 2010). This paper presents a geographic information system (GIS) framework for large river classification that houses a base geomorphic classification that is both flexible and accurate, allowing for full integration with other hydrologic models focused on addressing ELOHA efforts. A case study is also provided that integrates publically available National Hydrography Dataset Plus Version 2 (NHDPlusV2) data, Modular Aquatic Simulation System two-dimensional (MASS2) hydraulic data, and field collected data into the framework to produce a suite of flow-ecology related outputs. The case study objective was to establish areas of optimal juvenile salmonid rearing habitat under varying flow regimes throughout an impounded portion of the lower Snake River, USA (Figure 1) as an indicator to determine sites where the potential exists to create additional shallow water habitat. Additionally, an alternative hydrologic classification useable throughout the contiguous United States which can be coupled with the geomorphic aspect of this framework is also presented. This framework provides the user with the ability to integrate hydrologic and ecologic data into the base geomorphic aspect of this framework within a geographic information system (GIS) to output spatiotemporally variable flow-ecology relationship scenarios.

  10. Large-Scale Land Concessions, Migration, and Land Use: The Paradox of Industrial Estates in the Red River Delta of Vietnam and Rubber Plantations of Northeast Cambodia

    Directory of Open Access Journals (Sweden)

    Jefferson Fox

    2018-06-01

    Full Text Available This study investigated the implications of large-scale land concessions in the Red River Delta, Vietnam, and Northeast Cambodia with regard to urban and agricultural frontiers, agrarian transitions, migration, and places from which the migrant workers originated. Field interviews conducted near large-scale land concessions for industrial estates in the Red River Delta and rubber plantations in Northeast Cambodia suggest that these radically different concessions are paradoxically leading to similar reconfigurations of livelihoods, labor patterns, and landscapes despite basic differences in these forms of land use. Both the Red River Delta and Northeast Cambodia are frontier environments undergoing extensive agrarian change with migration to work in the large-scale land concessions leading to a shortage of farm labor that anticipates changes in farming practices and farm livelihoods. These population movements will lead to further land-use changes as governments invest in the infrastructure and services needed to support increased population density in the receiving areas. In addition, labor migrations associated with these investments affect land-use practices both at the site of the concession and the places from where the migrants originate.

  11. Monitoring the effects of floods on submerged macrophytes in a large river.

    Science.gov (United States)

    Ibáñez, Carles; Caiola, Nuno; Rovira, Albert; Real, Montserrat

    2012-12-01

    The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton to a macrophyte-dominated system. Macrophytes started to spread at the end of the 1990s and since 2002 artificial floods (flushing flows) of short duration (1-2 days) are released from the Riba-roja dam once or twice a year in order to reduce macrophyte density. The aim of this study was to analyse the spatiotemporal trends of the submerged macrophytes in two stretches of the lower Ebro River using high-resolution hydroacoustic methods, in order to elucidate the effects of artificial floods and natural floods on its distribution and abundance. Results showed that the mean cover in the two studied stretches (Móra and Ginestar) was not reduced after a flushing flow (from 36.59% to 55.85% in Móra, and from 21.18% to 21.05% in Ginestar), but it was greatly reduced after the natural flood (down to 9.79% in Móra and 2.04% in Ginestar); surprisingly the cover increased in Móra after the artificial flood. In order to increase the efficiency of floods in controlling macrophyte spreading, the magnitude and frequency of them should largely increase, as well as the suspended sediment load, approaching as much as possible to the original flood pattern before dam construction. Hydroacoustic methods combined with geostatistics and interpolation in GIS can accurately monitor spatiotemporal trends of submerged macrophytes in large rivers. This is the first article to apply this monitoring system to submerged macrophytes in rivers. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, F.S.

    1999-01-01

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials

  13. The large-s field-reversed configuration experiment

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Carey, L.N.; Crawford, E.A.; Harding, D.G.; DeHart, T.E.; McDonald, K.F.; McNeil, J.L.; Milroy, R.D.; Slough, J.T.; Maqueda, R.; Wurden, G.A.

    1993-01-01

    The Large-s Experiment (LSX) was built to study the formation and equilibrium properties of field-reversed configurations (FRCs) as the scale size increases. The dynamic, field-reversed theta-pinch method of FRC creation produces axial and azimuthal deformations and makes formation difficult, especially in large devices with large s (number of internal gyroradii) where it is difficult to achieve initial plasma uniformity. However, with the proper technique, these formation distortions can be minimized and are then observed to decay with time. This suggests that the basic stability and robustness of FRCs formed, and in some cases translated, in smaller devices may also characterize larger FRCs. Elaborate formation controls were included on LSX to provide the initial uniformity and symmetry necessary to minimize formation disturbances, and stable FRCs could be formed up to the design goal of s = 8. For x ≤ 4, the formation distortions decayed away completely, resulting in symmetric equilibrium FRCs with record confinement times up to 0.5 ms, agreeing with previous empirical scaling laws (τ∝sR). Above s = 4, reasonably long-lived (up to 0.3 ms) configurations could still be formed, but the initial formation distortions were so large that they never completely decayed away, and the equilibrium confinement was degraded from the empirical expectations. The LSX was only operational for 1 yr, and it is not known whether s = 4 represents a fundamental limit for good confinement in simple (no ion beam stabilization) FRCs or whether it simply reflects a limit of present formation technology. Ideally, s could be increased through flux buildup from neutral beams. Since the addition of kinetic or beam ions will probably be desirable for heating, sustainment, and further stabilization of magnetohydrodynamic modes at reactor-level s values, neutral beam injection is the next logical step in FRC development. 24 refs., 21 figs., 2 tabs

  14. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    OpenAIRE

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-01-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substa...

  15. The Savannah River environmental technology field test platform: Phase II

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; May, C.P.; Pemberton, B.E.; Jarosch, T.R.; Eddy-Dilek, C.A.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs), and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. The Savannah River Technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program (i.e., wells, available power, conventional baseline characterization and monitoring equipment, shelter structures) allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies can be tested for long periods of time to determine their appropriate applications in environmental characterization and monitoring activities. Situation specific evaluations of the technology following stringent test plans can be made in comparison with simultaneous baseline methods and historical data. This program is designed to help expedite regulatory approval and technology transfer to manufacturers and the user community

  16. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    Science.gov (United States)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  17. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    Science.gov (United States)

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological

  18. Predicting the Rate of River Bank Erosion Caused by Large Wood Log

    Science.gov (United States)

    Zhang, N.; Rutherfurd, I.; Ghisalberti, M.

    2016-12-01

    When a single tree falls into a river channel, flow is deflected and accelerated between the tree roots and the bank face, increasing shear stress and scouring the bank. The scallop shaped erosion increases the diversity of the channel morphology, but also causes concern for adjacent landholders. Concern about increased bank erosion is one of the main reasons for large wood to still be removed from channels in SE Australia. Further, the hydraulic effect of many logs in the channel can reduce overall bank erosion rates. Although both phenomena have been described before, this research develops a hydraulic model that estimates their magnitude, and tests and calibrates this model with flume and field measurements, with logs with various configurations and sizes. Specifically, the model estimates the change in excess shear stress on the bank associated . The model addresses the effect of the log angle, distance from bank, and log size and flow condition by solving the mass continuity and energy conservation between the cross section at the approaching flow and contracted flow. Then, we evaluate our model against flume experiment preformed with semi-realistic log models to represent logs in different sizes and decay stages by comparing the measured and simulated velocity increase in the gap between the log and the bank. The log angle, distance from bank, and flow condition are systemically varied for each log model during the experiment. Final, the calibrated model is compared with the field data collected in anabranching channels of Murray River in SE Australia where there are abundant instream logs and regulated and consistent high flow for irrigation. Preliminary results suggest that a log can significantly increase the shear stress on the bank, especially when it positions perpendicular to the flow. The shear stress increases with the log angle in a rising curve (The log angle is the angle between log trunk and flow direction. 0o means log is parallel to flow with

  19. A Methodology for Measuring Microplastic Transport in Large or Medium Rivers

    Directory of Open Access Journals (Sweden)

    Marcel Liedermann

    2018-04-01

    Full Text Available Plastic waste as a persistent contaminant of our environment is a matter of increasing concern due to the largely unknown long-term effects on biota. Although freshwater systems are known to be the transport paths of plastic debris to the ocean, most research has been focused on marine environments. In recent years, freshwater studies have advanced rapidly, but they rarely address the spatial distribution of plastic debris in the water column. A methodology for measuring microplastic transport at various depths that is applicable to medium and large rivers is needed. We present a new methodology offering the possibility of measuring microplastic transport at different depths of verticals that are distributed within a profile. The net-based device is robust and can be applied at high flow velocities and discharges. Nets with different sizes (41 µm, 250 µm, and 500 µm are exposed in three different depths of the water column. The methodology was tested in the Austrian Danube River, showing a high heterogeneity of microplastic concentrations within one cross section. Due to turbulent mixing, the different densities of the polymers, aggregation, and the growth of biofilms, plastic transport cannot be limited to the surface layer of a river, and must be examined within the whole water column as for suspended sediments. These results imply that multipoint measurements are required for obtaining the spatial distribution of plastic concentration and are therefore a prerequisite for calculating the passing transport. The analysis of filtration efficiency and side-by-side measurements with different mesh sizes showed that 500 µm nets led to optimal results.

  20. Dendrochronological dating of large woody debris on the example of Morávka River and Černá Opava River

    Directory of Open Access Journals (Sweden)

    Michal Rybníček

    2010-01-01

    Full Text Available Woody debris is an inseparable part of natural river channels. In a river ecosystem it affects the hydraulic, hydrological and morphological properties of the channel, and it is also of a biological significance. However, besides the positive effects, the woody debris can also have a negative impact, e.g. the reduction of the flow profile capacity or the destruction of waterside buildings. With the de­ve­lop­ment of log floating and timber trade, the woody debris started to be removed from the channels. Currently, within the process of stream revitalization, woody debris is being artificially placed into ri­vers. This paper deals with the possible dendrochronological dating of large woody debris (LWD and wood jams in the river channel and the riparian zone. Two sites have been chosen for the research, the Morávka River and the Černá Opava River. These sites have been chosen because of two dif­fe­rent types of riparian stands. The banks of the Morávka River are a soft wood floodplain forest (350 m ASL; the Černá Opava River has stands with nearly a hundred percent proportion of spruce (600 m ASL. The results of the research show that the species with diffuse-porous wood structure are very hard to date on the basis of Pressler borer cores. On the other hand, the sites with softwood species are easi­ly datable, especially if the trunks contain more than 40 tree-rings. At these sites it is possible to use the dendrochronological dating for the establishment of the temporal dynamics of the woody debris input in the river ecosystem.

  1. Relationship of fish indices with sampling effort and land use change in a large Mediterranean river.

    Science.gov (United States)

    Almeida, David; Alcaraz-Hernández, Juan Diego; Merciai, Roberto; Benejam, Lluís; García-Berthou, Emili

    2017-12-15

    Fish are invaluable ecological indicators in freshwater ecosystems but have been less used for ecological assessments in large Mediterranean rivers. We evaluated the effects of sampling effort (transect length) on fish metrics, such as species richness and two fish indices (the new European Fish Index EFI+ and a regional index, IBICAT2b), in the mainstem of a large Mediterranean river. For this purpose, we sampled by boat electrofishing five sites each with 10 consecutive transects corresponding to a total length of 20 times the river width (European standard required by the Water Framework Directive) and we also analysed the effect of sampling area on previous surveys. Species accumulation curves and richness extrapolation estimates in general suggested that species richness was reasonably estimated with transect lengths of 10 times the river width or less. The EFI+ index was significantly affected by sampling area, both for our samplings and previous data. Surprisingly, EFI+ values in general decreased with increasing sampling area, despite the higher observed richness, likely because the expected values of metrics were higher. By contrast, the regional fish index was not dependent on sampling area, likely because it does not use a predictive model. Both fish indices, but particularly the EFI+, decreased with less forest cover percentage, even within the smaller disturbance gradient in the river type studied (mainstem of a large Mediterranean river, where environmental pressures are more general). Although the two fish-based indices are very different in terms of their development, methodology, and metrics used, they were significantly correlated and provided a similar assessment of ecological status. Our results reinforce the importance of standardization of sampling methods for bioassessment and suggest that predictive models that use sampling area as a predictor might be more affected by differences in sampling effort than simpler biotic indices. Copyright

  2. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    Science.gov (United States)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  3. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  4. Fine Sediment Input and Benthic Fauna Interactions at the Confluence of Two Large Rivers

    International Nuclear Information System (INIS)

    Blettler, M. C. M.; Amsler, M. L.; Ezcurra De Drago, I.; Drago, E.; Paira, A.; Espinola, L. A.; Eberle, E.; Szupiany, R.

    2016-01-01

    Several studies suggest that invertebrate abundance and richness are disrupted and reset at confluences. Thus, junctions contribute disproportionately to the overall aquatic biodiversity of the river. In general terms, authors have reported high abundance and diversity due to the major physical heterogeneity at junctions. However, data are still scarce and uncertainties are plentiful. The impact of a great input of fine sediments on the distribution patterns of benthic invertebrates at a river confluence was quantitatively analyzed herein. The junction of the subtropical Bermejo River (high suspended sediment load) with the large Paraguay River is the selected study area to achieve this aim. While diversity increased slightly downstream the junction (from 0.21 to 0.36), density and richness of the macro invertebrate assemblage significantly diminished downstream the confluence (from 29050 to 410 ind/m2; p< 0.05) due to the input of fine sediment from the Bermejo River (mean fine sediment increased downstream from 6.3 to 10.2 mg/L), causing a negatively impact on invertebrate assemblage. This study highlights the ecological importance of the sediment input effects on benthic invertebrates, a topic still poorly explored in river ecology. It is speculated that the spatial extent of the impact would be dependent upon the hydrological and sedimentological context, highly unequal between both rivers. New hypotheses should be tested through new studies considering different hydrological stages.

  5. Spatial and temporal (1963-2012 variability of ichthyofauna in the large lowland Warta River, Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Kruk

    2015-11-01

    Full Text Available The Warta River is a tributary of the Odra (Oder River. It is 795.2 km long. In 1986 the large Jeziorsko dam reservoir was constructed in the 306th km of its course. In the late 1980s, the river pollution assumed its highest level and stopped increasing as the former political system collapsed and many industrial plants went bankrupt. Unified fish electrocatches have been performed along the Warta River since the 1960s. During the last sampling, in 2011-2012, fish fauna in the middle course of the river was in the poorest condition due to the destabilizing upstream impact of the Jeziorsko dam reservoir, large amounts of wastewater input to the river, and the lack of unpolluted tributaries that could serve as sources of recolonizers. The weakest human pressure was reported for the upper and lower courses, which resulted in higher numbers of species significantly preferring them, and the higher species richness. Species richness significantly increased in comparison with the previous sampling occasions (in 1963-66, 1986-88, and 1996-98. Significant increases in the stability of occurrence, abundance or biomass were recorded for many species including burbot, chub, dace, ide, gudgeon, bleak, bitterling, perch and spined loach. Significant declines in the above mentioned population parameters were rare and related mainly to European eel (a migratory species. The previously recorded strong negative trend (declines in rheophils, increase in the dominance of roach and perch has been reversed. However, regenerated fish assemblages were not recorded in 1996-98 (i.e. several years after the beginning of the improvement in water quality but in 2011-2012 (i.e. about one decade later. We have noticed a similar delay in ichthyofauna recovery also in the Pilica River (Vistula system. This is why we believe that about 15 years are necessary to observe a considerable improvement in fish fauna in larger degraded rivers.

  6. Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand

    International Nuclear Information System (INIS)

    Mroczek, E.K.

    2005-01-01

    The Tarawera River flows through the Kawerau geothermal field. Natural geothermal drainage as well as geothermal production fluid effluent (0.193 m 3 /s) discharge to the river. The concentrations and fluxes of arsenic and chloride were measured upstream and downstream of the field to quantify the proportion of natural inflows of geothermal fluid compared to the discharge of effluent. Upstream of the geothermal effluent outfalls, the arsenic and chloride concentrations in the river are about 0.021 mg/l and 39 mg/l, respectively. The discharge of effluent increases the concentrations in the river to 0.029 mg/l and 48 mg/l, respectively. Calculated concentrations, given the known discharge of effluent, are 0.038 mg/l for arsenic and 50 mg/l for chloride. The differences between the measured and calculated concentrations are within the gauging and analytical errors. At minimum and maximum mean river flows (1984-1992), the concentrations would increase and decrease by 23% and 46%, respectively. Arsenic appears to be soluble and not associated with suspended solids. However, increased transport of arsenic by suspended solids may be a factor at higher river flows. The input of natural geothermal fluid upstream of the effluent outfalls (estimated < 0.170 m3/s) could not be detected (within the errors) by an increase in river chloride concentrations. (author)

  7. Monitoring and modeling very large, rapid infiltration using geophysics during the 2014 Lower Colorado River pulse flow experiment

    Science.gov (United States)

    Kennedy, J.; Macy, J. P.; Callegary, J. B.; Lopez, J. R.

    2014-12-01

    In March and April 2014, an unprecedented experiment released over 100x106 cubic meters (81,000 acre-feet) of water from Morelos Dam into the normally-dry lower Colorado River below Yuma, Arizona, USA. More than half of the water released from Morelos Dam infiltrated within the limitrophe reach, a 32-km stretch between the Northern U.S.-Mexico International Boundary and the Southern International Boundary, a distance of just 32 river-kilometers. To characterize the spatial and temporal extent of infiltration, scientists from the US Geological Survey, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, and Universidad Autónoma de Baja California carried out several geophysical surveys. Frequency-domain electromagnetic transects throughout the limitrophe reach showed that the subsurface comprised exclusively sandy material, with little finer-grained material to impede or otherwise influence infiltration. Direct current resistivity clearly imaged the rising water table near the stream channel. Both techniques provide valuable parameterization and calibration information for a surface-water/groundwater interaction model currently in development. Time-lapse gravity data were collected at 25 stations to expand the monitoring well network and provide storage-coefficient information for the groundwater model. Despite difficult field conditions, precise measurements of large gravity changes showed that changes in groundwater storage in the upper reach of the study area, where groundwater levels were highest, were constrained to the near vicinity of the river channel. Downstream near the Southern International Boundary, however, groundwater storage increased substantially over a large area, expanding into the regional aquifer that supplies irrigation water to surrounding agriculture.

  8. River food web response to large-scale riparian zone manipulations.

    Directory of Open Access Journals (Sweden)

    J Timothy Wootton

    Full Text Available Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks.

  9. Water and sediment transport modeling of a large temporary river basin in Greece.

    Science.gov (United States)

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the

  10. The influence of logjams on largemouth bass (Micropterus salmoides) concentrations on the lower Roanoke River, a large sand-bed river

    Science.gov (United States)

    Schenk, Edward R.; McCargo, Jeremy W.; Moulin, Bertrand; Hupp, Cliff R.; Richter, Jean M.

    2015-01-01

    This study examines the relation between logjams and largemouth bass (Micropterus salmoides) on the alluvial sand-bed lower Roanoke River. Disparate data sets from previous bank erosion, fisheries, and large wood studies were used to compare the distribution of largemouth bass with logjam frequency. Logjams are related to the frequency of bank mass wasting increasing from near an upstream dam to the middle reach of the study segment and then decreasing as the river approaches sea level. The highest concentration of largemouth bass and logjams was in the middle reach (110 fish per hour and 21 jams per km). Another measure of largemouth bass distribution, fish biomass density (g h1 ), had a similar trend with logjams and was a better predictor of fish distribution versus logjams (R2= 0.6 and 0.8 and p = 0.08 and 0.02 for fish per hour and g h1 versus logjam, respectively). We theorize that the preference for adult bass to congregate near logjams indicates the use of the jams as feeding areas. The results of a principal component analysis indicate that fish biomass concentration is much more related to logjam frequency than channel geometry (width, depth, and bank height), bed grain size, bank erosion, or turbidity. The results of this research support recent studies on in-channel wood and fisheries: Logjams appear to be important for maintaining, or increasing, both largemouth bass numbers and total biomass of fish in large eastern North American rivers. Persistent logjams, important as habitat, exist where relatively undisturbed river reaches allow for bank erosion inputs of wood and available anchoring locations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  11. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium—An indicator of large river valleys

    Science.gov (United States)

    Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent. PMID:29543919

  12. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium-An indicator of large river valleys.

    Science.gov (United States)

    Nobis, Agnieszka; Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent.

  13. Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river

    Science.gov (United States)

    Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2017-12-01

    The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong delta. Our results indicate that the time-averaged suspended load transport rates for the Mekong River are 87 MT/yr, whilst bedload transport forms c. management within this highly threatened river basin.

  14. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    Science.gov (United States)

    Wheater, H. S.

    2013-12-01

    The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and

  15. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  16. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    Science.gov (United States)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  17. River banks and channel axis curvature: Effects on the longitudinal dispersion in alluvial rivers

    Science.gov (United States)

    Lanzoni, Stefano; Ferdousi, Amena; Tambroni, Nicoletta

    2018-03-01

    The fate and transport of soluble contaminants released in natural streams are strongly dependent on the spatial variations of the flow field and of the bed topography. These variations are essentially related to the presence of the channel banks and to the planform configuration of the channel. Large velocity gradients arise near to the channel banks, where the flow depth decreases to zero. Moreover, single thread alluvial rivers are seldom straight, and usually exhibit meandering planforms and a bed topography that deviates from the plane configuration. Channel axis curvature and movable bed deformations drive secondary helical currents which enhance both cross sectional velocity gradients and transverse mixing, thus crucially influencing longitudinal dispersion. The present contribution sets up a rational framework which, assuming mild sloping banks and taking advantage of the weakly meandering character often exhibited by natural streams, leads to an analytical estimate of the contribution to longitudinal dispersion associated with spatial non-uniformities of the flow field. The resulting relationship stems from a physics-based modeling of the flow in natural rivers, and expresses the bend averaged longitudinal dispersion coefficient as a function of the relevant hydraulic and morphologic parameters. The treatment of the problem is river specific, since it relies on an explicit spatial description, although linearized, of the flow field that establishes in the investigated river. Comparison with field data available from tracer tests supports the robustness of the proposed framework, given also the complexity of the processes that affect dispersion dynamics in real streams.

  18. Large Field Visualization with Demand-Driven Calculation

    Science.gov (United States)

    Moran, Patrick J.; Henze, Chris

    1999-01-01

    We present a system designed for the interactive definition and visualization of fields derived from large data sets: the Demand-Driven Visualizer (DDV). The system allows the user to write arbitrary expressions to define new fields, and then apply a variety of visualization techniques to the result. Expressions can include differential operators and numerous other built-in functions, ail of which are evaluated at specific field locations completely on demand. The payoff of following a demand-driven design philosophy throughout becomes particularly evident when working with large time-series data, where the costs of eager evaluation alternatives can be prohibitive.

  19. H-ADCP discharge monitoring of a large tropical river

    NARCIS (Netherlands)

    Hidayat, H.; Sassi, M.G.; Vermeulen, B.

    2012-01-01

    River flow can be continuously monitored through velocity measurements with an acoustic Doppler current profiler, deployed horizontally at a river bank (H-ADCP). This approach was adopted to obtain continuous discharge estimates at two cross-sections in the River Mahakam, i.e. at an upstream station

  20. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  1. 78 FR 17227 - Notice of Intent To Amend the Snake River Resource Management Plan for the Pinedale Field Office...

    Science.gov (United States)

    2013-03-20

    ...-176935] Notice of Intent To Amend the Snake River Resource Management Plan for the Pinedale Field Office... Snake River RMP and by this notice is announcing the beginning of the scoping process to solicit public... Street, Pinedale, WY 82941. Email: [email protected] with ``Snake River Amendment'' in the subject line...

  2. Contrasts between channels and backwaters in a large, floodplain river: Testing our understanding of nutrient cycling, phytoplankton abundance, and suspended solids dynamics

    Science.gov (United States)

    Houser, Jeff N.

    2016-01-01

    In floodplain rivers, variability in hydraulic connectivity interacts with biogeochemistry to determine the distribution of suspended and dissolved substances. Nutrient, chlorophyll a, and suspended solids data spanning longitudinal (5 study reaches across 1300 river km), lateral (main channel and backwaters), and temporal (1994–2011) gradients in the Upper Mississippi River (UMR) were used to examine the extent to which observed differences between the main channel and backwaters were consistent with expectations based on current understanding of biogeochemical processes in large rivers. For N and P, the results largely conformed to expectations. N concentrations were greater in the main channel than in the backwaters in 82 to 96% of the observations across river reaches. Maximum TP concentrations generally occurred in backwaters during summer, when backwater TP often exceeded that of the main channel. Flux of P from sediments may be a substantial source of water-column P in UMR backwaters in summer. The data for suspended solids and chlorophyll a suggest that some refinements are needed of our understanding of ecosystem processes in large rivers. During low-discharge conditions, concentrations of inorganic suspended solids often were greater in backwaters than in the main channel, suggesting the importance of sediment resuspension. Chlorophyll a concentrations were usually greater in backwaters than in the main channel, but exceptions indicate that phytoplankton abundance in the main channel of the UMR can sometimes be greater than is typically expected for large rivers.

  3. Managing induced riverbank filtration (IRF) at the Serchio River well field, Tuscany, Italy (Italy)

    Science.gov (United States)

    Rossetto, Rudy; Ansiati, Alberto; Barbagli, Alessio; Borsi, Iacopo; Costabile, Gennarino; Dietrich, Peter; Mazzanti, Giorgio; Picciaia, Daniele; Bonari, Enrico

    2014-05-01

    Along the Serchio River (Tuscany -Italy) a series of well fields is set for an overall amount of about 1 m3/s pumped groundwater providing drinking water for about 300000 people of the coastal Tuscany (mainly to the town of Lucca, Pisa and Livorno). Water is pumped enhancing riverbank filtration into a high yield (10-2 m2/s transmissivity) sand and gravel aquifer by artificially rising river head and setting pumping well fields along the river reach. However, being it unmanaged aquifer recharge, concerns arise both for quality and quantity of the abstracted groundwater. It happens in dry climate extremes (i.e. 2002/2003 or 2011/2012) that Serchio River flow falls below minimum environmental flow (MEF). Long term contamination of river water had been causing contamination of groundwater, as in 2002/2006, when pesticide contaminated surface water was polluting the well fields causing several problems to water supply. Such problems were overcome by setting in place derogatory regulations and then through dissemination and stakeholder activities reducing pesticide presence in surface water (EU LIFE SERIAL WELLFIR project). Although widely adopted, IRF is also not well stated from a regulatory point of view, eventually leading to concerns by a legal point of view. Within the framework of the MARSOL FPVII-ENV-2013 project an experimental site at a well field will be set to demonstrate the feasibility (by a technical, social and market point of view) and the benefits of managing IRF versus the unmanaged option. The Serchio experimental site will involve merging existing and proved technologies to produce a Decision Support System (DSS) based on remote data acquisition and transmission and GIS physically-based fully distributed numerical modeling to continuously monitor and manage well fields, reducing also human operated activities. The DSS along with the installed sensors, data transmission and storage tools will constitute a prototype whose potential market exploitation

  4. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    International Nuclear Information System (INIS)

    Geist, D.R.; Oregon State Univ., Corvallis, OR; Dauble, D.D.

    1998-01-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost

  5. Simulated effects of host fish distribution on juvenile unionid mussel dispersal in a large river

    Science.gov (United States)

    Daraio, J.A.; Weber, L.J.; Zigler, S.J.; Newton, T.J.; Nestler, J.M.

    2012-01-01

    Larval mussels (Family Unionidae) are obligate parasites on fish, and after excystment from their host, as juveniles, they are transported with flow. We know relatively little about the mechanisms that affect dispersal and subsequent settlement of juvenile mussels in large rivers. We used a three-dimensional hydrodynamic model of a reach of the Upper Mississippi River with stochastic Lagrangian particle tracking to simulate juvenile dispersal. Sensitivity analyses were used to determine the importance of excystment location in two-dimensional space (lateral and longitudinal) and to assess the effects of vertical location (depth in the water column) on dispersal distances and juvenile settling distributions. In our simulations, greater than 50% of juveniles mussels settled on the river bottom within 500 m of their point of excystment, regardless of the vertical location of the fish in the water column. Dispersal distances were most variable in environments with higher velocity and high gradients in velocity, such as along channel margins, near the channel bed, or where effects of river bed morphology caused large changes in hydraulics. Dispersal distance was greater and variance was greater when juvenile excystment occurred in areas where vertical velocity (w) was positive (indicating an upward velocity) than when w was negative. Juvenile dispersal distance is likely to be more variable for mussels species whose hosts inhabit areas with steeper velocity gradients (e.g. channel margins) than a host that generally inhabits low-flow environments (e.g. impounded areas).

  6. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953

  7. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.

  8. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    Science.gov (United States)

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  9. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    Science.gov (United States)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  10. A method for developing a large-scale sediment yield index for European river basins

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, Magalie; Cerdan, Olivier; Garcin, Manuel [BRGM ARN/ESL, Orleans (France); Mouchel, Jean-Marie [UMR Sisyphe, Univ. P and M Curie, Paris (France)

    2009-12-15

    Background, aim, and scope: Sediment fluxes within continental areas play a major role in biogeochemical cycles and are often the cause of soil surface degradation as well as water and ecosystem pollution. In a situation where a high proportion of the land surface is experiencing significant global land use and climate changes, it appears important to establish sediment budgets considering the major processes forcing sediment redistribution within drainage areas. In this context, the aim of this study is to test a methodology to estimate a sediment yield index at a large spatial resolution for European river basins. Data and methods: Four indicators representing processes respectively considered as sources (mass movement and hillslope erosion), sinks (deposits), and transfers of sediments (drainage density) are defined using distributed data. Using these indicators we propose a basic conceptual approach to test the possibility of explaining sediment yield observed at the outlet of 29 selected European river basins. We propose an index which adds the two sources and transfers, and subsequently subtracts the sink term. This index is then compared to observed sediment yield data. Results: With this approach, variability between river basins is observed and the evolution of each indicator analyzed. A linear regression shows a correlation coefficient of 0.83 linking observed specific sediment yield (SSY) with the SSY index. Discussion: To improve this approach at this large river basin scale, basin classification is further refined using the relation between the observed SSY and the index obtained from the four indicators. It allows a refinement of the results. Conclusions: This study presents a conceptual approach offering the advantages of using spatially distributed data combined with major sediment redistribution processes to estimate the sediment yield observed at the outlet of river basins. Recommendations and perspectives: Inclusion of better information on

  11. Contributions of large wood to the initial establishment and diversity of riparian vegetation in a bar-braided temperate river

    OpenAIRE

    Nakamura, Futoshi; Fuke, Nao; Kubo, Mayumi

    2012-01-01

    The purpose of this study was to examine the effects of large wood (LW) on the physical environment and the initial establishment of vascular plant species in the Rekifune River, a large bar-braided monsoonal river in Japan. The physical environment and the diversity and composition of plant species were compared in relation to the orientation of LW pieces. We found that shading effects were more prevalent in the immediate vicinity of LW pieces than in quadrats distant from LW. The effect was...

  12. Analysis of Phenomenels with Hydrologic Large Risk in the Hydrographic Basin of the Trotuş River

    Directory of Open Access Journals (Sweden)

    Avram Mihaela

    2017-10-01

    Full Text Available The paper presents an analysis of the high hydrological risk phenomena formed in the hydrographic basin of the Trotuş River in the last period of time. The Trotuş River and the tributaries are monitored by 21 hydrometric stations. Precipitation volume processing indicated a number of risk factors that have prevailed over the last 20 years. The hydrological data processing revealed the presence of several flood flows in the same year. The effects of the floods have materialized through the excessive degradation of river bedside regulation and shore defence works. The floods of the past 25 years have resulted in the destruction of a large number of economic and social objectives in the Trotuş River area, as well as human losses. Parameters of hydroclimatic risk highlighted by research are represented by torrential precipitations, floods with high probability, high frequency of high-flow flows, formation of high erosion velocities of the bed, etc. Parameters of hydroclimatic risk impose special conditions for the design of river regularization and shore defence.

  13. Geomorphic and hydraulic controls on large-scale riverbank failure on a mixed bedrock-alluvial river system, the River Murray, South Australia: a bathymetric analysis.

    Science.gov (United States)

    De Carli, E.; Hubble, T.

    2014-12-01

    During the peak of the Millennium Drought (1997-2010) pool-levels in the lower River Murray in South Australia dropped 1.5 metres below sea level, resulting in large-scale mass failure of the alluvial banks. The largest of these failures occurred without signs of prior instability at Long Island Marina whereby a 270 metre length of populated and vegetated riverbank collapsed in a series of rotational failures. Analysis of long-reach bathymetric surveys of the river channel revealed a strong relationship between geomorphic and hydraulic controls on channel width and downstream alluvial failure. As the entrenched channel planform meanders within and encroaches upon its bedrock valley confines the channel width is 'pinched' and decreases by up to half, resulting in a deepening thalweg and channel bed incision. The authors posit that flow and shear velocities increase at these geomorphically controlled 'pinch-points' resulting in complex and variable hydraulic patterns such as erosional scour eddies, which act to scour the toe of the slope over-steepening and destabilising the alluvial margins. Analysis of bathymetric datasets between 2009 and 2014 revealed signs of active incision and erosional scour of the channel bed. This is counter to conceptual models which deem the backwater zone of a river to be one of decelerating flow and thus sediment deposition. Complex and variable flow patterns have been observed in other mixed alluvial-bedrock river systems, and signs of active incision observed in the backwater zone of the Mississippi River, United States. The incision and widening of the lower Murray River suggests the channel is in an erosional phase of channel readjustment which has implications for riverbank collapse on the alluvial margins. The prevention of seawater ingress due to barrage construction at the Murray mouth and Southern Ocean confluence, allowed pool-levels to drop significantly during the Millennium Drought reducing lateral confining support to the

  14. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  15. Magnetic field related mechanical tolerances for the proposed Chalk River superconducting heavy-ion cyclotron

    International Nuclear Information System (INIS)

    Heighway, E.A.; Chaplin, K.R.

    1977-11-01

    A four sector azimuthally varying field cyclotron with superconducting main coils has been proposed as a heavy-ion post-accelerator for the Chalk River MP Tandem van de Graaff. The radial profile of the average axial field will be variable using movable steel trim rods. The field errors due to coil, trim rod and flutter pole imperfections are calculated. Those considered are errors in the axial field, first and second azimuthal harmonic axial fields, transverse field and first azimuthal harmonic transverse field. Such fields induce phase slip, axial or radial coherent oscillations and can result in axial or radial beam instability. The allowed imperfections (tolerances) required to retain stability and maintain acceptably small coherent oscillation amplitudes are calculated. (author)

  16. Bedform morphology of salmon spawning areas in a large gravel-bed river

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.

    2007-05-01

    While the importance of river channel morphology to salmon spawning habitat is increasingly recognized, quantitative measures of the relationships between channel morphology and habitat use are lacking. Such quantitative measures are necessary as management and regulatory agencies within the Pacific Northwestern region of the USA, and elsewhere, seek to quantify potential spawning habitat and develop recovery goals for declining salmon populations. The objective of this study was to determine if fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Snake River, Idaho, USA, were correlated with specific bed form types at the pool-riffle scale. A bed form differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool-riffle units that were independent of discharge. The vertical location of thalweg points within these units was quantified with a riffle proximity index. Chinook salmon spawning areas were mapped and correlated with the pool-riffle units through the use of cross-tabulation tables. The results indicate that 84% of fall Chinook salmon spawning areas were correlated with riffles (Chi-square=152.1, df=3, p<0.001), with 53% of those areas located on the upstream side of riffle crests. The majority of Snake River fall Chinook salmon spawning occurred at a vertical location within 80% of the nearest riffle crest elevation. The analyses of bed form morphology will assist regional fish mangers in quantifying existing and potential fall Chinook salmon spawning habitat, and will provide a quantitative framework for evaluating general ecological implications of channel morphology in large gravel-bed rivers.

  17. An assessment of flux of radionuclide contamination through the large Siberian rivers to the Kara sea

    International Nuclear Information System (INIS)

    Maderich, V.; Dziuba, N.; Koshebutsky, V.; Zheleznyak, M.; Volkov, V.

    2004-01-01

    The activities of several nuclear reprocessing plants (Siberian Chemical Combine (SCC) and Mining, Chemical Combine (MCC) and Mayak Production Association (Mayak)) that are placed in the watersheds of large Siberian rivers Ob' and Yenisey may potentially cause contamination of the Arctic Ocean. An assessment of the levels of radionuclide discharges into the Kara Sea from existing and potential sources of techno-genic radioactivity, located within the watershed of the Ob' and Yenisey rivers is presented. In frame of EU INCO-COPERNICUS project RADARC a linked chain of 1D river model RIVTOX and 3D estuary model THREETOX was used to simulate impact of the previous and potential releases from the nuclear installations in the basins of Ob' and Yenisey rivers on radioactive contamination of the rivers and the Kara Sea. The RIVTOX includes the one-dimensional model of river hydraulics, suspended sediment and radionuclide transport in river channels. THREETOX includes a set of submodels: a hydrodynamics sub-model, ice dynamics-thermodynamics sub-model, suspended sediment transport and radionuclide transport submodels. The radionuclide transport model simulate processes in water, suspended sediments and in bottom sediments. These models were adapted to the Ob' river path from Mayak and SCC and Yenisey River from MCC. The simulations of 90 Sr and 137 Cs contamination for the period 1949-1994 were carried out for the Ob' and period 1959-1994 for the Yenisey. The use of model chain allowed to reconstruct contamination of water and sediments along the river path to estimate fluxes into the Kara Sea. It was shown strong initial contamination in early 50's the sediments in the Ob' were sources for secondary contamination of river and estuary. Based on chosen realistic scenarios, simulations have been performed in order to assess the potential risk of contamination from existing and potential sources of radionuclides into the Kara Sea through the Ob' and Yenisey rivers. (author)

  18. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported

  19. Large orders in strong-field QED

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Schroeder, Oliver [Science-Computing ag, Hagellocher Weg 73, D-72070 Tuebingen (Germany)

    2006-09-15

    We address the issue of large-order expansions in strong-field QED. Our approach is based on the one-loop effective action encoded in the associated photon polarization tensor. We concentrate on the simple case of crossed fields aiming at possible applications of high-power lasers to measure vacuum birefringence. A simple next-to-leading order derivative expansion reveals that the indices of refraction increase with frequency. This signals normal dispersion in the small-frequency regime where the derivative expansion makes sense. To gain information beyond that regime we determine the factorial growth of the derivative expansion coefficients evaluating the first 82 orders by means of computer algebra. From this we can infer a nonperturbative imaginary part for the indices of refraction indicating absorption (pair production) as soon as energy and intensity become (super)critical. These results compare favourably with an analytic evaluation of the polarization tensor asymptotics. Kramers-Kronig relations finally allow for a nonperturbative definition of the real parts as well and show that absorption goes hand in hand with anomalous dispersion for sufficiently large frequencies and fields.

  20. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal

  1. Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Carles, E-mail: carles.ibanez@irta.cat [IRTA Aquatic Ecosystems, Carretera Poble Nou, Km 5.5, 43540 St. Carles de la Rapita, Catalonia (Spain); Alcaraz, Carles; Caiola, Nuno; Rovira, Albert; Trobajo, Rosa [IRTA Aquatic Ecosystems, Carretera Poble Nou, Km 5.5, 43540 St. Carles de la Rapita, Catalonia (Spain); Alonso, Miguel [United Research Services S.L., Urgell 143, 08036 Barcelona, Catalonia (Spain); Duran, Concha [Confederacion Hidrografica del Ebro, Sagasta 24-26, 50071 Zaragoza, Aragon (Spain); Jimenez, Pere J. [Grup Natura Freixe, Major 56, 43750 Flix, Catalonia (Spain); Munne, Antoni [Agencia Catalana de l' Aigua, Provenca 204-208, 08036 Barcelona, Catalonia (Spain); Prat, Narcis [Departament d' Ecologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona Catalonia (Spain)

    2012-02-01

    The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton-dominated to a macrophyte-dominated system. This shift is well known in shallow lakes but apparently it has never been documented in rivers. Two initial hypotheses to explain the collapse of the phytoplankton were considered: a) the diminution of nutrients (bottom-up); b) the filtering effect due to the colonization of the zebra mussel (top-down). Data on water quality, hydrology and biological communities (phytoplankton, macrophytes and zebra mussel) was obtained both from existing data sets and new surveys. Results clearly indicate that the decrease in phosphorus is the main cause of a dramatic decrease in chlorophyll and large increase in water transparency, triggering the subsequent colonization of macrophytes in the river bed. A Generalized Linear Model analysis showed that the decrease in dissolved phosphorus had a relative importance 14 times higher than the increase in zebra mussel density to explain the variation of total chlorophyll. We suggest that the described changes in the lower Ebro River can be considered a novel ecosystem shift. This shift is triggering remarkable changes in the biological communities beyond the decrease of phytoplankton and the proliferation of macrophytes, such as massive colonization of Simulidae (black fly) and other changes in the benthic invertebrate communities that are currently investigated. - Highlights: Black-Right-Pointing-Pointer We show a regime shift in a large river from phytoplankton to macrophyte dominance. Black-Right-Pointing-Pointer Two main hypotheses are considered: nutrient decrease and zebra mussel grazing. Black-Right-Pointing-Pointer Phosphorus depletion is found to be the main cause of the phytoplankton decline. Black-Right-Pointing-Pointer We conclude that oligotrophication triggered the colonization of macrophytes. Black-Right-Pointing-Pointer This new regime shift in a river is similar to that described

  2. Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects

    International Nuclear Information System (INIS)

    Ibáñez, Carles; Alcaraz, Carles; Caiola, Nuno; Rovira, Albert; Trobajo, Rosa; Alonso, Miguel; Duran, Concha; Jiménez, Pere J.; Munné, Antoni; Prat, Narcís

    2012-01-01

    The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton-dominated to a macrophyte-dominated system. This shift is well known in shallow lakes but apparently it has never been documented in rivers. Two initial hypotheses to explain the collapse of the phytoplankton were considered: a) the diminution of nutrients (bottom-up); b) the filtering effect due to the colonization of the zebra mussel (top-down). Data on water quality, hydrology and biological communities (phytoplankton, macrophytes and zebra mussel) was obtained both from existing data sets and new surveys. Results clearly indicate that the decrease in phosphorus is the main cause of a dramatic decrease in chlorophyll and large increase in water transparency, triggering the subsequent colonization of macrophytes in the river bed. A Generalized Linear Model analysis showed that the decrease in dissolved phosphorus had a relative importance 14 times higher than the increase in zebra mussel density to explain the variation of total chlorophyll. We suggest that the described changes in the lower Ebro River can be considered a novel ecosystem shift. This shift is triggering remarkable changes in the biological communities beyond the decrease of phytoplankton and the proliferation of macrophytes, such as massive colonization of Simulidae (black fly) and other changes in the benthic invertebrate communities that are currently investigated. - Highlights: ► We show a regime shift in a large river from phytoplankton to macrophyte dominance. ► Two main hypotheses are considered: nutrient decrease and zebra mussel grazing. ► Phosphorus depletion is found to be the main cause of the phytoplankton decline. ► We conclude that oligotrophication triggered the colonization of macrophytes. ► This new regime shift in a river is similar to that described in shallow lakes.

  3. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin.

    Directory of Open Access Journals (Sweden)

    John H Eiler

    Full Text Available Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002-2004. Most (97.5% of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28-40 km d-1 compared to upper basin stocks (52-62 km d-1. Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between "hares" (faster fish becoming slower and "tortoises" (slow but steady fish explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  4. Coupling a basin erosion and river sediment transport model into a large scale hydrological model: an application in the Amazon basin

    Science.gov (United States)

    Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.

    2012-04-01

    This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no

  5. A Continental-scale River Corridor Model to Synthesize Understanding and Prioritize Management of Water Purification Functions and Ecological Services in Large Basins

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.; Scott, D.; Boyer, E. W.; Schmadel, N. M.; Alexander, R. B.; Eng, K.; Golden, H. E.; Kettner, A.; Konrad, C. P.; Moore, R. B.; Pizzuto, J. E.; Schwarz, G. E.; Soulsby, C.

    2017-12-01

    The functional values of rivers depend on more than just wetted river channels. Instead, the river channel exchanges water and suspended materials with adjacent riparian, floodplain, hyporheic zones, and ponded waters such as lakes and reservoirs. Together these features comprise a larger functional unit known as the river corridor. The exchange of water, solutes, and sediments within the river corridor alters downstream water quality and ecological functions, but our understanding of the large-scale, cumulative impacts is inadequate and has limited advancements in sustainable management practices. A problem with traditional watershed, groundwater, and river water quality models is that none of them explicitly accounts for river corridor storage and processing, and the exchanges of water, solutes, and sediments that occur many times between the channel and off-channel environments during a river's transport to the sea. Our River Corridor Working Group at the John Wesley Powell Center is quantifying the key components of river corridor functions. Relying on foundational studies that identified floodplain, riparian, and hyporheic exchange flows and resulting enhancement of chemical reactions at river reach scales, we are assembling the datasets and building the models to upscale that understanding onto 2.6 million river reaches in the U.S. A principal goal of the River Corridor Working group is to develop a national-scale river corridor model for the conterminous U.S. that will reveal, perhaps for the first time, the relative influences of hyporheic, riparian, floodplain, and ponded waters at large spatial scales. The simple but physically-based models are predictive for changing conditions and therefore can directly address the consequences and effectiveness of management actions in sustaining valuable river corridor functions. This presentation features interpretation of useful river corridor connectivity metrics and ponded water influences on nutrient and sediment

  6. Large amplitude waves and fields in plasmas

    International Nuclear Information System (INIS)

    Angelis, U. de; Naples Univ.

    1990-02-01

    In this review, based mostly on the results of the recent workshop on ''Large Amplitude Waves and Fields in Plasmas'' held at ICTP (Trieste, Italy) in May 1989 during the Spring College on Plasma Physics, I will mostly concentrate on underdense, cold, homogeneous plasmas, discussing some of the alternative (to fusion) uses of laser-plasma interaction. In Part I an outline of some basic non-linear processes is given, together with some recent experimental results. The processes are chosen because of their relevance to the applications or because new interesting developments have been reported at the ICTP workshop (or both). In Part II the excitation mechanisms and uses of large amplitude plasma waves are presented: these include phase-conjugation in plasmas, plasma based accelerators (beat-wave, plasma wake-field and laser wake-field), plasma lenses and plasma wigglers for Free Electron Lasers. (author)

  7. Large field-of-view transmission line resonator for high field MRI

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johannesson, Kristjan Sundgaard; Boer, Vincent

    2016-01-01

    Transmission line resonators is often a preferable choice for coils in high field magnetic resonance imaging (MRI), because they provide a number of advantages over traditional loop coils. The size of such resonators, however, is limited to shorter than half a wavelength due to high standing wave....... Achieved magnetic field distribution is compared to the conventional transmission line resonator. Imaging experiments are performed using 7 Tesla MRI system. The developed resonator is useful for building coils with large field-of-view....

  8. Large Field Inflation and Gravitational Entropy

    DEFF Research Database (Denmark)

    Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion

    2016-01-01

    species will lead to a violation of the covariant entropy bound at large $N$. If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem...... entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with $N$ scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong...... in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it....

  9. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  10. Field Dependence-Field Independence Cognitive Style, Gender, Career Choice and Academic Achievement of Secondary School Students in Emohua Local Government Area of Rivers State

    Science.gov (United States)

    Onyekuru, Bruno Uchenna

    2015-01-01

    This is a descriptive study that investigated the relationships among field dependence-field independence cognitive style and gender, career choice and academic achievement of secondary school students in Emohua Local Government Area of Rivers State, Nigeria. From the initial sample of 320 senior secondary school one (SS1) students drawn from the…

  11. Air-Seawater Exchange of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River.

    Science.gov (United States)

    Lin, Tian; Guo, Zhigang; Li, Yuanyuan; Nizzetto, Luca; Ma, Chuanliang; Chen, Yingjun

    2015-05-05

    Gaseous exchange fluxes of organochlorine pesticides (OCPs) across the air-water interface of the coastal East China Sea were determined in order to assess whether the contaminated plume of the Yangtze River could be an important regional source of OCPs to the atmosphere. Hexachlorocyclohexanes (HCHs), chlordane compounds (CHLs), and dichlorodiphenyltrichloroethanes (DDTs) were the most frequently detected OCPs in air and water. Air-water exchange was mainly characterized by net volatilization for all measured OCPs. The net gaseous exchange flux ranged 10-240 ng/(m2·day) for γ-HCH, 60-370 ng/(m2·day) for trans-CHL, 97-410 ng/(m2·day) for cis-CHL, and ∼0 (e.g., equilibrium) to 490 ng/(m2·day) for p,p'-DDE. We found that the plume of the large contaminated river can serve as a significant regional secondary atmospheric source of legacy contaminants released in the catchment. In particular, the sediment plume represented the relevant source of DDT compounds (especially p,p'-DDE) sustaining net degassing when clean air masses from the open ocean reached the plume area. In contrast, a mass balance showed that, for HCHs, contaminated river discharge (water and sediment) plumes were capable of sustaining volatilization throughout the year. These results demonstrate the inconsistencies in the fate of HCHs and DDTs in this large estuarine system with declining primary sources.

  12. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    Science.gov (United States)

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-02-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.

  13. Linking Flow Regime, Floodplain Lake Connectivity and Fish Catch in a Large River-Floodplain System, the Volga-Akhtuba Floodplain (Russian Federation)

    NARCIS (Netherlands)

    Wolfshaar, van de K.E.; Middelkoop, H.; Addink, E.; Winter, H.V.; Nagelkerke, L.A.J.

    2011-01-01

    River-floodplain systems are amongst the most productive—but often severely impacted—aquatic systems worldwide. We explored the ecological response of fish to flow regime in a large river-floodplain system by studying the relationships between (1) discharge and inundated floodplain area, with a

  14. Optimally managing water resources in large river basins for an uncertain future

    Science.gov (United States)

    Edwin A. Roehl, Jr.; Conrads, Paul

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  15. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  16. Low energy microcolumn for large field view inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Chul [Department of Optometry, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 (Korea, Republic of); Ahn, Seung-Joon; Oh, Tae-Sik; Kim, Dae-Wook [Department of Nanoscience, Sun Moon University 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Kim, Ho-Seob, E-mail: hskim3@sunmoon.ac.kr [Department of Nanoscience, Sun Moon University 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Jang, Won Kweon [Division of Electronic, Computer and Communication Engineering, Hanseo University 360 DaeKook-ri, Haemi-myun, Seosan-si, Chungnam 356-706 (Korea, Republic of)

    2011-12-15

    Since the development of microcolumn system, it attracted much attention because multiple microcolumns can be assembled into arrayed form, which is expected to generate multiple electron beams and overcome the disadvantage of electron beam inspection equipments, low throughput . However, it is not easy to apply a microcolumn to the practical inspection or testing equipment since its scanning area is too small. Even if the arrayed operation using multiple microcolumns can overcome this limit, it requires complicated supporting systems and related technologies to operate a number of microcolumns simultaneously. Therefore, we tried to modify microcolumn design itself so that it can have a large field of view. In this work, two kinds of modified columns will be suggested and the preliminary results showing their performance of scanning large area will be discussed. -- Highlights: Black-Right-Pointing-Pointer Two types of microcolumn designs to achieve a large field of view are fabricated. Black-Right-Pointing-Pointer Field of view of a microcolumn increases linearly with the working distance. Black-Right-Pointing-Pointer New designed microcolumns can be developed as a low energy column system for large view inspections.

  17. Simulation of turbid underflows generated by the plunging of a river

    Science.gov (United States)

    Kassem, Ahmed; Imran, Jasim

    2001-07-01

    When the density of sediment-laden river water exceeds that of the lake or ocean into which it discharges, the river plunges to the bottom of the receiving water body and continues to flow as a hyperpycnal flow. These particle-laden underflows, also known as turbidity currents, can travel remarkable distances and profoundly influence the seabed morphology from shoreline to abyss by depositing, eroding, and dispersing large quantities of sediment particles. Here we present a new approach to investigating the transformation of a plunging river flow into a turbidity current. Unlike previous workers using experimental and numerical treatments, we consider the evolution of a turbidity current from a river as different stages of a single flow process. From initial commotion to final stabilization, the transformation of a river (open channel flow) into a density-driven current (hyperpycnal flow) is captured in its entirety by a numerical model. Successful implementation of the model in laboratory and field cases has revealed the dynamics of a complex geophysical flow that is extremely difficult to observe in the field or model in the laboratory.

  18. Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load

    Science.gov (United States)

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.

    2015-01-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload

  19. Field studies of radionuclide transport at the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1991-01-01

    In this paper the authors summarize the results of: in situ field column experiments to study the transport behaviour of several long-lived radionuclides, 4 natural gradient non-reactive radiotracer injection experiments at the Chalk River Laboratories (CRL) Twin Lake Tracer Test Site, and a model validation study that used data for 90 Sr from two well-defined contaminated groundwater flow systems at CRL. The paper also describes a current re-evaluation of radionuclide release and transport from a 1960 experimental burial (in a CRL sand aquifer) of glass blocks containing fission and activation products. (J.P.N.)

  20. Nitrous Oxide Emissions from a Large, Impounded River: The Ohio River

    Science.gov (United States)

    Models suggest that microbial activity in streams and rivers is a globally significant source of anthropogenic nitrous oxide (N2O), a potent greenhouse gas and the leading cause of stratospheric ozone destruction. However, model estimates of N2O emissions are poorly constrained ...

  1. Variation of River Islands around a Large City along the Yangtze River from Satellite Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Haiyun Shi

    2017-09-01

    Full Text Available River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper and ETM (Enhanced Thematic Mapper+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1 TM/ETM+ images met the criteria of information extraction of river islands; (2 generally, the total area of these islands in this section and their changing rate decreased over time; (3 sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles.

  2. Where Does the River Run? Lessons from a Semi-Arid River

    Science.gov (United States)

    Meixner, T.; Soto, C. D.; Richter, H.; Uhlman, K.

    2009-12-01

    Spatial data sets to assess the nature of stream groundwater interactions and the resulting power law/fractal structure of travel time distributions are rare. Spatial data sets can be collected using high technology or by use of a large number of field assistants. The labor intensive way is expensive unless the public can be enlisted as citizen scientists to gather large, robust, spatial data sets robustly and cheaply. Such an effort requires public interest and the ability of a few to organize such an effort at a basin if not regional scale. The San Pedro basin offers such an opportunity for citizen science due to the water resource restrictions of the basins semi-arid climate. Since 1999 The Nature Conservancy, in cooperation with the Upper San Pedro Partnership, the public at large and various university and federal science agency participants, has been mapping where the San Pedro River has water present versus where it is dry. This mapping has used an army of volunteers armed with GPS units, clipboards and their eyes to make the determination if a given 10m reach of the river is wet or dry. These wet/dry mapping data now exist for 11 different annual surveys. These data are unique and enable an investigation of the hydrologic connectedness of flowing waters within this system. Analysis of these data reveals several important findings. The total river area that is wet is strongly correlated with stream flow as observed at three USGS gauges. The correlation is strongest however for 90 day and 1 year average flows rather than more local in time observations such as the daily, 7 day or monthly mean flow at the gauges. This result indicates that where the river is flowing depends on long term hydrologic conditions. The length of river reach that is mapped as wet or dry is indicative of the travel distance and thus time that water travels in the surface (wet) and subsurface (dry) of the river system. The reach length that is mapped as wet follows a power law function

  3. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington

    Science.gov (United States)

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen

    2017-06-22

    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  4. Sediment size of surface floodplain sediments along a large lowland river

    Science.gov (United States)

    Swanson, K. M.; Day, G.; Dietrich, W. E.

    2007-12-01

    Data on size distribution of surface sediment across a floodplain should place important constraints of modeling of floodplain deposition. Diffusive or advective models would predict that, generally, grain size should decrease away from channel banks. Variations in grain size downstream along floodplains may depend on downstream fining of river bed material, exchange rate with river banks and net deposition onto the floodplain. Here we report detailed grain size analyses taken from 17 floodplain transects along 450 km (along channel distance) reach of the middle Fly River, Papua New Guinea. Field studies have documented a systematic change in floodplain characteristics downstream from forested, more topographically elevated and topography bounded by an actively shifting mainstem channel to a downstream swamp grass, low elevation topography along which the river meanders are currently stagnant. Frequency and duration of flooding increase downstream. Flooding occurs both by overbank flows and by injections of floodwaters up tributary and tie channels connected to the mainstem. Previous studies show that about 40% of the total discharge of water passes across the floodplain, and, correspondingly, about 40% of the total load is deposited on the plain - decreasing exponentially from channel bank. We find that floodplain sediment is most sandy at the channel bank. Grain size rapidly declines away from the bank, but surprisingly two trends were also observed. A relatively short distance from the bank the surface material is finest, but with further distance from the bank (out to greater than 1 km from the 250 m wide channel) clay content decreases and silt content increases. The changes are small but repeated at most of the transects. The second trend is that bank material fines downstream, corresponding to a downstream finding bed material, but once away from the bank, there is a weak tendency for a given distance away from the bank the floodplain surface deposits to

  5. Intermittent Rivers and Biodiversity. Large scale analyses between hydrology and ecology in intermittent rivers

    OpenAIRE

    Blanchard, Q.

    2014-01-01

    Intermittent rivers are characterized by a temporary interruption of their flow which can manifest in a variety of ways, as much on a spatial scale as on a temporal one. This particular aspect of intermittent river hydrology gives rise to unique ecosystems, combining both aquatic and terrestrial habitats. Neglected for a long time by scientists and once considered biologically depauperate and ecologically unimportant, these fragile habitats are nowadays acknowledged for their rendered service...

  6. Video-Based Electroshocking Platform to Identify Lamprey Ammocoete Habitats: Field Validation and New Discoveries in the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Mueller, Robert P.

    2017-05-04

    A deep water electroshocking platform (DEP), developed to characterize larval lampreys (ammocoetes) and associated habitat in depths up to 15 m, was recently tested in the field. The DEP samples 0.55 m2∙min-1 without requiring ammocoete transport to the surface. Searches were conducted at a known rearing location (mouth of the Wind River, WA) and at locations on the Cowlitz River, WA, where ammocoetes had not previously been found. At the mouth of the Wind River, video imaged ammocoetes ranged from 50 to 150 mm in water depths between 1.5 m and 4.5 m and were more common in sediments containing organic silt. Ammocoetes (n=137) were detected at 61% of locations sampled (summer) and 50% of the locations sampled (winter). Following the field verification, the DEP was used on the lower 11.7 km of the Cowlitz River, WA. Ammocoetes (n=41) were found with a detection rate of 26% at specific search locations. Cowlitz River sediment containing ammocoetes was also dominated by silt with organic material, often downstream of alluvial bars in water depths from 0.8 to 1.7 m. Test results indicated a high sampling efficiency, favorable detection rates, and little or no impact to ammocoetes and their surrounding benthic environments.

  7. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    Science.gov (United States)

    Membiela, Federico Agustín; Bellini, Mauricio

    2009-04-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ0. Using the gravitoelectromagnetic inflationary formalism with A0 = 0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  8. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    International Nuclear Information System (INIS)

    Membiela, Federico Agustin; Bellini, Mauricio

    2009-01-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ 0 . Using the gravitoelectromagnetic inflationary formalism with A 0 =0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  9. Quantification of Linkages between Large-Scale Climate Patterns and Annual Precipitation for the Colorado River Basin

    Science.gov (United States)

    Kalra, A.; Ahmad, S.

    2010-12-01

    Precipitation is regarded as one of the key variables driving various hydrologic processes and the future precipitation information can be useful to better understand the long-term climate dynamics. In this paper, a simple, robust, and parsimonious precipitation forecast model, Support Vector Machine (SVM) is proposed which uses large-scale climate information and predict annual precipitation 1-year in advance. SVM’s are a novel class of neural networks (NNs) which are based on the statistical learning theory. The SVM’s has three main advantages over the traditional NNs: 1) better generalization ability, 2) the architecture and weights of SVM’s are guaranteed to be unique and globally optimum, and 3) SVM’s are trained more rapidly than the corresponding NN. With these advantages, an application of SVM incorporating large-scale climate information is developed and applied to seventeen climate divisions encompassing the Colorado River Basin in the western United States. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO) for a period of 1900-2007 are used to generate annual precipitation estimates with 1-year lead time. The results from the present study indicate that long-term precipitation predictions for the Upper Colorado River Basin can be successfully obtained using a combination of NAO and ENSO indices whereas coupling PDO and AMO results in improved precipitation predictions for the Lower Colorado River Basin. Precipitation predictions from the SVM model are found to be better when compared with the predictions obtained from feed-forward back propagation Artificial Neural Network and Multivariate Linear Regression models. The overall results of this study revealed that the annual precipitation of the Colorado River Basin was significantly influenced by oceanic-atmospheric oscillations and the proposed SVM

  10. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Membiela, Federico Agustin [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: membiela@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar

    2009-04-20

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant {lambda}{sub 0}. Using the gravitoelectromagnetic inflationary formalism with A{sub 0}=0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  11. Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe River

    NARCIS (Netherlands)

    de Kok, Jean-Luc; Grossmann, M.

    2010-01-01

    The downstream effects of flood risk mitigation measures and the necessity to develop flood risk management strategies that are effective on a basin scale call for a flood risk assessment methodology that can be applied at the scale of a large river. We present an example of a rapid flood risk

  12. Edge field emission of large-area single layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kleshch, Victor I., E-mail: klesch@polly.phys.msu.ru [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bandurin, Denis A. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Orekhov, Anton S. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, RAS, Moscow 119333 (Russian Federation); Purcell, Stephen T. [ILM, Université Claude Bernard Lyon 1 et CNRS, UMR 5586, 69622 Villeurbanne (France); Obraztsov, Alexander N. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu 80101 (Finland)

    2015-12-01

    Graphical abstract: - Highlights: • Stable field emission was observed from the edge of large-area graphene on quartz. • A strong hysteresis in current–voltage characteristics was observed. • The hysteresis was explained by mechanical peeling of graphene edge from substrate. • Reversible peeling of graphene edge may be used in microelectromechanical systems. - Abstract: Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current–voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  13. Tracing the origin of suspended sediment in a large Mediterranean river by combining continuous river monitoring and measurement of artificial and natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Zebracki, Mathilde, E-mail: zebracki@free.fr [Laboratoire d' Etudes Radioécologiques en milieu Continental et Marin (LERCM), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Eyrolle-Boyer, Frédérique [Laboratoire d' Etudes Radioécologiques en milieu Continental et Marin (LERCM), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Evrard, Olivier [Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Gif-sur-Yvette (France); Claval, David [Laboratoire d' Etudes Radioécologiques en milieu Continental et Marin (LERCM), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul-lez-Durance (France); Mourier, Brice [Université Lyon 1, UMR 5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, ENTPE, CNRS, 3, Rue Maurice Audin, F-69518 Vaulx-en-Velin (France); Université de Limoges, GRESE, EA 4330, 123 avenue Albert Thomas, 87060 Limoges (France); Gairoard, Stéphanie [Centre de Recherche et d' Enseignement de Géosciences de l' Environnement (CEREGE), Unité Mixte 34 (AMU/CNRS/IRD), Aix-en-Provence (France); and others

    2015-01-01

    Delivery of suspended sediment from large rivers to marine environments has important environmental impacts on coastal zones. In France, the Rhone River (catchment area of 98,000 km{sup 2}) is by far the main supplier of sediment to the Mediterranean Sea and its annual solid discharge is largely controlled by flood events. This study investigates the relevance of alternative and original fingerprinting techniques based on the relative abundances of a series of radionuclides measured routinely at the Rhone River outlet to quantify the relative contribution of sediment supplied by the main tributaries during floods. Floods were classified according to the relative contribution of the main subcatchments (i.e., Oceanic, Cevenol, extensive Mediterranean and generalised). Between 2000 and 2012, 221 samples of suspended sediment were collected at the outlet and were shown to be representative of all flood types that occurred during the last decade. Three geogenic radionuclides (i.e., {sup 238}U, {sup 232}Th and {sup 40}K) were used as fingerprints in a multivariate mixing model in order to estimate the relative contribution of the main subcatchment sources—characterised by different lithologies—in sediment samples collected at the outlet. Results showed that total sediment supply originating from Pre-Alpine, Upstream, and Cevenol sources amounted to 10, 7 and 2.10{sup 6} tons, respectively. These results highlight the role of Pre-Alpine tributaries as the main sediment supplier (53%) to the Rhone River during floods. Other fingerprinting approaches based on artificial radionuclide activity ratios (i.e., {sup 137}Cs/{sup 239+240}Pu and {sup 238}Pu/{sup 239+240}Pu) were tested and provided a way to quantify sediment remobilisation or the relative contributions of the southern tributaries. In the future, fingerprinting methods based on natural radionuclides should be further applied to catchments with heterogeneous lithologies. Methods based on artificial radionuclides

  14. Tracing the origin of suspended sediment in a large Mediterranean river by combining continuous river monitoring and measurement of artificial and natural radionuclides

    International Nuclear Information System (INIS)

    Zebracki, Mathilde; Eyrolle-Boyer, Frédérique; Evrard, Olivier; Claval, David; Mourier, Brice; Gairoard, Stéphanie

    2015-01-01

    Delivery of suspended sediment from large rivers to marine environments has important environmental impacts on coastal zones. In France, the Rhone River (catchment area of 98,000 km 2 ) is by far the main supplier of sediment to the Mediterranean Sea and its annual solid discharge is largely controlled by flood events. This study investigates the relevance of alternative and original fingerprinting techniques based on the relative abundances of a series of radionuclides measured routinely at the Rhone River outlet to quantify the relative contribution of sediment supplied by the main tributaries during floods. Floods were classified according to the relative contribution of the main subcatchments (i.e., Oceanic, Cevenol, extensive Mediterranean and generalised). Between 2000 and 2012, 221 samples of suspended sediment were collected at the outlet and were shown to be representative of all flood types that occurred during the last decade. Three geogenic radionuclides (i.e., 238 U, 232 Th and 40 K) were used as fingerprints in a multivariate mixing model in order to estimate the relative contribution of the main subcatchment sources—characterised by different lithologies—in sediment samples collected at the outlet. Results showed that total sediment supply originating from Pre-Alpine, Upstream, and Cevenol sources amounted to 10, 7 and 2.10 6 tons, respectively. These results highlight the role of Pre-Alpine tributaries as the main sediment supplier (53%) to the Rhone River during floods. Other fingerprinting approaches based on artificial radionuclide activity ratios (i.e., 137 Cs/ 239+240 Pu and 238 Pu/ 239+240 Pu) were tested and provided a way to quantify sediment remobilisation or the relative contributions of the southern tributaries. In the future, fingerprinting methods based on natural radionuclides should be further applied to catchments with heterogeneous lithologies. Methods based on artificial radionuclides should be further applied to catchments

  15. Field Operations For The "Intelligent River" Observation System: A Basin-wide Water Quality Observation System In The Savannah River Basin And Platform Supporting Related Diverse Initiatives.

    Science.gov (United States)

    Sutton, A.; Koons, M.; O'Brien-Gayes, P.; Moorer, R.; Hallstrom, J.; Post, C.; Gayes, P. T.

    2017-12-01

    The Intelligent River (IR) initiative is an NSF sponsored study developing new data management technology for a range of basin-scale applications. The technology developed by Florida Atlantic and Clemson University established a network of real-time reporting water quality sondes; from the mountains to the estuary of the Savannah River basin. Coastal Carolina University led the field operations campaign. Ancillary studies, student projects and initiatives benefitted from the associated instrumentation, infrastructure and operational support of the IR program. This provided a vehicle for students to participate in fieldwork across the watershed and pursue individual interests. Student projects included: 1) a Multibeam sonar survey investigating channel morphology in the area of an IR sensor station and 2) field tests of developing techniques for acquiring and assimilating flood velocity data into model systems associated with a separate NSF Rapid award. The multibeam survey within the lower Savannah basin exhibited a range of complexity in bathymetry, bedforms and bottom habitat in the vicinity of one of the water quality stations. The complex morphology and bottom habitat reflect complex flow patterns, localized areas of depositional and erosive tendencies providing a valuable context for considering point-source water quality time series. Micro- Lagrangian drifters developed by ISENSE at Florida Atlantic University, a sled mounted ADCP, and particle tracking from imagery collected by a photogrammetric drone were tested and used to develop methodology for establishing velocity, direction and discharge levels to validate, initialize and assimilate data into advance models systems during future flood events. The prospect of expanding wide scale observing systems can serve as a platform to integrate small and large-scale cooperative studies across disciplines as well as basic and applied research interests. Such initiatives provide opportunities for embedded education

  16. Effects of Large Wood on River-Floodplain Connectivity in a Headwater Appalachian Stream

    Science.gov (United States)

    Keys, T.; Govenor, H.; Jones, C. N.; Hession, W. C.; Scott, D.; Hester, E. T.

    2017-12-01

    Large wood (LW) plays an important, yet often undervalued role in stream ecosystems. Traditionally, LW has been removed from streams for aesthetic, navigational, and flood mitigation purposes. However, extensive research over the last three decades has directly linked LW to critical ecosystem functions including habitat provisioning, stream geomorphic stability, and water quality improvements; and as such, LW has increasingly been implemented in stream restoration activities. One of the proposed benefits to this restoration approach is that LW increases river-floodplain connectivity, potentially decreasing downstream flood peaks and improving water quality. Here, we conducted two experiential floods (i.e., one with and one without LW) in a headwater, agricultural stream to explore the effect of LW on river-floodplain connectivity and resulting hydrodynamic processes. During each flood, we released an equal amount of water to the stream channel, measured stream discharge at upstream and downstream boundaries, and measured inundation depth at multiple locations across the floodplain. We then utilized a 2-dimensional hydrodynamic model (HEC-RAS) to simulate floodplain hydrodynamics. We first calibrated the model using observations from the two experimental floods. Then, we utilized the calibrated model to evaluate differing LW placement strategies and effects under various flow conditions. Results show that the addition of LW to the channel decreased channel velocity and increased inundation extent, inundation depth, and floodplain velocity. Differential placement of LW along the stream impacted the levels of floodplain discharge, primarily due to the geomorphic characteristics of the stream. Finally, we examined the effects of LW on floodplain hydrodynamics across a synthetic flow record, and found that the magnitude of river-floodplain connectivity decreased as recurrence interval increased, with limited impacts on storm events with a recurrence interval of 25 years

  17. Spatial Analysis of Large Woody Debris Arrangement in a Midwestern U.S. River System: Geomorphic Implications and Influences

    Science.gov (United States)

    Martin, D. J.

    2013-12-01

    Large woody debris (LWD) is universally recognized as a key component of the geomorphological and ecological function of fluvial systems and has been increasingly incorporated into stream restoration and watershed management projects. However, 'natural' processes of recruitment and the subsequent arrangement of LWD within the river network are poorly understood and are thus, rarely a management consideration. Additionally, LWD research tends to be regionally biased toward mountainous regions, and scale biased toward the micro-scale. In many locations, the lack of understanding has led to the failure of restoration/rehabilitation projects that involved the use of LWD. This research uses geographic information systems and spatial analysis techniques to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. A large-scale GPS inventory of LWD was performed on the Big River, located in the eastern Missouri Ozarks resulting in over 5,000 logged positions of LWD along seven river segments covering nearly 100 km of the 237 km river system. A time series analysis framework was used to statistically identify longitudinal spatial patterns of LWD arrangement along the main stem of the river, and correlation analyses were performed to help identify physical controls of those patterns. Results indicate that upstream segments have slightly lower densities than downstream segments, with the exception of the farthest upstream segment. Results also show lack of an overall longitudinal trend in LWD density; however, periodogram analysis revealed an inherent periodicity in LWD arrangement. Periodicities were most evident in the downstream segments with frequencies ranging from 3 km to 7 km. Additionally, Pearson correlation analysis, performed within the segment displaying the strongest periodic behavior, show that LWD densities are correlated with channel sinuosity (r=0.25). Ongoing research is investigating further relationships between arrangement

  18. Broadening the regulated-river management paradigm: A case study of the forgotten dead zone hindering Pallid Sturgeon recovery

    Science.gov (United States)

    Guy, Christopher S.; Treanor, Hilary B.; Kappenman, Kevin M.; Scholl, Eric A.; Ilgen, Jason E.; Webb, Molly A. H.

    2015-01-01

    The global proliferation of dams within the last half century has prompted ecologists to understand the effects of regulated rivers on large-river fishes. Currently, much of the effort to mitigate the influence of dams on large-river fishes has been focused on downriver effects, and little attention has been given to upriver effects. Through a combination of field observations and laboratory experiments, we tested the hypothesis that abiotic conditions upriver of the dam are the mechanism for the lack of recruitment in Pallid Sturgeon (Scaphirhynchus albus), an iconic large-river endangered species. Here we show for the first time that anoxic upriver habitat in reservoirs (i.e., the transition zone between the river and reservoir) is responsible for the lack of recruitment in Pallid Sturgeon. The anoxic condition in the transition zone is a function of reduced river velocities and the concentration of fine particulate organic material with high microbial respiration. As predicted, the river upstream of the transition zone was oxic at all sampling locations. Our results indicate that transition zones are an ecological sink for Pallid Sturgeon. We argue that ecologists, engineers, and policy makers need to broaden the regulated-river paradigm to consider upriver and downriver effects of dams equally to comprehensively mitigate altered ecosystems for the benefit of large-river fishes, especially for the Pallid Sturgeon.

  19. LOGISTICS OF ECOLOGICAL SAMPLING ON LARGE RIVERS

    Science.gov (United States)

    The objectives of this document are to provide an overview of the logistical problems associated with the ecological sampling of boatable rivers and to suggest solutions to those problems. It is intended to be used as a resource for individuals preparing to collect biological dat...

  20. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient

    NARCIS (Netherlands)

    Aarts, B.G.W.; Van den Brink, F.W.B.; Nienhuis, P.H.

    2004-01-01

    In large European rivers the chemical water quality has improved markedly in recent decades, yet the recovery of the fish fauna is not proceeding accordingly. Important causes are the loss of habitats in the main river channels and their floodplains, and the diminished hydrological connectivity

  1. Large-field inflation and supersymmetry breaking

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Wieck, Clemens; Dudas, Emilian; Heurtier, Lucien; Ecole Polytechnique, Palaiseau

    2014-07-01

    Large-field inflation is an interesting and predictive scenario. Its non-trivial embedding in supergravity was intensively studied in the recent literature, whereas its interplay with supersymmetry breaking has been less thoroughly investigated. We consider the minimal viable model of chaotic inflation in supergravity containing a stabilizer field, and add a Polonyi field. Furthermore, we study two possible extensions of the minimal setup. We show that there are various constraints: first of all, it is very hard to couple an O'Raifeartaigh sector with the inflaton sector, the simplest viable option being to couple them only through gravity. Second, even in the simplest model the gravitino mass is bounded from above parametrically by the inflaton mass. Therefore, high-scale supersymmetry breaking is hard to implement in a chaotic inflation setup. As a separate comment we analyze the simplest chaotic inflation construction without a stabilizer field, together with a supersymmetrically stabilized Kaehler modulus. Without a modulus, the potential of such a model is unbounded from below. We show that a heavy modulus cannot solve this problem.

  2. Comment on Origin of Groundwater Discharge at Fall River Springs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T

    2006-10-20

    I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed

  3. Magnetic field map for a large TPC prototype

    International Nuclear Information System (INIS)

    Grefe, Christian

    2008-12-01

    A new e + e - linear collider with an energy of up to 1000 GeV is currently being planned: the International Linear Collider (ILC). It will allow high precision measurements of the Higgs boson and physics beyond the Standard Model. In the Large Detector Concept (LDC) -which is one of the proposed detector concepts for the ILC- a Time Projection Chamber (TPC) is intended as the main tracking device. Within the EUDET project a large TPC prototype is currently being built as an infrastructure to test different gas amplification and readout technologies. The prototype will be operated in a 1T superconducting solenoid magnet -the PCMAG- at the DESY testbeam area. In order to reach the best possible track reconstruction the magnetic field has to be known very precisely throughout the TPC volume. The magnetic field of PCMAG has been measured in July 2007. In this work the creation of a high precision field map from the measurements is presented. The magnet and modelling techniques for its magnetic field are described. A model of the magnet has been created as a best fit from the measurements and its limitations are investigated. The field map will be included in the reconstruction software for the TPC prototype. (orig.)

  4. Magnetic field map for a large TPC prototype

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Christian

    2008-12-15

    A new e{sup +}e{sup -} linear collider with an energy of up to 1000 GeV is currently being planned: the International Linear Collider (ILC). It will allow high precision measurements of the Higgs boson and physics beyond the Standard Model. In the Large Detector Concept (LDC) -which is one of the proposed detector concepts for the ILC- a Time Projection Chamber (TPC) is intended as the main tracking device. Within the EUDET project a large TPC prototype is currently being built as an infrastructure to test different gas amplification and readout technologies. The prototype will be operated in a 1T superconducting solenoid magnet -the PCMAG- at the DESY testbeam area. In order to reach the best possible track reconstruction the magnetic field has to be known very precisely throughout the TPC volume. The magnetic field of PCMAG has been measured in July 2007. In this work the creation of a high precision field map from the measurements is presented. The magnet and modelling techniques for its magnetic field are described. A model of the magnet has been created as a best fit from the measurements and its limitations are investigated. The field map will be included in the reconstruction software for the TPC prototype. (orig.)

  5. Numerically modelling the large scale coronal magnetic field

    Science.gov (United States)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  6. Food-web dynamics in a large river discontinuum

    Science.gov (United States)

    Cross, Wyatt F.; Baxter, Colden V.; Rosi-Marshall, Emma J.; Hall, Robert O.; Kennedy, Theodore A.; Donner, Kevin C.; Kelly, Holly A. Wellard; Seegert, Sarah E.Z.; Behn, Kathrine E.; Yard, Michael D.

    2013-01-01

    Nearly all ecosystems have been altered by human activities, and most communities are now composed of interacting species that have not co-evolved. These changes may modify species interactions, energy and material flows, and food-web stability. Although structural changes to ecosystems have been widely reported, few studies have linked such changes to dynamic food-web attributes and patterns of energy flow. Moreover, there have been few tests of food-web stability theory in highly disturbed and intensely managed freshwater ecosystems. Such synthetic approaches are needed for predicting the future trajectory of ecosystems, including how they may respond to natural or anthropogenic perturbations. We constructed flow food webs at six locations along a 386-km segment of the Colorado River in Grand Canyon (Arizona, USA) for three years. We characterized food-web structure and production, trophic basis of production, energy efficiencies, and interaction-strength distributions across a spatial gradient of perturbation (i.e., distance from Glen Canyon Dam), as well as before and after an experimental flood. We found strong longitudinal patterns in food-web characteristics that strongly correlated with the spatial position of large tributaries. Above tributaries, food webs were dominated by nonnative New Zealand mudsnails (62% of production) and nonnative rainbow trout (100% of fish production). The simple structure of these food webs led to few dominant energy pathways (diatoms to few invertebrate taxa to rainbow trout), large energy inefficiencies (i.e., Below large tributaries, invertebrate production declined ∼18-fold, while fish production remained similar to upstream sites and comprised predominately native taxa (80–100% of production). Sites below large tributaries had increasingly reticulate and detritus-based food webs with a higher prevalence of omnivory, as well as interaction strength distributions more typical of theoretically stable food webs (i

  7. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  8. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  9. Operation of river systems. The Otra river

    International Nuclear Information System (INIS)

    Harby, A.; Vaskinn, K.A.; Wathne, M.; Heggenes, J.; Saltveit, S.J.

    1993-12-01

    The purpose of the project described in this report was to prepare an operative tool for making decisions about the operation of the power system on the river Otra (Norway) with regard to how this operation might affect the various users of the river system. Above all this affects fish, outdoor life and esthetic values. The connection between water quality and volume of discharge has been examined in a sub project. How suitable parts of the river are as habitats for trout has been simulated on a computer. From field investigation it is concluded that near the Steinfoss power station the physical conditions for trout depend on the operation of the river system. Outdoor life is not much affected downstream Vikeland. 11 refs., 22 figs., 2 tabs

  10. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon

    Science.gov (United States)

    Ren, Dongyang; Xu, Xu; Hao, Yuanyuan; Huang, Guanhua

    2016-01-01

    Water saving in irrigation is a key issue in the upper Yellow River basin. Excessive irrigation leads to water waste, water table rising and increased salinity. Land fragmentation associated with a large dispersion of crops adds to the agro-hydrological complexity of the irrigation system. The model HYDRUS-1D, coupled with the FAO-56 dual crop coefficient approach (dualKc), was applied to simulate the water and salt movement processes. Field experiments were conducted for maize, sunflower and watermelon crops in the command area of a typical irrigation canal system in Hetao Irrigation District during 2012 and 2013. The model was calibrated and validated in three crop fields using two-year experimental data. Simulations of soil moisture, salinity concentration and crop yield fitted well with the observations. The irrigation water use was then evaluated and results showed that large amounts of irrigation water percolated due to over-irrigation but their reuse through capillary rise was also quite large. That reuse was facilitated by the dispersion of crops throughout largely fragmented field, thus with fields reusing water percolated from nearby areas due to the rapid lateral migration of groundwater. Beneficial water use could be improved when taking this aspect into account, which was not considered in previous researches. The non-beneficial evaporation and salt accumulation into the root zone were found to significantly increase during non-growth periods due to the shallow water tables. It could be concluded that when applying water saving measures, close attention should be paid to cropping pattern distribution and groundwater control in association with irrigation scheduling and technique improvement.

  11. What Can Modern River Profiles Tell Us about Orogenic Processes and Orogen Evolution?

    Science.gov (United States)

    Whipple, K. X.

    2008-12-01

    Numerous lines of evidence from theory, numerical simulations, and physical experiments suggest that orogen evolution is strongly coupled to atmospheric processes through the interrelationships among climate, topography, and erosion rate. In terms of orogenic processes and orogen evolution, these relationships are most important at the regional scale (mean topographic gradient, mean relief above surrounding plains) largely because crustal deformation is most sensitive to erosional unloading averaged over sufficiently long wavelengths. For this reason, and because above moderate erosion rates (> 0.2 mm/yr) hillslope form becomes decoupled from erosion rate, attention has focused on the river network, and even on particularly large rivers. We now have data that demonstrates a monotonic relationship between erosion rate and the channel steepness index (slope normalized for differences in drainage area) in a variety of field settings. Consequently, study of modern river profiles can yield useful information on recent and on-going patterns of rock uplift. It is not yet possible, however, to quantitatively isolate expected climatic and lithologic influences on this relationship. A combination of field studies and theoretical analyses are beginning to reveal the timescale of landscape response, and thus the topographic memory of past conditions. At orogen scale, river profile response to a change in rock uplift rate is on the order of 1-10 Myr. Because of these long response times, the modern profiles of large rivers and their major tributaries can potentially preserve an interpretable record of rock uplift rates since the Miocene and are insensitive to short-term climatic fluctuations. Only significant increases in rock uplift rate, however, are likely to leave a clear topographic signature. Strategies have been developed to differentiate between temporal and spatial (tectonic, climatic, or lithologic) influences on channel profile form, especially where spatially

  12. Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a lowland river (Aa River, Belgium)

    Science.gov (United States)

    Ghysels, Gert; Benoit, Sien; Awol, Henock; Jensen, Evan Patrick; Debele Tolche, Abebe; Anibas, Christian; Huysmans, Marijke

    2018-04-01

    An improved general understanding of riverbed heterogeneity is of importance for all groundwater modeling studies that include river-aquifer interaction processes. Riverbed hydraulic conductivity (K) is one of the main factors controlling river-aquifer exchange fluxes. However, the meter-scale spatial variability of riverbed K has not been adequately mapped as of yet. This study aims to fill this void by combining an extensive field measurement campaign focusing on both horizontal and vertical riverbed K with a detailed geostatistical analysis of the meter-scale spatial variability of riverbed K . In total, 220 slug tests and 45 standpipe tests were performed at two test sites along the Belgian Aa River. Omnidirectional and directional variograms (along and across the river) were calculated. Both horizontal and vertical riverbed K vary over several orders of magnitude and show significant meter-scale spatial variation. Horizontal K shows a bimodal distribution. Elongated zones of high horizontal K along the river course are observed at both sections, indicating a link between riverbed structures, depositional environment and flow regime. Vertical K is lognormally distributed and its spatial variability is mainly governed by the presence and thickness of a low permeable organic layer at the top of the riverbed. The absence of this layer in the center of the river leads to high vertical K and is related to scouring of the riverbed by high discharge events. Variograms of both horizontal and vertical K show a clear directional anisotropy with ranges along the river being twice as large as those across the river.

  13. Model predictions of long-lived storage of organic carbon in river deposits

    Directory of Open Access Journals (Sweden)

    M. A. Torres

    2017-11-01

    Full Text Available The mass of carbon stored as organic matter in terrestrial systems is sufficiently large to play an important role in the global biogeochemical cycling of CO2 and O2. Field measurements of radiocarbon-depleted particulate organic carbon (POC in rivers suggest that terrestrial organic matter persists in surface environments over millennial (or greater timescales, but the exact mechanisms behind these long storage times remain poorly understood. To address this knowledge gap, we developed a numerical model for the radiocarbon content of riverine POC that accounts for both the duration of sediment storage in river deposits and the effects of POC cycling. We specifically target rivers because sediment transport influences the maximum amount of time organic matter can persist in the terrestrial realm and river catchment areas are large relative to the spatial scale of variability in biogeochemical processes.Our results show that rivers preferentially erode young deposits, which, at steady state, requires that the oldest river deposits are stored for longer than expected for a well-mixed sedimentary reservoir. This geometric relationship can be described by an exponentially tempered power-law distribution of sediment storage durations, which allows for significant aging of biospheric POC. While OC cycling partially limits the effects of sediment storage, the consistency between our model predictions and a compilation of field data highlights the important role of storage in setting the radiocarbon content of riverine POC. The results of this study imply that the controls on the terrestrial OC cycle are not limited to the factors that affect rates of primary productivity and respiration but also include the dynamics of terrestrial sedimentary systems.

  14. Planck intermediate results XLII. Large-scale Galactic magnetic fields

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured ...

  15. A phase transition between small- and large-field models of inflation

    International Nuclear Information System (INIS)

    Itzhaki, Nissan; Kovetz, Ely D

    2009-01-01

    We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large-field type to a region where they are of small-field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large-field region and non-universal behavior at the small-field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.

  16. River-Based Experiential Learning: the Bear River Fellows Program

    Science.gov (United States)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the

  17. String cosmology. Large-field inflation in string theory

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2014-09-01

    This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.

  18. Use of tritium to predict soluble pollutants transport in Ebro River waters (Spain).

    Science.gov (United States)

    Pujol, L; Sanchez-Cabeza, J A

    2000-05-01

    The Ebro River, in Northeast Spain, discharges into the Mediterranean Sea after flowing through several large cities and agricultural, mining and industrial areas. The Ascó nuclear power plant (NPP) is located in its lower section and comprises two pressurised water reactor units, from which low-level liquid radioactive waste is released to river waters under authority control. Tritium routinely released by the NPP was used as a radiotracer to determine the longitudinal dispersion coefficient and velocity of the river waters. Several field experiments, in co-ordination with the NPP, were carried out during 1991 and 1992. During each field experiment, the flow rate was kept constant by dams located upstream from the NPP. After each tritium release, water was sampled downstream at periodic intervals over several hours and tritium was measured with a low-background liquid scintillation counter. Velocity and dispersion coefficient were determined in river waters for several river discharges using an analytical, box-type and numerical approach to solve the one-dimensional advection-diffusion equation. The set of calibrated parameters was used to predict the displacement and dispersion of soluble pollutants in river waters. Velocity was determined as a function of river discharge and river slope, and dispersion coefficient was determined as a function of distance. Finally, sensitivity of the model predictions was studied and uncertainties of the fitted parameters were estimated.

  19. PALEODRAINAGES OF THE EASTERN SAHARA - THE RADAR RIVERS REVISITED (SIR - A/B IMPLICATIONS FOR A MID - TERTIARY TRANS - AFRICAN DRAINAGE SYSTEM).

    Science.gov (United States)

    McCauley, John F.; Breed, Carlos S.; Schaber, Gerald G.; McHugh, William P.; Issawi, Bahay; Haynes, C. Vance; Grolier, Maurice J.; El Kilani, Ali

    1986-01-01

    A complex history of Cenozoic fluvial activity in the presently hyperarid eastern Sahara is inferred from Shuttle Imaging Radar (SIR) data and postflight field investigations in southwest Egypt and northwest Sudan. SIR images were coregistered with Landsat and existing maps as a guide to exploration of the buried paleodrainages (radar rivers) first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers: RR-1, RR-2, and RR-3. A generalized model of the radar rivers, based on field studies and regional geologic relations, shows apparent changes in river regimen since the large valleys were established during the late Paleogene-early Neogene eras. SIR-based mapping of these paleodrainages, although incomplete, reveals missing links in an area once thought to be devoid of master streams.

  20. Field guide for the identification of snags and logs in the interior Columbia River basin.

    Science.gov (United States)

    Catherine G. Parks; Evelyn L. Bull; Torolf R. Torgersen

    1997-01-01

    This field guide contains descriptions and color photographs of snags and logs of 10 coniferous and 3 deciduous tree species found in the interior Columbia River basin. Methods arc described to distinguish among the different species when various amounts of branches, cones, and bark arc missing. Wildlife use of the different species of snags and logs are listed. Snags...

  1. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Lijun, Zhou [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jianliang, Zhao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jifeng, Yang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Li, Wang; Bin, Yang; Shan, Liu [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  2. Shape from focus for large image fields

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Hamarová, Ivana

    2015-01-01

    Roč. 54, č. 33 (2015), s. 9747-9751 ISSN 1559-128X R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : shape from focus * large image fields * optically rough surface Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.598, year: 2015

  3. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  4. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  5. The characteristics on dose distribution of a large field

    International Nuclear Information System (INIS)

    Lee, Sang Rok; Jeong, Deok Yang; Lee, Btiung Koo; Kwon, Young Ho

    2003-01-01

    In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100 cm, size of field under 40 x 40 cm 2 ) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. In this study, using Multidata Water Phantom from standard SSD 100 cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180 cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350 cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. In comparison with the standard dose data, parameter which measures between SSD 180 cm and 350 cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  6. Water-Quality Changes Caused by Riverbank Filtration Between the Missouri River and Three Pumping Wells of the Independence, Missouri, Well Field 2003-05

    Science.gov (United States)

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    Riverbank filtration substantially improves the source-water quality of the Independence, Missouri well field. Coliform bacteria, Cryptosporidium, Giardia, viruses and selected constituents were analyzed in water samples from the Missouri River, two vertical wells, and a collector well. Total coliform bacteria, Cryptosporidium, Giardia, and total culturable viruses were detected in the Missouri River, but were undetected in samples from wells. Using minimum reporting levels for non-detections in well samples, minimum log removals were 4.57 for total coliform bacteria, 1.67 for Cryptosporidium, 1.67 for Giardia, and 1.15 for total culturable virus. Ground-water flow rates between the Missouri River and wells were calculated from water temperature profiles and ranged between 1.2 and 6.7 feet per day. Log removals based on sample pairs separated by the traveltime between the Missouri River and wells were infinite for total coliform bacteria (minimum detection level equal to zero), between 0.8 and 3.5 for turbidity, between 1.5 and 2.1 for Giardia, and between 0.4 and 2.6 for total culturable viruses. Cryptosporidium was detected once in the Missouri River but no corresponding well samples were available. No clear relation was evident between changes in water quality in the Missouri River and in wells for almost all constituents. Results of analyses for organic wastewater compounds and the distribution of dissolved oxygen, specific conductance, and temperature in the Missouri River indicate water quality on the south side of the river was moderately influenced by the south bank inflows to the river upstream from the Independence well field.

  7. Patchiness in a large floodplain river: Associations among hydrology, nutrients, and fish communities

    Science.gov (United States)

    DeJager, Nathan R.; Houser, Jeff N.

    2016-01-01

    Large floodplain rivers have internal structures shaped by directions and rates of water movement. In a previous study, we showed that spatial variation in local current velocities and degrees of hydrological exchange creates a patch-work mosaic of nitrogen and phosphorus concentrations and ratios in the Upper Mississippi River. Here, we used long-term fish and limnological data sets to test the hypothesis that fish communities differ between the previously identified patches defined by high or low nitrogen to phosphorus ratios (TN:TP) and to determine the extent to which select limnological covariates might explain those differences. Species considered as habitat generalists were common in both patch types but were at least 2 times as abundant in low TN:TP patches. Dominance by these species resulted in lower diversity in low TN:TP patches, whereas an increased relative abundance of a number of rheophilic (flow-dependent) species resulted in higher diversity and a more even species distribution in high TN:TP patches. Of the limnological variables considered, the strongest predictor of fish species assemblage and diversity was water flow velocity, indicating that spatial patterns in water-mediated connectivity may act as the main driver of both local nutrient concentrations and fish community composition in these reaches. The coupling among hydrology, biogeochemistry, and biodiversity in these river reaches suggests that landscape-scale restoration projects that manipulate hydrogeomorphic patterns may also modify the spatial mosaic of nutrients and fish communities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. Large-scale perturbations from the waterfall field in hybrid inflation

    International Nuclear Information System (INIS)

    Fonseca, José; Wands, David; Sasaki, Misao

    2010-01-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10 −54 on cosmological scales

  9. Evidence for density-dependent changes in growth, downstream movement, and size of Chinook salmon subyearlings in a large-river landscape

    Science.gov (United States)

    Connor, William P.; Tiffan, Kenneth F.; Plumb, John M.; Moffit, Christine M.

    2013-01-01

    We studied the growth rate, downstream movement, and size of naturally produced fall Chinook Salmon Oncorhynchus tshawytscha subyearlings (age 0) for 20 years in an 8th-order river landscape with regulated riverine upstream rearing areas and an impounded downstream migration corridor. The population transitioned from low to high abundance in association with U.S. Endangered Species Act and other federally mandated recovery efforts. The mean growth rate of parr in the river did not decline with increasing abundance, but during the period of higher abundance the timing of dispersal from riverine habitat into the reservoir averaged 17 d earlier and the average size at the time of downstream dispersal was smaller by 10 mm and 1.8 g. Changes in apparent abundance, measured by catch per unit effort, largely explained the time of dispersal, measured by median day of capture, in riverine habitat. The growth rate of smolts in the reservoir declined from an average of 0.6 to 0.2 g/d between the abundance periods because the reduction in size at reservoir entry was accompanied by a tendency to migrate rather than linger and by increasing concentrations of smolts in the reservoir. The median date of passage through the reservoir was 14 d earlier on average, and average smolt size was smaller by 38 mm and 22.0 g, in accordance with density-dependent behavioral changes reflected by decreased smolt growth. Unexpectedly, smolts during the high-abundance period had begun to reexpress the migration timing and size phenotypes observed before the river was impounded, when abundance was relatively high. Our findings provide evidence for density-dependent phenotypic change in a large river that was influenced by the expansion of a recovery program. Thus, this study shows that efforts to recover native fishes can have detectable effects in large-river landscapes. The outcome of such phenotypic change, which will be an important area of future research, can only be fully judged by

  10. Increasing Alkalinity Export from Large Russian Arctic Rivers

    Science.gov (United States)

    Drake, T.; Zhulidov, A. V.; Gurtovaya, T. Y.; Spencer, R. G.

    2017-12-01

    Riverine carbonate alkalinity (HCO3- and CO32-) sourced from chemical weathering of minerals on land represents a significant sink for atmospheric CO2 over geologic timescales. The flux of alkalinity from rivers in the Arctic depends on precipitation, permafrost extent and thaw, groundwater flow paths, and surface vegetation, all of which are changing under a warming climate. Here we show that over the past four decades, the export of alkalinity from the Ob' and Yenisei Rivers has more than doubled. The increase is likely due to a combination of increasing precipitation and permafrost thaw in the watersheds, which lengthens hydrologic flow paths and increases residence time in soils. These trends have broad implications for the rate of carbon sequestration on land and the delivery of buffering capacity to the Arctic Ocean.

  11. Evaluating Regime Change of Sediment Transport in the Jingjiang River Reach, Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Li He

    2018-03-01

    Full Text Available The sediment regime in the Jingjiang river reach of the middle Yangtze River has been significantly changed from quasi-equilibrium to unsaturated since the impoundment of the Three Gorges Dam (TGD. Vertical profiles of suspended sediment concentration (SSC and sediment flux can be adopted to evaluate the sediment regime at the local and reach scale, respectively. However, the connection between the vertical concentration profiles and the hydrologic conditions of the sub-saturated channel has rarely been examined based on field data. Thus, vertical concentration data at three hydrological stations in the reach (Zhicheng, Shashi, and Jianli are collected. Analyses show that the near-bed concentration (within 10% of water depth from the riverbed may reach up to 15 times that of the vertical average concentration. By comparing the fractions of the suspended sediment and bed material before and after TGD operation, the geomorphic condition under which the distinct large near-bed concentrations occur have been examined. Based on daily discharge-sediment hydrographs, the reach scale sediment regime and availability of sediment sources are analyzed. In total, remarkable large near-bed concentrations may respond to the combination of wide grading suspended particles and bed material. Finally, several future challenges caused by the anomalous vertical concentration profiles in the unsaturated reach are discussed. This indicates that more detailed measurements or new measuring technologies may help us to provide accurate measurements, while a fractional dispersion equation may help us in describing. The present study aims to gain new insights into regime change of sediment suspension in the river reaches downstream of a very large reservoir.

  12. Design considerations for a large aperture high field superconducting dipole

    International Nuclear Information System (INIS)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab

  13. Design considerations for a large aperture high field superconducting dipole

    Energy Technology Data Exchange (ETDEWEB)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  14. Sedimentology and Palynostratigraphy of a Pliocene-Pleistocene (Piacenzian to Gelasian) deposit in the lower Negro River: Implications for the establishment of large rivers in Central Amazonia

    Science.gov (United States)

    Soares, Emílio Alberto Amaral; D'Apolito, Carlos; Jaramillo, Carlos; Harrington, Guy; Caputo, Mario Vicente; Barbosa, Rogério Oliveira; Bonora dos Santos, Eneas; Dino, Rodolfo; Gonçalves, Alexandra Dias

    2017-11-01

    The Amazonas fluvial system originates in the Andes and runs ca. 6700 km to the Atlantic Ocean, having as the main affluent the Negro River (second largest in water volume). The Amazonas transcontinental system has been dated to the late Miocene, but the timing of origin and evolutionary processes of its tributaries are still poorly understood. Negro River alluvial deposits have been dated to the middle to late Pleistocene. Recently, we studied a number of boreholes drilled for the building of a bridge at the lower course of the Negro River. A thin (centimetric) sedimentary deposit was found, laterally continuous for about 1800 m, unconformably overlaying middle Miocene strata and unconformably overlain by younger Quaternary deposits. This deposit consists predominantly of brownish-gray sandstones cemented by siderite and with subordinate mudstone and conglomerate beds. Palynological, granulometric, textural and mineralogical data suggest that the initial Negro River aggradation took place in the deep incised valley under anoxic conditions and subsequently along the floodplain, with efficient transport of mixed origin particles (Andean and Amazonic). Angiosperm leaves, wood and pollen are indicative of a tropical continental palaeoenvironment. A well preserved palynoflora that includes Alnipollenites verus, Grimsdalea magnaclavata and Paleosantalaceaepites cingulatus suggests a late Pliocene to early Pleistocene (Piacenzian to Gelasian) age for this unit, which was an age yet unrecorded in the Amazon Basin. These results indicate that by the late Pliocene-early Pleistocene, large scale river activity was occurring in Central Amazonia linking this region with the Andean headwaters, and therefore incompatible with Central Amazonia barriers like the Purus arch.

  15. Imprint of thawing scalar fields on the large scale galaxy overdensity

    Science.gov (United States)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  16. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    Science.gov (United States)

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  17. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    International Nuclear Information System (INIS)

    Zhou Lijun; Ying Guangguo; Zhao Jianliang; Yang Jifeng; Wang Li; Yang Bin; Liu Shan

    2011-01-01

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: → Presence of four classes of commonly used antibiotics in the river sediments. → Higher concentrations in the Hai River than in the Liao River and Yellow River. → Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. → High antibiotic concentrations often found in the downstream of large cities. → River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  18. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  19. RiverCare: towards self-sustaining multifunctional rivers

    Science.gov (United States)

    Augustijn, Denie; Schielen, Ralph; Hulscher, Suzanne

    2014-05-01

    Rivers are inherently dynamic water systems involving complex interactions among hydrodynamics, morphology and ecology. In many deltas around the world lowland rivers are intensively managed to meet objectives like safety, navigation, hydropower and water supply. With the increasing pressure of growing population and climate change it will become even more challenging to reach or maintain these objectives and probably also more demanding from a management point of view. In the meantime there is a growing awareness that rivers are natural systems and that, rather than further regulation works, the dynamic natural processes should be better utilized (or restored) to reach the multifunctional objectives. Currently many integrated river management projects are initiated all over the world, in large rivers as well as streams. Examples of large scale projects in the Netherlands are 'Room for the River' (Rhine), the 'Maaswerken' (Meuse), the Deltaprogramme and projects originating from the European Water Framework Directive (WFD). These projects include innovative measures executed never before on this scale and include for example longitudinal training dams, side channels, removal of bank protection, remeandering of streams, dredging/nourishment and floodplain rehabilitation. Although estimates have been made on the effects of these measures for many of the individual projects, the overall effects on the various management objectives remains uncertain, especially if all projects are considered in connection. For all stakeholders with vested interests in the river system it is important to know how that system evolves at intermediate and longer time scales (10 to 100 years) and what the consequences will be for the various river functions. If the total, integrated response of the system can be predicted, the system may be managed in a more effective way, making optimum use of natural processes. In this way, maintenance costs may be reduced, the system remains more natural

  20. Combined effects of multiple large-scale hydraulic engineering on water stages in the middle Yangtze River

    Science.gov (United States)

    Han, Jianqiao; Sun, Zhaohua; Li, Yitian; Yang, Yunping

    2017-12-01

    influence was observed at Hankou owing to its remote location and the short impoundment time of the TGD. (4) Potentially detrimental decreases in low-flow stages and increases in flood stages should be monitored and managed in the future. Our results are of practical significance for river management and the evaluation of the influences of large-scale anthropogenic activities on the hydrological regimes of large rivers.

  1. Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water

    Energy Technology Data Exchange (ETDEWEB)

    Vigano, Luigi, E-mail: vigano@irsa.cnr.i [Water Research Institute, National Council of Research, Brugherio, Milan (Italy); Benfenati, Emilio [Mario Negri Institute, Laboratory of Environmental Chemistry and Toxicology, Milan (Italy); Bottero, Sergio; Cevasco, Alessandra; Monteverde, Martino; Mandich, Alberta [Department of Environmental, Experimental and Applied Biology, University of Genoa, Genoa (Italy)

    2010-12-15

    Under laboratory conditions, female rainbow trout were exposed to graded concentrations of water from the River Lambro, a polluted tributary of the River Po, and to the effluent of a large wastewater treatment plant which flows into the River Lambro. In field exposures, trout were held in cages in the River Po upstream and downstream from the confluence of the River Lambro. After 10-day (laboratory) and 30-day (laboratory and field) exposures, trout were examined for several chemical, biochemical and histological endpoints. The results indicated that exposure to complex mixtures of chemicals, including estrogen receptor agonists, aryl-hydrocarbon receptor agonists, and probably antiandrogens, had occurred. Exposure altered the plasma levels of 17{beta}-estradiol and testosterone, and some treatments also enhanced the activity of hepatic ethoxyresorufin O-deethylase. Gonadal histology showed varying levels of degenerative processes characterised by oocyte atresia, haemorrhages, melano-macrophage centres (MMCs), and oogonia proliferation. Liver histology showed less severe effects. - This study examined the progression of hormonal and gonadal alterations in female trout exposed to river water from an area known to affect resident fish species.

  2. Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water

    International Nuclear Information System (INIS)

    Vigano, Luigi; Benfenati, Emilio; Bottero, Sergio; Cevasco, Alessandra; Monteverde, Martino; Mandich, Alberta

    2010-01-01

    Under laboratory conditions, female rainbow trout were exposed to graded concentrations of water from the River Lambro, a polluted tributary of the River Po, and to the effluent of a large wastewater treatment plant which flows into the River Lambro. In field exposures, trout were held in cages in the River Po upstream and downstream from the confluence of the River Lambro. After 10-day (laboratory) and 30-day (laboratory and field) exposures, trout were examined for several chemical, biochemical and histological endpoints. The results indicated that exposure to complex mixtures of chemicals, including estrogen receptor agonists, aryl-hydrocarbon receptor agonists, and probably antiandrogens, had occurred. Exposure altered the plasma levels of 17β-estradiol and testosterone, and some treatments also enhanced the activity of hepatic ethoxyresorufin O-deethylase. Gonadal histology showed varying levels of degenerative processes characterised by oocyte atresia, haemorrhages, melano-macrophage centres (MMCs), and oogonia proliferation. Liver histology showed less severe effects. - This study examined the progression of hormonal and gonadal alterations in female trout exposed to river water from an area known to affect resident fish species.

  3. arXiv Stochastic locality and master-field simulations of very large lattices

    CERN Document Server

    Lüscher, Martin

    2018-01-01

    In lattice QCD and other field theories with a mass gap, the field variables in distant regions of a physically large lattice are only weakly correlated. Accurate stochastic estimates of the expectation values of local observables may therefore be obtained from a single representative field. Such master-field simulations potentially allow very large lattices to be simulated, but require various conceptual and technical issues to be addressed. In this talk, an introduction to the subject is provided and some encouraging results of master-field simulations of the SU(3) gauge theory are reported.

  4. Field reconstruction for the KEK large-aperture-spectrometer-magnet 'TOKIWA'

    International Nuclear Information System (INIS)

    Amako, K.; Kawano, K.; Sugimoto, S.; Matsui, T.

    1978-10-01

    Field reconstruction has been performed for the KEK large-aperture-magnet ''TOKIWA''. The magnetic field components are determined point-by-point by an iteration method in which the output voltage from the Hall probes placed in three dimensional directions are used simultaneously. The field components are thus reconstructed accurately within 32 G everywhere in the magnet volume. (author)

  5. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  6. Stress field control during large caldera-forming eruptions

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2016-10-01

    Full Text Available Crustal stress field can have a significant influence on the way magma is channelled through the crust and erupted explosively at the surface. Large Caldera Forming Eruptions (LCFEs can erupt hundreds to thousands of cubic kilometres of magma in a relatively short time along fissures under the control of a far-field extensional stress. The associated eruption intensities are estimated in the range 109 - 1011 kg/s. We analyse syn-eruptive dynamics of LCFEs, by simulating numerically explosive flow of magma through a shallow dyke conduit connected to a magma chamber that in turn is fed by a deeper magma reservoir, both under the action of an extensional far-field stress. Results indicate that huge amounts of high viscosity silicic magma can be erupted over timescales of a few to several hours. Our study provides answers to outstanding questions relating to the intensity and duration of catastrophic volcanic eruptions in the past. In addition, it presents far-reaching implications for the understanding of dynamics and intensity of large-magnitude volcanic eruptions on Earth and to highlight the necessity of a future research to advance our knowledge of these rare catastrophic events.

  7. Intermittent ephemeral river-breaching

    Science.gov (United States)

    Reniers, A. J.; MacMahan, J. H.; Gallagher, E. L.; Shanks, A.; Morgan, S.; Jarvis, M.; Thornton, E. B.; Brown, J.; Fujimura, A.

    2012-12-01

    In the summer of 2011 we performed a field experiment in Carmel River State Beach, CA, at a time when the intermittent natural breaching of the ephemeral Carmel River occurred due to an unusually rainy period prior to the experiment associated with El Nino. At this time the river would fill the lagoon over the period of a number of days after which a breach would occur. This allowed us to document a number of breaches with unique pre- and post-breach topographic surveys, accompanying ocean and lagoon water elevations as well as extremely high flow (4m/s) velocities in the river mouth during the breaching event. The topographic surveys were obtained with a GPS-equipped backpack mounted on a walking human and show the evolution of the river breaching with a gradually widening and deepening river channel that cuts through the pre-existing beach and berm. The beach face is qualified as a steep with an average beach slope of 1:10 with significant reflection of the incident waves (MacMahan et al., 2012). The wave directions are generally shore normal as the waves refract over the deep canyon that is located offshore of the beach. The tide is mixed semi-diurnal with a range on the order of one meter. Breaching typically occurred during the low-low tide. Grain size is highly variable along the beach with layers of alternating fine and coarse material that could clearly be observed as the river exit channel was cutting through the beach. Large rocky outcroppings buried under the beach sand are also present along certain stretches of the beach controlling the depth of the breaching channel. The changes in the water level measured within the lagoon and the ocean side allows for an estimate of the volume flux associated with the breach as function of morphology, tidal elevation and wave conditions as well as an assessment of the conditions and mechanisms of breach closure, which occurred on the time scale of O(0.5 days). Exploratory model simulations will be presented at the

  8. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  9. Influence of riparian vegetation on near-bank flow structure and erosion rates on a large meandering river

    Science.gov (United States)

    Konsoer, K. M.; Rhoads, B. L.; Langendoen, E. J.; Johnson, K.; Ursic, M.

    2012-12-01

    Rates of meander migration are dependent upon dynamic interactions between planform geometry, three-dimensional flow structure, sediment transport, and the erodibility and geotechnical properties of the channel banks and floodplains. Riparian vegetation can greatly reduce the rate of migration through root-reinforcement and increased flow resistance near the bank. In particular, forested riverbanks can also provide large woody debris (LWD) to the channel, and if located near the outer bank, can act to amour the bank by disrupting three-dimensional flow patterns and redirecting flow away from the bank-toe, the locus of erosion in meandering rivers. In this paper, three-dimensional flow patterns and migration rates are compared for two meander bends, one forested and one non-forested, on the Wabash River, near Grayville, Illinois. Flow data were obtained using acoustic Doppler current profilers (ADCP) for two large flow events in May and June 2011. LWD was mapped using a terrestrial LiDAR survey, and residence times for the LWD were estimated by comparing the survey data to time-series aerial photography. Rates of migration and planform evolution were determined through time-series analysis of aerial photography from 1938-2011. Results from this study show that near-bank LWD can have a significant influence on flow patterns through a meander bend and can disrupt helical flow near the outer bank, thereby reducing the effect of the high velocity core on the toe of the bank. Additionally, these effects influence migration rates and the planform evolution of meandering rivers.

  10. Science Roles and Interactions in Adaptive Management of Large River Restoration Projects, Midwest United States

    Science.gov (United States)

    Jacobson, R. B.; Galat, D. L.; Smith, C. B.

    2010-12-01

    Most large-river restoration projects include formal or informal implementations of adaptive management strategies which acknowledge uncertainty and use scientific inquiry to learn and refine management options. Although the central role of science in reducing uncertainty is acknowledged in such projects, specific roles and interactions can vary widely, including how science relates to decision-making within the governance of these projects. Our objective is to present some structured generalizations about science roles and interactions as developed from the authors’ experiences in adaptive management of large river restoration in the Midwest United States. Scientific information may be introduced into decision making by scientists acting in any of the three roles common to adaptive management -- action agency representative, stakeholder, or science provider. We have observed that confusion and gridlock can arise when it is unclear if a scientist is acting as an advocate for a stakeholder or management position, or instead as an independent, “honest broker” of science. Although both advocacy and independence are proper and expected in public decision making, it is useful when scientists unambiguously identify their role. While complete scientific independence may be illusory, transparency and peer review can promote the ideal. Transparency comes from setting clear directions and objectives at the decision-making level and defining at the outset how learning will help assess progress and inform decisions. Independent peer reviews of proposals, study plans, and publications serve as a powerful tool to advance scientific independence, even if funding sources present a potential conflict of interest. Selection of experts for scientific advice and review often requires consideration of the balance between benefits of the “outside” expert (independent, knowledgeable but with little specific understanding of the river system), compared to those provided by the

  11. Dissolved Carbon Fluxes During the 2017 Mississippi River Flood

    Science.gov (United States)

    Reiman, J. H.; Xu, Y. J.

    2017-12-01

    The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.

  12. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  13. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  14. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available This study examined the water quality of the large young tropical Bakun hydroelectric reservoir in Sarawak, Malaysia, and the influence of the outflow on the downstream river during wet and dry seasons. Water quality was determined at five stations in the reservoir at three different depths and one downstream station. The results show that seasons impacted the water quality of the Bakun Reservoir, particularly in the deeper water column. Significantly lower turbidity, SRP, and TP were found during the wet season. At 3–6 m, the oxygen content fell below 5 mg/L and hypoxia was also recorded. Low NO2--N, NO3--N, and SRP and high BOD5, OKN, and TP were observed in the reservoir indicating organic pollution. Active logging activities and the dam construction upstream resulted in water quality deterioration. The outflow decreased the temperature, DO, and pH and increased the turbidity and TSS downstream. Elevated organic matter and nutrients downstream are attributable to domestic discharge along the river. This study shows that the downstream river was affected by the discharge through the turbines, the spillway operations, and domestic waste. Therefore, all these factors should be taken into consideration in the downstream river management for the health of the aquatic organisms.

  15. On the large N limit of conformal field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    2003-01-01

    Following recent advances in large N matrix mechanics, I discuss here the free (Cuntz) algebraic formulation of the large N limit of two-dimensional conformal field theories of chiral adjoint fermions and bosons. One of the central results is a new affine free algebra which describes a large N limit of su(N) affine Lie algebra. Other results include the associated free-algebraic partition functions and characters, a free-algebraic coset construction, free-algebraic construction of osp(1|2), free-algebraic vertex operator constructions in the large N Bose systems, and a provocative new free-algebraic factorization of the ordinary Koba-Nielsen factor

  16. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    International Nuclear Information System (INIS)

    Navarro, Alicia; Endo, Satoshi; Gocht, Tilman; Barth, Johannes A.C.; Lacorte, Silvia; Barcelo, Damia; Grathwohl, Peter

    2009-01-01

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f OC ) ranging from 0.0035 to 0.082 g OC g -1 . All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements

  17. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  18. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  19. Small larvae in large rivers: observations on downstream movement of European grayling Thymallus thymallus during early life stages.

    Science.gov (United States)

    Van Leeuwen, C H A; Dokk, T; Haugen, T O; Kiffney, P M; Museth, J

    2017-06-01

    Behaviour of early life stages of the salmonid European grayling Thymallus thymallus was investigated by assessing the timing of larval downstream movement from spawning areas, the depth at which larvae moved and the distribution of juvenile fish during summer in two large connected river systems in Norway. Trapping of larvae moving downstream and electrofishing surveys revealed that T. thymallus larvae emerging from the spawning gravel moved downstream predominantly during the night, despite light levels sufficient for orientation in the high-latitude study area. Larvae moved in the water mostly at the bottom layer close to the substratum, while drifting debris was caught in all layers of the water column. Few young-of-the-year still resided close to the spawning areas in autumn, suggesting large-scale movement (several km). Together, these observations show that there may be a deliberate, active component to downstream movement of T. thymallus during early life stages. This research signifies the importance of longitudinal connectivity for T. thymallus in Nordic large river systems. Human alterations of flow regimes and the construction of reservoirs for hydropower may not only affect the movement of adult fish, but may already interfere with active movement behaviour of fish during early life stages. © 2017 The Fisheries Society of the British Isles.

  20. Spatial and temporal variance in fatty acid and stable isotope signatures across trophic levels in large river systems

    Science.gov (United States)

    Fritts, Andrea; Knights, Brent C.; Lafrancois, Toben D.; Bartsch, Lynn; Vallazza, Jon; Bartsch, Michelle; Richardson, William B.; Karns, Byron N.; Bailey, Sean; Kreiling, Rebecca

    2018-01-01

    Fatty acid and stable isotope signatures allow researchers to better understand food webs, food sources, and trophic relationships. Research in marine and lentic systems has indicated that the variance of these biomarkers can exhibit substantial differences across spatial and temporal scales, but this type of analysis has not been completed for large river systems. Our objectives were to evaluate variance structures for fatty acids and stable isotopes (i.e. δ13C and δ15N) of seston, threeridge mussels, hydropsychid caddisflies, gizzard shad, and bluegill across spatial scales (10s-100s km) in large rivers of the Upper Mississippi River Basin, USA that were sampled annually for two years, and to evaluate the implications of this variance on the design and interpretation of trophic studies. The highest variance for both isotopes was present at the largest spatial scale for all taxa (except seston δ15N) indicating that these isotopic signatures are responding to factors at a larger geographic level rather than being influenced by local-scale alterations. Conversely, the highest variance for fatty acids was present at the smallest spatial scale (i.e. among individuals) for all taxa except caddisflies, indicating that the physiological and metabolic processes that influence fatty acid profiles can differ substantially between individuals at a given site. Our results highlight the need to consider the spatial partitioning of variance during sample design and analysis, as some taxa may not be suitable to assess ecological questions at larger spatial scales.

  1. The UP modelling system for large scale hydrology: simulation of the Arkansas-Red River basin

    Directory of Open Access Journals (Sweden)

    C. G. Kilsby

    1999-01-01

    Full Text Available The UP (Upscaled Physically-based hydrological modelling system to the Arkansas-Red River basin (USA is designed for macro-scale simulations of land surface processes, and aims for a physical basis and, avoids the use of discharge records in the direct calibration of parameters. This is achieved in a two stage process: in the first stage parametrizations are derived from detailed modelling of selected representative small and then used in a second stage in which a simple distributed model is used to simulate the dynamic behaviour of the whole basin. The first stage of the process is described in a companion paper (Ewen et al., this issue, and the second stage of this process is described here. The model operated at an hourly time-step on 17-km grid squares for a two year simulation period, and represents all the important hydrological processes including regional aquifer recharge, groundwater discharge, infiltration- and saturation-excess runoff, evapotranspiration, snowmelt, overland and channel flow. Outputs from the model are discussed, and include river discharge at gauging stations and space-time fields of evaporation and soil moisture. Whilst the model efficiency assessed by comparison of simulated and observed discharge records is not as good as could be achieved with a model calibrated against discharge, there are considerable advantages in retaining a physical basis in applications to ungauged river basins and assessments of impacts of land use or climate change.

  2. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs.

    Science.gov (United States)

    Roberto, M C; Santana, N N; Thomaz, S M

    2009-06-01

    Knowledge of abiotic limnological factors is important to monitor changes caused by humans, and to explain the structure and dynamics of populations and communities in a variety of inland water ecosystems. In this study, we used a long term data-set (eight years) collected in 10 habitats with different features (river channels, and connected and isolated lakes) to describe the spatial and temporal patterns of some of the principal limnological factors. In general, the degree of connectivity of the lakes, together with the rivers to which the lakes are connected, were important determinants of their limnological characteristics. These differences are expected, because rivers entering the floodplain come from different geological regions and are subject to different human impacts. At large spatial scales, these differences contribute to the increased habitat diversity of the floodplain and thus to its high biodiversity. With regard to temporal variation, Secchi-disk transparency increased, and total phosphorus decreased in the Paraná River main channel during the last 20 years. Although these changes are directly attributed to the several reservoir cascades located upstream, the closing of the Porto Primavera dam in 1998 enhanced this effect. The increase in water transparency explains biotic changes within the floodplain. The lower-phosphorus Paraná River water probably dilutes concentrations of this element in the floodplain waterbodies during major floods, with future consequences for their productivity.

  3. Field theory of large amplitude collective motion. A schematic model

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1978-01-01

    By using path integral methods the equation for large amplitude collective motion for a schematic two-level model is derived. The original fermion theory is reformulated in terms of a collective (Bose) field. The classical equation of motion for the collective field coincides with the time-dependent Hartree-Fock equation. Its classical solution is quantized by means of the field-theoretical generalization of the WKB method. (author)

  4. Clinical dosimetry of large shaped 60Co irradiation fields

    International Nuclear Information System (INIS)

    Novotny, J.

    1979-01-01

    The determination is described of absorbed doses in the Alderson-Rando phantom by thermoluminescent dosemeters in patients irradiated with irregularly shaped large-surface fields of Co 60 . In a range of 3 to 5% the measured values correspond to the values calculated with the aid of relations presented by Bukowitz. Non-homogeneity of irradiation when two supradiaphragmatic fields are used and its improvement are discussed. (author)

  5. Fringe field effects in small rings of large acceptance

    Directory of Open Access Journals (Sweden)

    Martin Berz

    2000-12-01

    Full Text Available Recently there has been renewed interest in the influence of fringe fields on particle dynamics, due to studies that revealed their importance in some cases, as, for example, the proposed Neutrino Factory and muon colliders. In this paper, we present a systematic study of generic fringe field effects. Using as an example a lattice of the proposed Neutrino Factory, we show that fringe fields influence the dynamics of particles at all orders, starting with the linear motion. It is found that the widely used sharp cutoff approximation leads to divergences regardless of the specific fall-off shape of the fields. The results suggest that a careful consideration of fringe field effects in the design stage of small machines for large emittances is always recommended.

  6. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  7. Effective field theories in the large-N limit

    International Nuclear Information System (INIS)

    Weinberg, S.

    1997-01-01

    Various effective field theories in four dimensions are shown to have exact nontrivial solutions in the limit as the number N of fields of some type becomes large. These include extended versions of the U (N) Gross-Neveu model, the nonlinear O(N) σ model, and the CP N-1 model. Although these models are not renormalizable in the usual sense, the infinite number of coupling types allows a complete cancellation of infinities. These models provide qualitative predictions of the form of scattering amplitudes for arbitrary momenta, but because of the infinite number of free parameters, it is possible to derive quantitative predictions only in the limit of small momenta. For small momenta the large-N limit provides only a modest simplification, removing at most a finite number of diagrams to each order in momenta, except near phase transitions, where it reduces the infinite number of diagrams that contribute for low momenta to a finite number. copyright 1997 The American Physical Society

  8. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng

    2015-12-10

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  9. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng; Xia, Chuan; Zheng, Dongxing; Wang, Ping; Jin, Chao; Bai, Haili

    2015-01-01

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  10. The coupling of runoff and dissolved organic matter transport: Insights from in situ fluorescence measurements in small streams and large rivers

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Shanley, J. B.; Aiken, G.; Murdoch, P. S.

    2011-12-01

    Understanding dissolved organic matter (DOM) dynamics in streams and rivers can help characterize mercury transport, assess causes of drinking water issues, and lead to improved understanding of watershed source areas and carbon loads to downstream ecosystems. However, traditional sampling approaches that collect discrete concentration data at weekly to monthly intervals often fail to adequately capture hydrological pulses ranging from early snowmelt periods to short-duration rainfall events. Continuous measurements of chromophoric dissolved organic matter fluorescence (FDOM) in rivers and streams now provide an opportunity to more accurately quantify DOM loads and processes in aquatic ecosystems at a range of scales. In this study, we used continuous FDOM data from in situ sensors along with discharge data to assess the coupling of FDOM transport and runoff in small streams and large rivers. Results from headwater catchments in New England and California show that FDOM is tightly coupled with runoff, supporting strong linkages between watershed flow paths and DOM concentrations in streams. Results also show that the magnitude of FDOM response relative to runoff varies seasonally, with highest concentrations during autumn rainfall events (after leaf fall) and lower concentrations during peak snowmelt for equivalent runoff. In large river basins, FDOM dynamics are also coupled with runoff and exhibit the same seasonal variability in the magnitude of FDOM response relative to discharge. However, the peaks in FDOM typically lag runoff by several days, reflecting the influence of a variety of factors such as water residence times, reservoir releases, and connectivity to organic matter-rich riparian floodplains and wetlands. Our results show that in situ FDOM data will be important for understanding the coupling of runoff and DOM across multiple scales and could serve a critical role in monitoring, assessment and decision-making in both small and large watersheds.

  11. Habitat assessment of non-wadeable rivers in Michigan.

    Science.gov (United States)

    Wilhelm, Jennifer G O; Allan, J David; Wessell, Kelly J; Merritt, Richard W; Cummins, Kenneth W

    2005-10-01

    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order >or=5, drainage area >or=1600 km2, mainstem lengths >or=100 km, and mean annual discharge >or=15 m3/s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km2. We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000-2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R2 = 0.62) and the catchment (adjusted R2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and

  12. Two-level systems driven by large-amplitude fields

    Science.gov (United States)

    Nori, F.; Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.

    2009-03-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition, (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Two-level systems driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007). S. Ashhab et al, unpublished.

  13. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    Science.gov (United States)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  14. Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta, Poland

    Directory of Open Access Journals (Sweden)

    Przybyłek Jan

    2017-12-01

    Full Text Available River bank filtration (RBF is a system that enriches groundwater resources by induced infiltration of river water to an aquifer. Problematic during operation of RBF systems is the deterioration of infiltration effectiveness caused by river bed clogging. This situation was observed in the Krajkowo well field which supplies fresh water to the city of Poznań (Poland during and after the long hydrological drought between the years 1989 and 1992. The present note discusses results of specific hydrogeological research which included drilling of a net of boreholes to a depth of 10 m below river bottom (for sediment sampling as well as for hydrogeological measurements, analyses of grain size distribution and relative density studies. The results obtained have allowed the recognition of the origin of the clogging processes, as well as the documentation of the clogged parts of the river bottom designated for unclogging activities.

  15. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    Science.gov (United States)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries

  16. The role of large container seedlings in afforesting oaks in bottomlands

    Science.gov (United States)

    Daniel C. Dey; John M. Kabrick; Michael Gold

    2006-01-01

    We planted large container (RPM®) and 1-0 bareroot seedlings of pin oak (Quercus palustris Muenchh.) and swamp white oak (Q. bicolor Willd.) in crop fields in the Missouri River floodplain. We also evaluated the benefits of soil mounding and a grass (Agrostis gigantea Roth) cover crop. RPM®) oak seedlings had significantly greater...

  17. How to use the Fast Fourier Transform in Large Finite Fields

    OpenAIRE

    Petersen, Petur Birgir

    2011-01-01

    The article contents suggestions on how to perform the Fast Fourier Transform over Large Finite Fields. The technique is to use the fact that the multiplicative groups of specific prime fields are surprisingly composite.

  18. Disruption of circumstellar discs by large-scale stellar magnetic fields

    Science.gov (United States)

    ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan

    2018-05-01

    Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.

  19. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  20. Background-oriented schlieren for the study of large flow fields

    Science.gov (United States)

    Trolinger, James D.; Buckner, Ben; L'Esperance, Drew

    2015-09-01

    Modern digital recording and processing techniques combined with new lighting methods and relatively old schlieren visualization methods move flow visualization to a new level, enabling a wide range of new applications and a possible revolution in the visualization of very large flow fields. This paper traces the evolution of schlieren imaging from Robert Hooke, who, in 1665, employed candles and lenses, to modern digital background oriented schlieren (BOS) systems, wherein image processing by computer replaces pure optical image processing. New possibilities and potential applications that could benefit from such a capability are examined. Example applications include viewing the flow field around full sized aircraft, large equipment and vehicles, monitoring explosions on bomb ranges, cooling systems, large structures and even buildings. Objectives of studies include aerodynamics, aero optics, heat transfer, and aero thermal measurements. Relevant digital cameras, light sources, and implementation methods are discussed.

  1. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  2. Evaluation of single and two-stage adaptive sampling designs for estimation of density and abundance of freshwater mussels in a large river

    Science.gov (United States)

    Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.

    2011-01-01

    Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.

  3. Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines.

    Science.gov (United States)

    Bevelhimer, Mark S; Deng, Z Daniel; Scherelis, Constantin

    2016-01-01

    Underwater noise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where sounds created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. A comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation.

  4. Design considerations for large field particle image velocimetery (LF-PIV)

    International Nuclear Information System (INIS)

    Pol, S U; Balakumar, B J

    2013-01-01

    We discuss the challenges and limitations associated with the development of a large field of view particle image velocimetry (LF-PIV) diagnostic, capable of resolving large-scale motions (>1 m per camera) in gas phase laboratory and field experiments. While this diagnostic is developed for the measurement of wakes and local inflow conditions around research wind turbines, the design considerations provided here are also relevant for the application of LF-PIV to atmospheric boundary layer, rotorcraft dynamics and large-scale wind tunnel flows. Measurements over an area of 0.75 m × 1.0 m on a confined vortex were obtained using a standard 2MP camera, with the potential for increasing this area significantly using 11MP cameras. The cameras in this case were oriented orthogonal to the measurement plane receiving only the side-scattered component of light from the particles. Scaling laws associated with LF-PIV systems are also presented along with the performance analysis of low-density, large diameter Expancel particles, that appear to be promising candidates for LF-PIV seeding. (paper)

  5. Hydromorphological control of nutrient cycling in complex river floodplain systems

    Science.gov (United States)

    Hein, T.; Bondar-Kunze, E.; Felkl, M.; Habersack, H.; Mair, M.; Pinay, G.; Tritthart, M.; Welti, N.

    2009-04-01

    potential effects on the main channel in a large river, the Danube River. During the growing season of 2006 and the end of the growing season 2007, a large-scale field survey was completed for two areas in the floodplain stretch of the Danube River one of which has recently undergone restoration via reconnection to the Danube River main channel. The sampling compared the sediment nutrient concentrations and potential denitrification and respiration rates. With changing surface water connection to the Danube River, the water bodies in the two compared floodplains experienced different patterns of microbial processing rates, particularly potential denitrification. We demonstrate that principles of hydromorphological dynamics control nutrient cycling in the water column and at the water sediment interface. These findings confirm the environmental control on these processes and their potential use as proxies to assess the consequences of hydrological changes by restoration measures on river ecosystem functioning.

  6. Improving Watershed-Scale Hydrodynamic Models by Incorporating Synthetic 3D River Bathymetry Network

    Science.gov (United States)

    Dey, S.; Saksena, S.; Merwade, V.

    2017-12-01

    Digital Elevation Models (DEMs) have an incomplete representation of river bathymetry, which is critical for simulating river hydrodynamics in flood modeling. Generally, DEMs are augmented with field collected bathymetry data, but such data are available only at individual reaches. Creating a hydrodynamic model covering an entire stream network in the basin requires bathymetry for all streams. This study extends a conceptual bathymetry model, River Channel Morphology Model (RCMM), to estimate the bathymetry for an entire stream network for application in hydrodynamic modeling using a DEM. It is implemented at two large watersheds with different relief and land use characterizations: coastal Guadalupe River basin in Texas with flat terrain and a relatively urban White River basin in Indiana with more relief. After bathymetry incorporation, both watersheds are modeled using HEC-RAS (1D hydraulic model) and Interconnected Pond and Channel Routing (ICPR), a 2-D integrated hydrologic and hydraulic model. A comparison of the streamflow estimated by ICPR at the outlet of the basins indicates that incorporating bathymetry influences streamflow estimates. The inundation maps show that bathymetry has a higher impact on flat terrains of Guadalupe River basin when compared to the White River basin.

  7. Mechanisms of vegetation removal by floods on bars of a heavily managed gravel bed river (The Isere River, France)

    Science.gov (United States)

    Jourdain, Camille; Belleudy, Philippe; Tal, Michal; Malavoi, Jean-René

    2016-04-01

    In natural alpine gravel bed rivers, floods and their associated bedload transport maintain channels active and free of mature woody vegetation. In managed rivers, where flood regime and sediment supply have been modified by hydroelectric infrastructures and sediment mining, river beds tend to stabilize. As a result, in the recent past, mature vegetation has established on gravel bars of many gravel bed rivers worldwide. This established vegetation increases the risk of flooding by decreasing flow velocity and increasing water levels. In addition, the associated reduction in availability of pioneer habitats characteristic of these environments typically degrades biodiversity. Managing hydrology in a way that would limit vegetation establishment on bars presents an interesting management option. In this context, our study aims at understanding the impacts of floods of varying magnitude on vegetation removal, and identifying and quantifying the underlying mechanisms. Our study site is the Isère River, a heavily managed gravel bed river flowing in the western part of the French Alps. We studied the impact of floods on sediment transport and vegetation survival at the bar scale through field monitoring from 2014 to 2015, focusing on young salicaceous vegetation (chains, and topographic surveys. Hourly water discharge was obtained from the national gauging network. The hydraulics of monitored floods was characterized using a combination of field measurements and 2D hydraulic modeling: water levels were measured with pressure sensors and Large Scale Particle Velocimetry was used to measure flow velocities. These data were used to calibrate 2D hydrodynamic model using TELEMAC2D. At the reach scale, removal of mature vegetation was assed using a series of historical aerial photographs between 2001 and 2015. Our monitoring period covered a series of floods with recurrence intervals of 2 to 4 times per year, as well as one large flood with a 10 year return period. Only the

  8. Linking Flow Regime, Floodplain Lake Connectivity and Fish Catch in a Large River-Floodplain System, the Volga–Akhtuba Floodplain (Russian Federation)

    NARCIS (Netherlands)

    Wolfshaar, K.E. van de; Middelkoop, H.; Addink, E.A.; Winter, H.V.; Nagelkerke, L.A.J.

    2011-01-01

    River-floodplain systems are amongst the most productive—but often severely impacted—aquatic systems worldwide. We explored the ecological response of fish to flow regime in a large riverfloodplain system by studying the relationships between (1) discharge and inundated floodplain area, with a

  9. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    Science.gov (United States)

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  10. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  11. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    Science.gov (United States)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  12. The influence of environmental factors and dredging on chironomid larval diversity in urban drainage systems in polders strongly influenced by seepage from large rivers

    DEFF Research Database (Denmark)

    Vermonden, K.; Brodersen, Klaus Peter; Jacobsen, Dean

    2011-01-01

    , in urban waters strongly influenced by seepage of large rivers. Chironomid assemblages were studied in urban surface-water systems (man-made drainage ditches) in polder areas along lowland reaches of the rivers Rhine-Meuse in The Netherlands. Multivariate analysis was used to identify the key environmental...... factors. Taxon richness, Shannon index (H'), rareness of species, and life-history strategies at urban locations were compared with available data from similar man-made water bodies in rural areas, and the effectiveness of dredging for restoring chironomid diversity in urban waters was tested. Three...... diversity of chironomid communities in urban waters affected by nutrient-rich seepage or inlet of river water...

  13. Progress towards Continental River Dynamics modeling

    Science.gov (United States)

    Yu, Cheng-Wei; Zheng, Xing; Liu, Frank; Maidment, Daivd; Hodges, Ben

    2017-04-01

    The high-resolution National Water Model (NWM), launched by U.S. National Oceanic and Atmospheric Administration (NOAA) in August 2016, has shown it is possible to provide real-time flow prediction in rivers and streams across the entire continental United States. The next step for continental-scale modeling is moving from reduced physics (e.g. Muskingum-Cunge) to full dynamic modeling with the Saint-Venant equations. The Simulation Program for River Networks (SPRNT) provides a computational approach for the Saint-Venant equations, but obtaining sufficient channel bathymetric data and hydraulic roughness is seen as a critical challenge. However, recent work has shown the Height Above Nearest Drainage (HAND) method can be applied with the National Elevation Dataset (NED) to provide automated estimation of effective channel bathymetry suitable for large-scale hydraulic simulations. The present work examines the use of SPRNT with the National Hydrography Dataset (NHD) and HAND-derived bathymetry for automated generation of rating curves that can be compared to existing data. The approach can, in theory, be applied to every stream reach in the NHD and thus provide flood guidance where none is available. To test this idea we generated 2000+ rating curves in two catchments in Texas and Alabama (USA). Field data from the USGS and flood records from an Austin, Texas flood in May 2015 were used as validation. Large-scale implementation of this idea requires addressing several critical difficulties associated with numerical instabilities, including ill-posed boundary conditions generated in automated model linkages and inconsistencies in the river geometry. A key to future progress is identifying efficient approaches to isolate numerical instability contributors in a large time-space varying solution. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  14. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    Science.gov (United States)

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  15. COMPARISON OF LARGE RIVER SAMPLING METHOD USING DIATOM METRICS

    Science.gov (United States)

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  16. Bridging the gaps: An overview of wood across time and space in diverse rivers

    Science.gov (United States)

    Wohl, Ellen

    2017-02-01

    Nearly 50 years of research focused on large wood (LW) in rivers provide a basis for understanding how wood enters rivers; how wood decays, breaks, and is transported downstream; and how at least temporarily stable wood influences channel geometry, fluxes of water, sediment, and organic matter, and the abundance and diversity of aquatic and riparian organisms. Field-based studies have led to qualitative conceptual models and to numerical stimulations of river processes involving wood. Numerous important gaps remain, however, in our understanding of wood dynamics. The majority of research on wood in rivers focuses on small- to medium-sized rivers, defined using the ratio of wood piece size to channel width as channels narrower than the locally typical wood-piece length (small) and slightly narrower than the longer wood pieces present (medium). Although diverse geographic regions and biomes are represented by one or a few studies in each region, the majority of research comes from perennial rivers draining temperate conifer forests. Regional syntheses most commonly focus on the Pacific Northwest region of North America where most of these studies originate. Consequently, significant gaps in our understanding include lack of knowledge of wood-related processes in large rivers, dryland rivers, and rivers of the high and low latitudes. Using a wood budget as an organizing framework, this paper identifies other gaps related to wood recruitment, transport, storage, and how beavers influence LW dynamics. With respect to wood recruitment, we lack information on the relative importance of mass tree mortality and transport of buried or surficial downed wood from the floodplain into the channel in diverse settings. Knowledge gaps related to wood transport include transport distances of LW and thresholds for LW mobility in small to medium rivers. With respect to wood storage, we have limited data on longitudinal trends in LW loads within unaltered large and great rivers and on

  17. Systematics and biogeography of Sternarchellini (Gymnotiformes: Apteronotidae: Diversification of electric fishes in large Amazonian rivers

    Directory of Open Access Journals (Sweden)

    Stephen J. Ivanyisky III

    Full Text Available The Sternarchellini (Gymnotiformes, Apteronotidae is a clade of 10 electric fish species that inhabit deep river channels of the Amazon and Orinoco basins, attain moderate adult body sizes (15-50 cm TL, and have a predatory life style. Here we trace the evolutionary origin and diversification of Sternarchellini using standard phylogenetic and biogeographic procedures and a dataset of 70 morphological characters. The main results are: 1 the genus Sternarchellaincludes both species currently assigned to the genus Magosternarchus; and 2 neither of the multi-species assemblages of Sternarchellini in the Amazon and Orinoco basins are monophyletic. Historical biogeographic analysis suggests that sternarchelline evolution was linked to the large-scale river capture event that formed the modern Amazon and Orinoco basins, i.e. the Late Miocene rise of the Vaupes structural arch and concomitant breaching of the Purus structural arch. This event is hypothesized to have contributed to formation of the modern sternarchelline species, and to the formation of the modern basin-wide sternarchelline species assemblages. The results indicate that cladogenesis (speciation and anagenesis (adaptive evolution were decoupled processes in the evolution of Sternarchellini.

  18. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  19. Building Exposure Maps Of Urban Infrastructure And Crop Fields In The Mekong River Basin

    Science.gov (United States)

    Haas, E.; Weichselbaum, J.; Gangkofner, U.; Miltzer, J.; Wali, A.

    2013-12-01

    In the frame of the Integrated Water Resources Management (IWRM) initiative for the Mekong river basin World Bank is collaborating with the Mekong River Commission and governmental organizations in Cambodia, Lao PDR, Thailand and Vietnam to build national and regional capacities for managing the risks associated with natural disasters, such as floods, flash floods and droughts. Within ‘eoworld', a joint initiative set up by ESA and World Bank to foster the use of Earth Observation (EO) for sustainable development work, a comprehensive database of elements at risk in the Lower Mekong river basin has been established by GeoVille, including urban infrastructure and crops (primarily rice paddies). In the long term, this exposure information shall be fed into an open-source multi- hazard modeling tool for risk assessment along the Mekong River, which then shall be used by national stakeholders as well as insurance and financial institutions for planning, disaster preparedness and emergency management. Earth Observation techniques can provide objective, synoptic and repetitive observations of elements at risk including buildings, infrastructure and crops. Through the fusion of satellite-based with in-situ data from field surveys and local knowledge (e.g. on building materials) features at risk can be characterised and mapped with high accuracy. Earth Observation data utilised comprise bi-weekly Envisat ASAR imagery programmed for a period of 9 months in 2011 to map the development of the rice cultivation area, identify predominant cropping systems (wet-season vs. dry season cultivation), crop cycles (single /double / triple crop per year), date of emergence/harvest and the distinction between rice planted under intensive (SRI) vs. regular rice cultivation techniques. Very High Resolution (VHR) optical data from SPOT, KOMPSAT and QuickBird were used for mapping of buildings and infrastructure, such as building footprints, residential / commercial areas, industrial

  20. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    Science.gov (United States)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  1. Influence of climate variability on large rivers runoff

    Directory of Open Access Journals (Sweden)

    B. Nurtaev

    2015-06-01

    Full Text Available In accordance with IPCC Report the influence of climate change on the water cycle will increase hydrologic variability by means of changing of precipitation patterns, melting of ice and change of runoff. Precipitation has increased in high northern latitudes and decreased in southern latitudes. This study presents an analysis of river runoffs trends in different climatic zones of the world in condition of climate change.

  2. Climate change impact on streamflow in large-scale river basins: projections and their uncertainties sourced from GCMs and RCP scenarios

    Science.gov (United States)

    Nasonova, Olga N.; Gusev, Yeugeniy M.; Kovalev, Evgeny E.; Ayzel, Georgy V.

    2018-06-01

    Climate change impact on river runoff was investigated within the framework of the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP2) using a physically-based land surface model Soil Water - Atmosphere - Plants (SWAP) (developed in the Institute of Water Problems of the Russian Academy of Sciences) and meteorological projections (for 2006-2099) simulated by five General Circulation Models (GCMs) (including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) for each of four Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Eleven large-scale river basins were used in this study. First of all, SWAP was calibrated and validated against monthly values of measured river runoff with making use of forcing data from the WATCH data set and all GCMs' projections were bias-corrected to the WATCH. Then, for each basin, 20 projections of possible changes in river runoff during the 21st century were simulated by SWAP. Analysis of the obtained hydrological projections allowed us to estimate their uncertainties resulted from application of different GCMs and RCP scenarios. On the average, the contribution of different GCMs to the uncertainty of the projected river runoff is nearly twice larger than the contribution of RCP scenarios. At the same time the contribution of GCMs slightly decreases with time.

  3. Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product

    Science.gov (United States)

    Emery, Charlotte Marie; Paris, Adrien; Biancamaria, Sylvain; Boone, Aaron; Calmant, Stéphane; Garambois, Pierre-André; Santos da Silva, Joecila

    2018-04-01

    Land surface models (LSMs) are widely used to study the continental part of the water cycle. However, even though their accuracy is increasing, inherent model uncertainties can not be avoided. In the meantime, remotely sensed observations of the continental water cycle variables such as soil moisture, lakes and river elevations are more frequent and accurate. Therefore, those two different types of information can be combined, using data assimilation techniques to reduce a model's uncertainties in its state variables or/and in its input parameters. The objective of this study is to present a data assimilation platform that assimilates into the large-scale ISBA-CTRIP LSM a punctual river discharge product, derived from ENVISAT nadir altimeter water elevation measurements and rating curves, over the whole Amazon basin. To deal with the scale difference between the model and the observation, the study also presents an initial development for a localization treatment that allows one to limit the impact of observations to areas close to the observation and in the same hydrological network. This assimilation platform is based on the ensemble Kalman filter and can correct either the CTRIP river water storage or the discharge. Root mean square error (RMSE) compared to gauge discharges is globally reduced until 21 % and at Óbidos, near the outlet, RMSE is reduced by up to 52 % compared to ENVISAT-based discharge. Finally, it is shown that localization improves results along the main tributaries.

  4. Radiation monitoring of Syr-Darya river

    International Nuclear Information System (INIS)

    Barber, D.S.; Howard, H.D.; Betsill, J.D.; Matthews, R.; Yuldashev, B.S.; Salikhbaev, U.S.; Radyuk, R.I.; Vdovina, E.D.; Solodukhin, V.P.; Poznyak, V.L.; Vasiliev, I.A.; Alekhina, V.M.; Juraev, A.A.

    2003-01-01

    The article contains the results obtained during the radiation monitoring of Syr-Darya River, which was conducted within the frames of international collaboration of Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and USA. The data on the nature of salinity of water, alfa- and beta-activity of water, bottom, water plants, and soil was obtained. Dependence of the obtained results on the distance form the source is discussed. The major life-providing arteries for the great region of Central Asia are Syr-Darya and Amu Darya rivers. There are many countries next to the pools of these rivers: Tajikistan, Afghanistan, Turkmenistan, Uzbekistan, Kyrgyzstan, and Kazakhstan. There is a great concern caused by the shortage of supply of fresh water, severe epidemiological situation, and radiation conditions along of the pools of these rivers. Such conditions have developed as a result of intensive economic and industrial activities, and also of geological and geochemical features of this region. One of the most serious aspects of this problem is the weak scrutiny level of influence of large deposits of natural uranium and consequences of technological and industrial activities. Since November, 2000 Scientifics of four of the listed countries (Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan) have come to an agreement carrying out the teamwork on studying and monitoring the environment in the pools of Syr-Darya and Amu Darya rivers [1]. Collaborator of these works is Cooperative Monitoring Center at Sandia National Laboratories, USA. During three expeditions each country in 15 control sites on their territory has conducted field researches and has obtained the samples of elements of the environment. Laboratory researches were carried out in Kazakhstan and Uzbekistan. The first results were obtained in (2,3) and later in [4].Currently, the analysis of the data on salinity of water and alpha- and beta- activities of samples along Syr-Darya River is presented

  5. Science to Manage a Very Rare Fish in a Very Large River - Pallid Sturgeon in the Missouri River, U.S.A.

    Science.gov (United States)

    Jacobson, R. B.; Colvin, M. E.; Marmorek, D.; Randall, M.

    2017-12-01

    The Missouri River Recovery Program (MRRP) seeks to revise river-management strategies to avoid jeopardizing the existence of three species: pallid sturgeon (Scaphirhynchus albus), interior least tern (Sterna antillarum)), and piping plover (Charadrius melodus). Managing the river to maintain populations of the two birds (terns and plovers) is relatively straightforward: reproductive success can be modeled with some certainty as a direct, increasing function of exposed sandbar area. In contrast, the pallid sturgeon inhabits the benthic zone of a deep, turbid river and many parts of its complex life history are not directly observable. Hence, pervasive uncertainties exist about what factors are limiting population growth and what management actions may reverse population declines. These uncertainties are being addressed by the MRRP through a multi-step process. The first step was an Effects Analysis (EA), which: documented what is known and unknown about the river and the species; documented quality and quantity of existing information; used an expert-driven process to develop conceptual ecological models and to prioritize management hypotheses; and developed quantitative models linking management actions (flows, channel reconfigurations, and stocking) to population responses. The EA led to development of a science and adaptive-management plan with prioritized allocation of investment among 4 levels of effort ranging from fundamental research to full implementation. The plan includes learning from robust, hypothesis-driven effectiveness monitoring for all actions, with statistically sound experimental designs, multiple metrics, and explicit decision criteria to guide management. Finally, the science plan has been fully integrated with a new adaptive-management structure that links science to decision makers. The reinvigorated investment in science stems from the understanding that costly river-management decisions are not socially or politically supportable without

  6. A large scale field experiment in the Amazon basin (LAMBADA/BATERISTA)

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C.

    1995-01-01

    A description is given of a large-scale field experiment planned in the Amazon basin, aimed at assessing the large-scale balances of energy, water and carbon dioxide. The embedding of this experiment in global change programmes is described, viz. the Biospheric Aspects of the Hydrological Cycle

  7. THE CONFLUENCE RATIO OF THE TRANSYLVANIAN BASIN RIVERS

    Directory of Open Access Journals (Sweden)

    ROŞIAN GH.

    2014-03-01

    Full Text Available There are many possibilities to assess the hydrological and geomorphological evolution of a territory. Among them, one remarks the confluence ratio of the rivers belonging to different catchment areas. The values of this indicator may provide information regarding the stage of evolution of the fluvial landforms in the Transylvanian Basin. Also, the values may serve for the calculation of other parameters of catchment areas like: the degree of finishing of the drainage basin for its corresponding order, the density of river segments within a catchment area etc. To calculate the confluence ratio, 35 catchment areas of different orders have been selected. The confluence ratio varies between 3.04 and 6.07. The large range of values demonstrates the existence of a heterogeneous lithology and of morphological and hydrographical contrasts from one catchment area to the other. The existence of values above 5, correlated also with observations in the field, reveals an accelerated dynamics of the geomorphological processes in those catchment areas. This dynamic is mainly supported by the high landform fragmentation due to the first order rivers. In contrast, the catchment areas that have a confluence ratio below 5 are in a more advanced stage of evolution with stable slopes, unable to initiate new first order river segments.

  8. How does floodplain width affect floodplain river ecology? A preliminary exploration using simulations

    Science.gov (United States)

    Power, Mary E.; Parker, Gary; Dietrich, William E.; Sun, Adrian

    1995-09-01

    Hydraulic food chain models allow us to explore the linkages of river discharge regimes and river-floodplain morphology to the structure and dynamics of modeled food webs. Physical conditions (e.g. depth, width, velocity) that vary with river discharge affect the performance (birth, growth, feeding, movement, or death rates) of organisms or trophic groups. Their performances in turn affect their impacts on food webs and ecosystems in channel and floodplain habitats. Here we explore the impact of floodplain width (modeled as 1 ×, 10× and 40× the channel width) on a food web with two energy sources (detritus and vegetation), invertebrates that consume these, a size structured fish population which consumes invertebrates and in which larger fish cannibalize small fish, and birds which feed on large fish. Hydraulic linkages to trophic dynamics are assumed to be mediated in three ways: birds feed efficiently only in shallow water; plant carrying capacity varies non-linearly with water velocity, and mobile and drifting organisms are diluted and concentrated with spillover of river discharge to the floodplain, and its reconfinement to the channel. Aspects of this model are based on field observations of Junk and Bailey from the Amazon, of Sparks from the Mississippi, and on our observations of the Fly River in Papua New Guinea. The model produced several counter-intuitive results. Biomass of invertebrates and fish increased with floodplain width, but much more rapidly from 1 × to 10 × floodplains than from 10 × to 40 × floodplains. For birds, maximum biomass occurred on the 10× floodplain. Initially high bird biomass on the 40 × floodplain declined to extinction over time, because although favorable fishing conditions (shallow water) were most prolonged on the widest floodplain, this advantage was more than offset by the greater dilution of prey after spillover. Bird predation on large fish sometimes increased their biomass, by reducing cannibalism and thereby

  9. Phase transition behavior of sediment transport at the sand-mud interface, across scales from flumes to the large rivers

    Science.gov (United States)

    Ma, H.; Nittrouer, J. A.; Wu, B.; Zhang, Y.; Mohrig, D. C.; Lamb, M. P.; Wang, Y.; Fu, X.; Moodie, A. J.; Naito, K.; Parker, G.

    2017-12-01

    Sediment dispersal and deposition creates deltaic landscapes, establishes coastlines, and produces fertile floodplains, all of which serve as critical landforms inhabited by a large proportion of humankind. If poorly managed, sediment loads in these environments can elevate and clog channels, thereby enhancing hazards such as severe flooding. Predictive descriptions of sediment loads, however, are not well constrained, especially for fine-grained (silt and very-fine sand) dispersal systems, which often include river deltas and coastlines. Here, we show efforts to collect and analyze an extensive sediment load database for fine-grained channels, spanning from small flume experiments to large rivers, in order to evaluate the nature of sediment flux. Our analyses determined that sediment transport exhibits two distinct transport phases, separated by a discontinuous transition, whereby sediment flux differs by one to two orders of magnitude. It is determined that the transition responds to the bed material grain size, and we propose a phase diagram based on this metric alone. These findings help elucidate why previous theories of sediment transport at the sand-silt interface, which are typically continuous, are not able to give satisfactory predictions across different scales and environments. Our work serves to help evaluate anthropic influences on rivers, deltas, and coastlines, and can be applied to better constrain sediment flux of paleo-fluvial systems found on Earth and Mars. For example, in situ measurements of sediment flux for the silty-sandy bed of the lower Yellow River, China, validate the aforementioned phase transition behavior, and illustrate that the channel resides near the transition of high to low efficiency transport modes. Recent dam construction and resulting downstream coarsening of the bed via armoring, however, might lead to the unintended consequence of enhancing flood risk by driving the system to a low efficiency transport mode with high

  10. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China

    Science.gov (United States)

    Shuwei, Zheng; Heqin, Cheng; Shuaihu, Wu; Shengyu, Shi; Wei, Xu; Quanping, Zhou; Yuehua, Jiang

    2017-05-01

    High-resolution multibeam data was used to interpret the surface morphology of very large dunes (VLDs) in the tidal reach of the Yangtze River, China. These VLDs can be divided into three categories according to their surface morphological characteristics. (1) VLDs-I: those with a smooth surface and cross-section; (2) VLDs-II: those accompanied by secondary dunes; (3) VLDs-III: those accompanied by secondary dunes and numerous elliptical pits. Parameters and spatial distribution of VLDs, and bed surface sediment were analyzed in the laboratory. Overall, channel morphology is an important factor affecting the development of VLDs, and channels with narrow and straight and certain water surface slope are facilitating the development of VLDs by constraining stream power. Meanwhile, distribution density of VLDs depicts a decreasing trend from Chizhou towards the estuary, are probably influenced by channel morphology and width. Associated pits in VLDs-III change the 3D dune morphology by distributing in secondary dunes as beads. The Three Gorges Dam project (TGP) leads to the bed surface sediment activity frequently and leads to the riverbed surface sediment coarsens, which promotes the further development of dunes. Moreover, other human activities, such as river regulation project, sand mining and Deep Water Channel Regulation Project have changed the regional river boundary conditions and hydrodynamic conditions are influential on the development of VLDs.

  11. Ca isotopes in the Ebro River Basin: mixing and lithological tracer

    Science.gov (United States)

    Guerrot, C.; Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Brenot, A.

    2012-12-01

    A large investigation of the Ebro River catchment was done in the past years regarding hydrogen, oxygen, lithium, boron, sulphur and oxygen from SO4 and strontium isotope measurements together with major and trace elements in the dissolved load of 25 river samples collected within the Ebro River Basin in Spain (Millot et al., Geophysical Research Abstracts, Vol. 14, EGU2012-2062, 2012). The Ebro River (928 km long, 85,530 km2 drainage basin) located in North-Eastern Spain rises near the Atlantic coast in the Cantabrian Mountains and flows into the western Mediterranean Sea through several large cities and agricultural, mining and industrial areas. The river is one of the largest contributors of freshwater in the Mediterranean Sea and ends in the Ebro delta, one of the most important wetlands in Europe. Bedrocks of the Ebro River Basin are mainly dominated by carbonates and evaporites from the Paleozoic and Mesozoic terrains. The Ebro river mainstream was sampled at Amposta one time per month between June 2005 and May 2006 and secondly, the Ebro River along its main course and its main tributaries were sampled during one field campaign in April 2006. The behaviour of Ca and its isotopes during water/rock interactions at the scale of a large river basin having various lithologies will be investigated in addition with Sr, S (SO4) and O (SO4) isotopes. One objective is to characterize the processes controlling the isotope signatures of a large river draining predominantly sedimentary bedrocks. The δ44Ca ratio (δ44/40 normalised to Seawater) ranged between -0.87 and -1.09‰ along the Ebro main stream, increasing towards the delta as the Ca content increase. In Amposta, the δ44Ca ratio ranged between -0.66 and -1.04‰ and tends to decrease with the increasing discharge. These variations are very similar to those given by the 87Sr/86Sr ratios and Sr contents. For the tributaries, the δ44Ca ratio ranged between -0.43 and -1.04‰ whereas the anhydrite-gypsum bedrock

  12. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  13. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    Science.gov (United States)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  14. Large-scale vortices in compressible turbulent medium with the magnetic field

    Science.gov (United States)

    Gvaramadze, V. V.; Dimitrov, B. G.

    1990-08-01

    An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.

  15. Energy Dissipation and Dynamics in Large Guide Field Turbulence Driven Reconnection at the Magnetopause

    Science.gov (United States)

    TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.

    2017-12-01

    Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.

  16. Geomorphic status of regulated rivers in the Iberian Peninsula.

    Science.gov (United States)

    Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J

    2015-03-01

    River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation

  17. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  18. A COMPREHENSIVE NONPOINT SOURCE FIELD STUDY FOR SEDIMENT, NUTRIENTS, AND PATHOGENS IN THE SOUTH FORK BROAD RIVER WATERSHED IN NORTHEAST GEORGIA

    Science.gov (United States)

    This technical report provides a description of the field project design, quality control, the sampling protocols and analysis methodology used, and standard operating procedures for the South Fork Broad River Watershed (SFBR) Total Maximum Daily Load (TMDL) project. This watersh...

  19. Preserving the Dnipro River

    International Development Research Centre (IDRC) Digital Library (Canada)

    Humanity inherited the true sense of proportion, synergy, and harmony from the natural environment. ..... In Ukraine, the middle and lower sections of the Dnipro have a drainage ... The following large cities are located in the Dnipro basin: in Russia, .... In Kherson Oblast and in river basins of some small rivers it is as high as ...

  20. Long Term Large Scale river nutrient changes across the UK

    Science.gov (United States)

    Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai

    2017-04-01

    During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as

  1. River morphodynamics from space: the Landsat frontier

    Science.gov (United States)

    Schwenk, Jon; Khandelwal, Ankush; Fratkin, Mulu; Kumar, Vipin; Foufoula-Georgiou, Efi

    2017-04-01

    NASA's Landsat family of satellites have been observing the entire globe since 1984, providing over 30 years of snapshots with an 18 day frequency and 30 meter resolution. These publicly-available Landsat data are particularly exciting to researchers interested in river morphodynamics, who are often limited to use of historical maps, aerial photography, and field surveys with poor and irregular time resolutions and limited spatial extents. Landsat archives show potential for overcoming these limitations, but techniques and tools for accurately and efficiently mining the vault of scenes must first be developed. In this PICO presentation, we detail the problems we encountered while mapping and quantifying planform dynamics of over 1,300 km of the actively-migrating, meandering Ucayali River in Peru from Landsat imagery. We also present methods to overcome these obstacles and introduce the Matlab-based RivMAP (River Morphodynamics from Analysis of Planforms) toolbox that we developed to extract banklines and centerlines, compute widths, curvatures, and angles, identify cutoffs, and quantify planform changes via centerline migration and erosion/accretion over large spatial domains with high temporal resolution. Measurement uncertainties were estimated by analyzing immobile, abandoned oxbow lakes. Our results identify hotspots of planform changes, and combined with limited precipitation, stage, and topography data, we parse three simultaneous controls on river migration: climate, sediment, and meander cutoff. Overall, this study demonstrates the vast potential locked within Landsat archives to identify multi-scale controls on river migration, observe the co-evolution of width, curvature, discharge, and migration, and discover and develop new geomorphic insights.

  2. Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada)

    International Nuclear Information System (INIS)

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-01-01

    Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. - Highlights: • Epiphytes and macrophytes are sites of Hg accumulation in a large temperate river. • Epiphytic biofilms are ten fold more contaminated than their macrophyte host. • Physico-chemical variables influences Hg levels in epiphytes and macrophytes. • Up to 74% of total Hg is in the methylated form in epiphytes. • Epiphytes, should be included in Hg foodweb modeling. - Epiphytic biofilms are key sites of methylmercury accumulation in large river wetlands

  3. Linking community tolerance and structure with low metallic contamination: a field study on 13 biofilms sampled across the Seine river basin.

    Science.gov (United States)

    Fechner, Lise C; Gourlay-Francé, Catherine; Tusseau-Vuillemin, Marie-Hélène

    2014-03-15

    It is difficult to assess the biological consequences of diffuse water contamination by micropollutants which are present in rivers at low, even sublethal levels. River biofilms, which respond quickly to changes of environmental parameters, are good candidates to acquire knowledge on the response of aquatic organisms to diffuse chemical contamination in the field. The study was designed as an attempt to link biofilm metal tolerance and metallic contamination in a field survey covering 13 different sampling sites in the Seine river basin (north of France) with low contamination levels. Cd and Zn tolerance of heterotrophic communities was assessed using a short-term toxicity test based on β-glucosidase activity. Metal tolerance levels varied between sites but there was no obvious correlation between tolerance and corresponding water contamination levels for Cd and Zn. Indeed, metallic contamination at the sampling sites remained subtle when compared to water quality standards (only two sampling sites had either Zn or both Cu and Zn concentrations exceeding the Environmental Quality Standards set by the EU Water Framework Directive). Yet, multivariate analysis of the data using Partial Least Squares Regression revealed that both metallic and environmental parameters were important variables explaining the variability of metal tolerance levels. Automated Ribosomal Intergenic Spacer Analysis (ARISA) was also performed on both bacterial and eukaryotic biofilm communities from the 13 sampling sites. Multivariate analysis of ARISA fingerprints revealed that biofilms with similar tolerance levels have similar ARISA profiles. Those results confirm that river biofilms are potential indicators of low, diffuse contamination levels of aquatic systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Exact Results in Non-Supersymmetric Large N Orientifold Field Theories

    CERN Document Server

    Armoni, Adi; Veneziano, Gabriele

    2003-01-01

    We consider non-supersymmetric large N orientifold field theories. Specifically, we discuss a gauge theory with a Dirac fermion in the anti-symmetric tensor representation. We argue that, at large N and in a large part of its bosonic sector, this theory is non-perturbatively equivalent to N=1 SYM, so that exact results established in the latter (parent) theory also hold in the daughter orientifold theory. In particular, the non-supersymmetric theory has an exactly calculable bifermion condensate, exactly degenerate parity doublets, and a vanishing cosmological constant (all this to leading order in 1/N).

  5. Mechanisms of vegetation-induced channel narrowing of an unregulated canyon river: Results from a natural field-scale experiment

    Science.gov (United States)

    Manners, Rebecca B.; Schmidt, John C.; Scott, Michael L.

    2014-04-01

    The lower Yampa River in Yampa Canyon, western Colorado serves as a natural, field-scale experiment, initiated when the invasive riparian plant, tamarisk (Tamarix spp.), colonized an unregulated river. In response to tamarisk's rapid invasion, the channel narrowed by 6% in the widest reaches since 1961. Taking advantage of this unique setting, we reconstructed the geomorphic and vegetation history in order to identify the key mechanisms for which, in the absence of other environmental perturbations, vegetation alters fluvial processes that result in a narrower channel. From our reconstruction, we identified a distinct similarity in the timing and magnitude of tamarisk encroachment and channel change, albeit with a lag in the channel response, thus suggesting tamarisk as the driving force. Within a decade of establishment, tamarisk effectively trapped sediment and, as a result, increased floodplain construction rates. Increasing tamarisk coverage over time also reduced the occurrence of floodplain stripping. Tamarisk recruitment was driven by both hydrologic and hydraulic variables, and the majority of tamarisk plants (84%) established below the stage of the 2-year flood. Thus, upon establishment nearly all plants regularly interact with the flow and sediment transport field. Our analyses were predicated on the hypothesis that the flow regime of the Yampa River was stationary, and that only the riparian vegetation community had changed. While not heavily impacted by water development, we determined that some aspects of the flow regime have shifted. However, this shift, which involved the clustering in time of extremely wet and dry years, did not influence fluvial processes directly. Instead these changes directly impacted riparian vegetation and changes in vegetation cover, in turn, altered fluvial processes. Today, the rate of channel change and new tamarisk recruitment is small. We believe that the rapid expansion of tamarisk and related floodplain construction

  6. Sediment budget analysis from Landslide debris and river channel change during the extreme event - example of Typhoon Morakot at Laonong river, Taiwan

    Science.gov (United States)

    Chang, Kuo-Jen; Huang, Yu-Ting; Huang, Mei-Jen; Chiang, Yi-Lin; Yeh, En-Chao; Chao, Yu-Jui

    2014-05-01

    Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Typhoon Morakot brought extreme and long-time rainfall for Taiwan in August 2009. It further caused huge loss of life and property in central and southern Taiwan. Laonong River is the largest tributary of Gaoping River. It's length is 137 km, and the basin area is 1373 km2. More than 2000mm rainfall brought and maximum rainfall exceeded 100mm/hr in the region by Typhoon Morakot in Aug, 2009. Its heavy rains made many landslides and debris flew into the river and further brought out accumulation and erosion on river banks of different areas. It caused severe disasters within the Laonong River drainage. In the past, the study of sediment blockage of river channel usually relies on field investigation, but due to inconvenient transportation, topographical barriers, or located in remote areas, etc. the survey is hardly to be completed sometimes. In recent years, the rapid development of remote sensing technology improves image resolution and quality significantly. Remote sensing technology can provide a wide range of image data, and provide essential and precious information. Furthermore, although the amount of sediment transportation can be estimated by using data such as rainfall, river flux, and suspended loads, the situation of large debris migration cannot be studied via those data. However, landslides, debris flow and river sediment transportation model in catchment area can be evaluated easily through analyzing the digital terrain model (DTM) . The purpose of this study is to investigate the phenomenon of river migration and to evaluate the amount of migration along Laonong River by analyzing the DEM before and after the typhoon Morakot. The DEMs are built by using the aerial images taken by digital mapping camera (DMC) and by airborne digital scanner 40 (ADS 40) before and after typhoon event. The results show that lateral

  7. Field and ray analyses of antenna excitations in ICRF heating of large Tokamaks

    International Nuclear Information System (INIS)

    Bers, A.; Lister, G.; Jacquinot, J.

    1980-09-01

    We present analytical and computational techniques for determining the electromagnetic fields and associated power flow excited by antenna systems external to large Tokamak plasmas. The finite poloidal and toroidal extension of the poloidal antenna current is modeled by a superposition of current sheets placed at a fixed radius outside the plasma. Antennae both with and without a screen between the current sheet and the plasma are considered. The plama is modeled by its cold dielectric tensor and inhomogeneous density and applied magnetic field. For large Tokamak plasmas in which the plasma dimensions are large compared to the antenna, the field excitation problem can be considered approximately in slab geometry. The field solution of this problem which we present, gives the electromagnetic fields excited in the edge plasma by the antennae and includes the effect of the cutoffs which may exist in this region. To proceed further into the plasma we consider a ray tracing analysis. Starting from an equiphase surface of the excited fields in the edge plasma, the group velocity rays can be followed in full toroidal geometry up to the cyclotron singular resonance region where the power is deposited in the particles. Both the amplitude and phase of the fields can be established in the vicinity of the angular surface so that the power deposition profile can be eventually calculated

  8. Habitat Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  9. Geomorphic Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  10. Using sediment transport and river restoration to link research and education, and promote K-12 female involvement in STEM fields

    Science.gov (United States)

    Yager, E. M.; Bradley-Eitel, K.

    2011-12-01

    The focus of this CAREER award is to better understand and predict the mechanics of sediment transport, to link research and education through courses and shared field sites, and to increase female interest in STEM fields. To accomplish the education component of this proposal we have focused on the following three activities: 1) a Keystone course on the scientific method, 2) a Women Outside with Science (WOWS) camp and 3) a permanent field site for research and education on river processes. In the Keystone Course, students investigated the impact of roughness addition, in sediment-starved river reaches (e.g. downstream of dams), on the retention of gravel used for spawning. They developed research questions and hypotheses, designed and conducted a set of scaled laboratory flume experiments, analyzed their data and wrote a draft manuscript of their results. Student feedback was overwhelmingly positive on the merits of this course, which included hands-on learning of the following: basic sediment transport and fluvial geomorphology, applied statistics, laboratory methods, and scientific writing skills. Students sometimes struggled when flume experiments did not progress as planned, and in the analysis and interpretation of complex data. Some of the students in the course have reanalyzed data, conducted additional experiments and are currently rewriting the manuscript for submission to a peer-reviewed journal. Such a course fundamentally links research and teaching, and provides an introduction to research for advanced undergraduates or beginning graduate students. We have also run one summer WOWS camp, which was a ten day camping and inquiry based research experience for 20 female junior-high and high-school students. The girls studied climate change and water related issues, worked on a restoration project on the Little Salmon River, met with a fish biologist and did fish habitat surveys and studied water quality along the North Fork of the Payette River while on a

  11. THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M., E-mail: t.kondic@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  12. Riverbed Micromorphology of the Yangtze River Estuary, China

    Directory of Open Access Journals (Sweden)

    Shuaihu Wu

    2016-05-01

    Full Text Available Dunes are present in nearly all fluvial channels and are vital in understanding sediment transport, deposition, and flow conditions during floods of rivers and estuaries. This information is pertinent for helping developing management practices to reduce risks in river transportation and engineering. Although a few recent studies have investigated the micromorphology of a portion of the Yangtze River estuary in China, our understanding of dune development in this large estuary is incomplete. It is also poorly understood how the development and characteristics of these dunes have been associated with human activities in the upper reach of the Yangtze River and two large-scale engineering projects in the estuarine zone. This study analyzed the feature in micromorphology of the entire Yangtze River estuary bed over the past three years and assessed the morphological response of the dunes to recent human activities. In 2012, 2014, and 2015, multi-beam bathymetric measurements were conducted on the channel surface of the Yangtze River estuary. The images were analyzed to characterize the subaqueous dunes and detect their changes over time. Bottom sediment samples were collected for grain size analysis to assess the physical properties of the dunes. We found that dunes in the Yangtze River estuary can be classified in four major classes: very large dunes, large dunes, medium dunes, and small dunes. Large dunes were predominant, amounting to 51.5%. There was a large area of dunes developed in the middle and upper reaches of the Yangtze River estuary and in the Hengsha Passage. A small area of dunes was observed for the first time in the turbidity maximum zone of the Yangtze River estuary. These dunes varied from 0.12 to 3.12 m in height with a wide range of wavelength from 2.83 to 127.89 m, yielding a range in height to wavelength of 0.003–0.136. Sharp leeside slope angles suggest that the steep slopes of asymmetrical dunes in the middle and upper

  13. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  14. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  15. Abandoned floodplain plant communities along a regulated dryland river

    Science.gov (United States)

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  16. Modelling tools for managing Induced RiverBank Filtration MAR schemes

    Science.gov (United States)

    De Filippis, Giovanna; Barbagli, Alessio; Marchina, Chiara; Borsi, Iacopo; Mazzanti, Giorgio; Nardi, Marco; Vienken, Thomas; Bonari, Enrico; Rossetto, Rudy

    2017-04-01

    facilitating the use of modeling environments and GIS tools for storage, management and visualization of large spatial datasets. The groundwater flow and solute transport model was built using FREEWAT, where MODFLOW-2005 and MT3DMS are integrated. The aquifer of the Sant'Alessio plain was discretized using square cells 100 m2 wide and two model layers, a silty-sandy superficial cover and the sandy-gravelly aquifer. Hydraulic connection with the Serchio river and exploitation of the aquifer through the Sant'Alessio well field were simulated. The aquifer model layer was further refined to simulate advection, dispersion, sorption and degradation of contaminants within the river. The objectives are: (i) estimating induced infiltration rates and travel times, (ii) optimizing groundwater exploitation in complex well field schemes, (iii) preventing pollution events, (iv) estimating time for remedial actions. Acknowledgements This paper is presented within the framework of the projects FP7 MARSOL and H2020 FREEWAT. The MARSOL project has received funding from the European Union's Seventh Framework Programme for Research, Technological Development and Demonstration under grant agreement no 619120. The FREEWAT project has received funding from the European Union's HORIZON 2020

  17. The large N limit of superconformal field theories and supergravity

    International Nuclear Information System (INIS)

    Maldacena, J.

    1999-01-01

    We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The close-quote t Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions. copyright 1999 American Institute of Physics

  18. Denitrification in the Mississippi River network controlled by flow through river bedforms

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-01-01

    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1, 2, 3, 4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5, 6, 7, 8, 9, 10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones8, 11, 12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering. 

  19. Body fixed frame, rigid gauge rotations and large N random fields in QCD

    International Nuclear Information System (INIS)

    Levit, S.

    1995-01-01

    The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)

  20. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    International Nuclear Information System (INIS)

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy's (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions

  1. Interlinking of Rivers in India: Issues & Challenges

    OpenAIRE

    MEHTA, Dharmendra; MEHTA, Naveen K.

    2013-01-01

    Abstract. The rivers in India are truly speaking not only life-line of masses but also for wild-life. The rivers play a vital role in the lives of the Indian people. The river systems help us in irrigation, potable water, cheap transportation, electricity as well as a source of livelihood for our ever increasing population. Some of the major cities of India are situated at the banks of holy rivers. Proper management of river water is the need of the hour. Indian agriculture largely d...

  2. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11

    Strontium-90 (90Sr) is present both in the aquifer near the river and in the vadose and riparian zones of the river’s shore at 100-NR-2. Phytoextraction of 90Sr is being considered as a potential remediation system along the riparian zone of the Columbia River. Phytoextraction would employ coyote willow (Salix exigua). Past studies have shown that willow roots share uptake mechanisms for Sr with Ca, a plant macronutrient as well as no discrimination between Sr and 90Sr. Willow 90Sr concentration ratios [CR’s; (pCi 90Sr/g dry wt. of new growth tissue)/(pCi 90Sr/g soil porewater)] were consistently greater than 65 with three-quarters of the assimilated label partitioned into the above ground shoot. Insect herbivore experiments also demonstrated no significant potential for bioaccumulation or food chain transfer from their natural activities. The objectives of this field study were three-fold: (1) to demonstrate that a viable, “managed” plot of coyote willows can be established on the shoreline of the Columbia River that would survive the same microenvironment to be encountered at the 100-NR-2 shoreline; (2) to show through engineered barriers that large and small animal herbivores can be prevented from feeding on these plants; and (3) to show that once established, the plants will provide sufficient biomass annually to support the phytoextraction technology. A field treatability demonstration plot was established on the Columbia River shoreline alongside the 100-K West water intake at the end of January 2007. The plot was delimited by a 3.05 m high chain-link fence and was approximately 10 x 25 m in size. A layer of fine mesh metal small animal screening was placed around the plot at the base of the fencing to a depth of 45 cm. A total of sixty plants were placed in six slightly staggered rows with 1-m spacing between plants. The actual plot size was 0.00461 hectare (ha). At the time of planting (March 12, 2007), the plot was located about 10 m from the

  3. Large-scale Organized Magnetic Fields in O, B and A Stars

    Science.gov (United States)

    Mathys, G.

    2009-06-01

    The status of our current knowledge of magnetic fields in stars of spectral types ranging from early F to O is reviewed. Fields with large-scale organised structure have now been detected and measured throughout this range. These fields are consistent with the oblique rotator model. In early F to late B stars, their occurrence is restricted to the subgroup of the Ap stars, which have the best studied fields among the early-type stars. Presence of fields with more complex topologies in other A and late B stars has been suggested, but is not firmly established. Magnetic fields have not been studied in a sufficient number of OB stars yet so as to establish whether they occur in all or only in some subset of these stars.

  4. Instantons and large N an introduction to non-perturbative methods in quantum field theory

    CERN Document Server

    Marino, Marcos

    2015-01-01

    This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang-Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behaviour of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.

  5. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  6. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Rabehl, R. [Fermilab; Sylvester, C. [Fermilab; Tartaglia, M. [Fermilab

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  7. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    Science.gov (United States)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  8. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    Science.gov (United States)

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Copyright © 2014

  9. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.

    Science.gov (United States)

    Servais, Pierre; Garcia-Armisen, Tamara; George, Isabelle; Billen, Gilles

    2007-04-01

    The Seine river watershed (France) is a deeply anthropogenically impacted area, due to the high population density, intense industrial activities and intensive agriculture. The water quality and ecological functioning of the different rivers of the Seine drainage network have been extensively studied during the last fifteen years within the framework of a large French multidisciplinary scientific program (PIREN Seine program). This paper presents a synthesis of the main data gained in the scope of this program concerning the microbiological water contamination of the rivers of the Seine drainage network. The more common indicator of fecal contamination (fecal coliforms) was mainly used; some complementary works used E. coli and intestinal enterococci as alternative fecal indicators. Point sources (outfall of wastewater treatment plants) and non point sources (surface runoff and soil leaching) of fecal pollution to the rivers of the watershed were quantified. Results showed that, at the scale of a large urbanised watershed as the Seine basin, the input of fecal micro-organisms by non-point sources is much lower than the inputs by point sources. However, the local impact of diffuse non-human sources (especially surface runoff of pastured fields) can be of major importance on the microbiological quality of small headwater rivers. Fecal contamination of the main rivers of the Seine watershed (Seine, Marne, Oise rivers) was studied showing high level of microbiological pollution when compared to European guidelines for bathing waters. The strong negative impact of treated wastewater effluents outfall on the microbiological quality of receiving rivers was observed in different areas of the watershed. Once released in rivers, culturable fecal bacteria disappeared relatively rapidly due to mortality (protozoan grazing, lysis) or loss of culturability induced by stress conditions (sunlight effect, nutrient concentration, temperature). Mortality rates of E. coli were studied

  10. Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system

    Science.gov (United States)

    Wang, Deli; Lin, Wenfang; Yang, Xiqian; Zhai, Weidong; Dai, Minhan; Arthur Chen, Chen-Tung

    2012-12-01

    This study for the first time examined dissolved metals (Cu, Cd, and Mn) together with dissolved oxygen and carbonate system in the whole Pearl River Estuary system, from the upper rivers to the groundwater discharges until the estuarine zone, and explored their potential impacts in the adjacent northern South China Sea (SCS) during May-August 2009. This river-groundwater-estuary system was generally characterized by low dissolved metal levels as a whole, whilst subject to severe perturbations locally. In particular, higher dissolved Cu and Cd occurred in the North River (as high as 60 nmol/L of Cu and 0.99 nmol/L of Cd), as a result of an anthropogenic source from mining activities there. Dissolved Cu levels were elevated in the upper estuary near the city of Guangzhou (Cu: ˜40 nmol/L), which could be attributable to sewage and industrial effluent discharges there. Elevated dissolved metal levels (Cu: ˜20-40 nmol/L; Cd: ˜0.2-0.8 nmol/L) also occurred in the groundwaters and parts of the middle and lower estuaries, which could be attributable to a series of geochemical reactions, e.g., chloride-induced desorption from the suspended sediments, oxidation of metal sulfides, and the partial dissolution of minerals. The high river discharge during our sampling period (May-August 2009) significantly diluted anthropogenic signals in the estuarine mixing zone. Of particular note was the high river discharge (which may reach 18.5 times as high as in the dry season) that transported anthropogenic signals (as indicated by dissolved Cu and Cd) into the adjacent shelf waters of the northern SCS, and might have led to the usually high phytoplankton productivity there (chlorophyll-a value >10 μg/L).

  11. Phytoplankton Regulation in a Eutrophic Tidal River (San Joaquin River, California

    Directory of Open Access Journals (Sweden)

    Alan D. Jassby

    2005-03-01

    Full Text Available As in many U.S. estuaries, the tidal San Joaquin River exhibits elevated organic matter production that interferes with beneficial uses of the river, including fish spawning and migration. High phytoplankton biomass in the tidal river is consequently a focus of management strategies. An unusually long and comprehensive monitoring dataset enabled identification of the determinants of phytoplankton biomass. Phytoplankton carrying capacity may be set by nitrogen or phosphorus during extreme drought years but, in most years, growth rate is light-limited. The size of the annual phytoplankton bloom depends primarily on river discharge during late spring and early summer, which determines the cumulative light exposure in transit downstream. The biomass-discharge relationship has shifted over the years, for reasons as yet unknown. Water diversions from the tidal San Joaquin River also affect residence time during passage downstream and may have resulted in more than a doubling of peak concentration in some years. Dam construction and accompanying changes in storage-and-release patterns from upstream reservoirs have caused a long-term decrease in the frequency of large blooms since the early 1980s, but projected climate change favors a future increase. Only large decreases in nonpoint nutrient sources will limit phytoplankton biomass reliably. Growth rate and concentration could increase if nonpoint source management decreases mineral suspensoid load but does not decrease nutrient load sufficiently. Small changes in water storage and release patterns due to dam operation have a major influence on peak phytoplankton biomass, and offer a near-term approach for management of nuisance algal blooms.

  12. Selected Water-Quality Data from the Cedar River and Cedar Rapids Well Fields, Cedar Rapids, Iowa, 1999-2005

    Science.gov (United States)

    Littin, Gregory R.; Schnoebelen, Douglas J.

    2010-01-01

    The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer at approximately 40 to 80 feet deep. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality near the well fields since 1992. Previous cooperative studies between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, evaluation of surface and ground-water interaction, assessment of pesticides in groundwater and surface water, and to evaluate water quality near a wetland area in the Seminole well field. Typical water-quality analyses included major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. In addition, two synoptic samplings included analyses of additional pesticide degradates in water samples. Physical field parameters (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were recorded with each water sample collected. This report presents the results of water quality data-collection activities from January 1999 through December 2005. Methods of data collection, quality-assurance samples, water-quality analyses, and statistical summaries are presented. Data include the results of water-quality analyses from quarterly and synoptic sampling from monitoring wells, municipal wells, and the Cedar River.

  13. Fringe fields modeling for the high luminosity LHC large aperture quadrupoles

    CERN Document Server

    Dalena, B; Payet, J; Chancé, A; Brett, D R; Appleby, R B; De Maria, R; Giovannozzi, M

    2014-01-01

    The HL-LHC Upgrade project relies on large aperture magnets (mainly the inner Triplet and the separation dipole D1). The beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. Different tracking models are compared in order to provide a numerical estimate of the impact of fringe fields for the actual design of the inner triplet quadrupoles. The implementation of the fringe fields in SixTrack, to be used for dynamic apertures studies, is also discussed.

  14. Large test rigs verify Clinch River control rod reliability

    International Nuclear Information System (INIS)

    Michael, H.D.; Smith, G.G.

    1983-01-01

    The purpose of the Clinch River control test programme was to use multiple full-scale prototypic control rod systems for verifying the system's ability to perform reliably during simulated reactor power control and emergency shutdown operations. Two major facilities, the Shutdown Control Rod and Maintenance (Scram) facility and the Dynamic and Seismic Test (Dast) facility, were constructed. The test programme of each facility is described. (UK)

  15. Precipitation in Madeira island and atmospheric rivers in the winter seasons

    Science.gov (United States)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor

    2016-04-01

    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  16. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    Science.gov (United States)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  17. Automating the mean-field method for large dynamic gossip networks

    NARCIS (Netherlands)

    Bakhshi, Rena; Endrullis, Jörg; Endrullis, Stefan; Fokkink, Wan; Haverkort, Boudewijn R.H.M.

    We investigate an abstraction method, called mean- field method, for the performance evaluation of dynamic net- works with pairwise communication between nodes. It allows us to evaluate systems with very large numbers of nodes, that is, systems of a size where traditional performance evaluation

  18. The three-large-primes variant of the number field sieve

    NARCIS (Netherlands)

    S.H. Cavallar

    2002-01-01

    textabstractThe Number Field Sieve (NFS) is the asymptotically fastest known factoringalgorithm for large integers.This method was proposed by John Pollard in 1988. Sincethen several variants have been implemented with the objective of improving thesiever which is the most time consuming part of

  19. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods

    DEFF Research Database (Denmark)

    Søndergaard, Jens; Tamstorf, Mikkel P.; Elberling, Bo

    2015-01-01

    .025 mg kg(-1). Temporal variations in river Hg were mainly associated with snowmelt, sudden erosion events, and outburst floods from a glacier-dammed lake in the upper part of the ZRB. Annual Hg exports from the 514 km(2) ZRB varied from 0.71 to >1.57 kg and the majority (86-96 was associated...... with sediment-bound Hg. Hg yields from the ZRB varied from 1.4-3.1 g Hg km(-2) yr(-1) and were among the highest yields reported from Arctic river basins. River exports of Hg from ZRB were found to be largely controlled by the frequency, magnitude and timing of the glacial lake outburst floods, which occurred...... in four of the five years in July-August. Floods accounted for 5 to >10% of the annual water discharge, and up to >31% of the annual Hg export. Also, the winter snowfall and the summer temperatures were found to be important indirect controls on the annual Hg export. The occurrence and timing of glacial...

  20. Ultra-large field-of-view two-photon microscopy

    OpenAIRE

    Tsai, Philbert S.; Mateo, Celine; Field, Jeffrey J.; Schaffer, Chris B.; Anderson, Matthew E.; Kleinfeld, David

    2015-01-01

    We present a two-photon microscope that images the full extent of murine cortex with an objective-limited spatial resolution across an 8 mm by 10 mm field. The lateral resolution is approximately 1 µm and the maximum scan speed is 5 mm/ms. The scan pathway employs large diameter compound lenses to minimize aberrations and performs near theoretical limits. We demonstrate the special utility of the microscope by recording resting-state vasomotion across both hemispheres of the murine brain thro...

  1. Documenting human transformation and establishing the reference condition of large river systems using Corona images: a case study from the Ganga River basin, India

    Science.gov (United States)

    Sinha, Rajiv; Pipil, Shobhit; Carbonneau, Patrice; Galiatsatos, Nikolaos

    2016-04-01

    The Ganga basin in northern India is one of the most populous river basin in the world with nearly half a billion inhabitants. In the post-independence era, population expansion and human interventions have left the ecosystem of the Ganga in a severely damaged state with dwindling water levels, pollution due to human activity and natural sediment transport severely perturbed by dams and barrages. Fortunately, there is a growing recognition by the policy managers in India that the restoration of the Ganga to a healthier status, closer to its original unperturbed state, would set a strong foundation to future, greener, economic growth in Northern India. However, given the past six decades of fast development, efforts to restore the Ganga to its original condition are faced with a fundamental question: What was the original state of the Ganga? Answering this question will require some knowledge of the former course of the Ganga and of the farming and urban density of the surrounding plains before the impacts of human disturbance could be felt. We have made use of the Corona spy satellite program that collected a large number of earth observation photos in the 1960s. These photos, now declassified, offer us a unique view of the Ganga at the very early stages of intense development and thus before the worst ecological damages occurred. However, actual usage of these images poses significant technical challenges. In the design of the Corona cameras, very high resolution comes at the cost of complex distortions. Furthermore, we have no information on the exact position and orientation of the satellite at the time of image acquisition so an accurate reprojection of the image into conventional map coordinates is not straightforward. We have developed a georectification process based on polynomial transformation to achieve a positional accuracy of ±20m for the area of our interest. Further, We have developed an object-based classification method that uses both texture and

  2. Large field radiotherapy

    International Nuclear Information System (INIS)

    Vanasek, J.; Chvojka, Z.; Zouhar, M.

    1984-01-01

    Calculations may prove that irradiation procedures, commonly used in radiotherapy and represented by large-capacity irradiation techniques, do not exceed certain limits of integral doses with favourable radiobiological action on the organism. On the other hand integral doses in supralethal whole-body irradiation, used in the therapy of acute leukemia, represent radiobiological values which without extreme and exceptional further interventions and teamwork are not compatible with life, and the radiotherapeutist cannot use such high doses without the backing of a large team. (author)

  3. Not a load of rubbish: simulated field trials in large-scale containers.

    Science.gov (United States)

    Hohmann, M; Stahl, A; Rudloff, J; Wittkop, B; Snowdon, R J

    2016-09-01

    Assessment of yield performance under fluctuating environmental conditions is a major aim of crop breeders. Unfortunately, results from controlled-environment evaluations of complex agronomic traits rarely translate to field performance. A major cause is that crops grown over their complete lifecycle in a greenhouse or growth chamber are generally constricted in their root growth, which influences their response to important abiotic constraints like water or nutrient availability. To overcome this poor transferability, we established a plant growth system comprising large refuse containers (120 L 'wheelie bins') that allow detailed phenotyping of small field-crop populations under semi-controlled growth conditions. Diverse winter oilseed rape cultivars were grown at field densities throughout the crop lifecycle, in different experiments over 2 years, to compare seed yields from individual containers to plot yields from multi-environment field trials. We found that we were able to predict yields in the field with high accuracy from container-grown plants. The container system proved suitable for detailed studies of stress response physiology and performance in pre-breeding populations. Investment in automated large-container systems may help breeders improve field transferability of greenhouse experiments, enabling screening of pre-breeding materials for abiotic stress response traits with a positive influence on yield. © 2016 John Wiley & Sons Ltd.

  4. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum

    Science.gov (United States)

    Creed, Irena F.; McKnight, Diane M.; Pellerin, Brian; Green, Mark B.; Bergamaschi, Brian; Aiken, George R.; Burns, Douglas A.; Findlay, Stuart E G; Shanley, James B.; Striegl, Robert G.; Aulenbach, Brent T.; Clow, David W.; Laudon, Hjalmar; McGlynn, Brian L.; McGuire, Kevin J.; Smith, Richard A.; Stackpoole, Sarah M.

    2015-01-01

    A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration–discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.

  5. Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification

    Science.gov (United States)

    Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.

    2018-01-01

    The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.

  6. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    Science.gov (United States)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models

  7. Correction factors for clinical dosemeters used in large field dosimetry

    International Nuclear Information System (INIS)

    Campos, L.L.; Caldas, L.

    1989-08-01

    The determination of the absorbed dose in high-energy photon and electron beams by the user is carried out as a two-step procedure. First the ionization chamber is calibrated at a reference quality by the user at a standard laboratory, and then the chamber is used to determine the absorbed dose with the user's beam. A number of conversion and correction factors have to be applied. Different sets of factors are needed depending on the physical quantity the calibration refers to, the calibration geometry and the chamber design. Another correction factor to be introduced for the absorbed dose determination in large fields refers to radiation effects on the stem, cable and sometimes connectors. A simple method was developed to be suggested to hospital physicists to be followed during large radiation field dosimetry, in order to evaluate the radiation effects of cables and connectors and to determine correction factors for each system or geometry. (author) [pt

  8. Growth laws for sub-delta crevasses in the Mississippi River Delta

    Science.gov (United States)

    Yocum, T. A.; Georgiou, I. Y.; Straub, K. M.

    2017-12-01

    River deltas are threatened by environmental change, including subsidence, global sea level rise, reduced sediment inputs and other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions to reinitiate the delta cycle. Deltas were studied extensively using numerical models, theoretical and conceptual frameworks, empirical scaling relationships, laboratory models and field observations. But predicting the future of deltas relies on field observations where for most deltas data are still lacking. Moreover, empirical and theoretical scaling laws may be influenced by the data used to develop them, while laboratory deltas may be influenced by scaling issues. Anthropogenic crevasses in the MRD are large enough to overcome limitations of laboratory deltas, and small enough to allow for rapid channel and wetland development, providing an ideal setting to investigate delta development mechanics. Here we assessed growth laws of sub-delta crevasses (SDC) in the MRD, in two experimental laboratory deltas (LD - weakly and strongly cohesive) and compared them to river dominated deltas worldwide. Channel and delta geometry metrics for each system were obtained using geospatial tools, bathymetric datasets, sediment size, and hydrodynamic observations. Results show that SDC follow growth laws similar to large river dominated deltas, with the exception of some that exhibit anomalous behavior with respect to the frequency and distance to a bifurcation and the fraction of wetted delta shoreline (allometry metrics). Most SDC exhibit a systematic decrease of non-dimensional channel geometries with increased bifurcation order, indicating that channels are adjusting to decreased flow after bifurcations occur, and exhibit linear trends for land allometry and width-depth ratio, although geometries decrease more rapidly per bifurcation order. Measured distance to bifurcations in SDC

  9. UAV based hydromorphological mapping of a river reach to improve hydrodynamic numerical models

    Science.gov (United States)

    Lükő, Gabriella; Baranya, Sándor; Rüther, Nils

    2017-04-01

    Unmanned Aerial Vehicles (UAVs) are increasingly used in the field of engineering surveys. In river engineering, or in general, water resources engineering, UAV based measurements have a huge potential. For instance, indirect measurements of the flow discharge using e.g. large-scale particle image velocimetry (LSPIV), particle tracking velocimetry (PTV), space-time image velocimetry (STIV) or radars became a real alternative for direct flow measurements. Besides flow detection, topographic surveys are also essential for river flow studies as the channel and floodplain geometry is the primary steering feature of the flow. UAVs can play an important role in this field, too. The widely used laser based topographic survey method (LIDAR) can be deployed on UAVs, moreover, the application of the Structure from Motion (SfM) method, which is based on images taken by UAVs, might be an even more cost-efficient alternative to reveal the geometry of distinct objects in the river or on the floodplain. The goal of this study is to demonstrate the utilization of photogrammetry and videogrammetry from airborne footage to provide geometry and flow data for a hydrodynamic numerical simulation of a 2 km long river reach in Albania. First, the geometry of the river is revealed from photogrammetry using the SfM method. Second, a more detailed view of the channel bed at low water level is taken. Using the fine resolution images, a Matlab based code, BASEGrain, developed by the ETH in Zürich, will be applied to determine the grain size characteristics of the river bed. This information will be essential to define the hydraulic roughness in the numerical model. Third, flow mapping is performed using UAV measurements and LSPIV method to quantitatively asses the flow field at the free surface and to estimate the discharge in the river. All data collection and analysis will be carried out using a simple, low-cost UAV, moreover, for all the data processing, open source, freely available

  10. Soil erosion and sediment yield, a double barrel problem in South Africa's only large river network without a dam

    Science.gov (United States)

    Le Roux, Jay

    2016-04-01

    Soil erosion not only involves the loss of fertile topsoil but is also coupled with sedimentation of dams, a double barrel problem in semi-arid regions where water scarcity is frequent. Due to increasing water requirements in South Africa, the Department of Water and Sanitation is planning water resource development in the Mzimvubu River Catchment, which is the only large river network in the country without a dam. Two dams are planned including a large irrigation dam and a hydropower dam. However, previous soil erosion studies indicate that large parts of the catchment is severely eroded. Previous studies, nonetheless, used mapping and modelling techniques that represent only a selection of erosion processes and provide insufficient information about the sediment yield. This study maps and models the sediment yield comprehensively by means of two approaches over a five-year timeframe between 2007 and 2012. Sediment yield contribution from sheet-rill erosion was modelled with ArcSWAT (a graphical user interface for SWAT in a GIS), whereas gully erosion contributions were estimated using time-series mapping with SPOT 5 imagery followed by gully-derived sediment yield modelling in a GIS. Integration of the sheet-rill and gully results produced a total sediment yield map, with an average of 5 300 t km-2 y-1. Importantly, the annual average sediment yield of the areas where the irrigation dam and hydropower dam will be built is around 20 000 t km-2 y-1. Without catchment rehabilitation, the life expectancy of the irrigation dam and hydropower dam could be 50 and 40 years respectively.

  11. Large wood budget assessment along a gravel bed river affected by volcanic eruption: the Rio Blanco study case (Chile).

    Science.gov (United States)

    Oss-Cazzador, Daniele; Iroume, Andres; Lenzi, Mario; Picco, Lorenzo

    2016-04-01

    Wood in riverine environments exerts different functions on ecological and geomorphic settings, influencing morphological processes, and increasing risks for sensitive structures. Large wood (LW) is defined as wood material, dead or alive, larger than 10 cm in diameter and 1 m in length. Natural hazards can strongly increase the presence of LW in waterways and flood events can transport it affecting the ecosystem and landscape. This study aims to increase the knowledge of wood budget, considering the effects of two subsequent slight flood events along a sub-reach of the Rio Blanco gravel bed river , in Chilean Patagonia, strongly affected by the eruption of Chaiten volcano in 2008. The volcanic eruption affected almost 3,5 km 2 of evergreen forest on the southern (left) bank, because of primary direct effects from pyroclastic density currents and lahar-floods that caused deposition up to 8 m of reworked tephra, alluvium, and wood on floodplains and terrace along the Rio Blanco. After the eruption, there was a considerable increase of LW into the main channel: into the bankfull channel, volume exceeds 100 m 3 /ha. Field surveys were carried out in January and March 2015, before and after two slight flood events (Recurrence Intervals lower than 1 year). The pre-event phase permitted to detect and analyze the presence of LW into the study area, along a 80 m-long reach of Rio Blanco (7500 m 2 . Every LW element was manually measured and described, a numbered metal tag was installed, and the position was recorded by GPS device. In January, there was a total amount of 113 m 3 /ha, 90% accumulated in LW jams (WJ) and 10% as single logs. The LW was characterized by mean dimensions of 3,36 m height, 0,25 m diameter and 0,26 m 3 volume, respectively. The WJ are characterized by wide range of dimension: volume varies from 0,28 m 3 to 672 m 3 , length from 1,20 m to 56 m, width from 0,40 m to 8,70 m and height from 0,20 m to 3 m, respectively. After the flood events, field

  12. Prospective study of bone metastasis from prostate cancer: comparison between large field diffusion-weighted imaging and bone scintigraphy

    International Nuclear Information System (INIS)

    Wang Xiaoying; Zhang Chunyan; Jiang Xuexiang

    2009-01-01

    Objective: To evaluate the large field diffusion weighted imaging (DWI) (from head vertex to lower leg) in detection of bone metastases from prostate cancer. Methods: One hundred and sixty- six consecutive patients who were suspected of prostate cancer received pelvic MRI and large field diffusion weighted imaging examination. Forty-nine of them underwent bone scintigraphy within one month of the examination of large field DWI. The images were double-blindly evaluated without the knowledge of the pathology result. Conventional MR T 1 and fat saturation T 2 weighted images were taken as standard for the diagnosis of bone metastasis. The sensitivity, specificity, and area under curve between large field DWI and bone scintigraphy were compared with McNemar test. Five patients with bone metastases exceeding 10 per patient were excluded in the lesion-by-lesion analysis. Results: Ten of the 49 patients were diagnosed as bone metastases. The diagnosis of bone metastasis were made in 15 patients by large field DWI and in 17 patients by bone scintigraphy. With patient number as study units (n=49), the diagnostic sensitivity of bone metastases with large field DWI and bone metastases were both 100% (10/10), and specificity were 87.2% (34/39) vs. 82.1% (32/39), respectively. ROC study showed the area under curve (AUC) of large field DWI and bone scintigraphy were 0.936 vs. 0.910, respectively. Totally 68 abnormal foci were identified from large field DWI and/or bone scintigraphy in 44 patients (while 5 patients with bone metastases exceeding 10 foci per patient were excluded), 20 of them were diagnosed as foci of bone metastasis. The diagnosis of bone metastases was made in 23 foci by large field DWI and in 34 by bone scintigraphy. With lesion numbers as study units (n=68), the diagnostic sensitivity of large field DWI and bone scintigraphy were both 90.0% (18/20), and specificity were 89.6% (43/48) vs. 66.7% (32/48), respectively. ROC study showed the area under curve of

  13. Morphodynamic modeling of the river pattern continuum (Invited)

    Science.gov (United States)

    Nicholas, A. P.

    2013-12-01

    Numerical models provide valuable tools for integrating understanding of fluvial processes and morphology. Moreover, they have considerable potential for use in investigating river responses to environmental change and catchment management, and for aiding the interpretation of alluvial deposits and landforms. For this potential to be realised fully, such models must be capable of representing diverse river styles and the spatial and temporal transitions between styles that are driven by changes in environmental forcing. However, while numerical modeling of rivers has advanced considerable over the past few decades, this has been accomplished largely by developing separate approaches to modeling single and multi-thread channels. Results are presented here from numerical simulations undertaken using a new model of river and floodplain co-evolution, applied to investigate the morphodynamics of large sand-bed rivers. This model solves the two-dimensional depth-averaged shallow water equations using a Godunov-type finite volume scheme, with a two-fraction representation of sediment transport, and includes the effects of secondary circulation, bank erosion and floodplain development due to the colonization of bar surfaces by vegetation. Simulation results demonstrate the feasibility of representing a wide range of fluvial styles (including braiding, meandering and anabranching channels) using relatively simple physics-based models, and provide insight into the controls on channel pattern diversity in large sand-bed rivers. Analysis of model sensitivity illustrates the important role of upstream boundary conditions as a control on channel dynamics. Moreover, this analysis highlights key uncertainties in model process representation and their implications for modelling river evolution in response to natural and anthropogenic-induced river disturbance.

  14. SU-F-T-437: 3 Field VMAT Technique for Irradiation of Large Pelvic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Stakhursky, V [Radiation Oncology, Norwalk Hospital, Norwalk, CT (United States)

    2016-06-15

    Purpose: VMAT treatment planning for large pelvic volume irradiation could be suboptimal due to inability of Varian linac to split MLC carriage during VMAT delivery for fields larger than 14.5cm in X direction (direction of leaf motion). We compare the dosimetry between 3 VMAT planning techniques, two 2-arc field techniques and a 3-arc field technique: a) two small in X direction (less than 14.5cm) arc fields, complementing each other to cover the whole lateral extent of target during gantry rotation, b) two large arc fields, each covering the targets completely during the rotation, c) a 3 field technique with 2 small in X direction arcs and 1 large field covering whole target. Methods: 5 GYN cancer patients were selected to evaluate the 3 VMAT planning techniques. Treatment plans were generated using Varian Eclipse (ver. 11) TPS. Dose painting technique was used to deliver 5300 cGy to primary target and 4500 cGy to pelvic/abdominal node target. All the plans were normalized so that the prescription dose of 5300 cGy covered 95% of primary target volume. PTV and critical structures DVH curves were compared to evaluate all 3 planning techniques. Results: The dosimetric differences between the two 2-arc techniques were minor. The small field 2-arc technique showed a colder hot spot (0.4% averaged), while variations in maximum doses to critical structures were statistically nonsignificant (under 1.3%). In comparison, the 3-field technique demonstrated a colder hot spot (1.1% less, 105.8% averaged), and better sparing of critical structures. The maximum doses to larger bowel, small bowel and gluteal fold were 3% less, cord/cauda sparing was 4.2% better, and bladder maximum dose was 4.6% less. The differences in maximum doses to stomach and rectum were statistically nonsignificant. Conclusion: 3-arc VMAT technique for large field irradiation of pelvis demonstrates dosimetric advantages compared to 2-arc VMAT techniques.

  15. One-loop Pfaffians and large-field inflation in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, Fabian, E-mail: fabian.ruehle@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, Oxford University, 1 Keble Road, Oxford, OX1 3NP (United Kingdom); Wieck, Clemens, E-mail: clemens.wieck@uam.es [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2017-06-10

    We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.

  16. Additional challenges for uncertainty analysis in river engineering

    Science.gov (United States)

    Berends, Koen; Warmink, Jord; Hulscher, Suzanne

    2016-04-01

    The management of rivers for improving safety, shipping and environment requires conscious effort on the part of river managers. River engineers design hydraulic works to tackle various challenges, from increasing flow conveyance to ensuring minimal water depths for environmental flow and inland shipping. Last year saw the completion of such large scale river engineering in the 'Room for the River' programme for the Dutch Rhine River system, in which several dozen of human interventions were built to increase flood safety. Engineering works in rivers are not completed in isolation from society. Rather, their benefits - increased safety, landscaping beauty - and their disadvantages - expropriation, hindrance - directly affect inhabitants. Therefore river managers are required to carefully defend their plans. The effect of engineering works on river dynamics is being evaluated using hydraulic river models. Two-dimensional numerical models based on the shallow water equations provide the predictions necessary to make decisions on designs and future plans. However, like all environmental models, these predictions are subject to uncertainty. In recent years progress has been made in the identification of the main sources of uncertainty for hydraulic river models. Two of the most important sources are boundary conditions and hydraulic roughness (Warmink et al. 2013). The result of these sources of uncertainty is that the identification of single, deterministic prediction model is a non-trivial task. This is this is a well-understood problem in other fields as well - most notably hydrology - and known as equifinality. However, the particular case of human intervention modelling with hydraulic river models compounds the equifinality case. The model that provides the reference baseline situation is usually identified through calibration and afterwards modified for the engineering intervention. This results in two distinct models, the evaluation of which yields the effect of

  17. Dissolved Oxygen Dynamics in Backwaters of North America's Largest River Swamp

    Science.gov (United States)

    Bueche, S. M.; Xu, Y. J.; Reiman, J. H.

    2017-12-01

    The Atchafalaya River (AR) is the largest distributary of the Mississippi River flowing through south-central Louisiana, creating North America's largest river swamp basin - the Atchafalaya River Basin (ARB). Prior to human settlement, the AR's main channel was highly connected to this large wetland ecosystem. However, due to constructed levee systems and other human modifications, much of the ARB is now hydrologically disconnected from the AR's main channel except during high flow events. This lack of regular inputs of fresh, oxygenated water to these wetlands, paired with high levels of organic matter decomposition in wetlands, has caused low oxygen-deprived hypoxic conditions in the ARB's back waters. In addition, due to the incredibly nutrient-rich and warm nature of the ARB, microbial decomposition in backwater areas with limited flow often results in potentially stressful, if not lethal, levels of DO for organisms during and after flood pulses. This study aims to investigate dynamics of dissolved oxygen in backwaters of the Atchafalaya River Basin, intending to answer a crucial question about hydrological and water quality connectivity between the river's mainstem and its floodplain. Specifically, the study will 1) conduct field water quality measurements, 2) collect composite water samples for chemical analysis of nutrients and carbon, 3) investigate DO dynamics over different seasons for one year, and 4) determine the major factors that affect DO dynamics in this unique swamp ecosystem. The study is currently underway; therefore, in this presentation we will share the major findings gained in the past several months and discuss backwater effects on river chemistry.

  18. Mapping mean annual and monthly river discharges: geostatistical developments for incorporating river network dependencies

    International Nuclear Information System (INIS)

    Sauquet, Eric

    2004-01-01

    Regional hydrology is one topic that shows real improvement in partly due to new statistical development and computation facilities. Nevertheless theoretical difficulties for mapping river regime characteristics or recover these features at un gauged location remain because of the nature of the variable under study: river flows are related to a specific area that is defined by the drainage basin, are spatially organised by the river network with upstream-downstream dependencies. Estimations of hydrological descriptors are required for studying links with ecological processes at different spatial scale, from local site where biological or/and water quality data are available to large scale for sustainable development purposes. This presentation aims at describing a method for runoff pattern along the main river network. The approach dedicated to mean annual runoff is based on geostatistical interpolation procedures to which a constraint of water budget has been added. Expansion in Empirical Orthogonal Function has been considered in combination with kriging for interpolating mean monthly discharges. The methodologies are implemented within a Geographical Information System and illustrated by two study cases (two large basins in France). River flow regime descriptors are estimated for basins of more than 50km 2 . Opportunities of collaboration with a partition of France into hydro-eco regions derived from geology and climate considerations is discussed. (Author)

  19. Stray light field dependence for large astronomical space telescopes

    Science.gov (United States)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the

  20. THE AGE-METALLICITY RELATIONSHIP OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION FROM WIDE-FIELD WASHINGTON PHOTOMETRY

    International Nuclear Information System (INIS)

    Piatti, Andrés E.; Geisler, Doug

    2013-01-01

    We analyze age and metallicity estimates for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud (LMC) main body, obtained from CCD Washington CT 1 photometry, reported on in Piatti et al. We produce a comprehensive field star age-metallicity relationship (AMR) from the earliest epoch until ∼1 Gyr ago. This AMR reveals that the LMC has not evolved chemically as either a closed-box or bursting system, exclusively, but as a combination of both scenarios that have varied in relative strength over the lifetime of the galaxy, although the bursting model falls closer to the data in general. Furthermore, while old and metal-poor field stars have been preferentially formed in the outer disk, younger and more metal-rich stars have mostly been formed in the inner disk, confirming an outside-in formation. We provide evidence for the formation of stars between 5 and 12 Gyr, during the cluster age gap, although chemical enrichment during this period was minimal. We find no significant metallicity gradient in the LMC. We also find that the range in the metallicity of an LMC field has varied during the lifetime of the LMC. In particular, we find only a small range of the metal abundance in the outer disk fields, whereas an average range of Δ[Fe/H] = +0.3 ± 0.1 dex appears in the inner disk fields. Finally, the cluster and field AMRs show a satisfactory match only for the last 3 Gyr, while for the oldest ages (>11 Gyr), the cluster AMR is a remarkable lower envelope to the field AMR. Such a difference may be due to the very rapid early chemical evolution and lack of observed field stars in this regime, whereas the globular clusters are easily studied. This large difference is not easy to explain as coming from stripped ancient Small Magellanic Cloud (SMC) clusters, although the field SMC AMR is on average ∼0.4 dex more metal-poor at all ages than that of the LMC but otherwise very similar.

  1. THE AGE-METALLICITY RELATIONSHIP OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION FROM WIDE-FIELD WASHINGTON PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Piatti, Andres E. [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428 Ciudad de Buenos Aires (Argentina); Geisler, Doug, E-mail: andres@iafe.uba.ar [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2013-01-01

    We analyze age and metallicity estimates for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud (LMC) main body, obtained from CCD Washington CT{sub 1} photometry, reported on in Piatti et al. We produce a comprehensive field star age-metallicity relationship (AMR) from the earliest epoch until {approx}1 Gyr ago. This AMR reveals that the LMC has not evolved chemically as either a closed-box or bursting system, exclusively, but as a combination of both scenarios that have varied in relative strength over the lifetime of the galaxy, although the bursting model falls closer to the data in general. Furthermore, while old and metal-poor field stars have been preferentially formed in the outer disk, younger and more metal-rich stars have mostly been formed in the inner disk, confirming an outside-in formation. We provide evidence for the formation of stars between 5 and 12 Gyr, during the cluster age gap, although chemical enrichment during this period was minimal. We find no significant metallicity gradient in the LMC. We also find that the range in the metallicity of an LMC field has varied during the lifetime of the LMC. In particular, we find only a small range of the metal abundance in the outer disk fields, whereas an average range of {Delta}[Fe/H] = +0.3 {+-} 0.1 dex appears in the inner disk fields. Finally, the cluster and field AMRs show a satisfactory match only for the last 3 Gyr, while for the oldest ages (>11 Gyr), the cluster AMR is a remarkable lower envelope to the field AMR. Such a difference may be due to the very rapid early chemical evolution and lack of observed field stars in this regime, whereas the globular clusters are easily studied. This large difference is not easy to explain as coming from stripped ancient Small Magellanic Cloud (SMC) clusters, although the field SMC AMR is on average {approx}0.4 dex more metal-poor at all ages than that of the LMC but otherwise very similar.

  2. Peace on the River? Social-Ecological Restoration and Large Dam Removal in the Klamath Basin, USA

    Directory of Open Access Journals (Sweden)

    Hannah Gosnell

    2010-06-01

    Full Text Available This paper aims to explain the multiple factors that contributed to a 2010 agreement to remove four large dams along the Klamath river in California and Oregon and initiate a comprehensive social-ecological restoration effort that will benefit Indian tribes, the endangered fish on which they depend, irrigated agriculture, and local economies in the river basin. We suggest that the legal framework, including the tribal trust responsibility, the Endangered Species Act, and the Federal Power Act, combined with an innovative approach to negotiation that allowed for collaboration and compromise, created a space for divergent interests to come together and forge a legally and politically viable solution to a suite of social and environmental problems. Improved social relations between formerly antagonistic Indian tribes and non-tribal farmers and ranchers, which came about due to a number of local collaborative processes during the early 2000s, were critical to the success of this effort. Overall, we suggest that recent events in the Klamath basin are indicative of a significant power shift taking place between tribal and non-tribal interests as tribes gain access to decision-making processes regarding tribal trust resources and develop capacity to participate in the development of complex restoration strategies.

  3. BANK STABILIZATION, SHORELINE LAND-USE, AND THE DISTRIBUTION OF LARGE WOODY DEBRIS IN A REGULATED REACH OF THE UPPER MISSOURI RIVER, NORTH DAKOTA, USA

    Science.gov (United States)

    Large woody debris (LWD) is an important component of ecosystem function in floodplain rivers. We examined the effects on LWD distribution of shoreline land use, bank stabilization, local channel geomorphology, and distance from the dam in the Garrison Reach, a regulated reach of...

  4. Relativistic jets without large-scale magnetic fields

    Science.gov (United States)

    Parfrey, K.; Giannios, D.; Beloborodov, A.

    2014-07-01

    The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.

  5. Paleodrainages of the Eastern Sahara - The radar rivers revisited (SIR-A/B implications for a mid-tertiary Trans-African drainage system)

    Science.gov (United States)

    Mccauley, J. F.; Breed, C. S.; Schaber, G. G.; Mchugh, W. P.; Haynes, C. C.

    1986-01-01

    The images obtained by the Shuttle Imaging Radar (SIR)-A and -B systems over the southwestern Egypt and northwestern Sudan were coregistered with the Landsat images and the existing maps to aid in extrapolations of the buried paleodrainages ('radar rivers'), first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers, RR-1 (broad, aggraded valleys filled with alluvium), RR-2 (braided channels inset in the RR-1 valleys), and RR-3 (narrow, long, bedrock-incised channels). A generalized model of the radar rivers, based on field studies and regional geologic relations, shows inferred changes in river regimen since the large valleys were established during the later Paleogene-early Neogene. It is suggested that a former Trans-African master stream system may have flowed from headwaters in the Red Sea Hills southwestward across North Africa, discharging into the Atlantic at the Paleo-Niger delta, prior to the Neogene domal uplifts and building of volcanic edifices across the paths of these ancient watercourses.

  6. Imprints of quantum gravity on large field inflation and reheating

    Energy Technology Data Exchange (ETDEWEB)

    Rompineve Sorbello, Fabrizio

    2017-04-18

    In this thesis we investigate the feasibility and phenomenology of transplanckian field displacements during Inflation as well as the production of very light fields during Reheating. We begin by focusing on realisations of axion inflation in the complex structure moduli sector of Type IIB String Theory (ST) flux compactifications. Firstly, we analyse the problem of backreaction of complex structure moduli on the inflationary trajectory in a concrete model of axion monodromy inflation. Secondly, we propose a realisation of natural inflation where the inflaton arises as a combination of two axions. In both cases we find sufficiently flat inflationary potentials over a limited, but transplanckian field range. However, our realisation of axion monodromy inflation requires a potentially large, though realisable, number of tunings to ensure that the inflationary shift symmetry is only weakly broken. The consequences of the Weak Gravity Conjecture (WGC) for axion monodromy inflation are then explored. We find that the conjecture provides a bound on the inflationary field range, but does not forbid transplanckian displacements. Moreover, we provide a strategy to generalise the WGC to general p-form gauge theories in ST. Finally, we focus on the physics of the early post-inflationary phase. We show that axion monodromy inflation can lead to a phase decomposition, followed by the radiation of potentially detectable gravitational waves. We also propose a strategy to evade the overproduction of Dark Radiation in the Large Volume Scenario of moduli stabilisation, by means of flavour branes wrapping the bulk cycle of the compactification manifold.

  7. A Demonstration Experiment for the Forecast of Magnetic Field and Field Errors in the Large Hadron Collider

    CERN Document Server

    Sammut, N J; Bottura, L; Deferne, G; Lamont, M; Miles, J; Sanfilippo, S; Strzelczyk, M; Venturini-Delsolaro, W; Xydi, P

    2008-01-01

    In order to reduce the burden on the beam-based feedback, the Large Hadron Collider control system is equipped with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. This paper describes the rationale behind the tests, the procedures employed to power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance.

  8. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  9. One-dimensional models for mountain-river morphology

    NARCIS (Netherlands)

    Sieben, A.

    1996-01-01

    In this report, some classical and new simplifications in mathematical and numerical models for river morphology are compared for conditions representing rivers in mountainous areas (high values of Froude numbers and relatively large values of sediment transport rates). Options for simplification

  10. Metric-Resolution 2D River Modeling at the Macroscale: Computational Methods and Applications in a Braided River

    Directory of Open Access Journals (Sweden)

    Jochen eSchubert

    2015-11-01

    Full Text Available Metric resolution digital terrain models (DTMs of rivers now make it possible for multi-dimensional fluid mechanics models to be applied to characterize flow at fine scales that are relevant to studies of river morphology and ecological habitat, or microscales. These developments are important for managing rivers because of the potential to better understand system dynamics, anthropogenic impacts, and the consequences of proposed interventions. However, the data volumes and computational demands of microscale river modeling have largely constrained applications to small multiples of the channel width, or the mesoscale. This report presents computational methods to extend a microscale river model beyond the mesoscale to the macroscale, defined as large multiples of the channel width. A method of automated unstructured grid generation is presented that automatically clusters fine resolution cells in areas of curvature (e.g., channel banks, and places relatively coarse cells in areas lacking topographic variability. This overcomes the need to manually generate breaklines to constrain the grid, which is painstaking at the mesoscale and virtually impossible at the macroscale. The method is applied to a braided river with an extremely complex channel network configuration and shown to yield an efficient fine resolution model. The sensitivity of model output to grid design and resistance parameters is also examined as it relates to analysis of hydrology, hydraulic geometry and river habitats and the findings reiterate the importance of model calibration and validation.

  11. AFSC/ABL: Movements of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, relatively pristine river basin. A total of...

  12. Alligator Rivers Region

    International Nuclear Information System (INIS)

    1992-01-01

    An introduction to the Alligator Rivers Region is presented. It contains general information regarding the physiography, climate, hydrology and mining of the region. The Alligator Rivers Region is within an ancient basin, the Pine Creek Geosyncline, which has an area of approximately 66000 km 2 . The Geosyncline has a history of mineral exploitation dating back to 1865, during which time 16 metals have been extracted (silver, arsenic, gold, bismuth, cadmium, cobalt, copper, iron, manganese, molybdenum, lead, tin, tantalum, uranium, tungsten, zinc). Uranium exploration in the Pine Creek Geosyncline was stimulated by the discovery in 1949 of secondary uranium mineralisation near Rum June, 70 km south-east of Darwin. This was followed by a decade of intense exploration activity resulting in the discoveries of economic uranium ore bodies at Rum Jungle and in the upper reaches of the South Alligator River Valley. All the known major uranium deposits of the East Alligator River uranium field have been discovered since 1969. The present known resources of the Geosyncline are approximately 360 000 tonnes of contained U 3 O 8 . 2 refs., 2 figs., 1 tab

  13. Modelling the Effects of Sea-level, Climate Change, Geology, and Tectonism on the Morphology of the Amazon River Valley and its Floodplain

    Science.gov (United States)

    Aalto, R. E.; Cremon, E.; Dunne, T.

    2017-12-01

    How continental-scale rivers respond to climate, geology, and sea level change is not well represented in morphodynamic models. Large rivers respond to influences less apparent in the form and deposits of smaller streams, as the huge scales require long time periods for changes in form and behavior. Tectonic deformation and excavation of resistant deposits can affect low gradient continental-scale rivers, thereby changing flow pathways, channel slope and sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley topography. Nowhere are such scales of morphodynamic response grander than the Amazon River, as described in papers by L.A.K. Mertes. Field-based understanding has improved over the intervening decades, but mechanistic models are needed to simulate and synthesize key morphodynamic components relevant to the construction of large river valleys, with a focus on the Amazon. The Landscape-Linked Environmental Model (LLEM) utilizes novel massively parallel computer architectures to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per compute unit) lowland dispersal systems. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology, `badlands dissection' of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic deformation, and provides a 3D record of created stratigraphy and underlying bedrock. We used LLEM to simulate the development of the main valley of the Amazon over the last million years, exploring the propagation of incision waves and system dissection during glacial lowstands, followed by rapid valley filling and extreme lateral mobility of channels during interglacials. We present metrics, videos, and 3D fly-throughs characterizing how system development responds to key assumptions

  14. Nitrogen inputs to a river course in a heavily impacted watershed: a combined hydrochemical and isotopic evaluation (Oglio River Basin, N Italy).

    Science.gov (United States)

    Delconte, C A; Sacchi, E; Racchetti, E; Bartoli, M; Mas-Pla, J; Re, V

    2014-01-01

    This study aims at evaluating sources and processes affecting NO₃(-) concentrations in the Oglio River. Five sampling campaigns considered the main watercourse, tributaries, point pollution sources, springs, and groundwater. Physico-chemical parameters, N forms, B, Sr(2+), stable isotopes (δ(2)HH₂O, δ(18)OH₂O, δ(15)NNO₃, δ(18)ONO₃, δ(11)B) and discharge were measured. Hydrological modelling was performed using mass balance and End Member Mixing Analysis equations. During the irrigation period, in the upstream reach, up to 90% of the natural river flow is diverted for irrigation and industrial purposes; excess water drained from agricultural fields is returned to river in the downstream reach. Results evidenced, in the middle reach, a large input of NO₃(-)-rich groundwater which could be quantified using hydrological modelling. Groundwater inputs are responsible for the sharp, tenfold increase in NO₃(-) in the river water, from 2.2-4.4 up to 33.5 mgL(-1), and are more evident in summer, when discharge is lower. Nevertheless, river water preserves its natural B isotopic composition, indicating that the two tracers do not have a common origin and are not co-migrant. In the lower plain, surface-groundwater interconnections and human disturbances in the water cycle favour the recycling of the compounds in the environment, and lead to a similarity in composition of the different water bodies (Oglio River, tributaries and groundwater). The long lasting agronomical practices have profoundly modified the surface-groundwater equilibrium and chemical characteristics, resulting in a highly buffered system. Infiltrating irrigation water leaches down NO₃(-) which is subsequently denitrified; when returned to the Oglio River, groundwater modifies the river water composition by dilution, in the case of NO₃(-), or by addition, for other constituents (e.g. Cl(-), B). The results of this study indicate that, in order to reduce the NO3(-) transport towards the

  15. Amazon River carbon dioxide outgassing fuelled by wetlands.

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  16. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  17. Fluvial hydrology and geomorphology of Monsoon-dominated Indian rivers

    Directory of Open Access Journals (Sweden)

    Vishwas S. Kale

    2005-11-01

    Full Text Available The Indian rivers are dominantly monsoon rainfed. As a result, their regime characteristics are dictated by the spatio-temporal variations in the monsoon rainfall. Although the rivers carry out most of the geomorphic work during 4-5 months of the monsoon season, the nature and magnitude of response to variations in the discharge and sediment load varies with the basin size and relief characteristics. Large monsoon floods play a role of great importance on all the rivers. This paper describes the hydrological and geomorphological characteristics of the two major fluvial systems of the Indian region, namely the Himalayan fluvial system and the Peninsular fluvial system. Large number of studies published so far indicate that there are noteworthy differences between the two river systems, with respect to river hydrology, channel morphology, sediment load and behaviour. The nature of alterations in the fluvial system due to increased human interference is also briefly mentioned. This short review demonstrates that there is immense variety of rivers in India. This makes India one of the best places to study rivers and their forms and processes.

  18. A study of radionuclide dispersion by river systems, using GIS and remote sensing techniques

    International Nuclear Information System (INIS)

    Borghuis, Sander; Brown, Justin; Steenhuisen, Frits; Skorve, Johnny

    2000-01-01

    The Krasnoyarsk Mining and Chemical Combine in Zheleznogorsk, Russia, is situated on the banks of the Yenisey river. The combine consists of three RBMK-type graphite moderate reactors, a reprocessing plant for the production of weapons-grade plutonium and storage facilities for nuclear waste. Discharges of radionuclides into the Yenisey river were either part of normal operation procedures or caused by accidental releases (Strand et al., 1997). So far, little is known about the transport and fate of the radioactive contaminants in the areas downstream of the Krasnoyarsk CC that are influenced by the Yenisey river system. Aim is to comprehend the dispersion of radionuclides through the river system. Remotely sensed and field study information are combined in a geographical information system (GIS) to study the processes leading to the dispersion of sediment-bound radionuclides carried by the river system. Since the extent of the study area is several thousands or kilometres of river and adjacent flood plains, use is made of a record of remotely sensed (satellite) images that are handled by the GIS. Panchromatic, high resolution satellite images as well as multispectral Landsat MSS and TM images were compiled for the area of interest. The panchromatic images were taken in a period during which the facility was in operation (1960-1972) and obtained for intervals of circa 6 months. A time series of satellite images enables the identification of erosion and sedimentation zones. The behaviour and fate of particle-reactive radionuclides, e.g. 239,240 Pu and to large extent 137 Cs, will be closely related to the movement of sediment. With respect to the behaviour and fate of more conservative radionuclides as 90 Sr, information is required accounting for fractionation between the particulate and aqueous phases. Stereo images are used to comprehend the geomorphology of the Yenisey river systems, focused on classification of sedimentary deposits. Landsat MSS and TM with five

  19. Control of field uniformity for a large superconducting storage ring magnet

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1994-01-01

    A 1.45 Tesla, 14.2 meter diameter ''superferric'' magnet is in an advanced stage of construction at BNL. This magnet will be used to store muons for a planned ultra-precise measurement of their anomalous magnetic moment g-2. This measurement requires a magnetic field uniformity of 1 PPM with a knowledge of the field over the muon orbits to 0.1 PPM. The methods built into the design to produce ultra-high field uniformity will be described. Large deviations from the ideal circularly symmetric uniform shape of the iron flux path are required to accommodate transfer lines and superconducting current leads, as well as apparatus for beam injection. Shimming methods to correct for the perturbations due to these large holes will be presented. The pole pieces consist of 36 closely fitting 10 degree arc sections butted together to produce a very good approximation to a continuous 360 degree ring magnet. However, in the cast of a possible quench of the superconducting coils, significant eddy currents will be induced which will circulate within the confines of each 10 degree pole piece. At the great precision required, these eddy currents may leave very small but significant aberrations in the field even after they decay away, because of slight changes in the orientation of the magnetization. Surface coil possibilities to correct for this effect will be described

  20. Ecological risk assessment in a large river-reservoir. 1: Introduction and background

    International Nuclear Information System (INIS)

    Cook, R.B.; Suter, G.W. II; Sain, E.R.

    1999-01-01

    The US Department of Energy initiated a remedial investigation of the Clinch River/Poplar Creek system Superfund Site in 1989. This site, located in eastern Tennessee near Oak Ridge, consists of 70 river kilometers and 40 km 2 of surface area. The purpose of this study was to evaluate the nature and extent of contamination, perform an ecological and human health risk assessment, and evaluate possible remedial alternatives. This introductory article summarizes the environmental setting, the contamination history, and the study approach and provides some general results of the site characterization. Subsequent papers in this series describe the ecological risks to fish, piscivorous and insectivorous wildlife, and benthic invertebrates

  1. Effects of Green River Project on Cassava Farmers Production in ...

    African Journals Online (AJOL)

    This paper examined the effects of Green River project on cassava farmers' production in Ogba/Egbema/ Ndoni LGA of Rivers State. Purposive and stratified random sampling techniques were used to select the locations of Green River project, cooperative societies and respondents. Using structured questionnaire, a field ...

  2. Identifying Groundwater Discharge in the Merced River Basin, California Using Radon-222

    Science.gov (United States)

    Shaw, G. D.; Hudson, G. B.; Moran, J.; Conklin, M.

    2004-12-01

    Groundwater flow in fractured granite of the Sierra Nevada is poorly characterized, in particular, contributions of mountain block recharge are not known. Using a combination of water quality and isotopic analyses, groundwater inputs to the Upper Merced River were characterized. Between November 2003 and July 2004, monthly water quality samples were taken from Happy Isles to the inlet of Lake McClure, a 75 km reach. These samples demonstrated the expected dilution due to snowmelt in the spring. In the fall, the spatial profile matched the geology with anion concentrations increasing downstream of the transition from the Sierra Nevada batholith to the country rock, suggesting significant groundwater inputs. From July 19 to 21, 2004, radon-222 and other noble gases (He, Ne, Ar, Kr and Xe abundances and 3He/4He ratio) were measured along a 37 km reach of the Merced River, extending from the top of Yosemite Valley to the confluence of the South Fork of the Merced River. All radon samples were extracted into mineral oil immediately in the field and counted using liquid scintillation; noble gas samples were collected in copper tubes. Radon-222 activity varied from about 1 to 100 pCi/L (at collection time) indicating significant, spatially variable groundwater discharge into the Merced River. Two one-mile reaches of the Merced River were sampled for 222Rn on a fine scale. Large fracture sets in these two locations and previous temperature measurements suggested that groundwater discharge was higher relative to other locations along the river. Radon-222 activity was low upstream and downstream of large fractures observed in the bedrock; whereas, 222Rn activity was high at large fracture zones. Degassing is rapid downstream of fractures where no groundwater discharge is observed. For a representative groundwater end-member, radon-222 activity measured in Fern Spring, Yosemite Valley was about 1200 pCi/L. Excess 4He from U and Th decay is observed in samples with elevated

  3. Measuring river from the cloud - River width algorithm development on Google Earth Engine

    Science.gov (United States)

    Yang, X.; Pavelsky, T.; Allen, G. H.; Donchyts, G.

    2017-12-01

    Rivers are some of the most dynamic features of the terrestrial land surface. They help distribute freshwater, nutrients, sediment, and they are also responsible for some of the greatest natural hazards. Despite their importance, our understanding of river behavior is limited at the global scale, in part because we do not have a river observational dataset that spans both time and space. Remote sensing data represent a rich, largely untapped resource for observing river dynamics. In particular, publicly accessible archives of satellite optical imagery, which date back to the 1970s, can be used to study the planview morphodynamics of rivers at the global scale. Here we present an image processing algorithm developed using the Google Earth Engine cloud-based platform, that can automatically extracts river centerlines and widths from Landsat 5, 7, and 8 scenes at 30 m resolution. Our algorithm makes use of the latest monthly global surface water history dataset and an existing Global River Width from Landsat (GRWL) dataset to efficiently extract river masks from each Landsat scene. Then a combination of distance transform and skeletonization techniques are used to extract river centerlines. Finally, our algorithm calculates wetted river width at each centerline pixel perpendicular to its local centerline direction. We validated this algorithm using in situ data estimated from 16 USGS gauge stations (N=1781). We find that 92% of the width differences are within 60 m (i.e. the minimum length of 2 Landsat pixels). Leveraging Earth Engine's infrastructure of collocated data and processing power, our goal is to use this algorithm to reconstruct the morphodynamic history of rivers globally by processing over 100,000 Landsat 5 scenes, covering from 1984 to 2013.

  4. Land Use and the Agrarian Economy in the Roman Dutch River Area

    Directory of Open Access Journals (Sweden)

    Maaike Groot

    2009-12-01

    Full Text Available This article aims to reconstruct agrarian land use for a rural community in the Roman frontier zone in the Netherlands. The Dutch River Area was characterised by a dynamic landscape. Rivers regularly flooded the surrounding low-lying land. Only the higher streamridges provided suitable places for habitation and arable agriculture. The limitations of the landscape dictated to a large extent both the types and quantities of crops and animals that could be produced. An interactive map of the micro-region of Tiel-Passewaaij shows how the land was used for agrarian production and sourced for other products. These symbols link to short texts that discuss the archaeological evidence for aspects such as growing cereals, raising livestock and the exploitation of wood and wild animals. The complex and dynamic geological situation of the Dutch River Area is also explained, and the consequences for agriculture discussed. We address three main research questions. How were the different elements of the riverine landscape used by rural inhabitants? How were arable agriculture and animal husbandry organised spatially, both within the settlement and in its immediate surroundings? Which natural resources were used and managed? Our research is mainly based on one large and well-excavated settlement complex (Tiel-Passewaaij, but we will use complementary data from several other settlements in the region. Our results show that the river landscape offered plenty of opportunities for agriculture. The interaction between arable and pastoral farming was essential, with livestock providing manure and agricultural labour, and the fields offering fodder and additional grazing (after harvest or during fallow years. The location of large enclosure ditches suggest that even minor differences in height, caused by older streamridges, may have made arable farming possible in the flood basin.

  5. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  6. Elementary methods for statistical systems, mean field, large-n, and duality

    International Nuclear Information System (INIS)

    Itzykson, C.

    1983-01-01

    Renormalizable field theories are singled out by such precise restraints that regularization schemes must be used to break these invariances. Statistical methods can be adapted to these problems where asymptotically free models fail. This lecture surveys approximation schemes developed in the context of statistical mechanics. The confluence point of statistical mechanics and field theory is the use of discretized path integrals, where continuous space time has been replaced by a regular lattice. Dynamic variables, a Boltzman weight factor, and boundary conditions are the ingredients. Mean field approximations --field equations, Random field transform, and gauge invariant systems--are surveyed. Under Large-N limits vector models are found to simplify tremendously. The reasons why matrix models drawn from SU (n) gauge theories do not simplify are discussed. In the epilogue, random curves versus random surfaces are offered as an example where global and local symmetries are not alike

  7. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  8. Performance testing of the sediment-contaminant transport model, SERATRA, at different rivers

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.

    1982-04-01

    Mathematical models of sediment-contaminant migration in surface water must account for transport, intermedia transfer, decay and degradation, and transformation processes. The unsteady, two dimensional, sediment-contaminant transport code, SERATRA (Onishi, Schreiber and Codell 1980) includes these mechanisms. To assess the accuracy of SERATRA to simulate the sediment-contaminant transport and fate processes, the code was tested against one-dimensional analytical solutions, checked for its mass balance, and applied to field sites. The field application cases ranged from relatively simple, steady conditions to unsteady, nonuniform conditions for large, intermediate, and small rivers. It was found that SERATRA is capable of simulating sediment-contaminant transport under a wide range of conditions

  9. The national stream quality accounting network: A flux-basedapproach to monitoring the water quality of large rivers

    Science.gov (United States)

    Hooper, R.P.; Aulenbach, Brent T.; Kelly, V.J.

    2001-01-01

    Estimating the annual mass flux at a network of fixed stations is one approach to characterizing water quality of large rivers. The interpretive context provided by annual flux includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean. Since 1995, the US Geological Survey's National Stream Quality Accounting Network (NASQAN) has employed this approach at a network of 39 stations in four of the largest river basins of the USA: The Mississippi, the Columbia, the Colorado and the Rio Grande. In this paper, the design of NASQAN is described and its effectiveness at characterizing the water quality of these rivers is evaluated using data from the first 3 years of operation. A broad range of constituents was measured by NASQAN, including trace organic and inorganic chemicals, major ions, sediment and nutrients. Where possible, a regression model relating concentration to discharge and season was used to interpolate between chemical observations for flux estimation. For water-quality network design, the most important finding from NASQAN was the importance of having a specific objective (that is, estimating annual mass flux) and, from that, an explicitly stated data analysis strategy, namely the use of regression models to interpolate between observations. The use of such models aided in the design of sampling strategy and provided a context for data review. The regression models essentially form null hypotheses for concentration variation that can be evaluated by the observed data. The feedback between network operation and data collection established by the hypothesis tests places the water-quality network on a firm scientific footing.

  10. River runoff influences on the Central Mediterranean overturning circulation

    Science.gov (United States)

    Verri, Giorgia; Pinardi, N.; Oddo, P.; Ciliberti, S. A.; Coppini, G.

    2018-03-01

    The role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas. The impact of river runoff on the Adriatic and Ionian Sea basins was assessed by a twin experiment, with and without runoff, from 1999 to 2012. This study tries to show the connection between the Adriatic as a marginal sea containing the downwelling branch of the anti-estuarine CMOC and the large runoff occurring there. It is found that the multiannual CMOC is a persistent anti-estuarine structure with secondary estuarine cells that strengthen in years of large realistic river runoff. The CMOC is demonstrated to be controlled by wind forcing at least as much as by buoyancy fluxes. It is found that river runoff affects the CMOC strength, enhancing the amplitude of the secondary estuarine cells and reducing the intensity of the dominant anti-estuarine cell. A large river runoff can produce a positive buoyancy flux without switching off the antiestuarine CMOC cell, but a particularly low heat flux and wind work with normal river runoff can reverse it. Overall by comparing experiments with, without and with unrealistically augmented runoff we demonstrate that rivers affect the CMOC strength but they can never represent its dominant forcing mechanism and the potential role of river runoff has to be considered jointly with wind work and heat flux, as they largely contribute to the energy budget of the basin. Looking at the downwelling branch of the CMOC in the Adriatic basin, rivers are demonstrated to locally reduce the volume of Adriatic dense water formed in the Southern Adriatic Sea as a result of increased water stratification. The spreading of the Adriatic dense water into the Ionian abyss is affected as well: dense waters overflowing the Otranto Strait are less dense in a realistic runoff regime, with respect to no runoff experiment, and

  11. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  12. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Hayzoun, H. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); LIMOM, Faculté des Sciences Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, Dhar El Mehraz B.P. 1796 Atlas, Fès 30000 (Morocco); Garnier, C., E-mail: cgarnier@univ-tln.fr [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); Durrieu, G.; Lenoble, V.; Le Poupon, C. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France); Angeletti, B. [Centre Européen de Recherche et d' Enseignement de Géosciences de l' Environnement UMR 6635 CNRS — Aix-Marseille Université, FR ECCOREV, Europôle Méditerranéen de l' Arbois, 13545 Aix-en-Provence (France); Ouammou, A. [LIMOM, Faculté des Sciences Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, Dhar El Mehraz B.P. 1796 Atlas, Fès 30000 (Morocco); Mounier, S. [Université de Toulon, PROTEE, EA 3819, 83957 La Garde (France)

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. - Highlights: • Pristine status of the Sebou River, Morrocco's main river, upstream Fez (1 M inhabitants) • The Fez River collecting Fez's urban/industrial wastewaters is heavily polluted. • The Fez discharge into the Sebou induces an increase of contaminant levels. • Change in partitioning and chemical speciation of

  13. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco)

    International Nuclear Information System (INIS)

    Hayzoun, H.; Garnier, C.; Durrieu, G.; Lenoble, V.; Le Poupon, C.; Angeletti, B.; Ouammou, A.; Mounier, S.

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. - Highlights: • Pristine status of the Sebou River, Morrocco's main river, upstream Fez (1 M inhabitants) • The Fez River collecting Fez's urban/industrial wastewaters is heavily polluted. • The Fez discharge into the Sebou induces an increase of contaminant levels. • Change in partitioning and chemical speciation of

  14. A large scale field experiment in the Amazon Basin (Lambada/Bateristca)

    Energy Technology Data Exchange (ETDEWEB)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C. [Winand Staring Centre, Wageningen (Netherlands)

    1994-12-31

    A description is given of a large scale field experiment planned in the Amazon Basin, aiming to assess the large scale balances of energy, water and CO{sub 2}. The background for this experiment, the embedding in global change programmes of IGBP/BAHC and WCRP/GEWEX is described. A proposal by four European groups aimed at designing the experiment with the help of mesoscale models is described and a possible European input to this experiment is suggested. 24 refs., 1 app.

  15. Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results

    Science.gov (United States)

    Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.

    2012-12-01

    Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base

  16. Hydrological simulation of flood transformations in the upper Danube River: Case study of large flood events

    Directory of Open Access Journals (Sweden)

    Mitková Veronika Bačová

    2016-12-01

    Full Text Available The problem of understand natural processes as factors that restrict, limit or even jeopardize the interests of human society is currently of great concern. The natural transformation of flood waves is increasingly affected and disturbed by artificial interventions in river basins. The Danube River basin is an area of high economic and water management importance. Channel training can result in changes in the transformation of flood waves and different hydrographic shapes of flood waves compared with the past. The estimation and evolution of the transformation of historical flood waves under recent river conditions is only possible by model simulations. For this purpose a nonlinear reservoir cascade model was constructed. The NLN-Danube nonlinear reservoir river model was used to simulate the transformation of flood waves in four sections of the Danube River from Kienstock (Austria to Štúrovo (Slovakia under relatively recent river reach conditions. The model was individually calibrated for two extreme events in August 2002 and June 2013. Some floods that occurred on the Danube during the period of 1991–2002 were used for the validation of the model. The model was used to identify changes in the transformational properties of the Danube channel in the selected river reach for some historical summer floods (1899, 1954 1965 and 1975. Finally, a simulation of flood wave propagation of the most destructive Danube flood of the last millennium (August 1501 is discussed.

  17. Old River Control Complex Sedimentation Investigation

    Science.gov (United States)

    2015-06-01

    investigation was conducted via a combination of field data collection and laboratory analysis, geomorphic assessments, and numerical modeling . The...Diversion Mississippi river Sediment Shoaling Numerical modeling Field data collection Geomorphic assessment 16. SECURITY CLASSIFICATION OF...District, New Orleans. The investigation was conducted via a combination of field data collection and laboratory analysis, geomorphic assessments, and

  18. Water-quality assessment of the largely urban blue river basin, Metropolitan Kansas City, USA, 1998 to 2007

    Science.gov (United States)

    Wilkison, D.H.; Armstrong, D.J.; Hampton, S.A.

    2009-01-01

    From 1998 through 2007, over 750 surface-water or bed-sediment samples in the Blue River Basin - a largely urban basin in metropolitan Kansas City - were analyzed for more than 100 anthropogenic compounds. Compounds analyzed included nutrients, fecal-indicator bacteria, suspended sediment, pharmaceuticals and personal care products. Non-point source runoff, hydrologic alterations, and numerous waste-water discharge points resulted in the routine detection of complex mixtures of anthropogenic compounds in samples from basin stream sites. Temporal and spatial variations in concentrations and loads of nutrients, pharmaceuticals, and organic wastewater compounds were observed, primarily related to a site's proximity to point-source discharges and stream-flow dynamics. ?? 2009 ASCE.

  19. An innovative large scale integration of silicon nanowire-based field effect transistors

    Science.gov (United States)

    Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.

    2018-05-01

    Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

  20. The large-scale peculiar velocity field in flat models of the universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Turner, M.S.

    1986-10-01

    The inflationary Universe scenario predicts a flat Universe and both adiabatic and isocurvature primordial density perturbations with the Zel'dovich spectrum. The two simplest realizations, models dominated by hot or cold dark matter, seem to be in conflict with observations. Flat models are examined with two components of mass density, where one of the components of mass density is smoothly distributed and the large-scale (≥10h -1 MpC) peculiar velocity field for these models is considered. For the smooth component relativistic particles, a relic cosmological term, and light strings are considered. At present the observational situation is unsettled; but, in principle, the large-scale peculiar velocity field is very powerful discriminator between these different models. 61 refs

  1. Interacting effects of discharge and channel morphology on transport of semibuoyant fish eggs in large, altered river systems.

    Directory of Open Access Journals (Sweden)

    Thomas A Worthington

    Full Text Available Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2-3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was assessed based on median capture time (time at which 50% of beads were captured and sampling period (time period when 2.5% and 97.5% of beads were captured. Habitat complexity was assessed by calculating width∶depth ratios at each site, and several habitat metrics determined using analyses of aerial photographs. Median time of egg capture was negatively correlated to site discharge. The temporal extent of the sampling period at each site was negatively correlated to both site discharge and habitat-patch dispersion. Our results highlight the role of discharge in driving transport times, but also indicate that higher dispersion of habitat patches relates to increased retention of beads within the river. These results could be used to target restoration activities or prioritize water use to create and maintain habitat complexity within large, fragmented river systems.

  2. Whose waters? Large-scale agricultural development and water grabbing in the Wami-Ruvu River Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Aurelia van Eeden

    2016-10-01

    Full Text Available In Tanzania like in other parts of the global South, in the name of 'development' and 'poverty eradication' vast tracts of land have been earmarked by the government to be developed by investors for different commercial agricultural projects, giving rise to the contested land grab phenomenon. In parallel, Integrated Water Resources Management (IWRM has been promoted in the country and globally as the governance framework that seeks to manage water resources in an efficient, equitable and sustainable manner. This article asks how IWRM manages the competing interests as well as the diverse priorities of both large and small water users in the midst of foreign direct investment. By focusing on two commercial sugar companies operating in the Wami-Ruvu River Basin in Tanzania and their impacts on the water and land rights of the surrounding villages, the article asks whether institutional and capacity weaknesses around IWRM implementation can be exploited by powerful actors that seek to meet their own interests, thus allowing water grabbing to take place. The paper thus highlights the power, interests and alliances of the various actors involved in the governance of water resources. By drawing on recent conceptual insights from the water grabbing literature, the empirical findings suggest that the IWRM framework indirectly and directly facilitates the phenomenon of water grabbing to take place in the Wami-Ruvu River Basin in Tanzania.

  3. Correction factors for clinical dosemeters used in dosimetry of large fields

    International Nuclear Information System (INIS)

    Campos, L.L.; Caldas, L.V.E.

    1989-01-01

    A method for using by physicist for evaluation of irradiation effect in cables connectors of ionization chambers, and the consequent determination of adequate conection factors, for each measure the geometric system, during the realization of large fields radiation dosimetry are studied. (C.G.C.) [pt

  4. Seasonal changes in the optical properties of dissolved organic matter (DOM) in large Arctic rivers

    DEFF Research Database (Denmark)

    Walker, S.A.; Amon, R.M.; Stedmon, Colin

    Arctic rivers deliver over 10% of the annual global river discharge yet little is known about the seasonal fluctuations in the quantity and quality of terrigenous dissolved organic matter (tDOM). A good constraint on such fluctuations is paramount to understand the role that climate change may have...... on tDOM input to the Arctic Ocean. To understand such changes the optical properties of colored tDOM (tCDOM) were studied. Samples were collected over several seasonal cycles from the six largest Arctic Rivers as part of the PARTNERS project. This unique dataset is the first of its kind capturing...

  5. From Natural to Degraded Rivers and Back Again

    DEFF Research Database (Denmark)

    Feld, Christian K.; Birk, Sebastian; Bradley, David C.

    2011-01-01

    —riparian buffer management, instream mesohabitat enhancement and the removal of weirs and small dams—to provide a structured overview of the literature. We distinguish between abiotic effects of restoration (e.g. increasing habitat diversity) and biological recovery (e.g. responses of algae, macrophytes...... the literature review and largely supported our findings. While the large-scale re-meandering and re-establishment of water levels at River Skjern resulted in significant recovery of riverine biota, habitat enhancement schemes at smaller-scales in other rivers were largely ineffective and failed to show long...

  6. Field and laboratory evaluation of the mobility of cobalt-60/EDTA in an arid environment

    International Nuclear Information System (INIS)

    Jones, T.L.; Gee, G.W.; Swanson, J.L.; Kirkham, R.R.

    1983-02-01

    The ability of the organic complexant EDTA to enhance the mobility of cobalt-60 was investigated in both laboratory and field experiments. Laboratory tests consisted of short term (approximately 7 day) column and batch adsorption tests using soil from the Hanford site as well as long term (approximately 70 day) batch tests with Hanford soil and soils from Oak Ridge and Savannah River. In addition, two large scale tracer tests were conducted using Hanford soil. One used a large (1.6 m) laboratory column, spiked with cobalt-60/EDTA and the other was a field test conducted in an 8 m deep lysimeter. Enhanced mobility decreased sorption were observed in both column and batch tests when the cobalt-60/EDTA solutions contacted Hanford and Oak Ridge soil for only a few days. When long contact times were allowed (months) the Hanford soil showed large increases in sorption with time. The low sorption exhibited initially by the Oak Ridge soil increased slightly over time, however, the high sorption observed with the Savannah River soil remained constant with time. The reduced mobility, with time, observed in Hanford soils was confirmed in both the large scale laboratory and breaking down when contacted with Hanford and Savannah River soil and to a lesser extent, the Oak Ridge soil. It is not known at this time why the complex is breaking down or why the kinetics are different among the soils tested. The implication to waste management is that the potential for transport of cobalt by EDTA complexation may not be as serious as once thought

  7. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    Science.gov (United States)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  8. Universality of sparse d>2 conformal field theory at large N

    Energy Technology Data Exchange (ETDEWEB)

    Belin, Alexandre; Boer, Jan de; Kruthoff, Jorrit [Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,University of Amsterdam, Science Park 904, Amsterdam, 1098 XH The (Netherlands); Michel, Ben; Shaghoulian, Edgar; Shyani, Milind [Department of Physics, University of California,Santa Barbara, CA, 93106 (United States)

    2017-03-13

    We derive necessary and sufficient conditions for large N conformal field theories to have a universal free energy and an extended range of validity of the higher-dimensional Cardy formula. These constraints are much tighter than in two dimensions and must be satisfied by any conformal field theory dual to Einstein gravity. We construct and analyze symmetric product orbifold theories on T{sup d} and show that they only realize the necessary phase structure and extended range of validity if the seed theory is assumed to have a universal vacuum energy.

  9. Statistics on the parameters of nonisothermal ionospheric plasma in large mesospheric electric fields

    Science.gov (United States)

    Martynenko, S.; Rozumenko, V.; Tyrnov, O.; Manson, A.; Meek, C.

    The large V/m electric fields inherent in the mesosphere play an essential role in lower ionospheric electrodynamics. They must be the cause of large variations in the electron temperature and the electron collision frequency at D region altitudes, and consequently the ionospheric plasma in the lower part of the D region undergoes a transition into a nonisothermal state. This study is based on the databases on large mesospheric electric fields collected with the 2.2-MHz radar of the Institute of Space and Atmospheric Studies, University of Saskatchewan, Canada (52°N geographic latitude, 60.4°N geomagnetic latitude) and with the 2.3-MHz radar of the Kharkiv V. Karazin National University (49.6°N geographic latitude, 45.6°N geomagnetic latitude). The statistical analysis of these data is presented in Meek, C. E., A. H. Manson, S. I. Martynenko, V. T. Rozumenko, O. F. Tyrnov, Remote sensing of mesospheric electric fields using MF radars, Journal of Atmospheric and Solar-Terrestrial Physics, in press. The large mesospheric electric fields is experimentally established to follow a Rayleigh distribution in the interval 0

  10. A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges

    Directory of Open Access Journals (Sweden)

    J.-P. Vergnes

    2012-10-01

    Full Text Available Groundwater is a non-negligible component of the global hydrological cycle, and its interaction with overlying unsaturated zones can influence water and energy fluxes between the land surface and the atmosphere. Despite its importance, groundwater is not yet represented in most climate models. In this paper, the simple groundwater scheme implemented in the Total Runoff Integrating Pathways (TRIP river routing model is applied in off-line mode at global scale using a 0.5° model resolution. The simulated river discharges are evaluated against a large dataset of about 3500 gauging stations compiled from the Global Data Runoff Center (GRDC and other sources, while the terrestrial water storage (TWS variations derived from the Gravity Recovery and Climate Experiment (GRACE satellite mission help to evaluate the simulated TWS. The forcing fields (surface runoff and deep drainage come from an independent simulation of the Interactions between Soil-Biosphere-Atmosphere (ISBA land surface model covering the period from 1950 to 2008. Results show that groundwater improves the efficiency scores for about 70% of the gauging stations and deteriorates them for 15%. The simulated TWS are also in better agreement with the GRACE estimates. These results are mainly explained by the lag introduced by the low-frequency variations of groundwater, which tend to shift and smooth the simulated river discharges and TWS. A sensitivity study on the global precipitation forcing used in ISBA to produce the forcing fields is also proposed. It shows that the groundwater scheme is not influenced by the uncertainties in precipitation data.

  11. Impact of large field angles on the requirements for deformable mirror in imaging satellites

    Science.gov (United States)

    Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij

    2018-04-01

    For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.

  12. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Frest, T.J.

    1992-08-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries

  13. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    Science.gov (United States)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  14. The Water Quality of the River Enborne, UK: Observations from High-Frequency Monitoring in a Rural, Lowland River System

    Directory of Open Access Journals (Sweden)

    Sarah J. Halliday

    2014-01-01

    Full Text Available This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly, using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  15. Sediment Transport Over Run-of-River Dams

    Science.gov (United States)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  16. ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD AROUND BLACK HOLES

    Directory of Open Access Journals (Sweden)

    Gennady Bisnovatyi-Kogan

    2013-12-01

    Full Text Available We consider accretion disks around black holes at high luminosity, and the problem of the formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical structure of the disk. The structure of advective accretion disks is investigated, and conditions for the formation of optically thin regions in central parts of the accretion disk are found. The high electrical conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by magneto-torsion oscillations is investigated.

  17. Geomorphology and river dynamics of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  18. Rock sealing - large scale field test and accessory investigations

    International Nuclear Information System (INIS)

    Pusch, R.

    1988-03-01

    The experience from the pilot field test and the basic knowledge extracted from the lab experiments have formed the basis of the planning of a Large Scale Field Test. The intention is to find out how the 'instrument of rock sealing' can be applied to a number of practical cases, where cutting-off and redirection of groundwater flow in repositories are called for. Five field subtests, which are integrated mutually or with other Stripa projects (3D), are proposed. One of them concerns 'near-field' sealing, i.e. sealing of tunnel floors hosting deposition holes, while two involve sealing of 'disturbed' rock around tunnels. The fourth concerns sealing of a natural fracture zone in the 3D area, and this latter test has the expected spin-off effect of obtaining additional information on the general flow pattern around the northeastern wing of the 3D cross. The fifth test is an option of sealing structures in the Validation Drift. The longevity of major grout types is focussed on as the most important part of the 'Accessory Investigations', and detailed plans have been worked out for that purpose. It is foreseen that the continuation of the project, as outlined in this report, will yield suitable methods and grouts for effective and long-lasting sealing of rock for use at stategic points in repositories. (author)

  19. Effective educational practice of river learning by using of Hiikawa-river of elementary school, Shimane prefecture, Japan

    Science.gov (United States)

    Tomoyuki, U.; Matsumoto, I.

    2012-12-01

    The importance of field learning has been increasing at elementary school and junior high school in Japan. However, In Japan, it is little actual situation that there is in an opportunity for the field learning enforced in the school science lesson. This tendency is strong as much as school of the city and that circumference. I think that this cause is that there are few suitable places for educational tool to observe geological field near the school. Children learn about "Function of running water" in Grade 5 of elementary school in Japan. Therefore, In this study, We remark the river called "Hiikawa-river" which flow in Izumo city, Shimane prefecture as the science teaching materials. Hiikawa is the river which flowing through the granitic rock district. Therefore We can observe granitic rock from in the upper stream, midstream, to the down stream. That is, we can observe the function of running water and diameter (size) of granitic boulders. It is mean that Hiikawa is the one of good educational tool for Children to learn the function of running water. Though it is the place where nature is comparatively rich even in Japan, it can't be said that field learning is relatively popular in Shimane prefecture. I think that teacher has to learning experience at field, because teacher should settle confidence to guide to the student at the field. That is, if it is not, you can not teach children with truly important of curriculum view point of natural and field science. In this research, we introduce practice of geological field learning at the public elementary school of the Shimane prefecture by using of Hiikawa as educational tool which children learn about the function of running water in grade 5, elementary school. In addition, we hope that this study contribute to teachers teaching method and to children natural science literacy.

  20. Two-level systems driven by large-amplitude fields

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, Franco

    2007-01-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems

  1. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  2. 10 years after the largest river restoration project in Northern Europe

    DEFF Research Database (Denmark)

    Astrup Kristensen, Esben Astrup; Kronvang, B.; Wiberg-Larsen, P.

    2014-01-01

    that erosion and sedimentation have changed the cross-sectional profiles over the last 10 years, resulting in a net input of sediment to the lower reaches of the river. However, the change of channel form was a slow process and predicted bank retreat over a 100 year period was only up to 6.8 m. Hence......The lower river Skjern (Denmark) historically contained a large variation in habitats and the river ran through large areas with wetlands, many backwaters, islands and oxbow lakes. During the 1960s the river was channelized and the wetland drained. A restoration during 2001–2002 transformed 19 km...... of channelized river into 26 km meandering river. The short-term effects of this restoration have previously been reported and for this study we revisited the river and with new data evaluated the long-term (10 years) hydrological effects of the restoration. The evaluation was done on three different scales: (1...

  3. Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique

    International Nuclear Information System (INIS)

    Huang, Siming; He, Shuming; Xu, Hao; Wu, Peiyan; Jiang, Ruifen; Zhu, Fang; Luan, Tiangang; Ouyang, Gangfeng

    2015-01-01

    An on-site active solid-phase microextraction (SPME) sampling technique coupled with gas chromatography-mass spectrometry (GC–MS) for sampling and monitoring 16 polycyclic aromatic hydrocarbons (PAHs) and 8 organochlorine pesticides (OCPs) in seawater was developed. Laboratory experiments demonstrated that the sampling-rate calibration method was practical and could be used for the quantification of on-site sampling. The proposed method was employed for field tests which covered large amounts of water samples in the Pearl River Estuary in rainy and dry seasons. The on-site SPME sampling method can avoid the contamination of sample, the losses of analytes during sample transportation, as well as the usage of solvent and time-consuming sample preparation process. Results indicated that the technique with the designed device can address the requirement of modern environment water analysis. In addition, the sources, bioaccumulation and potential risk to human of the PAHs and OCPs in seawater of the Pearl River Estuary were discussed. - Highlights: • SPME on-site active sampling technique was developed and validated. • The technique was employed for field tests in the Pearl River Estuary. • 16 PAHs and 8 OCPs in the seawater of Pearl River Estuary were monitored. • The potential risk of the PAHs and OCPs in Pearl River Estuary were discussed. - An on-site active SPME sampling technique was developed and successfully applied for sampling and monitoring 16 PAHs and 8 OCPs in the Pearl River Estuary

  4. Do rivers really obey power-laws? Using continuous high resolution measurements to define bankfull channel and evaluate downstream hydraulic-scaling over large changes in drainage area

    Science.gov (United States)

    Scher, C.; Tennant, C.; Larsen, L.; Bellugi, D. G.

    2016-12-01

    Advances in remote-sensing technology allow for cost-effective, accurate, high-resolution mapping of river-channel topography and shallow aquatic bathymetry over large spatial scales. A combination of near-infrared and green spectra airborne laser swath mapping was used to map river channel bathymetry and watershed geometry over 90+ river-kilometers (75-1175 km2) of the Greys River in Wyoming. The day of flight wetted channel was identified from green LiDAR returns, and more than 1800 valley-bottom cross-sections were extracted at regular 50-m intervals. The bankfull channel geometry was identified using a "watershed-based" algorithm that incrementally filled local minima to a "spill" point, thereby constraining areas of local convergence and delineating all the potential channels along the cross-section for each distinct "spill stage." Multiple potential channels in alluvial floodplains and lack of clearly defined channel banks in bedrock reaches challenge identification of the bankfull channel based on topology alone. Here we combine a variety of topological measures, geometrical considerations, and stage levels to define a stage-dependent bankfull channel geometry, and compare the results with day of flight wetted channel data. Initial results suggest that channel hydraulic geometry and basin hydrology power-law scaling may not accurately capture downstream channel adjustments for rivers draining complex mountain topography.

  5. Fish Health Study Ashtabula River Natural Resource Damage Assessment

    Science.gov (United States)

    Blazer, V.S.; Iwanowicz, L.R.; Baumann, P.C.

    2006-01-01

    INTRODUCTION The Ashtabula River is located in northeast Ohio, flowing into Lake Erie at Ashtabula, Ohio. Tributaries include Fields Brook, Hubbard Run, Strong Brook, and Ashtabula Creek. The bottom sediments, bank soils and biota of Fields Brook have been severely contaminated by unregulated discharges of hazardous substances. Hazardous substances have migrated downstream from Fields Brook to the Ashtabula River and Harbor, contaminating bottom sediments, fish and wildlife. There are presently more than 1,000,000 cubic yards of contaminated sediment in the Ashtabula River and Harbor, much of which originated from Fields Brook. Contaminants include polychlorinated biphenyls (PCBs), chlorinated benzenes, chlorinated ethenes, hexachlorobutadiene, polyaromatic hydrocarbons (PAHs), other organic chemicals, heavy metals and low level radionuclides. A Preassessment Screen, using existing data, was completed for the Ashtabula River and Harbor on May 18, 2001. Among the findings was that the fish community at Ashtabula contained approximately 45 percent fewer species and 52 percent fewer individuals than the Ohio EPA designated reference area, Conneaut Creek. The Ashtabula River and Conneaut Creek are similar in many respects, with the exception of the presence of contamination at Ashtabula. The difference in the fish communities between the two sites is believed to be at least partially a result of the hazardous substance contamination at Ashtabula. In order to investigate this matter further, the Trustees elected to conduct a study of the status and health of the aquatic biological communities of the Ashtabula River and Conneaut Creek in 2002-2004. The following document contains brief method descriptions (more detail available in attached Appendix A) and a summary of the data used to evaluate the health status of brown bullheads (Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) collected from the above sites.

  6. Diazotrophy in alluvial meadows of subarctic river systems.

    Directory of Open Access Journals (Sweden)

    Thomas H DeLuca

    Full Text Available There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1 yr(-1 and was down regulated from over 60 kg N ha(-1 yr(-1 to 0 kg N ha(-1 yr(-1 by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  7. Revisiting the homogenization of dammed rivers in the southeastern US

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff

    2012-01-01

    For some time, ecologists have attempted to make generalizations concerning how disturbances influence natural ecosystems, especially river systems. The existing literature suggests that dams homogenize the hydrologic variability of rivers. However, this might insinuate that dams affect river systems similarly despite a large gradient in natural hydrologic character....

  8. Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor

    Directory of Open Access Journals (Sweden)

    P. Schneider

    2011-08-01

    Full Text Available River restoration projects have been launched over the last two decades to improve the ecological status and water quality of regulated rivers. As most restored rivers are not monitored at all, it is difficult to predict consequences of restoration projects or analyze why restorations fail or are successful. It is thus necessary to implement efficient field assessment strategies, for example by employing sensor networks that continuously measure physical parameters at high spatial and temporal resolution. This paper focuses on the design and implementation of an instrumentation strategy for monitoring changes in bank filtration, hydrological connectivity, groundwater travel time and quality due to river restoration. We specifically designed and instrumented a network of monitoring wells at the Thur River (NE Switzerland, which is partly restored and has been mainly channelized for more than 100 years. Our results show that bank filtration – especially in a restored section with alternating riverbed morphology – is variable in time and space. Consequently, our monitoring network has been adapted in response to that variability. Although not available at our test site, we consider long-term measurements – ideally initiated before and continued after restoration – as a fundamental step towards predicting consequences of river restoration for groundwater quality. As a result, process-based models could be adapted and evaluated using these types of high-resolution data sets.

  9. Global relationships in river hydromorphology

    Science.gov (United States)

    Pavelsky, T.; Lion, C.; Allen, G. H.; Durand, M. T.; Schumann, G.; Beighley, E.; Yang, X.

    2017-12-01

    Since the widespread adoption of digital elevation models (DEMs) in the 1980s, most global and continental-scale analysis of river flow characteristics has been focused on measurements derived from DEMs such as drainage area, elevation, and slope. These variables (especially drainage area) have been related to other quantities of interest such as river width, depth, and velocity via empirical relationships that often take the form of power laws. More recently, a number of groups have developed more direct measurements of river location and some aspects of planform geometry from optical satellite imagery on regional, continental, and global scales. However, these satellite-derived datasets often lack many of the qualities that make DEM=derived datasets attractive, including robust network topology. Here, we present analysis of a dataset that combines the Global River Widths from Landsat (GRWL) database of river location, width, and braiding index with a river database extracted from the Shuttle Radar Topography Mission DEM and the HydroSHEDS dataset. Using these combined tools, we present a dataset that includes measurements of river width, slope, braiding index, upstream drainage area, and other variables. The dataset is available everywhere that both datasets are available, which includes all continental areas south of 60N with rivers sufficiently large to be observed with Landsat imagery. We use the dataset to examine patterns and frequencies of river form across continental and global scales as well as global relationships among variables including width, slope, and drainage area. The results demonstrate the complex relationships among different dimensions of river hydromorphology at the global scale.

  10. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  11. Selected water-quality data from the Cedar River and Cedar Rapids well fields, Cedar Rapids, Iowa, 2006-10

    Science.gov (United States)

    Littin, Gregory R.

    2012-01-01

    The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer approximately 40 to 80 feet below land surface. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality of the aquifer since 1992. Cooperative reports between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, surface-water-groundwater interaction, and pesticides in groundwater and surface water. Water-quality analyses were conducted for major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. Physical characteristics (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were measured in the field and recorded for each water sample collected. This report presents the results of routine water-quality data-collection activities from January 2006 through December 2010. Methods of data collection, quality-assurance, and water-quality analyses are presented. Data include the results of water-quality analyses from quarterly sampling from monitoring wells, municipal wells, and the Cedar River.

  12. In Situ Stoichiometry in a Large River: Continuous Measurement of Doc, NO3 and PO4 in the Sacramento River

    Science.gov (United States)

    Downing, B. D.; Pellerin, B. A.; Bergamaschi, B. A.; Saraceno, J.

    2011-12-01

    Studying controls on geochemical processes in rivers and streams is difficult because concentration and composition often changes rapidly in response to physical and biological forcings. Understanding biogeochemical dynamics in rivers will improve current understanding of the role of watershed sources to carbon cycling, river and stream ecology, and loads to estuaries and oceans. Continuous measurements of dissolved organic carbon (DOC), nitrate (NO3-) and soluble reactive phosphate (SRP) concentrations are now possible, along with some information about DOC composition. In situ sensors designed to measure these constituents provide high frequency, real-time data that can elucidate hydrologic and biogeochemical controls which are difficult to detect using more traditional sampling approaches. Here we present a coupled approach, using in situ optical instrumentation with discharge measurements to provide quantitative estimates of constituent loads to investigate C, NO3- and SRP sources and processing in the Sacramento River, CA, USA. Continuous measurement of DOC concentration was conducted by use of a miniature in situ fluorometer (Turner Designs Cyclops) designed to measure chromophoric dissolved organic matter fluorescence (FDOM) over the course of an entire year. Nitrate was measured concurrently using a Satlantic SUNA and phosphate was measured using a WETLabs model Cycle-P instrument for a two week period in July 2011. Continuous measurement from these instruments paired with continuous measurement of physical water quality variables such as temperature, pH, specific conductance, dissolved oxygen, and turbidity, were used to investigate physical and chemical dynamics of DOC, NO3-, SRP over varying time scales. Deploying these instruments at pre-existing USGS discharge gages allowed for calculation of instantaneous and integrated constituent fluxes, as well as filling in gaps in our understanding biogeochemical processes and transport. Results from the study

  13. Dispersion Mechanisms of a Tidal River Junction in the Sacramento–San Joaquin Delta, California

    Directory of Open Access Journals (Sweden)

    Karla T. Gleichauf

    2014-12-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2014v12iss4art1In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between