WorldWideScience

Sample records for large rice-based irrigation

  1. The phenology of malaria mosquitos in irrigated rice fields in Mali

    NARCIS (Netherlands)

    Klinkenberg, E.; Takken, W.; Huibers, F.P.; Touré, Y.T.

    2003-01-01

    A field study was carried out in the large-scale rice irrigation scheme of the Office du Niger in Mali to investigate the relation between anopheline mosquito larval development and small-scale differences in irrigation practices, such as water level, irrigation application and irrigation frequency.

  2. Climate Change Implications to Irrigated Rice Production in Southern Brazil: A Modelling Approach

    Science.gov (United States)

    Dos Santos, Thiago

    Rice is one of the staple foods for more than three billion people worldwide. When cultivated under irrigated conditions (i.e. lowland rice), rice is one of the most intensive water consumer crops globally. Therefore, representation of rice growth should be integrated into the latest land surface models to allow studies on food security and to ensure that accurate simulations of the bidirectional feedbacks between the land surface and atmosphere take place. In this study, I present a new process-based model for rice fields that includes rice growth and rice irrigation as modules within the Agro-IBIS dynamic agro-ecosystem model. The model includes a series of equations, agricultural management parameters and an irrigation scheme that are specifically tailored for rice crops. The model was evaluated against leaf area index and biomass observations, obtained for one growing season in Rio Grande do Sul state (southern Brazil), and in Los Banos, Philippines. The model accurately captured the temporal dynamics of leaf area index in both the Brazilian and the Philippine sites, and predicted end-of-season biomass with an error of between -9.5% and 11.3% depending on the location and the plant organ. Rice phenology is predicted by the model based on experimentally-derived growth rates, and was evaluated by comparing simulated and observed durations of the four growth phases considered by the model. Agro-IBIS showed a tendency to overestimate the duration of the growth stages between 3% and 16%, but underestimated by 8% the duration of the panicle formation phase in one growing season. The new irrigation model is based on the water balance at the surface and applies irrigation in order to keep the water layer at the paddy field always in the optimum level. A set of climate projections from global climate models under two emission scenarios, and excluding and considering CO2 fertilizations effects, was used to drive the updated Agro-IBIS to estimate the effects of climate

  3. [Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China].

    Science.gov (United States)

    Huang, Zhi-gang; Wang, Xiao-li; Xiao, Ye; Yang, Fei; Wang, Chen-xi

    2015-01-01

    Based on meteorological data from China national weather stations and climate scenario grid data through regional climate model provided by National Climate Center, rice water requirement was calculated by using McCloud model and Penman-Monteith model combined with crop coefficient approach. Then the rice irrigation water requirement was estimated by water balance model, and the changes of rice water requirement were analyzed. The results indicated that either in historical period or in climate scenario, rice irrigation water requirement contour lines during the whole growth period and Lmid period decreased along southwest to northeast, and the same irrigation water requirement contour line moved north with decade alternation. Rice irrigation water requirement during the whole growth period increased fluctuantly with decade alternation at 44.2 mm . 10 a-1 in historical period and 19.9 mm . 10 a-1 in climate scenario. The increase in rice irrigation water requirement during the Lmid period with decade alternation was significant in historical period, but not significant in climate scenario. Contribution rate of climate change to rice irrigation water requirement would be fluctuantly increased with decade alternation in climate scenario. Compared with 1970s, contribution rates of climate change to rice irrigation water requirement were 23.6% in 2000s and 34.4% in 2040s, which increased 14.8 x 10(8) m3 irrigation water in 2000s and would increase 21.2 x 10(8) m3 irrigation water in 2040s.

  4. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  5. Yield loss and economic thresholds of yellow nutsedge in irrigated rice as a function of the onset of flood irrigation

    Directory of Open Access Journals (Sweden)

    Nixon da Rosa Westendorff

    2014-03-01

    Full Text Available Yellow nutsedge (Cyperus esculentus is adapted to flooding and reduces yield in irrigated rice. Information on the competitive ability of this weed with the crop and the size of the economic damage caused is lacking. Mathematical models quantify the damage to crops and support control decision-making. This study aimed to determine yield losses and economic thresholds (ET of this weed in the culture according to weed population and time of onset of irrigation of the crop. The field study was conducted in the agricultural year of 2010/2011 in Pelotas/RS to evaluate the competitive ability of BRS Querência in competition with different population levels of yellow nutsedge and two periods of onset of flood irrigation (14 and 21 days after emergence. The hyperbolic model satisfactorily estimated yield losses caused by yellow nutsedge. Population of yellow nutsedge was the variable most fitted to the model. The delay of seven days for the beginning of rice irrigation causes decrease in competitive ability of BRS Querência, and based on the ET calculated to the price paid for rice, it is necessary between two and thirteen plants m-2 weed to justify the control in the first and second period of irrigation, respectively. Increases in yield, price paid for rice and control efficiency of the herbicide, besides reduction of costs of controlling promote reduction of ET of yellow nutsedge in rice crops, justifying the adoption of control measures even at smaller weed population.

  6. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    Science.gov (United States)

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  7. Transfer of radioactive and chemical pollutants into irrigated rice fields

    International Nuclear Information System (INIS)

    Myttenaere, C.; Mousny, J.-M.; Dabin, P.; Bittel, R.

    1975-01-01

    In a general study on the consequences of radioactive and chemical releases in continental waters, flooded rice fields must be considered as a very important ecosystem due to the very large quantities of water used. In order to approach as much as possible to the natural conditions (irrigated rice fields of Northern Italy) ''mini-rice fields'' were built and local practices were respected. The behavior of activation and fission products ( 137 Cs, 60 Co, 65 Zn, 51 Cr...) and heavy metals pollutants (Cd, Cr, Sn) was studied and the transfer from water to soil and plant was followed. Concentration factors were calculated for the different organs of the plant and the impact of rice ingested to the dose delivered to man was evaluated [fr

  8. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done

  9. Towards a smart automated surface irrigation management in rice-growing areas in Italy

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-02-01

    Full Text Available Italy is the leading rice producer in Europe, accounting for more than half of the total high-quality production of this crop. Rice is traditionally grown in fields that remain flooded starting with crop establishment until close to harvest, and this traditional irrigation technique (i.e., continuous submergence is recognised as an important water resource sink (almost 40% of the irrigation water available worldwide is used for paddy areas. Meanwhile, the water management in rice areas requires a high level of labour because it is based on maintaining a predetermined water height in paddy fields and because the regulation of input and output flow is typically operated manually by the farmer. This study reveals the hardware and software characteristics of an automated and remote controlled technology tested for the first time in a rice farm near Pavia (Italy, during the 2016 growing season, aiming at a more efficient and less burdensome irrigation management system for rice fields. A water level sensor in the field provides the data required to govern the inflow regulation gate in real-time, according to the precise time to cut off the flow rate. Using a dedicated web page, the farmer can control flows, volumes and water levels in the fields by operating directly on the gate if necessary or setting the irrigation program according to his agronomic practices.

  10. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  11. Adubarroz: a brazilian experience for fertilization and liming recommendation of irrigated rice via computational system

    Directory of Open Access Journals (Sweden)

    Felipe de Campos Carmona

    Full Text Available ABSTRACT: Recommendations for fertilizing irrigated rice in southern Brazil have been constantly evolving over years. In this process, the influence of factors such as the development cycle of varieties and sowing period increased. Thus, computational tools that take these and others important aspects into account can potentiate the fertilization response of rice. This study describes the computer program "ADUBARROZ". The software provides recommendations of fertilizer rates and liming requirements of irrigated rice, based on information entered by the user. The system takes various factors that regulate the crop response to fertilization into account. A final report is established with the graphical representation of input management over time.

  12. Contamination of rice (Oryza sativa L) with Cadmium and Arsenic by irrigation with the Bogota River water in rice soils of the Lower Basin

    International Nuclear Information System (INIS)

    Montenegro, Omar; Mejia L

    2001-01-01

    In this study, field and greenhouse experiments were simultaneously carried out with rice (oryza sativa l., variedad oryzica-1) in soils of the Bogota River lower basin (Los Manueles Series, a member of the clayed, mixed, isohipertermic family of the Fluventic Vertic Haplustepts) to evaluate the effect of Cd and As content of the irrigation waters (of the Bogota River and greenhouse) on soils and: 1) rice growth physiological parameters; 2) Cd and As accumulated in different parts of rice plants; 3) yields and other aspects and properties of rice crop. The results lead to the following conclusions: 1) The Cd and As content of the Bogota River water, increased during the driest months and was minimum in those with the highest precipitation; Cd and As concentrations in both seasons surpassed the maximum permissible limits. 2) Rice height was highest when irrigation water does have neither Cd nor As. Effects of both elements showed an inverse lineal tendency. 3) The gradual increase of Cd in irrigation water reduced in 12.5% the number of grains per panicle; the increase of As induced a 10% reduction. 4) The highest concentration of Cd and As in irrigation waters significantly reduced yields; maximum yields l were obtained when Cd and As were absent from irrigation waters. 5) For any concentration of As in irrigation water the highest concentration of Cd was accumulated in rice leafs when concentration of Cd 2 was 2mg/l; above this value Cd accumulation in leafs el decreased with the gradual increase of As concentration. 6) Cd and As accumulated in rice grains increased with the gradual increment of both elements in the irrigation waters; Cd and As accumulated were respectively 50 and 15 times higher than the maximum critical levels proposed for rice grains. 7) Cd and As accumulated progressively on soils with gradual increase of both elements in irrigation waters 8) Cd and As concentration in irrigation waters apparently does not affect the rice mill behavior

  13. land evaluation for improved rice production in watari irrigation

    African Journals Online (AJOL)

    DR. AMINU

    This study aimed at raising irrigated rice production in Watari Irrigation scheme, in Kano state, as to bridge the gap ... land including details about maintenance and ... Area of Kano state and cover a total of 4,574 .... which requires a depth of more than 50cm for efficient .... raise the productivity of the soils to optimum for.

  14. Reducing Potential Disaster Impacts in Irrigated Rice Fields in West Java

    NARCIS (Netherlands)

    Sianturi, R.S.

    2018-01-01

    The increasing global population inevitably demands for stable food production. As an important food crop, rice plays a major role in maintaining food security. However, irrigated rice fields are increasingly suffered from natural hazard occurrences worldwide, disrupting livelihoods of millions of

  15. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  16. Selectivity and weed control efficacy of some herbicides applied to sprinkler irrigated rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Cavero, J; Zaragoza, C; Cirujeda, A; Anzalone, A; Faci, J M; Blanco, O

    2011-07-01

    Sprinkler irrigation can reduce the irrigation water needed to grow rice. However, most available information on weed control with herbicides is related to flood irrigated rice because this is the main growing method. Field experiments were conducted at Zaragoza (Spain) during two years to study weed control and tolerance of sprinkler irrigated rice to several herbicides. The main weeds were Atriplex prostrata Boucher ex DC., Cyperus rotundus L., Echinochloa crus-galli (L.) Beauv. and Sonchus oleraceus L. Rice cv Guadiamar was tolerant to preemergence (PRE) application of clomazone at 0.36 kg ha{sup -}1 and oxadiazon at 0.5 kg ha{sup -}1. PRE application of pendimethalin at 1.32 kg ha{sup -}1 combined with clomazone at 0.36 kg ha{sup -}1 decreased rice yield. Postemergence (POST) application of bentazon at 1.6 kg ha{sup -}1 + MCPA at 0.25 kg ha{sup -}1 did not injure rice but POST application of azimsulfuron at 0.025 kg ha{sup -}1 produced visual crop injury. Only treatments that controlled grassy weeds since rice was planted and by more than 80% at harvest time lead to acceptable rice yield (> 5,000 kg ha{sup -}1). Clomazone applied PRE at 0.36 kg ha{sup -}1 provided good control of grassy weeds (> 80%) and the highest rice yield, so it is recommended as a selective and efficacious PRE treatment for weed control of annual weeds in sprinkler irrigated rice. The perennial purple nutsedge was difficult to control at high plant densities (> 150 plants m{sup -}2) and the recommended herbicide is azimsulfuron applied at POST at 0.02 kg ha{sup -}1. (Author) 37 refs.

  17. Genetic diversity of high performance cultivars of upland and irrigated Brazilian rice.

    Science.gov (United States)

    Coelho, G R C; Brondani, C; Hoffmann, L V; Valdisser, P A M R; Borba, T C O; Mendonça, J A; Rodrigues, L A; de Menezes, I P P

    2017-09-21

    The objective of this study was to analyze the diversity and discrimination of high-performance Brazilian rice cultivars using microsatellite markers. Twenty-nine rice cultivars belonging to EMBRAPA Arroz e Feijão germplasm bank in Brazil were genotyped by 24 SSR markers to establish their structure and genetic discrimination. It was demonstrated that the analyzed germplasm of rice presents an expressive and significant genetic diversity with low heterogeneity among the cultivars. All 29 cultivars were differentiated genetically, and were organized into two groups related to their upland and irrigated cultivation systems. These groups showed a high genetic differentiation, with greater diversity within the group that includes the cultivars for irrigated system. The genotyping data of these cultivars, with the morphological e phenotypical data, are valuable information to be used by rice breeding programs to develop new improved cultivars.

  18. Soil salinization processes in rice irrigation schemes in the Senegal River Delta

    International Nuclear Information System (INIS)

    Ceuppens, J.; Wopereis, M.C.S.; Miezan, K.M.

    1997-01-01

    Soil salinization constitutes a major threat to irrigated agriculture (mainly rice, Oryza sativa L.) in the Senegal River Delta. It is generally hypothesized that salinization is caused by (i) capillary rise from a saline water table and (ii) concentration of salts in the field due to lack of adequate drainage facilities. The impact of field water management and rice cropping intensity on salinization in the Delta was determined using an electromagnetic conductivity meter (Geonics EM38). More than 4000 measurements were made in 40 rice fields on a typical heavy clay soil (Vertic Xerofluvent). Thirty EM38 measurements per field (0.25 ha) estimated average field soil salinity with a relative error of 20%. A multiple linear regression model based on EM38 readings explained 60 to 75% of the variability in conductivity of 1:5 saturation extracts at 0- to 5-, 10- to 15-, and 30- to 35-cm depths. Higher cropping intensity limited upward salt transport from the water table. Average horizontal and vertical EM38 measurements increased in the following order two rice crops per year with drainage: 0.73 and 0.98 dS m -1 ; one rice crop per year with drainage: 1.26 and 1.76 dS m -1 ; one rice crop per year without drainage: 2.23 and 2.98 dS m -1 ; and abandoned fields: 4.77 and 4.29 dS m -1 . Results indicate a beneficial effect of flooded rice on salinity for this type of heavy clay soil. Irrigation development in the area needs to be accompanied by monitoring of water table depth. (author)

  19. Actual and potential salt-related soil degradation in an irrigated rice scheme in the Sahelian zone of Mauritania

    NARCIS (Netherlands)

    Asten, van P.J.A.; Barbi'ro, L.; Wopereis, M.C.S.; Maeght, J.L.; Zee, van der S.E.A.T.M.

    2003-01-01

    Salt-related soil degradation due to irrigation activities is considered a major threat to the sustainability of rice cropping under semi-arid conditions in West Africa. Rice productivity problems related to soil salinity, alkalinity and topographic position were observed in an irrigated rice scheme

  20. Expansion of urban area and wastewater irrigated rice area in Hyderabad, India

    Science.gov (United States)

    Gumma, K.M.; van, Rooijen D.; Nelson, A.; Thenkabail, P.S.; Aakuraju, Radha V.; Amerasinghe, P.

    2011-01-01

    The goal of this study was to investigate land use changes in urban and peri-urban Hyderabad and their influence on wastewater irrigated rice using Landsat ETM + data and spectral matching techniques. The main source of irrigation water is the Musi River, which collects a large volume of wastewater and stormwater while running through the city. From 1989 to 2002, the wastewater irrigated area along the Musi River increased from 5,213 to 8,939 ha with concurrent expansion of the city boundaries from 22,690 to 42,813 ha and also decreased barren lands and range lands from 86,899 to 66,616 ha. Opportunistic shifts in land use, especially related to wastewater irrigated agriculture, were seen as a response to the demand for fresh vegetables and easy access to markets, exploited mainly by migrant populations. While wastewater irrigated agriculture contributes to income security of marginal groups, it also supplements the food basket of many city dwellers. Landsat ETM + data and advanced methods such as spectral matching techniques are ideal for quantifying urban expansion and associated land use changes, and are useful for urban planners and decision makers alike. ?? 2011 Springer Science+Business Media B.V.

  1. Effects of Furrow Irrigation on the Growth, Production, and Water Use Efficiency of Direct Sowing Rice

    Directory of Open Access Journals (Sweden)

    Chunlin He

    2010-01-01

    Full Text Available Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI system to improve water use efficiency (WUE and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI system (continuous flooding irrigation, for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1 a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2 a significant reduction in the reduced materials, such as ferrous ion (Fe2+, and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3 increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  2. Effects of furrow irrigation on the growth, production, and water use efficiency of direct sowing rice.

    Science.gov (United States)

    He, Chunlin

    2010-08-03

    Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI) system to improve water use efficiency (WUE) and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI) system (continuous flooding irrigation), for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1) a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2) a significant reduction in the reduced materials, such as ferrous ion (Fe2+), and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3) increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  3. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  4. Influence of pH of acid irrigation water on the transfer of elements into rice plant from soils

    International Nuclear Information System (INIS)

    Maeno, Tomokazu; Tanizaki, Yoshiyuki

    1996-01-01

    Rice plant samples were grown in 14 cultivative pots under six different pH conditions of acid irrigation water (pH: 6.5, 6.0, 4.5, 3.5, 3.0. 2.5) and ion exchange water (pH: 7.5), in order to study an influence of pH of irrigation water on the transfer of elements into rice plant from soils. The acid irrigation water was prepared by adding mixed solution of 1N H 2 SO 4 and 1N HNO 3 (1:1) to ion exchange water. The rice grain yielded was separated into three parts, i.e., polished rice, bran and chaff and they were powdered one by one. The contents of twenty five elements in the three parts of grain (14 samples each) were determined by a neutron activation analysis. It was clarified that the contents of Cu, Zn, Fe, Cr, Mg, Rb, Mo, Ni, and Cs in the polished rice increased with decreasing pH of the acid irrigation water. The contents of Se and Br, on the contrary, decreased. Significant changes of the contents were not observed for Na, Al, Sc, Mn, Cl, Ca, V and Co. The relationships between the contents of elements in the bran or chaff and pH of the acid irrigation water were not so clear as the case of polished rice. The enrichment factor of trace elements from soils was calculated for the polished rice, bran and chaff The high enrichment of Cl, Mo, Zn, Se and Cu was observed in the polished rice. Manganese and Cr were concentrated more in the bran than in the polished rice. (author)

  5. The rice agroecosystem of the MUDA irrigation scheme: an overview

    International Nuclear Information System (INIS)

    Ho Nai Kin

    2002-01-01

    The Green Revolution technologies were introduced to the Muda area of Malaysia in the late 1960s. These technological innovations have resulted in rapid modification of the crop habitat and triggered a chain reaction in the rice agroecosystem. The impact of these technologies on the pest flora and fauna are significant. Indiscriminate use of pesticides causes disruption of natural enemy equilibrium and other undesirable effects to the farmers and the rice environment. The main emphasis of this paper is focused on the interactions between the various biological factors such as pathogenic microorganisms, arthropods, gastropods, fishes, birds, rodents, weeds, and the physical factors in the rice agroecosystem. The impact of double cropping of rice, the provision of irrigation facilities, the changes of crop establishment methods, and the adoption of pesticides on the rice agroecosystem are found to have far reaching effects on the sustainability of rice production in the Muda area. (Author)

  6. Testing climate-smart irrigation strategies to reduce methane emissions from rice fields

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Approximately 11% of the global 308 Tg CH4 anthropogenic emissions are currently attributed to rice cultivation. In this study, the impact of water conservation practices on rice field CH4 emissions was evaluated in Arkansas, the leading state in US rice cultivation. While conserving water, the Alternate Wetting and Drying (AWD) irrigation practice can also reduce CH4 emissions through the deliberate, periodic introduction of aerobic conditions. Seasonal CH4emissions from a pair of adjacent, production-sized rice fields were estimated and compared during the 2015 to 2017 growing seasons using the eddy covariance method on each field. The fields were alternately treated with continuous flood (CF) and AWD irrigation. In 2015, the seasonal cumulative carbon losses by CH4 emission were 30.3 ± 6.3 and 141.9 ± 8.6 kg CH4-C ha-1 for the AWD and CF treatments, respectively. Data from 2016 and 2017 will be analyzed and shown within this presentation; an initial view demonstrates consistent findings to 2015. When accounting for differences in field conditions and soils, the AWD practice is attributable to a 36-51% reduction in seasonal emissions. The substantial decrease in CH4 emissions by AWD supports previous chamber-based research and offers strong evidence for the efficacy of AWD in reducing CH4 emissions in Arkansas rice production. The AWD practice has enabled the sale of credits for carbon offsets trading and this new market could encourage CH4 emissions reductions on a national scale. These eddy covariance towers are being placed into a regional perspective including crop and forest land in the three states comprising the Mississippi Delta: Arkansas, Mississippi, and Louisiana.

  7. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    Science.gov (United States)

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  8. Water Use and Crop Coefficients in Sprinkler Irrigated Rice

    Directory of Open Access Journals (Sweden)

    Antonino Spanu

    Full Text Available Field experiments were carried out during the years 2002, 2004, 2005 and 2006 to analyze water-soil-atmosphere interactions in sprinkler irrigated rice. The research was carried out in Sardinia (39º 59’ N; 8º 40’ E, at altitude 15 m. The cultivars used in the experiments, respectively in 2002 and in 2004-2005-2006, were Irat 212 and Eurosis. In each year cultivars were subjected to the same crop management. Irrigation was applied since the emergence with the sprinkler method, taking into account the loss of water from ‘Class A’ pan evaporation. Soil water content was monitored at 0.10 m intervals until 1.00-m depth using a ‘Diviner 2000’ (Sentek. In 2002 seven irrigation scheduling treatments were compared. In 2004, 2005, 2006 irrigation treatments provided for optimal soil water conditions during the growing season. In 2002 the results highlighted: 1 0-0.20 m depth was the most important layer for crop water uptake and the best correlated layer with rice rough yield; 2 the positive relationship between yield and water supply was significant until 6500 m3 ha-1 of water applied. Further seasonal irrigation volumes did not increase significantly yield. In 2004, 2005 and 2006 the analysis of the soil water balance at different crop phenological stages allowed to estimate crop coefficients (Kc using the Penman-Monteith equation and the ‘Class A’ pan evaporation (Kcev. Kc varied over the three-year period on average from 0.90 to 1.07 and 0.97, respectively for the emergence-end of tillering, end of tillering-heading and heading-maturing periods, while crop coefficients as a ratio between maximum crop evapotranspiration (ETc and Epan, Kcev ranged from 0.78 to 0.92 and 0.81 for the same time periods.

  9. Rice agroecosystem of the Muda irrigation scheme, Malaysia

    International Nuclear Information System (INIS)

    Nashriyah Mat; Ho Nai Kin; Ismail Sahid; Ahyaudin Ali; Lum Keng Yeang

    1998-01-01

    Pesticides have become one of the major components of modern farming practice. However, their usage needs to be properly carried out and regulated. Farmers need to be aware of the potential hazards arising out of improper use of pesticides, to them as well to the environment. This book presents the results of a comprehensive study on the impact of pesticide usage in the largest rice agroecosystem in Malaysia, the Muda Irrigation Scheme. The study, carried out by a group of local scientists, covers the impact of pesticide usage on biodiversity and bioresources (forest, weed, insect, fish and bird). In addition to farmers education, it shows the potential of crop establishment, irrigation method and double cropping of rice as useful factors that can be employed in minimizing the impact. The book also provides good foundation for future work and points out areas for further studies. It is a valuable reference to policy makers, researchers, regulators, agriculture-related agencies, chemical / fertilizer companies as well as those concerned with sustainable farming. The ecologists, chemists, biochemists, entomologists, zoologists, botanists, microbiologists, agronomists and medical practitioners involved in this study are congratulated for their efforts. (Nahrul Khair Alang Md Rashid)

  10. Rice agroecosystem of the Muda irrigation scheme, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mat, Nashriyah [Malaysian Institute for Nuclear Technology Research MINT, Bangi (Malaysia); Kin, Ho Nai [Muda Agricultural Development Authority MADA, Alor Setar (Malaysia); Sahid, Ismail [Universiti Kebangsaan Malaysia, Bangi (Malaysia); Ali, Ahyaudin [Universiti Sains Malaysia, Penang (Malaysia); Yeang, Lum Keng [Malaysian Agricultural Research and Development Institute, Serdang (Malaysia)

    1998-07-01

    Pesticides have become one of the major components of modern farming practice. However, their usage needs to be properly carried out and regulated. Farmers need to be aware of the potential hazards arising out of improper use of pesticides, to them as well to the environment. This book presents the results of a comprehensive study on the impact of pesticide usage in the largest rice agroecosystem in Malaysia, the Muda Irrigation Scheme. The study, carried out by a group of local scientists, covers the impact of pesticide usage on biodiversity and bioresources (forest, weed, insect, fish and bird). In addition to farmers education, it shows the potential of crop establishment, irrigation method and double cropping of rice as useful factors that can be employed in minimizing the impact. The book also provides good foundation for future work and points out areas for further studies. It is a valuable reference to policy makers, researchers, regulators, agriculture-related agencies, chemical / fertilizer companies as well as those concerned with sustainable farming. The ecologists, chemists, biochemists, entomologists, zoologists, botanists, microbiologists, agronomists and medical practitioners involved in this study are congratulated for their efforts. (Nahrul Khair Alang Md Rashid)

  11. Evaluation of Different Rice Genotypes Tolerance to Saline Irrigation Water

    Directory of Open Access Journals (Sweden)

    S. Jafari Rad

    2015-12-01

    Full Text Available To study the responses of seven rice genotypes (Khazar, SA13, Deylam, Sange Joe, Sepidrud, 831 and T5 to different levels of irrigation water salinity, and determining grain yield based on tolerance indices, a CRD based factorial pot experiment with five levels of irrigation water salinity (1, 2, 4, 6 and 8 dSm-1 and three replications was carried out at Rice Research Institute of Iran in 2011. Indices such as SSI, TOL, MP, GMP, HM, STI, YI and YSI were calculated and their correlations with grain yield were estimated for both stress and non-stress conditions. Results indicated significant differences among genotypes and the indices within both conditions. Results also showed that STI and MP indices could be considered as the best indices to screen salt tolerant genotypes. Among the genotypes used in the experiment, T5 produced the highest yield in both non-stress (19.71 g/plant and stress (10.69 g/plant conditions, while the lowest yield in normal (11.84 g/plant and stressful (4.29 g/plant conditions was recorded for Deylam and Khazar, respectively. The highest and the lowest percentage of yield reduction were found in Khazar (69.49% and Sange Joe (31.48% in stressful conditions, respectively. Overall, genotypes T5, 831, Sepidrud and Sange Joe can probably be considered as superior high yielding genotypes in both saline and non-saline conditions for further research.

  12. Rice Field Geochemistry and Hydrology: An Explanation for Why Groundwater Irrigated Fields in Bangladesh are Net Sinks of Arsenic from Groundwater

    Science.gov (United States)

    Neumann, Rebecca B.; St. Vincent, Allison P.; Roberts, Linda C.; Badruzzaman, A. Borhan M.; Ali, M. Ashraf; Harvey, Charles F.

    2011-01-01

    Irrigation of rice fields in Bangladesh with arsenic-contaminated groundwater transfers tens of cubic kilometers of water and thousands of tons of arsenic from aquifers to rice fields each year. Here we combine observations of infiltration patterns with measurements of porewater chemical composition from our field site in Munshiganj Bangladesh to characterize the mobility of arsenic in soils beneath rice fields. We find that very little arsenic delivered by irrigation returns to the aquifer, and that recharging water mobilizes little, if any, arsenic from rice field subsoils. Arsenic from irrigation water is deposited on surface soils and sequestered along flow paths that pass through bunds, the raised soil boundaries around fields. Additionally, timing of flow into bunds limits the transport of biologically available organic carbon from rice fields into the subsurface where it could stimulate reduction processes that mobilize arsenic from soils and sediments. Together, these results explain why groundwater irrigated rice fields act as net sinks of arsenic from groundwater. PMID:21332196

  13. Varietal improvement of irrigated rice under minimal water conditions

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Marziah Mahmood; Sobri Hussein

    2010-01-01

    Varietal improvement of irrigated rice under minimal water condition is a research project under Program Research of Sustainable Production of High Yielding Irrigated Rice under Minimal Water Input (IRPA- 01-01-03-0000/ PR0068/ 0504). Several agencies were involved in this project such as Malaysian Nuclear Agency (MNA), Malaysian Agricultural Research and Development Institute (MARDI), Universiti Putra Malaysia (UPM) and Ministry of Agriculture (MOA). The project started in early 2004 with approved IRPA fund of RM 275,000.00 for 3 years. The main objective of the project is to generate superior genotypes for minimal water requirement through induced mutation techniques. A cultivated rice Oryza sativa cv MR219 treated with gamma radiation at 300 and 400 Gray were used in the experiment. Two hundred gm M2 seeds from each dose were screened under minimal water stress in greenhouse at Mardi Seberang Perai. Five hundred panicles with good filled grains were selected for paddy field screening with simulate precise water stress regime. Thirty eight potential lines with required adaptive traits were selected in M3. After several series of selection, 12 promising mutant line were observed tolerance to minimal water stress where two promising mutant lines designated as MR219-4 and MR219-9 were selected for further testing under several stress environments. (author)

  14. Scaling up Intermittent Rice Irrigation for Malaria Control on the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The water used for rice farming is a breeding ground for malarial mosquitoes that ... climate variability and change are threatening the sources of irrigation water and ... skills (farmer-to-farmer agricultural extension); - assess and document social, ... Adaptation strategies for two Colombian cities were discussed at ADAPTO's ...

  15. Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China

    Directory of Open Access Journals (Sweden)

    Haorui Chen

    2017-12-01

    Full Text Available This research analyzed the scale effect of water saving in Bielahonghe (BLH Basin, a rice-cultivating district on the Sanjiang Plain, Northeast China. Water budgets with different surface irrigation water supply ratios and water-saving measures were simulated with a semi-distributed water balance model. PFnws, representing the ratio of rice evapotranspiration to net water supply (the total amount of irrigation and precipitation minus the amount of water reused, was employed to assess the water use efficiency. Seven spatial scales (noted from S1 to S7, ranging from a single field (317.87 ha to the whole basin (about 100,800 ha were determined. PFnws values were quantified across scales and several water-saving measures, including water-saving irrigation regimes, canal lining, and a reduction of the surface water supply ratio (SWSR. The results indicated that PFnws increased with scale and could be calculated by a fitted power function (PFnws = 0.736Area0.033, R2 = 0.58. Furthermore, PFnws increased most prominently when the scale increased from S1 to S2. The water-saving irrigation regime (WSIR had the most substantial water-saving effect (WSE at S1. Specifically, PFnws improved by 21.2% at S1 when high-intensity WSIR was applied. Additionally, the WSE values of S3 and S5 were slightly higher than at other scales when the branch canal water delivery coefficient increased from 0.65 to 0.80 through canal lining. Furthermore, the PFnws at each scale varied with SWSR. Specifically, PFnws from S3 to S7 improved as SWSR decreased from 0.4 to 0.3 but remained approximately constant when SWSR decreased from 0.3 to 0.

  16. AN INTERACTION MODEL BETWEEN ENVIRONMENTAL FACTORS AND BLACK RICE GROWTH IN IRRIGATED ORGANIC PADDY FIELD

    Directory of Open Access Journals (Sweden)

    Budiman

    2015-02-01

    Full Text Available Black rice production in organic farming system does not meet the demand of local customers because of its low productivity. This research aimed to set an interaction model using multivariate analysis via smartPLS to identify environmental factors which simultaneously affects the growth of black rice. The growth of black rice in two irrigated organic paddy field in Malang, Indonesia was observed during planting period from November 2011 to March 2012. In each rice field, the growth was periodically recorded during planting periods: 19-29 days after planting (dap, 41-45 dap, 62-66 dap, 77-81 dap, 90-94 dap and 104-106 dap. Environmental factors such as water quantities, soil conditions, weed communities and cultivation system around the black rice population were also measured. Black rice growth was influenced simultaneously by water quantities, soil, weed communities and cultivating systems with predictive-relevance value reaching 92.83%. Based on the model, water quantities in paddy field is a key factor which directly and indirectly determined the growth and productivity of black rice.

  17. Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima.

    Science.gov (United States)

    Yang, Baolu; Onda, Yuichi; Wakiyama, Yoshifumi; Yoshimura, Kazuya; Sekimoto, Hitoshi; Ha, Yiming

    2016-01-01

    About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012-2014) after the nuclear accident. Our results showed that radiocesium migrated into 24-28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for (137)Cs and (134)Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mapping Changes in Area and the Cropping Season of Irrigated Rice in Senegal and Mauritania between 2003 and 2014 Using the PhenoRice Algorithm and MODIS Imagery

    Science.gov (United States)

    Zwart, S.; Busetto, L.; Diagne, M.; Boschetti, M.; Nelson, A.

    2017-12-01

    Government policies have resulted in rapid expansion of irrigated rice area in Mauritania and Senegal through private and public investments. Farmers switch rice cultivation from the wet to the dry season to achieve higher production while rice double cropping is increasingly practiced. As a result Senegal is close to attaining self-sufficiency in the coming years. However, tools to monitor those changes are absent and this inhibits assessments on for example its impact on wetlands located in the delta area, increased water demands and climate induced risks to farmers. In this study we aimed to map changes in irrigated rice area in the wet and dry seasons. We applied the PhenoRice algorithm on a combined time-series of MODIS Aqua and Terra images obtained between 2003 and 2016 to map pixels dominated by rice and determine the start, end and length of the growing season from sowing/transplanting to maturity. Between 2002 and 2010 researchers from the Africa Rice Center interviewed annually around 100 rice farmers located in two irrigation schemes in Senegal. We extracted the reported sowing/transplanting and harvest dates from the data base and used these to validate the estimates obtained by PhenoRice. We also compared the obtained rice areas with official statistics provided by the Senegalese Ministry of Agriculture. Analysis of PhenoRice results highlighted that starting 2008, rice farmers cultivate also during the dry season; the area is steadily increasing from 2008 onwards and in the recent years approximately almost equals that of the wet season. This was confirmed by official statistics, though the total area estimated by PhenoRice is smaller than reported, most likely due to the mismatch between pixel size and the small cultivated areas. However, the algorithm was able to detect the overall trends and inter-annual variations observed in the wet (r2=0.57) and dry season rice cultivated area (r2=0.91). The start of the season, that varied maximally 4 weeks

  19. Agronomic and environmental aspects of diazotrophic bacteria in irrigated rice fields

    Science.gov (United States)

    This article provides an overview of the free-living and plant-associated nitrogen-fixing bacterial communities in irrigated rice fields, with a focus on describing the drivers affecting community assemblages in this soil-water-plant-atmosphere system. Theoretical and technical advances in non-legu...

  20. Effect of saline irrigation water on yield and yield components of rice ...

    African Journals Online (AJOL)

    vaio

    2013-05-29

    May 29, 2013 ... levels at different growth stages of rice on yield and its components. Treatments included ... Therefore, irrigation with saline water at the early growth stages has more negative effect on ...... diversification. Land Degrad. Dev.

  1. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya

    Directory of Open Access Journals (Sweden)

    Mwangangi Joseph M

    2010-08-01

    Full Text Available Abstract Background The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Methods Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru, unplanned rice cultivation (Kiamachiri and non-irrigated (Murinduko agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Results Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252, respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval

  2. Management systems in irrigated rice affect physical and chemical soil properties

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Pauletto, E.A.; Pinto, L.F.S.

    2009-01-01

    Lowland soils are commonly found in the state of Rio Grande do Sul, Southern of Brazil, where they represent around 20% of the total area. Deficient drainage is the most important natural characteristic of these soils which therefore are mainly in use for irrigated rice (Oriza sativa). Degradation

  3. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    Science.gov (United States)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2018-04-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p rice ET in WSI fields, and for its cross scale conversion.

  4. Effects of compost on soil fertility in irrigated rice growing at Kou ...

    African Journals Online (AJOL)

    Effects of compost on soil fertility in irrigated rice growing at Kou Valley (Burkina Faso) : Amélioration de la fertilité du sol par utilisation du compost en riziculture irriguée dans la Vallée du Kou au Burkina Faso.

  5. Soil quality and rice productivity problems in Sahelian irrigation schemes

    NARCIS (Netherlands)

    Asten, van P.J.A.

    2003-01-01

    In irrigation schemes in theSahel, rice yields and cropping

  6. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil

    Directory of Open Access Journals (Sweden)

    MARIA HELENA L.R. RECHE

    2016-03-01

    Full Text Available ABSTRACT This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.

  7. Mapping cropping patterns in irrigated rice fields in West Java: Towards mapping vulnerability to flooding using time-series MODIS imageries

    Science.gov (United States)

    Sianturi, Riswan; Jetten, V. G.; Sartohadi, Junun

    2018-04-01

    Information on the vulnerability to flooding is vital to understand the potential damages from flood events. A method to determine the vulnerability to flooding in irrigated rice fields using the Enhanced Vegetation Index (EVI) was proposed in this study. In doing so, the time-series EVI derived from time-series 8 day 500 m spatial resolution MODIS imageries (MOD09A1) was used to generate cropping patterns in irrigated rice fields in West Java. Cropping patterns were derived from the spatial distribution and phenology metrics so that it is possible to show the variation of vulnerability in space and time. Vulnerability curves and cropping patterns were used to determine the vulnerability to flooding in irrigated rice fields. Cropping patterns capture the shift in the vulnerability, which may lead to either an increase or decrease of the degree of damage in rice fields of origin and other rice fields. The comparison of rice field areas between MOD09A1 and ALOS PALSAR and MOD09A1 and Agricultural Statistics showed consistent results with R2 = 0.81 and R2 = 0.93, respectively. The estimated and observed DOYs showed RMSEs = 9.21, 9.29, and 9.69 days for the Start of Season (SOS), heading stage, and End of Season (EOS), respectively. Using the method, one can estimate the relative damage provided available information on the flood depth and velocity. The results of the study may support the efforts to reduce the potential damages from flooding in irrigated rice fields.

  8. Rice production with less irrigation water is possible in a Sahelian environment

    NARCIS (Netherlands)

    Vries, de M.E.; Rodenburg, J.; Bado, B.V.; Sow, A.; Leffelaar, P.A.; Giller, K.E.

    2010-01-01

    We investigated the possibility of saving irrigation water in rice production in a Sahelian environment with different nitrogen rates and weed control treatments. A series of field experiments was conducted at Ndiaye (shallow water table, dry and wet season) and at Fanaye (deep water table, wet

  9. THE EFFECT OF RICE CULTIVARS ON METHANE EMISSION FROM IRRIGATED RICE FIELD

    Directory of Open Access Journals (Sweden)

    P. Setyanto

    2016-10-01

    Full Text Available Rice plants have been reported to affect methane (CH4 emission from rice fields. The objectives of this study were to determine the effect of rice cultivars on CH4 emission from flooded rice and to develop crop management strategies with low emitting rice cultivars while sustaining high yield. The four rice cultivars studied were Memberamo, Cisadane, IR64, and Way Apoburu. The CH4 emissions were determined in the wet season of 2001/2002 (November-February using an automated closed chamber technique in an irrigated field condition. Farmyard manure at the rate of 5 t ha-1 was given to the plots to ensure carbon was not limited. Root weight, root length, biomass, and number of tillers were determined at 17, 36, and 57 days after transplanting (DAT. The results showed that the mean CH4 emission was highest in the plot planted with Cisadane (94.8 kg CH4 ha-1, and the lowest with IR64 (37.7 kg CH4 ha-1. The plots treated with emberamo and Way Apoburu resulted an intermediate CH4 emission at the average of 61.1 and 58.9 kg CH4 ha-1, respectively. There was no significant difference in yield between the cultivars tested. The yield of Memberamo, Cisadane, IR64, and Way Apoburu were 5.882, 5.764, 5.873 and 6.065 t ha-1, respectively. Statistical analysis showed that there were no significant differences in the root weight and root length among cultivars. However, Cisadane gave the highest dry matter weight (222 g hill-1 at 57 DAT compared to the other cultivars (175-190 g hill-1. Plant tillers did not show significant differences between the cultivars. Regression analysis showed that CH4 flux was significantly related with root weight, root length, aboveground biomass, and number of plant tillers. This finding shows that the use of selected cultivars, such as IR64, can potentially lower CH4 emission without scarifying yield.

  10. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    Science.gov (United States)

    Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito

    2015-08-01

    A remarkable feature of nanobubbles (pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.

  11. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  12. Study of the influence of stable cadmium on the transfer of zinc-65 in an ecosystem irrigated by submersion (irrigated rice field)

    International Nuclear Information System (INIS)

    Myttenaere, C.; Merlini, M.; Dabin, P.; Mousny, J.M.; Pozzi, G.; Bittel, R.

    1975-01-01

    Irrigation water contains varying amounts of stable cadmium from industrial disposal. The presence of this element is capable of modifying the transfer of and affecting the mechanisms of absorption of zinc-65, a radionuclide which is discharged into water by nuclear power stations. This type of interaction between a nuclear contaminant and a conventional contaminant was studied in a rice-field irrigated by submersion. This ecosystem was reproduced under controlled 'mini-rice-field' conditions: the water was enriched in stable zinc (1 ppm) and in stable cadmium (2,5x10 -3 ; 50x10 -3 ppm) so as to reproduce the actual conditions; the stable zinc was traced by means of zinc-65. Fish (20 Carassius auratus L.) were introduced into each compartment of the ecosystem. Samples of irrigation water and surface water were taken during cultivation, and at the end of cultivation the content of stable zinc, radioactive zinc and stable cadmium was determined in each component of the ecosystem. The results show the important influence of a conventional contaminant on the transfer of a radionuclide and justify the use of the term 'associate contaminant' to describe it. (author)

  13. Side-effects of pesticides used in irrigated rice areas on Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    Pazini, Juliano de Bastos; Pasini, Rafael Antonio; Seidel, Enio Júnior; Rakes, Matheus; Martins, José Francisco da Silva; Grützmacher, Anderson Dionei

    2017-08-01

    Telenomus podisi Ashmead (Hymenoptera: Platygastridae) is an important agent for the biological control of stink bug eggs in irrigated rice areas and the best strategy for its preservation is the use of selective pesticides. The aim of this study was to know the side-effects of pesticides used in Brazilian irrigated rice areas on egg parasitoid T. podisi. We evaluated, under laboratory conditions, 13 insecticides, 11 fungicides, 11 herbicides, and a control (distilled water) in choice and no-choice tests. In the no-choice tests, the pesticides were sprayed at pre and post-parasitism stages (egg and larval stages of T. podisi). In the choice tests, sprays were conducted only at pre-parasitism stages. For all tests, we prepared cards with 25 eggs of the alternative host Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) non-parasitized (pre-parasitism) and parasitized (post-parasitism), which were subjected to pesticide sprays. The parasitism and emergence rates of T. podisi were determined classifying the pesticides in terms of the reduction of parasitism or emergence rates compared to the control. The neurotoxic insecticide cypermethrin, lambda-cyhalothrin, zeta-cypermethrin, etofenprox, thiamethoxam, thiamethoxam + lambda-cyhalothrin, acetamiprid + alpha-cypermethrin, and bifenthrin + alpha-cypermethrin + carbosulfan were more harmful to T. podisi and, therefore, are less suitable for the integrated management of insect pests in irrigated rice areas.

  14. Application of Azolla and intermittent irrigation to improve the productivity and nutrient contents of local black rice variety

    Science.gov (United States)

    Sulandjari; Yunindanova, M. B.

    2018-03-01

    Black rice is a local rice variety that contains a high level of anthocyanin pigment. Anthocyanin has been reported to be very effective in reducing cholesterol levels as well as cancer cell invasion. One of the main problems in rice cultivation is lack of water. System of Rice Intensification (SRI) has shown to be able to increase rice productivity by increasing the number of tillers. This system is known as a water-efficient cultivation. Other rice cultivation barrier is related to the use of nitrogen fertilizer. One of replacement of nitrogen fertilizer is by adding azolla. The objective of this research was identifying growth and yield of organic black rice with intermittent irrigation and application of azolla. The plant material used was black rice Cempo variety from Sleman, Yogyakarta. This experiment utilized 4 dosages of azolla as the first treatment: 100 gm-2, 200 gm-2 and 400 gm-2. The second treatment was water supply consisted of continuous flooded 2 cm; flooded 2 cm every 3 days; flooded 2 cm every 6 days. The results depicted that the application of azolla was able to increase the growth of black rice. Azolla of 200 gm-2 and 400 gm-2 and intermittent 3 days to 6 days generated higher dry grain, anthocyanin and antioxidant. Azolla 200 gm-2 with intermittent irrigation 3 days could be a good combination to improve plant growth, yield and properties of local black rice.

  15. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Science.gov (United States)

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  16. Doses and application methods of Azospirillum brasilense in irrigated upland rice

    Directory of Open Access Journals (Sweden)

    Nayara F. S. Garcia

    Full Text Available ABSTRACT The study was carried out in Selvíria-MS, in the 2011/12 and 2012/13 agricultural years, aiming to evaluate the efficiency of Azospirillum brasilense in nitrogen fixation in upland rice, as a function of doses and application methods of the inoculant containing this diazotrophic bacterium. The experimental design was randomized blocks, arranged in a 4 x 4 factorial scheme, with 4 doses of inoculant (control without inoculation, 100, 200 and 300 mL of the commercial product ha-1 and 4 application methods (seed inoculation, application in the sowing furrow, soil spraying after sowing, and foliar spraying at the beginning of plant tillering, with 4 replicates. During the experiment, the agronomic characteristics, production components and yield of the rice crop were evaluated. It was concluded that the inoculant containing Azospirillum brasilense promotes increase (19% in the yield of upland rice under sprinkler irrigation when used at the dose of 200 mL ha-1, regardless of the application methods.

  17. Significance of the tropical fire ant Solenopsis geminata (hymenoptera: formicidae) as part of the natural enemy complex responsible for successful biological control of many tropical irrigated rice pests.

    Science.gov (United States)

    Way, M J; Heong, K L

    2009-10-01

    The tropical fire ant Solenopsis geminata (Fabricius) often nests very abundantly in the earthen banks (bunds) around irrigated rice fields in the tropics. Where some farmers habitually drain fields to the mud for about 3-4 days, the ants can quickly spread up to about 20 m into the fields where they collect food, including pest prey such as the eggs and young of the apple snail Pomacea caniculata (Lamarck) and insects such as lepidopterous larvae and hoppers, notably Nilaparvata lugens (Stäl) the brown planthopper (Bph) and green leafhoppers Nephotettix spp. Even in drained fields, the activity of S. geminata is restricted by rainfall in the wet season. The relatively few ant workers that forage characteristically into drained fields and on to the transplanted clumps of rice plants (hills) kill the normally few immigrant Bph adults but are initially slower acting than other species of the natural enemy complex. However, larger populations of Bph are fiercely attacked and effectively controlled by rapidly recruited ant workers; whereas, in the absence of the ant, the other natural enemies are inadequate. In normal circumstances, there is no ant recruitment in response to initially small populations of immigrant Bph and no evidence of incompatibility between ant foragers and other natural enemies such as spiders. However, when many ants are quickly and aggressively recruited to attack large populations of Bph, they temporarily displace some spiders from infested hills. It is concluded that, in suitable weather conditions and even when insecticides kill natural enemies within the rice field, periodic drainage that enables S. geminata to join the predator complex is valuable for ant-based control of pests such as snails and Lepidoptera, and especially against relatively large populations of Bph. Drainage practices to benefit ants are fully compatible with recent research, which shows that periodic drainage combats problems of 'yield decline' in intensively irrigated

  18. Simulation of rice yield under different irrigation and nitrogen application managements by CropSyst model

    Directory of Open Access Journals (Sweden)

    Narjes ZARE

    2015-12-01

    Full Text Available The aim of this study was the calibration and validation of CropSyst model for rice in the city of Rasht. The necessary data were extracted from a field experiment which was carried out during 2005-2007 in a split-plot design. The main plots were irrigation regimes including continuous flooding irrigation and 5-day irrigation intervals. The subplots consisted of four nitrogen levels: zero N application, 45, 60 and 75 kg N ha-1. Normalized Root Mean Squared Error (nRMSE and Residual Mass Coefficient (Crm in calibration years were 9.3 % and 0.06, respectively. In validation year, nRMSE and Crm were 9.7 % and 0.11, respectively. According to other indices to assess irrigation regimes and fertilizer levels, the most suitable treatments regarding environmental aspect were 5-day irrigation regime and 45 kg N ha-1.

  19. Assessing the groundwater recharge under various irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Lin, Zih-Ciao; Tsai, Cheng-Bin

    2014-05-01

    The flooded paddy fields can be considered as a major source of groundwater recharge in Central Taiwan. The risk of rice production has increased notably due to climate change in this area. To respond to agricultural water shortage caused by climate change without affecting rice yield in the future, the application of water-saving irrigation is the substantial resolution. The System of Rice Intensification (SRI) was developed as a set of insights and practices used in growing irrigated rice. Based on the water-saving irrigation practice of SRI, impacts of the new methodology on the reducing of groundwater recharge were assessed in central Taiwan. The three-dimensional finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge under different irrigation schemes. According to local climatic and environmental characteristics associated with SRI methodology, the change of infiltration rate was evaluated and compared with the traditional irrigation schemes, including continuous irrigation and rotational irrigation scheme. The simulation results showed that the average infiltration rate in the rice growing season decreased when applying the SRI methodology, and the total groundwater recharge amount of SRI with a 5-day irrigation interval reduced 12% and 9% compared with continuous irrigation (6cm constant ponding water depth) and rotational scheme (5-day irrigation interval with 6 cm initial ponding water depth), respectively. The results could be used as basis for planning long-term adaptive water resource management strategies to climate change in Central Taiwan. Keywords: SRI, Irrigation schemes, Groundwater recharge, Infiltration

  20. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying; Ge, Junzhu; Tian, Shaoyang; Li, Shuya [MOA Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Nguy-Robertson, Anthony L. [Center for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0973 (United States); Zhan, Ming, E-mail: zhanming@mail.hzau.edu.cn [MOA Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Cao, Cougui, E-mail: ccgui@mail.hzau.edu.cn [MOA Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2015-02-01

    As pressure on water resources increases, alternative practices to conserve water in paddies have been developed. Few studies have simultaneously examined the effectiveness of different water regimes on conserving water, mitigating greenhouse gases (GHG), and maintaining yields in rice production. This study, which was conducted during the drought of 2013, examined all three factors using a split-plot experiment with two rice varieties in a no-till paddy managed under three different water regimes: 1) continuous flooding (CF), 2) flooded and wet intermittent irrigation (FWI), and 3) flooded and dry intermittent irrigation (FDI). The Methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions were measured using static chamber-gas measurements, and the carbon dioxide (CO{sub 2}) emissions were monitored using a soil CO{sub 2} flux system (LI-8100). Compared with CF, FWI and FDI irrigation strategies reduced CH{sub 4} emissions by 60% and 83%, respectively. In contrast, CO{sub 2} and N{sub 2}O fluxes increased by 65% and 9%, respectively, under FWI watering regime and by 104% and 11%, respectively, under FDI managed plots. Although CO{sub 2} and N{sub 2}O emissions increased, the global warming potential (GWP) and greenhouse gas intensity (GHGI) of all three GHG decreased by up to 25% and 29% (p < 0.01), respectively, using water-saving irrigation strategies. The rice variety also affected yields and GHG emissions in response to different water regimes. The drought-resistance rice variety (HY3) was observed to maintain yields, conserve water, and reduce GHG under the FWI irrigation management compared with the typical variety (FYY299) planted in the region. The FYY299 only had significantly lower GWP and GHGI when the yield was reduced under FDI water regime. In conclusion, FWI irrigation strategy could be an effective option for simultaneously saving water and mitigating GWP without reducing rice yields using drought-resistant rice varieties, such as HY3

  1. Water reuse and cost-benefit of pumping at different spatial levels in a rice irrigation system in UPRIIS, Philippines

    Science.gov (United States)

    Hafeez, M. M.; Bouman, B. A. M.; Van de Giesen, N.; Mushtaq, S.; Vlek, P.; Khan, S.

    As agricultural water resources in Asia become increasingly scarce, the irrigation efficiency of rice must be improved. However, in this region there is very limited information available about water use efficiency across spatial levels in irrigation systems. This study quantifies the volume of water reuse and its related cost-benefits at five different spatial levels, ranging from 1500 ha to 18,000 ha, under gravity-fed irrigation system in Upper Pumpanga River Integrated Irrigation System (UPRIIS), Philippines. The major sources of water reuse are considered, namely groundwater pumping, pumping from creeks, combined use and irrigation supplies from check dams. The volume of water available from all four sources of water reuse was quantified through extensive measurements. Production functions were developed to quantify water-yield relationships and to measure the economic value of water reuse. This study was conducted during the dry season of 2001, which existed from 19 November 2000 until 18 May 2001. The water reuse by pumping and check dams was 7% and 22% of the applied surface water at District 1 level. The reuse of surface water through check dams increased linearly with 4.6 Mm 3 per added 1000 ha. Similarly, the total amount of reused water from pumping is equivalent to 30% of the water lost through rice evapotranspiration during the dry season 2001. The results showed that water reuse plays a dominant role in growing a rice crop during the dry season. The result showed no difference in pumping costs between the creek (US0.011/m 3) and shallow pumps (US0.012/m 3). The marginal value of productivity (MVP) of water reuse from creek (US0.044/m 3) was slightly higher than the water reuse through the pumping ground water (US0.039/m 3). Results also indicated that the total volume pumped per ha (m 3/ha) was ranging from 0.39 to 6.93 m 3/ha during the dry season. The results clearly indicate that the quantification of amount of water reuse is very crucial for

  2. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces

    Science.gov (United States)

    Gao, Xuan

    2017-04-01

    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally

  3. Mapping suitability of rice production systems for mitigation: Strategic approach for prioritizing improved irrigation management across scales

    Science.gov (United States)

    Wassmann, Reiner; Sander, Bjoern Ole

    2016-04-01

    After the successful conclusion of the COP21 in Paris, many developing countries are now embracing the task of reducing emissions with much vigor than previously. In many countries of South and South-East Asia, the agriculture sector constitutes a vast share of the national GHG budget which can mainly be attributed to methane emissions from flooded rice production. Thus, rice growing countries are now looking for tangible and easily accessible information as to how to reduce emissions from rice production in an efficient manner. Given present and future food demand, mitigation options will have to comply with aim of increasing productivity. At the same time, limited financial resources demand for strategic planning of potential mitigation projects based on cost-benefit ratios. At this point, the most promising approach for mitigating methane emissions from rice is an irrigation technique called Alternate Wetting and Drying (AWD). AWD was initially developed for saving water and subsequently, represents an adaptation strategy in its own right by coping with less rainfall. Moreover, AWD also reduces methane emissions in a range from 30-70%. However, AWD is not universally suitable. It is attractive to farmers who have to pump water and may save fuel under AWD, but renders limited incentives in situations where there is no real pressing water scarcity. Thus, planning for AWD adoption at larger scale, e.g. for country-wide programs, should be based on a systematic prioritization of target environments. This presentation encompasses a new methodology for mapping suitability of water-saving in rice production - as a means for planning adaptation and mitigation programs - alongside with preliminary results. The latter comprises three new GIS maps on climate-driven suitability of AWD in major rice growing countries (Philippines, Vietnam, Bangladesh). These maps have been derived from high-resolution data of the areal and temporal extent of rice production that are now

  4. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.

    Science.gov (United States)

    Sun, Min; Xiao, Tangfu; Ning, Zengping; Xiao, Enzong; Sun, Weimin

    2015-03-01

    Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

  5. Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practises and soil geochemistry.

    Science.gov (United States)

    Fransisca, Yunnita; Small, Darryl M; Morrison, Paul D; Spencer, Michelle J S; Ball, Andrew S; Jones, Oliver A H

    2015-11-01

    Chronic dietary exposure to arsenic, particularly the inorganic forms (defined as elemental arsenic, predominantly As(3+) and As(5+), and all its inorganic compounds except arsine), is a matter of concern for human health. Ingestion of arsenic usually occurs via contaminated water but recent studies show there is also a risk of exposure from food, particularly Asian rice (Oryza sativa). Australia is a rice growing country, contributing around 2% of the world rice trade, and a large proportion of the population consumes rice regularly. In the present study we investigated concentrations of arsenic in both Australian grown and imported rice on sale in Australia and examined the potential links with irrigation practises and soil geochemistry. The results indicated a wide spread of arsenic levels of 0.09-0.33 mg kg(-1), with Australian grown Arborio and sushi varieties of O. sativa containing the highest mean value of ∼0.22 mg kg(-1). Arsenic levels in all samples were below the 1 mg kg(-1) limit set by Food Standards Australia New Zealand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The competitiveness of domestic rice production in East Africa: A domestic resource cost approach in Uganda

    Directory of Open Access Journals (Sweden)

    Masao Kikuchi

    2016-03-01

    Full Text Available The rapid increase of rice imports in sub-Saharan Africa under the unstable situation in the world rice market during the 2000s has made it an important policy target for the countries in the region to increase self-sufficiency in rice in order to enhance food security. Whether domestic rice production can be competitive with imported rice is a serious question in East African countries that lie close, just across the Arabian Sea, to major rice exporting countries in South Asia. This study investigates the international competitiveness of domestic rice production in Uganda in terms of the domestic resource cost ratio. The results show that rainfed rice cultivation, which accounts for 95% of domestic rice production, does not have a comparative advantage with respect to rice imported from Pakistan, the largest supplier of imported rice to Uganda. However, the degree of non-competitiveness is not serious, and a high possibility exists for Uganda’s rainfed rice cultivation to become internationally competitive by improving yield levels by applying more modern inputs and enhancing labour productivity. Irrigated rice cultivation, though very limited in area, is competitive even under the present input-output structure when the cost of irrigation infrastructure is treated as a sunk cost. If the cost of installing irrigation infrastructure and its operation and maintenance is taken into account, the types of irrigation development that are economically feasible are not large-scale irrigation projects, but are small- and microscale projects for lowland rice cultivation and rain-water harvesting for upland rice cultivation.

  7. Effect of Cold-Water Irrigation on Grain Quality Traits in japonica Rice Varieties from Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Guo-zhen ZHAO

    2009-09-01

    Full Text Available The response of grain quality traits to cold-water irrigation and its correlation with cold tolerance were studied in 11 japonica rice varieties from Yunnan Province, China. The results indicated that the response of grain quality traits to the cold-water stress varied with rice varieties and grain quality traits. Under the cold-water stress, grain width, chalky rice rate, whiteness, 1000-grain weight, brown rice rate, taste meter value, peak viscosity, trough viscosity, breakdown viscosity and final viscosity significantly decreased, whereas grain length-width ratio, head rice rate, alkali digestion value, protein content and setback viscosity markedly increased. However, the other traits such as grain length, amylose content, milled rice rate, peak viscosity time and pasting temperature were not significantly affected by the cold-water stress. Significant correlations were discovered between phenotypic acceptability and cold response indices of taste meter value, protein content, peak viscosity and breakdown viscosity. Therefore, it would be very important to improve the cold tolerance of Yunnan rice varieties in order to stabilize and improve their eating quality.

  8. EFFECT OF ALTERNATING WETTING AND DRYING IRRIGATION METHODS ON PHOTOSYNTHESIS AND TEMPERATURE OF RICE AND WEED PLANTS.

    Science.gov (United States)

    Reduced input systems such as alternating wetting and drying (AWD) and furrow irrigation can potentially reduce water costs and limit the release of greenhouse gases in rice production, but also can introduce unwanted crop stresses that compromise crop yield and quality, as well as introducing compl...

  9. Assessment of Potential Climate Change Effects on the Rice Yield and Water Footprint in the Nanliujiang Catchment, China

    Directory of Open Access Journals (Sweden)

    Mingzhi Yang

    2018-01-01

    Full Text Available The Nanliujiang catchment is one of major rice production bases of South China. Irrigation districts play an important role in rice production which requires a large quantity of water. There are potential risks on future climate change in response to rice production, agricultural irrigation water use and pollution control locally. The SWAT model was used to quantify the yield and water footprint (WF of rice in this catchment. A combined method of automatic and manual sub-basin delineation was used for the model setup in this work to reflect the differences between irrigation districts in yield and water use of rice. We validated our simulations against observed leaf area index, biomass and yield of rice, evapotranspiration and runoff. The outputs of three GCMs (GFDL-ESM2M, IPSL-CM5A-LR and HadGEM2-ES under three RCPs (RCP2.6, 4.5, 8.5 were fed to the SWAT model. The results showed that: (a the SWAT model is an ideal tool to simulate rice development as well as hydrology; (b there would be increases in rice yield ranged from +1.4 to +10.6% under climate projections of GFDL-ESM2M and IPSL-CM5A-LR but slight decreases ranged from −3.5 to −0.8% under that of HadGEM2-ES; (c the yield and WFs of rice displayed clear differences in the catchment, with a characteristic that high in the south and low in the north, mainly due to the differences in climatic conditions, soil quality and fertilization amount; (d there would be a decrease by 45.5% in blue WF with an increase by 88.1% in green WF, which could provide favorable conditions to enlarge irrigated areas and take technical measures for improving green water use efficiency of irrigation districts; (e a clear rise in future grey WF would present enormous challenges for the protection of water resources and environmental pollution control in this catchment. So it should be to improved nutrient management strategies for the agricultural non-point source pollution control in irrigation districts

  10. Using farmer knowledge to combat low productive spots in rice fields of a Sahelian irrigation scheme

    NARCIS (Netherlands)

    Asten, van P.J.A.; Barro, S.E.; Wopereis, M.C.S.; Defoer, T.

    2004-01-01

    In the oldest sections of Burkina Faso's largest irrigation scheme in the Sourou Valley (13degrees 10'N, 03degrees 30'W) rice (Oryza sativa L.) yields dropped from about 5 to 6 t ha(-1) in the early 1990s, shortly after establishment of the scheme, to 2 to 4 t ha(-1) from 1995 onwards. Farmers

  11. Soil Suitability Classification of Tomas Irrigation Scheme for Irrigated ...

    African Journals Online (AJOL)

    The need for sustainable rice production in Nigeria cannot be over-emphasized. Since rice can be grown both under rain-fed and irrigated conditions, the need for soil suitability evaluation becomes very necessary in order for supply to meet up with demand. Six land qualities viz; climate, soil physical properties, drainage, ...

  12. Flora, life form characteristics, and plan for the promotion of biodiversity in South Korea's Globally Important Agricultural Heritage System, the traditional Gudeuljang irrigated rice terraces in Cheongsando

    Institute of Scientific and Technical Information of China (English)

    Hong Chul PARK; Choong Hyeon OH

    2017-01-01

    The objectives of this study were to analyze the biodiversity of the Traditional Gudeuljang Irrigated Rice Terraces in Cheongsando,South Korea's representative GIAHS (Globally Important Agricultural Heritage System) site,with reference to position and land-use features,and to develop a plan to promote agricultural biodiversity in the region.We confirmed approximately 54,000 m2 of Gudeuljang paddy fields by an on-site survey.Of the Traditional Gudeuljang Irrigated Rice Terraces confirmed by onsite inspection,our survey showed that approximately 24,000 m2 are currently being used as paddy fields,approximately 15,000 m2 are being used as dry fields,and approximately 14,000 m2 are fallow.In terms of other non-agricultural land use,there was grassland,including graveyards;artificial arboreal land,such as orchards,rivers and wetlands,and man-made facilities,such as roads and residences.We also confirmed that the Traditional Gudeuljang Irrigated Rice Terraces had higher plant species diversity than conventional terraced rice paddies,and there was a difference in life form characteristics between the two types.Although the superficial topsoil structure is the same for the Traditional Gudeuljang Irrigated Rice Terraces (TGIRTs) and conventional terraced rice paddies,it is thought that the differences in the subsurface structure of the TGIRTs contribute greatly to species and habitat diversity.However,the TGIRTs in Cheongsando are facing degeneration,due to damage and reduction in agricultural activity.The main cause is the reduction in the number of farming households due to an aging population in Cheongsando.In order to address this problem,we proposed a management plan,related to fallow paddy fields in South Korea,to initiate voluntary activities in the TGIRTs.

  13. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  14. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  15. KOEFISIEN TANAMAN PADI SAWAH PADA SISTEM IRIGASI HEMAT AIR Crop Coefficient for Paddy Rice Field under Water Saving Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Joko Sujono

    2012-05-01

    Full Text Available Traditional irrigation for paddy rice is the leading of consumer of water, about 80 % of the water resource availabilityused for irrigation purpose. This phenomenon is related to the way how to estimate the crop water requirement where crop coefficient for paddy rice (k (Prosida is always greater than one starting from planting up to nearly harvesting. In this research, a number of water saving irrigations (WSI systems for paddy rice cultivation using pots such asalternate wetting and drying (AWD, shallow water depth with wetting and drying (SWD, semi-dry cultivation (SDC, system of rice intensification (SRI, and  AWD with mulch (AWD-Mul were applied. The amount of irrigated water and when it should be irrigated depend on evapotranspiration rate, soil moisture condition and the WSI system used. For this purpose, daily measurement of the pot weight was carried out. Crop coefficient (k  is then caluculated as a cratio between crop and reference evapotranspiration computed using Penman-Montheit  method. Results show that up to 45 days after transplanting, the k of WSI treatments were around half of the k (Prosida values currently used for computing the water requirement, whereas at the productive stage the k of WSI systems were relatively equal (AWD, SDC to or greater (SRI, SWD than the k (Prosida. Based on the the k values, the AWD and the SDC systems could save much water compared to the SRI or the SWD. Water saving could be increased by applying the AWD with mulch. ABSTRAK Irigasi padi sawah dengan sistem tradisional merupakan sistem irigasi  yang boros air, hampir 80 % sumber air yang ada untuk irigasi. Hal ini tidak terlepas dari perhitungan kebutuhan air tanaman dengan nilai koefisien tanaman (k menurut Standar Perencanaan Irigasi (Prosida selalu lebih besar dari satu mulai dari tanam hingga menjelang panen.Dalam penelitian ini beberapa metoda budidaya padi hemat air seperti alternate wetting and drying (AWD, shallow water depth

  16. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes.

    Science.gov (United States)

    Ali, Muhammad Aslam; Hoque, M Anamul; Kim, Pil Joo

    2013-04-01

    A field experiment was conducted in Bangladesh Agricultural University Farm to investigate the mitigating effects of soil amendments such as calcium carbide, calcium silicate, phosphogypsum, and biochar with urea fertilizer on global warming potentials (GWPs) of methane (CH4) and nitrous oxide (N2O) gases during rice cultivation under continuous and intermittent irrigations. Among the amendments phosphogypsum and silicate fertilizer, being potential source of electron acceptors, decreased maximum level of seasonal CH4 flux by 25-27 % and 32-38 % in continuous and intermittent irrigations, respectively. Biochar and calcium carbide amendments, acting as nitrification inhibitors, decreased N2O emissions by 36-40 % and 26-30 % under continuous and intermittent irrigations, respectively. The total GWP of CH4 and N2O gases were decreased by 7-27 % and 6-34 % with calcium carbide, phosphogypsum, and silicate fertilizer amendments under continuous and intermittent irrigations, respectively. However, biochar amendments increased overall GWP of CH4 and N2O gases.

  17. EFFECT OF NITROGEN-FIXING BACTERIA ON GRAIN YIELD AND DEVELOPMENT OF FLOODED IRRIGATED RICE

    Directory of Open Access Journals (Sweden)

    AMAURI NELSON BEUTLER

    2016-01-01

    Full Text Available This study aimed at evaluating the effect of Azospirillum brasilense , a nitrogen - fixing bacterium, on flooded irrigated rice yield. Evaluations were carried out in a shaded nursery, with seedlings grown on an Alfisol. Were performed two sets of experiments. In the first, were carried out four experiments using the flooded rice cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424; these trials were set up as completely randomized design in a 5x4 factorial scheme, with four replications. Treatments consisted of five nitrogen rates (0, 40, 80, 120 and 160 kg ha - 1 and four levels of liquid inoculant Ab - V5 and Ab - V6 - A. brasilense (0, 1, 2 and 4 times the manufacturer's recommendation without seed treatment. In second set, were performed two experiments using the cultivars Puitá Inta - CL and Br Irga 409, arranged in the same design, but using a 4x2 factorial. In this set, treatments were composed of four levels of Ab - V5 and Ab - V6 - A. brasilense liquid inoculant (0, 1, 2 and 4 times the recommendation of 100 mL ha - 1 , using rice seeds with and without insecticide and fungicide treatment. Shoot dry matter, number of panicles, and rice grain yield per pot were the assessed variables. The results showed that rice seed inoculation with A. brasilense had no effects on rice grain yield of the cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424.

  18. IMPACTS OF CLIMATE CHANGE ON RICE AGRICULTURE IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Joshua Olusegun Ajetomobi

    2011-01-01

    This study employed the Ricardian approach to test the relative importance of climate normals (average long-term temperature and precipitation in explaining net revenue from Nigerian rice agriculture under irrigation and dry land conditions.   A survey was done by interviewing 1200 rice farmers from 20 rice producing states in Nigeria. The states covered all the six geopolitical zones in the country. The results showed that increase in temperature will reduce net revenue for dry land rice farms while net revenue rises with increase in temperature for irrigated rice farms. Precipitation had similar effects on rice net revenue. Increase in precipitation will cause reduction in revenue for dry land rice farms whereas it will cause increase in revenue for irrigated farms. The results clearly demonstrate irrigation as a significant techniques used by the farmers to adapt to the climate change. Other adaptation options include Keeping of livestock, engaging in off farm works and the use of different market channels.  Â

  19. REMOTE-SENSING-BASED BIOPHYSICAL MODELS FOR ESTIMATING LAI OF IRRIGATED CROPS IN MURRY DARLING BASIN

    Directory of Open Access Journals (Sweden)

    I. Wittamperuma

    2012-07-01

    Full Text Available Remote sensing is a rapid and reliable method for estimating crop growth data from individual plant to crops in irrigated agriculture ecosystem. The LAI is one of the important biophysical parameter for determining vegetation health, biomass, photosynthesis and evapotranspiration (ET for the modelling of crop yield and water productivity. Ground measurement of this parameter is tedious and time-consuming due to heterogeneity across the landscape over time and space. This study deals with the development of remote-sensing based empirical relationships for the estimation of ground-based LAI (LAIG using NDVI, modelled with and without atmospheric correction models for three irrigated crops (corn, wheat and rice grown in irrigated farms within Coleambally Irrigation Area (CIA which is located in southern Murray Darling basin, NSW in Australia. Extensive ground truthing campaigns were carried out to measure crop growth and to collect field samples of LAI using LAI- 2000 Plant Canopy Analyser and reflectance using CROPSCAN Multi Spectral Radiometer at several farms within the CIA. A Set of 12 cloud free Landsat 5 TM satellite images for the period of 2010-11 were downloaded and regression analysis was carried out to analyse the co-relationships between satellite and ground measured reflectance and to check the reliability of data sets for the crops. Among all the developed regression relationships between LAI and NDVI, the atmospheric correction process has significantly improved the relationship between LAI and NDVI for Landsat 5 TM images. The regression analysis also shows strong correlations for corn and wheat but weak correlations for rice which is currently being investigated.

  20. Estimation of Truck Trips on Large-Scale Irrigation Project: A Combinatory Input-Output Commodity-Based Approach

    Directory of Open Access Journals (Sweden)

    Ackchai Sirikijpanichkul

    2015-01-01

    Full Text Available For the agricultural-based countries, the requirement on transportation infrastructure should not only be limited to accommodate general traffic but also the transportation of crop and agricultural products during the harvest seasons. Most of the past researches focus on the development of truck trip estimation techniques for urban, statewide, or nationwide freight movement but neglect the importance of rural freight movement which contributes to pavement deterioration on rural roads especially during harvest seasons. Recently, the Thai Government initiated a plan to construct a network of reservoirs within the northeastern region, aiming at improving existing irrigation system particularly in the areas where a more effective irrigation system is needed. It is expected to bring in new opportunities on expanding the cultivation areas, increasing the economy of scale and enlarging the extent market of area. As a consequence, its effects on truck trip generation needed to be investigated to assure the service quality of related transportation infrastructure. This paper proposes a combinatory input-output commodity-based approach to estimate truck trips on rural highway infrastructure network. The large-scale irrigation project for the northeastern of Thailand is demonstrated as a case study.

  1. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    Science.gov (United States)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  2. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  3. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  4. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  5. Optimization of planting pattern plan in Logung irrigation area using linear program

    Science.gov (United States)

    Wardoyo, Wasis; Setyono

    2018-03-01

    Logung irrigation area is located in Kudus Regency, Central Java Province, Indonesia. Irrigation area with 2810 Ha of extent is getting water supply from Logung dam. Yet, the utilization of water at Logung dam is not optimal and the distribution of water is still not evenly distributed. Therefore, this study will discuss about the optimization of irrigation water utilization based on the beginning of plant season. This optimization begins with the analysis of hydrology, climatology and river discharge in order to determine the irrigation water needs. After determining irrigation water needs, six alternatives of planting patterns with the different early planting periods, i.e. 1st November, 2nd November, 3rd November, 1st December, 2nd December, and 3rd December with the planting pattern of rice-secondary crop-sugarcane is introduced. It is continued by the analysis of water distribution conducted using linear program assisted by POM-Quantity method for Windows 3 with the reliable discharge limit and the available land area. Output of this calculation are to determine the land area that can be planted based on the type of plant and growing season, and to obtaine the profits of harvest yields. Based on the optimum area of each plant species with 6 alternatives, the most optimum area was obtained at the early planting periods on 3rd December with the production profit of Rp 113.397.338.854,- with the planting pattern of rice / beans / sugarcane-rice / beans / sugarcane-beans / sugarcane.

  6. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    International Nuclear Information System (INIS)

    Minamikawa, Kazunori; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito; Takahashi, Masayoshi

    2015-01-01

    A remarkable feature of nanobubbles (<10 –6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH 4 ), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p < 0.05) reduced cumulative CH 4 emission during the rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH 4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p < 0.001). At the end of the experiment, the NB water significantly lowered the soil pH in the 0–5 cm layer, probably because of the raised redox potential. The population of methanogenic Archaea (mcrA copy number) in the 0–5 cm layer was significantly increased by the NB water, but we found no correlation between the mcrA copy number and the cumulative CH 4 emission (r = –0.08, p = 0.85). In pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH 4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils. (letter)

  7. Sustainability Assessment of Large Irrigation Dams in Senegal: A Cost-Benefit Analysis for the Senegal River Valley

    Directory of Open Access Journals (Sweden)

    Stanislaw eManikowski

    2016-03-01

    Full Text Available Starting in the 1970s, the Senegalese Government invested in the development of irrigated schemes in the Senegalese part of the Senegal River Valley (S-SRV. From that time to 2012, the irrigated schemes increased from 10,000 ha to more than 110,000 ha. In the meantime, the economic viability of these schemes started to be questioned. It also appeared that the environmental health and social costs might outweigh the benefits of irrigation. Using a life cycle assessment approach and project cost-benefits modelling, this study (i quantified the costs and benefits of the S-SRV irrigated rice production, (ii evaluated the costs and benefits of its externalities and (iii discussed the irrigated rice support policy. The net financial revenues from the irrigated schemes were positive, but their economic equivalences. The economic return rate (EER was below the expected 12% and the net present value (NPV over 20 years of the project represented a loss of about US$-19.6 million. However, if we also include the project’s negative externalities, such as the reduced productivity of the valley ecosystems, protection cost of human health, environmental degradation and social impacts, then the NPV would be much worse, approximately US$-572.1 million. Therefore, the results show that to stop the economic loss and alleviate the human suffering, the S-SRV development policy should be revised using an integrated approach and the exploitation technology should aim at environmental sustainability. This paper may offer useful insights for reviewing the current Senegalese policies for the valley, as well as for assessing other similar cases or future projects worldwide, particularly in critical zones of developing countries.

  8. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow

    Science.gov (United States)

    Erban, Laura E.; Gorelick, Steven M.

    2016-04-01

    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season ;deficit; area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  9. Uso de efluentes da carcinicultura de águas interiores na irrigação do arroz Use of inland shrimp farm effluent for rice irrigation

    Directory of Open Access Journals (Sweden)

    Fábio Rodrigues de Miranda

    2008-12-01

    Full Text Available O trabalho objetivou avaliar a produção de arroz e as alterações químicas do solo, em resposta à irrigação com o efluente da carcinicultura de águas interiores e comparar os resultados com aqueles obtidos com a irrigação convencional, utilizando água do Rio Jaguaribe. A produção de grãos obtida com o uso do efluente da carcinicultura foi semelhante àquela obtida com o uso da água de rio, quando foi utilizada na adubação uma dose de N-P-K equivalente a 100% da dose recomendada para a cultura. O uso do efluente na irrigação proporcionou maior produção de grãos em relação à irrigação com a água de rio, quando foi utilizada uma dose de N-P-K equivalente a 75% daquela recomendada para a cultura do arroz. Após o cultivo, o solo irrigado com o efluente apresentou maiores níveis de Na+, CEes e PST em relação ao solo irrigado com a água do Rio Jaguaribe.This study aimed to evaluate rice yield and soil chemical alterations in response to inland shrimp farm effluent use for irrigation, comparing the results to conventional irrigation, using the Jaguaribe River water. Rice yield obtained with the effluent was similar to that obtained with river water irrigation, when the N-P-K dose applied was equivalent to 100% of the crop recommended dose. Effluent irrigation produced higher grain yield as compared to river water irrigation when the N-P-K dose applied was equivalent to 75% of the rice recommended dose. After the crop was harvested the soil irrigated with the effluent presented higher levels of Na+, EC and ESR, as compared to the soil irrigated with the Jaguaribe River water.

  10. Forms of trace arsenic, cesium, cadmium, and lead transported into river water for the irrigation of Japanese paddy rice fields

    Science.gov (United States)

    Nakaya, Shinji; Chi, Hai; Muroda, Kengo; Masuda, Harue

    2018-06-01

    In this study, we focus on the behavior of geogenic, toxic trace elements, particularly As, Cs, Cd, and Pb, during their transportation in two rivers for irrigation commonly used in monsoon Asia; one river originates from an active volcano, Mt. Asama, and the other originates from a currently inactive volcano, Yatsugatake Mountains in Nagano, Japan. These rivers were investigated to understand the role of river water as a pollutant of rice and other aquatic plants (via irrigation) and aquatic animals. The results indicated that the behavior of toxic trace elements in river water are likely controlled by their interactions with particulate Fe, Al, and Ti compounds. The majority of Pb and Cd is transported as particulate matter with Fe, Al, and Ti, while the majority of As is transported in the dissolved form, predominantly as arsenate, with low abundance of particulate matter. Cs is transported either as the dissolved form or as particulate matter in both rivers. The investigated elements are transported in the rivers as particulate and dissolved forms, and the ratio of these forms is controlled by the pH and presence of particulate Fe, Al, and Ti phases in the river water. With respect to Cs in both rivers, the parameter governing the concentration and transportation of Cs, in the bimodal form (i.e., particulate and dissolved forms), through the river possibly shifts from sorption to pH by particulate Fe-Al-Ti, according to the abrupt increase in the concentration of Cs in the river. The chemical attraction of particulate Fe-Al-Ti for Cs is weaker than that for Pb and Cd, indicating that the lower electronegativity of Cs weakens the chemical attraction on a colloid for the competitive sorption with the other trace elements. The different relationships between As and Fe in the river and in the irrigation water and soil water, as well as those in paddy rice, suggested that As in paddy rice is not directly derived from As in the irrigation water from the river under

  11. UV-B effects on crops: response of the irrigated rice ecosystem

    International Nuclear Information System (INIS)

    Olszyk, D.; Dai, Q.; Teng, P.; Leung, H.; Luo, Y.; Peng, S.

    1996-01-01

    Increasing ultraviolet-B (UV-B) radiation resulting from depletion of the stratospheric ozone layer could have damaging effects on crops. This paper reviews recent findings on direct effects of UV-B on rice growth and yield as well as indirect effects via impacts on other organisms in the rice (Oryza sativa) agroecosystem. The findings are based on research by scientists at the International Rice Research Institute (IRRI) in Los Baños, the Philippines, and their collaborators in China and the United States; with comparison to research by scientists in other countries. Current results indicate that while enhanced UV-B directly impacts many aspects of rice growth, physiology, and biochemistry under controlled phytotron conditions; in general rice growth and yield are not affected under natural field conditions. The difference in response may be related both to the levels of UV-B exposure used in phytotron vs. field studies and the lower ratio of UV-A to UV-B in the phytotron compared to field. In terms of indirect effects on rice blast disease, enhanced UV-B affected both the fungus itself (Pyricularia grisea) and the susceptibility of the rice plant to the fungus. Based on these data, simulation models estimated potential impacts of higher UV-B levels on blast severity and rice yield in different countries of southeast and east Asia. Ultimately, results from rice studies can be used to identify strategies to minimize any negative effects of UV-B on rice productivity

  12. Diet and resource partitioning among anurans in irrigated rice fields in Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    L. Piatti

    Full Text Available Artificial ponds or irrigated systems scattered throughout farmlands can offer important habitats for anurans and can be interesting sites for research on species resources use in a changing landscape. This study describes the diet and resource partitioning among anurans inhabiting irrigated rice fields in the Pantanal region. Twenty categories of prey were found in the stomachs of Leptodactylus chaquensis, L. elenae, L. podicipinus and Rhinella bergi, the most frequent being Coleoptera, Hymenoptera, larvae of Hexapoda, Hemiptera, Diptera and Orthoptera. The great differences found in the diet of these species in rice fields compared to other locations, according to available records in the literature, was the increased importance of Hemipitera and Orthoptera and the decrease in importance of Hymenoptera in the diet of leptodactylids. These differences might be attributed to changes in the availability of resources in response to habitat modification. Although diet composition was very similar among species, niche overlap was larger than expected by chance, suggesting that the competition for food resources is not, or has not been, a significant force in determining the structure of this frog community. Two non-exclusive hypotheses could be considered as a justification for this result: 1 the high niche overlap could result from resource availability, which is sufficient to satisfy all species without any strong competition; 2 or the high values of niche overlap could be a selective force driving species to compete, but there has not been enough time to express a significant divergence in the species diet because the study area is characterised as a dynamic habitat influenced by frequent and cyclical changes.

  13. An integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes.

    Science.gov (United States)

    Chiaradia, Enrico Antonio; Facchi, Arianna; Masseroni, Daniele; Ferrari, Daniele; Bischetti, Gian Battista; Gharsallah, Olfa; Cesari de Maria, Sandra; Rienzner, Michele; Naldi, Ezio; Romani, Marco; Gandolfi, Claudio

    2015-09-01

    The cultivation of rice, one of the most important staple crops worldwide, has very high water requirements. A variety of irrigation practices are applied, whose pros and cons, both in terms of water productivity and of their effects on the environment, are not completely understood yet. The continuous monitoring of irrigation and rainfall inputs, as well as of soil water dynamics, is a very important factor in the analysis of these practices. At the same time, however, it represents a challenging and costly task because of the complexity of the processes involved, of the difference in nature and magnitude of the driving variables and of the high variety of field conditions. In this paper, we present the prototype of an integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. The system consists of the following: (1) flow measurement devices for the monitoring of irrigation supply and tailwater drainage; (2) piezometers for groundwater level monitoring; (3) level gauges for monitoring the flooding depth; (4) multilevel tensiometers and moisture sensor clusters to monitor soil water status; (5) eddy covariance station for the estimation of evapotranspiration fluxes and (6) wireless transmission devices and software interface for data transfer, storage and control from remote computer. The system is modular and it is replicable in different field conditions. It was successfully applied over a 2-year period in three experimental plots in Northern Italy, each one with a different water management strategy. In the paper, we present information concerning the different instruments selected, their interconnections and their integration in a common remote control scheme. We also provide considerations and figures on the material and labour costs of the installation and management of the system.

  14. The absorption and distribution of Cesium-134 in rice-soil system

    International Nuclear Information System (INIS)

    Xu Yinliang; Chen Chuanqun; Chen Bin; Sun Zhiming

    1991-01-01

    Dynamics of absorption of 134 Cs by rice shows that absorption rate is the fastest at boot stage; absorption capacities of 134 Cs in soils are different with the different physical-chemical properties of soils; absorption amounts vary with the time of irrigating 134 Cs; the closer the irrigation time to mature stage is, the more the absorption amount of 134 Cs in rice will be; the more the irrigating times are, and the higher the radioactivity of 134 Cs in irrigating water is, the more the absorption amount in rice will be. After brown rice is polished, contamination of 134 Cs can be decreased by 22.6-45.6%. The order of specific activity in rice is: bran > root > straw > husk > polished rice. Percentage activity of straw, brown rice, root and husk is 51.4%, 28.4%, 11.8% and 8.4% respectively. The migration of 134 Cs is very slow in soil and 95.1% of 134 Cs is concentrated in surface soil (0-2.5 cm). The distribution ratio of 134 Cs in the rice and soil is 6.1%:93.9%. Potassium ion can inhibit the absorption of 134 Cs by rice. There is an exponential function between the concentration of potassium ion and specific activity of 134 Cs in rice

  15. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  16. Sensor-Based Model Driven Control Strategy for Precision Irrigation

    Directory of Open Access Journals (Sweden)

    Camilo Lozoya

    2016-01-01

    Full Text Available Improving the efficiency of the agricultural irrigation systems substantially contributes to sustainable water management. This improvement can be achieved through an automated irrigation system that includes a real-time control strategy based on the water, soil, and crop relationship. This paper presents a model driven control strategy applied to an irrigation system, in order to make an efficient use of water for large crop fields, that is, applying the correct amount of water in the correct place at the right moment. The proposed model uses a predictive algorithm that senses soil moisture and weather variables, to determine optimal amount of water required by the crop. This proposed approach is evaluated against a traditional irrigation system based on the empirical definition of time periods and against a basic soil moisture control system. Results indicate that the use of a model predictive control in an irrigation system achieves a higher efficiency and significantly reduce the water consumption.

  17. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Science.gov (United States)

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  18. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  19. Combining eddy-covariance measurements and Penman-Monteith type models to estimate evapotranspiration of flooded and aerobic rice

    Science.gov (United States)

    Facchi, Arianna; Masseroni, Daniele; Gharsallah, Olfa; Gandolfi, Claudio

    2014-05-01

    Rice is of great importance both from a food supply point of view, since it represents the main food in the diet of over half the world's population, and from a water resources point of view, since it consumes almost 40% of the water amount used for irrigation. About 90% of global production takes place in Asia, while European production is quantitatively modest (about 3 million tons). However, Italy is the Europe's leading producer, with over half of total production, almost totally concentrated in a large traditional paddy rice area between the Lombardy and Piedmont regions, in the north-western part of the country. In this area, irrigation of rice is traditionally carried out by continuous flooding. The high water requirement of this irrigation regime encourages the introduction of water saving irrigation practices, as flood irrigation after sowing in dry soil and intermittent irrigation (aerobic rice). In the agricultural season 2013 an intense monitoring activity was conducted on three experimental fields located in the Padana plain (northern Italy) and characterized by different irrigation regimes (traditional flood irrigation, flood irrigation after sowing in dry soil, intermittent irrigation), with the aim of comparing the water balance terms for the three irrigation treatments. Actual evapotranspiration (ET) is one of the terms, but, unlike others water balance components, its field monitoring requires expensive instrumentation. This work explores the possibility of using only one eddy covariance system and Penman-Monteith (PM) type models for the determination of ET fluxes for the three irrigation regimes. An eddy covariance station was installed on the levee between the traditional flooded and the aerobic rice fields, to contemporaneously monitor the ET fluxes from this two treatments as a function of the wind direction. A detailed footprint analysis was conducted - through the application of three different analytical models - to determine the position

  20. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Directory of Open Access Journals (Sweden)

    Anja Schmidt

    Full Text Available Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  1. Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Victoriano Joseph Pascual

    2016-12-01

    Full Text Available The system of rice intensification (SRI uses less water and enhances rice yield through synergy among several agronomic management practices. This claim was investigated to determine the effects of crop growth, yield and irrigation water use, using two thirds of the recommended SRI practices and two rice varieties, namely Tainan11 (TN11 and Tidung30 (TD30. Irrigation regimes were (a intermittent irrigation with three-day intervals (TD303 and TN113; (b intermittent irrigation with seven-day intervals (TD307 and TN117 and (c continuous flooding (TD30F and TN11F. Results showed that intermittent irrigation of three- and seven-day intervals produced water savings of 55% and 74% compared with continuous flooding. Total water productivity was greater with intermittent irrigation at seven-day intervals producing 0.35 kg·grain/m3 (TN117 and 0.46 kg·grain/m3 (TD307. Average daily headed panicle reduced by 166% and 196% for TN113 and TN117 compared with TN11F, with similar reduction recorded for TD303 (150% and TD307 (156% compared with TD30F. Grain yield of TD30 was comparable among irrigation regimes; however, it reduced by 30.29% in TN117 compared to TN11F. Plant height and leaf area were greater in plants exposed to intermittent irrigation of three-day intervals.

  2. Trash-polluted irrigation: characteristics and impact on agriculture

    Science.gov (United States)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  3. Use of the rice husk as an alternative substrate for growing media on green walls drip irrigation

    Science.gov (United States)

    Andrey Rivas-Sánchez, Yair; Fátima Moreno-Pérez, María; Roldán Cañas, José

    2017-04-01

    In the last years, we have been looking for alternatives to traditional growing mediums for green walls. Commercially available systems for green walls are commonly made with Sphagnum, rock wool or polymers that are unsustainable materials. In the design of the green wall, local components such as agricultural by-products should be considered more often. The objective of this research is to use alternative materials available in Andalusia that are suitable for use as a growing medium in green walls, using organic residues generated by agriculture as in this case the rice husk, compared to conventional and used materials as a growing media in green walls such as coconut fiber and rock wool. The physical-chemical characteristics of the water were analyzed through the collection of excess irrigation water, after passing through the prototypes of green walls, installed in the Rabanales Campus of the University of Córdoba between April and July 2016 and thus observe the feasibility of using rice husk as an alternative material. The 16 mm diameter irrigation pipes are at the top and middle of each module, with 12 adjustable drippers of 4 l / h for each module, 72 drippers in the whole experimental green wall prototype installed at every 15 centimeters of tube. Two different species of plant material (Lampranthus spectabilis) and (Lavandula stoechas), were selected, taking into account the solar exposition of the place of establishment of the prototype of the green wall and the easy acquisition of these plants in the region. Water samples were collected every day twice a day for 10 weeks of the experiment, taking a sample of the surplus runoff water from six green wall prototypes.PH 40 - pH - conductivity - TDS - temperature, CRISON. Differences in pH, electrical conductivity, turbidity and total solids of the treatments were examined by ANOVA with the test of normality and homogeneity of variances. It was observed that the substrates used in the prototypes of the

  4. Making Rice Production More Environmentally-Friendly

    Directory of Open Access Journals (Sweden)

    Norman Uphoff

    2016-05-01

    Full Text Available Irrigated rice production is one of the most essential agricultural activities for sustaining our global population, and at the same time, one of the agricultural sectors considered most eco-unfriendly. This is because it consumes a larger share of available freshwater resources, competing with varied ecosystems as well as other economic sectors; its paddy fields are responsible for significant emission of greenhouse gases; and the reliance on chemical fertilizers and various agrochemicals contributes to pollution of soils and water systems. These stresses on soils, hydrology and atmosphere are actually not necessary for rice production, which can be increased by modifying agronomic practices though more agroecologically-sound management practices. These, combined under the rubric of the System of Rice Intensification (SRI, can reduce requirements of irrigation water, chemical fertilizer and agrochemicals while increasing paddy yields and farmer’s net incomes. Here we discuss how irrigated rice production can be made more eco-friendly for the benefit of farmers, consumers and the environment. This is achieved by introducing practices that improve the growth and functioning of rice plants’ root systems and enhance the abundance, diversity and activity of beneficial soil organisms that live around plant roots and within the plants themselves as symbiotic endophytes.

  5. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  6. Economic Valuation of Sufficient and Guaranteed Irrigation Water Supply for Paddy Farms of Guilan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Kavoosi Kalashami

    2014-08-01

    Full Text Available Cultivation of the strategic crop of rice highly depends to the existence of sufficient and guaranteed irrigation water, and water shortage stresses have irreparable effects on yield and quality of productions. Decrease of the Sefidrud river inflow in Guilan province which is the main source of supplying irrigation water for 171 thousand hectares under rice cropping area of this province, has been challenged sufficient and guaranteed irrigation water supply in many regions of mentioned province. Hence, in present study estimating the value that paddy farmers place on sufficient and guaranteed irrigation water supply has been considered. Economic valuation of sufficient and guaranteed irrigation water supply improves water resource management policies in demand side. Requested data set were obtained on the base of a survey and are collected from 224 paddy farms in rural regions that faced with irrigation water shortages. Then, using open-ended valuation approach and estimation of Tobit model via ML and two stages Heckman approach, eliciting paddy farmers' willingness to pay for sufficient and guaranteed irrigation water supply has been accomplished. Results revealed that farmers in investigated regions willing to pay 26.49 percent more than present costs of providing irrigation water in order to have sufficient and guaranteed irrigation water.

  7. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  8. Exploring options for water savings in lowland rice using a modelling approach

    NARCIS (Netherlands)

    Belder, P.; Bouman, B.A.M.; Spiertz, J.H.J.

    2007-01-01

    Water-saving irrigation regimes are needed to deal with a reduced availability of water for rice production. Two important water-saving technologies at field scale are alternately submerged¿nonsubmerged (SNS) and flush irrigated (FI) rice. SNS allows dry periods between submerged soil conditions,

  9. Population dynamics and breeding patterns of multimammate mouse, Mastomys natalensis (Smith 1834), in irrigated rice fields in eastern Tanzania.

    Science.gov (United States)

    Mulungu, Loth S; Ngowo, Victoria; Mdangi, Mashaka; Katakweba, Abdul S; Tesha, Protas; Mrosso, Furaha P; Mchomvu, Mary; Sheyo, Paul M; Kilonzo, Bukhet S

    2013-03-01

    Multimammate mice are the most important vertebrate pests in Sub-Saharan Africa and are also reservoirs of many zoonotic diseases, including sylvan plague. This study investigated the population dynamics and breeding patterns of this mouse in irrigated rice cropping systems in eastern Tanzania. The multimammate mouse, Mastomys natalensis, population varied with habitat and months. Fallow land had a more abundant population than rice fields. The highest population peak was observed during the dry season from July to October. Mastomys natalensis is sexually active throughout the year in the study area, although it reaches the highest level in June and December when rice is at the maturity stage. This suggests that breeding is highly influenced by the presence of a rice crop in both seasons. More juvenile individuals were recorded in August and September, indicating that they were produced in the previous breeding months. The sex ratio of M. natalensis was not skewed to either males or females, indicating that it was at parity. Rodent population dynamics during the study periods in all habitats indicated that high birth rates accounted for the rapid population growth and turnover. Regular control and sustainable operations are thus essential if rodent pest populations are to be kept within tolerable limits. Copyright © 2012 Society of Chemical Industry.

  10. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    Science.gov (United States)

    Maltchik, Leonardo; Rolon, Ana Silvia; Stenert, Cristina; Machado, Iberê Farina; Rocha, Odete

    2011-12-01

    Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.

  11. Efficacy of aquatain, a monomolecular film, for the control of malaria vectors in rice paddies.

    Directory of Open Access Journals (Sweden)

    Tullu Bukhari

    Full Text Available BACKGROUND: Rice paddies harbour a large variety of organisms including larvae of malaria mosquitoes. These paddies are challenging for mosquito control because their large size, slurry and vegetation make it difficult to effectively apply a control agent. Aquatain, a monomolecular surface film, can be considered a suitable mosquito control agent for such breeding habitats due to its physical properties. The properties allow Aquatain to self-spread over a water surface and affect multiple stages of the mosquito life cycle. METHODOLOGY/PRINCIPAL FINDINGS: A trial based on a pre-test/post-test control group design evaluated the potential of Aquatain as a mosquito control agent at Ahero rice irrigation scheme in Kenya. After Aquatain application at a dose of 2 ml/m(2 on rice paddies, early stage anopheline larvae were reduced by 36%, and late stage anopheline larvae by 16%. However, even at a lower dose of 1 ml/m(2 there was a 93.2% reduction in emergence of anopheline adults and 69.5% reduction in emergence of culicine adults. No pupation was observed in treated buckets that were part of a field bio-assay carried out parallel to the trial. Aquatain application saved nearly 1.7 L of water in six days from a water surface of 0.2 m(2 under field conditions. Aquatain had no negative effect on rice plants as well as on a variety of non-target organisms, except backswimmers. CONCLUSIONS/SIGNIFICANCE: We demonstrated that Aquatain is an effective agent for the control of anopheline and culicine mosquitoes in irrigated rice paddies. The agent reduced densities of aquatic larval stages and, more importantly, strongly impacted the emergence of adult mosquitoes. Aquatain also reduced water loss due to evaporation. No negative impacts were found on either abundance of non-target organisms, or growth and development of rice plants. Aquatain, therefore, appears a suitable mosquito control tool for use in rice agro-ecosystems.

  12. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    Directory of Open Access Journals (Sweden)

    Emanuel Heinz

    2013-12-01

    Full Text Available We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS for stable water isotope analysis (δ2H and δ18O, a reagentless hyperspectral UV photometer (ProPS for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system’s technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season.

  13. A Mitigation Approach to Alleviate Arsenic Accumulation in Rice through Balanced Fertilization

    International Nuclear Information System (INIS)

    Huq, S.M.I.; Sultana, S.; Chakraborty, G.; Chowdhury, M.T.A.

    2011-01-01

    Pot experiments with boro and aman season rice on the same soils treated with arsenic contaminated irrigation water and using balanced fertilizer or not revealed that balance fertilization could be a strategy to mitigate arsenic accumulation in rice grain. The study also revealed that there is a carryover effect of As applied through irrigation in the boro season to the subsequent aman season rice. This carryover effect too, could be minimized with balanced fertilization.

  14. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk.

    Science.gov (United States)

    Islam, Shofiqul; Rahman, Mohammad Mahmudur; Islam, M R; Naidu, Ravi

    2016-11-01

    Rice is an essential staple food and feeds over half of the world's population. Consumption of rice has increased from limited intake in Western countries some 50years ago to major dietary intake now. Rice consumption represents a major route for inorganic arsenic (As) exposure in many countries, especially for people with a large proportion of rice in their daily diet as much as 60%. Rice plants are more efficient in assimilating As into its grains than other cereal crops and the accumulation may also adversely affect the quality of rice and their nutrition. Rice is generally grown as a lowland crop in flooded soils under reducing conditions. Under these conditions the bioavailability of As is greatly enhanced leading to excessive As bioaccumulation compared to that under oxidizing upland conditions. Inorganic As species are carcinogenic to humans and even at low levels in the diet pose a considerable risk to humans. There is a substantial genetic variation among the rice genotypes in grain-As accumulation as well as speciation. Identifying the extent of genetic variation in grain-As concentration and speciation of As compounds are crucial to determining the rice varieties which accumulate low inorganic As. Varietal selection, irrigation water management, use of fertilizer and soil amendments, cooking practices etc. play a vital role in reducing As exposure from rice grains. In the meantime assessing the bioavailability of As from rice is crucial to understanding human health exposure and reducing the risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Life cycle assessment of rice straw-based power generation in Malaysia

    International Nuclear Information System (INIS)

    Shafie, S.M.; Masjuki, H.H.; Mahlia, T.M.I.

    2014-01-01

    This paper presents an application of LCA (Life Cycle Assessment) with a view to analyzing the environment aspects of rice straw-based power generation in Malaysia. It also compares rice straw-based power generation with that of coal and natural gas. GHG (Greenhouse gas) emission savings were calculated. It finds that rice straw power generation can save GHG (greenhouse gas) emissions of about 1.79 kg CO 2 -eq/kWh compared to coal-based and 1.05 kg CO 2 -eq/kWh with natural gas based power generation. While the development of rice straw-based power generation in Malaysia is still in its early stage, these paddy residues offer a large potential to generate electricity because of their availability. Rice straw power plants not only could solve the problem of removing rice straw from fields without open burning, but also could reduce GHG emissions that contribute to climate change, acidification, and eutrophication, among other environmental problems. - Highlights: • Overall rice straw preparations contribute 224.48 g CO 2 -eq/kg rice straw. • The most constraints due to GHG (greenhouse gas) emission is from transportation. • Distance collection centre to plant less than 110 km to obtains minimum emissions. • Rice straw can save GHG emissions 1.79 kg CO 2 -eq/kWh compared to coal power. • GHG saving 1.05 kg CO 2 -eq/kWh compared to natural gas based power generation

  16. A Mitigation Approach to Alleviate Arsenic Accumulation in Rice through Balanced Fertilization

    Directory of Open Access Journals (Sweden)

    S. M. Imamul Huq

    2011-01-01

    Full Text Available Pot experiments with boro and aman season rice on the same soils treated with arsenic contaminated irrigation water and using balanced fertilizer or not revealed that balance fertilization could be a strategy to mitigate arsenic accumulation in rice grain. The study also revealed that there is a carryover effect of As applied through irrigation in the boro season to the subsequent aman season rice. This carryover effect too, could be minimized with balanced fertilization.

  17. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  18. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen-Thanh Son

    2013-12-01

    Full Text Available Rice crop monitoring is an important activity for crop management. This study aimed to develop a phenology-based classification approach for the assessment of rice cropping systems in Mekong Delta, Vietnam, using Moderate Resolution Imaging Spectroradiometer (MODIS data. The data were processed from December 2000, to December 2012, using empirical mode decomposition (EMD in three main steps: (1 data pre-processing to construct the smooth MODIS enhanced vegetation index (EVI time-series data; (2 rice crop classification; and (3 accuracy assessment. The comparisons between the classification maps and the ground reference data indicated overall accuracies and Kappa coefficients, respectively, of 81.4% and 0.75 for 2002, 80.6% and 0.74 for 2006 and 85.5% and 0.81 for 2012. The results by comparisons between MODIS-derived rice area and rice area statistics were slightly overestimated, with a relative error in area (REA from 0.9–15.9%. There was, however, a close correlation between the two datasets (R2 ≥ 0.89. From 2001 to 2012, the areas of triple-cropped rice increased approximately 31.6%, while those of the single-cropped rain-fed rice, double-cropped irrigated rice and double-cropped rain-fed rice decreased roughly −5.0%, −19.2% and −7.4%, respectively. This study demonstrates the validity of such an approach for rice-crop monitoring with MODIS data and could be transferable to other regions.

  19. Stakeholder analysis in the management of irrigation in Kampili area

    Science.gov (United States)

    Jumiati; Ali, M. S. S.; Fahmid, I. M.; Mahyuddin

    2018-05-01

    Irrigation has appreciable contribution in building food security, particularly rice crops. This study aims to analyze the role of stakeholders involved in distributing of irrigation water. The study was conducted in the Kampili Irrigation Area in South Sulawesi Province Indonesia, the data were obtained through observation and interviews with stakeholders involved, and analysed by stakeholder analysis, based on the interests and power held by the actors. This analysis is intended to provide an optimal picture of the expected role of each stakeholder in the management of irrigation resources. The results show that there were many stakeholders involved in irrigation management. In the arrangement of irrigation distribution there was overlapping authority of the stakeholders to its management, every stakeholder had different interests and power between each other. The existence have given positive and negative values in distributing irrigation water management, then in the stakeholder collaboration there was contestation between them. This contestation took place between the agriculture department, PSDA province, the Jeneberang River Region Hall, the Farmers Group and the P3A.

  20. Irrigation et paludisme : un couple infernal?

    Directory of Open Access Journals (Sweden)

    Mergeai, G.

    2016-01-01

    Full Text Available Irrigation and Malaria - a Terrible Combination?. Increasing agricultural productivity is a priority in most of the developing countries and using irrigation is one of the most efficient ways of achieving this goal. Almost half a billion people in the world contract malaria every year and approximately one million die as a result. The majority of these victims are farmers or members of their families. In infected areas, malaria continues to have major negative impacts on agricultural productivity. For example, in the Equateur province of the DRC, after access to production means, fevers are considered the second biggest obstacle to the development of agricultural activities. In the Ivory Coast, a study has shown that growers suffering from malaria were about half as productive as their healthy colleagues. The disease often strikes at the start of the rainy season when work begins again in the fields. It reduces the amount of land cultivated and affects the amount of care taken with crops. Agricultural practices influence the risk of contracting malaria. Irrigation, in particular, can encourage the proliferation of vectors of the disease and make it more likely to spread. This tendency can be observed in many locations where irrigated rice production is on the increase. Paradoxically, however, an increased number of mosquitoes does not systematically result in more malaria. In Ethiopia, malaria is more prevalent close to the micro-dams sponsored by the government, whereas, in Tanzania, there is less malaria in irrigated areas. Various theories can be put forward in order to explain this paradox. In particular, increased income due to higher rice yields enables farmers to purchase insecticide-treated mosquito nets. It also allows them to eat better, which strengthens their immune systems. It also appears that the negative impact of irrigation systems is greater in areas, in which immunity levels were low in the population prior to the creation of

  1. Study of arsenic accumulation in rice and evaluation of protective effects of Chorchorus olitorius leaves against arsenic contaminated rice induced toxicities in Wistar albino rats.

    Science.gov (United States)

    Hosen, Saeed Mohammed Imran; Das, Dipesh; Kobi, Rupkanowar; Chowdhury, Dil Umme Salma; Alam, Md Jibran; Rudra, Bashudev; Bakar, Muhammad Abu; Islam, Saiful; Rahman, Zillur; Al-Forkan, Mohammad

    2016-10-14

    In the present study, we investigated the arsenic accumulation in different parts of rice irrigated with arsenic contaminated water. Besides, we also evaluated the protective effects of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities in animal model. A pot experiment was conducted with arsenic amended irrigation water (0.0, 25.0, 50.0 and 75.0 mg/L As) to investigate the arsenic accumulation in different parts of rice. In order to evaluate the protective effects of Corchorus olitorius leaves, twenty Wistar albino rats were divided into four different groups. The control group (Group-I) was supplied with normal laboratory pellets while groups II, III, and IV received normal laboratory pellets supplemented with arsenic contaminated rice, C. olitorius leaf powder (4 %), arsenic contaminated rice plus C. olitorius leaf powder (4 %) respectively. Different haematological parameters and serum indices were analyzed to evaluate the protective effects of Corchorus olitorius leaves against arsenic intoxication. To gather more supportive evidences of Corchorus olitorius potentiality against arsenic intoxication, histopathological analysis of liver, kidney, spleen and heart tissues was also performed. From the pot experiment, we have found a significant (p ≤ 0.05) increase of arsenic accumulation in different parts of rice with the increase of arsenic concentrations in irrigation water and the trend of accumulation was found as root > straw > husk > grain. Another part of the experiment revealed that supplementation of C. olitorius leaves with arsenic contaminated rice significantly (p rice induced toxicities. Arsenic accumulation in different parts of rice increased dose-dependently. Hence, for irrigation purpose arsenic contaminated water cannot be used. Furthermore, arsenic contaminated rice induced several toxicities in animal model, most of which could be minimized with the food supplementation of Corchorus olitorius

  2. Understanding water delivery performance in a large-scale irrigation system in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2005-01-01

    During a two-year field study the performance of the water delivery was evaluated in a large-scale irrigation system on the north coast of Peru. Flow measurements were carried out along the main canals, along two secondary canals, and in two tertiary blocks in the Chancay-Lambayeque irrigation

  3. A compact to revitalise large-scale irrigation systems: A ‘theory of change’ approach

    Directory of Open Access Journals (Sweden)

    Bruce A. Lankford

    2016-02-01

    Full Text Available In countries with transitional economies such as those found in South Asia, large-scale irrigation systems (LSIS with a history of public ownership account for about 115 million ha (Mha or approximately 45% of their total area under irrigation. In terms of the global area of irrigation (320 Mha for all countries, LSIS are estimated at 130 Mha or 40% of irrigated land. These systems can potentially deliver significant local, regional and global benefits in terms of food, water and energy security, employment, economic growth and ecosystem services. For example, primary crop production is conservatively valued at about US$355 billion. However, efforts to enhance these benefits and reform the sector have been costly and outcomes have been underwhelming and short-lived. We propose the application of a 'theory of change' (ToC as a foundation for promoting transformational change in large-scale irrigation centred upon a 'global irrigation compact' that promotes new forms of leadership, partnership and ownership (LPO. The compact argues that LSIS can change by switching away from the current channelling of aid finances controlled by government irrigation agencies. Instead it is for irrigators, closely partnered by private, public and NGO advisory and regulatory services, to develop strong leadership models and to find new compensatory partnerships with cities and other river basin neighbours. The paper summarises key assumptions for change in the LSIS sector including the need to initially test this change via a handful of volunteer systems. Our other key purpose is to demonstrate a ToC template by which large-scale irrigation policy can be better elaborated and discussed.

  4. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency.

    Science.gov (United States)

    Xiong, Yujiang; Peng, Shizhang; Luo, Yufeng; Xu, Junzeng; Yang, Shihong

    2015-03-01

    Non-point source (NPS) pollution from agricultural drainage has aroused widespread concerns throughout the world due to its contribution to eutrophication of water bodies. To remove nitrogen (N) and phosphorus (P) from agricultural drainage in situ, a Paddy Eco-ditch and Wetland System (PEDWS) was designed and built based on the characteristics of the irrigated rice district. A 2-year (2012-2013) field experiment was conducted to evaluate the performance of this system in Gaoyou Irrigation District in Eastern China. The results showed that the reduction in water input in paddy field of the PEDWS enabled the maintenance of high rice yield; it significantly increased irrigation water productivity (WPI), gross water productivity (WPG), and evapotranspiration water productivity (WPET) by 109.2, 67.1, and 17.6%, respectively. The PEDWS dramatically decreased N and P losses from paddy field. Compared with conventional irrigation and drainage system (CIDS), the amount of drainage water from PEDWS was significantly reduced by 56.2%, the total nitrogen (TN) concentration in drainage was reduced by 42.6%, and thus the TN and total phosphorus (TP) losses were reduced by 87.8 and 70.4%. PEDWS is technologically feasible and applicable to treat nutrient losses from paddy fields in situ and can be used in similar areas.

  5. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  6. Biomphalaria species distribution and its effect on human Schistosoma mansoni infection in an irrigated area used for rice cultivation in northeast Brazil

    Directory of Open Access Journals (Sweden)

    Delmany Moitinho Barboza

    2012-09-01

    Full Text Available The role of irrigated areas for the spread of schistosomiasis is of worldwide concern. The aim of the present study was to investigate the spatial distribution of the intermediate snail host Biomphalaria in an area highly endemic for schistosomiasis due to Schistosoma mansoni, evaluating the relationship between irrigation and types of natural water sources on one hand, and the influence of place and time of water exposure on the intensity of human infection on the other. A geographical information system (GIS was used to map the distribution of the intermediate snail hosts in Ilha das Flores, Sergipe, Brazil, combined with a clinical/epidemiological survey. We observed a direct correlation between the intensity of human infection with S. mansoni and irrigation projects. Malacological studies to identify snail species and infection rates showed that B. glabrata is the main species responsible for human schistosomiasis in the municipality, but that B. straminea also plays a role. Our results provide evidence for a competitive selection between the two snail species in rice fields with a predominance of B. glabrata in irrigation systems and B. straminea in natural water sources.

  7. Water Productivity of Irrigated Rice under Transplanting, Wet Seeding and Dry Seeding Methods of Cultivation

    Directory of Open Access Journals (Sweden)

    Murali, NS.

    1997-01-01

    Full Text Available Water productivity (WP of irrigated lowland rice was determined during the 1994 dry (January to May and wet (August to December seasons on a heavy clay acid sulphate soil. Treatments consisted of three cultivation methods : transplanted rice, pregerminated seeds broadcasted on puddled soil (wet seeding and dry seeds broadcasted on unpuddled soil (dry seeding. In wet and dry seeded plots, continuous standing water condition was initiated 17 days after sowing. Total water requirement for rice production was highest in transplanted plots (755 mm in wet season and 1154 mm in dry season and was lowest in dry seeded plots (505 mm in wet season and 1040 mm in dry season. Dry seeding required no water for land preparation but transplanting and wet seeding methods required 18 - 20 % of total water requirement in dry season and 27 - 29 % in wet season. Total percolation was maximum (99 mm in wet season and 215 mm in dry season in dry seeding method and was minimum (62 mm in wet season and 94 mm in dry season in transplanting method. In dry and wet seeding methods, daily percolation gradually decreased with the age of the crop. Total seepage loss did not show any significant difference between the cultivation methods in the two seasons. Grain yield was not affected by the three cultivation methods in both seasons. Water productivity (the ratio between grain yield and total amount of water used in production was 3.5 - 4.1 kg ha-1 mm-1, 3.8 - 4.4 kg ha-1 mm-1 and 4.1 - 5.5 kg ha-1 mm-1 in transplanted, wet seeded and dry seeded rice, respectively. Labour requirement for land preparation and sowing was maximum in transplanted (219 - 226 man-hours ha-1 followed by wet (104 -112 man-hours ha-1 and dry seeded (94 - 99 man-hours ha-1 methods. However, in wet season extra labour (77 man-hours ha-1 was required for weeding after crop establishment in dry and wet seeding methods. Crop maturity was 20 days earlier in wet and dry seeding methods compared to

  8. Evaluation of hydraulic performance of downstream-controlled Maira-PHLC irrigation canals under crop-based irrigation operations

    NARCIS (Netherlands)

    Munir, S.; Schultz, B.; Suryadi, F.X.; Bharati, L.

    2012-01-01

    Demand-based irrigation systems are operated according to crop water requirements. As crop water requirements remain variable throughout the growing season, the discharges in the canal also vary to meet demands. The irrigation system under study is a demand-based semi-automatic irrigation system,

  9. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  10. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  11. Future Irrigation Requirement of Rice Under Irrigated Area - Uncertainty through GCMs and Crop Models : A Case Study of Indo-Gangetic Plains of India

    Science.gov (United States)

    Pillai, S. N.; Singh, H.; Ruane, A. C.; Boote, K. G.; Porter, C.; Rosenzweig, C.; Panwar, A. S.

    2017-12-01

    Indo-Gangetic Plains (IGP), the food basket of South Asia, characterised by predominantly cereal-based farming systems where livestock is an integral part of farm economy. Climate change is projected to have significant effects on agriculture production and hence on food and livelihood security because more than 90 per cent farmers fall under small and marginal category. The rising temperatures and uncertainties in rainfall associated with global warming may have serious direct and indirect impacts on crop production. A loss of 10-40% crop production is predicted in different crops in India by the end of this century by different researchers. Cereal crops (mainly rice and wheat) are crucial to ensuring the food security in the region, but sustaining their productivity has become a major challenge due to climate variability and uncertainty. Under AgMIP Project, we have analysed the climate change impact on farm level productivity of rice at Meerut District, Uttar Pradesh using 29 GCMs under RCP4.5 and RCP8.5 during mid-century period 2041-2070. Two crop simulation models DSSAT4.6 and APSIM7.7 were used for impact study. There is lot of uncertainty in yield level by different GCMs and crop models. Under RCP4.5, APSIM showed a declining yield up to 14.5 % while DSSAT showed a declining yield level of 6.5 % only compared to the baseline (1980-2010). However, out of 29 GCMs, 15 GCMs showed negative impact and 14 showed positive impact under APSIM while it showed 21 and 8 GCMs, respectively in the case of DSSAT. DSSAT and APSIM simulated irrigation water requirement in future of the order of 645±75 mm and 730±107 mm, respectively under RCP4.5. However, the same will be of the order of 626 ± 99 mm and 749 ± 147 mm, respectively under RCP8.5. Projected irrigation water productivity showed a range of 4.87-12.15 kg ha-1 mm-1 and 6.77-12.63 kg ha-1 mm-1 through APSIM and DSSAT, respectively under RCP4.5, which stands an average of 7.81 and 8.53 kg ha-1 mm-1 during the

  12. Interaction of genotype x management on vegetative growth and weed suppression of aerobic rice

    NARCIS (Netherlands)

    Zhao, D.L.; Bastiaans, L.; Atlin, G.N.; Spiertz, J.H.J.

    2007-01-01

    Water shortage in drought-prone rice-growing areas of the world is threatening conventional irrigated rice production systems, in which rice is transplanted into fields where standing water is maintained until harvest. Aerobic rice production systems, in which rice is grown as a direct-seeded upland

  13. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  14. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    Science.gov (United States)

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R

    2015-02-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  15. Genomic selection and association mapping in rice (Oryza sativa: effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    Directory of Open Access Journals (Sweden)

    Jennifer Spindel

    2015-02-01

    Full Text Available Genomic Selection (GS is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  16. Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines

    Science.gov (United States)

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R.

    2015-01-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline. PMID:25689273

  17. Manejo de água e de fertilizante potássico na cultura de arroz irrigado Water and potassium fertilization management for irrigated rice cultivation

    Directory of Open Access Journals (Sweden)

    Alberto Baêta dos Santos

    1999-04-01

    Full Text Available O manejo da água de irrigação e as doses e épocas de aplicação de fertilizantes tornam-se aspectos de extrema importância no êxito do aproveitamento das várzeas para o cultivo de arroz (Oryza sativa L. irrigado ou este seguido de outras espécies. Com o objetivo de comparar distintas formas de manejo de água e de fertilizante potássico no comportamento do arroz irrigado, foram conduzidos experimentos por três anos consecutivos, em um Inceptissolo. Foram estudados os efeitos de manejo de água (MA1 - inundação contínua e MA2 - inundação intermitente seguida de contínua e o modo de aplicação de fertilizante potássico (K1 - na semeadura; K2 - parcelada e K3 - meia dose parcelada. O manejo de água apresentou efeito mais expressivo sobre o comportamento do arroz que o do fertilizante potássico. A inundação contínua durante todo o ciclo da cultura proporcionou maiores rendimentos de grãos, expressando maiores valores dos parâmetros produtivos, e melhorou a qualidade industrial dos grãos. Com esta irrigação, o parcelamento da adubação potássica aumentou o aproveitamento do fertilizante. Os manejos do fertilizante potássico afetaram diferentemente o comportamento da cultura do arroz nas distintas formas de manejo de água.Irrigation water levels and timing of potassium fertilization is extremely important for the use of lowlands for irrigated rice (Oryza sativa L. cultivation in crop rotation. A field experiment was conduced for three consecutive years in Inceptisol to study the effects of water management (WM1 - continuous flooding and WM2 - intermittent flooding followed continuous flooding and mode of potassium fertilizer application (K1 - at sowing; K2 - fractional application and K3 - fractional application of half levels on grain yield and yield components of irrigated rice. Water management presented expressive effect on rice performance as compared to potassium fertilization. Continuous flooding during whole

  18. Effectiveness of Ammonium-Nitrogen and Nitrate-Nitrogen in Irrigation Water in Paddy Rice without Topdressed Nitrogen at the Panicle Formation Stage

    OpenAIRE

    池田, 元輝; 渡辺, 孝賢; Ikeda, Motoki; Watanabe, Takayasu

    2002-01-01

    A pot experiment was conducted to evaluate the efficiency of ammonium- and nitrate- nitrogen contained in irrigation water during the reproductive growth period of paddy rice (Oryza sativa L. cv. Hinohikari) that did not receive topdressed nitrogen at the panicle formation stage. lrrigation of water containing a low level of nitrogen (7mgNL^-1) did not increase yields so much compared to topdressed nitrogen. lrrigation of water containing a high level of nitrogen (14mgNL^-1) caused substantia...

  19. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Buendia, L.V.; Neue, H.U.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.

  20. Investigation of Flooding Water Depth Management on Yield and Quality Indices of Rice Production

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salemi

    2017-03-01

    achieve the highest irrigation application efficiency and WP. The treatments included: three levels of irrigation managements I1: permanentflooding under 3.5 cm water during growth period, I2: permanent flooding under2.2cm water during growth period and I3: 0-1.5cm. (AWD were considered as main plots and eight advanced rice cultivars (Geredehmahali, Zayandeh-rud, Sazandegi , Hasani, 67-97, 67-113, 67-47 and 67-72 as sub plots. The treatments were compared based on grain yield and quality indices for irrigation management and rice varieties including: amylose content (AC, Gelatinization temperature (GT and gel consistency (GC. Production (grain yield, quality indices, the consumption water, WP and cultivars reactions to different irrigation management were evaluated in different treatments. The soil of the experimental area, according to USDA Soil Taxonomy 1994 is of FINE CLAYEY. At the soil depth of 1m, soil salinity (6.2 dS.m-1, water salinity (3.9 dS.m-1, and soil moisture at saturated capacity (48 Vol. % at the field site were measured or experimentally obtained in the Isfahan Soil and Water Laboratory. The results were subjected to an ANOVA to analyze the effects of the treatments and their interactions using PROC GLM (SAS 9.1, SAS institute Ltd., USA. Duncan’s multiple range tests at 0.05 probability level was used for paired mean comparison. Results and Discussion: Results showed that water flooding depth treatments had significant effect on gel consistency, geletination degree and WP (P0.01. Significant differences (P0.01 were noticed in Gelenation degree, gel consistency, grain yield, WP among the cultivars. Also cultivars have significant effect (P0.05 on amylose contents. The highest magnitude of WP was calculated 0.91kg.m-3for (I3 followed by Zayandehrud, 67-113 and Sazandegi with 0.86 and 0.85, respectively. Maximum WP obtained from AWD irrigation management and Zayandehrud rice variety, its amount was 9.1kg.mm-1. At this treatment with 33.4 percent

  1. Assessing the impacts of climate change on rice yields in the main rice areas of China

    International Nuclear Information System (INIS)

    Yao, Fengmei; Xu, Yinglong; Lin, Erda; Yokozawa, Masayuki; Zhang, Jiahua

    2007-01-01

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within ± 10% of observed flowering duration and ± 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations

  2. Assessing the impacts of climate change on rice yields in the main rice areas of China

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fengmei [College of Earth Sciences, The Graduate University of the Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100049 (China); Xu, Yinglong; Lin, Erda [Agricultural Environment and Sustainable Development Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 (China); Yokozawa, Masayuki [National Institute for Agro-environmental Sciences, Tsukuba 305-8604 (Japan); Zhang, Jiahua [Chinese Academy of Meteorological Sciences, Beijing, 100081 (China)

    2007-02-15

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within {+-} 10% of observed flowering duration and {+-} 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations.

  3. Effects of biochar, waste water irrigation and fertilization on soil properties in West African urban agriculture.

    Science.gov (United States)

    Häring, Volker; Manka'abusi, Delphine; Akoto-Danso, Edmund K; Werner, Steffen; Atiah, Kofi; Steiner, Christoph; Lompo, Désiré J P; Adiku, Samuel; Buerkert, Andreas; Marschner, Bernd

    2017-09-06

    In large areas of sub-Saharan Africa crop production must cope with low soil fertility. To increase soil fertility, the application of biochar (charred biomass) has been suggested. In urban areas, untreated waste water is widely used for irrigation because it is a nutrient-rich year-round water source. Uncertainty exists regarding the interactions between soil properties, biochar, waste water and fertilization over time. The aims of this study were to determine these interactions in two typical sandy, soil organic carbon (SOC) and nutrient depleted soils under urban vegetable production in Tamale (Ghana) and Ouagadougou (Burkina Faso) over two years. The addition of biochar at 2 kg m -2 made from rice husks and corn cobs initially doubled SOC stocks but SOC losses of 35% occurred thereafter. Both biochar types had no effect on soil pH, phosphorous availability and effective cation exchange capacity (CEC) but rice husk biochar retained nitrogen (N). Irrigation with domestic waste water increased soil pH and exchangeable sodium over time. Inorganic fertilization alone acidified soils, increased available phosphorous and decreased base saturation. Organic fertilization increased SOC, N and CEC. The results from both locations demonstrate that the effects of biochar and waste water were less pronounced than reported elsewhere.

  4. Comparing the costs and benefits of floating rice-based and intensive rice-based farming systems in the Mekong delta

    OpenAIRE

    Van Kien Nguyen; Oc Van Vo; Duc Ngoc Huynh

    2015-01-01

    This paper compares financial costs and benefits of floating rice-based and intensive rice farming systems using data from focus group discussions and household survey in four locations in the Mekong Delta. We argue that the net financial benefit per 1000m2 of integrated floating rice-based farming systems is greater than the net financial benefit of intensive rice farming system. The total net benefit of floating rice-leeks shows the highest net benefit (VND 24.8 mil./1000 m2), followed by f...

  5. Decreasing Agricultural Irrigation has not reversed Groundwater Depletion in the Yellow River Basin

    Science.gov (United States)

    Kang, Z.; Xie, X.; Zhu, B.

    2017-12-01

    Agricultural irrigation is considered as the major water use sector accounting for over 60% of the global freshwater withdrawals. Especially in the arid and semiarid areas, irrigation from groundwater storage substantially sustain crop growth and food security. China's Yellow River Basin (YRB) is a typical arid and semiarid area with average annual precipitation about 450 mm. In this basin, more than 52 million hm2 of arable land needs irrigation for planting wheat, cotton, paddy rice etc, and groundwater contributes over one-third irrigation water. However, agricultural irrigation remained a certain level or decreased to some degree due to water-saving technologies and returning farmland to forest projects. Then an interesting question arises: has the groundwater storage (GWS) in YRB kept a consistent variation with the agricultural irrigation? In this study, to address this question, we employed multi-source data from ground measurements, remote sensing monitoring and large-scale hydrological modeling. Specifically, groundwater storage variation was identified using Gravity Recovery and Climate Experiment (GRACE) data and ground observations, and groundwater recharge was estimated based on the Variable Infiltration Capacity (VIC) modeling. Results indicated that GWS in YRB still holds a significant depletion with a rate of about -3 mm per year during the past decade, which was consistently demonstrated by the GRACE and the ground observations. Ground water recharge shows negligible upward trends despite climate change. The roles of different sectors contributing to groundwater depletion have changed. Agricultural irrigation accounting for over 60% of groundwater depletion, but its impact decreased. However, the domestic and the industrial purposes play an increasing role in shaping groundwater depletion.

  6. Rice yield prediction from yield components and limiting factors

    NARCIS (Netherlands)

    Casanova, D.; Goudriaan, J.; Catala Former, M.M.; Withagen, J.C.M.

    2002-01-01

    This article aims to quantify growth at field level in relation to crop status and soil properties in irrigated direct-seeded rice. Forty fields were selected in the Ebro Delta (Spain). Rice growth was monitored and soil properties measured. Yield was related to soil properties by a deductive

  7. Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage.

    Science.gov (United States)

    Huang, Xuexia; Li, Ning; Wu, Qihang; Long, Jianyou; Luo, Dinggui; Zhang, Ping; Yao, Yan; Huang, Xiaowu; Li, Dongmei; Lu, Yayin; Liang, Jianfeng

    2016-12-01

    The objective of this paper is to assess the influence of irritating paddy fields with acid mine drainage containing thallium (Tl) to rice plant-soil system and potential health risks for local residents. Vertical distribution of Tl, pH, organic matter (OM), and cation exchange capacity (CEC) in 24 paddy soil profiles around Yunfu pyrite mine area was investigated. Rice plant samples were collected from the corresponding soil sampling site. The results showed that Tl concentrations in paddy soils at 0-60 cm depth range from 3.07 to 9.42 mg kg -1 , with a mean of 5.74 mg kg -1 , which were significantly higher than the background value of soil in China (0.58 mg kg -1 ). On the whole, Tl contents in paddy soil profiles increased quickly with soil depth from 0 to 30 cm and decreased slowly with soil depth from 30 to 60 cm. The soil Tl content was significant negatively correlated with soil pH. The mean content of Tl in the root, stem, leaf, and rice was 4.36, 1.83, 2.74, and 1.42 mg kg -1 , respectively, which exceeded the proposed permissible limits for foods and feedstuffs in Germany. The Tl content in various tissues of the rice plants followed the order root > leaf > stem (rice), which suggested that most Tl taken up by rice plants retained in the root, and a little migrated to the leaf, stem, and rice. Correlation analysis showed that Tl content in root was significant positively correlated with Tl content in leaf and rice. The ranges of hazard quotient (HQ) values were 4.08∼24.50 and 3.84∼22.38 for males and females, respectively. Males have higher health risk than females in the same age group. In childhood age groups (2 to <21 years) and adult age groups (21 to <70 years), the highest health risk level was observed in the 11 to 16 age group and 21 to 50 age group, respectively. The findings indicated that regular irrigation with Tl-bearing acid mine drainage led to considerable contamination of Tl in paddy soil and rice plant. Local government

  8. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    Science.gov (United States)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  9. Influence of Climate Factors on Rice Yields in Cambodia

    Directory of Open Access Journals (Sweden)

    Dek Vimean Pheakdey

    2017-12-01

    Full Text Available Temperature and precipitation have been known as the key determinant factors to affect rice production in climate change. In this study, the relationship between climate variables and rice yields during 1993–2012 in Cambodia was analyzed and evaluated. The Ordinary Least Squares analysis was applied to examine the relationship of three climate variables (TCV including maximum temperature, minimum temperature and rainfall against seasonal rice yields. By this period, a remarkable increasing trend of annual temperature was observed whilst rainfall was not significantly changed. The TCV explains approximately 63% and 56% of the variability of rice yields in wet and dry seasons, respectively. It is found that in Cambodia, non-climate factors such as fertilizers, water, cultivars, and soil fertility cause 40% variation to rice yields, whereas the remaining 60% can be influenced by climate variability. The levels of temperature difference (LTD between maximum and minimum temperatures of the wet season (WS and dry season (DS were 7.0 and 8.6 oC, respectively. The lower value of LTD may cause the reduction of rice in WS (2.2 tons/ha as compared to that of DS (3.0 tons/ha. Rice yield has increased 50.5% and 33.8% in DS and WS, respectively, may due to the improvement of rice cultivation practices in Cambodia such as the better use of fertilizers, pest and weed control, and irrigation, and more effective rice cultivated protocol, as the increased trend of temperature may detrimentally affect rice yield. The breeding of heat and drought tolerance rice varieties and development of irrigation system are effective to reduce the negative influence from climate change to rice production in Cambodia.

  10. The influence of acid rain on the intake of trace elements into rice plant from soils

    International Nuclear Information System (INIS)

    Tanizaki, Yoshiyuki; Nakamura, Masaru; Maeno, Tomokazu

    1995-01-01

    Rice plant samples were grown in 14 cultivative pots by irrigation using the six conditions of artificial acid rain waters (pH: 6.5, 6.0, 4.5, 3.5, 3.0 and 2.5) and tap water (pH: 7.5). The rice grain yielded were separated into three parts, i.e., polished rice, bran and chaff, and they were reduced to powder one by one. Twenty six element contents in the three parts of grain (each 14 samples) were determined by a neutron activation analysis. The contents of Cr, Fe, Ni, Zn, Cu, Rb, Mo in the polished rice increased with decreasing of pH of the irrigation waters. The contents of Se and Br, on the contrary, decreased with decreasing of pH of the irrigation waters. Significant changes of the contents were not observed for the elements Na, Al, Cl, Sc, Mn, Co, V. The enrichment factor of trace elements to soils were calculated for the polished rice, bran and chaff. The high enrichments of Cl, Mo, Zn, Se, Cu and Ni were observed in the polished rice. The elements K, Rb, Mn, Mg and Cr were highly concentrated in the bran. (author)

  11. affect rice in integrated rice-fish culture in Lake Victoria Basin, Kenya?

    African Journals Online (AJOL)

    AGHOGHO A

    Rice field ecology and fish culture - an overview. Hydrobiologia 259:91-113. Fernando CH, Halwart M (2000). Fish farming in irrigation systems. Fisheries Management and Ecol. 7:45-54. Frei M, Razzak MA, Hossain MM, Ochme M, Dewan S, Becker K. (2007). Performance of common carp, Cyprinus carpio L. and Nile.

  12. Impacts of climate change on rice production in Africa and causes of simulated yield changes.

    Science.gov (United States)

    van Oort, Pepijn A J; Zwart, Sander J

    2018-03-01

    This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Crop performance, nitrogen and water use in flooded and aerobic rice

    NARCIS (Netherlands)

    Belder, P.; Bouman, B.A.M.; Spiertz, J.H.J.; Peng, S.; Castañeda, A.R.; Visperas, R.M.

    2005-01-01

    Abstract Irrigated aerobic rice is a new system being developed for lowland areas with water shortage and for favorable upland areas with access to supplementary irrigation. It entails the cultivation of nutrient-responsive cultivars in nonsaturated soil with sufficient external inputs to reach

  14. Efficacy and economics of different herbicides in aerobic rice system ...

    African Journals Online (AJOL)

    Aerobic rice system, the most promising irrigation water saving rice production technology, is highly impeded by severe weed pressure. Weed control through the use of same herbicide causes development of herbicide resistant weed biotypes and serious problem in weed management. This study was aimed at finding out ...

  15. Translocations of 2,4-D-14C Herbicides In Weed And Rice Plant On Irrigated Rice Field System

    International Nuclear Information System (INIS)

    Chairul, Sofnie M.; Idawati; Mulyadi

    2000-01-01

    The investigation of translocation 2,4-D herbicides using 14 C as tracer on irradiated rice plant system. Condition of the soil was two kinds, that is normal soil and soil 30% up normal. The soil of rice field was spray with 1μCi of 2,4-D non labelled, one week after planting. A part of rice plant and weed was determined the radioactivity after 0, 2, 4, 8, and 10 weeks after spraying. The result showed that radioactivity maximum after zero week was in root and leaf of weeds, the second weeks in root of rice, the forth weeks in rice stick, and eighth weeks in leaf of rice. This result occur at normal condition soil of solid 30 % up normal soil. The residues of 2.4-D in rice was 4,24x10 -3 ppb at normal soil and 3.16x10 -3 ppb at solid 30% up normal soil. This result still lower than rate of WHO/FAO, that is 0,05 ppm

  16. Water and radiation use efficiencies of transplanted rice (Oryza sativa L.) at different plant densities and irrigation regimes under semi-arid environment

    International Nuclear Information System (INIS)

    Ahmad, S.; Ali, H.; Shad, S.A.; Zia-ul-Haq, M.; Ahmad, A.; Maqsood, M.; Khan, M.B.; Mehmood, S.; Hussain, A.

    2008-01-01

    Growth and yield of rice (Oryza sativa L.), in response to plant densities and irrigation (optimum to stress) were analyzed in terms of interception and utilization of photo-synthetically active radiation (PAR) and water use efficiency (WUE). The amount of PAR intercepted and cumulative evapotranspiration (ET) by each treatment was estimated from the measured leaf area index. The relationships between total dry matter grain yield and accumulated intercepted PAR and cumulative ET were linear. Yield differences among the treatments were attributed to the amount of PAR intercepted and water transpired their efficiencies of utilization or both. The fraction of intercepted radiation and WUE was significantly affected by the plant densities and various irrigation regimes, while, radiation utilization efficiency (RUE) and water use efficiency (WUE) for TDM varied from 1.15 g MJ-1 to 1.36 g MJ-1 and 22.6 kg per ha mm-1 to 24.3 kg per ha mm-1 during both the seasons

  17. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Science.gov (United States)

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  18. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  19. Ruling by canal: Governance and system-level design characteristics of large scale irrigation infrastructure in India and Uzbekistan

    NARCIS (Netherlands)

    Mollinga, P.; Veldwisch, G.J.A.

    2016-01-01

    This paper explores the relationship between governance regime and large-scale irrigation system design by investigating three cases: 1) protective irrigation design in post-independent South India; 2) canal irrigation system design in Khorezm Province, Uzbekistan, as implemented in the USSR period,

  20. Natural resource management issues of pakistan's agriculture: the cases of land, labour and irrigation

    International Nuclear Information System (INIS)

    Arifullah, S.A.; Farid, N.

    2009-01-01

    With the objective to understand the optimization behavior of farmers in allocating land, labor and irrigation water, Linear Programming (LP) analytic technique was applied to 13 Kharif and 7 Rabi crops, using national level data from 1990-2005. The crops included in the analysis have been occupying 80 - 85 percent of Pakistan's cropped area for the last three to four decades. The optimization analysis resulted in bringing up three major natural resource management issues of the Pakistan's crop sector to the forefront. First, Basmati rice, mung, fodders of millet and sorghum, onion and IRRI rice were found optimal Kharif crops relative to sugarcane, maize, maize fodder, millet, sorghum, cotton and tomato. For Rabi wheat, potato, gram, rapeseed and berseem proved to be optimal relative to barley and sugarcane, for this period. The results imply that to have an efficient agriculture base Pakistan should either replace the sub-optimal crops with the optimal ones, or the resource management side of such crops should be improved with the help sensitivity analysis. Second, cotton and tomato appeared to be relatively sensitive to labor availability than other crops; they seemed to establish a direct correlation between the optimality status and labor availability. And third, irrigation emerged as a critical input for IRRI rice in Kharif and for potato and gram in Rabi season; for these crops the crop optimality was directly correlated to the number of irrigations applied. In contrast, its opportunity cost is higher than the per unit return in cotton, tomato, wheat and berseem. This signified that irrigation needs to be managed efficiently in the latter four crops; whereas in the former three crops use of extra water would help in optimizing. (author)

  1. Microbial-driven arsenic cycling in rice paddies amended with monosodium methanearsonate

    Science.gov (United States)

    Maguffin, S. C.; McClung, A.; Rohila, J. S.; Derry, L. A.; Huang, R.; Reid, M. C.

    2017-12-01

    Rice consumption is the second largest contributor to human arsenic exposure worldwide and is linked to many serious diseases. Because rice is uniquely adapted for agricultural production under flooded soils, arsenic species solubilized in such environments can be effectively transported into plant tissue via root transporters. Through this process, both inorganic and organic (methylated) arsenic species can accumulate to problematic concentrations and may affect grain yield as well as crop value. The distribution of these species in plant tissue is determined by arsenic sources, as well as enzymatic redox and methylation-demethylation reactions in soils and pore water. Historic use of organoarsenic-based pesticides in US agriculture may provide an enduring source of arsenic in rice paddies. However, it is unclear how persistent these organic species are in the adsorbed phase or how available they remain to rice cultivars throughout the growing season. We conducted a field experiment in a 2x2 factorial design examining the effects of irrigation methods (continuous flooding and alternate wetting and drying) and monosodium methanearsonate (MSMA) application on the abundance and speciation of arsenic in pore water, soil, and rice plant tissues. We monitored arsenic speciation and partitioning between these reservoirs at semi-weekly to semi-monthly frequencies. Pore water arsenic speciation was determined using LC-ICP-MS, and X-ray absorption near-edge structure (XANES) analysis was employed to speciate the arsenic within solid-phase soil and plant tissue throughout the growing season. These data help clarify the role of two irrigation methods and MSMA amendments for arsenic bioavailability and speciation in rice. Furthermore, the study illuminates the significance of microbial metabolism in the reapportionment of arsenic within the soil-plant-water system and its impact on arsenic levels in rice grains.

  2. Rainfall Variability, Adaptation through Irrigation, and Sustainable Management of Water Resources in India

    Science.gov (United States)

    Fishman, R.

    2013-12-01

    Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.

  3. Computer-based irrigation scheduling for cotton crop

    International Nuclear Information System (INIS)

    Laghari, K.Q.; Memon, H.M.

    2008-01-01

    In this study a real time irrigation schedule for cotton crop has been tested using mehran model, a computer-based DDS (Decision Support System). The irrigation schedule was set on selected MAD (Management Allowable Depletion) and the current root depth position. The total 451 mm irrigation water applied to the crop field. The seasonal computed crop ET (Evapotranspiration) was estimated 421.32 mm and actual (ET/sub ca/) observed was 413 mm. The model over-estimated seasonal ET by only 1.94. WUE (Water Use Efficiency) for seed-cotton achieved 6.59 Kg (ha mm)/sup -1/. The statistical analysis (R/sup 2/=0.96, ARE%=2.00, T-1.17 and F=550.57) showed good performance of the model in simulated and observed ET values. The designed Mehran model is designed quite versatile for irrigation scheduling and can be successfully used as irrigation DSS tool for various crop types. (author)

  4. Effect of selenium application on arsenic uptake in rice (Oryza sativa L.).

    Science.gov (United States)

    Kaur, Sumandeep; Singh, Dhanwinder; Singh, Kuldip

    2017-09-01

    Alluvial aquifers of the agrarian state of Punjab of southwestern arid zone used for irrigation of rice crops are rich in arsenic concentration. In the present study, rice (Oryza sativa L.) crops were raised in pots in a greenhouse with a purpose to study whether selenium (Se) application was effective in ameliorating As uptake. The rice crop was irrigated with arsenic laced water (0, 2.5, 5.0, 10.0 μM As L -1 ) throughout the growing period, without and with selenium (0.05 and 0.10 mg kg -1 ) added through mustard biomass, grown ex situ in seleniferous soil. Arsenic uptake and dry matter yield in different parts of the rice crop were assayed after application of As alone and simultaneous supplementations (As + Se). An antagonistic interaction between Se and As was observed. Addition of As through irrigation water significantly reduced yield of rice grain, straw and root. However, subsequent addition of Se helped in mitigating the harmful effect of As and countered the yield reduction caused due to As toxicity. The effect of Se on dry matter yield was more pronounced at its higher dose (0.10 mg kg -1 ) as compared to its lower dose (0.05 mg kg -1 ). The presence of Se either alone or added along with As significantly reduced the As concentration and its uptake by different parts of rice and higher reduction in As concentration was observed with addition of the highest level of applied Se (0.10 mg kg -1 ). Our observations indicated that Se supplementation might be favourable to reduce As accumulation and toxicity in rice crops.

  5. Runoff characteristics of water quality from small agricultural watershed having topographical chain and irrigation; Chikei rensa to suiden kangai wo yusuru nogyo shoshu suiiki kara ryushutsusuru suishitsu no tokucho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, H; Kuroda, H; Kubota, K [Ibaraki University, Ibaraki (Japan). School of Agriculture

    1996-01-10

    An investigation was carried out on characteristics of concentration and load amount of water flowing out from a small watershed with an area of 205 ha which is utilized mostly for agriculture. The basin subjected to the investigation was a district with typical tableland topography in Dejima Village in Ibaraki Prefecture. The land on this tableland in the district is utilized mainly for a truck farm, raising mainly vegetables and fruit trees. However, dry rice fields, which were converted from the truck farms into irrigated rice fields, exist on the tableland in this district. It is known that the dry rice fields have as high water permeability as inconceivable in ordinary paddy rice fields. Paddy fields developing below the tableland are called valley paddy fields, which are ill-drained paddy fields having small downward water permeation. It is an interesting subject to know what effects are given on the quality of runoff water by the topography in this watershed that has such a specific topographical chain as described. Furthermore, the dry rice fields are irrigated from the Dejima water canal taking water from Kasumigaura Lake, whereas large effects are anticipated on the amounts of runoff water and load because of such a large water permeation amount. This paper discusses the characteristics in amounts of runoff water and load in such a watershed as described. 20 refs., 17 figs., 2 tabs.

  6. Influence of gypsum amendment on methane emission from paddy rice soil affected by saline irrigation water

    Directory of Open Access Journals (Sweden)

    Ei Ei eTheint

    2016-01-01

    Full Text Available To investigate the influence of gypsum application on methane (CH4 emission from paddy rice soil affected by saline irrigation water, two pot experiments with the rice cultivation were conducted. In pot experiment (I, salinity levels 30 mMNaCl (S30 and 90 mMNaCl (S90, that showed maximum and minimum CH4 production in an incubation experiment, respectively, were selected and studied without and with application of 1 Mg gypsum ha-1(G1. In pot experiment (II, CH4 emission was investigated under different rates of gypsum application: 1 (G1, 2.5 (G2.5 and 5 (G5 Mg gypsum ha-1 under a non-saline and saline condition of 25 mMNaCl (S25. In experiment (I, the smallest CH4 emission was observed in S90. Methane emission in S30 was not significantly different with the non-saline control. The addition of gypsum showed significant lower CH4 emission in saline and non-saline treatments compared with non-saline control. In experiment (II, the CH4 emissions in the saline treatments were not significantly different to the non-saline treatments except S25-G5. However, our work has shown that gypsum can lower CH4 emissions under saline and non-saline conditions. Thus, gypsum can be used as a CH4 mitigation option in non-saline as well as in saline conditions.

  7. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance

    Directory of Open Access Journals (Sweden)

    Xudong Guan

    2016-01-01

    Full Text Available Normalized Difference Vegetation Index (NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS time-series data has been widely used in the fields of crop and rice classification. The cloudy and rainy weather characteristics of the monsoon season greatly reduce the likelihood of obtaining high-quality optical remote sensing images. In addition, the diverse crop-planting system in Vietnam also hinders the comparison of NDVI among different crop stages. To address these problems, we apply a Dynamic Time Warping (DTW distance-based similarity measure approach and use the entire yearly NDVI time series to reduce the inaccuracy of classification using a single image. We first de-noise the NDVI time series using S-G filtering based on the TIMESAT software. Then, a standard NDVI time-series base for rice growth is established based on field survey data and Google Earth sample data. NDVI time-series data for each pixel are constructed and the DTW distance with the standard rice growth NDVI time series is calculated. Then, we apply thresholds to extract rice growth areas. A qualitative assessment using statistical data and a spatial assessment using sampled data from the rice-cropping map reveal a high mapping accuracy at the national scale between the statistical data, with the corresponding R2 being as high as 0.809; however, the mapped rice accuracy decreased at the provincial scale due to the reduced number of rice planting areas per province. An analysis of the results indicates that the 500-m resolution MODIS data are limited in terms of mapping scattered rice parcels. The results demonstrate that the DTW-based similarity measure of the NDVI time series can be effectively used to map large-area rice cropping systems with diverse cultivation processes.

  8. Year-Round Irrigation Schedule for a Tomato–Maize Rotation System in Reservoir-Based Irrigation Schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Ephraim Sekyi-Annan

    2018-05-01

    Full Text Available Improving irrigation management in semi-arid regions of Sub-Saharan Africa is crucial to respond to increasing variability in rainfall and overcome deficits in current irrigation schemes. In small-scale and medium-scale reservoir-based irrigation schemes in the Upper East region of Ghana, we explored options for improving the traditional, dry season irrigation practices and assessed the potential for supplemental irrigation in the rainy season. The AquaCrop model was used to (i assess current water management in the typical tomato-maize rotational system; (ii develop an improved irrigation schedule for dry season cultivation of tomato; and (iii determine the requirement for supplemental irrigation of maize in the rainy season under different climate scenarios. The improved irrigation schedule for dry season tomato cultivation would result in a water saving of 130–1325 mm compared to traditional irrigation practices, accompanied by approximately a 4–14% increase in tomato yield. The supplemental irrigation of maize would require 107–126 mm of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of high rainfall and rare dry spells. Therefore, year-round irrigated crop production may be feasible, using water saved during dry season tomato cultivation for supplemental irrigation of maize in the rainy season.

  9. Temporal and spatial water use on irrigated and nonirrigated pasture-based dairy farms.

    Science.gov (United States)

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-08-01

    Robust information for water use on pasture-based dairy farms is critical to farmers' attempts to use water more efficiently and the improved allocation of freshwater resources to dairy farmers. To quantify the water requirements of dairy farms across regions in a practicable manner, it will be necessary to develop predictive models. The objectives of this study were to compare water use on a group of irrigated and nonirrigated farms, validate existing water use models using the data measured on the group of nonirrigated farms, and modify the model so that it can be used to predict water use on irrigated dairy farms. Water use data were collected on a group of irrigated dairy farms located in the Canterbury, New Zealand, region with the largest area under irrigation. The nonirrigated farms were located in the Manawatu region. The amount of water used for irrigation was almost 52-fold greater than the amount of all other forms of water use combined. There were large differences in measured milking parlor water use, stock drinking water, and leakage rates between the irrigated and nonirrigated farms. As expected, stock drinking water was lower on irrigated dairy farms. Irrigation lowers the dry matter percentage of pasture, ensuring that the amount of water ingested from pasture remains high throughout the year, thereby reducing the demand for drinking water. Leakage rates were different between the 2 groups of farms; 47% of stock drinking water was lost as leakage on nonirrigated farms, whereas leakage on the irrigated farms equated to only 13% of stock drinking water. These differences in leakage were thought to be related to regional differences rather than differences in irrigated versus nonirrigated farms. Existing models developed to predict milking parlor, corrected stock drinking water, and total water use on nonirrigated pasture-based dairy farms in a previous related study were tested on the data measured in the present research. As expected, these models

  10. The application of parallel wells to support the use of groundwater for sustainable irrigation

    Science.gov (United States)

    Suhardi

    2018-05-01

    The use of groundwater as a source of irrigation is one alternative in meeting water needs of plants. Using groundwater for irrigation requires a high cost because of the discharge that can be taken is limited. In addition, the use of large groundwater can cause environmental damage and social conflict. To minimize costs, maintain quality of the environment and to prevent social conflicts, it is necessary to innovate in the groundwater taking system. The study was conducted with an innovation of using parallel wells. Performance is measured by comparing parallel wells with a single well. The results showed that the use of parallel wells to meet the water needs of rice plants and increase the pump discharge up to 100%. In addition, parallel wells can reduce the influence radius of taking of groundwater compared to single well so as to prevent social conflict. Thus, the use of parallel wells can support the achievement of the use of groundwater for sustainable irrigation.

  11. Economics of weed suppressive rice cultivars in flood- and furrow-irrigated systems

    Science.gov (United States)

    Weeds are a major constraint to rice production. In the U.S, weeds in rice are controlled primarily with synthetic herbicides. Intensive herbicide application in rice also has many potential drawbacks, resulting in environmental pollution, human health concerns, and development of weed resistance. B...

  12. Insecticide susceptibility of natural populations of Anopheles coluzzii and Anopheles gambiae (sensu stricto) from Okyereko irrigation site, Ghana, West Africa.

    Science.gov (United States)

    Chabi, Joseph; Baidoo, Philip K; Datsomor, Alex K; Okyere, Dora; Ablorde, Aikins; Iddrisu, Alidu; Wilson, Michael D; Dadzie, Samuel K; Jamet, Helen P; Diclaro, Joseph W

    2016-03-31

    The increasing spread of insecticide resistance in malaria vectors has been well documented across sub-Saharan Africa countries. The influence of irrigation on increasing vector resistance is poorly understood, and is critical to successful and ethical implementation of food security policies. This study investigated the insecticide resistance status of An. gambiae (s.l.) mosquitoes collected from the irrigated rice area of Okyereko, a village containing about 42 hectares of irrigated field within an irrigation project plan in the Central Region of Ghana. Large amounts of insecticides, herbicides and fertilizers are commonly used in the area to boost the annual production of the rice. Mosquito larvae were collected and adults were assayed from the F1 progeny. The resistance status, allele and genotype were characterized using WHO susceptibility testing and PCR methods respectively. The An. gambiae (s.l.) populations from Okyereko are highly resistant to DDT and pyrethroid insecticides, with possible involvement of metabolic mechanisms including the elevation of P450 and GST enzyme as well as P-gp activity. The population was mostly composed of An. coluzzii specimens (more than 96 %) with kdr and ace-1 frequencies of 0.9 and 0.2 %, respectively. This study brings additional information on insecticide resistance and the characterization of An. gambiae (s.l.) mosquitoes from Okyereko, which can be helpful in decision making for vector control programmes in the region.

  13. COMPETITIVENESS OF NIGERIAN RICE AND MAIZE PRODUCTION ECOLOGIES: A POLICY ANALYSIS APPROACH

    Directory of Open Access Journals (Sweden)

    Victor Olusegun Okoruwa

    2011-05-01

    Full Text Available The Nigerian rice and maize sectors are faced with decreasing supply and increasing demand as rice and maize have taken a strategic place of other staples leading to excessive importation and increasing government intervention. This study therefore assesses the competitiveness of Nigerian rice and maize production ecologies using the policy analysis matrix (PAM on a sample of 122 farmers. Results of the PAM revealed that outputs from the production ecologies are taxed. This is further confirmed by the Effective protection coefficient (EPC and Subsidy ratio to producers (SRP values, however, the production ecologies are subsidized on the use of tradable inputs. The production ecologies show a strong competitiveness at the farm level (under irrigated rice, upland rice and upland maize and a strong comparative advantage. Sensitivity analysis indicated that a 50 percent increase in output and a 13.3 percent depreciation of the domestic currency will increase competitiveness and comparative advantage of rice and maize production in all ecologies. The study recommends that government should ensure a level of policy stability in the rice and maize sectors, assist farmers with irrigated water scheme to ensure constant water supply, and increase the level of output through provision of improved seed varieties.

  14. Utilization of wastewater on seed germination and physioogical parameters of rice (Oryza sativa L.)

    Science.gov (United States)

    Huy, V.; Iwai, C. B.

    2018-03-01

    Due to increasing world population and demand, fresh water availability is becoming a limited resource. Reusing wastewater for agriculture has received attention since it contains nutrients, which are beneficial for growing crops. Even though wastewater can be used as the nutrient source for the plant, the toxicity of wastewater can still be a cause for concern and investigation. The main objective of this paper was to assess the effect of different sources of wastewater on the germination of Jasmine rice (KDML105), White rice (Phatum Thani 1), and Sticky rice (RD6) under laboratory conditions. Petri dish cultures were used with various concentrations (0, 50, and 100%) of wastewater collected from swine farm, aquaculture activity, and domestic. Seed germination, root length, shoot length, seed vigor index, fresh weight and dry weight were measured after each experiment. The results have shown that domestic wastewater and aquaculture activity wastewater did not decrease performance of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) while the germination of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) decreased when irrigated with swine farm wastewater. Therefore, using domestic and aquaculture activity wastewater for irrigation are suitable for growth of these crop.

  15. Learning to Voice? The Evolving Roles of Family Farmers in the Coordination of Large-Scale Irrigation Schemes in Morocco

    Directory of Open Access Journals (Sweden)

    Nicolas Faysse

    2010-02-01

    Full Text Available In Morocco, large-scale irrigation schemes have evolved over the past twenty years from the centralised management of irrigation and agricultural production into more complex multi-actor systems. This study analysed whether, and how, in the context of state withdrawal, increased farmer autonomy and political liberalisation, family farmers currently participate in the coordination and negotiation of issues that affect them and involve scheme-level organisations. Issues related to water management, the sugar industry and the dairy sector were analysed in five large-scale irrigation schemes. Farmer organisations that were set up to intervene in water management and sugar production were seen to be either inactive or to have weak links with their constituency; hence, the irrigation administration and the sugar industry continue to interact directly with farmers in a centralised way. Given their inability to voice their interests, when farmers have the opportunity, many choose exit strategies, for instance by resorting to the use of groundwater. In contrast, many community-based milk collection cooperatives were seen to function as accountable intermediaries between smallholders and dairy firms. While, as in the past, family farmers are still generally not involved in decision making at scheme level, in the milk collection cooperatives studied, farmers learn to coordinate and negotiate for the development of their communities.

  16. Desempenho da cultura do arroz irrigado com esgotos sanitários previamente tratados Performance of upland rice irrigated with previously treated domestic sewage

    Directory of Open Access Journals (Sweden)

    José T. de Sousa

    2001-04-01

    Full Text Available Com o presente trabalho, objetiva-se avaliar o desempenho da cultura do arroz, irrigada com efluentes de esgoto sanitário provenientes de tanque séptico e de lagoa de estabilização, tomando-se como referencial comparativo a mesma cultura irrigada com água de abastecimento em solos fertilizados com adubos minerais e sem adubo mineral. No experimento foi utilizada a cultivar Diamante, originada da EMBRAPA Meio Norte, e o sistema experimental era constituído por 4 tabuleiros com 10 m² de área unitária, irrigados por inundação intermitente, procurando-se manter sempre uma média de 5 cm de lâmina líquida a cada dois dias, durante o período de 4 meses. A análise dos dados demonstra que a produtividade da cultivar Diamante, irrigada com efluente de tanque séptico, foi superior à produtividade da mesma cultivar irrigada com água de abastecimento em solo com adubação mineral. Salienta-se, ainda, que os grãos da cultivar irrigada com efluente do tanque séptico não apresentaram, em nenhum exame, indicadores de contaminação fecal.This paper evaluates the rice crop performance irrigated by domestic wastewater effluents from septic tanks and ponds in comparison to that irrigated by muncipal water supplies in soils with and without mineral fertilizers. The "Diamante" rice cultivar originated from EMBRAPA Meio Norte was used in the experiment. The experimental system consisted of 4 plots of 10 m². The plots were intermitlenttly flooded every two days during the period of four months to maintain on an average 5 cm of water depth. The analytical data show that the productivity of the cultivar "Diamante" in this system was higher than that of the same cultivar irrigated by muncipal water supplies in soils with mineral fertilizers. Also when examined, its grains did not present any traces of fecal contamination.

  17. Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability

    Directory of Open Access Journals (Sweden)

    Yufeng Luo

    2014-09-01

    Full Text Available Rice paddies are artificial wetlands that supply people with food and provide wildlife with habitats, breeding areas, shelters, feeding grounds and other services, and rice paddies play an important part in agricultural ecological systems. However, modern agricultural practices with large-scale intensive farming have significantly accelerated the homogenization of the paddy field ecosystem. Modern agriculture mostly relies on chemically-driven modern varieties and irrigation to ensure high production, resulting in the deterioration and imbalance of the ecosystem. Consequently, outbreaks of diseases, insects and weeds have become more frequent in paddy fields. This paper describes the current situation of rice paddy biodiversity in China and analyzes the community characteristics of arthropods and weedy plants. Meanwhile, we discuss how biodiversity was affected by modern agriculture changes, which have brought about a mounting crisis threatening to animals and plants once common in rice paddies. Measures should be focused to firstly preventing further deterioration and, then, also, promoting restoration processes. Ecological sustainability can be achieved by restoring paddy field biodiversity through protecting the ecological environment surrounding the paddy fields, improving paddy cropping patterns, growing rice with less agricultural chemicals and chemical fertilizers, constructing paddy systems with animals and plants and promoting ecological education and public awareness.

  18. Impacts of climate change on rice production in Africa and causes of simulated yield changes

    NARCIS (Netherlands)

    Oort, Van Pepijn A.J.; Zwart, Sander J.

    2018-01-01

    This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature

  19. Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field.

    Science.gov (United States)

    Li, Xianglan; Zhang, Guangbin; Xu, Hua; Cai, Zucong; Yagi, Kazuyuki

    2009-06-01

    A field experiment was conducted to study the effect of timing of joint application of urease inhibitor hydroquinone (HQ) and nitrification inhibitor dicyandiamide (DCD) on N(2)O emission from irrigated lowland rice paddy field. Four treatments including Treatment CK (the control with urea alone), HQ/DCD-1 (application of HQ and DCD together with fertilizer before transplanting), HQ/DCD-2 (HQ and DCD with fertilizer at tillering stage) and HQ/DCD-3 (HQ and DCD with fertilizer at panicle initiation stage) were designed and implemented separately during rice growth period. Seasonal peaks of N(2)O flux occurred during midseason drainage and significant negative correlation between N(2)O flux and water layer depth was observed (r=-0.69 to -0.75, P<0.01). Mean N(2)O flux was the highest in the control with urea alone, while joint addition of HQ and DCD with urea lowered mean N(2)O flux considerably (P<0.05). Total N(2)O emission during rice growth season in Treatment CK, HQ/DCD-1, HQ/DCD-2 and HQ/DCD-3 was 3.90, 2.98, 1.73 and 3.23kgN(2)O-N ha(-1), respectively. Application of HQ and DCD together with basal fertilizer, tillering fertilizer and panicle initiation fertilizer decreased the total N(2)O emission by 24%, 56% and 17%, respectively, while increased grain yield by 10%, 18% and 6%, respectively. Effect of application of inhibitors on N(2)O emission during the continuous period from incorporation of HQ and DCD to rice harvest was also studied, where results indicating that the highest inhibiting efficiency of inhibitors on N(2)O emission was recorded when HQ and DCD applied with fertilizer at tillering stage.

  20. Cooking quality of upland and lowland rice characterized by different methods

    Directory of Open Access Journals (Sweden)

    Diva Mendonça Garcia

    2011-06-01

    Full Text Available Rice cooking quality is usually evaluated by texture and stickiness characteristics using many different methods. Gelatinization temperature, amylose content, viscosity (Brookfield viscometer and Rapid Visco Analyzer, and sensory analysis were performed to characterize culinary quality of rice grains produced under two cropping systems and submitted to different technologies. All samples from the upland cropping system and two from the irrigated cropping system presented intermediate amylose content. Regarding stickiness, BRS Primavera, BRS Sertaneja, and BRS Tropical showed loose cooked grains. Irrigated cultivars presented less viscosity and were softer than upland cultivars. Upland grain samples had similar profile on the viscoamylografic curve, but the highest viscosity peaks were observed for BRS Alvorada, IRGA 417, and SCS BRS Piracema among the irrigated cropping system samples. In general, distinct grain characteristics were observed between upland and irrigated samples by cluster analysis. The majority of the upland cultivars showed soft and loose grains with adequate cooking quality confirmed by sensory tests. Most of the irrigated cultivars, however, presented soft and sticky grains. Different methodologies allowed to improve the construction of the culinary profile of the varieties studied.

  1. A study of technetium 99 uptake by irrigated rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Vandecasteele, C.M.; De Becker, R.; Tang Van Hai; Myttenaere, C.

    1983-01-01

    The absorption of technetium 99 (an important fission product which can be released in the environment at different steps of the nuclear fuel cycle) by rice (Oryza sativa L.) was studied in nutrient solutions and in flooded soils with contaminated water. The absorption kinetics established in water culture (continuous flowing system) for 99 Tc concentrations ranging from 0.017 to 17 μCi.I - 1 revealed two phases: the former corresponds to the diffusion in the apparent free spaces and the second, which is linear, represents the transfer of 99 Tc from the external medium into the root cells as well as its translocation to the leaves. The study of the desorption mechanism confirmed the existence of these compartments, the second one containing more than 95% of the total activity of the plant. The biological half-life of 99 Tc of the second compartment is so high that decontamination of the plant may not be expected. In soils, toxicity symptoms were observed for a 99 Tc water concentration of 17 μCi.I - 1 . The transfer factors calculated in irrigated soils are very high (>10 3 for the leafy shoots) and the distribution of 99 Tc between the different organs waries with the concentration used. More than 90% of 99 Tc is found in the leafy shoots meanwhile 1% of the plant total activity is only found in the caryopses [fr

  2. Development of a real-time hydrological cycle - rice growth coupled simulation system as a tool for farmers' decision making in an ungauged basin in Cambodia for the better agricultural water resources management

    Science.gov (United States)

    Tsujimoto, K.; Ohta, T.; Yasukawa, M.; Koike, T.; Kitsuregawa, M.; Homma, K.

    2013-12-01

    The entire country of Cambodia depends on agriculture for its economy. Rice is the staple food, making it the major agricultural product (roughly 80% of total national production). The target area of this study is western Cambodia, where rice production is the greatest in the country and most land is rainfed. Since most farmers rely only on their (non-science-based) experience, they would not adjust to changing rainfall and degraded water resources under climate change, so food security in the region would be seriously threatened (Monichoth et al., 2013). Under this condition, irrigation master plans are being considered by several ODA projects. This study aims to contribute to the design of such irrigation plans through the development of a real-time hydrological cycle - rice growth coupled simulation system. The purpose of the development of this system is to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. Rice growing condition as affected by water stress due to the water shortage is supposed to be shown for both of the cases with and without irrigation for several rainfall patterns. A dynamically coupled model of a distributed hydrological model (WEB-DHM., Wang et al., 2009) and a rice growth model (SIMRIW-rainfed, Homma et al., 2009) has been developed with a simple irrigation model. The target basin, a small basin in western Cambodia, is basically an ungauged basin and the model was validated by soil moisture, LAI, dry matter production of the rice crop, and rice yield, using both intensive field observation and satellite observations. Calibrating hourly satellite precipitation dataset (GSMaP/NRT) using ground rain gauges, hydrological cycle (soil moisture at three layers, river discharge, irrigatable water amount, water level of each paddy field, water demand of each paddy field, etc.) and rice growth (LAI, developmental index of the rice crop, dry matter

  3. A Web-Based Rice Plant Expert System Using Rule-Based Reasoning

    Directory of Open Access Journals (Sweden)

    Anton Setiawan Honggowibowo

    2009-12-01

    Full Text Available Rice plants can be attacked by various kinds of diseases which are possible to be determined from their symptoms. However, it is to recognize that to find out the exact type of disease, an agricultural expert’s opinion is needed, meanwhile the numbers of agricultural experts are limited and there are too many problems to be solved at the same time. This makes a system with a capability as an expert is required. This system must contain the knowledge of the diseases and symptom of rice plants as an agricultural expert has to have. This research designs a web-based expert system using rule-based reasoning. The rule are modified from the method of forward chaining inference and backward chaining in order to to help farmers in the rice plant disease diagnosis. The web-based rice plants disease diagnosis expert system has the advantages to access and use easily. With web-based features inside, it is expected that the farmer can accesse the expert system everywhere to overcome the problem to diagnose rice diseases.

  4. The dynamics of rice production in Indonesia 1961–2009

    Directory of Open Access Journals (Sweden)

    Dyah R. Panuju

    2013-01-01

    Full Text Available Rice is one of the important agricultural products in Indonesia. The production has been fully supported by infrastructure including research and development as well as government regulations in pricing. Its vulnerability to climate change requires adaptation strategies on irrigation, biotechnology and selection of alternative crops. The primary goal of this paper was to evaluate the historical perspective of the dynamics of rice production, technologies particularly in seed inventions, labour in farming and consumption of rice from 1961 to 2009 in conjunction with land capability. The study of historical rice production could be a benefit for future agricultural planning in Indonesia.

  5. Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS

    Science.gov (United States)

    Ayoade, Modupe Alake

    2017-08-01

    Rice is one of the most preferred food crops in Nigeria. However, local rice production has declined with the oil boom of the 1970s causing demand to outstrip supply. Rice production can be increased through the integration of Geographic Information Systems (GIS) and crop-land suitability analysis and mapping. Based on the key predictor variables that determine rice yield mentioned in relevant literature, data on rainfall, temperature, relative humidity, slope, and soil of Oyo state were obtained. To develop rice suitability maps for the state, two MCE-GIS techniques, namely the Overlay approach and weighted linear combination (WLC), using fuzzy AHP were used and compared. A Boolean land use map derived from a landsat imagery was used in masking out areas currently unavailable for rice production. Both suitability maps were classified into four categories of very suitable, suitable, moderate, and fairly moderate. Although the maps differ slightly, the overlay and WLC (AHP) approach found most parts of Oyo state (51.79 and 82.9 % respectively) to be moderately suitable for rice production. However, in areas like Eruwa, Oyo, and Shaki, rainfall amount received needs to be supplemented by irrigation for increased rice yield.

  6. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    Science.gov (United States)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  7. Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta.

    Science.gov (United States)

    Hassi, Ummehani; Hossain, Md Tawhid; Huq, S M Imamul

    2017-10-10

    Dangers of arsenic contamination are well known in human civilization. The threat increases when arsenic is accumulated in food and livestock through irrigated crops or animal food. Hence, it is important to mitigate the effects of arsenic as much as possible. This paper discusses a process for reducing the level of arsenic in different parts of rice plants with an aquatic fern, Marsilea minuta L. A pot experiment was done to study the possibility of using Marsilea minuta as a phytoremediator of arsenic. Rice and Marsilea minuta were allowed to grow together in soils. As a control, Marsilea minuta was also cultured alone in the presence and absence of arsenic (applied at 1 mg/L as irrigation water). We did not find any significant change in the growth of rice due to the association of Marsilea minuta, though it showed a reduction of approximately 58.64% arsenic accumulation in the roots of rice grown with the association of fern compared to that grown without fern. We measured a bioaccumulation factor (BF) of > 5.34, indicating that Marsilea minuta could be a good phytoremediator of arsenic in rice fields.

  8. Geoscience research helps rice farmers mitigate climate change and world hunger

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Rice is a globally important crop - it comprises 30% of total human caloric consumption - and will be an important crop in the face of expanding population growth. Unfortunately, it is often grown in flooded paddies whose swampy conditions allow microbes to produce the strong greenhouse gas, methane. Over 10% of anthropogenic methane emission to the atmosphere are attributed to rice cultivation. Fortunately, a water-saving irrigation method known as Alternate Wetting and Drying can reduce methane emissions by periodically drying the soil. In our experiments, the method has no effect on rice harvest yields. In our research with rice farmers in Arkansas, we work to evaluate the amount of methane reductions on different fields with this irrigation practice. This research aims to expand the scientific basis for carbon emission reductions programs that enable farmers to be paid for implementing this practice. There are still gaps in our knowledge about how much methane is produced and under what conditions. Our research involves the continuous detection of field methane emissions and correlates then to changes in environmental conditions like the height and temperature of paddy water. Understanding these relationships may help more farmers qualify for credits in the growing carbon emission reductions programs. Because many farmers are already collecting information about their irrigation practices to reduce water applications, we aim to help them re-use this data to more quickly qualify for carbon emissions reductions payments.

  9. Ruling by canal: Governance and system-level design characteristics of large scale irrigation infrastructure in India and Uzbekistan

    Directory of Open Access Journals (Sweden)

    Peter Mollinga

    2016-06-01

    Full Text Available This paper explores the relationship between governance regime and large-scale irrigation system design by investigating three cases: 1 protective irrigation design in post-independent South India; 2 canal irrigation system design in Khorezm Province, Uzbekistan, as implemented in the USSR period, and 3 canal design by the Madras Irrigation and Canal Company, as part of an experiment to do canal irrigation development in colonial India on commercial terms in the 1850s-1860s. The mutual shaping of irrigation infrastructure design characteristics on the one hand and management requirements and conditions on the other has been documented primarily at lower, within-system levels of the irrigation systems, notably at the level of division structures. Taking a 'social construction of technology' perspective, the paper analyses the relationship between technological structures and management and governance arrangements at irrigation system level. The paper finds qualitative differences in the infrastructural configuration of the three irrigation systems expressing and facilitating particular forms of governance and rule, differences that matter for management and use, and their effects and impacts.

  10. Irrigation Capability Evaluation of Illushi Floodplain, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    A.S. Umweni

    2014-06-01

    Full Text Available Many irrigation projects, especially in the developing tropical regions, are embarked upon without any land capability assessment, resulting in avoidable and undesirable ecological consequences. The aim of this study is to assess the irrigation capability potentials of the soils of a rice growing Illushi/Ega community in Edo State of Nigeria. Soils of Illushi/Ega (200 ha were studied to establish their irrigation capabilities. Water samples were collected from the rivers within and near the sites at the proposed points of intake structures and analyzed for salinity (ECw, permeability (SAR and ion toxicity [Chlorine (Cl and Boron (B]. Gravity irrigation suitability assessment was carried out following the guidelines of the United States Bureau for Land Reclamation (USBR, 1953 and FAO (1979. Results showed that about 5.5 % of the land was non-irrigable, 11.5 % was marginally irrigable, 30.5% was moderately irrigable and 52.5 % highly irrigable.Thus about 83 % of the total land area was found to be irrigable. The results of analyses of irrigation water [ECw, SAR and Cl and B (ion toxicity problems in water sources were 0.1 – 0.7 dS m-1, 1.2 – 1.7, 0.6 – 1.8 cmol kg-1 and 0.5 – 0.7 mg kg-1] also show that there is no indication of salinity or ion toxicity problem.

  11. Dynamics of Phenol Degrading—Iron Reducing Bacteria in Intensive Rice Croopping System

    Institute of Scientific and Technical Information of China (English)

    LUWENJING; W.REICHARDT; 等

    2001-01-01

    Field and greenhouse experiments were conducted to investigate the effects of cropping season,nitrogen fertilizer input and aerated fallow o the dynamics of phenol degrading-iron reducing bacteria(PD-IRB)in tropical irrigated rice(Oryza sativa L.)systems,The PD-IRB population density was monitored at different stages of rice growth in two cropping seasons (dry and early wet) in a continuous annual triple rice cropping system under irrigated condition,In this system,the high nitrogen input (195 and 135 kg N ha-1 in dry and ewt seasons ,respectively)plots and control plots receiving no N fertilizer were compared to investigate the effect of nitrogen rate on population size.The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under croppin systems of tropical irrigated rice.However,density of the bacterial populations varied with rice growth stages.Cropping seasons,rhizosphere,and aerated fallow could affect the dynamics of PD-IRB,In the field trial,viable counts of PD-IRB in the topsoil layer(15 cm)ranged between 102 and 108 cells per gram of dry soil.A steep increase in viable counts during the second half of the cropping season suggested that the population density of PD-IRB increased ant advanced crop-growth stages.Population growth of PD-IRB was accelerated during the dry season compared to the wet season,In the greenhouse experiment,the adjacent aerated fallow revealed 1-2 orders of magnitude higher in most probable number(MPN)of PD-IRB than the wet fallow treated plots.As a prominent group of Fe reducing bacteria,PD-IRB predominated in the rhizosphere of rice,since maximum MPN of PD-IRB (2.62×108 g-1 soil) was found in rhizosphere soil.Mineral N fertilizer rates showed no significant effect on PD-IRB population density.

  12. Clustering of 18 Local Black Rice Base on Total Anthocyanin

    Directory of Open Access Journals (Sweden)

    Kristamtini Kristamtini

    2017-10-01

    Full Text Available Black rice has a high anthocyanin content in the pericarp layer, which provides a dark purple color. Anthocyanin serve as an antioxidant that control cholesterol level in the blood, prevent anemia, potentially improve the body's resistance to disease, improve damage to liver cells (hepatitis and chirrosis, prevent impaired kidney function, prevent cancer/tumors, slows down antiaging, and prevent atherosclerosis and cardiovascular disease. Exploration results at AIAT Yogyakarta, Indonesia from 2011 to 2014 obtained 18 cultivar of local black rice Indonesia. The names of the rice are related to the color (black, red or purple formed by anthocyanin deposits in the pericarp layer, seed coat or aleuron. The objective of the study was to classify several types of local black rice from explorations based on the total anthocyanin content. The study was conducted by clustering analyzing the total anthocyanin content of 18 local black rice cultivars in Indonesia. Cluster analysis of total anthocyanin content were done using SAS ver. 9.2. Clustering dendogram shows that there were 4 groups of black rice cultivars based on the total anthocyanin content. Group I consists of Melik black rice, Patalan black rice, Yunianto black rice, Muharjo black rice, Ngatijo black rice, short life of Tugiyo black rice, Andel hitam 1, Jlitheng, and Sragen black rice. Group II consists of Pari ireng, Magelang black hairy rice, Banjarnegara-Wonosobo black rice, and Banjarnegara black rice. Group III consists of NTT black rice, Magelang non hairy black rice, Sembada hitam, and longevity Tugiyo black rice. Group IV consist only one type of black rice namely Cempo ireng. The grouping result indicate the existence of duplicate names among the black rice namely Patalan with Yunianto black rice, and short life Tugiyo with Andel hitam 1 black rice.

  13. Mosquitoes of the rice agroecosystem of Malaysia: species composition and their abundance in relation to rice farming

    International Nuclear Information System (INIS)

    Abu Hassan Ahmad; Che Salmah Md Rawi

    2002-01-01

    Mosquito abundance in relation to rice farming was studied in the Muda and the Kerian Irrigation Schemes. Mosquito larvae were collected using dippers for several growing seasons. Adult mosquitoes were collected by using human bait and cow bait and net trap at nights. Culex, Mansonia and Anopheles were the three genera of mosquito found in the rice agroecosystem. Four species of Mansonia were found biting on human bait. Culex mosquitoes were caught biting on human and cow baits. Culex tritaeniorhynchus, C pseudovishnui, C vishnui, C gelidus and C bitaeniorhynchus were the most common Culex mosquitoes found. Anoheles sinensis and A. peditaeniatus were the most dominant panopheline mosquitoes. High abundance of larvae and adult mosquitoes were observed during ploughing, planting, and tillering stages of rice farming. (Author)

  14. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  15. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential.

    Science.gov (United States)

    Krupnik, Timothy J; Schulthess, Urs; Ahmed, Zia Uddin; McDonald, Andrew J

    2017-01-01

    Changing dietary preferences and population growth in South Asia have resulted in increasing demand for wheat and maize, along side high and sustained demand for rice. In the highly productive northwestern Indo-Gangetic Plains of South Asia, farmers utilize groundwater irrigation to assure that at least two of these crops are sequenced on the same field within the same year. Such double cropping has had a significant and positive influence on regional agricultural productivity. But in the risk-prone and food insecure lower Eastern Indo-Gangetic Plains (EIGP), cropping is less intensive. During the dryer winter months, arable land is frequently fallowed or devoted to lower yielding rainfed legumes. Seeing opportunity to boost cereals production, particularly for rice, donors and land use policy makers have consequently reprioritized agricultural development investments in this impoverished region. Tapping groundwater for irrigation and intensified double cropping, however, is unlikely to be economically viable or environmentally sound in the EIGP. Constraints include saline shallow water tables and the prohibitively high installation and energetic extraction costs from deeper freshwater aquifers. The network of largely underutilized rivers and natural canals in the EIGP could conversely be tapped to provide less energetically and economically costly surface water irrigation (SWI). This approach is now championed by the Government of Bangladesh, which has requested USD 500 million from donors to implement land and water use policies to facilitate SWI and double cropping. Precise geospatial assessment of where freshwater flows are most prominent, or where viable fallow or low production intensity cropland is most common, however remains lacking. In response, we used remotely sensed data to identify agricultural land, detect the temporal availability of freshwater in rivers and canals, and assess crop production intensity over a three-year study period in a 33,750

  16. A multi-stakeholder partnership for the dissemination of alternate wetting and drying water-saving technology for rice farmers in the Philippines

    Directory of Open Access Journals (Sweden)

    Florencia G. Palis

    2017-09-01

    Full Text Available To address issues of water scarcity and food security for sustainable rice farming and increasing production, a water-saving technology called alternate wetting and drying (AWD was disseminated in the Philippines. This study assessed the impact of facilitating a network of stakeholders on disseminating AWD in irrigated rice systems in the Philippines. It used both qualitative and quantitative data collected from 2002 to 2012 in study sites in the country. Engaging multi-stakeholders in adaptive research, training, and dissemination facilitated the process of more interaction by partners. All partners joined a knowledge and dissemination alliance for scaling out AWD activities. This in turn effected a policy outcome, and the synergetic interactions of each partner within and outside the current network fast-tracked the dissemination process and adoption of AWD by farmers. The AWD practice resulted in an increase in irrigated rice area but not necessarily in rice production and farmers’ income. It also reduced labor and fuel consumption, especially in deep-well irrigation systems.

  17. Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water budgets

    Science.gov (United States)

    Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar

    2013-04-01

    Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4

  18. Effects of climate change on rice production and strategies for adaptation in southern China

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Ge, D.; Chen, H.; Fang, J. [Jiangsu Academy of Agricultural Sciences (China)

    1995-12-31

    The CERES-rice (Oryza sativa L.) model was calibrated and validated for nine sites in southern China to examine its suitability to model rice production in this area, using agronomic data from more than three successive years. After determining the genetic coefficients for the cultivars, the CERES-rice model was run a second time for the same locations for a time period of 20 to 30 yr. The model used local climate data (1958--1986) and doubled-CO{sub 2} climate change scenarios generated from the Goddard Institute for Space Studies (GISS), Geophysical Fluid dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO) global climate models (GCMs), with and without supplemental irrigation(to model paddy and upland rice, respectively). The study estimated the potential impacts of climate change on rice production by comparing the base runs with the runs under the three doubled-CO{sub 2} GCM scenarios and it considered the physiological effects of CO{sub 2} on rice growth in each GCM scenario. Finally, the study examined several strategies for adapting to climate change.

  19. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation pot...

  20. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    Science.gov (United States)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in

  1. Costs and benefits of satellite-based tools for irrigation management

    Directory of Open Access Journals (Sweden)

    Francesco eVuolo

    2015-07-01

    Full Text Available This paper presents the results of a collaborative work with farmers and a cost-benefit analysis of geospatial technologies applied to irrigation water management in the semi-arid agricultural area in Lower Austria. We use Earth observation (EO data to estimate crop evapotranspiration (ET and webGIS technologies to deliver maps and irrigation advice to farmers. The study reports the technical and qualitative evaluation performed during a demonstration phase in 2013 and provides an outlook to future developments. The calculation of the benefits is based on a comparison of the irrigation volumes estimated from satellite vs. the irrigation supplied by the farmers. In most cases, the amount of water supplied was equal to the maximum amount of water required by crops. At the same time high variability was observed for the different irrigation units and crop types. Our data clearly indicates that economic benefits could be achieved by reducing irrigation volumes, especially for water-intensive crops. Regarding the qualitative evaluation, most of the farmers expressed a very positive interest in the provided information. In particular, information related to crop ET was appreciated as this helps to make better informed decisions on irrigation. The majority of farmers (54% also expressed a general willingness to pay, either directly or via cost sharing, for such a service. Based on different cost scenarios, we calculated the cost of the service. Considering 20,000 ha regularly irrigated land, the advisory service would cost between 2.5 and 4.3 €/ha per year depending on the type of satellite data used. For comparison, irrigation costs range between 400 and 1000 €/ha per year for a typical irrigation volume of 2,000 cubic meters per ha. With a correct irrigation application, more than 10% of the water and energy could be saved in water-intensive crops, which is equivalent to an economic benefit of 40-100 €/ha per year.

  2. Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan

    Science.gov (United States)

    Lo, M. H.; Wen, W. H.; Chen, C. C.

    2014-12-01

    Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.

  3. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems

    Science.gov (United States)

    Langerwisch, Fanny; Václavík, Tomáš; von Bloh, Werner; Vetter, Tobias; Thonicke, Kirsten

    2018-01-01

    Irrigated rice croplands are among the world’s most important agro-ecosystems. They provide food for more than 3.5 billion people and a range of other ecosystem services (ESS). However, the sustainability of rice agro-ecosystems is threatened by continuing climate and land-use changes. To estimate their combined effects on a bundle of ESS, we applied the vegetation and hydrology model LPJmL to seven study areas in the Philippines and Vietnam. We quantified future changes in the provision of four essential ESS (carbon storage, carbon sequestration, provision of irrigation water and rice production) under two climate scenarios (until 2100) and three site-specific land-use scenarios (until 2030), and examined the synergies and trade-offs in ESS responses to these drivers. Our results show that not all services can be provided in the same amounts in the future. In the Philippines and Vietnam the projections estimated a decrease in rice yields (by approximately 30%) and in carbon storage (by 15%) and sequestration (by 12%) towards the end of the century under the current land-use pattern. In contrast, the amount of available irrigation water was projected to increase in all scenarios by 10%-20%. However, the results also indicate that land-use change may partially offset the negative climate impacts in regions where cropland expansion is possible, although only at the expense of natural vegetation. When analysing the interactions between ESS, we found consistent synergies between rice production and carbon storage and trade-offs between carbon storage and provision of irrigation water under most scenarios. Our results show that not only the effects of climate and land-use change alone but also the interaction between ESS have to be considered to allow sustainable management of rice agro-ecosystems under global change.

  4. Determination of trace concentrations of aluminium in rice samples by INAA and PIGE methods

    International Nuclear Information System (INIS)

    Nanda, B.B.; Biswal, R.R.; Acharya, R.; Pujari, P.K.

    2015-01-01

    Aluminium is one of the toxic elements entering human body mainly through food and food products. Though its bioavailability is very less, it is necessary to evaluate its total concentrations in food and food products entering to the body through. In order to evaluate total aluminium contents in various food items for daily dietary intake of aluminum, authors have systematically planned to carry out experiments in various food items including rice. Rice is the main food in many parts of India as well as in Odisha. Rice samples under study belong to three categories; (i) various rice samples from local market, (ii) various rice samples grown in similar irrigation (soil and water) conditions and (iii) same variety of rice with different irrigation conditions. Solid samples (pre-cleaned) were powdered, homogenized and taken for analysis by two nuclear analytical techniques (NATs) namely instrumental neutron activation analysis (INAA) using reactor neutrons at BARC and particle induced gamma ray emission (PIGE) using 4 MeV proton beam (20 nA current) from 3 MV Tandetron at IOP, Bhubaneswar in conjunction with high resolution gamma-ray spectrometry. Samples of 10-50 mg for INAA and 250 mg (pelletized in cellulose) for PIGE were used for experiments. For INAA, samples were irradiated at PCF, Dhruva reactor for 1 minute

  5. Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Dembelé, Filifing; Daou, Ibrahima

    2016-01-01

    Biomass from agricultural residues, especially lignocellulosic biomass, is not only seen as a sustainable biomass source for the production of electricity, but increasingly as a resource for the production of biogas and second generation biofuel in developing countries. Based on empirical research...... in an irrigated rice-growing area, Office du Niger, in Mali, this article builds scenarios for the sustainable potential of rice straw. The paper concludes that there is great uncertainty regarding the size of the sustainable resources of rice straw available for energy, but that the most likely scenario...

  6. Effect of rice hull mulch on nutrient concentration of fertilized irrigation water

    Science.gov (United States)

    Parboiled rice hulls are an effective mulch for controlling weeds in nursery containers. A layer of rice hulls between 1.25 and 2.5 cm deep has been shown to provide effective control of liverwort (Marchantia polymorpha), bittercress (Cardamine flexuosa), and creeping woodsorrel (Oxalis corniculata...

  7. The quiet revolution in Asia's rice value chains.

    Science.gov (United States)

    Reardon, Thomas; Chen, Kevin Z; Minten, Bart; Adriano, Lourdes; Dao, The Anh; Wang, Jianying; Gupta, Sunipa Das

    2014-12-01

    There is a rapid transformation afoot in the rice value chain in Asia. The upstream is changing quickly-farmers are undertaking capital-led intensification and participating in burgeoning markets for land rental, fertilizer and pesticides, irrigation water, and seed, and shifting from subsistence to small commercialized farms; in some areas landholdings are concentrating. Midstream, in wholesale and milling, there is a quiet revolution underway, with thousands of entrepreneurs investing in equipment, increasing scale, diversifying into higher quality, and the segments are undergoing consolidation and vertical coordination and integration. Mills, especially in China, are packaging and branding, and building agent networks in wholesale markets, and large mills are building direct relationships with supermarkets. The downstream retail segment is undergoing a "supermarket revolution," again with the lead in change in China. In most cases the government is not playing a direct role in the market, but enabling this transformation through infrastructural investment. The transformation appears to be improving food security for cities by reducing margins, offering lower consumer rice prices, and increasing quality and diversity of rice. This paper discusses findings derived from unique stacked surveys of all value chain segments in seven zones, more and less developed, around Bangladesh, China, India, and Vietnam. © 2014 New York Academy of Sciences.

  8. Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality

    Directory of Open Access Journals (Sweden)

    Ngonidzashe Chirinda

    2018-03-01

    Full Text Available The burgeoning demand for rice in Latin America and Caribbean (LAC exceeds supply, resulting in a rice deficit. To overcome this challenge, rice production should be increased, albeit sustainably. However, since rice production is associated with increases in the atmospheric concentration of two greenhouse gases (GHGs, namely methane (CH4 and nitrous oxide (N2O, the challenge is on ensuring that production increases are not associated with an increase in GHG emissions and thus do not cause an increase in GHG emission intensities. Based on current understanding of drivers of CH4 and N2O production, we provide here insights on the potential climate change mitigation benefits of management and technological options (i.e., seeding, tillage, irrigation, residue management pursued in the LAC region. Studies conducted in the LAC region show intermittent irrigation or alternate wetting and drying of rice fields to reduce CH4 emissions by 25–70% without increasing N2O emissions. Results on yield changes associated with intermittent irrigation remain inconclusive. Compared to conventional tillage, no-tillage and anticipated tillage (i.e., fall tillage cause a 21% and 25% reduction in CH4 emissions, respectively. From existing literature, it was unambiguous that the mitigation potential of most management strategies pursued in the LAC region need to be quantified while acknowledging country-specific conditions. While breeding high yielding and low emitting rice varieties may represent the most promising and possibly sustainable approach for achieving GHG emission reductions without demanding major changes in on-farm management practices, this is rather idealistic. We contend that a more realistic approach for realizing low GHG emitting rice production systems is to focus on increasing rice yields, for obvious food security reasons, which, while not reducing absolute emissions, should translate to a reduction in GHG emission intensities. Moreover, there

  9. Econometric Model of Rice Policy Based On Presidential Instruction

    Science.gov (United States)

    Abadi Sembiring, Surya; Hutauruk, Julia

    2018-01-01

    The objective of research is to build an econometric model based on Presidential Instruction rice policy. The data was monthly time series from March 2005 to September 2009. Rice policy model specification using simultaneous equation, consisting of 14 structural equations and four identity equation, which was estimated using Two Stages Least Squares (2SLS) method. The results show that: (1) an increase of government purchasing price of dried harvest paddy has a positive impact on to increase in total rice production and community rice stock, (2) an increase community rice stock lead to decrease the rice imports, (3) an increase of the realization of the distribution of subsidized ZA fertilizers and the realization of the distribution of subsidized NPK fertilizers has a positive impact on to increase in total rice production and community rice stock and to reduce rice imports, (4) the price of the dried harvest paddy is highly responsive to the water content of dried harvest paddy both the short run and long run, (5) the quantity of rice imported is highly responsive to the imported rice price, both short run and long run.

  10. REGULATED DEFICIT IRRIGATION AND DIFFERENT MULCH TYPES ON FRUIT QUALITY AND YIELD OF WATERMELON

    Directory of Open Access Journals (Sweden)

    KLEITON ROCHA SARAIVA

    2017-01-01

    Full Text Available The objective of this work was to assess the pulp resistance, soluble solids and yield of watermelon fruits grown under different irrigation managements (determined by the ISAREG model and mulches, and their interactions. After a survey carried out on local producers, two experiments were conducted, using a completely randomized block design in split - plot arrangement with four replications, in the Teaching, Research and Extension Unit (UEPE of the Federal Institute of Ceara (IFCE, Jaguaribe - Apodi Irrigation District (DIJA, State of Ceara, Brazil. The treatments consisted of four irrigation managements in the plots, M1 (100% of the available - water capacity (AWC of the soil, M2 (80%, M3 (60% and M4 (average water depth used by local producers and four mulch types in the sub - plots, without mulching (C0 with rice husk (C1, white plastic (C2 and black plastic (C3 as mulches. The results were subjected to analysis of variance, and significant results were subjected to regression (irrigation managements, average test (mulches and trend graphs (interaction between the factors. The irrigation management practiced during the watermelon crop cycle by the local producers of the Irrigation District of Jaguaribe - Apodi (DIJA in the State of Ceara, Brazil, is not appropriated, since they usually apply more water than the highest water depth determined by the ISAREG model (100% of the AWC. The plants grown under irrigation water depth of 365.20 mm (M1 and soils with mulches of rice husk or white plastic had the highest yields and fruits with better quality of soluble solids and pulp resistance.

  11. Content Of 2,4-D-14C Herbicide Residue In Water And Soil Of Irrigated Rice Field System

    International Nuclear Information System (INIS)

    Chairul, Sofnie M.; Djabir, Elida; Magdalena, Nelly

    2000-01-01

    The investigation of 2,4-D exp.-14C herbicide residue in water and soil of irrigated rice field system was carried out. Rice plant and weeds (Monochoria vaginalis Burn. F. Presl) were planted in 101 buckets using two kinds of soil condition, I.e. normal soil and 30 % above normal compact soil. After one week planting, the plants were sprayed with 1 u Ci of 2,4-D exp.-14C and 0,4 mg non labeled 2,4-D. The herbicide residue content was determined 0, 2, 4, 8 and 10 weeks after spraying with 2,4-D herbicide. The analysis was done using Combustion Biological Oxidizer merk Harvey ox-400, and counted with Liquid Scintillation Counter merk Beckman model LS-1801. The results indicates that the herbicide contents in water and soil decrease from the first spraying with herbicide until harvest herbicide Residue content in water after harvest was 0.87 x 10 exp.-6 ppm for soil normal condition, and 0.59 x 10 exp.-6 pm for the soil 30 % up normal condition, while herbicide content in soil was 1.54 x 10 exp.-6 ppm for soil normal condition and 1.48 x 10 exp.-6 ppm for soil 30 % up normal. 2,4-D herbicide residue content in rice after harvest was 0.27 x 10 exp.-6 ppm for normal soil condition and 0.25 x 10 exp.-6 ppm for the soil 30 % up normal. 2,4-D herbicide residue content in roots and leaves of weeds after harvest were respectively 0.29 x 10 exp.-6 ppm and 0.18 x 10 exp.-6 for normal soil condition, while for 30 % up normal soil were 0.25 x 10 exp.-5 ppm and 0.63 x 10 exp.-7 ppm. This result indicates that there is no effect pollution to surrounding area, because the herbicide content is still bellow the allowed detection limit, 0.05 ppm

  12. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  13. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  14. Implications of non-sustainable agricultural water policies for the water-food nexus in large-scale irrigation systems: A remote sensing approach

    Science.gov (United States)

    Al Zayed, Islam Sabry; Elagib, Nadir Ahmed

    2017-12-01

    This study proposes a novel monitoring tool based on Satellite Remote Sensing (SRS) data to examine the status of water distribution and Water Use Efficiency (WUE) under changing water policies in large-scale and complex irrigation schemes. The aim is to improve our understanding of the water-food nexus in such schemes. With a special reference to the Gezira Irrigation Scheme (GeIS) in Sudan during the period 2000-2014, the tool devised herein is well suited for cases where validation data are absent. First, it introduces an index, referred to as the Crop Water Consumption Index (CWCI), to assess the efficiency of water policies. The index is defined as the ratio of actual evapotranspiration (ETa) over agricultural areas to total ETa for the whole scheme where ETa is estimated using the Simplified Surface Energy Balance model (SSEB). Second, the tool uses integrated Normalized Difference Vegetation Index (iNDVI), as a proxy for crop productivity, and ETa to assess the WUE. Third, the tool uses SSEB ETa and NDVI in an attempt to detect wastage of water. Four key results emerged from this research as follows: 1) the WUE has not improved despite the changing agricultural and water policies, 2) the seasonal ETa can be used to detect the drier areas of GeIS, i.e. areas with poor irrigation water supply, 3) the decreasing trends of CWCI, slope of iNDVI-ETa linear regression and iNDVI are indicative of inefficient utilization of irrigation water in the scheme, and 4) it is possible to use SSEB ETa and NDVI to identify channels with spillover problems and detect wastage of rainwater that is not used as a source for irrigation. In conclusion, the innovative tool developed herein has provided important information on the efficiency of a large-scale irrigation scheme to help rationalize laborious water management processes and increase productivity.

  15. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling

    Science.gov (United States)

    Portmann, Felix T.; Siebert, Stefan; DöLl, Petra

    2010-03-01

    To support global-scale assessments that are sensitive to agricultural land use, we developed the global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). With a spatial resolution of 5 arc min (about 9.2 km at the equator), MIRCA2000 provides both irrigated and rainfed crop areas of 26 crop classes for each month of the year. The data set covers all major food crops as well as cotton. Other crops are grouped into categories (perennial, annual, and fodder grasses). It represents multicropping systems and maximizes consistency with census-based national and subnational statistics. According to MIRCA2000, 25% of the global harvested areas are irrigated, with a cropping intensity (including fallow land) of 1.12, as compared to 0.84 for the sum of rainfed and irrigated harvested crops. For the dominant crops (rice (1.7 million km2 harvested area), wheat (2.1 million km2), and maize (1.5 million km2)), roughly 60%, 30%, and 20% of the harvested areas are irrigated, respectively, and half of the citrus, sugar cane, and cotton areas. While wheat and maize are the crops with the largest rainfed harvested areas (1.5 million km2 and 1.2 million km2, respectively), rice is clearly the crop with the largest irrigated harvested area (1.0 million km2), followed by wheat (0.7 million km2) and maize (0.3 million km2). Using MIRCA2000, 33% of global crop production and 44% of total cereal production were determined to come from irrigated agriculture.

  16. Mercury flow through an Asian rice-based food web

    International Nuclear Information System (INIS)

    Abeysinghe, Kasun S.; Qiu, Guangle; Goodale, Eben; Anderson, Christopher W.N.; Bishop, Kevin; Evers, David C.; Goodale, Morgan W.; Hintelmann, Holger; Liu, Shengjie

    2017-01-01

    Mercury (Hg) is a globally-distributed pollutant, toxic to humans and animals. Emissions are particularly high in Asia, and the source of exposure for humans there may also be different from other regions, including rice as well as fish consumption, particularly in contaminated areas. Yet the threats Asian wildlife face in rice-based ecosystems are as yet unclear. We sought to understand how Hg flows through rice-based food webs in historic mining and non-mining regions of Guizhou, China. We measured total Hg (THg) and methylmercury (MeHg) in soil, rice, 38 animal species (27 for MeHg) spanning multiple trophic levels, and examined the relationship between stable isotopes and Hg concentrations. Our results confirm biomagnification of THg/MeHg, with a high trophic magnification slope. Invertivorous songbirds had concentrations of THg in their feathers that were 15x and 3x the concentration reported to significantly impair reproduction, at mining and non-mining sites, respectively. High concentrations in specialist rice consumers and in granivorous birds, the later as high as in piscivorous birds, suggest rice is a primary source of exposure. Spiders had the highest THg concentrations among invertebrates and may represent a vector through which Hg is passed to vertebrates, especially songbirds. Our findings suggest there could be significant population level health effects and consequent biodiversity loss in sensitive ecosystems, like agricultural wetlands, across Asia, and invertivorous songbirds would be good subjects for further studies investigating this possibility. - Highlights: • Hg concentrations were measured across rice-based food webs in Guizhou, China. • Of 38 animal species, THg concentrations were highest for invertivorous songbirds. • High THg levels in rice pests and in granivorous birds suggest rice as a source. • Levels of THg in songbird feathers at mining site were among highest ever recorded. • Even at non-mining site, THg in such

  17. Studying the Impacts of Environmental Factors and Agricultural Management on Methane Emissions from Rice Paddies Using a Land Surface Model

    Science.gov (United States)

    Lin, T. S.; Gahlot, S.; Shu, S.; Jain, A. K.; Kheshgi, H. S.

    2017-12-01

    Continued growth in population is projected to drive increased future demand for rice and the methane emissions associated with its production. However, observational studies of methane emissions from rice have reported seemingly conflicting results and do not all support this projection. In this study we couple an ecophysiological process-based rice paddy module and a methane emission module with a land surface model, Integrated Science Assessment Model (ISAM), to study the impacts of various environmental factors and agricultural management practices on rice production and methane emissions from rice fields. This coupled modeling framework accounts for dynamic rice growth processes with adaptation of photosynthesis, rice-specific phenology, biomass accumulation, leaf area development and structures responses to water, temperature, light and nutrient stresses. The coupled model is calibrated and validated with observations from various rice cultivation fields. We find that the differing results of observational studies can be caused by the interactions of environmental factors, including climate, atmospheric CO2 concentration, and N deposition, and agricultural management practices, such as irrigation and N fertilizer applications, with rice production at spatial and temporal scales.

  18. Effect of water management, tillage options and phosphorus status on arsenic uptake in rice.

    Science.gov (United States)

    Talukder, A S M H M; Meisner, C A; Sarkar, M A R; Islam, M S

    2011-05-01

    High arsenic (As) concentrations in soil may lead to elevated concentrations of arsenic in agricultural products. Field experiments were conducted to examine the effects of water management (WM) and Phosphorus (P) rates on As uptake, rice growth, yield and yield attributes of winter (boro) and monsoon (aman) rice in an As contaminated soil-water at Gobindagonj, Gaibandha, Bangladesh in 2004 and 2005. Significantly, the highest average grain yields (6.88±0.07 t ha(-1) in boro 6.38±0.06 t ha(-1) in aman) were recorded in permanent raised bed (PRB; aerobic WM: Eh=+360 mV) plus 100% P amendment. There was a 12% yield increase over conventional till on flat (CTF; anaerobic WM: Eh=-56 mV) at the same P level. In boro, the As content in grain and As content in straw were about 3 and 6 times higher in CTF compared to PRB, respectively. The highest total As content (0.646±0.01 ppm in grain and 10.93±0.19 ppm in straw) was recorded under CTF, and the lowest total As content (0.247±0.01 and 1.554±0.09 ppm in grain and straw, respectively) was recorded under PRB (aerobic WM). The results suggest that grain and straw As are closely associated in boro rice. The furrow irrigation approach of the PRB treatments consistently reduced irrigation input by 29-31% for boro and 27-30% for aman rice relative to CTF treatments in 2004 and 2005, respectively, thus reducing the amount of As added to the soil from the As-contaminated irrigation water. Yearly, 30% less As was deposited to the soil compared to CTF system through irrigation water during boro season. High As concentrations in grain and straw in rice grown using CTF in the farmers' field, and the fact that using PRB reduced grain As concentrations to value less than half of the proposed food hygiene standard. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Using artificial neural network and satellite data to predict rice yield in Bangladesh

    Science.gov (United States)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-09-01

    Rice production in Bangladesh is a crucial part of the national economy and providing about 70 percent of an average citizen's total calorie intake. The demand for rice is constantly rising as the new populations are added in every year in Bangladesh. Due to the increase in population, the cultivation land decreases. In addition, Bangladesh is faced with production constraints such as drought, flooding, salinity, lack of irrigation facilities and lack of modern technology. To maintain self sufficiency in rice, Bangladesh will have to continue to expand rice production by increasing yield at a rate that is at least equal to the population growth until the demand of rice has stabilized. Accurate rice yield prediction is one of the most important challenges in managing supply and demand of rice as well as decision making processes. Artificial Neural Network (ANN) is used to construct a model to predict Aus rice yield in Bangladesh. Advanced Very High Resolution Radiometer (AVHRR)-based remote sensing satellite data vegetation health (VH) indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used as input variables and official statistics of Aus rice yield is used as target variable for ANN prediction model. The result obtained with ANN method is encouraging and the error of prediction is less than 10%. Therefore, prediction can play an important role in planning and storing of sufficient rice to face in any future uncertainty.

  20. Improved irrigation scheduling for pear-jujube trees based on trunk ...

    African Journals Online (AJOL)

    A suitable indicator for scheduling pear-jujube (Ziziphus jujuba Mill.) irrigation in China was developed based on trunk diameter fluctuations (TDF). Parameters derived from TDF responses to variations in soil matrix potential (Ψsoil) were compared under deficit and well irrigation. Maximum daily shrinkage (MDS) increased ...

  1. Improving water management practices to reduce nutrient export from rice paddy fields.

    Science.gov (United States)

    Zhang, Zhi-Jian; Yao, Ju-Xiang; Wang, Zhao-De; Xu, Xin; Lin, Xian-Yong; Czapar, George F; Zhang, Jian-Ying

    2011-01-01

    Nitrogen (N) and phosphorus (P) loss from rice paddy fields represents a significant threat to water quality in China. In this project, three irrigation-drainage regimes were compared, including one conventional irrigation-drainage regime, i.e. continuous submergence regime (CSR), and two improved regimes, i.e. the alternating submergence-nonsubmergence regime (ASNR) and the zero-drainage irrigation technology (ZDIT), to seek cost-effective practices for reducing nutrient loss. The data from these comparisons showed that, excluding the nutrient input from irrigation, the net exports of total N and total P via surface field drainage ranged from -3.93 to 2.39 kg ha and 0.17 to 0.95 g ha(-1) under the CSR operation, respectively, while N loss was -2.46 to -2.23 kg ha(-1) and P export was -0.65 to 0.31 kg ha(-1) under the improved regimes. The intensity of P export was positively correlated to the rate of P application. Reducing the draining frequency or postponing the draining operation would shift the ecological role of the paddy field from a nutrient export source to an interception sink when ASNR or the zero-drainage water management was used. In addition, since the rice yields are being guaranteed at no additional cost, the improved irrigation-drainage operations would have economic as well as environmental benefits.

  2. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar.

    Science.gov (United States)

    Hu, Pengjie; Ouyang, Younan; Wu, Longhua; Shen, Libo; Luo, Yongming; Christie, Peter

    2015-01-01

    Pot and field experiments were conducted to investigate the effects of water regimes on the speciation and accumulation of arsenic (As) and cadmium (Cd) in Brazilian upland rice growing in soils polluted with both As and Cd. In the pot experiment constant and intermittent flooding treatments gave 3-16 times higher As concentrations in soil solution than did aerobic conditions but Cd showed the opposite trend. Compared to arsenate, there were more marked changes in the arsenite concentrations in the soil solution as water management shifted, and therefore arsenite concentrations dominated the As speciation and bioavailability in the soil. In the field experiment As concentrations in the rice grains increased from 0.14 to 0.21 mg/kg while Cd concentrations decreased from 0.21 to 0.02 mg/kg with increasing irrigation ranging from aerobic to constantly flooding conditions. Among the various water regimes the conventional irrigation treatment produced the highest rice grain yield of 6.29 tons/ha. The As speciation analysis reveals that the accumulation of dimethylarsinic acid (from 11.3% to 61.7%) made a greater contribution to the increase in total As in brown rice in the intermittent and constant flooding treatments compared to the intermittent-aerobic treatment. Thus, water management exerted opposite effects on Cd and As speciation and bioavailability in the soil and consequently on their accumulation in the upland rice. Special care is required when irrigation regime methods are employed to mitigate the accumulation of metal(loid)s in the grain of rice grown in soils polluted with both As and Cd. Copyright © 2014. Published by Elsevier B.V.

  3. Mapping rice extent map with crop intensity in south China through integration of optical and microwave images based on google earth engine

    Science.gov (United States)

    Zhang, X.; Wu, B.; Zhang, M.; Zeng, H.

    2017-12-01

    Rice is one of the main staple foods in East Asia and Southeast Asia, which has occupied more than half of the world's population with 11% of cultivated land. Study on rice can provide direct or indirect information on food security and water source management. Remote sensing has proven to be the most effective method to monitoring the cropland in large scale by using temporary and spectral information. There are two main kinds of satellite have been used to mapping rice including microwave and optical. Rice, as the main crop of paddy fields, the main feature different from other crops is flooding phenomenon at planning stage (Figure 1). Microwave satellites can penetrate through clouds and efficiency on monitoring flooding phenomenon. Meanwhile, the vegetation index based on optical satellite can well distinguish rice from other vegetation. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for processing very large geospatial datasets. Google has collected large number of remote sensing satellite data around the world, which providing researchers with the possibility of doing application by using multi-source remote sensing data in a large area. In this work, we map rice planting area in south China through integration of Landsat-8 OLI, Sentienl-2, and Sentinel-1 Synthetic Aperture Radar (SAR) images. The flowchart is shown in figure 2. First, a threshold method the VH polarized backscatter from SAR sensor and vegetation index including normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from optical sensor were used the classify the rice extent map. The forest and water surface extent map provided by earth engine were used to mask forest and water. To overcome the problem of the "salt and pepper effect" by Pixel-based classification when the spatial resolution increased, we segment the optical image and use the pixel- based classification results to merge the object

  4. Efficacy of Vancomycin-based Continuous Triple Antibiotic Irrigation in Immediate, Implant-based Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Lisa M. Hunsicker, MD, FACS

    2017-12-01

    Conclusions:. Continuous breast irrigation with a vancomycin-based triple antibiotic solution is a safe and effective accompaniment for immediate implant reconstruction. Use of intramuscular anesthetic injection for postoperative pain control allows the elastomeric infusion pump to be available for local tissue antibiotic irrigation.

  5. Induction of drought tolerant mutants of rice

    International Nuclear Information System (INIS)

    El-Hissewy, A.A.; Abd Allah, A.

    2001-01-01

    The ultimate goal of crop breeding is to develop varieties with a high yield potential and desirable agronomic characteristics. In Egypt, the most important qualities sought by breeders have been high yield potential, resistance to major diseases and insects, and improved grain and eating quality. However, breeding efforts should concentrate on varieties with the potential to minimize yield losses under unfavorable conditions such as drought, and to maximize yields when conditions are favorable. Rice (Oryza sativa L.) in Egypt is completely irrigated and a significant portion of the rice cultivated area is subject to water deficit resulting from an inadequate or insufficient irrigation supply. Drought tolerance is a complex trait in that it results from the interaction of histological and physiological characters of plant with environmental factors, both above-ground and under-ground. Accordingly, root characters are closely related to drought tolerance. Little attention has been paid in Egyptian breeding programs to root characters and their relation to shoot characters. Furthermore, induced mutations are considered as one of the most important methods to induce useful mutants, especially with improved root characters, to overcome the drought problem. The present investigation aimed to study the effect of different doses of gamma rays on several characters of three Egyptian rice varieties, i.e. 'Giza 171', 'Giza 175' and 'Giza 176' and to induce one or more mutants possessing drought tolerance

  6. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  7. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  8. Production of pulse in mono-cropped rice system in the coastal region of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Nanda, P.; Chandra, Dinesh; Ghorai, A.K.; Behera, M.S.

    2001-04-01

    This experiment was undertaken with an objective to increase the yield of black-gram leguminous pulse crop through optimal doses of phosphatic fertilizer with supplemental irrigation in mono-cropped rice-fallow regions of India. Irrigation and phosphorus fertilizer application were introduced for enhancing productivity of black-gram to provide better returns to available water resources

  9. Diversity and population dynamics of pests and predators in irrigated rice fields with treated and untreated pesticide.

    Science.gov (United States)

    Rattanapun, W

    2012-01-01

    The monitoring of rice pests and their predators in pesticide untreated and treated rice fields was conducted at the southern of Thailand. Twenty-two species in 15 families and 6 orders of rice pests were sampled from untreated rice field. For treated rice field, 22 species in 14 families and 5 orders of rice pest were collected. Regardless of treatment type, dominant species and individual number of rice pest varied to physiological stage of rice. Lepidopteran pests had highest infestation during the vegetative stage of rice growth, while hemipteran pests composed of hopper species (Hemipetra: Auchenorrhyncha) and heteropteran species (Hemiptera: Heteroptera) were dominant groups during the reproductive stage and grain formation and ripening stage of rice growth. In contrast, dominant species of predator did not change throughout rice growing season. There were 35 species in 25 families and seven orders and 40 species in 29 families and seven orders of predators collected from untreated and treated rice field, respectively. Major predators of both rice fields were Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae), Tetragnatha sp. (Araneae: Tetragnathidae) and Agriocnemis pygmaea Rambur (Odonata: Agrionidae). The population dynamic of predators were not related with rice pest population in both treatments. However, the fluctuation of population pattern of rice pests in the untreated treatment were more distinctly synchronized with their predators than that of the treated treatment. There were no significant differences in the total number of rice pest and predator between two treatments at vegetative and reproductive stages of rice growth. Untreated rice field had a higher population number of predator and a lower population number of rice pest than that of treated rice field during grain formation and ripening stages. These results indicated the ago-ecosystem balance in rice fields could be produced through minimal pesticide application, in order to allow

  10. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?

    NARCIS (Netherlands)

    Kadam, N.N.; Yin, X.; Bindraban, P.S.; Struik, P.C.; Jagadish, K.S.V.

    2015-01-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other

  11. Design of a micro-irrigation system based on the control volume method

    Directory of Open Access Journals (Sweden)

    Chasseriaux G.

    2006-01-01

    Full Text Available A micro-irrigation system design based on control volume method using the back step procedure is presented in this study. The proposed numerical method is simple and consists of delimiting an elementary volume of the lateral equipped with an emitter, called « control volume » on which the conservation equations of the fl uid hydrodynamicʼs are applied. Control volume method is an iterative method to calculate velocity and pressure step by step throughout the micro-irrigation network based on an assumed pressure at the end of the line. A simple microcomputer program was used for the calculation and the convergence was very fast. When the average water requirement of plants was estimated, it is easy to choose the sum of the average emitter discharge as the total average fl ow rate of the network. The design consists of exploring an economical and effi cient network to deliver uniformly the input fl ow rate for all emitters. This program permitted the design of a large complex network of thousands of emitters very quickly. Three subroutine programs calculate velocity and pressure at a lateral pipe and submain pipe. The control volume method has already been tested for lateral design, the results from which were validated by other methods as fi nite element method, so it permits to determine the optimal design for such micro-irrigation network

  12. Elemental composition of Malawian rice.

    OpenAIRE

    Joy, EJM; Louise Ander, E; Broadley, MR; Young, SD; Chilimba, AD; Hamilton, EM; Watts, MJ

    2016-01-01

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic...

  13. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania.

    Science.gov (United States)

    Ijumba, J N; Mosha, F W; Lindsay, S W

    2002-03-01

    Malaria vector Anopheles and other mosquitoes (Diptera: Culicidae) were monitored for 12 months during 1994-95 in villages of Lower Moshi irrigation area (37 degrees 20' E, 3 degrees 21' S; approximately 700 m a.s.l.) south of Mount Kilimanjaro in northern Tanzania. Adult mosquito populations were sampled fortnightly by five methods: human bait collection indoors (18.00-06.00 hours) and outdoors (18.00-24.00 hours); from daytime resting-sites indoors and outdoors; by CDC light-traps over sleepers. Anopheles densities and rates of survival, anthropophily and malaria infection were compared between three villages representing different agro-ecosystems: irrigated sugarcane plantation; smallholder rice irrigation scheme, and savannah with subsistence crops. Respective study villages were Mvuleni (population 2200), Chekereni (population 3200) and Kisangasangeni (population approximately/= 1000), at least 7 km apart. Anopheles arabiensis Patton was found to be the principal malaria vector throughout the study area, with An. funestus Giles sensu lato of secondary importance in the sugarcane and savannah villages. Irrigated sugarcane cultivation resulted in water pooling, but this did not produce more vectors. Anopheles arabiensis densities averaged four-fold higher in the ricefield village, although their human blood-index was significantly less (48%) than in the sugarcane (68%) or savannah (66%) villages, despite similar proportions of humans and cows (ratio 1:1.1-1.4) as the main hosts at all sites. Parous rates, duration of the gonotrophic cycle and survival rates of An. arabiensis were similar in villages of all three agro-ecosystems. The potential risk of malaria, based on measurements of vectorial capacity of An. arabiensis and An.funestus combined, was four-fold higher in the ricefield village than in the sugarcane or savannah villages nearby. However, the more realistic estimate of malaria risk, based on entomological inoculation rates, indicated that exposure to

  14. Adapting rice production to climate change for sustainable blue water consumption: an economic and virtual water analysis

    Science.gov (United States)

    Darzi-Naftchali, Abdullah; Karandish, Fatemeh

    2017-12-01

    Sustainable utilization of blue water resources under climate change is of great significance especially for producing high water-consuming crops in water-scarce regions. Based on the virtual water concept, we carried out a comprehensive field-modeling research to find the optimal agricultural practices regarding rice blue water consumption under prospective climate change. The DSSAT-CERES-Rice model was used in combination with 20 GCMs under three Representative Concentration Pathways of low (RCP2.6), intermediate (RCP4.6), and very high (RCP8.5) greenhouse concentrations to predict rice yield and water requirement and related virtual water and economic return for the base and future periods. The crop model was calibrated and validated based on the 2-year field data obtained from consolidated paddy fields of the Sari Agricultural Sciences and Natural Resources University during 2011 and 2012 rice cropping cycles. Climate change imposes an increase of 0.02-0.04 °C in air temperature which consequently shifts rice growing seasons to winter season, and shorten the length of rice physiological maturity period by 2-15 days. While rice virtual water reduces by 0.1-20.6% during 2011-2070, reduced rice yield by 3.8-22.6% over the late twenty-first century results in a considerable increase in rice virtual water. By increasing the contribution of green water in supplying crop water requirement, earlier cropping could diminish blue water consumption for rice production in the region while cultivation postponement increases irrigation water requirement by 2-195 m3 ha-1. Forty days delay in rice cultivation in future will result in 29.9-40.6% yield reduction and 43.9-60% increase in rice virtual water under different scenarios. Earlier cropping during the 2011-2040 and 2041-2070 periods would increase water productivity, unit value of water, and economic value of blue water compared to the base period. Based on the results, management of rice cultivation calendar is a

  15. Energy input in conventional and organic paddy rice production in Missouri and Italy: A comparative case study.

    Science.gov (United States)

    Pagani, Marco; Johnson, Thomas G; Vittuari, Matteo

    2017-03-01

    The expected decline in availability of fossil fuels over the next several decades, either because of resource depletion or because of limits on carbon emissions, is leading to a keen interest in finding more sustainable energy sources. For this reason, it is useful to assess the energy footprint of alternative agricultural systems for crops and animal production and to identify potential transition scenarios to systems largely based on renewable energy. The present work aims to assess for the first time a comparative analysis of energy inputs in rice production systems in Southern Europe (Piemonte, Italy) and in North America (Missouri, USA). A total of twelve rice farms, either conventional or organic, were selected, collecting detailed data on direct (fuel and electricity) and indirect (machinery, fertilizers, pesticides, and seeds) energy inputs. While energy input of conventional farms ranged from 3.5 to 7 MJ/kg paddy rice, organic farming could reduce inputs by more than 50% with only 8% yield decrease. A significant reduction in fuel or electricity use can be achieved also with no till and surface irrigation. The use of renewable energy sources, as already practiced by some farms, could more than cover their electrical energy requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Land Evaluation for improved Rice Production in Watari Irrigation ...

    African Journals Online (AJOL)

    ... suggested to overcome these limitation and upgrade the suitability of the mapping units for increased rice production are; application of inorganic fertilizer, improve the low levels of nutrients and organic matter contents of the soil in the area and other recommendations include land leveling and conservation measures to ...

  17. Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum

    Directory of Open Access Journals (Sweden)

    Juliano de Bastos Pazini

    2016-09-01

    Full Text Available Telenomus and Trichogramma species stand out as agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. This study aimed at evaluating the toxicity of pesticides used in irrigated rice crop on Telenomus podisi Ashmead (Hymenoptera: Platygastridae and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae. Adults of these parasitoids were exposed to dry residues of pesticides, in a completely randomized experiment, with 25 treatments (24 pesticides + control and four replications. The insecticides clorantraniliprole, flubendiamide and diflubenzuron and the biological insecticides based on Beauveria bassiana and Metarhizium anisopliae were harmless to T. podisi and T. pretiosum. The harmless herbicides were: 2.4-D amine, profoxydim, quinclorac, ethoxysulfuron and saflufenacil. The fungicide epoxiconazole + kresoxim-methyl was also harmless to these two biological control agents. Therefore, these pesticides are indicated for the integrated pest management, in flooded rice areas.

  18. Living with less water: development of viable adaptation options for Riverina irrigators

    NARCIS (Netherlands)

    Gaydon, D.S.

    2012-01-01

    In Australia, the best use of limited national water resources continues to be a major political and scientific issue. Average water allocations for rice-cereal irrigation farmers in the Riverina region have been drastically reduced since 1998 as a consequence of high rainfall variability and

  19. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review

    Directory of Open Access Journals (Sweden)

    Anindita Mitra

    2017-10-01

    Full Text Available According to recent reports, millions of people across the globe are suffering from arsenic (As toxicity. Arsenic is present in different oxidative states in the environment and enters in the food chain through soil and water. In the agricultural field, irrigation with arsenic contaminated water, that is, having a higher level of arsenic contamination on the top soil, which may affects the quality of crop production. The major crop like rice (Oryza sativa L. requires a considerable amount of water to complete its lifecycle. Rice plants potentially accumulate arsenic, particularly inorganic arsenic (iAs from the field, in different body parts including grains. Different transporters have been reported in assisting the accumulation of arsenic in plant cells; for example, arsenate (AsV is absorbed with the help of phosphate transporters, and arsenite (AsIII through nodulin 26-like intrinsic protein (NIP by the silicon transport pathway and plasma membrane intrinsic protein aquaporins. Researchers and practitioners are trying their level best to mitigate the problem of As contamination in rice. However, the solution strategies vary considerably with various factors, such as cultural practices, soil, water, and environmental/economic conditions, etc. The contemporary work on rice to explain arsenic uptake, transport, and metabolism processes at rhizosphere, may help to formulate better plans. Common agronomical practices like rain water harvesting for crop irrigation, use of natural components that help in arsenic methylation, and biotechnological approaches may explore how to reduce arsenic uptake by food crops. This review will encompass the research advances and practical agronomic strategies on arsenic contamination in rice crop.

  20. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    Science.gov (United States)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman

  1. A Quantitative Socio-hydrological Characterization of Water Security in Large-Scale Irrigation Systems

    Science.gov (United States)

    Siddiqi, A.; Muhammad, A.; Wescoat, J. L., Jr.

    2017-12-01

    Large-scale, legacy canal systems, such as the irrigation infrastructure in the Indus Basin in Punjab, Pakistan, have been primarily conceived, constructed, and operated with a techno-centric approach. The emerging socio-hydrological approaches provide a new lens for studying such systems to potentially identify fresh insights for addressing contemporary challenges of water security. In this work, using the partial definition of water security as "the reliable availability of an acceptable quantity and quality of water", supply reliability is construed as a partial measure of water security in irrigation systems. A set of metrics are used to quantitatively study reliability of surface supply in the canal systems of Punjab, Pakistan using an extensive dataset of 10-daily surface water deliveries over a decade (2007-2016) and of high frequency (10-minute) flow measurements over one year. The reliability quantification is based on comparison of actual deliveries and entitlements, which are a combination of hydrological and social constructs. The socio-hydrological lens highlights critical issues of how flows are measured, monitored, perceived, and experienced from the perspective of operators (government officials) and users (famers). The analysis reveals varying levels of reliability (and by extension security) of supply when data is examined across multiple temporal and spatial scales. The results shed new light on evolution of water security (as partially measured by supply reliability) for surface irrigation in the Punjab province of Pakistan and demonstrate that "information security" (defined as reliable availability of sufficiently detailed data) is vital for enabling water security. It is found that forecasting and management (that are social processes) lead to differences between entitlements and actual deliveries, and there is significant potential to positively affect supply reliability through interventions in the social realm.

  2. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  3. Metric matters : the performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in

  4. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  5. A Survey of Myanmar Rice Production and Constraints

    Directory of Open Access Journals (Sweden)

    T.A.A. Naing

    2008-10-01

    Full Text Available Although modern high yielding varieties were introduced into Myanmar in the early 1980s, the national average of rice grain yield has stagnated at 3.2-3.4 t ha-1. To identify yield constraints, input intensities and the general practices of rice cultivation in Myanmar, a survey was conducted during the wet seasons of 2001 and 2002. A total of 98 farmers from five townships in Upper Myanmar and 16 in Lower Myanmar representing the most important areas of rice production were questioned on their management practices, yields, and perceived yield constraints over the previous four years. There was a recent decrease in the overall average rate of fertilizer application, an increase in the prevalence of rice-legume cropping systems, and only localized insect pest or disease problems. Additionally, rice yields were found to be higher in Upper Myanmar, likely the results of more suitable weather conditions, better irrigation, and ready market access. Furthermore, a number of critical factors affecting production are identified and possible solutions discussed.

  6. Influence of rice straw-based polyols on the morphology, thermal ...

    African Journals Online (AJOL)

    replacement of rice straw-based polyols produced closed cell structures suitable for insulation material as revealed in Scanning electron microscope images. Higher percentage of rice straw-based polyols replacement will trigger cell wall structure rapturing that will deteriorate the properties of polyurethane foam.

  7. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya

    DEFF Research Database (Denmark)

    Mutero, C M; Blank, H; Konradsen, F

    2000-01-01

    abundance fluctuated throughout the 12-week sampling period. The highest larval densities were recorded in the 3 weeks after transplanting the rice seedlings. Afterwards, larval numbers dropped dramatically as the height of rice plants increased. Rice yields at harvest did not show statistically significant...

  8. Countermeasures for heat damage in rice grain quality under climate change

    Directory of Open Access Journals (Sweden)

    Satoshi Morita

    2016-01-01

    Full Text Available Climate change has been an increasingly significant factor behind fluctuations in the yield and quality of rice (Oryza sativa L., particularly regarding chalky (white-back, basal-white, and milky-white grain, immature thin grain, and cracked grain. The development and use of heat-tolerant varieties is an effective way to reduce each type of grain damage based on the existence of each varietal difference. Cultivation methods that increase the available assimilate supply per grain, such as deep-flood irrigation, are effective for diminishing the occurrence of milky-white grains under high temperature and low solar radiation conditions. The application of sufficient nitrogen during the reproductive stage is important to reduce the occurrence of most heat damage with the exception of milky-white grain. In regard to developing measures for heat-induced poor palatability of cooked rice, a sensory parameter, the hardness/adhesion ratio may be useful as an indicator of palatability within a relatively wide air–temperature range during ripening. Methods for heat damage to rice can be classified as either avoidance or tolerance measures. The timing of the measures is further divided into preventive and prompt types. The use of heat-tolerant varieties and late transplanting are preventive measures, whereas the application of sufficient nitrogen as a top dressing and irrigation techniques during the reproductive stage are prompt types which may function to lower the canopy temperature by enhancing evapotranspiration. Trials combining the different types of techniques will contribute towards obtaining more efficient and steady countermeasures against heat damage under conditions of climate change.

  9. Consumptive use of upland rice as estimated by different methods

    International Nuclear Information System (INIS)

    Chhabda, P.R.; Varade, S.B.

    1985-01-01

    The consumptive use of upland rice (Oryza sativa Linn.) grown during the wet season (kharif) as estimated by modified Penman, radiation, pan-evaporation and Hargreaves methods showed a variation from computed consumptive use estimated by the gravimetric method. The variability increased with an increase in the irrigation interval, and decreased with an increase in the level of N applied. The average variability was less in pan-evaporation method, which could reliably be used for estimating water requirement of upland rice if percolation losses are considered

  10. Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum

    OpenAIRE

    Pazini,Juliano de Bastos; Grützmacher,Anderson Dionei; Martins,José Francisco da Silva; Pasini,Rafael Antônio; Rakes,Matheus

    2016-01-01

    ABSTRACT Telenomus and Trichogramma species stand out as agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. This study aimed at evaluating the toxicity of pesticides used in irrigated rice crop on Telenomus podisi Ashmead (Hymenoptera: Platygastridae) and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Adults of these parasitoids were exposed to dry residues of pesticides, in a completely randomized exp...

  11. Impacts of Climate Change on Water Requirements of Dry Season Boro Rice: Recent Trends and Future Scenarios

    Science.gov (United States)

    Acharjee, T. K.; Ludwig, F.; Halsema, G. V.; Hellegers, P.; Supit, I.

    2017-12-01

    The North-West part of Bangladesh is vulnerable to the impacts of climate change, because of dry season water shortage and high water demand for rice cultivation. A study was carried out to understand the impacts of recent climate change (1980-2013) and future consequences (for 2050s and 2080s) on water requirements of Boro rice. The reference crop evapotranspiration (ETo), potential crop water requirement (∑ETC), effective rainfall (ER), potential irrigation requirement for crop evapotranspiration (∑ETC-ER) and net irrigation requirement of Boro rice were estimated in CropWat using observed daily climate data for recent trends and statistically downscaled and bias corrected GCM outputs (five models and two RCPs) for future scenarios. ETo showed a significant decreasing recent trends due to increasing relative humidity and decreasing wind speed and sun shine hours instead of an increase in temperature. However, the strong future increase in temperature will lead to an insignificant increase in ETo. ∑ETC showed a decreasing recent trend and will further decrease in the future because of shortened duration of Boro growth stages as crop's phenological response to increased temperature. The variations in trends of ∑ETC-ER found among different districts, are mainly linked to the variations in trends of changes in effective rainfall. During last three decades, the net irrigation requirement has decreased by 11% at an average rate of -4.4 mm/year, instead of a decreasing effective rainfall, mainly because of high rate of decrease of crop evapotranspiration (-5.9 mm/year). In future, although daily water requirement will increase, the total net irrigation requirement of Boro rice will decrease by 1.6% in 2050s and 7.4% in 2080s for RCP 8.5 scenario on an average for five models and four districts compared to the base period (1980-2013). High variations in projected changes in rainfall bring high uncertainty for future water requirements estimation. Therefore, a

  12. The Assessment of Irrigated Land Salinization in the Aral Sea Region

    Science.gov (United States)

    Karlykhanov, Orazkhan K.; Toktaganova, Gulzhaz B.

    2016-01-01

    Agriculture is one of the main industries of Kazakhstan, especially in the Kyzylorda Region. Before the reforms, agriculture in this region was better developed than the manufacturing industry; this is no longer the case. The main crop grown on the irrigated land of the region is rice. Inefficient distribution of cultivated areas, their excessive…

  13. Toxicity of Pesticide Tank Mixtures from Rice Crops Against Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    de B Pazini, J; Pasini, R A; Rakes, M; de Armas, F S; Seidel, E J; da S Martins, J F; Grützmacher, A D

    2017-08-01

    The use of insecticides, herbicides, and fungicides commonly occurs in mixtures in tanks in order to control phytosanitary problems in crops. However, there is no information regarding the effects of these mixtures on non-target organisms associated to the rice agroecosystem. The aim of this study was to know the toxicity of pesticide tank mixtures from rice crops against Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Based on the methods adapted from the International Organisation for Biological and Integrated Control of Noxious Animals and Plants (IOBC), adults of T. podisi were exposed to residues of insecticides, herbicides, and fungicides, individually or in mixture commonly used by growers, in laboratory and on rice plants in a greenhouse. The mixture between fungicides tebuconazole, triclyclazole, and azoxystrobin and the mixture between herbicides cyhalofop-butyl, imazethapyr, imazapyr/imazapic, and penoxsulam are harmless to T. podisi and can be used in irrigated rice crops without harming the natural biological control. The insecticides cypermethin, thiamethoxam, and bifenthrin/carbosulfan increase the toxicity of the mixtures in tank with herbicides and fungicides, being more toxic to T. podisi and less preferred for use in phytosanitary treatments in the rice crop protection.

  14. Productivity, Profitability and Resource Use Efficiency: A Comparative Analysis between Conventional and High Yielding Rice in Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Yahia Bapari

    2016-10-01

    Full Text Available The study was analyzed the determinants, costs and benefits and resources allocation of both conventional and high yielding rice cultivation over the Rajbari district of Bangladesh. Data were accumulated from 300 regular rice growers of conventional and high yielding varieties and random sampling technique was applied for selecting the respondents from the study area from which information was collected through pre-tested questionnaire. Cobb – Douglas production function and gross margin were mainly used to determine the productivities and profits of both rice and the marginal value of the product was highly recommended to derive the optimal use of the resources. Results obtained by applying ordinary least square method showed that the most important factors of production in the study area were irrigation, labor, fertilizer and insecticide costs whose elasticities were 0.904, 0.048, 0.045 and 0.044 respectively and insignificant factors were seed and ploughing costs whose elasticities were – 0.009 and 0.030 respectively for high yielding rice. On the other hand, irrigation, insecticide, seed and ploughing costs of elasticities 0.880, 0.589, 0.116 and – 0.127 respectively were the important factors and minor role playing factors were labor and fertilizer costs whose elasticities were 0.098 and 0.077 respectively for conventional yielding rice. The core message from productivity analysis was that the irrigation was key variable which played a positive and vital role in producing rice of both varieties. All variables (resources were economically misallocated in the production activities of both varieties along the study area but high yielding rice was more profitable than conventional one. Results also showed that the farmers of the study area produced rice of both varieties in the inefficient range of production. Continuous supply of electricity, flexible credit and improving the existing resources were the prime policy recommendations of

  15. mathematical model for scheduling irrigation for swamp rice in port

    African Journals Online (AJOL)

    2017-03-24

    Mar 24, 2017 ... The thirst for increased food production and management of our natural resources (water) .... 16th, 2009. .... formula, Karl Pearson, (1980), was adopted in ..... Hawksworth, D. L., 1985. Foreword. In S.H. Ou, ed. Rice diseases.

  16. Climate-Determined Suitability of the Water Saving Technology "Alternate Wetting and Drying" in Rice Systems: A Scalable Methodology demonstrated for a Province in the Philippines.

    Directory of Open Access Journals (Sweden)

    Andrew Nelson

    Full Text Available 70% of the world's freshwater is used for irrigated agriculture and demand is expected to increase to meet future food security requirements. In Asia, rice accounts for the largest proportion of irrigated water use and reducing or conserving water in rice systems has been a long standing goal in agricultural research. The Alternate Wetting and Drying (AWD technique has been developed to reduce water use by up to 30% compared to the continuously flooded conditions typically found in rice systems, while not impacting yield. AWD also reduces methane emissions produced by anaerobic archae and hence has applications for reducing water use and greenhouse gas emissions. Although AWD is being promoted across Asia, there have been no attempts to estimate the suitable area for this promising technology on a large scale. We present and demonstrate a spatial and temporal climate suitability assessment method for AWD that can be widely applied across rice systems in Asia. We use a simple water balance model and easily available spatial and temporal information on rice area, rice seasonality, rainfall, potential evapotranspiration and soil percolation rates to assess the suitable area per season. We apply the model to Cagayan province in the Philippines and conduct a sensitivity analysis to account for uncertainties in soil percolation and suitability classification. As expected, the entire dry season is climatically suitable for AWD for all scenarios. A further 60% of the wet season area is found suitable contradicting general perceptions that AWD would not be feasible in the wet season and showing that spatial and temporal assessments are necessary to explore the full potential of AWD.

  17. Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2008-05-01

    Full Text Available Abstract Background We report the development of a microarray platform for rapid and cost-effective genetic mapping, and its evaluation using rice as a model. In contrast to methods employing whole-genome tiling microarrays for genotyping, our method is based on low-cost spotted microarray production, focusing only on known polymorphic features. Results We have produced a genotyping microarray for rice, comprising 880 single feature polymorphism (SFP elements derived from insertions/deletions identified by aligning genomic sequences of the japonica cultivar Nipponbare and the indica cultivar 93-11. The SFPs were experimentally verified by hybridization with labeled genomic DNA prepared from the two cultivars. Using the genotyping microarrays, we found high levels of polymorphism across diverse rice accessions, and were able to classify all five subpopulations of rice with high bootstrap support. The microarrays were used for mapping of a gene conferring resistance to Magnaporthe grisea, the causative organism of rice blast disease, by quantitative genotyping of samples from a recombinant inbred line population pooled by phenotype. Conclusion We anticipate this microarray-based genotyping platform, based on its low cost-per-sample, to be particularly useful in applications requiring whole-genome molecular marker coverage across large numbers of individuals.

  18. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since

  19. A Large Rice Body-Containing Cyst Mimicking Infection following Total Hip Arthroplasty: A Case Report

    Directory of Open Access Journals (Sweden)

    Wael Bayoud

    2017-01-01

    Full Text Available Introduction. Soft tissue mass following total hip arthroplasty raises several differential diagnoses not limited to infection, hematoma, wear debris, malignancy, and bursitis. Rice body formation in the hip region is an uncommon process denoting a chronic inflammation. We report here the second case of its kind in the medical literature of a wide symptomatic rice-like body cyst complicating a total hip arthroplasty. Case Presentation. This is the case of an 82-year-old white female, presenting with a warm, red, and inflated groin five years after revision of right total hip arthroplasty. Surgical intervention reveals a large well circumscribed cyst containing well-organized rice-like bodies. This eventuality was never reported in differential diagnosis of hip periprosthetic soft tissue masses before. Conclusion. This case report helps widening the array of the differential diagnosis in patients presenting with a slow growing soft tissue mass following total hip arthroplasty, making rice-like bodies cyst a valid one to consider.

  20. Assessment of village-wise groundwater draft for irrigation: a field-based study in hard-rock aquifers of central India

    Science.gov (United States)

    Ray, R. K.; Syed, T. H.; Saha, Dipankar; Sarkar, B. C.; Patre, A. K.

    2017-12-01

    Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982-2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ˜44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.

  1. Folk to functional: An explorative overview of rice-based fermented foods and beverages in India

    Directory of Open Access Journals (Sweden)

    Mousumi Ray

    2016-03-01

    Full Text Available Fermented foods share an integral part of age-old wisdom from ancient Indian civilization. Over the generations, this pioneering practice of food fermentation has expanded and improved to preserve and fortify the available food resources, particularly to meet the hidden hunger. India, being the second largest producer of rice, has a great history of traditional rice-based fermented foods with different tastes and textures linked with cultural diversity and mostly prepared by rural women following village art techniques. Some of them have been scientifically investigated and it has been revealed that microflora in natural or starter culture plays imperative roles to bio-embolden the rice with varieties of health promoting macronutrients and micronutrients, phytochemicals, and other functional components during fermentation. In this review, some explorative information on traditional rice-based foods and beverages has been assembled to illustrate the global interest in Indian food heritage and their functional aspects. The review also deals with the preparation of raw materials, traditional processing, composition, and ethno-medicinal importance of each food to encourage entrepreneurs to develop large-scale production to meet the growing market demand of functional foods.

  2. Support vector machine-based open crop model (SBOCM: Case of rice production in China

    Directory of Open Access Journals (Sweden)

    Ying-xue Su

    2017-03-01

    Full Text Available Existing crop models produce unsatisfactory simulation results and are operationally complicated. The present study, however, demonstrated the unique advantages of statistical crop models for large-scale simulation. Using rice as the research crop, a support vector machine-based open crop model (SBOCM was developed by integrating developmental stage and yield prediction models. Basic geographical information obtained by surface weather observation stations in China and the 1:1000000 soil database published by the Chinese Academy of Sciences were used. Based on the principle of scale compatibility of modeling data, an open reading frame was designed for the dynamic daily input of meteorological data and output of rice development and yield records. This was used to generate rice developmental stage and yield prediction models, which were integrated into the SBOCM system. The parameters, methods, error resources, and other factors were analyzed. Although not a crop physiology simulation model, the proposed SBOCM can be used for perennial simulation and one-year rice predictions within certain scale ranges. It is convenient for data acquisition, regionally applicable, parametrically simple, and effective for multi-scale factor integration. It has the potential for future integration with extensive social and economic factors to improve the prediction accuracy and practicability.

  3. Scaling up Intermittent Rice Irrigation for Malaria Control on the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The research aims to foster uptake of intermittent irrigation at the watershed level (Valle de Jequetepeque in La Libertad) by exploring ways to: - disseminate knowledge and skills (farmer-to-farmer agricultural extension); - assess and document social, health, environmental, and economic trade-offs as farmers adopt new ...

  4. PERFORMANCE OF PROMISING HYBRID RICE IN TWO DIFFERENT ELEVATIONS OF IRRIGATED LOWLAND IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Yuni Widyastuti

    2015-06-01

    Full Text Available The hybrid rice program has been established since early 1990’s at the Indonesia Center for Rice Research (ICRR. Twenty-four experimental hybrid rice varieties which have been developed were tested in lowland rice fields in Sukamandi (West Java and Batang (Central Java during the dry season and the rainy season of 2012. Randomized complete block design (RCBD with three replications was used in each location. The results showed that grains yields were affected by locations, seasons, and genotypes. The genotypes x locations x seasons interaction effect was significant; therefore, the best hybrid was different for each location and season. A7/PK36 hybrid has the best performance in Batang during the dry season, while A7/PK40 and A7/PK32 are the best hybrids in the rainy season. In Sukamandi, nine hybrids were identified as better yielder than that of the check cultivar in the dry season, but not so in the rainy season. Using the correlation and path analysis, we found that the number of panicles per hill and the number of filled grains per panicle could be used as selection criteria for yield in hybrid rice.

  5. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay.

    Science.gov (United States)

    Bao, Leticia; Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A; Martínez, Sebastián; Casales, Luis; Caraballo, María P; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.

  6. Effect of salt stress on germination and early seedling growth of rice ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... planting in saline soil or in areas inundated by sea water or irrigated with brackish ... Nutritional imbalance caused by such ions leads to reduction in ... rice varieties showed a great variation in germination due to salinity effect.

  7. Optimizing Greenhouse Rice Production: Summary of Recommendations

    OpenAIRE

    Eddy, Robert; Acosta, Kevin; Liu, Yisi; Russell, Michael

    2016-01-01

    This publication provides a single-page chart summarizing our protocols for growing Rice (japonica). Split into three production goals, recommendations are given for photoperiod, temperature, lighting, container, root medium, planting density, irrigation, fertilization, algae control and fungus gnat control. This version updates our fertilization frequency, pot size, root medium and algae control recommendations. This document summarizes a series of questions and answers originally posted ...

  8. A GIS-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet Pampa plain, Argentina.

    Science.gov (United States)

    Romanelli, Asunción; Lima, María Lourdes; Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Héctor Enrique

    2012-09-01

    The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3 % of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4 % of it has unsuitable waters. Approximately, 46 % of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.

  9. Regulating N application for rice yield and sustainable eco-agro development in the upper reaches of Yellow River basin, China.

    Science.gov (United States)

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region.

  10. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  11. Development of an irrigation scheduling software based on model predicted crop water stress

    Science.gov (United States)

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  12. Sorbents based on carbonized rice peel

    International Nuclear Information System (INIS)

    Mansurova, R. M.; Taipova, R. A.; Zhylybaeva, N. K.; Mansurov, Z. A.; Bijsenbaev, M. A.

    2004-01-01

    The process receiving of sorbents based on carbonized rice peel (RP) was received and their sorption properties were investigated. Processing carbonization of samples leading on station, this was developed in laboratory of hybrid technology. Carbonization of samples was realized in nitric atmosphere on 400-8000 deg. C. On raising temperature of carbonization content of carbon in samples is rice, hydrogen and oxygen is reduce as a result isolation of volatility products is discover. The samples carbonized on 650 deg. C (910 m 2 /g) owners with maximum removed surface is discover. On carbonization temperature 600-800 deh. C the sorption of ions, which carbonized by sorbents based on rice peel is run to 95-100 %. Electron-microscopic investigation of samples leaded on EM-125 mechanism by accelerating pressure 100 kV. From electron-microscopic print of original samples of RP it is evident, that sample consists of carbonic fractions of different species: carbonic fiber of rounded fractions, fractions of ellipsoid form and of more thickly carbonic structure. Increasing sizes of pores and modification structure of synthesized sorbent is occur during carbonization process. The RP-samples, which carbonized by 650 deg. C has the higher specific surface. Samples consist of thin carbonic scum and reducing specific surface, by higher temperature

  13. SOIL N, P AND K CONCENTRATIONS AND RICE YIELD INCREASED DUE TO THE APPLICATION OF Azolla pinnata

    Directory of Open Access Journals (Sweden)

    A. Arivin Rivaie*

    2014-01-01

    Full Text Available Many studies showed that application of Azolla pinnata as biofertilizer improved soil fertility some agricultural crops, including rice, whereas farmers in Lampung consider that A. pinnata suppresses growth of rice seedlings, so they throw it field by raising irrigation water surface. Information on effects A. pinnata application on changes in nutrient availability and rice yield obtained from paddy fields of regions still rare. A study was carried out to investigate effects of different rates of A. pinnata on changes in N, P, K concentrations in paddy soils, N uptake, and rice yield. A well-irrigated paddy field was incorporated with A. pinnata, and then rice seedlings of Ciherang variety had been grown from June up to December 2009. Results: application of A. pinnata at dose of five t per ha increased concentration of N, P and K as well as rice yield. A. pinnata had a relatively high N content, ie 2.43 percent. Application of A. pinnata of 7.5 t per ha increased significantly available soil P, indicated that A. pinnata requires a fairly high P to grow optimally. Application of A. pinnata of 7.5 t per ha gave highest dry grain yield, suggests that application A. pinnata did not suppress rice yield, even use of A. pinnata as organic matter source will help to conserve fossil fuels and foreign exchange as well as will allow more paddy fields that can be fertilized by N.

  14. The role of biotechnology to ensure rice food security

    International Nuclear Information System (INIS)

    Teng, P.S.

    2002-01-01

    Rice as a food is key to the survival of more than 60% of the world population, most of whom live in Asia. Food security in Asia is therefore strongly dependent on an adequate, available supply of affordable rice. Experts estimate that global rice supply would need to increase at an average of 1.7% per annum for the next 20 years, and average rice yields must roughly double in the next 20 years in both the irrigated and favourable rainfed lowland environments, if a global shortage is to be avoided. At the same time that the need to increase total production, and unit area productivity is being felt, society is also demanding that agricultural practices be environment friendly and be part of a sustainable agricultural system. Rice breeders have seen increased difficulties to source and utilize new genetic resources for genetic improvement of yield potential from within the rice genome. As with other cereals, rice yield potential has not been dramatically increased in the last decade when compared to the quantum increase of the early Green Revolution years. Furthermore, pest-induced losses currently account for up to 30% of the loss in yield potential. Biotechnology, especially recombinant DNA technology, offers tools to transfer genes from outside the rice genome to address the critical issues of raising the yield potential, increasing tolerance or resistance to insects, diseases and a biotic stresses, to increase the efficiency of pest management, and also to improve the nutritive value of the rice grain. Genetically modified crops have a demonstrated record of environmental and food safety, and all such crops undergo a process of safety assessment and regulatory approval before they are put into the marketplace. Serious social issues, however, arise in matching the capacity of biotechnology to change crops, and in what changes society is willing to accept; and at this early stage of biotechnology applications, science-based approaches are important so that emotion

  15. Declining groundwater level caused by irrigation to row crops in the Lower Mississippi River Basin, Current Situation and Trends

    Science.gov (United States)

    Feng, G.; Gao, F.; Ouyang, Y.

    2017-12-01

    The Mississippi River is North America's largest river and the second largest watershed in the world. It flows over 3,700 km through America's heartland to the Gulf of Mexico. Over 3 million hectares in the Lower Mississippi River Basin represent irrigated cropland and 90 percent of those lands currently rely on the groundwater supply. The primary crops grown in this region are soybean, corn, cotton, and rice. Increased water withdrawals for irrigating those crops and stagnant recharging jeopardize the long-term availability of the aquifer and place irrigation agriculture in the region on an unsustainable path. The objectives of this study were to: 1) analyze the current groundwater level in the Lower Mississippi River Basin based on the water table depth observed by Yazoo Mississippi Delta Joint Water Management District from 2000 and 2016; 2) determine trends of change in groundwater level under conventional and groundwater saving irrigation management practices (ET or soil moisture based full irrigation scheduling using all groundwater or different percentages of ground and surface water). The coupled SWAT and MODFLOW model was applied to investigate the trends. Observed results showed that the groundwater level has declined from 33 to 26 m at an annual decrease rate of 0.4 m in the past 17 years. Simulated results revealed that the groundwater storage was decreased by 26 cm/month due to irrigation in crop season. It is promising that the groundwater storage was increased by 23 cm/month, sometimes even 60 cm/month in crop off-growing season because of recharge from rainfall. Our results suggest that alternative ET or soil moisture based groundwater saving irrigation scheduling with conjunctive use of surface water is a sustainable practice for irrigated agriculture in in the Lower Mississippi River Basin.

  16. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700-500 BC.

    Directory of Open Access Journals (Sweden)

    Zhenhua Deng

    Full Text Available Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan and south (Qujialing and Shijiahe between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds, from systematic flotation of 123 samples (1700 litres, producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa between 6300-6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato. In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum. Soybean appears on the site in the Shijiahe period (ca.2500 BC and wheat (Triticum cf. aestivum in the Late Longshan levels (2200-1800 BC. Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north.

  17. Water Pricing and Implementation Strategies for the Sustainability of an Irrigation System: A Case Study within the Command Area of the Rakh Branch Canal

    Directory of Open Access Journals (Sweden)

    Muhammad Uzair Qamar

    2018-04-01

    Full Text Available The command area of the Rakh branch canal grows wheat, sugarcane, and rice crops in abundance. The canal water, which is trivial for irrigating these crops, is conveyed to the farms through the network of canals and distributaries. For the maintenance of this vast infrastructure; the end users are charged on a seasonal basis. The present water charges are severely criticized for not being adequate to properly manage the entire infrastructure. We use the residual value to determine the value of the irrigation water and then based on the quantity of irrigation water supplied to farm land coupled with the infrastructure maintenance cost, full cost recovery figures are executed for the study area, and policy recommendations are made for the implementation of the full cost recovery system. The approach is unique in the sense that the pricings are based on the actual quantity of water conveyed to the field for irrigating crops. The results of our analysis showed that the canal water is severely under charged in the culturable command area of selected distributaries, thus negating the plan of having a self-sustainable irrigation system.

  18. Influence of composted organic waste and urea fertilization on rice ...

    African Journals Online (AJOL)

    The field experiment was conducted at the University of Ghana's Soil and Irrigation Research Centre - Kpong during 2014 and 2015 cropping seasons to evaluate the influence of composted organic waste and urea fertilization on rice yield, Nitrogen-use efficiency and soil chemical characteristics. The study was laid out in a ...

  19. improving of irrigation management: a learning based approach

    African Journals Online (AJOL)

    p2333147

    Irrigation farms are small businesses and like any other business, the managers or ... human factors and constraints that impact on the adoption of irrigation ... Informal interaction with other irrigation farmers and social networks played a ...

  20. Studies on mosquitoes (Diptera: Culicidae and anthropicenvironment: 5- Breeding of Anopheles albitarsis in flooded rice fields in South-Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1994-10-01

    Full Text Available Studies on breeding Anopheles albitarsis and association with rice growth in irrigated paddy fields were carried out during the rice cultivation cycle from December 1993 to March 1994. This period corresponded to the length of time of permanent paddy flooding. Breeding occurred in the early stage up until five weeks after transplantation when rice plant height was small. That inverse correlation may give potential direction to control measures.

  1. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    Science.gov (United States)

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of sowing date and irrigation management are likely to vary with soil type and seasonal conditions. Therefore, a simulation study was conducted using the APSIM model and 40 years of weather data to evaluate the effects of mulch, sowing date and irrigation management and their interactions on wheat grain yield, irrigation requirement (I) and water productivity with respect to irrigation (WP I ) and evapotranspiration (WP ET ). The results suggest that the optimum wheat sowing date in central Punjab depends on both soil type and the presence or absence of mulch. On the sandy loam, with irrigation scheduled at 50% soil water deficit (SWD), the optimum sowing date was late October to early November for maximising yield, WP I and WP ET . On the clay loam, the optimum date was about one week later. The effect of mulch on yield varied with seasonal conditions and sowing date. With irrigation at 50% SWD, mulching of wheat sown at the optimum time increased average yield by up to 0.5 t ha -1 . The beneficial effect of mulch on yield increased to averages of 1.2-1.3 t ha -1 as sowing was advanced to 15 October. With irrigation at 50% SWD and 7 November sowing, mulch reduced the number of irrigations by one in almost 50% of years, a reduction of about 50 mm on the sandy loam and 60 mm on the clay loam. The reduction in irrigation amount was mainly due to reduced soil evaporation. Mulch reduced irrigation requirement by more as sowing was delayed, more so on the sandy loam than the clay

  2. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700–500 BC)

    Science.gov (United States)

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q.

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300–6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200–1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north. PMID:26460975

  3. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, Sarah E., E-mail: rothenberg.sarah@gmail.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Feng Xinbin, E-mail: fengxinbin@vip.skleg.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Dong Bin, E-mail: dongbin@whu.edu.cn [State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 (China); Shang Lihai, E-mail: shanglihai@vip.gyig.ac.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yin Runsheng, E-mail: yinrunsheng2002@163.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yuan Xiaobo, E-mail: xiantao_131@163.com [College of Resources and the Environment, Southwest University, Chongqing 400716 (China)

    2011-05-15

    In China, total Hg (Hg{sub T}) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of Hg{sub T} (water-saving: 3.3 {+-} 1.6 ng/g; flooded: 110 {+-} 9.2 ng/g) and MeHg (water-saving 1.3 {+-} 0.56 ng/g; flooded: 12 {+-} 2.4 ng/g) were positively correlated with root-soil Hg{sub T} and MeHg contents (Hg{sub T}: r{sup 2} = 0.97, MeHg: r{sup 2} = 0.87, p < 0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of Hg{sub T} and other trace elements were significantly higher in unmilled brown rice (p < 0.05), while MeHg content was similar (p > 0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II). - Highlights: > First time that Hg{sub T} and MeHg were characterized in both brown and white rice. > MeHg translocation into the endosperm was more efficient than inorganic Hg(II). > In this respect, MeHg behaved like dimethylarsinic acid and organic Se species. > In white rice, Hg{sub T} and MeHg were positively correlated with soil Hg{sub T} and MeHg. > Uptake rates of Hg{sub T} and MeHg were independent of irrigation methods and Hg content. - Methylmercury was more efficiently translocated to the endosperm than inorganic mercury.

  4. Modeling methane emission from rice paddies with various agricultural practices

    Science.gov (United States)

    Huang, Yao; Zhang, Wen; Zheng, Xunhua; Li, Jin; Yu, Yongqiang

    2004-04-01

    Several models have been developed over the past decade to estimate CH4 emission from rice paddies. However, few models have been validated against field measurements with various parameters of soil, climate and agricultural practice. Thus reliability of the model's performance remains questionable particularly when extrapolating the model from site microscale to regional scale. In this paper, modification to the original model focuses on the effect of water regime on CH4 production/emission and the CH4 transport via bubbles. The modified model, named as CH4MOD, was then validated against a total of 94 field observations. These observations covered main rice cultivation regions from northern (Beijing, 40°30'N, 116°25'E) to southern China (Guangzhou, 23°08'N, 113°20'E), and from eastern (Hangzhou, 30°19'N, 120°12'E) to southwestern (Tuzu, 29°40'N, 103°50'E) China. Both single rice and double rice cultivations are distributed in these regions with different irrigation patterns and various types of organic matter incorporation. The observed seasonal amount of CH4 emission ranged from 3.1 to 761.7 kg C ha-1 with an average of 199.4 ± 187.3 kg C ha-1. In consonance with the observations, model simulations resulted in an average value of 224.6 ± 187.0 kg C ha-1, ranging from 13.9 to 824.3 kg C ha-1. Comparison between the computed and the observed seasonal CH4 emission yielded a correlation coefficient r2 of 0.84 with a slope of 0.92 and an intercept of 41.1 (n = 94, p < 0.001). It was concluded that the CH4MOD can reasonably simulate CH4 emissions from irrigated rice fields with a minimal number of inputs and parameters.

  5. Online decision support based on modeling with the aim of increased irrigation efficiency

    Science.gov (United States)

    Dövényi-Nagy, Tamás; Bakó, Károly; Molnár, Krisztina; Rácz, Csaba; Vasvári, Gyula; Nagy, János; Dobos, Attila

    2015-04-01

    The significant changes in the structure of ownership and control of irrigation infrastructure in the past decades resultted in the decrease of total irrigable and irrigated area (Szilárd, 1999). In this paper, the development of a model-based online service is described whose aim is to aid reasonable irrigation practice and increase water use efficiency. In order to establish a scientific background for irrigation, an agrometeorological station network has been built up by the Agrometeorological and Agroecological Monitoring Centre. A website has been launched in order to provide direct access for local agricultural producers to both the measured weather parameters and results of model based calculations. The public site provides information for general use, registered partners get a handy model based toolkit for decision support at the plot level concerning irrigation, plant protection or frost forecast. The agrometeorological reference station network was established in the recent years by the Agrometeorological and Agroecological Monitoring Centre and is distributed to cover most of the irrigated cropland areas of Hungary. From the spatial aspect, the stations have been deployed mainly in Eastern Hungary with concentrated irrigation infrastructure. The meteorological stations' locations have been carefully chosen to represent their environment in terms of soil, climatic and topographic factors, thereby assuring relevant and up-to-date input data for the models. The measured parameters range from classic meteorological data (air temperature, relative humidity, solar irradiation, wind speed etc.) to specific data which are not available from other services in the region, such as soil temperature, soil water content in multiple depths and leaf wetness. In addition to the basic grid of reference stations, specific stations under irrigated conditions have been deployed to calibrate and validate the models. A specific modeling framework (MetAgro) has been developed

  6. Design of an ARM-based Automatic Rice-Selling Machine for Cafeterias

    Directory of Open Access Journals (Sweden)

    Zhiliang Kang

    2016-02-01

    Full Text Available To address the problems of low selling efficiency, poor sanitation conditions, labor-intensive requirement, and quick rice cooling speed in manual rice selling in cafeterias, especially in colleges and secondary schools, this paper presented an Advanced RISC Machines (ARM microprocessor-based rice-selling machine for cafeterias. The machines consisted of a funnel-shaped rice bin, a thermal insulation box, and a conveying and scattering mechanism. Moreover, this machine exerts fuzzy control over stepper motor rpm, and the motor drives the conveyor belt with a scraper to scatter rice, deliver it, and keep it warm. Apart from an external 4*4 keyboard, a point of sale (POS machine, an ARM process and a pressure sensor, the machine is also equipped with card swiping and weighting mechanisms to achieve functions of card swiping payment and precise measurement, respectively. In addition, detection of the right amount of rice and the alarm function are achieved using an ultrasonic sensor and a beeper, respectively. The presence of the rice container on the rice outlet is detected by an optoelectronic switch. Results show that this rice-selling machine achieves precise measurement, quick card swiping, fast rice selling, stable operation, and good rice heat preservation. Therefore, the mechanical design enables the machine to achieve its goals.

  7. A rule-based smart automated fertilization and irrigation systems

    Science.gov (United States)

    Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.

  8. Rice yellow mottle virus is transmitted by cows, donkeys, and grass rats in irrigated rice crops

    NARCIS (Netherlands)

    Sarra, S.; Peters, D.

    2003-01-01

    Rice yellow mottle virus (RYMV), endemic in Africa, is believed to be spread by chrysomelid beetles, although the infections in a field often cannot be explained by the prevailing number of beetles. We show that the grass rat Arvicanthis niloticus, domestic cows (Bos spp.), and donkeys (Asinus spp.)

  9. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    International Nuclear Information System (INIS)

    Dahal, B.M.; Fuerhacker, M.; Mentler, A.; Karki, K.B.; Shrestha, R.R.; Blum, W.E.H.

    2008-01-01

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from -1 where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg -1 . The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg -1 ) > onion bulb (0.45 mg As kg -1 ) > cauliflower (0.33 mg As kg -1 ) > rice (0.18 mg As kg -1 ) > brinjal (0.09 mg As kg -1 ) > potato ( -1 ). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water

  10. Physiological and Fluorescence Reaction of Four Rice Genotypes to Exogenous Application of IAA and Kinetin under Drought Stress

    Directory of Open Access Journals (Sweden)

    Mostafa SALEHIFAR

    2017-09-01

    Full Text Available To assess the effects of IAA and Kinetin plant growth regulators in order to improve the drought tolerance in rice seedlings (Oryza sativa L., a factorial experiment was carried out based on complete randomized design with three replications. The experimental factors included different rice genotypes [‘Gharib’, ‘Khazar’, ‘Sepidrood’ and ‘IR83750 -131-1’ (‘IR83750’ ], drought stress from 1 to 4 code of the Vergara coding system and control (normal irrigation and growth regulators in three levels (IAA and Kinetin through foliar spraying and non-application as control. The results indicated, under normal irrigation condition together with IAA application, ‘IR83750’ rice had the highest number of tillers and leaf greenness, with mean of 18.27 and 49.46, respectively. The highest amount of leaf relative water content 95.11 percent was related to ‘Sepidrood’. Under drought stress condition, the highest electrolyte leakage (36.59 percent was observed in ‘Gharib’. In drought condition, the highest leaf drying score was related to ‘Gharib’ in both years, but the highest score of leaf rolling index (9 was observed in ‘Gharib’ and ‘Khazar’. The present findings showed that drought stress had harmful effects in all examined genotypes and the impact in susceptible genotypes (‘Gharib’ and ‘Khazar’ was more than ‘IR83750’ and ‘Sepidrood’. Application of growth regulators (IAA and Kin improved conditions for the growth of all genotypes. Therefore, using the tolerant genotypes along with growth regulators can improve the rice growth traits.

  11. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  12. Influencing Factors and Simplified Model of Film Hole Irrigation

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2017-07-01

    Full Text Available Film hole irrigation is an advanced low-cost and high-efficiency irrigation method, which can improve water conservation and water use efficiency. Given its various advantages and potential applications, we conducted a laboratory study to investigate the effects of soil texture, bulk density, initial soil moisture, irrigation depth, opening ratio (ρ, film hole diameter (D, and spacing on cumulative infiltration using SWMS-2D. We then proposed a simplified model based on the Kostiakov model for infiltration estimation. Error analyses indicated SWMS-2D to be suitable for infiltration simulation of film hole irrigation. Additional SWMS-2D-based investigations indicated that, for a certain soil, initial soil moisture and irrigation depth had the weakest effects on cumulative infiltration, whereas ρ and D had the strongest effects on cumulative infiltration. A simplified model with ρ and D was further established, and its use was then expanded to different soils. Verification based on seven soil types indicated that the established simplified double-factor model effectively estimates cumulative infiltration for film hole irrigation, with a small mean average error of 0.141–2.299 mm, a root mean square error of 0.177–2.722 mm, a percent bias of −2.131–1.479%, and a large Nash–Sutcliffe coefficient that is close to 1.0.

  13. Development of a remote sensing-based rice yield forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H.

    2016-11-01

    This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh. (Author)

  14. The Effect of Different Levels of Irrigation and Nitrogen Fertilizer on Yield and Water Use Efficiency of Potato in Subsurface Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Mohammad Jolaini

    2017-06-01

    Full Text Available Introduction: After wheat, rice and corn, potato is the fourth most important food plant in the world. In comparison with other species, potato is very sensitive to water stress because of its shallow root system: approximately 85% of the root length is concentrated in the upper 0.3-0.4 m of the soil. Several studies showed that drip irrigation is an effective method for enhancing potato yield. Fabeiro et al. (2001 concluded that tuber bulking and ripening stages were found to be the most sensitive stages of water stress with drip irrigation. Water deficit occurring in these two growth stages could result in yield reductions. Wang et al. (2006 investigated the effects of drip irrigation frequency on soil wetting pattern and potato yield. The results indicated that potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency while high frequency irrigation enhanced potato tuber growth and water use efficiency (WUE. Though information about irrigation and N management of this crop is often conflicting in the literature, it is accepted generally that production and quality are highly influenced by both N and irrigation amounts and these requirements are related to the cropping technique. Researches revealed that nitrogen fertilizers play a special role in the growth, production and quality of potatoes. Materials and Methods: A factorial experiment in randomized complete block design with three replications was carried out during two growing seasons. Studied factors were irrigation frequency (I1:2 and I2:4 days interval and nitrogen fertilizer levels (applying 100 (N1, 75 (N2 and 50 (N3 % of the recommended amount. Nitrogen fertilizer was applied through irrigation water. In each plot two rows with within-and between-row spacing of 45 and 105 cm and 20 m length. The amount of nitrogen fertilizer for the control treatment was determined by soil analysis (N1. In all treatments, nitrogen fertilizer

  15. Can simulation models help design rice cultivars that are more competitive against weeds?

    NARCIS (Netherlands)

    Bastiaans, L.; Kropff, M.J.; Kempuchetty, N.; Rajan, A.; Migo, T.R.

    1997-01-01

    Differences in competitive ability between rice cultivars IR8 and Mahsuri, grown in well-fertilised irrigated conditions, were analysed by means of a mechanistic simulation model (INTERCOM) for crop-weed interaction. The analysis revealed that the greater competitive ability of Mahsuri was due

  16. Elemental composition of Malawian rice.

    Science.gov (United States)

    Joy, Edward J M; Louise Ander, E; Broadley, Martin R; Young, Scott D; Chilimba, Allan D C; Hamilton, Elliott M; Watts, Michael J

    2017-08-01

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg -1 , dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg -1 , and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg -1 , dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could significantly increase Se and Zn concentrations and require further investigation. Concentrations of Fe in rice grain varied

  17. Factors affecting the income from major crops in rice-wheat ecological zone

    International Nuclear Information System (INIS)

    Ashfaq, M.; Naseer, M.Z.; Hassan, S.

    2008-01-01

    Agriculture is an important sector of our economy. About twenty-two percent of national income and 44.8 percent of total employment is generated by this sector. About 66 percent of country's population is living in rural areas and is directly or indirectly linked with agriculture for their livelihood. It also supplies raw materials to industry. The rice-wheat zone of Punjab covers 1.1 million hectare, 72% of wheat is grown in rotation with rice. The main purpose of this paper was to determine the effect of different factors on the productivity and ultimately on income from of major crops (wheat, rice and sugar-cane) in rice-wheat ecological zone. The results show that for wheat crop, land preparation, use of fertilizer and chemicals, for Sugarcane crop, area under cultivation, fertilizer and chemical costs and for rice crop, applications of chemicals, irrigation and land holding were the main determinants of productivity and crop income. (author)

  18. Wastewater use in agriculture: irrigation of sugar cane with effluents from the Cañaveralejo wastewater treatment plant in Cali, Colombia.

    Science.gov (United States)

    Madera, C A; Silva, J; Mara, D D; Torres, P

    2009-09-01

    In Valle del Cauca, south-west Colombia, surface and ground waters are used for sugar cane irrigation at a rate of 100 m3 of water per tonne of sugar produced. In addition large quantities of artificial fertilizers and pesticides are used to grow the crop. Preliminary experiments were undertaken to determine the feasibility of using effluents from the Cañaveralejo primary wastewater treatment plant in Cali. Sugar cane variety CC 8592 was planted in 18 box plots, each 0.5 m2. Six were irrigated with conventional primary effluent, six with chemically enhanced primary effluent and six with groundwater. For each set of six box plots, three contained local soil and three a 50:50 mixture of sand and rice husks. The three irrigation waters were monitored for 12 months, and immediately after harvest the sugar content of the sugar cane juice determined. All physico-chemical quality parameters for the three irrigation waters were lower than the FAO guideline values for irrigation water quality; on the basis of their sodium absorption ratios and electrical conductivity values, both wastewater effluents were in the USDA low-to-medium risk category C2S1. There was no difference in the sugar content of the cane juice irrigated with the three waters. However, the microbiological quality (E. coli and helminth numbers) of the two effluents did not meet the WHO guidelines and therefore additional human exposure control measures are required in order to minimize any resulting adverse health risks to those working in the wastewater-irrigated fields.

  19. ANALYZING THE TECHNICAL EFFICIENCY OF RICE FARMS IN THE RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Augusto Mussi Alvim

    2015-03-01

    Full Text Available This paper evaluates the technical efficiency in rice farms in Rio Grande do Sul (RS. For this, we use the Data Envelopment Analysis (DEA and the Tobit regression model. The study use the variables available in the Census of the Institute of Irrigated Rice of RS (IRGA, 2006. The study shows that most of the rice farmers are technically inefficient on local terms, and only 5.7% are efficient. In addition, it is possible to observe that the main variables, which increase the level of efficiency in different regions of the state, are technical assistance, education level and growing system. The results show that there are important differences between the rice farms, which depends of the region of RS and of the producer condition (owner or tenant.

  20. New strategy for the determination of gliadins in maize- or rice-based foods matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: fractionation of gliadins from maize or rice prolamins by acidic treatment.

    Science.gov (United States)

    Hernando, Alberto; Valdes, Israel; Méndez, Enrique

    2003-08-01

    A procedure for determining small quantities of gliadins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) in gluten-free foods containing relatively large amounts of prolamin proteins from maize or rice is described. We report for the first time that gliadins, the ethanol-soluble wheat prolamin fraction, can be quantitatively solubilized in 1.0 M acetic acid, while the corresponding ethanol-soluble maize or rice prolamin fraction remains insoluble in acetic acid. We describe a methodology for the detection of gliadins in maize and rice foods based on a two-step procedure of extraction (60% aqueous ethanol followed by 1 M acetic acid). Subsequent MALDI-TOFMS analysis of the resulting acidic extract from these gluten-free foods clearly confirms the presence of a typical mass pattern corresponding to gliadin components, ranging from 30 to 45 kDa. Depending on the percentages of maize or rice flours employed in the elaboration of these foods, the combined procedure enables levels of gliadins from 100 to 400 ppm to be detected. The efficiency of this combined procedure corroborates enzyme-linked immunosorbent assay data for a large number of maize/rice gluten-free foods by means of direct visualization of the characteristic gliadin mass pattern in maize or rice foods. Copyright 2003 John Wiley & Sons, Ltd.

  1. Mapping rice areas of South Asia using MODIS multitemporal data

    Science.gov (United States)

    Gumma, Murali Krishna; Nelson, Andrew; Thenkabail, Prasad S.; Singh, Amrendra N.

    2011-01-01

    Our goal is to map the rice areas of six South Asian countries using moderate-resolution imaging spectroradiometer (MODIS) time-series data for the time period 2000 to 2001. South Asia accounts for almost 40% of the world's harvested rice area and is also home to 74% of the population that lives on less than $2.00 a day. The population of the region is growing faster than its ability to produce rice. Thus, accurate and timely assessment of where and how rice is cultivated is important to craft food security and poverty alleviation strategies. We used a time series of eight-day, 500-m spatial resolution composite images from the MODIS sensor to produce rice maps and rice characteristics (e.g., intensity of cropping, cropping calendar) taking data for the years 2000 to 2001 and by adopting a suite of methods that include spectral matching techniques, decision trees, and ideal temporal profile data banks to rapidly identify and classify rice areas over large spatial extents. These methods are used in conjunction with ancillary spatial data sets (e.g., elevation, precipitation), national statistics, and maps, and a large volume of field-plot data. The resulting rice maps and statistics are compared against a subset of independent field-plot points and the best available subnational statistics on rice areas for the main crop growing season (kharif season). A fuzzy classification accuracy assessment for the 2000 to 2001 rice-map product, based on field-plot data, demonstrated accuracies from 67% to 100% for individual rice classes, with an overall accuracy of 80% for all classes. Most of the mixing was within rice classes. The derived physical rice area was highly correlated with the subnational statistics with R2 values of 97% at the district level and 99% at the state level for 2000 to 2001. These results suggest that the methods, approaches, algorithms, and data sets we used are ideal for rapid, accurate, and large-scale mapping of paddy rice as well as for generating

  2. Rice production model based on the concept of ecological footprint

    Science.gov (United States)

    Faiz, S. A.; Wicaksono, A. D.; Dinanti, D.

    2017-06-01

    Pursuant to what had been stated in Region Spatial Planning (RTRW) of Malang Regency for period 2010-2030, Malang Regency was considered as the center of agricultural development, including districts bordered with Malang City. To protect the region functioning as the provider of rice production, then the policy of sustainable food farming-land (LP2B) was made which its implementation aims to protect rice-land. In the existing condition, LP2B system was not maximally executed, and it caused a limited extend of rice-land to deliver rice production output. One cause related with the development of settlements and industries due to the effect of Malang City that converted land-function. Location of research focused on 30 villages with direct border with Malang City. Review was conducted to develop a model of relation between farming production output and ecological footprint variables. These variables include rice-land area (X1), built land percentage (X2), and number of farmers (X3). Analysis technique was regression. Result of regression indicated that the model of rice production output Y=-207,983 + 10.246X1. Rice-land area (X1) was the most influential independent variable. It was concluded that of villages directly bordered with Malang City, there were 11 villages with higher production potential because their rice production yield was more than 1,000 tons/year, while 12 villages were threatened with low production output because its rice production yield only attained 500 tons/year. Based on the model and the spatial direction of RTRW, it can be said that the direction for the farming development policy must be redesigned to maintain rice-land area on the regions on which agricultural activity was still dominant. Because rice-land area was the most influential factor to farming production. Therefore, the wider the rice-land is, the higher rice production output is on each village.

  3. Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses

    Directory of Open Access Journals (Sweden)

    Inja Naga Bheema Lingeswara Reddy

    2017-11-01

    Full Text Available The key for rice plant survival under NaCl salt stress is maintaining a high K+/Na+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K+/Na+ ratios. Seventeen SSR markers reported to be associated with K+/Na+ ratio were used to screen the accessions. Five SSR markers (RM8053, RM345, RM318, RM253 and RM7075 could differentiate accessions classified based on their K+/Na+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K+/Na+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  4. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    Science.gov (United States)

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  5. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine

    Science.gov (United States)

    Dong, Jinwei; Xiao, Xiangming; Menarguez, Michael A.; Zhang, Geli; Qin, Yuanwei; Thau, David; Biradar, Chandrashekhar; Moore, Berrien

    2016-01-01

    Area and spatial distribution information of paddy rice are important for understanding of food security, water use, greenhouse gas emission, and disease transmission. Due to climatic warming and increasing food demand, paddy rice has been expanding rapidly in high latitude areas in the last decade, particularly in northeastern (NE) Asia. Current knowledge about paddy rice fields in these cold regions is limited. The phenology- and pixel-based paddy rice mapping (PPPM) algorithm, which identifies the flooding signals in the rice transplanting phase, has been effectively applied in tropical areas, but has not been tested at large scale of cold regions yet. Despite the effects from more snow/ice, paddy rice mapping in high latitude areas is assumed to be more encouraging due to less clouds, lower cropping intensity, and more observations from Landsat sidelaps. Moreover, the enhanced temporal and geographic coverage from Landsat 8 provides an opportunity to acquire phenology information and map paddy rice. This study evaluated the potential of Landsat 8 images on annual paddy rice mapping in NE Asia which was dominated by single cropping system, including Japan, North Korea, South Korea, and NE China. The cloud computing approach was used to process all the available Landsat 8 imagery in 2014 (143 path/rows, ~3290 scenes) with the Google Earth Engine (GEE) platform. The results indicated that the Landsat 8, GEE, and improved PPPM algorithm can effectively support the yearly mapping of paddy rice in NE Asia. The resultant paddy rice map has a high accuracy with the producer (user) accuracy of 73% (92%), based on the validation using very high resolution images and intensive field photos. Geographic characteristics of paddy rice distribution were analyzed from aspects of country, elevation, latitude, and climate. The resultant 30-m paddy rice map is expected to provide unprecedented details about the area, spatial distribution, and landscape pattern of paddy rice fields

  6. Weed populations and their buried seeds in rice fields of the MUDA area

    International Nuclear Information System (INIS)

    Ismail Sahid; Noor Faezah Zainuddin; Ho Nai Kin

    2002-01-01

    A total of 25 weed species belonging to 15 families were found in rice fields near Kampung Tandop, in the Muda Irrigation Scheme, Kedah, Malaysia. The dominant weeds in dry-seeded rice were Utricularia aurea Lour., Fimbristylis miliacea (L.) vahl., Echinochloa crusgalli (L.) Beauv., Monochoria vaginalis (Burm. Q Presl. and Najas graminea (Del.) Redl. In wet-seeded rice, the dominant species were N. graminea, Lemna minor L., Sphenoclea zeylanica Gaertn., U. aured, and Sagittaria guayanensis H. B. K., while in volunteer seedling rice fields, the dominant species were Echinochloa colonum (L.) Link., Fimbristylis alboviridis C. B. Clarke, E miliacea, Cyperus babakan Steud. and Fuirena umbellata Rottb. Dry-seeded rice fields contained the highest number of weed seeds (930 910/m 2 in the top 15 cm of soil); volunteer seedling rice fields contained 793.162/m 2 and wet-seeded rice fields 712 228/m 2 . In general, the seed numbers declined with increasing soil depth. At 1015 cm depth, seeds of U aurea and S. zeylanica were the most abundant in dry and wet-seeded rice fields, whilst seeds of Scirpusjuncoides Roxb. and E miliacea were most abundant in volunteer seedling fields. (Author)

  7. Evaluation of weather-based rice yield models in India

    Science.gov (United States)

    Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.

    2013-01-01

    The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  8. Estimation of rice yield affected by drought and relation between rice yield and TVDI

    Science.gov (United States)

    Hongo, C.; Tamura, E.; Sigit, G.

    2016-12-01

    Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.

  9. Simulating the Effects of Agricultural Management on Water Quality Dynamics in Rice Paddies for Sustainable Rice Production—Model Development and Validation

    Directory of Open Access Journals (Sweden)

    Soon-Kun Choi

    2017-11-01

    Full Text Available The Agricultural Policy/Environmental eXtender (APEX model is widely used for evaluating agricultural conservation efforts and their effects on soil and water. A key component of APEX application in Korea is simulating the water quality impacts of rice paddies because rice agriculture claims the largest cropland area in the country. In this study, a computational module called APEX-Paddy (National Academy of Agricultural Sciences, Wanju, Korea is developed to simulate water quality with considering pertinent paddy management practices, such as puddling and flood irrigation management. Data collected at two experimental paddy sites in Korea were used to calibrate and validate the model. Results indicate that APEX-Paddy performs well in predicting runoff discharge rate and nitrogen yield while the original APEX highly overestimates runoff rates and nitrogen yields on large storm events. With APEX-Paddy, simulated and observed flow and mineral nitrogen yield (QN are found to be highly correlated after calibration (Nash & Sutcliffe Efficiency (NSE = 0.87 and Percent Bias (PBIAS = −14.6% for flow; NSE = 0.68 and PBIAS = 2.1% for QN. Consequently, the APEX-Paddy showed a greater accuracy in flow and QN prediction than the original APEX modeling practice using the SCS-CN (Soil Conservation Service-Curve Number method.

  10. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions.

    Science.gov (United States)

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas

    2017-12-26

    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  11. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    Science.gov (United States)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  12. Utilizing on-farm best management practices: Managing Nitrate Leaching Using Evapotranspiration Based Irrigation Methods

    Science.gov (United States)

    Zaragosa, I.; Melton, F. S.; Dexter, J.; Post, K.; Haffa, A.; Kortman, S.; Spellenberg, R.; Cahn, M.

    2017-12-01

    In efforts to provide tools to allow farmers to optimize and quantify water usage and fertilizer applications, University of California Cooperative Extension (UCCE) developed the CropManage irrigation and nitrogen scheduling tool that provides real time evapotranspiration (ETc) based irrigation recommendations and fertilizer recommendations on a per field basis. CropManage incorporates satellite based estimates of fractional cover from web data services from the Satellite Irrigation Management Information Support (SIMS) system developed by NASA Ames Research Center in collaboration with California State University Monterey Bay (CSUMB). In this study, we conducted field trials to quantify the benefits of using these tools to support best management practices (BMPs) for irrigation and nutrient management in strawberries and lettuce in the Salinas Valley, California. We applied two different irrigation treatments based on full replacement (100%) of crop evapotranspiration (ETc), and irrigation at 130% of ETc replacement to approximate irrigation under business as usual irrigation management. Both field studies used a randomized block design with four replicates each. We used CropManage to calculate the 100% and 130% ETc replacement requirements prior to each irrigation event. We collected drainage volume and samples and analyzed them for 8500 to nitrate as (NO3-) concentrations. Experimental results for both strawberries and lettuce showed a significant decrease in the percentage of applied nitrogen leached for the 100% ETc replacement treatment against the 130% ETc replacement treatment. For strawberries, we observed that 24% of applied nitrogen was leached under the 100% ETc replacement treatment, versus 51% of applied nitrogen that was leached under the 130% ETc replacement treatment. For lettuce, we observe that 2% of the applied nitrogen leached bellow the soil profile, versus 6% of the applied nitrogen for the 130%ETc replacement treatment. In both experiments

  13. Mapping regional risks from climate change for rainfed rice cultivation in India.

    Science.gov (United States)

    Singh, Kuntal; McClean, Colin J; Büker, Patrick; Hartley, Sue E; Hill, Jane K

    2017-09-01

    Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~ 50% of rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional level (~ 18 × 18 km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of precipitation to evapotranspiration ( PER ), maximum and minimum temperatures ( T max and T min ), and total rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occurrence, ensemble AUC = 0.92; BRTs for extent, Pearson's r = 0.87). PER was the most important predictor of rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were important for determining the extent of rice cultivation. Our models project that 15%-40% of current rainfed rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However, our models project considerable variation across India in the impact of future climate change: eastern and northern India are the locations most at risk, but parts of central and western India may benefit from increased

  14. Exploring the Potential of TanDEM-X Data in Rice Monitoring

    Science.gov (United States)

    Erten, E.

    2015-12-01

    In this work, phenological parameters such as growth stage, calendar estimation, crop density and yield estimation for rice fields are estimated employing TanDEM-X data. Currently, crop monitoring is country-dependent. Most countries have databases based on cadastral information and annual farmer inputs. Inaccuracies are coming from wrong or missing farmer declarations and/or coarsely updated cadastral boundary definitions. This leads to inefficient regulation of the market, frauds as well as to ecological risks. An accurate crop calendar is also missing, since farmers provide estimations in advance and there is no efficient way to know the growth status over large plantations. SAR data is of particular interest for these purposes. The proposed method includes two step approach including field detection and phenological state estimation. In the context of precise farming it is substantial to define field borders which are usually changing every cultivation period. Linking the SAR inherit properties to transplanting practice such as irrigation, the spatial database of rice-planted agricultural crops can be updated. Boundaries of agricultural fields will be defined in the database, and assignments of crops and sowing dates will be continuously updated by our monitoring system considering that sowing practice variously changes depending on the field owner decision. To define and segment rice crops, the system will make use of the fact that rice fields are characterized as flooded parcels separated by path networks composed by soil or rare grass. This natural segmentation is well detectable by inspecting low amplitude and coherence values of bistatic acquisitions. Once the field borders are defined, the phenology estimation of crops monitored at any time is the key point of monitoring. In this aspect the wavelength and the polarization option of TanDEM-X are enough to characterize the small phenological changes. The combination of bistatic interferometry and Radiative

  15. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data

    Science.gov (United States)

    Gumma, Murali Krishna; Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Rao, Mahesh N.; Mohammed, Irshad A.; Whitbread, Anthony M.

    2016-01-01

    The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The

  16. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  17. Understanding the physiological and molecular mechanisms of rice-microbial interactions that produce methane

    Science.gov (United States)

    The second most abundant greenhouse gas, methane, is ~25 times more potent in global warming potential than carbon dioxide, and 7-17% of atmospheric methane comes from flooded rice fields. Methane emissions can be greatly reduced by using alternate wetting and drying irrigation management and/or cul...

  18. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    In order to find resistant varieties and study the reaction of some newly released high yielding varieties to different levels of salinity of irrigation water an experiment was conducted at the Rice Research Institute of Iran-Amol station in a greenhouse. Eight varieties, cultivated in pots, were tested with three levels of salinity (2, ...

  19. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to
    understand how irrigation and agricultural technologies have interacted with local
    society to transform production, paying particular attention to gender relations and
    changes for women farmers. The

  20. Engineered Dwarf Male-Sterile Rice: A Promising Genetic Tool for Facilitating Recurrent Selection in Rice.

    Science.gov (United States)

    Ansari, Afsana; Wang, Chunlian; Wang, Jian; Wang, Fujun; Liu, Piqing; Gao, Ying; Tang, Yongchao; Zhao, Kaijun

    2017-01-01

    Rice is a crop feeding half of the world's population. With the continuous raise of yield potential via genetic improvement, rice breeding has entered an era where multiple genes conferring complex traits must be efficiently manipulated to increase rice yield further. Recurrent selection is a sound strategy for manipulating multiple genes and it has been successfully performed in allogamous crops. However, the difficulties in emasculation and hand pollination had obstructed efficient use of recurrent selection in autogamous rice. Here, we report development of the dwarf male-sterile rice that can facilitate recurrent selection in rice breeding. We adopted RNAi technology to synergistically regulate rice plant height and male fertility to create the dwarf male-sterile rice. The RNAi construct pTCK-EGGE, targeting the OsGA20ox2 and OsEAT1 genes, was constructed and used to transform rice via Agrobacterium -mediated transformation. The transgenic T0 plants showing largely reduced plant height and complete male-sterile phenotypes were designated as the dwarf male-sterile plants. Progenies of the dwarf male-sterile plants were obtained by pollinating them with pollens from the wild-type. In the T1 and T2 populations, half of the plants were still dwarf male-sterile; the other half displayed normal plant height and male fertility which were designated as tall and male-fertile plants. The tall and male-fertile plants are transgene-free and can be self-pollinated to generate new varieties. Since emasculation and hand pollination for dwarf male-sterile rice plants is no longer needed, the dwarf male-sterile rice can be used to perform recurrent selection in rice. A dwarf male-sterile rice-based recurrent selection model has been proposed.

  1. A Study of the Anechoic Performance of Rice Husk-Based, Geometrically Tapered, Hollow Absorbers

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Iqbal

    2014-01-01

    Full Text Available Although solid, geometrically tapered microwave absorbers are preferred due to their better performance, they are bulky and must have a thickness on the order of λ or more. The goal of this study was to design lightweight absorbers that can reduce the electromagnetic reflections to less than −10 dB. We used a very simple approach; two waste materials, that is, rice husks and tire dust in powder form, were used to fabricate two independent samples. We measured and used their dielectric properties to determine and compare the propagation constants and quarter-wave thickness. The quarter-wave thickness for the tire dust was 3 mm less than that of the rice husk material, but we preferred the rice-husk material. This preference was based on the fact that our goal was to achieve minimum backward reflections, and the rice-husk material, with its low dielectric constant, high loss factor, large attenuation per unit length, and ease of fabrication, provided a better opportunity to achieve that goal. The performance of the absorbers was found to be better (lower than −20 dB, and comparison of the results proved that the hollow design with 58% less weight was a good alternative to the use of solid absorbers.

  2. Digging, Damming or Diverting? Small-Scale Irrigation in the Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    Irit Eguavoen

    2012-10-01

    Full Text Available The diversity of small-scale irrigation in the Ethiopian Blue Nile basin comprises small dams, wells, ponds and river diversion. The diversity of irrigation infrastructure is partly a consequence of the topographic heterogeneity of the Fogera plains. Despite similar social-political conditions and the same administrative framework, irrigation facilities are established, used and managed differently, ranging from informal arrangements of households and 'water fathers' to water user associations, as well as from open access to irrigation schedules. Fogera belongs to Ethiopian landscapes that will soon transform as a consequence of large dams and huge irrigation schemes. Property rights to land and water are negotiated among a variety of old and new actors. This study, based on ethnographic, hydrological and survey data, synthesises four case studies to analyse the current state of small-scale irrigation. It argues that all water storage options have not only certain comparative advantages but also social constraints, and supports a policy of extending water storage 'systems' that combine and build on complementarities of different storage types instead of fully replacing diversity by large dams.

  3. Genetic relatedness among indigenous rice varieties in the Eastern Himalayan region based on nucleotide sequences of the Waxy gene.

    Science.gov (United States)

    Choudhury, Baharul I; Khan, Mohammed L; Dayanandan, Selvadurai

    2014-12-29

    Indigenous rice varieties in the Eastern Himalayan region of Northeast India are traditionally classified into sali, boro and jum ecotypes based on geographical locality and the season of cultivation. In this study, we used DNA sequence data from the Waxy (Wx) gene to infer the genetic relatedness among indigenous rice varieties in Northeast India and to assess the genetic distinctiveness of ecotypes. The results of all three analyses (Bayesian, Maximum Parsimony and Neighbor Joining) were congruent and revealed two genetically distinct clusters of rice varieties in the region. The large group comprised several varieties of sali and boro ecotypes, and all agronomically improved varieties. The small group consisted of only traditionally cultivated indigenous rice varieties, which included one boro, few sali and all jum varieties. The fixation index analysis revealed a very low level of differentiation between sali and boro (F(ST) = 0.005), moderate differentiation between sali and jum (F(ST) = 0.108) and high differentiation between jum and boro (F(ST) = 0.230) ecotypes. The genetic relatedness analyses revealed that sali, boro and jum ecotypes are genetically heterogeneous, and the current classification based on cultivation type is not congruent with the genetic background of rice varieties. Indigenous rice varieties chosen from genetically distinct clusters could be used in breeding programs to improve genetic gain through heterosis, while maintaining high genetic diversity.

  4. The impact of a rice based diet on urinary arsenic.

    Science.gov (United States)

    Cascio, Claudia; Raab, Andrea; Jenkins, Richard O; Feldmann, Joerg; Meharg, Andrew A; Haris, Parvez I

    2011-02-01

    Rice is elevated in arsenic (As) compared to other staple grains. The Bangladeshi community living in the United Kingdom (UK) has a ca. 30-fold higher consumption of rice than white Caucasians. In order to assess the impact of this difference in rice consumption, urinary arsenicals of 49 volunteers in the UK (Bangladeshi n = 37; white Caucasians n = 12) were monitored along with dietary habits. Total urinary arsenic (As(t)) and speciation analysis for dimethylarsinic acid (DMA), monomethylarsonic acid (MA) and inorganic arsenic (iAs) was conducted. Although no significant difference was found for As(t) (median: Bangladeshis 28.4 µg L(-1)) and white Caucasians (20.6 µg L(-1)), the sum of medians of DMA, MA and iAs for the Bangladeshi group was found to be over 3-fold higher (17.9 µg L(-1)) than for the Caucasians (3.50 µg L(-1)). Urinary DMA was significantly higher (p iAs (p iAs L(-1) for Bangladeshi and 0.250 µg iAs L(-1) for Caucasians. Cationic compounds were significantly lower in the Bangladeshis (2.93 µg L(-1)) than in Caucasians (14.9 µg L(-1)). The higher DMA and iAs levels in the Bangladeshis are mainly the result of higher rice consumption: arsenic is speciated in rice as both iAs and DMA, and iAs can be metabolized, through MA, to DMA by humans. This study shows that a higher dietary intake of DMA alters the DMA/MA ratio in urine. Consequently, DMA/MA ratio as an indication of methylation capacity in populations consuming large quantities of rice should be applied with caution since variation in the quantity and type of rice eaten may alter this ratio.

  5. Metric matters : the performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru

    OpenAIRE

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in the coast of Peru is considered to be badly managed, however this study shows that performance is more optimal than critics assume. Apart from the relevance in the local water management discussion,...

  6. Agro-ecological variations of sheath rot disease of rice caused by Sarocladium oryzae and DNA fingerprinting of the pathogen's population structure.

    Science.gov (United States)

    Tajul Islam Chowdhury, M; Salim Mian, M; Taher Mia, M A; Rafii, M Y; Latif, M A

    2015-12-28

    To examine the impact of regional and seasonal variations on the incidence and severity of sheath rot, a major seed-borne disease of rice caused by Sarocladium oryzae, data on incidence and severity were collected from 27 selected fields in the Gazipur, Rangpur, Bogra, Chittagong, Comilla, Gopalgonj, Jessore, Manikgonj, and Bhola districts of Bangladesh in rain-fed and irrigated conditions. Cultural variability of 29 pathogen isolates obtained from 8 different locations was studied on potato dextrose agar (PDA) and genetic variability was determined by DNA fingerprinting using variable number tandem repeat-polymerase chain reaction markers. Overall, disease incidence and severity were higher in irrigated rice. Disease incidence and severity were highest in the Bhola district in rain-fed rice and lowest in irrigated rice. Mycelial growth of 29 representative isolates was found to vary on PDA and the isolates were divided into 6 groups. The range of the overall size of conidia of the selected isolates was 2.40-7.20 x 1.20-2.40 μm. Analysis of the DNA fingerprint types of the 29 isolates of S. oryzae, obtained from the amplification reactions, revealed 10 fingerprinting types (FPTs) that were 80% similar. FPT-1 was the largest group and included 13 isolates (44.8%), while FPT-2 was the third largest group and included 3 isolates. Each of FPT-3, 4, 5, and 6 included only 1 isolate. We observed no relationship between cultural and genetic groupings.

  7. A STUDY FOR REMOTE DETECTION OF INDUSTRIAL EFFLUENTS’ EFFECT ON RICE USING THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    S. Dehnavi

    2015-12-01

    Full Text Available Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory’s effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant’s product and its f-cover value, also some changes in radiant temperature.

  8. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  9. Drought resistant rice mutants, characteristics and discussions on possibilities for planting them in some Arab Countries which import rice

    International Nuclear Information System (INIS)

    Abo-Hegazi, A.M.T.

    1994-01-01

    A number of drought resistant mutants of rice were produced from ordinary rice varieties being planted in several parts of Egypt through utilization of gamma rays as a mutagen. The mutants have water requirements less than one half of that of their mother varieties. According to official data, authorities in Egypt insure about 18000 M 3 of irrigation water for every hectare (10000 M 2 ) of rice and about 6700 M 3 , 6900 M 3 for every hectare of corn and ground nuts, respectively. Peanuts and corn are summer crops like the drought resistant rice mutants. The mentioned mutants can produce good yield under water requirements very near to that of corn and peanuts. The wide gap in agricultural food stuffs for the Arab Countries (more than 20000 million US $ annually) includes rice imports usually exceeds 700 million US $ per year> Rice imports of Arab Countries such as Saudi Arabia, Yemen, Syria, Libya and the Sudan, reached 180, 47, 21, 16 and 14 million US $ in 1988 as an example. Such countries could make use of the drought resistant rice mutants for plantation on water requirements very near to those of usual summer crops such as corn and peanuts which is significantly less than one half of water requirements of their mother varieties. Some characteristics of such mutants as well as discussions on possibilities for planting them in some of the nominated Arab Countries are presented. However, arrangements for ensuring the minimum water requirements during the growing period irrespective to rain which in many cases did not accord the growing period of the mutants should be taken if such countries wants to make use of the drought resistant rice mutants. The author believe that most if not all requirements of rice of such countries could locally be ensured through planting of the above mentioned rice mutants. In this case, maximizing the efficiency of utilizing the limited water resources of such countries could also be counted as another cause for presenting this

  10. Implications of Water Use and Water Scarcity Footprint for Sustainable Rice Cultivation

    Directory of Open Access Journals (Sweden)

    Thapat Silalertruksa

    2017-12-01

    Full Text Available Rice cultivation is a vital economic sector of many countries in Asia, including Thailand, with the well-being of people relying significantly on selling rice commodities. Water-intensive rice cultivation is facing the challenge of water scarcity. The study assessed the volumetric freshwater use and water scarcity footprint of the major and second rice cultivation systems in the Chao Phraya, Tha Chin, Mun, and Chi watersheds of Thailand. The results revealed that a wide range of freshwater use, i.e., 0.9–3.0 m3/kg of major rice and 0.9–2.3 m3/kg of second rice, and a high water use of rice was found among the watersheds in the northeastern region, like the Mun and Chi watersheds. However, the water scarcity footprint results showed that the second rice cultivation in watersheds, like in Chao Phraya and Tha Chin in the central region, need to be focused for improving the irrigation water use efficiency. The alternate wetting and drying (AWD method was found to be a promising approach for substituting the pre-germinated seed broadcasting system to enhance the water use efficiency of second rice cultivation in the central region. Recommendations vis-à-vis the use of the water stress index as a tool for agricultural zoning policy were also discussed.

  11. An institutional perspective on farmers’ water management and rice production practices in Benin

    NARCIS (Netherlands)

    Totin, G.G.E.

    2013-01-01

    This thesis is part of the wider debate about the role of institutions in agricultural innovation processes. It

    investigates how institutions shape rice production in inland valleys in Benin. It starts from a scoping study

    (prior to this research) on smallholder irrigation in

  12. Mapping rice areas of South Asia using MODIS multitemporal data

    Science.gov (United States)

    Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N.

    2011-01-01

    Our goal is to map the rice areas of six South Asian countries using moderate-resolution imaging spectroradiometer (MODIS) time-series data for the time period 2000 to 2001. South Asia accounts for almost 40% of the world's harvested rice area and is also home to 74% of the population that lives on less than $2.00 a day. The population of the region is growing faster than its ability to produce rice. Thus, accurate and timely assessment of where and how rice is cultivated is important to craft food security and poverty alleviation strategies. We used a time series of eight-day, 500-m spatial resolution composite images from the MODIS sensor to produce rice maps and rice characteristics (e.g., intensity of cropping, cropping calendar) taking data for the years 2000 to 2001 and by adopting a suite of methods that include spectral matching techniques, decision trees, and ideal temporal profile data banks to rapidly identify and classify rice areas over large spatial extents. These methods are used in conjunction with ancillary spatial data sets (e.g., elevation, precipitation), national statistics, and maps, and a large volume of field-plot data. The resulting rice maps and statistics are compared against a subset of independent field-plot points and the best available subnational statistics on rice areas for the main crop growing season (kharif season). A fuzzy classification accuracy assessment for the 2000 to 2001 rice-map product, based on field-plot data, demonstrated accuracies from 67% to 100% for individual rice classes, with an overall accuracy of 80% for all classes. Most of the mixing was within rice classes. The derived physical rice area was highly correlated with the subnational statistics with R2 values of 97% at the district level and 99% at the state level for 2000 to 2001. These results suggest that the methods, approaches, algorithms, and data sets we used are ideal for rapid, accurate, and large-scale mapping of paddy rice as well as for generating

  13. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    Science.gov (United States)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.

  14. Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016

    Directory of Open Access Journals (Sweden)

    Eric W. Chance

    2018-01-01

    Full Text Available Understanding irrigator responses to changes in water availability is critical for building strategies to support effective management of water resources. Using remote sensing data, we examine farmer responses to seasonal changes in water availability in Idaho’s Snake River Plain for the time series 1984–2016. We apply a binary threshold based on the seasonal maximum of the Normalized Difference Moisture Index (NDMI using Landsat 5–8 images to distinguish irrigated from non-irrigated lands. We find that the NDMI of irrigated lands increased over time, consistent with trends in irrigation technology adoption and increased crop productivity. By combining remote sensing data with geospatial data describing water rights for irrigation, we show that the trend in NDMI is not universal, but differs by farm size and water source. Farmers with small farms that rely on surface water are more likely than average to have a large contraction (over −25% in irrigated area over the 33-year period of record. In contrast, those with large farms and access to groundwater are more likely than average to have a large expansion (over +25% in irrigated area over the same period.

  15. Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA

    Science.gov (United States)

    The use of irrigation scheduling tools to produce cotton under-surface irrigation in the arid southwesternUSA is minimal. In the State of Arizona, where traditional irrigation scheduling is the norm, producersuse an average of 1460 mm annually to grow a cotton crop. The purpose of this paper was to ...

  16. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, B.M. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Environment and Public Health Organization (ENPHO), P.O. Box 4102, Kathmandu (Nepal); Fuerhacker, M. [Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Mentler, A. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Karki, K.B. [Soil Science Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur (Nepal); Shrestha, R.R. [UN Habitat-Nepal, UN House, Pulchwok, P.O. Box 107, Kathmandu (Nepal); Blum, W.E.H. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria)], E-mail: winfried.blum@boku.ac.at

    2008-09-15

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L{sup -1} where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg{sup -1}. The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg{sup -1}) > onion bulb (0.45 mg As kg{sup -1}) > cauliflower (0.33 mg As kg{sup -1}) > rice (0.18 mg As kg{sup -1}) > brinjal (0.09 mg As kg{sup -1}) > potato (<0.01 mg As kg{sup -1}). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water.

  17. Water quality in irrigation and drainage networks of Thessaloniki plain in Greece related to land use, water management, and agroecosystem protection.

    Science.gov (United States)

    Litskas, Vassilis D; Aschonitis, Vassilis G; Antonopoulos, Vassilis Z

    2010-04-01

    A representative agricultural area of 150 ha located in a protected ecosystem (Axios River Delta, Thermaikos Gulf-N. Aegean, Greece) was selected in order to investigate water quality parameters [pH, electrical conductivity (EC(w)), NO(3)-N, NH(4)-N, total phosphorus (TP)] in irrigation and drainage water. In the study area, the cultivated crops are mainly rice, maize, cotton, and fodder. Surface irrigation methods are applied using open channels network, and irrigation water is supplied by Axios River, which is facing pollution problems. The return flow from surface runoff and the surplus of irrigation water are collected to drainage network and disposed to Thermaikos Gulf. A 2-year study (2006-2007) was conducted in order to evaluate the effects of land use and irrigation water management on the drainage water quality. The average pH and NO(3)-N concentration was higher in the irrigation water (8.0 and 1.3 mg/L, respectively) than that in the drainage water (7.6 and 1.0 mg/L, respectively). The average EC(W), NH(4)-N, and TP concentration was higher in the drainage water (1,754 muS/cm, 90.3 microg/L, and 0.2 mg/L, respectively) than that in the irrigation water (477.1 muS/cm, 46.7 microg/L, and 0.1 mg/L, respectively). Average irrigation efficiency was estimated at 47% and 51% in 2006 and 2007 growing seasons (April-October), respectively. The loads of NO(3)-N in both seasons were higher in the irrigation water (35.1 kg/ha in 2006 and 24.9 kg/ha in 2007) than those in the drainage water (8.1 kg/ha in 2006 and 7.6 kg/ha in 2007). The load of TP was higher in the irrigation water in season 2006 (2.8 kg/ha) than that in the drainage water (1.1 kg/ha). Total phosphorus load in 2007 was equal in irrigation and drainage water (1.2 kg/ha). Wetland conditions, due to rice irrigation regime, drainage network characteristics, and the crop distribution in the study area, affect the drainage water ending in the protected ecosystem of Thermaikos Gulf.

  18. Percepção e medidas de gestão de riscos por produtores de arroz irrigado na Fronteira Oeste do Rio Grande do Sul Risk perception and risk management measures by irrigated rice growers in Fronteira Oeste, Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Maria Isabel Fernandes Finger

    2013-05-01

    Full Text Available A produção agrícola apresenta características particulares, se comparada a outras atividades econômicas, sendo uma das mais marcantes a extensão dos riscos aos quais está exposta. O cultivo de arroz (Oryza sativa L. irrigado, embora pareça menos suscetível do que as culturas de sequeiro, também está exposto a riscos. Maior produtor mundial de arroz fora da Ásia, o Brasil tem no Rio Grande do Sul seu principal estado produtor. O objetivo deste trabalho foi analisar como o orizicultor da Fronteira Oeste do Rio Grande do Sul percebe os riscos da sua atividade e quais medidas adota para geri-los. A metodologia empregada envolveu aplicação presencial de questionários a orizicultores, de acordo com uma amostra não probabilística. Os resultados indicaram que os orizicultores atribuem maior relevância aos riscos socioeconômicos do que aos de produção. Evidencia-se, assim, a importância da gestão do negócio pelos orizicultores, para que sua atividade esteja integrada com os demais elos da cadeia produtiva. A redução de custos pode ser uma alternativa para mitigação de riscos de mercado, apontados como os mais relevantes pelos orizicultores. A percepção dos orizicultores sobre riscos e sobre medidas para mitigá-los pode representar a base na formulação de estratégias de gestão de riscos.Agricultural production has many different influencing factors compared to other economic activities. One of the most striking is the extent of the risks to which it is exposed. Irrigated rice (Oryza sativa L. cultivation, although seeming less susceptible than non-irrigated crops, is also exposed to risks. World's largest producer of rice outside Asia, Brazil has the state of Rio Grande do Sul as its main producer. The aim of this study was to analyze how rice farmers in Fronteira Oeste, Rio Grande do Sul realize the risks of their activity and how they manage them. Methodology involved the administration of a questionnaire, according to

  19. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    Directory of Open Access Journals (Sweden)

    Leonardo Maltchik

    2011-12-01

    species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1 Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2 Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006. A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production. Rev. Biol. Trop. 59 (4: 1895-1914. Epub 2011 December 01.

  20. Technology management and participatory approach with agroecological rice for local scale. Part II - Impacts assessment of the strategy and action plan in Madruga municipality

    Directory of Open Access Journals (Sweden)

    Deborah González Viera

    2015-02-01

    Full Text Available Land policies to increase the rice production have as purpose to promote the mechanization, to increase the yield for farm area, to enlarge the crop area and to achieve the self-sufficiency in the production or to reduce the imports of this cereal. Other important aspects are the costs of rice crop and their impact in the productive revenues besides the great dependence of the grain on the part of the poor countries; where their potentiality resides in the production to small scale in irrigated ecosystem like a sustainable base for the diversification of the rural economy. For such a reason, this work was developed with the objective of establishing a strategy of sustainable development for the popular rice crop that was based on the technological management with focus agroecologic and participatory focus. Their application conceived on-farm research by means of variety trials simultaneously to a costs studies of three technologies adopted by the producers and during the process, three qualification cycles were made being achieved increasing of rice crop yield in 14 %.

  1. The maximum economic depth of groundwater abstraction for irrigation

    Science.gov (United States)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of

  2. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    Science.gov (United States)

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  3. Evaluation of sources, rates and methods of zinc fertilizer applications in flooded rice

    International Nuclear Information System (INIS)

    Sarkar, A.K.; Deb, D.L.

    1981-01-01

    A pot experiment was conducted using 65 Zn as tracer to evaluate the different sources, levels and methods of zinc fertilization in flooded rice. Results indicated that zinc sulphate was either at par or slightly superior to zincated urea from the point of view of yield and total zinc uptake by rice. The Zndff percent was found to be the highest with zincated urea and the lowest was observed with zinc oxide. 5 and 10 kg/ha levels of zinc were statistically at par in this regard. Among the different methods, surface application and thorough mixing with soil were comparable. Root dipping in 1 percent zinc oxide suspension and application of zinc in irrigation water also indicated high zinc absorption by the rice plant. (author)

  4. Sustainable rice production in the Muda area of Malaysia

    International Nuclear Information System (INIS)

    Ho Nai Kin; Foong Kam Chong; Kamarudin Dahuli

    2002-01-01

    The Green Revolution has generated both positive as well as negative effects on the rice agroecosystem in the Muda area. The major obstacles to sustainable rice production are water shortage, natural hazards, disease epidemics, pest outbreaks, urban and industrial development, as well as structural changes in the farming community. The Muda Agricultural Development Authority (MADA) has adopted a proactive approach in addressing these problems. The improvement in management in the Muda area comprises the following strategies: i) Improvement in water use efficiency through intensification of tertiary irrigation systems, ii) Optimisation of drainage water utilisation through recycling, iii) Establishment of a Management Information System to support operational decisions, iv) Conservation of catchment vegetation for sustainable water resources, v) Implementation of Integrated Pest Management programmes, vi) Mobilisation of farmers in dynamic group activities, vii) Integration of farmers participatory experiments in the extension programmes. The above mentioned approaches have contributed to the attainment of high cropping intensity yield enhancement, and sustainability of rice production in the Muda area. (Author)

  5. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China.

    Science.gov (United States)

    Dong, Wenjun; Guo, Jia; Xu, Lijun; Song, Zhifeng; Zhang, Jun; Tang, Ao; Zhang, Xijuan; Leng, Chunxu; Liu, Youhong; Wang, Lianmin; Wang, Lizhi; Yu, Yang; Yang, Zhongliang; Yu, Yilei; Meng, Ying; Lai, Yongcai

    2018-02-01

    Water regime and nitrogen (N) fertilizer are two important factors impacting greenhouse gases (GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane (CH 4 ) emission compared with continuous flooding, however, the decrement was far lower than the global average level. The N 2 O emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH 4 emissions at low level (75kgN/ha). But both CH 4 and N 2 O emissions were uninfluenced at the levels of 150kgN/ha and 225kgN/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150kgN/ha. From our results, we recommended that the intermittent irrigation and 150kgN/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields. Copyright © 2017. Published by Elsevier B.V.

  6. Spatially distinct response of rice yield to autonomous adaptation under the CMIP5 multi-model projections

    Science.gov (United States)

    Shin, Yonghee; Lee, Eun-Jeong; Im, Eun-Soon; Jung, Il-Won

    2017-02-01

    Rice ( Oryza sativa L.) is a very important staple crop, as it feeds more than half of the world's population. Numerous studies have focused on the negative impacts of climate change on rice production. However, there is little debate on which region of the world is more vulnerable to climate change and how adaptation to this change can mitigate the negative impacts on rice production. We investigated the impacts of climate change on rice yield, based on simulations combining a global crop model, M-GAZE, and Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model projections. Our focus was the impact of mitigating emission forcings (representative concentration pathway RCP 4.5 vs. RCP 8.5) and autonomous adaptation (i.e., changing crop variety and planting date) on rice yield. In general, our results showed that climate change due to anthropogenic warming leads to a significant reduction in rice yield. However, autonomous adaptation provides the potential to reduce the negative impact of global warming on rice yields in a spatially distinct manner. The adaptation was less beneficial for countries located at a low latitude (e.g., Cambodia, Thailand, Brazil) compared to mid-latitude countries (e.g., USA, China, Pakistan), as regional climates at the lower latitudes are already near the upper temperature thresholds for acceptable rice growth. These findings suggest that the socioeconomic effects from rice production in lowlatitude countries can be highly vulnerable to anthropogenic global warming. Therefore, these countries need to be accountable to develop transformative adaptation strategies, such as adopting (or developing) heat-tolerant varieties, and/or improve irrigation systems and fertilizer use efficiency.

  7. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  8. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    Science.gov (United States)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    Irrigation is an essential component for agricultural production in arid and semi-arid regions, accounting for a majority of global freshwater withdrawals used for human consumption. Since climate change affects both the spatiotemporal demand and availability of water in irrigated areas, agricultural productivity and water efficiency depend critically on how producers adapt and respond to climate change. It is necessary, therefore, to understand the coevolution and feedbacks between humans and agricultural systems. Integration of social and hydrologic processes can be achieved by active engagement with local stakeholders and applying their expertise to models of coupled human-environment systems. Here, we use a process based crop simulation model (EPIC) informed by stakeholder engagement to determine how both farm management and climate change influence regional agricultural water use and production in the Lower Boise River Basin (LBRB) of southwest Idaho. Specifically, we investigate how a shift from flood to sprinkler fed irrigation would impact a watershed's overall agricultural water use under RCP 4.5 and RCP 8.5 climate scenarios. The LBRB comprises about 3500 km2, of which 20% is dedicated to irrigated crops and another 40% to grass/pasture grazing land. Via interviews of stakeholders in the LBRB, we have determined that approximately 70% of irrigated lands in the region are flood irrigated. We model four common crops produced in the LBRB (alfalfa, corn, winter wheat, and sugarbeets) to investigate both hydrologic and agricultural impacts of irrigation and climatic drivers. Factors influencing farmers' decision to switch from flood to sprinkler irrigation include potential economic benefits, external financial incentives, and providing a buffer against future water shortages. These two irrigation practices are associated with significantly different surface water and energy budgets, and large-scale shifts in practice could substantially impact regional

  9. Choosing soil management systems for rice production on lowland soils in South Brazil

    NARCIS (Netherlands)

    Lima, A.C.R.; Hoogmoed, W.B.

    2009-01-01

    Lowland soils are commonly found in the state of Rio Grande do Sul, Southern of Brazil, where they represent around 20% of the total area of the state. Deficient drainage is the most important natural characteristic of these soils which therefore are mainly in use for flood-irrigated rice (Oriza

  10. PROSPEK BUDIDAYA KEDELAI PADA LAHAN SAWAH TADAH HUJAN DAN SAWAH IRIGASI SEDERHANA UNTUK PENINGKATAN PRODUKSI KEDELAI DI INDONESIA

    Directory of Open Access Journals (Sweden)

    Winardi

    2014-12-01

    Full Text Available Development of soybean in acidic dry soils having problems because the soil is relatively infertile. Further more in the irrigated paddy field especially technical irrigation, soybean commodity got competition from other commodities, especially rice on the Rainy Season and other commodities, such as corn and water melon on the Dry Season. This review describes the prospects of rainfed and simple irrigated rice field for the development and improvement of soybean production in Indonesia. Of 7,750,329 ha of total rice fields in Indonesia, rainfed rice field covers 2,017,642 ha (26.03% and simple irrigated rice field1, 588,051 ha (20.49%. Distribution ofthe two types of rice field in a row in some provinces are as follows: Central Java (273,973 and 195,072 ha, East Java (242,562 and 119,019 ha, West Java (161,859 and 250,855 ha, Banten (88,672 and 42,602 ha, North Sumatra (149,547 and 120,835 ha, and South Sulawesi (247,191 and 156,393 ha. Rainfed and simple irrigated rice field with fluctuating water availability appropriate to cultivate onetime rice and one-time secondary crops. Recommended secondary crops in the rainfed and simplel irrigated rice field, such as corn and soybeans. In the Island of Java, in the cropping pattern of Rice-soybean, rice grown in the Wet Season and soybeans in the first Dry Season. While in the cropping patern of Soybean-rice, soybeans planted in early Rainy Season before planting rice. The advantages of soybean cultivation in rainfed and simple irrigated rice field can increase the harvest index (IP, breaking the cycle of pests and diseases, improve efficiency (without or minimum tillage, utilizing there sidual fertilizer, weed grow this relatively unheavy, utilize the remaining soybeanas green manure. Soybean varieties that suitable for paddy fields generally have early to moderate maturity (75-95 days. Of 18 soybean varieties suitable for paddy field, including 10 varieties of large seed size (13.5 to 18.5 g/100 g

  11. Effect of Abiotic Stresses on the Nondestructive Estimation of Rice Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Stephan M. Haefele

    2010-01-01

    Full Text Available Decision support tools for non-destructive estimation of rice crop nitrogen (N status (e.g., chlorophyll meter [SPAD] or leaf color chart [LCC] are an established technology for improved N management in irrigated systems, but their value in rainfed environments with frequent abiotic stresses remains untested. Therefore, we studied the effect of drought, salinity, phosphorus (P deficiency, and sulfur (S deficiency on leaf N estimates derived from SPAD and LCC measurements in a greenhouse experiment. Linear relations between chlorophyll concentration and leaf N concentration based on dry weight (Ndw between SPAD values adjusted for leaf thickness and Ndw and between LCC scores adjusted for leaf thickness and Ndw could be confirmed for all treatments and varieties used. Leaf spectral reflectance measurements did not show a stress-dependent change in the reflectance pattern, indicating that no specific element of the photosynthetic complex was affected by the stresses and at the stress level applied. We concluded that SPAD and LCC are potentially useful tools for improved N management in moderately unfavorable rice environments. However, calibration for the most common rice varieties in the target region is recommended to increase the precision of the leaf N estimates.

  12. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  13. Mitigation options for methane emissions from rice fields in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  14. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    Science.gov (United States)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  15. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia

    NARCIS (Netherlands)

    Jing, Q.; Bouman, B.A.M.; Keulen, van H.; Hengsdijk, H.; Cao, W.; Dai, T.

    2008-01-01

    Rice yield is the result of the interaction between genotype (cultivar characteristics), environment (climate and soil conditions), and management. Few studies have attempted to isolate the contribution of each of these factors. Here the rice growth model ORYZA2000 was used to analyse the variation

  16. The effect of naturally acidified irrigation water on agricultural volcanic soils. The case of Asembagus, Java, Indonesia

    NARCIS (Netherlands)

    Los, A.M.D.; Vriend, S.P.; Bergen, M.J.; Gaans, R.F.M.

    2008-01-01

    Acid water from the Banyuputih river (pH similar to 3.5) is used for the irrigation of agricultural land in the Asembagus coastal area (East Java, Indonesia), with harmful consequences for rice yields. The river water has an unusual composition which is caused by seepage from the acidic Kawah Ijen

  17. Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA

    International Nuclear Information System (INIS)

    Carbonell-Barrachina, Ángel A.; Wu, Xiangchun; Ramírez-Gandolfo, Amanda; Norton, Gareth J.; Burló, Francisco; Deacon, Claire; Meharg, Andrew A.

    2012-01-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for total (t-As) and inorganic As (i-As) using ICP-MS and HPLC–ICP-MS, respectively. Besides, pure infant rice from China, USA, UK and Spain were also analysed. The i-As contents were significantly higher in gluten-free rice than in cereals mixtures with gluten, placing infants with celiac disease at high risk. All rice-based products displayed a high i-As content, with values being above 60% of the t-As content and the remainder being dimethylarsinic acid (DMA). Approximately 77% of the pure infant rice samples showed contents below 150 μg kg −1 (Chinese limit). When daily intake of i-As by infants (4–12 months) was estimated and expressed on a bodyweight basis (μg d −1 kg −1 ), it was higher in all infants aged 8–12 months than drinking water maximum exposures predicted for adults (assuming 1 L consumption per day for a 10 μg L −1 standard). Highlights: ► Inorganic As was higher in rice-based foods than in items based on other cereals. ► Total As was very high in fish-based foods but As was present as non-toxic species. ► The maximum daily intake of i-As was found between 8 and 12 months of age. ► Pure infant rice samples from Spain presented relatively low i-As contents. ► Infants with the celiac disease are exposed to elevated levels of i-As. - Infants with the celiac disease are exposed to high levels of inorganic arsenic because of their high consumption of rice-based foods.

  18. Rice husk (RH) as additive in fly ash based geopolymer mortar

    Science.gov (United States)

    Yahya, Zarina; Razak, Rafiza Abd; Abdullah, Mohd Mustafa Al Bakri; Rahim, Mohd Azrin Adzhar; Nasri, Armia

    2017-09-01

    In recent year, the Ordinary Portland Cement (OPC) concrete is vastly used as main binder in construction industry which lead to depletion of natural resources in order to manufacture large amount of OPC. Nevertheless, with the introduction of geopolymer as an alternative binder which is more environmental friendly due to less emission of carbon dioxide (CO2) and utilized waste materials can overcome the problems. Rice husk (RH) is an agricultural residue which can be found easily in large quantity due to production of paddy in Malaysia and it's usually disposed in landfill. This paper investigated the effect of rice husk (RH) content on the strength development of fly ash based geopolymer mortar. The fly ash is replaced with RH by 0%, 5%, 10%, 15% and 20% where the sodium silicate and sodium hydroxide was used as alkaline activator. A total of 45 cubes were casted and their compressive strength, density and water absorption were evaluated at 1, 3, and 7 days. The result showed compressive strength decreased when the percentage of RH increased. At 5% replacement of RH, the maximum strength of 17.1MPa was recorded at day 7. The geopolymer has lowest rate of water absorption (1.69%) at 20% replacement of RH. The density of the sample can be classified as lightweight geopolymer concrete.

  19. Risk mapping of NO/sub 3/-N contamination on groundwater under intensive rice-based cropping systems in the Philippines

    International Nuclear Information System (INIS)

    Pascual, C.M.; Baga, M.C.S.; Valencia, D.P.

    2005-01-01

    The groundwater resources in a 265 ha watershed of highly diversified and intensive rice-based environment was endangered to NO/sub 3/-N contamination with spatial degree of influence and temporal vulnerability risks as affected by intensive cropping systems with application of high N-fertilizer and judicious use of groundwater for irrigation. Such nitrate contamination levels are above the World Health Organization's maximum contamination level of 10 ppm for drinking water. Tree-joining, complete cluster analysis of monthly groundwater depths on observation wells revealed three distinct groups of wells differentiated by groundwater depths. Planting of nitrate catch crops such as legumes to reduce groundwater contamination and vigorous information dissemination on ill-effects of high NO/sub 3/-N, as well as groundwater recharging were considered to reduce contamination. However, the groundwater extraction for irrigation is still sustainable due to natural recharging of rainfall and hydraulic connections from surface water along rivers and creeks. The combined-use of GIS and GPS proved useful for spatial and temporal risk mapping assessment on groundwater NO/sub 3/-N vulnerability among other geo-referenced attributes of groundwater and other environmental considerations at the study site. Such systems analysis tools can be used by planners, researchers, extension workers, students and farmers for other sustainable development and environmental risk mapping, assessment, extrapolation analysis and strategic planning of sustainable development of the environment. (author)

  20. Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48.

    Science.gov (United States)

    Grande, Maria J; Lucas, Rosario; Abriouel, Hikmate; Valdivia, Eva; Omar, Nabil Ben; Maqueda, Mercedes; Martínez-Bueno, Manuel; Martínez-Cañamero, Magdalena; Gálvez, Antonio

    2006-02-01

    The antimicrobial effect of the broad-spectrum bacteriocin enterocin AS-48 against the toxicogenic psychrotrophic strain Bacillus cereus LWL1 has been investigated in a model food system consisting of boiled rice and in a commercial infant rice-based gruel dissolved in whole milk stored at temperatures of 37 degrees C, 15 degrees C and 6 degrees C. In food samples supplemented with enterocin AS-48 (in a concentration range of 20-35 mug/ml), viable cell counts decreased rapidly over incubation time, depending on the bacteriocin concentration, the temperature of incubation and the food sample. Enterotoxin production at 37 degrees C was also inhibited. Heat sensitivity of endospores increased markedly in food samples supplemented with enterocin AS-48: inactivation of endospores was achieved by heating for 1 min at 90 degrees C in boiled rice or at 95 degrees C in rice-based gruel. Activity of enterocin AS-48 in rice gruel was potentiated by sodium lactate in a concentration-dependent way.

  1. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Elucidating potential utilization of Portuguese common bean varieties in rice based processed foods.

    Science.gov (United States)

    Carbas, Bruna; Pathania, Shivani; Castanho, Ana; Lourenço, Diana; Veiga, Isabel Mota; Patto, Maria Carlota Vaz; Brites, Carla

    2018-03-01

    The present study was aimed at studying the physico-chemical and functional properties of 31 Portuguese common bean varieties. In addition, the whole bean flours (WBF) and starch isolates (SI) of three representative bean varieties and their rice: bean blends (70:30; 50:50) were assessed for amylose content, thermal and pasting properties in view of supplementation in rice based processed foods. Bean varieties showed significant differences in protein content (20.78-27.10%), fat content (1.16-2.18%), hydration capacity (95.90-149.30%), unhydrated seeds (4.00-40.00%), γ tocopherol (3.20-98.05 mg/100 g fat), δ tocopherol (0.06-4.72 mg/100 g fat) and pasting behavior. Amylose content of WBF (11.4-20.2%) was significantly lower than rice flour (23.51%) whereas SI of beans (40.00-47.26%) had significantly higher amylose content than SI of rice (28.13%). DSC results showed that WBF (11.4-20.2 °C) had significantly broader and lower gelatinization temperature range (∆Tr) than corresponding SI (20.9-23.1 °C). WBF had significantly lower pasting viscosity due to low starch content and compositional matrix effect as compared to SI. Setback viscosities of WBF and rice: bean blends was lower than rice flour. Low setback viscosities of rice:bean blends may be used to prevent syneresis and stabilizing the quality of frozen foods in rice based processed foods.

  3. Lead in rice: analysis of baseline lead levels in market and field collected rice grains.

    Science.gov (United States)

    Norton, Gareth J; Williams, Paul N; Adomako, Eureka E; Price, Adam H; Zhu, Yongguan; Zhao, Fang-Jie; McGrath, Steve; Deacon, Claire M; Villada, Antia; Sommella, Alessia; Lu, Ying; Ming, Lei; De Silva, P Mangala C S; Brammer, Hugh; Dasgupta, Tapash; Islam, M Rafiqul; Meharg, Andrew A

    2014-07-01

    In a large scale survey of rice grains from markets (13 countries) and fields (6 countries), a total of 1578 rice grain samples were analysed for lead. From the market collected samples, only 0.6% of the samples exceeded the Chinese and EU limit of 0.2 μg g(-1) lead in rice (when excluding samples collected from known contaminated/mine impacted regions). When evaluating the rice grain samples against the Food and Drug Administration's (FDA) provisional total tolerable intake (PTTI) values for children and pregnant women, it was found that only people consuming large quantities of rice were at risk of exceeding the PTTI from rice alone. Furthermore, 6 field experiments were conducted to evaluate the proportion of the variation in lead concentration in rice grains due to genetics. A total of 4 of the 6 field experiments had significant differences between genotypes, but when the genotypes common across all six field sites were assessed, only 4% of the variation was explained by genotype, with 9.5% and 11% of the variation explained by the environment and genotype by environment interaction respectively. Further work is needed to identify the sources of lead contamination in rice, with detailed information obtained on the locations and environments where the rice is sampled, so that specific risk assessments can be performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Chemometric classification of pigmented rice varieties based on antioxidative properties in relation to color

    Directory of Open Access Journals (Sweden)

    Phaiwan Pramai

    2016-10-01

    Full Text Available The pigmented Thai rice varieties including red and black color and non-pigmented rice (white collected from different growth sites in the north of Thailand and were determined for color and antioxidant properties. Anthocyanins were the major compound in group of black rice (21.15-441.96 mg/100 g rice. Total phenolic, flavonoid, and -tocopherol contents were highest in the black rice followed by red rice and antioxidant capacities were predominant in pigmented varieties. Black rice grown in mountainous area presented the highest antioxidant activity compared to the other growing locations. The color parameters, especially L* value presented the negative correlations with antioxidant parameters, while the antioxidant contents, excepted -oryzanol content had significant correlation with antioxidant capacities. Pigmented rice varieties could be clearly classified into 4 groups using PCA and HCA, which provided a good indicator to classify pigmented rice varieties based on color and antioxidative properties.

  5. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach.

    Science.gov (United States)

    Blanco-Gutiérrez, Irene; Varela-Ortega, Consuelo; Purkey, David R

    2013-10-15

    Sustaining irrigated agriculture to meet food production needs while maintaining aquatic ecosystems is at the heart of many policy debates in various parts of the world, especially in arid and semi-arid areas. Researchers and practitioners are increasingly calling for integrated approaches, and policy-makers are progressively supporting the inclusion of ecological and social aspects in water management programs. This paper contributes to this policy debate by providing an integrated economic-hydrologic modeling framework that captures the socio-economic and environmental effects of various policy initiatives and climate variability. This modeling integration includes a risk-based economic optimization model and a hydrologic water management simulation model that have been specified for the Middle Guadiana basin, a vulnerable drought-prone agro-ecological area with highly regulated river systems in southwest Spain. Namely, two key water policy interventions were investigated: the implementation of minimum environmental flows (supported by the European Water Framework Directive, EU WFD), and a reduction in the legal amount of water delivered for irrigation (planned measure included in the new Guadiana River Basin Management Plan, GRBMP, still under discussion). Results indicate that current patterns of excessive water use for irrigation in the basin may put environmental flow demands at risk, jeopardizing the WFD's goal of restoring the 'good ecological status' of water bodies by 2015. Conflicts between environmental and agricultural water uses will be stressed during prolonged dry episodes, and particularly in summer low-flow periods, when there is an important increase of crop irrigation water requirements. Securing minimum stream flows would entail a substantial reduction in irrigation water use for rice cultivation, which might affect the profitability and economic viability of small rice-growing farms located upstream in the river. The new GRBMP could contribute

  6. Impacts of Irrigation Practices on Groundwater Recharge in Mississippi Delta Using coupled SWAT-MODFLOW Model

    Science.gov (United States)

    Gao, F.; Feng, G.; Han, M.; Jenkins, J.; Ouyang, Y.

    2017-12-01

    The Lower Mississippi River alluvial plain (refers to as MS Delta), located in the northwest state of Mississippi, is one of the most productive agricultural region in the U.S. The primary crops grown in this region are soybean, corn, cotton, and rice. Approximately 80% water from the alluvial aquifer in MS Delta are withdrawn for irrigation, which makes it the most used aquifer in the State. As a result, groundwater level has declined > 6 m since 1970, which threaten the sustainability of irrigated agriculture in this region. The objectives of this study were to: 1) couple the SWAT and MODFLOW then calibrate and validate the incorporated model outputs for stream flow, groundwater level and evapotranspiration (ET) in MS Delta; 2) simulate the groundwater recharge as affected by a) conventional irrigation scheme, b) no irrigation scheme, c) ET based and soil moisture based full irrigation schedules using all groundwater, and d) ET and soil moisture based full irrigation schedule using different percentages of surface and ground water. Results indicated that the coupled model performed well during the calibration and validation for daily stream flow at three USGS gauge stations. (R2=0.7; Nash-Sutcliffe efficiency (NSE) varied from 0.6 to 0.7; Root Mean Square Error (RMSE) ranged from 20 to 27 m3/s). The values of determination coefficient R2 for groundwater level were 0.95 for calibration and 0.88 for validation, their NSE values were 0.99 and 0.93, respectively. The values of RMSE for groundwater level during the calibration and validation period were 0.51 and 0.59 m. The values of R2, NSE and RMSE between SWAT-MODFLOW simulated actual evapotranspiration (ET) and remote sensing evapotranspiration (ET) were 0.52, 0.51 and 28.1 mm. The simulated total average monthly groundwater recharge had lower values of 19 mm/month in the crop season than 30 mm/month in the crop off-growing season. The SWAT-MODFLOW can be a useful tool for not only simulating the recharge in MS

  7. Promissory rice mutants (Oryza sativa L.) obtained by Gamma Rays induction in Peru

    International Nuclear Information System (INIS)

    Heros, E.; Gomez, L.

    2015-01-01

    To improve the available rice cultivars in Peru under irrigated conditions, it was tried the rice seed Amazonas and Capirona, cultivars adapted to irrigated conditions in highland jungle, both characterized for late maturity (140-150 days). The doses were: 150-250-350 Gy that induced mutants with different characteristics to the original cultivar like: early maturity, shorter, high yield and milling quality. In Amazonas cultivar were selected 72 mutants of the M 2 generation with agronomy value and continue in evaluation only the mutant (M35-20). There were applied the same doses of gamma rays with the cultivar Capirona, there is much radiosensitivity at high doses, they were selected two early mutants (MC 35-21 and MC 35-123-3) with an early life cycle days (15 days) than parental cultivar. Two mutants tolerant to salinity (12 dSm). Six mutants are still under evaluation, two of them (MC 25-23-1 and MC 35-45-4) have better yields with performances of 9.1 t ha -1 versus 6.6 t ha -1 . These mutants show lodging and shattering resistance. (Author)

  8. Stakeholder Views, Financing and Policy Implications for Reuse of Wastewater for Irrigation: A Case from Hyderabad, India

    Directory of Open Access Journals (Sweden)

    Markus Starkl

    2015-01-01

    Full Text Available When flowing through Hyderabad, the capital of Telangana, India, the Musi River picks up (partially treated and untreated sewage from the city. Downstream of the city, farmers use this water for the irrigation of rice and vegetables. Treatment of the river water before it is used for irrigation would address the resulting risks for health and the environment. To keep the costs and operational efforts low for the farmers, the use of constructed wetlands is viewed as a suitable option. Towards this end, the paper investigates the interests and perceptions of government stakeholders and famers on the treatment of wastewater for irrigation and further explores the consumer willingness to pay a higher price for cleaner produced vegetables. Full cost recovery from farmers and consumers cannot be expected, if mass scale treatment of irrigation water is implemented. Instead, both consumers and farmers would expect that the government supports treatment of irrigation water. Most stakeholders associated with the government weigh health and environment so high, that these criteria outweigh cost concerns. They also support the banning of irrigation with polluted water. However, fining farmers for using untreated river water would penalize them for pollution caused by others. Therefore public funding of irrigation water treatment is recommended.

  9. Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance.

    Science.gov (United States)

    Ning, Dongfeng; Song, Alin; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si) in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae), including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization.

  10. Impact Of Different Time Planting In Soybeans And Neem Seed Extract Application To Insect Population On Rice Field

    Directory of Open Access Journals (Sweden)

    Tamrin Abdullah

    2015-08-01

    Full Text Available Abstract The purpose of research is to study impact of different time planting of soybean and neem seed extract application to pest insect population on rice field. The research was used Random Block Design in three treatment of insecticides application i.e neem seed extract together with rice planting neem seed extract on soybean 17 days after rice planting synthetic insecticides on 17 days after rice planting Delthametrin on soybean and Chlorpirifos on rice respectively. Research was conducted in rice fields with irrigation channels. The land area is 0.8 hectares with extensive experiments each rice terraces approximately 900 m2 with separate by rice terraces for every treatment. Each treatment consisted of three groups and using nine rice terraces. Samples of the rice plant population is 25 plants per sample unit. The results was showed treatment by neem seed extract with different time planting of soybeans able to reduce number of pest insects populations such as N. virescens 80.38 N. lugens 67.17 S. incertulas 66.5 and L. oratorius 93.46 when compared to treatment with synthetic insecticides Delthamethrin and Chlorpyrifos.

  11. An integrated approach to assess the dynamics of a peri-urban watershed influenced by wastewater irrigation

    Science.gov (United States)

    Mahesh, Jampani; Amerasinghe, Priyanie; Pavelic, Paul

    2015-04-01

    In many urban and peri-urban areas of India, wastewater is under-recognized as a major water resource. Wastewater irrigated agriculture provides direct benefits for the livelihoods and food security of many smallholder farmers. A rapidly urbanizing peri-urban micro-watershed (270 ha) in Hyderabad was assessed over a 10-year period from 2000 to 2010 for changes in land use and associated farming practices, farmer perceptions, socio-economic evaluation, land-use suitability for agriculture and challenges in potential irrigated area development towards wastewater use. This integrated approach showed that the change in the total irrigated area was marginal over the decade, whereas the built-up area within the watershed boundaries doubled and there was a distinct shift in cropping patterns from paddy rice to paragrass and leafy vegetables. Local irrigation supplies were sourced mainly from canal supplies, which accounted for three-quarters of the water used and was largely derived from wastewater. The remainder was groundwater from shallow hard-rock aquifers. Farmer perception was that the high nutrient content of the wastewater was of value, although they were also interested to pay modest amounts for additional pre-treatment. The shift in land use towards paragrass and leafy vegetables was attributed to increased profitability due to the high urban demand. The unutilised scrubland within the watershed has the potential for irrigation development, but the major constraints appear to be unavailability of labour and high land values rather than water availability. The study provides evidence to support the view that the opportunistic use of wastewater and irrigation practices, in general, will continue even under highly evolving peri-urban conditions, to meet the livelihood needs of the poor driven by market demands, as urban sprawl expands into cultivable rural hinterlands. Policy support is needed for enhanced recognition of wastewater for agriculture, with flow

  12. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  13. Impact of Organic Amendments on Global Warming Potential of Diversified Tropical Rice Rotation Systems

    Science.gov (United States)

    Janz, B.; Weller, S.; Kraus, D.; Wassmann, R.; Butterbach-Bahl, K.; Ralf, K.

    2017-12-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, which is forcing farmers to change traditional rice cultivation from flooded double-rice systems to the introduction of well-aerated upland crops during dry season. Emissions of methane (CH4) are expected to decrease, while there is a risk of increasing emissions of nitrous oxide (N2O) and decreasing soil organic carbon (SOC) stocks through volatilization in the form of carbon dioxide (CO2). We present a unique dataset of long-term continuous greenhouse gas emission measurements (CH4 and N2O) in the Philippines to assess global warming potentials (GWP) of diversified rice crop rotations including different field management practices such as straw residue application and legume intercropping. Since 2012, more than four years of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) during dry season have been collected. Introduction of upland crops reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Although dry season N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower annual GWP (CH4 + N2O) as compared to the traditional R-R system. Diversified crop management practices were first implemented during land-preparation for dry season 2015 where i) 6 t/ha rice straw was returned to the field and ii) mungbean was grown as a cover-crop between dry and wet season in addition to rice straw application. The input of organic material (straw and mungbean) led to higher substrate availability for methanogens during the following season. Therefore, GWP was 9-39% higher following straw incorporation than the control treatment. This increase was mainly driven by additional CH4 emissions. Even more, mungbean intercropping further increased GWPs, whereby the increment was highest in R-R rotation (88%) and lowest in R

  14. Carbon footprint of the rice (Oryza sativa production system in the municipality of Campoalegre, Huila, Colombia

    Directory of Open Access Journals (Sweden)

    Hernán J. Andrade

    2014-01-01

    Full Text Available Carbon footprint is a useful tool to estimate the impact of any production system on climate change, specifically in the net emission or fixation of greenhouse gasses (GHG. The rice cropping system has a large food, social and economical importance in the world; however, it is a net GHG-emitting productive system. The objective of this study was estimating the carbon footprint of the rice production in Campoalegre, Huila, Colombia. A total of 21 rice productive units, located at less than 15 kmfrom the center of the municipality and with gravity irrigation, was selected. Through semi-structured interviews, all activities that emit GHGs, from land preparation to harvest grain, were investigated. It was consulted to producers and managers about the use of nitrogen fertilizers and fossil fuels and the yield of rice grain in each production unit. Factor of emission and warming-equivalence among GHG recommended by Intergovernmental Panel on Climate Change were employed. Carbon fixation rates estimated in Tolima were used to found alternative systems for mitigation of these emissions. It was found a total emission of 998.1 ± 365.3 kg CO2e/ha/cycle (163.3 ± 55.8 kg CO2e/t, having nitrogen fertilization being the greatest contribution (65%. Mitigation of this GHG emission would imply the establishment and management of 0.5 ha of cacao plantations without shade trees or coffee plantations with shade trees or 1.4 ha of monoculture coffee plantations.

  15. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    Science.gov (United States)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in

  16. Persistência dos herbicidas imazethapyr e imazapic em solo de várzea sob diferentes sistemas de manejo Persistence of the herbicides imazethapyr and imazapic in irrigated rice soil

    Directory of Open Access Journals (Sweden)

    A.F. Kraemer

    2009-01-01

    Full Text Available A mistura formulada dos herbicidas imazethapyr e imazapic é utilizada para controlar arroz-vermelho em cultivos de arroz irrigado. Entretanto, esses herbicidas podem persistir no solo por longos períodos, causando introxicação ao arroz suscetível cultivado em sucessão. Este trabalho teve como objetivo avaliar o efeito de diferentes manejos de solo, durante a entressafra do arroz, sobre a ação residual do imazethapyr e imazapic, em arroz não tolerante. O residual desses herbicidas causou introxicação no arroz suscetível após um ano da última aplicação dos herbicidas. A introxicação atingiu valores máximos até 25 dias após a emergência (DAE, ocorrendo redução da introxicação após esse período, até praticamente desaparecer (60 DAE. O residual do herbicida alterou o estande de plantas, o número de colmos m-2, o número de panículas m-2 e a altura de plantas, porém não afetou a produtividade de grãos do arroz. O revolvimento do solo diminuiu a atividade do herbicida na camada superficial de solo (0-3 m.The mixture of herbicides imazethapyr and imazapic is used to control red rice in irrigated rice crops. However, such herbicides might persist on the soil for a long period causing phytotoxicity on susceptible rice grown in succession. The objective of this work was to determine the effect of different soil tillage systems during the off-season on the residual phytotoxicity of imazethapyr and imazapic on non tolerant rice. Herbicide residues caused phytotoxicity on susceptible rice with the highest values being registered 25 days after emergence and decreasing after this period until almost disappearing 60 days after emergence. Herbicide residues affected plant stand, number of stems per m², number of panicles per m² and plant height, but did not affect grain yield. Soil movement decreased herbicide activity on the superficial soil layer (0-3 cm.

  17. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    Science.gov (United States)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  18. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions

    Science.gov (United States)

    Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao

    2017-12-01

    Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.

  19. Sensory optimization of broken-rice based snacks fortified with protein and fiber.

    Science.gov (United States)

    Sriwattana, S; Laokuldilok, N; Prinyawiwatkul, W

    2008-08-01

    A 3-component mixture experiment was used to optimize the formulation of broken-rice based snack fortified with protein and fiber based on consumer sensory acceptability. Soy protein isolate and guar gum were used as a good source of protein and fiber, respectively, according to DRV (daily reference value) based on a 2000-calorie diet. A consumer panel evaluated sensory acceptability of color, crispness, and flavor, and overall liking of 12 experimental broken-rice based snack formulations. Predicted models derived from the restricted nonintercept regression analysis were used to plot mixture response surfaces (MRS) of each sensory attribute. Areas within the MRS plots having predicted acceptability scores of at least 6.5 (on a 9-point hedonic scale) for color, crispness, flavor, and overall liking were selected to derive a predicted optimum formulation range. Flavor acceptability was a limiting factor in attaining the optimum formulation range, which consisted of 40% to 48% broken-rice flour, 8% to 16% guar gum, and 20% to 33% soy protein isolate. To verify the obtained predicted models, the formulation containing 48% broken-rice flour, 8% guar gum, and 20% soy protein isolate, which was located in the optimum area, was chosen to support our effort to utilize and add value to broken rice. Selected physicochemical measurements of the chosen optimized formulation were determined. One serving size (30 g) of the chosen optimized snack product provided 6.58 g protein and 3.80 g dietary fiber, which met the US FDA definition of a good source of protein and dietary fiber.

  20. Measurement of flows for two irrigation districts in the lower Colorado River basin, Texas

    Science.gov (United States)

    Coplin, L.S.; Liscum, Fred; East, J.W.; Goldstein, L.B.

    1996-01-01

    The Lower Colorado River Authority sells and distributes water for irrigation of rice farms in two irrigation districts, the Lakeside district and the Gulf Coast district, in the lower Colorado River Basin of Texas. In 1993, the Lower Colorado River Authority implemented a water-measurement program to account for the water delivered to rice farms and to promote water conservation. During the rice-irrigation season (summer and fall) of 1995, the U.S. Geological Survey measured flows at 30 sites in the Lakeside district and 24 sites in the Gulf Coast district coincident with Lower Colorado River Authority measuring sites. In each district, the Survey made essentially simultaneous flow measurements with different types of meters twice a day once in the morning and once in the afternoon at each site on selected days for comparison with Lower Colorado River Authority measurements. One-hundred pairs of corresponding (same site, same date) Lower Colorado River Authority and U.S. Geological Survey measurements from the Lakeside district and 104 measurement pairs from the Gulf Coast district are compared statistically and graphically. For comparison, the measurement pairs are grouped by irrigation district and further subdivided by the time difference between corresponding measurements less than or equal to 1 hour or more than 1 hour. Wilcoxon signed-rank tests (to indicate whether two groups of paired observations are statistically different) on Lakeside district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological Survey measurements are not statistically different. The median absolute percent difference between the flow measurements is 5.9 percent; and 33 percent of the flow measurements differ by more than 10 percent. Similar statistical tests on Gulf Coast district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological

  1. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM

    OpenAIRE

    Balwinder-Singh,; Humphreys, E.; Gaydon, D.S.; Eberbach, P.L.

    2016-01-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of s...

  2. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    Science.gov (United States)

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  3. Effects of Chemical Applications to Metal Polluted Soils on Cadmium Uptake by Rice Plant

    Directory of Open Access Journals (Sweden)

    Yoo J. H.

    2013-04-01

    Full Text Available Pot experiment using metal polluted soils was conducted to investigate the effects of lime, iron and sulfur on changes in Cd availability and uptake by rice plant. Drainage and irrigation of water were performed to develop redox changes like field cultivation. Iron chloride and sodium sulfate solutions were applied to the pots in the middle of growth period of rice plant. Reactive metal pool in heavily polluted soils was slightly decreased after treatments with lime, iron chloride, sodium sulfate and combination of these chemicals. However, cadmium uptake by rice plant was significantly different across the treatments and the extent of Cd pollution. For highly polluted soils, more Cd reduction was observed in iron chloride treatments. Cd content in polished rice for iron chloride and (iron chloride+organic matter treatments was only 16-23% and 25-37% compared to control and liming, respectively. Treatment of (iron chloride+sulfate rather increased Cd content in rice. For moderately polluted soils, Cd reduction rate was the order of (OM+iron chloride > iron chloride > lime. Other treatments including sulfate rather increased Cd content in rice maximum 3 times than control. It was proposed to determine the optimum application rate of iron for minimizing hazardous effect on rice plant.

  4. Colostomy irrigation: are we offering it enough?

    Science.gov (United States)

    Woodhouse, Fran

    This article discusses the use of irrigation for suitable colostomists and reasons why it can have a very positive effect on lifestyle. While it is evidence-based it also includes anecdotal tips from patients who irrigate. The suitability of patients to irrigate and ways to 'get started' with irrigation are discussed.

  5. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  6. GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Huang, An-Lei; Wen, Tzai-Hung

    2013-01-01

    Rice straw, a rich agricultural byproduct in Taiwan, can be used as biomass feedstock for cofiring systems. In this study, we analyzed the penetration of rice straw cofiring systems in the Taiwanese power market. In the power generation system, rice straw is cofired with fossil fuel in existing electricity plants. The benefits of cofiring systems include increasing the use of renewable energy, decreasing the fuel cost, and lowering greenhouse gas emissions. We established a linear complementarity model to simulate the power market equilibrium with cofiring systems in Taiwan. GIS-based analysis was then used to analyze the geospatial relationships between paddy rice farms and power plants to assess potential biomass for straw-power generation. Additionally, a sensitivity analysis of the biomass feedstock supply system was conducted for various cofiring scenarios. The spatial maps and equilibrium results of rice straw cofiring in Taiwanese power market are presented in the paper. - Highlights: ► The penetration of straw cofiring systems in the power market is analyzed. ► GIS-based analysis assesses potential straw-power generation. ► The spatial maps and equilibrium results of rice straw cofiring are presented

  7. Re-engineering closing watersheds: The negotiated expansion of a dam-based irrigation system in Bolivia

    NARCIS (Netherlands)

    Rocha Lopez, R.F.; Vincent, L.F.; Rap, E.R.

    2015-01-01

    The expansion of the Totora Khocha dam-based irrigation system in the Pucara watershed is a case of planned re-engineering of a closing watershed. This article shows how, when irrigation systems expand in space and across boundaries to capture new water, they also involve new claims by existing and

  8. RiceAtlas, a spatial database of global rice calendars and production.

    Science.gov (United States)

    Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew

    2017-05-30

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.

  9. Determination of rare earth elements in rice by INAA and ICP-MS

    International Nuclear Information System (INIS)

    Pham Thi Huynh, M.; Chu Pham Ngoc, S.; Carrot, F.; Revel, G.; Dang Vu, M.

    1997-01-01

    Irrigation of rice plants with a solution of rare earth elements increases both the production capacity and the resistance to disease. Assuming that the treated plants remain expendable, the different parts of plants, root stalk and grain, were analyzed by instrumental neutron activation analysis (INAA) and by mass spectrometry after plasma excitation (ICP-MS). About 40 elements were determined. The results showed that the contamination remained in the roots and was absent in rice grains. The analytical distribution of different elements in different parts of both treated and non-treated plants has given some information concerning the possible effect of the rare earth treatment. The performances of the two analytical methods have been compared. (author)

  10. A water productive and economically profitable paddy rice production method to adapt water scarcity in the Vu Gia-Thu Bon river basin, Vietnam

    Directory of Open Access Journals (Sweden)

    Bhone Nay-Htoon

    2013-05-01

    Full Text Available In Vu Gia-Thu Bon river basin, Vietnam, drought during the dry season affected negatively on rice production. High and uneven rainfall distribution cause flooding in the basin during wet season and cause severe agricultural drought during dry season.This study aimed to point out a higher water productive and economically efficient rice production method to adapt water scarcity in the region. Based on available secondary data, water productivity is calculated for different water saving rice production methods, according to Pereira, et al, (2012’s irrigation water productivity and total productivity equations. The profit of technological change is calculated by partial budget analysis of rice production in that area and a sensitivity analysis supports to point out which input factor is sensitive to farmer’s benefit. Farmer’s psychological and social beliefs are used to create fuzzy logic based decision making model. Although water productivities (ranging 0.441 kg/m3/ha to 0.504 kg/m3/ha are ranked as the second after System of Rice Intensification, we demonstrated that Alternate Wetting and Drying method is a recommendable method to the farmer after considering economic profitability and technical simplicity. The System of Rice Intensification method also could be a suitable method to adopt because this method is the highest water productive method (Water Productivities are ranging from 0.77 kg/m3/ha to 1.02 kg/m3/ha coupled with highest yield of rice, subject to certain ecosystem services and payment policies should be developed to subsidize the reduced benefit resulting from this method.

  11. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  12. Genomic prediction accounting for genotype by environment interaction offers an effective framework for breeding simultaneously for adaptation to an abiotic stress and performance under normal cropping conditions in rice

    OpenAIRE

    Ahmadi, Nourollah; Cao, Tuong-Vi; Valé, Giampiero; Bartholomé, Jérôme; Hassen, Manel

    2018-01-01

    Developing rice varieties adapted to alternate wetting and drying water management is crucial for the sustainability of irrigated rice cropping systems. Here we report the first study exploring the feasibility of breeding rice for adaptation to alternate wetting and drying using genomic prediction methods that account for genotype by environment interactions. Two breeding populations (a reference panel of 284 accessions and a progeny population of 97 advanced lines) were evaluated under alter...

  13. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

    KAUST Repository

    Hairmansis, Aris

    2014-08-14

    Background Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion

  14. LandCaRe-DSS - model based tools for irrigation management under climate change

    Science.gov (United States)

    Dotterweich, Markus; Wilkinson, Kristina; Cassel, Martin; Scherzer, Jörg; Köstner, Barbara; Berg, Michael; Grocholl, Jürgen

    2015-04-01

    Climate change is expected to have a strong influence on agricultural systems in the future. It will be important for decision makers and stakeholders to assess the impact of climate change at the farm and regional level in order to facilitate and maintain a sustainable and profitable farming infrastructure. Climate change impact studies have to incorporate aspects of uncertainty and the underlying knowledge is constantly expanding and improving. Decision support systems (DSS) with flexible data bases are therefore a useful tool for management and planning: different models can be applied under varying boundary conditions within a conceptual framework and the results can be used e.g. to show the effects of climate change scenarios and different land management options. Within this project, the already existing LandCaRe DSS will be further enhanced and improved. A first prototype had been developed for two regions in eastern Germany, mainly to show the effects of climate change on yields, nutrient balances and farm economy. The new model version will be tested and applied for a region in north-western Germany (Landkreis Uelzen) where arable land makes up about 50% of overall land-use and where 80 % of the arable land is already irrigated. For local decision makers, it will be important to know how water demand and water availability are likely to change in the future: Is more water needed for irrigation? Is more water actually available for irrigation? Will the existing limits for ground water withdrawal be sufficient for farmers to irrigate their crops? How can the irrigation water demand be influenced by land management options like the use of different crops and varieties or different farming and irrigation techniques? The main tasks of the project are (I) the integration of an improved irrigation model, (II) the development of a standardized interface to apply the DSS in different regions, (III) to optimize the graphical user interface, (IV) to transfer and

  15. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability

  16. Competição inicial entre Cyperus esculentus e arroz irrigado em condições de casa-de-vegetação Competition between Cyperus esculentus and irrigated rice under green house conditions

    Directory of Open Access Journals (Sweden)

    E. A. L. Erasmo

    2000-08-01

    Full Text Available Com o objetivo de avaliar o efeito competitivo de Cyperus esculentus sobre o crescimento inicial da cultura do arroz irrigado, foi instalado um experimento em casa-devegetação, na Estação Experimental da Faculdade de Agronomia - UNITINS, no munícipio de Gurupi-TO. O delineamento estatístico utilizado foi um fatorial 5x4 com três repetições completamente casualizado. Os tratamentos constaram de cinco períodos de convivência do arroz com C. esculentus (15, 25, 35, 45 e 60 dias após a emergência da cultura e quatro densidades de C. esculentus (0, 2, 4 e 8 tubérculos/vaso, correspondentes a 0; 71; 142 e 286 plantas de C. esculentus por m2, respectivamente. No final de cada período foram avaliados na cultura do arroz os seguintes parâmetros: matéria seca de plantas/vaso; área foliar/planta; matéria seca de perfilhos/vaso; n.º de perfilhos/vaso e altura média de plantas. Os resultados mostraram que o efeito da presença de C. esculentus foi mais marcante nas densidades de quatro e oito tubérculos/vaso a partir dos 35 dias de convivência. O parâmetro mais afetado foi a matéria seca de plantas/vaso, como resultado do decréscimo do número de perfilhos/vaso. A altura das plantas de arroz irrigado não foi afetada pela presença da planta daninha em nenhum período de convivência.With the objective of evaluating the competitive effect of Cyperus esculentus on the growth and production of the culture of irrigated rice, experiments were installed in green house, in the Experimental Station of the School of Agronomy - UNITINS, in Gurupi, State of Tocantins, Brazil. The statistical design used in the experiments was a factorial plot 5x4 with three replications, completely randomized. The treatments consisted of five periods of coexistence of the rice with Cyperus esculentus (15, 25, 35, 45 and 60 days after the emergency - D.A.E, of the rice and four densities of C. esculentus (0, 2, 4 and 8 tuber/pots corresponding to 0; 71; 142 e

  17. Assessment of the irrigation feasibility of low-cost filtered municipal wastewater for red amaranth (Amaranthus tricolor L cv. Surma

    Directory of Open Access Journals (Sweden)

    Gokul Chandra Biswas

    2015-09-01

    Full Text Available Because of the scarcity of clean water, treated wastewater potentially provides an alternative source for irrigation. In the present experiment, the feasibility of using low-cost filtered municipal wastewater in the irrigation of red amaranth (Amaranthus tricolor L cv. Surma cultivation was assessed. The collected municipal wastewater from fish markets, hospitals, clinics, sewage, and kitchens of households in Sylhet City, Bangladesh were mixed and filtered with nylon mesh. Six filtration methods were applied using the following materials: sand (T1; sand and wood charcoal consecutively (T2; sand, wood charcoal and rice husks consecutively (T3; sand, wood charcoal, rice husks and sawdust consecutively (T4; sand, wood charcoal, rice husks, sawdust and brick chips consecutively (T5; and sand, wood charcoal, rice husks, sawdust, brick chips and gravel consecutively (T6. The water from ponds and rivers was considered as the control treatment (To. The chemical properties and heavy metals content of the water were determined before and after the low cost filtering, and the effects of the wastewater on seed germination, plant growth and the accumulation rate of heavy metals by plants were assessed. After filtration, the pH, EC and TDS ranged from 5.87 to 9.17, 292 to 691 µS cm−1 and 267 to 729 mg L−1, respectively. The EC and TDS were in an acceptable level for use in irrigation, satisfying the recommendations of the FAO. However, select pH values were unsuitable for irrigation. The metal concentrations decreased after applying each treatment. The reduction of Fe, Mn, Pb, Cu, As and Zn were 73.23%, 92.69%, 45.51%, 69.57%, 75.47% and 95.06%, respectively. When we considered the individual filtering material, the maximum amount of As and Pb was absorbed by sawdust; Cu and Zn by wood charcoal; Mn and Cu by sand and Fe by gravel. Among the six filtration treatments, T5 showed the highest seed germination (67.14%, similar to the control T0 (77

  18. Genetic improvement of rice (oryza sativa l.) by induced mutations

    International Nuclear Information System (INIS)

    Suarez, E.; Deus, J. E.; Perez, R.; Alfonso, R.; Hernandez, R.; Avila, J.; Hernandez, J. L.; Puldon, Violeta; Duany, A.; Reinoso, J.; Mesa, H.; Rodriguez, S.

    2001-01-01

    In 1989 was initiated at Rice Research Institute of Cuba, a mutation breeding programme, in order to obtain new germoplasm with improved characters such as milling quality, earliness, resistance to the Hoja Blanca virus disease and salt tolerance. Seven varieties has been irradiated and two different sources of radiation were used: gamma rays from 60Co and fast neutrons of a 14 MeV neutron generator. In 1995, was released the variety IACuba 23 for low inputs conditions. Another four varieties IACuba 21, IACuba 22, IACuba 27 and IACuba 28 are in validation trials in rice production areas under irrigated condition. The last two have showed resistance to Steneotarsonemus spinki. Also, a group of mutants was selected to be used as parents. These mutants have been used in 953 crosses

  19. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  20. Estruturas automáticas para controle de água nos canais em lavoura de arroz irrigado Automatic structures for water control in channels on irrigated rice crops

    Directory of Open Access Journals (Sweden)

    Luís G. H. do Amaral

    2005-04-01

    Full Text Available O Rio Grande do Sul apresenta a maior área irrigada do Brasil, devido principalmente à lavoura de arroz irrigado por inundação. Um dos fatores que contribuem para reduzir a eficiência de irrigação nessas lavouras é o baixo grau de controle exercido pelas estruturas de distribuição de água. Os objetivos deste trabalho foram projetar e construir dois protótipos de estruturas hidráulicas para controle automático de vazão em canais de irrigação e comparar sua sensibilidade de controle de vazão com a sensibilidade de duas comportas fixas. Os protótipos construídos - uma comporta hidromecânica automática e um regulador automático de vazão - foram instalados à entrada de um canal secundário, juntamente com uma comporta-gaveta e uma comporta-vertedor, que são as estruturas mais utilizadas para controle de vazão no RS. Provocou-se uma variação de 0,20 m na altura da lâmina de água a montante, determinando-se a vazão em cada estrutura. A menor variação de vazão com a alteração da lâmina foi de 5,6%, obtida com o regulador automático de vazão, seguido da comporta-gaveta com 23,7%, da comporta hidromecânica com 30,5%, e da comporta vertedor com 1.177,2%.In Brazil, the State that presents the largest extension of irrigated lands is Rio Grande do Sul, mainly due to rice that grows under flooded conditions. One of the factors that contribute to decrease the efficiency of irrigation is the low degree of control obtained with the structures used on water distribution. The objectives of this work were to design and build two hydraulic structures for automatic flow control on irrigation channels, and to compare the flow control sensitivity of the built prototypes with two types of gates that are widely used in the rice fields at the Rio Grande do Sul State. The constructed prototypes - a hydro-mechanical gate and an automatic flow regulator - were installed at the entrance of a secondary channel, next to a sluice gate and

  1. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  2. Radioactive probes as diagnostic tools for rice tungro viruses

    International Nuclear Information System (INIS)

    Azzam, O.; Arboleda, M.; Reyes. J. de los

    1996-01-01

    Rice tungro bacilliform (RTBV) and rice tungro spherical viruses (RTSV) are the two viral components responsible for rice tungro disease which has seriously affected the irrigated rice ecosystem in Southeast Asia for the last 30 years. RTBV has an 8 Kb double-stranded DNA circular genome, and it is primarily responsible for induction of symptoms in infected plants. RTSV has a 12 kb single-stranded RNA genome. It does not induce any apparent symptoms in the infected plant, and it is transmitted by greenleafhopper. RTBV depends upon RTSV for its own transmission. The two viruses are limited to the vascular tissue of the rice plant and are present at a low titer. Most of the detection methods used for the identification of these viruses have relied on the virus protein properties and therefore, early detection of the virus activity was not possible. We were interested in evaluating tissue printing, dot blot, and southern techniques for early detection of virus nucleic acids in rice plant using radioactive and non radioactive probes. 32 P-labeled T7 or SP6 RNA polymerase transcripts complementary to the RTBV genome and RTSV coat protein genes were used as probes of the positive stand of both viruses. For nonradioactive probes, RTBV DNA genome was labeled using the ECL detection kit (Amersham). Preliminary results show that viral nucleic acids of RTBV and RTSV could be detected using both labelling systems. Non radioactive probes were comparable in their sensitivity to the radioactive probes. Less than 100 pg of viral DNA was detected in the dot-blot assays. More data will be presented to compare the efficiency and reliability of these two techniques in detecting early virus activity in the rice plant. (author)

  3. Pre-feasibility study for an electric power plant based on rice straw. [Mali

    Energy Technology Data Exchange (ETDEWEB)

    Fock, F. [Ea Energy Analysis, Copenhagen (Denmark); Nygaard, I. [Technical Univ. of Denmark. DTU Management Engineering, UNEP Risoe Centre on Energy, Climate and Sustainable Development, Roskilde (Denmark); Maiga, A.; Kone, B.; Kamissoko, F.; Coulibaly, N.; Ouattara, O.

    2012-11-15

    The main objective is to make a first evaluation regarding if it's technically possible, economically viable, sustainable and recommendable to build a rice straw/hulls fired power plant in Niono in Mali. Based on the available resource of rice straw and the possibilities for connecting to the grid it has been chosen to analyse a 5 MW power plant in the project. For technical reasons the rice straw should be the main fuel, but rice hulls can be used for co-firing. Up to around 20% of the fuel in the plant can be rice hulls instead of rice straw. A number of different biomass power production technologies have been evaluated in the project. This includes: 1) Grate fired boiler. 2) Bubbling fluidised bed. 3) Circulating fluidised bed. 4) Dust fired boiler. 5) Gasification. 6) Stirling engine. 7) Organic Rankine Cycle. Grate firing is the most relevant technology in this case, due to the fuel, the size of the power plant, the demand for electricity only and not heat, the demand for a robust and well proven technology. For a grate fired plant a calculation of the thermodynamic process of the power plant has been carried out in order to determine the electrical efficiency of the plant. The case consists of a 5 MW grate fired power plant with steam turbines and air cooled condenser resulting in an efficiency of 24.6% at full load (20% as yearly average). Investment costs and costs for O and M have been assumed based on experience from Danish power plants but adjusted for local conditions in Mali. The costs for collecting and transporting the rice straw and for the ash disposal have been specifically estimated in this project. The average cost of capital has been estimated based on assumptions on equity, international loans and local loans/bank finance. Based on the investment, the cost of O and M, fuel, ash disposal and the financial assumptions, a cash flow analysis is made in order to calculate the power price resulting in a Net Present Value (NPV) of the

  4. Soil capacitance sensors and stem dendrometers. Useful tools for irrigation scheduling of commercial orchards?

    Energy Technology Data Exchange (ETDEWEB)

    Bonet, L.; Ferrer, P.; Castel, J. R.; Intrigliolo, D. S.

    2010-07-01

    Irrigation scheduling is often performed based on a soil water balance, where orchard evapotranspiration is estimated using the reference evapotranspiration (ETo) times the crop coefficient (Kc). This procedure, despite being widely spread, has some uncertainties. Because of this, plant and soil water status monitoring could be alternatively or complementarity used to schedule irrigation. The usefulness of capacitance probes was evaluated during several seasons in large irrigation districts where irrigation practices were changed over years from the ETo * Kc model to the analysis of soil water status trend. This area corresponds to drip irrigated orchards planted with citrus, peach, nectarine and persimmon. Around 25% less irrigation was applied with no substantial yield penalty when the information provided by capacitance probes was correctly applied for irrigation management. On the other hand, the usefulness of stem dendrometers for continuously monitoring plant water status was evaluated in a young plum experimental orchard. Over two years, irrigation was scheduled using exclusively trunk shrinkage via the signal intensity approach by means of a baseline equation previously obtained in the orchard. Results showed that it was not always possible to schedule irrigation based on the trunk shrinkage signal intensity due to the temporal changes in the reference values that occurred as trees aged. Overall, results obtained are discussed in terms of the possible extrapolation at field level of both capacitance probes and stem dendrometers. Advantages and drawbacks of each technique are analyzed and discussed. (Author) 34 refs.

  5. A global approach to estimate irrigated areas - a comparison between different data and statistics

    Science.gov (United States)

    Meier, Jonas; Zabel, Florian; Mauser, Wolfram

    2018-02-01

    Agriculture is the largest global consumer of water. Irrigated areas constitute 40 % of the total area used for agricultural production (FAO, 2014a) Information on their spatial distribution is highly relevant for regional water management and food security. Spatial information on irrigation is highly important for policy and decision makers, who are facing the transition towards more efficient sustainable agriculture. However, the mapping of irrigated areas still represents a challenge for land use classifications, and existing global data sets differ strongly in their results. The following study tests an existing irrigation map based on statistics and extends the irrigated area using ancillary data. The approach processes and analyzes multi-temporal normalized difference vegetation index (NDVI) SPOT-VGT data and agricultural suitability data - both at a spatial resolution of 30 arcsec - incrementally in a multiple decision tree. It covers the period from 1999 to 2012. The results globally show a 18 % larger irrigated area than existing approaches based on statistical data. The largest differences compared to the official national statistics are found in Asia and particularly in China and India. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated. The validation with global and regional products shows the large divergence of existing data sets with respect to size and distribution of irrigated areas caused by spatial resolution, the considered time period and the input data and assumption made.

  6. Evaluation of strategies for utilizing rice husk based on life cycle cost analysis in relation to Greenhouse Gas emissions in An Giang province, Vietnam

    International Nuclear Information System (INIS)

    Mai Thao, Pham Thi; Kurisu, Kiyo H.; Hanaki, Keisuke

    2012-01-01

    To evaluate the cost effectiveness of rice husk utilization, a life cycle cost analysis was conducted for 18 scenarios developed in a previous study. The allocation of fuels other than rice husks was decided on the basis of current demand for and supply of rice husks. The production of rice husk briquettes is also discussed as a means of circumventing problems arising from the bulk of the material. In the power generation scenarios, differences between two generating capacities (5 and 30 MW) were analyzed. Costs savings are possible by using rice husk to replace fossil fuels for cooking. With regard to power generation, operation on a 30-MW scale by combustion of all available rice husk was identified as the most economically efficient scenario, followed by small-scale gasification scenarios (5 MW). The combustion of rice husk briquettes for power generation appeared to be less cost-efficient than direct combustion, whereas large-scale gasification scenarios and pyrolysis scenarios give rise to increases in cost compared with the baseline. When both GHG abatement and costs are taken into consideration, suitable scenarios that are practicable involve the use of rice husk for cooking, for large-scale combustion power generation, and for small-scale gasification. -- Highlights: ► Life cycle cost analysis was conducted to evaluate potentiality of rice husk use. ► The scenarios used rice husk for cooking showed a better cost effectiveness. ► While large-scale gasification and pyrolysis is less. ► In relation to GHG emission, the win–win scenarios are to use rice husk for cooking. ► Large-scale combustion and small-scale gasification also showed practical scenarios.

  7. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  8. 137Cs absorption by growing rice planted in pot soil from Qinshan and Daya Bay area

    International Nuclear Information System (INIS)

    Shang Zhaorong; Yu Fengyi; Lu Zixian

    1999-01-01

    The pot experiment of growing rice contaminated with 137 Cs solution was designed as follows. (1) The same volume of 137 Cs solution was irrigated into rice soil from Guantang District around Qinshan NPP in seedling stage, booting stage and milk stage respectively with the same Specific Activity (SA) of 370 Bq/g soil , and the rice was sampled after maturity. (2) In the seedling stage, the rice cultured in the soil from Guantang District was irrigated by four different SA of 0.37, 3.7, 37 and 370 Bq/g soil respectively, and sampled after 30, 60 and 90 d. (3) Transfer Factors (TF) of edible parts of rice on five different soils were calculated for three different stage and four different 137 Cs levels. The results show that: 1) TF of Shenzhen soil is the highest with 1.86 in seed and 2.22 in stem and 4.05 in leaf, Changchuanba soil is the lowest with 0.09 in seed and 0.20 in stem and 0.20 in leaf, among the five different soils. 2) TF in milk stage is the highest with 0.46 in seed and 2.29 in stem and 2.87 in leaf, and booting stem is lowest with 0.09 in seed and 0.17 in stem and 0.17 in leaf, among the three different stage. 3) TF of soil with contamination in 0.37 Bq/g soil is the highest with 1.08 in seed and 3.70 in stem and 4.32 in leaf, and the contamination in 37 Bq/g soil is the lowest with 0.06 in seed and 0.10 in stem and 0.14 in leaf, among four different contamination levels

  9. Influence of Seed Priming on Performance and Water Productivity of Direct Seeded Rice in Alternating Wetting and Drying

    Directory of Open Access Journals (Sweden)

    Hafeez Ur Rehman

    2015-07-01

    Full Text Available Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated the effect of seed priming and irrigation on crop establishment, tillering, agronomic traits, paddy yield, grain quality and water productivity of direct seeded rice in alternate wetting and drying (DSR-AWD in comparison with direct seeded rice at field capacity (DSR-FC. Seed priming treatments were osmo-priming with KCl (2.2%, CaCl2 (2.2% and moringa leaf extracts (MLE, 3.3% including hydro-priming as control. Among the treatments, seed osmo-primed with MLE emerged earlier and had higher final emergence, followed by osmo-priming with CaCl2. Tillering emergence rate and number of tillers per plant were the highest for seed priming with CaCl2 in DSR-AWD. Total productive and non-productive tillers, panicle length, biological and grain yields, harvest index were highest for seed priming with MLE or CaCl2 in DSR-AWD. Similarly, grain quality, estimated in terms of normal grains, abortive and chalky grains, was also the highest in DSR-AWD with MLE osmo-priming. Benefit cost ratio and water productivity was also the highest in DSR-AWD for seed priming with MLE. In conclusion, seed priming with MLE or CaCl2 can be successfully employed to improve the direct seeded rice performance when practiced with alternate wetting and drying irrigation.

  10. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  11. Nutritional test of rice in rats

    International Nuclear Information System (INIS)

    Horii, Masaji; Yoshikawa, Seiji

    1980-01-01

    Behaviors on N derived from rice were followed up by means of 15 N-labeled rice. In the first test, the single unpolished rice diet and the diet of rice and bean lecithin (4.5%) produced urinary excretion of 10 - 12% of 15 N, and that of rice and mannan from devil's tongue (3%), 16 - 20%. The single unpolished rice diet showed slightly more urinary excretion of 15 N, and the other 2 diets showed a similar proportion of 15 N in 3 days. The results indicated that the diet containing mannan from devil's tongue resulted in a poor N absorption by rice, a large quantity of N being excreted over a long period of time. This suggested differences and time lags in the excretion of rice N into the stool and urine depending on the diet constitution. With the unpolished rice diet, a small quantity of rice protein was not absorbed, but was excreted. In the 2nd test with 15 N-polished rice, the urinary excretion rate was 11.44% for a single rice diet, 11.16% for a mixed diet of rice and bean (1:1 in protein), 10.99% for rice and egg yolk, 9.66% for rice, bean and egg yolk and 8.10% for rice and bean lecithin. This decrease in urinary excretion indicated a corresponding increase in absorption of rice protein. (Chiba, N.)

  12. Prevalence and magnitude of acidosis sequelae to rice-based feeding regimen followed in Tamil Nadu, India.

    Science.gov (United States)

    Murugeswari, Rathinam; Valli, Chinnamani; Karunakaran, Raman; Leela, Venkatasubramanian; Pandian, Amaresan Serma Saravana

    2018-04-01

    In Tamil Nadu, a southern state of India, rice is readily available at a low cost, hence, is cooked (cooking akin to human consumption) and fed irrationally to cross-bred dairy cattle with poor productivity. Hence, a study was carried out with the objective to examine the prevalence of acidosis sequelae to rice-based feeding regimen and assess its magnitude. A survey was conducted in all the 32 districts of Tamil Nadu, by randomly selecting two blocks per districts and from each block five villages were randomly selected. From each of the selected village, 10 dairy farmers belonging to the unorganized sector, owning one or two cross-bred dairy cows in early and mid-lactation were randomly selected so that a sample size of 100 farmers per district was maintained. The feeding regimen, milk yield was recorded, and occurrence of acidosis and incidence of laminitis were ascertained by the veterinarian with the confirmative test to determine the impact of feeding cooked rice to cows. It is observed that 71.5% of farmers in unorganized sector feed cooked rice to their cattle. The incidence of acidosis progressively increased significantly (p<0.05) from 29.00% in cows fed with 0.5 kg of cooked rice to 69.23% in cows fed with more than 2.5 kg of cooked rice. However, the incidence of acidosis remained significantly (p<0.05) as low as 9.9% in cows fed feeding regimen without cooked rice which is suggestive of a correlation between excessive feeding cooked rice and onset of acidosis. Further, the noticeable difference in the incidence of acidosis observed between feeding cooked rice and those fed without rice and limited intake of oil cake indicates that there is a mismatch between energy and protein supply to these cattle. Among cooked rice-based diet, the incidence of laminitis increased progressively (p<0.05) from 9.2% to 37.9% with the increase in the quantum of cooked rice in the diet. The study points out the importance of protein supplementation in rice-based feeding

  13. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    Science.gov (United States)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  14. Pore Water Arsenic Dynamics in Rice Paddies Under Projected Future Climates

    Science.gov (United States)

    Plaganas, M.; Wang, T.; Muehe, E. M.; Fendorf, S. E.

    2016-12-01

    Rice is one of the staple crops in the world, with 50% of the global population eating rice daily. Many rice-producing regions of the world are irrigated with groundwater contaminated with arsenic (As), and in particular South and Southeast Asia, where geogenic As is leached into the groundwater. Use of groundwater pervasively high in As leads to subsequent accumulation in paddy soils. Arsenic, a toxic metalloid, also decreases rice productivity and further jeopardizes food security. Hence, rice agriculture is concerned with its productivity in a climate change impacted future and the particular impacts of arsenic on yields. However, past studies do not address the prevalence of As in paddy soils or its fate in the rhizosphere and ultimate impact on the plant. The objective of our study was to determine changes in pore water As dynamics in the rhizosphere of rice plants grown on As-contaminated paddy soil under climate conditions projected for the end of the century. In order to address this objective, we designed greenhouse chambers with today's climate and projected climate conditions for the year 2100, specifically 5°C increase in temperature and doubled concentration of atmospheric CO2. We hypothesize that the effects of climate change with these conditions will increase the mobility of As in the rhizosphere, and thus, decrease rice growth in As-bearing paddies more than, so far, expected. We examined pore water geochemistry including pH and As concentrations, and correlate that to the height of the plants. Furthermore, the dynamics of other elements in the pore water such as carbon, iron, sulfur, manganese, and silica are further evaluated for their effects on rice growth. Arsenic will have an impact on rice production and conditions induced by future climatic conditions need to be considered for food security. Considering that climate change will decrease the global agricultural output, we should urgently consider adapting our agricultural practices to aid

  15. Comparison of Manual and Automatic Irrigation of Pot Experiments

    DEFF Research Database (Denmark)

    Haahr, Vagner

    1975-01-01

    An air-lift principle for transport of water was adapted for automatic irrigation of experimental pots originally constructed for manual irrigation by the weighing method. The two irrigation techniques were compared in an experiment with increasing amounts of nitrogen fertilizer to spring barley....... Productions of grain and straw and chemical composition were almost the same after the two irrigation methods, and it was concluded that the laborious manual watering could be replaced by automatic irrigation. Comparison of the yield from individual plants in the pots showed a large difference between centre...... plants and border plants independent of irrigation principle. The increase in yield per pot with increasing N fertilization was at the highest N level caused only by an increase in yield of the border plants....

  16. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    Science.gov (United States)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  17. [Irrigants and intracanal medicaments in endodontics].

    Science.gov (United States)

    Zehnder, Matthias; Lehnert, Birgit; Schönenberger, Kathrin; Waltimo, Tuomas

    2003-01-01

    Modern, biologic root canal therapy should be performed with suitable irrigating solutions and intracanal medicaments. The goal of endodontic treatment is to free the treated tooth from infection and prevent reinfection as thoroughly as possible by means which do not put the organism at risk. In this review of the literature, an evidence-based concept for irrigation and medication of root canal systems is presented. Irrigants and medicaments are discussed with respect to their antimicrobial, tissue-dissolving and endotoxin-decontaminating capacity in relation to their systemic toxicity. Recent findings pertaining to interactions of root canal medicaments and irrigating solutions and their impact on a sound irrigating and medicating concept are discussed.

  18. KAJIAN INPUT ENERGI PADA BUDIDAYA PADI METODE SYSTEM OF RICE INTENSIFICATION Studies on Energy Input in System of Rice Intensification Method of Rice Cultivation

    Directory of Open Access Journals (Sweden)

    Bambang Purwantana

    2012-05-01

    Full Text Available System of Rice Intensification (SRI is a rice cultivation method that intensively control and manage macro and micro nutrients as well as irrigation. This paper quantifies and compares the energy uses of SRI and conventional rice cultiva- tion systems. The study was conducted at some SRI’s experimental plots in the districts of Sleman, Kulonprogo, and Bantul, the province of Yogyakarta. The calculation of the energy was based on the farmers’ work schedule, the time required for each operation, the number of laborers, machines, tools, fuel, and all materials and inputs used. The result shows that SRI method consumed 35% less energy to conventional rice cultivation. Energy inputs from seed, water, fertilizer and pesticide were significantly reduces. However, there was higher input of human energy due to compost- ing, land preparation and weeding operations. The specific energy of SRI method was 1.96 MJ ha-1 lower than conven- tional method of 4.43 MJ ha-1. In the SRI method, 56.2 % of energy consumed was classified as direct energy and 43.8% was indirect energy. The SRI method used 61.9 % of renewable energy and 38.1 % of non-renewable energy. The working efficiency in composting and weeding operations should be improved in perspective of machine and tools to reduce the use of human energy. ABSTRAK System of Rice Intensification (SRI, merupakan suatu metode budidaya padi secara intensif dengan pengendalian unsur-unsur hara makro dan mikro disertai pengendalian dan pengaturan kebutuhan air. Penelitian ini bertujuan untuk menganalisis penggunaan energi dan mengidentifikasi kemungkinan penghematan energi pada budidaya padi SRI. Pe- nelitian dilakukan di Kabupaten Sleman, Kulonprogo, dan Bantul, Propinsi Daerah Istimewa Yogyakarta. Pengamatan dilakukan pada plot-plot percobaan budidaya padi SRI dengan melakukan audit seluruh input energi selama proses budidaya dan dikomparasikan dengan input energi pada budidaya padi cara konvensional. Hasil

  19. Evaluation of Different Phenological Information to Map Crop Rotation in Complex Irrigated Indus Basin

    Science.gov (United States)

    Ismaeel, A.; Zhou, Q.

    2018-04-01

    Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering) to supervised (area knowledge and phenology behavior) classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI) performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE) of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE) of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 %) and NDVI*LAI (10.83, 39.45 %). The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  20. EVALUATION OF DIFFERENT PHENOLOGICAL INFORMATION TO MAP CROP ROTATION IN COMPLEX IRRIGATED INDUS BASIN

    Directory of Open Access Journals (Sweden)

    A. Ismaeel

    2018-04-01

    Full Text Available Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI and Leaf Area Index (LAI of Moderate Resolution Imaging Spectroradiometer (MODIS sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering to supervised (area knowledge and phenology behavior classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 % and NDVI*LAI (10.83, 39.45 %. The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  1. Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience

    Science.gov (United States)

    Garrido, Alberto; Martínez-Santos, Pedro; Llamas, M. Ramón

    2006-03-01

    Over the last decades, groundwater irrigation has become commonplace in many arid and semiarid regions worldwide, including Spain. This is largely a consequence of the advances in drilling and pumping technologies, and of the development of Hydrogeology. Compared with traditional surface water irrigation systems, groundwater irrigation offers more reliable supplies, lesser vulnerability to droughts, and ready accessibility for individual users. Economic forces influence the groundwater irrigation sector and its development. In Spain's Mediterranean regions, abstraction costs often amount to a very small fraction of the value of crops. In the inner areas, groundwater irrigation supports a more stable flow of farm income than rainfed agriculture. The social (jobs/m3) and economic (€/m3) value of groundwater irrigation generally exceeds that of surface water irrigation systems. However, poor groundwater management and legal controversies are currently at the base of Spain's social disputes over water. A thorough and transparent assessment of the relative socio-economic value of groundwater in relation to surface water irrigation might contribute to mitigate or avoid potential future conflicts. Enforcement of the European Union's Water Framework Directive may deliver better groundwater governance and a more sustainable use.

  2. Determination of Apparent Amylose Content in Rice by Using Paper-Based Microfluidic Chips.

    Science.gov (United States)

    Hu, Xianqiao; Lu, Lin; Fang, Changyun; Duan, Binwu; Zhu, Zhiwei

    2015-11-11

    Determination of apparent amylose content in rice is a key function for rice research and the rice industry. In this paper, a novel approach with paper-based microfluidic chip is reported to determine apparent amylose content in rice. The conventional color reaction between amylose and iodine was employed. Blue color of amylose-iodine complex generated on-chip was converted to gray and measured with Photoshop after the colored chip was scanned. The method for preparation of the paper chip is described. In situ generation of iodine for on-chip color reaction was designed, and factors influencing color reaction were investigated in detail. Elimination of yellow color interference of excess iodine by exploiting color removal function of Photoshop was presented. Under the optimized conditions, apparent amylose content in rice ranging from 1.5 to 26.4% can be determined, and precision was 6.3%. The analytical results obtained with the developed approach were in good agreement with those with the continuous flow analyzer method.

  3. Rice-planted area extraction by time series analysis of ENVISAT ASAR WS data using a phenology-based classification approach: A case study for Red River Delta, Vietnam

    Science.gov (United States)

    Nguyen, D.; Wagner, W.; Naeimi, V.; Cao, S.

    2015-04-01

    Recent studies have shown the potential of Synthetic Aperture Radars (SAR) for mapping of rice fields and some other vegetation types. For rice field classification, conventional classification techniques have been mostly used including manual threshold-based and supervised classification approaches. The challenge of the threshold-based approach is to find acceptable thresholds to be used for each individual SAR scene. Furthermore, the influence of local incidence angle on backscatter hinders using a single threshold for the entire scene. Similarly, the supervised classification approach requires different training samples for different output classes. In case of rice crop, supervised classification using temporal data requires different training datasets to perform classification procedure which might lead to inconsistent mapping results. In this study we present an automatic method to identify rice crop areas by extracting phonological parameters after performing an empirical regression-based normalization of the backscatter to a reference incidence angle. The method is evaluated in the Red River Delta (RRD), Vietnam using the time series of ENVISAT Advanced SAR (ASAR) Wide Swath (WS) mode data. The results of rice mapping algorithm compared to the reference data indicate the Completeness (User accuracy), Correctness (Producer accuracy) and Quality (Overall accuracies) of 88.8%, 92.5 % and 83.9 % respectively. The total area of the classified rice fields corresponds to the total rice cultivation areas given by the official statistics in Vietnam (R2  0.96). The results indicates that applying a phenology-based classification approach using backscatter time series in optimal incidence angle normalization can achieve high classification accuracies. In addition, the method is not only useful for large scale early mapping of rice fields in the Red River Delta using the current and future C-band Sentinal-1A&B backscatter data but also might be applied for other rice

  4. Perception, Mitigation and Adaptation Strategies of Irrigated Paddy Farmer Community to Face Climate Change

    Directory of Open Access Journals (Sweden)

    Siska Rasiska Suantapura

    2016-06-01

    Full Text Available Climate change has a real impact on the condition of agriculture in developing countries, including Indonesia. Irrigated paddy farmers are the ones really feeling the impact of climate change. Therefore, we need to understand the perceptions, mitigation and adaptation strategies of irrigated paddy farmer community to face climate change. The study is conducted in Indramayu and Tasikmalaya Regency in West Java by using descriptive survey method, regression analysis and path analysis through Structural Equation Modelling approach with Lisrel TM 8.5. The results showes that: (1 changes to climate variability affects the productivity of rice; (2 perception of irrigated paddy farmer community on climate change and its affects are influenced by internal and external factors; and (3 adaptation strategy are influenced by internal and external factors, whereas no mitigation strategy. Therefore, mitigation and adaptation strategies with site specific location are very necessary improving climate information services, increasing empowerment of farmers through field schools, and providing the provision of facilities that are practical and adaptive to climate.

  5. Rice management interventions to mitigate greenhouse gas emissions: a review.

    Science.gov (United States)

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  6. Exploring traditional aus-type rice for metabolites conferring drought tolerance.

    Science.gov (United States)

    Casartelli, Alberto; Riewe, David; Hubberten, Hans Michael; Altmann, Thomas; Hoefgen, Rainer; Heuer, Sigrid

    2018-01-25

    Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.

  7. Adaptación del arroz riego (Oryza sativa L. en el Caribe colombiano Adaptation of irrigated rice (Oryza sativa L. in the colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Hermes Aramendiz Tatis

    2011-01-01

    Full Text Available En Colombia, el arroz ocupa el primer lugar en seguridad alimentaria, valor económico y generación de empleo entre los cultivos anuales, siendo el sistema bajo riego más importante. El objetivo fue determinar el progreso, estabilidad y adaptabilidad del rendimiento de arroz bajo riego, en cinco departamentos del caribe colombiano. Se utilizaron datos del Ministerio de Agricultura y Desarrollo Rural, correspondiente a los Departamentos de Córdoba, Bolívar, Magdalena, Cesar y Guajira, durante el periodo 1987-2008. La estimación del progreso del rendimiento se realizó a través del análisis de regresión lineal entre los años (variable explicativa y el rendimiento de grano (variable explicada. La estabilidad se determinó a través del coeficiente de variación para tres períodos consecutivos de cinco años y el último de siete. La adaptabilidad, se realizó con el coeficiente de regresión lineal (bi. Los resultados destacan que el progreso en el rendimiento de grano en el Caribe colombiano, osciló entre 1.15% y 3.36% por año y 52.2 y 168.1 kg.ha-1, especialmente en el Departamento de Bolívar (3.36% por año y 168.1 kg.ha-1. La estabilidad, resultó en general alta (CV4.57 para el rendimiento de grano.In Colombia, the rice crop under irrigation system ranks first in food security, economic value and employment offer among annual crops, becoming the most important. The objective of this study was to quantify increasing, stability and adaptability of irrigated rice in five departments of the Colombian Caribbean area. Data from the Ministry of Agriculture and Rural Development for the departments of Cordoba, Bolivar, Magdalena, Cesar and Guajira, during the year period 1987 to 2008 were used. The increasing in yield was determined using the linear regression analysis among years (independent variable and grain yield (dependent variable in each department. The yield stability was determined by the coefficient of variation across of three

  8. Alternate wetting and drying decreases methylmercury in flooded rice (Oryza sativa) systems

    Science.gov (United States)

    Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Linquist, Bruce A.

    2018-01-01

    In flooded soils, including those found in rice (Oryza sativa L.) fields, microbes convert inorganic Hg to more toxic methylmercury (MeHg). Methylmercury is accumulated in rice grain, potentially affecting health. Methylmercury in rice field surface water can bioaccumulate in wildlife. We evaluated how introducing aerobic periods into an otherwise continuously flooded rice growing season affects MeHg dynamics. Conventional continuously flooded (CF) rice field water management was compared with alternate wetting and drying, where irrigation was stopped twice during the growing season, allowing soil to dry to 35% volumetric moisture content, at which point plots were reflooded (AWD-35). Methylmercury studies began at harvest in Year 3 and throughout Year 4 of a 4-yr replicated field experiment. Bulk soil, water, and plant samples were analyzed for MeHg and total Hg (THg), and iron (Fe) speciation was measured in soil samples. Rice grain yield over 4 yr did not differ between treatments. Soil chemistry responded quickly to AWD-35 dry-downs, showing significant oxidation of Fe(II) accompanied by a significant reduction of MeHg concentration (76% reduction at harvest) compared with CF. Surface water MeHg decreased by 68 and 39% in the growing and fallow seasons, respectively, suggesting that the effects of AWD-35 management can last through to the fallow season. The AWD-35 treatment reduced rice grain MeHg and THg by 60 and 32%, respectively. These results suggest that the more aerobic conditions caused by AWD-35 limited the activity of Hg(II)-methylating microbes and may be an effective way to reduce MeHg concentrations in rice ecosystems.

  9. Guidance for Large-scale Implementation of Alternate Wetting and Drying: A Biophysical Suitability Assessment

    Science.gov (United States)

    Sander, B. O.; Wassmann, R.; Nelson, A.; Palao, L.; Wollenberg, E.; Ishitani, M.

    2014-12-01

    The alternate wetting and drying (AWD) technology for rice production does not only save 15-30% of irrigation water, it also reduces methane emissions by up to 70%. AWD is defined by periodic drying and re-flooding of a rice field. Due to its high mitigation potential and its simplicity to execute this practice AWD has gained a lot of attention in recent years. The Climate and Clean Air Coalition (CCAC) has put AWD high on its agenda and funds a project to guide implementation of this technology in Vietnam, Bangladesh and Colombia. One crucial activity is a biophysical suitability assessment for AWD in the three countries. For this, we analyzed rainfall and soil data as well as potential evapotranspiration to assess if the water balance allows practicing AWD or if precipitation is too high for rice fields to fall dry. In my talk I will outline key factors for a successful large-scale implementation of AWD with a focus on the biophysical suitability assessment. The seasonal suitability maps that we generated highlight priority areas for AWD implementation and guide policy makers to informed decisions about meaningful investments in infrastructure and extension work.

  10. Dynamics of Phenol Degrading-Iron ReducingBacteria{1mm in Intensive Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Field and greenhouse experiments were conducted to investigate theeffects of cropping season, nitrogen fertilizer input and aeratedfallow on the dynamics of phenol degrading-iron reducingbacteria (PD-IRB) in tropical irrigated rice ({ Oryza sativa L.)systems. The PD-IRB population density was monitored at different stagesof rice growth in two cropping seasons (dry and early wet) in acontinuous annual triple rice cropping system under irrigated condition.In this system, the high nitrogen input (195 and 135 kg N ha-1 indry and wet seasons, respectively) plots and control plots receiving noN fertilizer were compared to investigate the effect of nitrogen rate onpopulation size. The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under cropping systems of tropical irrigatedrice. However, density of the bacterial populations varied with ricegrowth stages. Cropping seasons, rhizosphere, and aerated fallow couldaffect the dynamics of PD-IRB. In the field trial, viable counts ofPD-IRB in the topsoil layer (15 cm) ranged between 102 and 108cells per gram of dry soil. A steep increase in viable counts during thesecond half of the cropping season suggested that the population densityof PD-IRB increased at advanced crop-growth stages. Population growth ofPD-IRB was accelerated during the dry season compared to the wet season.In the greenhouse experiment, the adjacent aerated fallow revealed 1-2orders of magnitude higher in most probable number (MPN) of PD-IRB thanthe wet fallow treated plots. As a prominent group of Fe reducingbacteria, PD-IRB predominated in the rhizosphere of rice, since maximumMPN of PD-IRB (2.62108 g-1 soil) was found in rhizospheresoil. Mineral N fertilizer rates showed no significant effect on PD-IRBpopulation density.

  11. Effect of Azolla Based - Organic Fertilizer, Rock Phosphate and Rice Hull Ash on Rice Yield and Chemical Properties of Alfisols

    Directory of Open Access Journals (Sweden)

    Sudadi

    2014-07-01

    Full Text Available The application of chemical fertilizer for long time may adverse soil environment. Organic agriculture, for example combination use of azolla based-organic fertilizer, phosphate rock and rice hull ash, was one of ways that able to recover it. Research was conducted in Sukosari, Jumantono, Karanganyar while soi chemical properties analysis was analysed in Soil Chemistry and Fertility Laboratory, Fac. of Agriculture, Sebelas Maret University April to November 2013. Research design used was RAKL with 5 treatments, each repeated 5 times. The treatments applied were P0 (control, P1 ( azola inoculum dosage 250 g/m2 + phosphate rock + rice hull ash equal to 150 kg/ha KCl, P2 (azola inoculum dosage 500 g/m2 + phosphate rock equal to 150kg/ha, SP-36 + rice hull ash equal to 100 kg/ha KCl, P3 (manure dosage of 5 ton/ha,P4 (Urea 250 kg/ha + SP-36 150 kg/ha + KCl 100 kg/ha. Data analysed statistically by F test (Fisher test with level of confident 95% followed by DMRT (Duncan Multiple Range Test if any significant differences. The result showed that the treatment combination of azolla, phosphate rock and rice hull ash increase soil organic matter content, cation exchange capacity, available-P and exchangeable-K as well as rice yield ( (at harvest-dry grain weight and milled-dry grain weight.

  12. Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling.

    Science.gov (United States)

    Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel

    2016-09-15

    Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Prevalence and magnitude of acidosis sequelae to rice-based feeding regimen followed in Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Rathinam Murugeswari

    2018-04-01

    Full Text Available Background and Aim: In Tamil Nadu, a southern state of India, rice is readily available at a low cost, hence, is cooked (cooking akin to human consumption and fed irrationally to cross-bred dairy cattle with poor productivity. Hence, a study was carried out with the objective to examine the prevalence of acidosis sequelae to rice-based feeding regimen and assess its magnitude. Materials and Methods: A survey was conducted in all the 32 districts of Tamil Nadu, by randomly selecting two blocks per districts and from each block five villages were randomly selected. From each of the selected village, 10 dairy farmers belonging to the unorganized sector, owning one or two cross-bred dairy cows in early and mid-lactation were randomly selected so that a sample size of 100 farmers per district was maintained. The feeding regimen, milk yield was recorded, and occurrence of acidosis and incidence of laminitis were ascertained by the veterinarian with the confirmative test to determine the impact of feeding cooked rice to cows. Results: It is observed that 71.5% of farmers in unorganized sector feed cooked rice to their cattle. The incidence of acidosis progressively increased significantly (p<0.05 from 29.00% in cows fed with 0.5 kg of cooked rice to 69.23% in cows fed with more than 2.5 kg of cooked rice. However, the incidence of acidosis remained significantly (p<0.05 as low as 9.9% in cows fed feeding regimen without cooked rice which is suggestive of a correlation between excessive feeding cooked rice and onset of acidosis. Further, the noticeable difference in the incidence of acidosis observed between feeding cooked rice and those fed without rice and limited intake of oil cake indicates that there is a mismatch between energy and protein supply to these cattle. Among cooked rice-based diet, the incidence of laminitis increased progressively (p<0.05 from 9.2% to 37.9% with the increase in the quantum of cooked rice in the diet. Conclusion: The

  14. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis

    DEFF Research Database (Denmark)

    Ma, Ligeng; Chen, Chen; Liu, Xigang

    2005-01-01

    Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional...... with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression...... patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice...

  15. Rice field agroecosystem investigation : environmental and toxicological assessment; Indagine su una risaia campione: analisi ambientali e chimico-tossicologiche

    Energy Technology Data Exchange (ETDEWEB)

    Bari, A; Minciardi, M; Rossi, G [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Ambiente; Bonotto, F; Paonessa, F; Troiani, F [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Energia; Rosa, S [ENEA, Centro Ricrche Casaccia, Rome (Italy). Dip. Ambiente; Cormegna, M [Ente Nazionale Risi, Centro Ricerche sul Riso, Castello d` Agogna, Pavia (Italy)

    1995-10-01

    The rice-field agroecosystem, even if deeply anthropically determined, can be considered substitute of the plain wet lands, now almost all disappeared in the part of the territory has been considering. The aim of the research we started was the analysis and the ecological characterization of this environment and the assessment of the effects of the different agronomical practices, relating to the conservation of the biodiversity in a plain wetland. The ENEA Environmental Biology and Nature Conservation Division of Saluggia (VC) and Casaccia (Roma), in co-operation with ENEA ERG-RAD-LAB Division of Saluggia and the Rice Research Center of Castello d`Agogna (PV) associated to Rice National Society, started a preliminary research on a sample rice field, aiming to evaluate, using different methodologies, the destiny of the chemical substances (herbicides, fungicidals, heavy metals and other chemical compounds) introduced through cultivation practices or arrived by irrigation systems.

  16. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  17. Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR

    Directory of Open Access Journals (Sweden)

    Sonia Asilo

    2014-12-01

    Full Text Availa