WorldWideScience

Sample records for large protein-protein interaction

  1. BioPlex Display: An Interactive Suite for Large-Scale AP-MS Protein-Protein Interaction Data.

    Science.gov (United States)

    Schweppe, Devin K; Huttlin, Edward L; Harper, J Wade; Gygi, Steven P

    2018-01-05

    The development of large-scale data sets requires a new means to display and disseminate research studies to large audiences. Knowledge of protein-protein interaction (PPI) networks has become a principle interest of many groups within the field of proteomics. At the confluence of technologies, such as cross-linking mass spectrometry, yeast two-hybrid, protein cofractionation, and affinity purification mass spectrometry (AP-MS), detection of PPIs can uncover novel biological inferences at a high-throughput. Thus new platforms to provide community access to large data sets are necessary. To this end, we have developed a web application that enables exploration and dissemination of the growing BioPlex interaction network. BioPlex is a large-scale interactome data set based on AP-MS of baits from the human ORFeome. The latest BioPlex data set release (BioPlex 2.0) contains 56 553 interactions from 5891 AP-MS experiments. To improve community access to this vast compendium of interactions, we developed BioPlex Display, which integrates individual protein querying, access to empirical data, and on-the-fly annotation of networks within an easy-to-use and mobile web application. BioPlex Display enables rapid acquisition of data from BioPlex and development of hypotheses based on protein interactions.

  2. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  3. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Science.gov (United States)

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  4. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  5. Can infrared spectroscopy provide information on protein-protein interactions?

    Science.gov (United States)

    Haris, Parvez I

    2010-08-01

    For most biophysical techniques, characterization of protein-protein interactions is challenging; this is especially true with methods that rely on a physical phenomenon that is common to both of the interacting proteins. Thus, for example, in IR spectroscopy, the carbonyl vibration (1600-1700 cm(-1)) associated with the amide bonds from both of the interacting proteins will overlap extensively, making the interpretation of spectral changes very complicated. Isotope-edited infrared spectroscopy, where one of the interacting proteins is uniformly labelled with (13)C or (13)C,(15)N has been introduced as a solution to this problem, enabling the study of protein-protein interactions using IR spectroscopy. The large shift of the amide I band (approx. 45 cm(-1) towards lower frequency) upon (13)C labelling of one of the proteins reveals the amide I band of the unlabelled protein, enabling it to be used as a probe for monitoring conformational changes. With site-specific isotopic labelling, structural resolution at the level of individual amino acid residues can be achieved. Furthermore, the ability to record IR spectra of proteins in diverse environments means that isotope-edited IR spectroscopy can be used to structurally characterize difficult systems such as protein-protein complexes bound to membranes or large insoluble peptide/protein aggregates. In the present article, examples of application of isotope-edited IR spectroscopy for studying protein-protein interactions are provided.

  6. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  7. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  8. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. An ontology-based search engine for protein-protein interactions.

    Science.gov (United States)

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  10. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  11. Quality control methodology for high-throughput protein-protein interaction screening.

    Science.gov (United States)

    Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha

    2011-01-01

    Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.

  12. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    Science.gov (United States)

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  13. PSAIA – Protein Structure and Interaction Analyzer

    Directory of Open Access Journals (Sweden)

    Vlahoviček Kristian

    2008-04-01

    Full Text Available Abstract Background PSAIA (Protein Structure and Interaction Analyzer was developed to compute geometric parameters for large sets of protein structures in order to predict and investigate protein-protein interaction sites. Results In addition to most relevant established algorithms, PSAIA offers a new method PIADA (Protein Interaction Atom Distance Algorithm for the determination of residue interaction pairs. We found that PIADA produced more satisfactory results than comparable algorithms implemented in PSAIA. Particular advantages of PSAIA include its capacity to combine different methods to detect the locations and types of interactions between residues and its ability, without any further automation steps, to handle large numbers of protein structures and complexes. Generally, the integration of a variety of methods enables PSAIA to offer easier automation of analysis and greater reliability of results. PSAIA can be used either via a graphical user interface or from the command-line. Results are generated in either tabular or XML format. Conclusion In a straightforward fashion and for large sets of protein structures, PSAIA enables the calculation of protein geometric parameters and the determination of location and type for protein-protein interaction sites. XML formatted output enables easy conversion of results to various formats suitable for statistic analysis. Results from smaller data sets demonstrated the influence of geometry on protein interaction sites. Comprehensive analysis of properties of large data sets lead to new information useful in the prediction of protein-protein interaction sites.

  14. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.

    Science.gov (United States)

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  15. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Elise Delaforge

    2016-09-01

    Full Text Available Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  16. Analysis of protein-protein interaction networks by means of annotated graph mining algorithms

    NARCIS (Netherlands)

    Rahmani, Hossein

    2012-01-01

    This thesis discusses solutions to several open problems in Protein-Protein Interaction (PPI) networks with the aid of Knowledge Discovery. PPI networks are usually represented as undirected graphs, with nodes corresponding to proteins and edges representing interactions among protein pairs. A large

  17. Specificity of molecular interactions in transient protein-protein interaction interfaces.

    Science.gov (United States)

    Cho, Kyu-il; Lee, KiYoung; Lee, Kwang H; Kim, Dongsup; Lee, Doheon

    2006-11-15

    In this study, we investigate what types of interactions are specific to their biological function, and what types of interactions are persistent regardless of their functional category in transient protein-protein heterocomplexes. This is the first approach to analyze protein-protein interfaces systematically at the molecular interaction level in the context of protein functions. We perform systematic analysis at the molecular interaction level using classification and feature subset selection technique prevalent in the field of pattern recognition. To represent the physicochemical properties of protein-protein interfaces, we design 18 molecular interaction types using canonical and noncanonical interactions. Then, we construct input vector using the frequency of each interaction type in protein-protein interface. We analyze the 131 interfaces of transient protein-protein heterocomplexes in PDB: 33 protease-inhibitors, 52 antibody-antigens, 46 signaling proteins including 4 cyclin dependent kinase and 26 G-protein. Using kNN classification and feature subset selection technique, we show that there are specific interaction types based on their functional category, and such interaction types are conserved through the common binding mechanism, rather than through the sequence or structure conservation. The extracted interaction types are C(alpha)-- H...O==C interaction, cation...anion interaction, amine...amine interaction, and amine...cation interaction. With these four interaction types, we achieve the classification success rate up to 83.2% with leave-one-out cross-validation at k = 15. Of these four interaction types, C(alpha)--H...O==C shows binding specificity for protease-inhibitor complexes, while cation-anion interaction is predominant in signaling complexes. The amine ... amine and amine...cation interaction give a minor contribution to the classification accuracy. When combined with these two interactions, they increase the accuracy by 3.8%. In the case of

  18. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    Science.gov (United States)

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  20. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  1. Filtering high-throughput protein-protein interaction data using a combination of genomic features

    Directory of Open Access Journals (Sweden)

    Patil Ashwini

    2005-04-01

    Full Text Available Abstract Background Protein-protein interaction data used in the creation or prediction of molecular networks is usually obtained from large scale or high-throughput experiments. This experimental data is liable to contain a large number of spurious interactions. Hence, there is a need to validate the interactions and filter out the incorrect data before using them in prediction studies. Results In this study, we use a combination of 3 genomic features – structurally known interacting Pfam domains, Gene Ontology annotations and sequence homology – as a means to assign reliability to the protein-protein interactions in Saccharomyces cerevisiae determined by high-throughput experiments. Using Bayesian network approaches, we show that protein-protein interactions from high-throughput data supported by one or more genomic features have a higher likelihood ratio and hence are more likely to be real interactions. Our method has a high sensitivity (90% and good specificity (63%. We show that 56% of the interactions from high-throughput experiments in Saccharomyces cerevisiae have high reliability. We use the method to estimate the number of true interactions in the high-throughput protein-protein interaction data sets in Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens to be 27%, 18% and 68% respectively. Our results are available for searching and downloading at http://helix.protein.osaka-u.ac.jp/htp/. Conclusion A combination of genomic features that include sequence, structure and annotation information is a good predictor of true interactions in large and noisy high-throughput data sets. The method has a very high sensitivity and good specificity and can be used to assign a likelihood ratio, corresponding to the reliability, to each interaction.

  2. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  3. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome.

    Directory of Open Access Journals (Sweden)

    Albrecht von Brunn

    2007-05-01

    Full Text Available The severe acute respiratory syndrome coronavirus (SARS-CoV genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.

  4. Biospecific protein immobilization for rapid analysis of weak protein interactions using self-interaction nanoparticle spectroscopy.

    Science.gov (United States)

    Bengali, Aditya N; Tessier, Peter M

    2009-10-01

    "Reversible" protein interactions govern diverse biological behavior ranging from intracellular transport and toxic protein aggregation to protein crystallization and inactivation of protein therapeutics. Much less is known about weak protein interactions than their stronger counterparts since they are difficult to characterize, especially in a parallel format (in contrast to a sequential format) necessary for high-throughput screening. We have recently introduced a highly efficient approach of characterizing protein self-association, namely self-interaction nanoparticle spectroscopy (SINS; Tessier et al., 2008; J Am Chem Soc 130:3106-3112). This approach exploits the separation-dependent optical properties of gold nanoparticles to detect weak self-interactions between proteins immobilized on nanoparticles. A limitation of our previous work is that differences in the sequence and structure of proteins can lead to significant differences in their affinity to adsorb to nanoparticle surfaces, which complicates analysis of the corresponding protein self-association behavior. In this work we demonstrate a highly specific approach for coating nanoparticles with proteins using biotin-avidin interactions to generate protein-nanoparticle conjugates that report protein self-interactions through changes in their optical properties. Using lysozyme as a model protein that is refractory to characterization by conventional SINS, we demonstrate that surface Plasmon wavelengths for gold-avidin-lysozyme conjugates over a range of solution conditions (i.e., pH and ionic strength) are well correlated with lysozyme osmotic second virial coefficient measurements. Since SINS requires orders of magnitude less protein and time than conventional methods (e.g., static light scattering), we envision this approach will find application in large screens of protein self-association aimed at either preventing (e.g., protein aggregation) or promoting (e.g., protein crystallization) these

  5. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  6. Categorizing Biases in High-Confidence High-Throughput Protein-Protein Interaction Data Sets*

    Science.gov (United States)

    Yu, Xueping; Ivanic, Joseph; Memišević, Vesna; Wallqvist, Anders; Reifman, Jaques

    2011-01-01

    necessarily imply that one detection methodology was better or worse, but rather that, to a large extent, the insights reflected the methodological biases themselves. Consequently, interpreting the protein interaction data within their experimental or cellular context provided the best avenue for overcoming biases and inferring biological knowledge. PMID:21876202

  7. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    2011-04-01

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  8. Potential disruption of protein-protein interactions by graphene oxide

    International Nuclear Information System (INIS)

    Feng, Mei; Kang, Hongsuk; Luan, Binquan; Yang, Zaixing; Zhou, Ruhong

    2016-01-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  9. Potential disruption of protein-protein interactions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mei [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Kang, Hongsuk; Luan, Binquan [Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yang, Zaixing [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 (China); Zhou, Ruhong, E-mail: ruhong@us.ibm.com [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Department of Chemistry, Columbia University, New York, New York 10027 (United States)

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  10. A conserved mammalian protein interaction network.

    Directory of Open Access Journals (Sweden)

    Åsa Pérez-Bercoff

    Full Text Available Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective constraint, presumably due to their functional roles.

  11. Inferring high-confidence human protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Yu Xueping

    2012-05-01

    Full Text Available Abstract Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs, aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83% of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134% than either ranking based on the hypergeometric test (~109% or occurrence ranking (~46%. Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high

  12. A rice kinase-protein interaction map.

    Science.gov (United States)

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E; Ronald, Pamela C; Song, Wen-Yuan

    2009-03-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.

  13. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression

    Directory of Open Access Journals (Sweden)

    Vandepoele Klaas

    2009-06-01

    Full Text Available Abstract Background Large-scale identification of the interrelationships between different components of the cell, such as the interactions between proteins, has recently gained great interest. However, unraveling large-scale protein-protein interaction maps is laborious and expensive. Moreover, assessing the reliability of the interactions can be cumbersome. Results In this study, we have developed a computational method that exploits the existing knowledge on protein-protein interactions in diverse species through orthologous relations on the one hand, and functional association data on the other hand to predict and filter protein-protein interactions in Arabidopsis thaliana. A highly reliable set of protein-protein interactions is predicted through this integrative approach making use of existing protein-protein interaction data from yeast, human, C. elegans and D. melanogaster. Localization, biological process, and co-expression data are used as powerful indicators for protein-protein interactions. The functional repertoire of the identified interactome reveals interactions between proteins functioning in well-conserved as well as plant-specific biological processes. We observe that although common mechanisms (e.g. actin polymerization and components (e.g. ARPs, actin-related proteins exist between different lineages, they are active in specific processes such as growth, cancer metastasis and trichome development in yeast, human and Arabidopsis, respectively. Conclusion We conclude that the integration of orthology with functional association data is adequate to predict protein-protein interactions. Through this approach, a high number of novel protein-protein interactions with diverse biological roles is discovered. Overall, we have predicted a reliable set of protein-protein interactions suitable for further computational as well as experimental analyses.

  14. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  15. Topology and weights in a protein domain interaction network--a novel way to predict protein interactions.

    Science.gov (United States)

    Wuchty, Stefan

    2006-05-23

    While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions

  16. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  17. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  18. Our interests in protein-protein interactions

    Indian Academy of Sciences (India)

    protein interactions. Evolution of P-P partnerships. Evolution of P-P structures. Evolutionary dynamics of P-P interactions. Dynamics of P-P interaction network. Host-pathogen interactions. CryoEM mapping of gigantic protein assemblies.

  19. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    2014-10-01

    Full Text Available Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape.

  20. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    Directory of Open Access Journals (Sweden)

    Samir Merabet

    2011-10-01

    Full Text Available Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA, we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  1. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  2. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    Science.gov (United States)

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  3. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  4. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  5. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  6. Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Directory of Open Access Journals (Sweden)

    Wuchty Stefan

    2006-05-01

    Full Text Available Abstract Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM, which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we

  7. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    International Nuclear Information System (INIS)

    Goethe, Martin; Rubi, J. Miguel; Fita, Ignacio

    2016-01-01

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  8. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel [Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Fita, Ignacio [Institut de Biologia Molecular de Barcelona, Baldiri Reixac 10, 08028 Barcelona (Spain)

    2016-03-15

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  9. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Ching-Tai Chen

    Full Text Available Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins and were tested on an independent dataset (consisting of 142 proteins. The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted

  10. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Science.gov (United States)

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  11. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  12. Exploiting conformational ensembles in modeling protein-protein interactions on the proteome scale

    Science.gov (United States)

    Kuzu, Guray; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2013-01-01

    Cellular functions are performed through protein-protein interactions; therefore, identification of these interactions is crucial for understanding biological processes. Recent studies suggest that knowledge-based approaches are more useful than ‘blind’ docking for modeling at large scales. However, a caveat of knowledge-based approaches is that they treat molecules as rigid structures. The Protein Data Bank (PDB) offers a wealth of conformations. Here, we exploited ensemble of the conformations in predictions by a knowledge-based method, PRISM. We tested ‘difficult’ cases in a docking-benchmark dataset, where the unbound and bound protein forms are structurally different. Considering alternative conformations for each protein, the percentage of successfully predicted interactions increased from ~26% to 66%, and 57% of the interactions were successfully predicted in an ‘unbiased’ scenario, in which data related to the bound forms were not utilized. If the appropriate conformation, or relevant template interface, is unavailable in the PDB, PRISM could not predict the interaction successfully. The pace of the growth of the PDB promises a rapid increase of ensemble conformations emphasizing the merit of such knowledge-based ensemble strategies for higher success rates in protein-protein interaction predictions on an interactome-scale. We constructed the structural network of ERK interacting proteins as a case study. PMID:23590674

  13. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sánchez Claros, Carmen

    2012-06-08

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  14. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sá nchez Claros, Carmen; Tramontano, Anna

    2012-01-01

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  15. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  16. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  17. Non-interacting surface solvation and dynamics in protein-protein interactions

    NARCIS (Netherlands)

    Visscher, Koen M.; Kastritis, Panagiotis L.|info:eu-repo/dai/nl/315886668; Bonvin, Alexandre M J J|info:eu-repo/dai/nl/113691238

    2015-01-01

    Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo

  18. Parallel force assay for protein-protein interactions.

    Science.gov (United States)

    Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.

  19. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.......Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...

  20. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  1. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  2. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  3. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  4. A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions.

    Science.gov (United States)

    Schlecht, Ulrich; Liu, Zhimin; Blundell, Jamie R; St Onge, Robert P; Levy, Sasha F

    2017-05-25

    Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.

  5. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling

    DEFF Research Database (Denmark)

    Blagoev, B.; Kratchmarova, I.; Ong, S.E.

    2003-01-01

    Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we em...

  6. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  7. Evolutionary reprograming of protein-protein interaction specificity.

    Science.gov (United States)

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Towards a map of the Populus biomass protein-protein interaction network

    Energy Technology Data Exchange (ETDEWEB)

    Beers, Eric [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brunner, Amy [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Helm, Richard [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dickerman, Allan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  9. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  10. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  11. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain

  12. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...... to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable...

  13. Parallel force assay for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Daniela Aschenbrenner

    Full Text Available Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.

  14. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  15. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  16. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  17. Feature generation and representations for protein-protein interaction classification.

    Science.gov (United States)

    Lan, Man; Tan, Chew Lim; Su, Jian

    2009-10-01

    Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.

  18. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners.Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  19. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  20. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  1. Protein-protein interactions and cancer: targeting the central dogma.

    Science.gov (United States)

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  2. PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack

    2006-07-01

    Full Text Available Abstract Background Identification of protein interaction networks has received considerable attention in the post-genomic era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour intensive. Consequently there is a growing need for the development of computational tools that are capable of effectively identifying such interactions. Results Here we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces cerevisiae proteins from their primary structure and without the need for any additional information or predictions about the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30 and YMR135C (gid8 yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c. The observed interaction was confirmed by tandem affinity purification (TAP tag, verifying the ability of PIPE to predict novel protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any on the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us to predict protein interactions that are not

  3. A credit-card library approach for disrupting protein-protein interactions.

    Science.gov (United States)

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  4. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  5. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Vincent Vagenende

    Full Text Available Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.

  6. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  7. [Detection of protein-protein interactions by FRET and BRET methods].

    Science.gov (United States)

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  8. Selection of peptides interfering with protein-protein interaction.

    Science.gov (United States)

    Gaida, Annette; Hagemann, Urs B; Mattay, Dinah; Räuber, Christina; Müller, Kristian M; Arndt, Katja M

    2009-01-01

    Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.

  9. Water-Protein Interactions: The Secret of Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Silvia Martini

    2013-01-01

    Full Text Available Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS and selective (R1SE spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.

  10. Prediction and characterization of protein-protein interaction networks in swine

    Directory of Open Access Journals (Sweden)

    Wang Fen

    2012-01-01

    Full Text Available Abstract Background Studying the large-scale protein-protein interaction (PPI network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes. Results We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into 567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks. Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and 863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods. The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively. Conclusion The results reveal that the predicted PPI networks are considerably reliable. The present research is an important pioneering work on protein function research. The porcine PPI data set, the confidence score of each interaction and a list of related data are available at (http://pppid.biositemap.com/.

  11. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  12. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  13. Evolutionary diversification of protein-protein interactions by interface add-ons.

    Science.gov (United States)

    Plach, Maximilian G; Semmelmann, Florian; Busch, Florian; Busch, Markus; Heizinger, Leonhard; Wysocki, Vicki H; Merkl, Rainer; Sterner, Reinhard

    2017-10-03

    Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.

  14. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions.

    Science.gov (United States)

    Wachsmuth, Leah M; Johnson, Meredith G; Gavenonis, Jason

    2017-06-01

    Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.

  15. Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces

    International Nuclear Information System (INIS)

    Tuncbag, Nurcan; Gursoy, Attila; Keskin, Ozlem

    2011-01-01

    The vast majority of the chores in the living cell involve protein–protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein–protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations

  16. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence.

    Science.gov (United States)

    Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S

    2002-02-07

    P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.

  17. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  18. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  19. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  20. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C......-terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat......The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared...

  1. Yeast Interacting Proteins Database: YLR447C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available xpression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Sp...; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act

  2. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  3. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  4. Interactions among tobacco sieve element occlusion (SEO) proteins.

    Science.gov (United States)

    Jekat, Stephan B; Ernst, Antonia M; Zielonka, Sascia; Noll, Gundula A; Prüfer, Dirk

    2012-12-01

    Angiosperms transport their photoassimilates through sieve tubes, which comprise longitudinally-connected sieve elements. In dicots and also some monocots, the sieve elements contain parietal structural proteins known as phloem proteins or P-proteins. Following injury, P proteins disperse and accumulate as viscous plugs at the sieve plates to prevent the loss of valuable transport sugars. Tobacco (Nicotiana tabacum) P-proteins are multimeric complexes comprising subunits encoded by members of the SEO (sieve element occlusion) gene family. The existence of multiple subunits suggests that P-protein assembly involves interactions between SEO proteins, but this process is largely uncharacterized and it is unclear whether the different subunits perform unique roles or are redundant. We therefore extended our analysis of the tobacco P-proteins NtSEO1 and NtSEO2 to investigate potential interactions between them, and found that both proteins can form homomeric and heteromeric complexes in planta.

  5. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  6. Yeast Interacting Proteins Database: YGR013W, YKL012W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tion U1 snRNP protein involved in splicing, interacts with the branchpoint-binding protein during the formation of the second commitm... PRP40 U1 snRNP protein involved in splicing, interacts with the branchpoint-binding protein during the form...ation of the second commitment complex Rows with this prey as prey (1) Rows with

  7. Emergence of modularity and disassortativity in protein-protein interaction networks.

    Science.gov (United States)

    Wan, Xi; Cai, Shuiming; Zhou, Jin; Liu, Zengrong

    2010-12-01

    In this paper, we present a simple evolution model of protein-protein interaction networks by introducing a rule of small-preference duplication of a node, meaning that the probability of a node chosen to duplicate is inversely proportional to its degree, and subsequent divergence plus nonuniform heterodimerization based on some plausible mechanisms in biology. We show that our model cannot only reproduce scale-free connectivity and small-world pattern, but also exhibit hierarchical modularity and disassortativity. After comparing the features of our model with those of real protein-protein interaction networks, we believe that our model can provide relevant insights into the mechanism underlying the evolution of protein-protein interaction networks. © 2010 American Institute of Physics.

  8. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  9. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex

    Directory of Open Access Journals (Sweden)

    Lisa M. Tuttle

    2018-03-01

    Full Text Available Summary: Transcription activation domains (ADs are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. : Tuttle et al. report a “fuzzy free-for-all” interaction mechanism that explains how seemingly unrelated transcription activators converge on a limited number of coactivator targets. The mechanism provides a rationale for the observation that individually weak and low-specificity interactions can combine to produce biologically critical function without requiring highly ordered structure. Keywords: transcription activation, intrinsically disordered proteins, fuzzy binding

  10. Chromosome-wise Protein Interaction Patterns and Their Impact on Functional Implications of Large-Scale Genomic Aberrations

    DEFF Research Database (Denmark)

    Kirk, Isa Kristina; Weinhold, Nils; Belling, Kirstine González-Izarzugaza

    2017-01-01

    Gene copy-number changes influence phenotypes through gene-dosage alteration and subsequent changes of protein complex stoichiometry. Human trisomies where gene copy numbers are increased uniformly over entire chromosomes provide generic cases for studying these relationships. In most trisomies......, gene and protein level alterations have fatal consequences. We used genome-wide protein-protein interaction data to identify chromosome-specific patterns of protein interactions. We found that some chromosomes encode proteins that interact infrequently with each other, chromosome 21 in particular. We...... combined the protein interaction data with transcriptome data from human brain tissue to investigate how this pattern of global interactions may affect cellular function. We identified highly connected proteins that also had coordinated gene expression. These proteins were associated with important...

  11. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.

    Science.gov (United States)

    Várnai, Csilla; Burkoff, Nikolas S; Wild, David L

    2017-01-01

    Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been developed to identify residue pairs interacting across the protein complex interface. These studies have focussed on carefully selected protein complexes with large, good-quality MSAs. In this work, we study protein complexes with a more typical MSA consisting of fewer than 400 sequences, using a set of 79 intramolecular protein complexes. Using a maximum entropy based CMM at the residue level, we develop an interface level CMM score to be used in re-ranking docking decoys. We demonstrate that our interface level CMM score compares favourably to the complementarity trace score, an evolutionary information-based score measuring co-conservation, when combined with the number of interface residues, a knowledge-based potential and the variability score of individual amino acid sites. We also demonstrate, that, since co-mutation and co-complementarity in the MSA contain orthogonal information, the best prediction performance using evolutionary information can be achieved by combining the co-mutation information of the CMM with co-conservation information of a complementarity trace score, predicting a near-native structure as the top prediction for 41% of the dataset. The method presented is not restricted to small MSAs, and will likely improve interface prediction also for complexes with large and good-quality MSAs.

  12. Detecting protein complexes based on a combination of topological and biological properties in protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    2018-06-01

    Full Text Available Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors. Keywords: Protein complex, Connectivity, Semantic similarity, Contribution

  13. Protein-Protein Interaction Network and Gene Ontology

    Science.gov (United States)

    Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah

    Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.

  14. Globular and disordered – the non-identical twins in protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Kaare eTeilum

    2015-07-01

    Full Text Available In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP’s bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol-1.

  15. Scoring functions for protein-protein interactions.

    Science.gov (United States)

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Novel Technology for Protein-Protein Interaction-based Targeted Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jung Me Hwang

    2011-12-01

    Full Text Available We have developed a simple but highly efficient in-cell protein-protein interaction (PPI discovery system based on the translocation properties of protein kinase C- and its C1a domain in live cells. This system allows the visual detection of trimeric and dimeric protein interactions including cytosolic, nuclear, and/or membrane proteins with their cognate ligands. In addition, this system can be used to identify pharmacological small compounds that inhibit specific PPIs. These properties make this PPI system an attractive tool for screening drug candidates and mapping the protein interactome.

  17. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  18. Globular and disordered-the non-identical twins in protein-protein interactions

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan Gotthardt; Kragelund, Birthe Brandt

    2015-01-01

    as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those...... of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1)....

  19. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    Science.gov (United States)

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  20. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  1. Energetics of the protein-DNA-water interaction

    Directory of Open Access Journals (Sweden)

    Marabotti Anna

    2007-01-01

    Full Text Available Abstract Background To understand the energetics of the interaction between protein and DNA we analyzed 39 crystallographically characterized complexes with the HINT (Hydropathic INTeractions computational model. HINT is an empirical free energy force field based on solvent partitioning of small molecules between water and 1-octanol. Our previous studies on protein-ligand complexes demonstrated that free energy predictions were significantly improved by taking into account the energetic contribution of water molecules that form at least one hydrogen bond with each interacting species. Results An initial correlation between the calculated HINT scores and the experimentally determined binding free energies in the protein-DNA system exhibited a relatively poor r2 of 0.21 and standard error of ± 1.71 kcal mol-1. However, the inclusion of 261 waters that bridge protein and DNA improved the HINT score-free energy correlation to an r2 of 0.56 and standard error of ± 1.28 kcal mol-1. Analysis of the water role and energy contributions indicate that 46% of the bridging waters act as linkers between amino acids and nucleotide bases at the protein-DNA interface, while the remaining 54% are largely involved in screening unfavorable electrostatic contacts. Conclusion This study quantifies the key energetic role of bridging waters in protein-DNA associations. In addition, the relevant role of hydrophobic interactions and entropy in driving protein-DNA association is indicated by analyses of interaction character showing that, together, the favorable polar and unfavorable polar/hydrophobic-polar interactions (i.e., desolvation mostly cancel.

  2. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  3. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.

    Science.gov (United States)

    Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E

    2018-03-20

    Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  5. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    Science.gov (United States)

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function.

    Science.gov (United States)

    Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L

    2017-06-21

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca V ) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Ca V β). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Ca V β interactions and reduce the entropic penalty associated with AID binding to Ca V β. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Ca V α 1 :Ca V β interaction that modulate Ca V function in an Ca V β isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca V modulator design.

  7. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    Science.gov (United States)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    Physics approaches focus on uncovering, modeling and quantitating the general principles governing the micro and macro universe. This has always been an important component of biological research, however recent advances in experimental techniques and the accumulation of unprecedented genome-scale experimental data produced by these novel technologies now allow for addressing fundamental questions on a large scale. These relate to molecular interactions, principles of bimolecular recognition, and mechanisms of signal propagation. The functioning of a cell requires a variety of intermolecular interactions including protein-protein, protein-DNA, protein-RNA, hormones, peptides, small molecules, lipids and more. Biomolecules work together to provide specific functions and perturbations in intermolecular communication channels often lead to cellular malfunction and disease. A full understanding of the interactome requires an in-depth grasp of the biophysical principles underlying individual interactions as well as their organization in cellular networks. Phenomena can be described at different levels of abstraction. Computational and systems biology strive to model cellular processes by integrating and analyzing complex data from multiple experimental sources using interdisciplinary tools. As a result, both the causal relationships between the variables and the general features of the system can be discovered, which even without knowing the details of the underlying mechanisms allow for putting forth hypotheses and predicting the behavior of the systems in response to perturbation. And here lies the strength of in silico models which provide control and predictive power. At the same time, the complexity of individual elements and molecules can be addressed by the fields of molecular biophysics, physical biology and structural biology, which focus on the underlying physico-chemical principles and may explain the molecular mechanisms of cellular function. In this issue

  8. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    Years of meticulous curation of scientific literature and increasingly reliable computational predictions have resulted in creation of vast databases of protein interaction data. Over the years, these repositories have become a basic framework in which experiments are analyzed and new directions...

  9. Yeast Interacting Proteins Database: YGL237C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote... expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein

  10. Yeast Interacting Proteins Database: YKL002W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote...xpression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Sp

  11. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  12. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Science.gov (United States)

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are

  13. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  14. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  15. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization.

    Science.gov (United States)

    Li, Hui; Liu, Chunmei

    2014-06-14

    3DProIN is a computational tool to visualize protein-protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The internet crawl technique is also used to parse dynamically grasped protein interactions from protein data bank (PDB). It is a java applet component that is embedded in the web page and it can be used on different platforms including Linux, Mac and Window using web browsers such as Firefox, Internet Explorer, Chrome and Safari. It also was converted into a mac app and submitted to the App store as a free app. Mac users can also download the app from our website. 3DProIN is available for academic research at http://bicompute.appspot.com.

  16. An analysis pipeline for the inference of protein-protein interaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Gilmore, Jason M.; Cannon, William R.; Domico, Kelly O.; White, Amanda M.; Auberry, Deanna L.; Auberry, Kenneth J.; Hooker, Brian S.; Hurst, G. B.; McDermott, Jason E.; McDonald, W. H.; Pelletier, Dale A.; Schmoyer, Denise A.; Wiley, H. S.

    2009-12-01

    An analysis pipeline has been created for deployment of a novel algorithm, the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro), for use in the reconstruction of protein-protein interaction networks. We have combined the Software Environment for BIological Network Inference (SEBINI), an interactive environment for the deployment and testing of network inference algorithms that use high-throughput data, and the Collective Analysis of Biological Interaction Networks (CABIN), software that allows integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources, to allow interactions computed by BEPro to be stored, visualized, and further analyzed. Incorporating BEPro into SEBINI and automatically feeding the resulting inferred network into CABIN, we have created a structured workflow for protein-protein network inference and supplemental analysis from sets of mass spectrometry bait-prey experiment data. SEBINI demo site: https://www.emsl.pnl.gov /SEBINI/ Contact: ronald.taylor@pnl.gov. BEPro is available at http://www.pnl.gov/statistics/BEPro3/index.htm. Contact: ds.daly@pnl.gov. CABIN is available at http://www.sysbio.org/dataresources/cabin.stm. Contact: mudita.singhal@pnl.gov.

  17. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy.

    Science.gov (United States)

    Wang, Zhi-Hui; Li, Dong-Dong; Chen, Wei-Lin; You, Qi-Dong; Guo, Xiao-Ke

    2018-01-15

    The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed. Copyright © 2017. Published by Elsevier Ltd.

  18. Fragment molecular orbital method for studying lanthanide interactions with proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, Satoru [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Komeiji, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Mochizuki, Y. [Rikkyo Univ., Tokyo (Japan)

    2017-06-01

    The binding affinity of the calcium-binding protein calmodulin towards Eu{sup 3+} was studied as a model for lanthanide protein interactions in the large family of ''EF-hand'' calcium-binding proteins.

  19. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Directory of Open Access Journals (Sweden)

    Stefan M Ivanov

    Full Text Available An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  20. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold.

    Science.gov (United States)

    Ivanov, Stefan M; Cawley, Andrew; Huber, Roland G; Bond, Peter J; Warwicker, Jim

    2017-01-01

    An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.

  1. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    Science.gov (United States)

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be

  2. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  3. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Saiful M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Liang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yoon, Hyunjin [Dartmouth College, Hanover, NH (United States); Ansong, Charles [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rommereim, Leah M. [Dartmouth College, Hanover, NH (United States); Norbeck, Angela D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Auberry, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, R. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Joshua N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heffron, Fred [Oregon Health and Science Univ., Portland, OR (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  4. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  5. Molecular imaging of drug-modulated protein-protein interactions in living subjects.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S

    2004-03-15

    Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.

  6. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    International Nuclear Information System (INIS)

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-01-01

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication

  7. Efficient extraction of protein-protein interactions from full-text articles.

    Science.gov (United States)

    Hakenberg, Jörg; Leaman, Robert; Vo, Nguyen Ha; Jonnalagadda, Siddhartha; Sullivan, Ryan; Miller, Christopher; Tari, Luis; Baral, Chitta; Gonzalez, Graciela

    2010-01-01

    Proteins and their interactions govern virtually all cellular processes, such as regulation, signaling, metabolism, and structure. Most experimental findings pertaining to such interactions are discussed in research papers, which, in turn, get curated by protein interaction databases. Authors, editors, and publishers benefit from efforts to alleviate the tasks of searching for relevant papers, evidence for physical interactions, and proper identifiers for each protein involved. The BioCreative II.5 community challenge addressed these tasks in a competition-style assessment to evaluate and compare different methodologies, to make aware of the increasing accuracy of automated methods, and to guide future implementations. In this paper, we present our approaches for protein-named entity recognition, including normalization, and for extraction of protein-protein interactions from full text. Our overall goal is to identify efficient individual components, and we compare various compositions to handle a single full-text article in between 10 seconds and 2 minutes. We propose strategies to transfer document-level annotations to the sentence-level, which allows for the creation of a more fine-grained training corpus; we use this corpus to automatically derive around 5,000 patterns. We rank sentences by relevance to the task of finding novel interactions with physical evidence, using a sentence classifier built from this training corpus. Heuristics for paraphrasing sentences help to further remove unnecessary information that might interfere with patterns, such as additional adjectives, clauses, or bracketed expressions. In BioCreative II.5, we achieved an f-score of 22 percent for finding protein interactions, and 43 percent for mapping proteins to UniProt IDs; disregarding species, f-scores are 30 percent and 55 percent, respectively. On average, our best-performing setup required around 2 minutes per full text. All data and pattern sets as well as Java classes that

  8. A selection that reports on protein-protein interactions within a thermophilic bacterium.

    Science.gov (United States)

    Nguyen, Peter Q; Silberg, Jonathan J

    2010-07-01

    Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.

  9. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Sara Garamszegi

    Full Text Available A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1 domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2 domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral

  10. Intercellular protein-protein interactions at synapses.

    Science.gov (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen

    2014-06-01

    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  11. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  12. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  13. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact...

  14. On the role of electrostatics on protein-protein interactions

    Science.gov (United States)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  15. Identification of structural protein-protein interactions of herpes simplex virus type 1.

    Science.gov (United States)

    Lee, Jin H; Vittone, Valerio; Diefenbach, Eve; Cunningham, Anthony L; Diefenbach, Russell J

    2008-09-01

    In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.

  16. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein

    International Nuclear Information System (INIS)

    Mariano, Andrea C.; Andrade, Maxuel O.; Santos, Anesia A.; Carolino, Sonia M.B.; Oliveira, Marli L.; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H.; Fontes, Elizabeth P.B.

    2004-01-01

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed

  17. Yeast Interacting Proteins Database: YPR103W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors...gulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf

  18. Computational prediction of protein-protein interactions in Leishmania predicted proteomes.

    Directory of Open Access Journals (Sweden)

    Antonio M Rezende

    Full Text Available The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein interaction network (PPI study which can provide a better understanding of complex protein interactions in biological system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against public database of protein or domain interaction for interaction prediction (Interolog Mapping and developed a dedicated combined system score to address the predictions robustness. The confidence evaluation of network prediction approach was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420, 43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the predicted networks that can be valuable to select new potential biological targets for drug and vaccine development. Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition, around 50% of hypothetical protein present in the networks

  19. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  20. From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data.

    Science.gov (United States)

    Vella, Danila; Zoppis, Italo; Mauri, Giancarlo; Mauri, Pierluigi; Di Silvestre, Dario

    2017-12-01

    The reductionist approach of dissecting biological systems into their constituents has been successful in the first stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped biologists to understand the complexity of the biological systems evidencing that most biological functions do not arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be explained or be predicted by investigating individual molecules without taking into consideration their relations. Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular relationships, even more studies are evaluating the biological systems through approaches based on graph theory. Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease modules. On the other hand, co-expression networks represent a complementary procedure that give the opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises, we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a special attention will be devoted to the topological and module analysis.

  1. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  2. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse; Zaher, Manal S.; Hamdan, Samir

    2018-01-01

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  3. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse

    2018-01-29

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  4. A new protein-protein interaction sensor based on tripartite split-GFP association.

    Science.gov (United States)

    Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-10-04

    Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.

  5. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    Science.gov (United States)

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells

  6. Protein-Protein Interactions Prediction Based on Iterative Clique Extension with Gene Ontology Filtering

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2014-01-01

    Full Text Available Cliques (maximal complete subnets in protein-protein interaction (PPI network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based method of prediction and gene ontology (GO annotations to overcome the shortcoming and improve the accuracy of predictions. According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of predicted protein interactions. The proposed method is applied to the PPI network from the Database of Interacting Proteins (DIP and most of the predicted interactions are verified by another biological database, BioGRID. The predicted protein interactions are appended to the original protein network, which leads to clique extension and shows the significance of biological meaning.

  7. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  8. A Mesoscopic Model for Protein-Protein Interactions in Solution

    OpenAIRE

    Lund, Mikael; Jönsson, Bo

    2003-01-01

    Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...

  9. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    Directory of Open Access Journals (Sweden)

    Benjamin J. Forred

    2016-01-01

    Full Text Available Thioredoxin-interacting protein (Txnip acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S. Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.

  10. A domain-based approach to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-06-01

    Full Text Available Abstract Background Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins. Results DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms. Conclusion We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed

  11. Yeast Interacting Proteins Database: YMR280C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available olved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensor... glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, an

  12. Yeast Interacting Proteins Database: YOR047C, YKL038W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available racts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a...Bait description Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose senso...rs Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator of the tra

  13. Yeast Interacting Proteins Database: YFR049W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator... (0) YOR047C STD1 Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sens...ors Snf3p and Rgt2p, and TATA-binding protein Spt15p; ac

  14. The Protein Interaction Network of Bacteriophage Lambda with Its Host, Escherichia coli

    Science.gov (United States)

    Blasche, Sonja; Wuchty, Stefan; Rajagopala, Seesandra V.

    2013-01-01

    Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its host Escherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between the E. coli transcriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins and E. coli proteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens. PMID:24049175

  15. Computational design, construction, and characterization of a set of specificity determining residues in protein-protein interactions.

    Science.gov (United States)

    Nagao, Chioko; Izako, Nozomi; Soga, Shinji; Khan, Samia Haseeb; Kawabata, Shigeki; Shirai, Hiroki; Mizuguchi, Kenji

    2012-10-01

    Proteins interact with different partners to perform different functions and it is important to elucidate the determinants of partner specificity in protein complex formation. Although methods for detecting specificity determining positions have been developed previously, direct experimental evidence for these amino acid residues is scarce, and the lack of information has prevented further computational studies. In this article, we constructed a dataset that is likely to exhibit specificity in protein complex formation, based on available crystal structures and several intuitive ideas about interaction profiles and functional subclasses. We then defined a "structure-based specificity determining position (sbSDP)" as a set of equivalent residues in a protein family showing a large variation in their interaction energy with different partners. We investigated sequence and structural features of sbSDPs and demonstrated that their amino acid propensities significantly differed from those of other interacting residues and that the importance of many of these residues for determining specificity had been verified experimentally. Copyright © 2012 Wiley Periodicals, Inc.

  16. Quantification of protein interaction kinetics in a micro droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L. L. [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wang, S. P., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu; Shan, X. N.; Tao, N. J., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); Zhang, S. T. [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  17. Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions.

    Science.gov (United States)

    Yamniuk, Aaron P; Newitt, John A; Doyle, Michael L; Arisaka, Fumio; Giannetti, Anthony M; Hensley, Preston; Myszka, David G; Schwarz, Fred P; Thomson, James A; Eisenstein, Edward

    2015-12-01

    A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions.

  18. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  19. False positive reduction in protein-protein interaction predictions using gene ontology annotations

    Directory of Open Access Journals (Sweden)

    Lin Yen-Han

    2007-07-01

    Full Text Available Abstract Background Many crucial cellular operations such as metabolism, signalling, and regulations are based on protein-protein interactions. However, the lack of robust protein-protein interaction information is a challenge. One reason for the lack of solid protein-protein interaction information is poor agreement between experimental findings and computational sets that, in turn, comes from huge false positive predictions in computational approaches. Reduction of false positive predictions and enhancing true positive fraction of computationally predicted protein-protein interaction datasets based on highly confident experimental results has not been adequately investigated. Results Gene Ontology (GO annotations were used to reduce false positive protein-protein interactions (PPI pairs resulting from computational predictions. Using experimentally obtained PPI pairs as a training dataset, eight top-ranking keywords were extracted from GO molecular function annotations. The sensitivity of these keywords is 64.21% in the yeast experimental dataset and 80.83% in the worm experimental dataset. The specificities, a measure of recovery power, of these keywords applied to four predicted PPI datasets for each studied organisms, are 48.32% and 46.49% (by average of four datasets in yeast and worm, respectively. Based on eight top-ranking keywords and co-localization of interacting proteins a set of two knowledge rules were deduced and applied to remove false positive protein pairs. The 'strength', a measure of improvement provided by the rules was defined based on the signal-to-noise ratio and implemented to measure the applicability of knowledge rules applying to the predicted PPI datasets. Depending on the employed PPI-predicting methods, the strength varies between two and ten-fold of randomly removing protein pairs from the datasets. Conclusion Gene Ontology annotations along with the deduced knowledge rules could be implemented to partially

  20. The missing piece in the puzzle: Prediction of aggregation via the protein-protein interaction parameter A∗2.

    Science.gov (United States)

    Koepf, Ellen; Schroeder, Rudolf; Brezesinski, Gerald; Friess, Wolfgang

    2018-07-01

    The tendency of protein pharmaceuticals to form aggregates is a major challenge during formulation development, as aggregation affects quality and safety of the product. In particular, the formation of large native-like particles in the context of liquid-air interfacial stress is a well-known but not fully understood problem. Focusing on the two most fundamental criteria of protein formulation affecting protein-protein interaction, the impact of pH and ionic strength on the interaction parameter A ∗ 2 and its link to aggregation upon mechanical stress was investigated. A ∗ 2 of two monoclonal antibodies (mABs) and a polyclonal IgG was determined using dynamic light scattering and was correlated to the number of particles formed upon shaking in vials analyzed by visual inspection, turbidity analysis, light obscuration and micro-flow imaging. A good correlation between aggregation induced by interfacial stress and formulation pH was given. It could be shown that A ∗ 2 was highest for mAB 1 and lowest for IgG, what was in good accordance with the number of particles formed. Shaking of IgG resulted in overall higher numbers of particles compared to the two mABs. A ∗ 2 decreased and particle numbers increased with increasing pH. Different to pH, ionic strength only slightly affected A ∗ 2 . Nevertheless, at high ionic (100 mM) strength the samples exhibited more pronounced particle formation, particularly of large particles >25 µm, which was most pronounced at high pH. Protein solutions were identified to form continuous films with an inhomogeneous protein distribution at the liquid-air interface. These areas of agglomerated, native-like protein material can be transferred into the bulk solution by compression-decompression of the interface. Whether or not those clusters lead to the appearance of large protein aggregates or fall apart depends on the attractive or repulsive forces between protein molecules. Thus, protein aggregation due to interfacial

  1. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.

    Science.gov (United States)

    Zhang, Shu-Bo; Tang, Qiang-Rong

    2016-07-21

    Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Toxicological relationships between proteins obtained from protein target predictions of large toxicity databases

    International Nuclear Information System (INIS)

    Nigsch, Florian; Mitchell, John B.O.

    2008-01-01

    The combination of models for protein target prediction with large databases containing toxicological information for individual molecules allows the derivation of 'toxiclogical' profiles, i.e., to what extent are molecules of known toxicity predicted to interact with a set of protein targets. To predict protein targets of drug-like and toxic molecules, we built a computational multiclass model using the Winnow algorithm based on a dataset of protein targets derived from the MDL Drug Data Report. A 15-fold Monte Carlo cross-validation using 50% of each class for training, and the remaining 50% for testing, provided an assessment of the accuracy of that model. We retained the 3 top-ranking predictions and found that in 82% of all cases the correct target was predicted within these three predictions. The first prediction was the correct one in almost 70% of cases. A model built on the whole protein target dataset was then used to predict the protein targets for 150 000 molecules from the MDL Toxicity Database. We analysed the frequency of the predictions across the panel of protein targets for experimentally determined toxicity classes of all molecules. This allowed us to identify clusters of proteins related by their toxicological profiles, as well as toxicities that are related. Literature-based evidence is provided for some specific clusters to show the relevance of the relationships identified

  3. NatalieQ: A web server for protein-protein interaction network querying

    NARCIS (Netherlands)

    El-Kebir, M.; Brandt, B.W.; Heringa, J.; Klau, G.W.

    2014-01-01

    Background Molecular interactions need to be taken into account to adequately model the complex behavior of biological systems. These interactions are captured by various types of biological networks, such as metabolic, gene-regulatory, signal transduction and protein-protein interaction networks.

  4. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    Science.gov (United States)

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Computational analysis of RNA-protein interaction interfaces via the Voronoi diagram.

    Science.gov (United States)

    Mahdavi, Sedigheh; Mohades, Ali; Salehzadeh Yazdi, Ali; Jahandideh, Samad; Masoudi-Nejad, Ali

    2012-01-21

    Cellular functions are mediated by various biological processes including biomolecular interactions, such as protein-protein, DNA-protein and RNA-protein interactions in which RNA-Protein interactions are indispensable for many biological processes like cell development and viral replication. Unlike the protein-protein and protein-DNA interactions, accurate mechanisms and structures of the RNA-Protein complexes are not fully understood. A large amount of theoretical evidence have shown during the past several years that computational geometry is the first pace in understanding the binding profiles and plays a key role in the study of intricate biological structures, interactions and complexes. In this paper, RNA-Protein interaction interface surface is computed via the weighted Voronoi diagram of atoms. Using two filter operations provides a natural definition for interface atoms as classic methods. Unbounded parts of Voronoi facets that are far from the complex are trimmed using modified convex hull of atom centers. This algorithm is implemented to a database with different RNA-Protein complexes extracted from Protein Data Bank (PDB). Afterward, the features of interfaces have been computed and compared with classic method. The results show high correlation coefficients between interface size in the Voronoi model and the classical model based on solvent accessibility, as well as high accuracy and precision in comparison to classical model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization.

    Science.gov (United States)

    Wang, Hua; Huang, Heng; Ding, Chris; Nie, Feiping

    2013-04-01

    Protein interactions are central to all the biological processes and structural scaffolds in living organisms, because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Several high-throughput methods, for example, yeast two-hybrid system and mass spectrometry method, can help determine protein interactions, which, however, suffer from high false-positive rates. Moreover, many protein interactions predicted by one method are not supported by another. Therefore, computational methods are necessary and crucial to complete the interactome expeditiously. In this work, we formulate the problem of predicting protein interactions from a new mathematical perspective--sparse matrix completion, and propose a novel nonnegative matrix factorization (NMF)-based matrix completion approach to predict new protein interactions from existing protein interaction networks. Through using manifold regularization, we further develop our method to integrate different biological data sources, such as protein sequences, gene expressions, protein structure information, etc. Extensive experimental results on four species, Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Caenorhabditis elegans, have shown that our new methods outperform related state-of-the-art protein interaction prediction methods.

  8. Deciphering peculiar protein-protein interacting modules in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Barkallah Insaf

    2009-04-01

    Full Text Available Abstract Interactomes of proteins under positive selection from ionizing-radiation-resistant bacteria (IRRB might be a part of the answer to the question as to how IRRB, particularly Deinococcus radiodurans R1 (Deira, resist ionizing radiation. Here, using the Database of Interacting Proteins (DIP and the Protein Structural Interactome (PSI-base server for PSI map, we have predicted novel interactions of orthologs of the 58 proteins under positive selection in Deira and other IRRB, but which are absent in IRSB. Among these, 18 domains and their interactomes have been identified in DNA checkpoint and repair; kinases pathways; energy and nucleotide metabolisms were the important biological processes that were found to be involved. This finding provides new clues to the cellular pathways that can to be important for ionizing-radiation resistance in Deira.

  9. Unified Alignment of Protein-Protein Interaction Networks.

    Science.gov (United States)

    Malod-Dognin, Noël; Ban, Kristina; Pržulj, Nataša

    2017-04-19

    Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others.

  10. Building blocks for protein interaction devices

    Science.gov (United States)

    Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them. PMID:20215443

  11. Large-scale prediction of drug–target interactions using protein sequences and drug topological structures

    International Nuclear Information System (INIS)

    Cao Dongsheng; Liu Shao; Xu Qingsong; Lu Hongmei; Huang Jianhua; Hu Qiannan; Liang Yizeng

    2012-01-01

    Highlights: ► Drug–target interactions are predicted using an extended SAR methodology. ► A drug–target interaction is regarded as an event triggered by many factors. ► Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. ► Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug–target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug–target interactions in a timely manner. In this article, we aim at extending current structure–activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug–target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug–target interactions, and show a general compatibility between the new scheme and current SAR

  12. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dongsheng [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Liu Shao [Xiangya Hospital, Central South University, Changsha 410008 (China); Xu Qingsong [School of Mathematical Sciences and Computing Technology, Central South University, Changsha 410083 (China); Lu Hongmei; Huang Jianhua [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Hu Qiannan [Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071 (China); Liang Yizeng, E-mail: yizeng_liang@263.net [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Drug-target interactions are predicted using an extended SAR methodology. Black-Right-Pointing-Pointer A drug-target interaction is regarded as an event triggered by many factors. Black-Right-Pointing-Pointer Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. Black-Right-Pointing-Pointer Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug-target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug-target interactions in a timely manner. In this article, we aim at extending current structure-activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug-target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug

  13. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jillian L Blatti

    Full Text Available Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP and thioesterase (TE govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  14. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    Directory of Open Access Journals (Sweden)

    Nora López

    2012-09-01

    Full Text Available The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  15. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  16. Yeast Interacting Proteins Database: YGL127C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ith protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regula...rotein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors

  17. Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system.

    Directory of Open Access Journals (Sweden)

    Shuaizheng Jia

    Full Text Available The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins.

  18. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  19. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Emilie eGauliard

    2015-02-01

    Full Text Available Chlamydiae are obligate intracellular pathogens of eukaryotes. The bacteria grow in an intracellular vesicle called an inclusion, the membrane of which is heavily modified by chlamydial proteins called Incs (Inclusion membrane proteins. Incs represent 7-10% of the genomes of Chlamydia and, given their localization at the interface between the host and the pathogen, likely play a key role in the development and pathogenesis of the bacterium. However, their functions remain largely unknown. Here, we characterized the interaction properties between various Inc proteins of C. trachomatis, using a bacterial two-hybrid (BACTH method suitable for detecting interactions between integral membrane proteins. To validate this approach, we first examined the oligomerization properties of the well-characterized IncA protein and showed that both the cytoplasmic domain and the transmembrane region independently contribute to IncA oligomerization. We then analyzed a set of Inc proteins and identified novel interactions between these components. Two small Incs, IncF and Ct222, were found here to interact with many other Inc proteins and may thus represent interaction nodes within the inclusion membrane. Our data suggest that the Inc proteins may assemble in the membrane of the inclusion to form specific multi-molecular complexes in an hierarchical and temporal manner. These studies will help to better define the putative functions of the Inc proteins in the infectious process of Chlamydia.

  20. Kinome signaling through regulated protein-protein interactions in normal and cancer cells.

    Science.gov (United States)

    Pawson, Tony; Kofler, Michael

    2009-04-01

    The flow of molecular information through normal and oncogenic signaling pathways frequently depends on protein phosphorylation, mediated by specific kinases, and the selective binding of the resulting phosphorylation sites to interaction domains present on downstream targets. This physical and functional interplay of catalytic and interaction domains can be clearly seen in cytoplasmic tyrosine kinases such as Src, Abl, Fes, and ZAP-70. Although the kinase and SH2 domains of these proteins possess similar intrinsic properties of phosphorylating tyrosine residues or binding phosphotyrosine sites, they also undergo intramolecular interactions when linked together, in a fashion that varies from protein to protein. These cooperative interactions can have diverse effects on substrate recognition and kinase activity, and provide a variety of mechanisms to link the stimulation of catalytic activity to substrate recognition. Taken together, these data have suggested how protein kinases, and the signaling pathways in which they are embedded, can evolve complex properties through the stepwise linkage of domains within single polypeptides or multi-protein assemblies.

  1. Scale-free behaviour of amino acid pair interactions in folded proteins

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Neves-Petersen, Maria Teresa; Mortensen, Rasmus J.

    2012-01-01

    The protein structure is a cumulative result of interactions between amino acid residues interacting with each other through space and/or chemical bonds. Despite the large number of high resolution protein structures, the ‘‘protein structure code’’ has not been fully identified. Our manuscript...... presents a novel approach to protein structure analysis in order to identify rules for spatial packing of amino acid pairs in proteins. We have investigated 8706 high resolution non-redundant protein chains and quantified amino acid pair interactions in terms of solvent accessibility, spatial and sequence...... which amino acid paired residues contributed to the cells with a population above 50, pairs of Ala, Ile, Leu and Val dominate the results. This result is statistically highly significant. We postulate that such pairs form ‘‘structural stability points’’ in the protein structure. Our data shows...

  2. GRIP: A web-based system for constructing Gold Standard datasets for protein-protein interaction prediction

    Directory of Open Access Journals (Sweden)

    Zheng Huiru

    2009-01-01

    Full Text Available Abstract Background Information about protein interaction networks is fundamental to understanding protein function and cellular processes. Interaction patterns among proteins can suggest new drug targets and aid in the design of new therapeutic interventions. Efforts have been made to map interactions on a proteomic-wide scale using both experimental and computational techniques. Reference datasets that contain known interacting proteins (positive cases and non-interacting proteins (negative cases are essential to support computational prediction and validation of protein-protein interactions. Information on known interacting and non interacting proteins are usually stored within databases. Extraction of these data can be both complex and time consuming. Although, the automatic construction of reference datasets for classification is a useful resource for researchers no public resource currently exists to perform this task. Results GRIP (Gold Reference dataset constructor from Information on Protein complexes is a web-based system that provides researchers with the functionality to create reference datasets for protein-protein interaction prediction in Saccharomyces cerevisiae. Both positive and negative cases for a reference dataset can be extracted, organised and downloaded by the user. GRIP also provides an upload facility whereby users can submit proteins to determine protein complex membership. A search facility is provided where a user can search for protein complex information in Saccharomyces cerevisiae. Conclusion GRIP is developed to retrieve information on protein complex, cellular localisation, and physical and genetic interactions in Saccharomyces cerevisiae. Manual construction of reference datasets can be a time consuming process requiring programming knowledge. GRIP simplifies and speeds up this process by allowing users to automatically construct reference datasets. GRIP is free to access at http://rosalind.infj.ulst.ac.uk/GRIP/.

  3. Dendrimer-protein interactions versus dendrimer-based nanomedicine.

    Science.gov (United States)

    Shcharbin, Dzmitry; Shcharbina, Natallia; Dzmitruk, Volha; Pedziwiatr-Werbicka, Elzbieta; Ionov, Maksim; Mignani, Serge; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Maria Angeles; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-04-01

    Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. ProteinShop: A tool for interactive protein manipulation and steering

    Energy Technology Data Exchange (ETDEWEB)

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  5. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    KAUST Repository

    Haidar, Malak; de Laté , Perle Latré ; Kennedy, Eileen J.; Langsley, Gordon

    2017-01-01

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way

  6. Prediction of thermodynamic instabilities of protein solutions from simple protein–protein interactions

    International Nuclear Information System (INIS)

    D’Agostino, Tommaso; Solana, José Ramón; Emanuele, Antonio

    2013-01-01

    Highlights: ► We propose a model of effective protein–protein interaction embedding solvent effects. ► A previous square-well model is enhanced by giving to the interaction a free energy character. ► The temperature dependence of the interaction is due to entropic effects of the solvent. ► The validity of the original SW model is extended to entropy driven phase transitions. ► We get good fits for lysozyme and haemoglobin spinodal data taken from literature. - Abstract: Statistical thermodynamics of protein solutions is often studied in terms of simple, microscopic models of particles interacting via pairwise potentials. Such modelling can reproduce the short range structure of protein solutions at equilibrium and predict thermodynamics instabilities of these systems. We introduce a square well model of effective protein–protein interaction that embeds the solvent’s action. We modify an existing model [45] by considering a well depth having an explicit dependence on temperature, i.e. an explicit free energy character, thus encompassing the statistically relevant configurations of solvent molecules around proteins. We choose protein solutions exhibiting demixing upon temperature decrease (lysozyme, enthalpy driven) and upon temperature increase (haemoglobin, entropy driven). We obtain satisfactory fits of spinodal curves for both the two proteins without adding any mean field term, thus extending the validity of the original model. Our results underline the solvent role in modulating or stretching the interaction potential

  7. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein.

    Science.gov (United States)

    Khamina, Kseniya; Lercher, Alexander; Caldera, Michael; Schliehe, Christopher; Vilagos, Bojan; Sahin, Mehmet; Kosack, Lindsay; Bhattacharya, Anannya; Májek, Peter; Stukalov, Alexey; Sacco, Roberto; James, Leo C; Pinschewer, Daniel D; Bennett, Keiryn L; Menche, Jörg; Bergthaler, Andreas

    2017-12-01

    RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.

  8. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    Science.gov (United States)

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Yeast Interacting Proteins Database: YOR358W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act...rotein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator o

  10. Interaction of Proteins Identified in Human Thyroid Cells

    Science.gov (United States)

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  11. Interaction of Proteins Identified in Human Thyroid Cells

    Directory of Open Access Journals (Sweden)

    Jessica Pietsch

    2013-01-01

    Full Text Available Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.

  12. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  13. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  14. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  15. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    Directory of Open Access Journals (Sweden)

    Jaume Torres

    2015-06-01

    Full Text Available Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i the envelope protein in coronaviruses and (ii the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.

  16. Atom depth analysis delineates mechanisms of protein intermolecular interactions

    International Nuclear Information System (INIS)

    Alocci, Davide; Bernini, Andrea; Niccolai, Neri

    2013-01-01

    Highlights: •3D atom depth analysis is proposed to identify different layers in protein structures. •Amino acid contents for each layers have been analyzed for a large protein dataset. •Charged amino acids in the most external layer are present at very different extents. •Atom depth indexes of K residues reflect their side chains flexibility. •Mobile surface charges can be responsible for long range protein–protein recognition. -- Abstract: The systematic analysis of amino acid distribution, performed inside a large set of resolved protein structures, sheds light on possible mechanisms driving non random protein–protein approaches. Protein Data Bank entries have been selected using as filters a series of restrictions ensuring that the shape of protein surface is not modified by interactions with large or small ligands. 3D atom depth has been evaluated for all the atoms of the 2,410 selected structures. The amino acid relative population in each of the structural layers formed by grouping atoms on the basis of their calculated depths, has been evaluated. We have identified seven structural layers, the inner ones reproducing the core of proteins and the outer one incorporating their most protruding moieties. Quantitative analysis of amino acid contents of structural layers identified, as expected, different behaviors. Atoms of Q, R, K, N, D residues are increasingly more abundant in going from core to surfaces. An opposite trend is observed for V, I, L, A, C, and G. An intermediate behavior is exhibited by P, S, T, M, W, H, F and Y. The outer structural layer hosts predominantly E and K residues whose charged moieties, protruding from outer regions of the protein surface, reorient free from steric hindrances, determining specific electrodynamics maps. This feature may represent a protein signature for long distance effects, driving the formation of encounter complexes and the eventual short distance approaches that are required for protein–protein

  17. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...

  18. Annotating the protein-RNA interaction sites in proteins using evolutionary information and protein backbone structure.

    Science.gov (United States)

    Li, Tao; Li, Qian-Zhong

    2012-11-07

    RNA-protein interactions play important roles in various biological processes. The precise detection of RNA-protein interaction sites is very important for understanding essential biological processes and annotating the function of the proteins. In this study, based on various features from amino acid sequence and structure, including evolutionary information, solvent accessible surface area and torsion angles (φ, ψ) in the backbone structure of the polypeptide chain, a computational method for predicting RNA-binding sites in proteins is proposed. When the method is applied to predict RNA-binding sites in three datasets: RBP86 containing 86 protein chains, RBP107 containing 107 proteins chains and RBP109 containing 109 proteins chains, better sensitivities and specificities are obtained compared to previously published methods in five-fold cross-validation tests. In order to make further examination for the efficiency of our method, the RBP107 dataset is used as training set, RBP86 and RBP109 datasets are used as the independent test sets. In addition, as examples of our prediction, RNA-binding sites in a few proteins are presented. The annotated results are consistent with the PDB annotation. These results show that our method is useful for annotating RNA binding sites of novel proteins.

  19. Yeast Interacting Proteins Database: YGL145W, YNL258C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ripheral membrane protein required for Golgi-to-ER retrograde traffic; component ... membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interact

  20. The role of exon shuffling in shaping protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    França Gustavo S

    2010-12-01

    Full Text Available Abstract Background Physical protein-protein interaction (PPI is a critical phenomenon for the function of most proteins in living organisms and a significant fraction of PPIs are the result of domain-domain interactions. Exon shuffling, intron-mediated recombination of exons from existing genes, is known to have been a major mechanism of domain shuffling in metazoans. Thus, we hypothesized that exon shuffling could have a significant influence in shaping the topology of PPI networks. Results We tested our hypothesis by compiling exon shuffling and PPI data from six eukaryotic species: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Cryptococcus neoformans and Arabidopsis thaliana. For all four metazoan species, genes enriched in exon shuffling events presented on average higher vertex degree (number of interacting partners in PPI networks. Furthermore, we verified that a set of protein domains that are simultaneously promiscuous (known to interact to multiple types of other domains, self-interacting (able to interact with another copy of themselves and abundant in the genomes presents a stronger signal for exon shuffling. Conclusions Exon shuffling appears to have been a recurrent mechanism for the emergence of new PPIs along metazoan evolution. In metazoan genomes, exon shuffling also promoted the expansion of some protein domains. We speculate that their promiscuous and self-interacting properties may have been decisive for that expansion.

  1. In silico modeling of the yeast protein and protein family interaction network

    Science.gov (United States)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2004-03-01

    Understanding of how protein interaction networks of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce an in silico ``coevolutionary'' model for the protein interaction network and the protein family network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed: gene duplication, divergence, and mutation. This model produces a prototypical feature of complex networks in a wide range of parameter space, following the generalized Pareto distribution in connectivity. Moreover, we investigate other structural properties of our model in detail with some specific values of parameters relevant to the yeast Saccharomyces cerevisiae, showing excellent agreement with the empirical data. Our model indicates that the physical constraints encoded via the domain structure of proteins play a crucial role in protein interactions.

  2. Drosophila Protein interaction Map (DPiM)

    OpenAIRE

    Guruharsha, K.G.; Obar, Robert A.; Mintseris, Julian; Aishwarya, K.; Krishnan, R.T.; VijayRaghavan, K.; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when,...

  3. Prediction of Protein-Protein Interactions by NanoLuc-Based Protein-Fragment Complementation Assay | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions.  Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches. 

  4. On the importance of polar interactions for complexes containing intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Eric T C Wong

    Full Text Available There is a growing recognition for the importance of proteins with large intrinsically disordered (ID segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

  5. InSilico Proteomics System: Integration and Application of Protein and Protein-Protein Interaction Data using Microsoft .NET

    Directory of Open Access Journals (Sweden)

    Straßer Wolfgang

    2006-12-01

    Full Text Available In the last decades, biological databases became the major knowledge resource for researchers in the field of molecular biology. The distribution of information among these databases is one of the major problems. An overview about the subject area of data access and representation of protein and protein-protein interaction data within public biological databases is described. For a comprehensive and consistent way of searching and analysing integrated protein and protein-protein interaction data, the InSilico Proteomics (ISP project has been initiated. Its three main objectives are (1 to provide an integrated knowledge pool for data investigation and global network analysis functions for a better understanding of a cell’s interactome, (2 employment of public data for plausibility analysis and validation of in-house experimental data and (3 testing the applicability of Microsoft’s .NET architecture for bioinformatics applications. Data integrated into the ISP database can be queried through the Web portal PRIMOS (PRotein Interaction and MOlecule Search which is freely available at http://biomis.fh-hagenberg.at/isp/primos.

  6. Evidence of probabilistic behaviour in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2008-01-01

    Full Text Available Abstract Background Data from high-throughput experiments of protein-protein interactions are commonly used to probe the nature of biological organization and extract functional relationships between sets of proteins. What has not been appreciated is that the underlying mechanisms involved in assembling these networks may exhibit considerable probabilistic behaviour. Results We find that the probability of an interaction between two proteins is generally proportional to the numerical product of their individual interacting partners, or degrees. The degree-weighted behaviour is manifested throughout the protein-protein interaction networks studied here, except for the high-degree, or hub, interaction areas. However, we find that the probabilities of interaction between the hubs are still high. Further evidence is provided by path length analyses, which show that these hubs are separated by very few links. Conclusion The results suggest that protein-protein interaction networks incorporate probabilistic elements that lead to scale-rich hierarchical architectures. These observations seem to be at odds with a biologically-guided organization. One interpretation of the findings is that we are witnessing the ability of proteins to indiscriminately bind rather than the protein-protein interactions that are actually utilized by the cell in biological processes. Therefore, the topological study of a degree-weighted network requires a more refined methodology to extract biological information about pathways, modules, or other inferred relationships among proteins.

  7. Mapping functional prion-prion protein interaction sites using prion protein based peptide-arrays

    NARCIS (Netherlands)

    Rigter, A.; Priem, J.; Timmers-Parohi, D.; Langeveld, J.; Bossers, A.

    2009-01-01

    Protein-protein interactions are at the basis of most if not all biological processes in living cells. Therefore, adapting existing techniques or developing new techniques to study interactions between proteins are of importance in elucidating which amino acid sequences contribute to these

  8. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  9. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology.

    Science.gov (United States)

    DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle

    2016-02-15

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction

  10. Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins

    International Nuclear Information System (INIS)

    Nery, Flavia C.; Rui, Edmilson; Kuniyoshi, Tais M.; Kobarg, Joerg

    2006-01-01

    Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could be confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro

  11. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Sony Malhotra

    Full Text Available Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets.

  12. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions.

    Science.gov (United States)

    Yates, Christopher M; Sternberg, Michael J E

    2013-11-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are single base changes leading to a change to the amino acid sequence of the encoded protein. Many of these variants are associated with disease, so nsSNPs have been well studied, with studies looking at the effects of nsSNPs on individual proteins, for example, on stability and enzyme active sites. In recent years, the impact of nsSNPs upon protein-protein interactions has also been investigated, giving a greater insight into the mechanisms by which nsSNPs can lead to disease. In this review, we summarize these studies, looking at the various mechanisms by which nsSNPs can affect protein-protein interactions. We focus on structural changes that can impair interaction, changes to disorder, gain of interaction, and post-translational modifications before looking at some examples of nsSNPs at human-pathogen protein-protein interfaces and the analysis of nsSNPs from a network perspective. © 2013.

  13. Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA–Protein Interactions at the Single-Molecule Level

    Directory of Open Access Journals (Sweden)

    Huijun Xue

    2017-10-01

    Full Text Available Much of our knowledge in conventional biochemistry has derived from bulk assays. However, many stochastic processes and transient intermediates are hidden when averaged over the ensemble. The powerful technique of single-molecule fluorescence microscopy has made great contributions to the understanding of life processes that are inaccessible when using traditional approaches. In single-molecule studies, quantum dots (Qdots have several unique advantages over other fluorescent probes, such as high brightness, extremely high photostability, and large Stokes shift, thus allowing long-time observation and improved signal-to-noise ratios. So far, however, there is no convenient way to label proteins purified from budding yeast with Qdots. Based on BirA–Avi and biotin–streptavidin systems, we have established a simple method to acquire a Qdot-labeled protein and visualize its interaction with DNA using total internal reflection fluorescence microscopy. For proof-of-concept, we chose replication protein A (RPA and origin recognition complex (ORC as the proteins of interest. Proteins were purified from budding yeast with high biotinylation efficiency and rapidly labeled with streptavidin-coated Qdots. Interactions between proteins and DNA were observed successfully at the single-molecule level.

  14. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    Science.gov (United States)

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  15. Data management of protein interaction networks

    CERN Document Server

    Cannataro, Mario

    2012-01-01

    Interactomics: a complete survey from data generation to knowledge extraction With the increasing use of high-throughput experimental assays, more and more protein interaction databases are becoming available. As a result, computational analysis of protein-to-protein interaction (PPI) data and networks, now known as interactomics, has become an essential tool to determine functionally associated proteins. From wet lab technologies to data management to knowledge extraction, this timely book guides readers through the new science of interactomics, giving them the tools needed to: Generate

  16. The simulation approach to lipid-protein interactions.

    Science.gov (United States)

    Paramo, Teresa; Garzón, Diana; Holdbrook, Daniel A; Khalid, Syma; Bond, Peter J

    2013-01-01

    The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.

  17. A coevolution analysis for identifying protein-protein interactions by Fourier transform

    Science.gov (United States)

    Yin, Changchuan; Yau, Stephen S. -T.

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI). PMID:28430779

  18. A coevolution analysis for identifying protein-protein interactions by Fourier transform.

    Directory of Open Access Journals (Sweden)

    Changchuan Yin

    Full Text Available Protein-protein interactions (PPIs play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA; however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40. The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI.

  19. In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein-Protein Interactions at the Peptide Level.

    Science.gov (United States)

    de Jong, Luitzen; de Koning, Edward A; Roseboom, Winfried; Buncherd, Hansuk; Wanner, Martin J; Dapic, Irena; Jansen, Petra J; van Maarseveen, Jan H; Corthals, Garry L; Lewis, Peter J; Hamoen, Leendert W; de Koster, Chris G

    2017-07-07

    Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and β' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.

  20. Predicting Protein-Protein Interactions Using BiGGER: Case Studies

    Directory of Open Access Journals (Sweden)

    Rui M. Almeida

    2016-08-01

    Full Text Available The importance of understanding interactomes makes preeminent the study of protein interactions and protein complexes. Traditionally, protein interactions have been elucidated by experimental methods or, with lower impact, by simulation with protein docking algorithms. This article describes features and applications of the BiGGER docking algorithm, which stands at the interface of these two approaches. BiGGER is a user-friendly docking algorithm that was specifically designed to incorporate experimental data at different stages of the simulation, to either guide the search for correct structures or help evaluate the results, in order to combine the reliability of hard data with the convenience of simulations. Herein, the applications of BiGGER are described by illustrative applications divided in three Case Studies: (Case Study A in which no specific contact data is available; (Case Study B when different experimental data (e.g., site-directed mutagenesis, properties of the complex, NMR chemical shift perturbation mapping, electron tunneling on one of the partners is available; and (Case Study C when experimental data are available for both interacting surfaces, which are used during the search and/or evaluation stage of the docking. This algorithm has been extensively used, evidencing its usefulness in a wide range of different biological research fields.

  1. Protein-protein interaction site predictions with minimum covariance determinant and Mahalanobis distance.

    Science.gov (United States)

    Qiu, Zhijun; Zhou, Bo; Yuan, Jiangfeng

    2017-11-21

    Protein-protein interaction site (PPIS) prediction must deal with the diversity of interaction sites that limits their prediction accuracy. Use of proteins with unknown or unidentified interactions can also lead to missing interfaces. Such data errors are often brought into the training dataset. In response to these two problems, we used the minimum covariance determinant (MCD) method to refine the training data to build a predictor with better performance, utilizing its ability of removing outliers. In order to predict test data in practice, a method based on Mahalanobis distance was devised to select proper test data as input for the predictor. With leave-one-validation and independent test, after the Mahalanobis distance screening, our method achieved higher performance according to Matthews correlation coefficient (MCC), although only a part of test data could be predicted. These results indicate that data refinement is an efficient approach to improve protein-protein interaction site prediction. By further optimizing our method, it is hopeful to develop predictors of better performance and wide range of application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  3. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  4. Yeast Interacting Proteins Database: YOR302W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available rol of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt...tein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt1

  5. Full Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Yeast Interacting Proteins Database Full Data of Yeast Interacting Proteins Database (Origin...al Version) Data detail Data name Full Data of Yeast Interacting Proteins Database (Original Version) DOI 10....18908/lsdba.nbdc00742-004 Description of data contents The entire data in the Yeast Interacting Proteins Database...eir interactions are required. Several sources including YPD (Yeast Proteome Database, Costanzo, M. C., Hoga...ematic name in the SGD (Saccharomyces Genome Database; http://www.yeastgenome.org /). Bait gene name The gen

  6. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    Science.gov (United States)

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  7. Single-well monitoring of protein-protein interaction and phosphorylation-dephosphorylation events.

    Science.gov (United States)

    Arcand, Mathieu; Roby, Philippe; Bossé, Roger; Lipari, Francesco; Padrós, Jaime; Beaudet, Lucille; Marcil, Alexandre; Dahan, Sophie

    2010-04-20

    We combined oxygen channeling assays with two distinct chemiluminescent beads to detect simultaneously protein phosphorylation and interaction events that are usually monitored separately. This novel method was tested in the ERK1/2 MAP kinase pathway. It was first used to directly monitor dissociation of MAP kinase ERK2 from MEK1 upon phosphorylation and to evaluate MAP kinase phosphatase (MKP) selectivity and mechanism of action. In addition, MEK1 and ERK2 were probed with an ATP competitor and an allosteric MEK1 inhibitor, which generated distinct phosphorylation-interaction patterns. Simultaneous monitoring of protein-protein interactions and substrate phosphorylation can provide significant mechanistic insight into enzyme activity and small molecule action.

  8. Protein-material interactions: From micro-to-nano scale

    International Nuclear Information System (INIS)

    Tsapikouni, Theodora S.; Missirlis, Yannis F.

    2008-01-01

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force

  9. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S

    2005-08-15

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.

  10. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Jouhten, Paula; Nielsen, Jens

    2010-01-01

    proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. RESULTS: Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient......) and for all the interactions between them (edges). The annotated information is readily available utilizing the functionalities of network modelling tools such as Cytoscape and CellDesigner. CONCLUSIONS: The reported fully annotated interaction model serves as a platform for integrated systems biology studies...

  11. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    Science.gov (United States)

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  12. RAIN: RNA-protein Association and Interaction Networks

    DEFF Research Database (Denmark)

    Junge, Alexander; Refsgaard, Jan Christian; Garde, Christian

    2017-01-01

    is challenging due to data heterogeneity. Here, we present a database of ncRNA-RNA and ncRNA-protein interactions and its integration with the STRING database of protein-protein interactions. These ncRNA associations cover four organisms and have been established from curated examples, experimental data...

  13. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  14. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  15. Receptor-interacting protein (RIP) kinase family

    Science.gov (United States)

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research. PMID:20383176

  16. Prediction of Protein–Protein Interactions by Evidence Combining Methods

    Directory of Open Access Journals (Sweden)

    Ji-Wei Chang

    2016-11-01

    Full Text Available Most cellular functions involve proteins’ features based on their physical interactions with other partner proteins. Sketching a map of protein–protein interactions (PPIs is therefore an important inception step towards understanding the basics of cell functions. Several experimental techniques operating in vivo or in vitro have made significant contributions to screening a large number of protein interaction partners, especially high-throughput experimental methods. However, computational approaches for PPI predication supported by rapid accumulation of data generated from experimental techniques, 3D structure definitions, and genome sequencing have boosted the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that integrate evidence from multiple sources, including evolutionary relationship, function annotation, sequence/structure features, network topology and text mining. These methods are developed for integration of multi-dimensional evidence, for designing the strategies to predict novel interactions, and for making the results consistent with the increase of prediction coverage and accuracy.

  17. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    Science.gov (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  18. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanaswamy

    2010-06-01

    Full Text Available Abstract Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.

  19. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.

    Science.gov (United States)

    Zhang, Mengying; Su, Qiang; Lu, Yi; Zhao, Manman; Niu, Bing

    2017-01-01

    Proteomics endeavors to study the structures, functions and interactions of proteins. Information of the protein-protein interactions (PPIs) helps to improve our knowledge of the functions and the 3D structures of proteins. Thus determining the PPIs is essential for the study of the proteomics. In this review, in order to study the application of machine learning in predicting PPI, some machine learning approaches such as support vector machine (SVM), artificial neural networks (ANNs) and random forest (RF) were selected, and the examples of its applications in PPIs were listed. SVM and RF are two commonly used methods. Nowadays, more researchers predict PPIs by combining more than two methods. This review presents the application of machine learning approaches in predicting PPI. Many examples of success in identification and prediction in the area of PPI prediction have been discussed, and the PPIs research is still in progress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners.

    Science.gov (United States)

    Boulon, Séverine; Ahmad, Yasmeen; Trinkle-Mulcahy, Laura; Verheggen, Céline; Cobley, Andy; Gregor, Peter; Bertrand, Edouard; Whitehorn, Mark; Lamond, Angus I

    2010-05-01

    The reliable identification of protein interaction partners and how such interactions change in response to physiological or pathological perturbations is a key goal in most areas of cell biology. Stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry has been shown to provide a powerful strategy for characterizing protein complexes and identifying specific interactions. Here, we show how SILAC can be combined with computational methods drawn from the business intelligence field for multidimensional data analysis to improve the discrimination between specific and nonspecific protein associations and to analyze dynamic protein complexes. A strategy is shown for developing a protein frequency library (PFL) that improves on previous use of static "bead proteomes." The PFL annotates the frequency of detection in co-immunoprecipitation and pulldown experiments for all proteins in the human proteome. It can provide a flexible and objective filter for discriminating between contaminants and specifically bound proteins and can be used to normalize data values and facilitate comparisons between data obtained in separate experiments. The PFL is a dynamic tool that can be filtered for specific experimental parameters to generate a customized library. It will be continuously updated as data from each new experiment are added to the library, thereby progressively enhancing its utility. The application of the PFL to pulldown experiments is especially helpful in identifying either lower abundance or less tightly bound specific components of protein complexes that are otherwise lost among the large, nonspecific background.

  1. NASCENT: an automatic protein interaction network generation tool for non-model organisms.

    Science.gov (United States)

    Banky, Daniel; Ordog, Rafael; Grolmusz, Vince

    2009-04-24

    Large quantity of reliable protein interaction data are available for model organisms in public depositories (e.g., MINT, DIP, HPRD, INTERACT). Most data correspond to experiments with the proteins of Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, Caenorhabditis elegans, Escherichia coli and Mus musculus. For other important organisms the data availability is poor or non-existent. Here we present NASCENT, a completely automatic web-based tool and also a downloadable Java program, capable of modeling and generating protein interaction networks even for non-model organisms. The tool performs protein interaction network modeling through gene-name mapping, and outputs the resulting network in graphical form and also in computer-readable graph-forms, directly applicable by popular network modeling software. http://nascent.pitgroup.org.

  2. Towards a better understanding of the specificity of protein-protein interaction

    Czech Academy of Sciences Publication Activity Database

    Kysilka, Jiří; Vondrášek, Jiří

    2012-01-01

    Roč. 25, č. 11 (2012), s. 604-615 ISSN 0952-3499 R&D Projects: GA ČR GAP208/10/0725; GA ČR GAP302/10/0427; GA MŠk(CZ) LH11020 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520701 Keywords : protein-protein interaction * molecular recognition * x-ray structure analysis * empirical potentials * side chain-side chain interaction * interaction energy * bioinformatics Subject RIV: CE - Biochemistry Impact factor: 3.006, year: 2012

  3. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  4. Prediction of Protein-Protein Interaction By Metasample-Based Sparse Representation

    Directory of Open Access Journals (Sweden)

    Xiuquan Du

    2015-01-01

    Full Text Available Protein-protein interactions (PPIs play key roles in many cellular processes such as transcription regulation, cell metabolism, and endocrine function. Understanding these interactions takes a great promotion to the pathogenesis and treatment of various diseases. A large amount of data has been generated by experimental techniques; however, most of these data are usually incomplete or noisy, and the current biological experimental techniques are always very time-consuming and expensive. In this paper, we proposed a novel method (metasample-based sparse representation classification, MSRC for PPIs prediction. A group of metasamples are extracted from the original training samples and then use the l1-regularized least square method to express a new testing sample as the linear combination of these metasamples. PPIs prediction is achieved by using a discrimination function defined in the representation coefficients. The MSRC is applied to PPIs dataset; it achieves 84.9% sensitivity, and 94.55% specificity, which is slightly lower than support vector machine (SVM and much higher than naive Bayes (NB, neural networks (NN, and k-nearest neighbor (KNN. The result shows that the MSRC is efficient for PPIs prediction.

  5. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  6. Studying Protein-Protein Interactions by Biotin AP-Tagged Pulldown and LTQ-Orbitrap Mass Spectrometry.

    Science.gov (United States)

    Xie, Zhongqiu; Jia, Yuemeng; Li, Hui

    2017-01-01

    The study of protein-protein interactions represents a key aspect of biological research. Identifying unknown protein binding partners using mass spectrometry (MS)-based proteomics has evolved into an indispensable strategy in drug discovery. The classic approach of immunoprecipitation with specific antibodies against the proteins of interest has limitations, such as the need for immunoprecipitation-qualified antibody. The biotin AP-tag pull-down system has the advantage of high specificity, ease of use, and no requirement for antibody. It is based on the high specificity, high affinity interaction between biotin and streptavidin. After pulldown, in-gel tryptic digestion and tandem mass spectrometry (MS/MS) analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) protein bands can be performed. In this work, we provide protocols that can be used for the identification of proteins that interact with FOXM1, a protein that has recently emerged as a potential biomarker and drug target in oncotherapy, as an example. We focus on the pull-down procedure and assess the efficacy of the pulldown with known FOXM1 interactors such as β-catenin. We use a high performance LTQ Orbitrap MSn system that combines rapid LTQ ion trap data acquisition with high mass accuracy Orbitrap analysis to identify the interacting proteins.

  7. Topological and functional properties of the small GTPases protein interaction network.

    Directory of Open Access Journals (Sweden)

    Anna Delprato

    Full Text Available Small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran regulate key cellular processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. A great deal of experimental evidence supports the existence of signaling cascades and feedback loops within and among the small GTPase subfamilies suggesting that these proteins function in a coordinated and cooperative manner. The interplay occurs largely through association with bi-partite regulatory and effector proteins but can also occur through the active form of the small GTPases themselves. In order to understand the connectivity of the small GTPases signaling routes, a systems-level approach that analyzes data describing direct and indirect interactions was used to construct the small GTPases protein interaction network. The data were curated from the Search Tool for the Retrieval of Interacting Genes (STRING database and include only experimentally validated interactions. The network method enables the conceptualization of the overall structure as well as the underlying organization of the protein-protein interactions. The interaction network described here is comprised of 778 nodes and 1943 edges and has a scale-free topology. Rac1, Cdc42, RhoA, and HRas are identified as the hubs. Ten sub-network motifs are also identified in this study with themes in apoptosis, cell growth/proliferation, vesicle traffic, cell adhesion/junction dynamics, the nicotinamide adenine dinucleotide phosphate (NADPH oxidase response, transcription regulation, receptor-mediated endocytosis, gene silencing, and growth factor signaling. Bottleneck proteins that bridge signaling paths and proteins that overlap in multiple small GTPase networks are described along with the functional annotation of all proteins in the network.

  8. Wiki-pi: a web-server of annotated human protein-protein interactions to aid in discovery of protein function.

    Directory of Open Access Journals (Sweden)

    Naoki Orii

    Full Text Available Protein-protein interactions (PPIs are the basis of biological functions. Knowledge of the interactions of a protein can help understand its molecular function and its association with different biological processes and pathways. Several publicly available databases provide comprehensive information about individual proteins, such as their sequence, structure, and function. There also exist databases that are built exclusively to provide PPIs by curating them from published literature. The information provided in these web resources is protein-centric, and not PPI-centric. The PPIs are typically provided as lists of interactions of a given gene with links to interacting partners; they do not present a comprehensive view of the nature of both the proteins involved in the interactions. A web database that allows search and retrieval based on biomedical characteristics of PPIs is lacking, and is needed. We present Wiki-Pi (read Wiki-π, a web-based interface to a database of human PPIs, which allows users to retrieve interactions by their biomedical attributes such as their association to diseases, pathways, drugs and biological functions. Each retrieved PPI is shown with annotations of both of the participant proteins side-by-side, creating a basis to hypothesize the biological function facilitated by the interaction. Conceptually, it is a search engine for PPIs analogous to PubMed for scientific literature. Its usefulness in generating novel scientific hypotheses is demonstrated through the study of IGSF21, a little-known gene that was recently identified to be associated with diabetic retinopathy. Using Wiki-Pi, we infer that its association to diabetic retinopathy may be mediated through its interactions with the genes HSPB1, KRAS, TMSB4X and DGKD, and that it may be involved in cellular response to external stimuli, cytoskeletal organization and regulation of molecular activity. The website also provides a wiki-like capability allowing users

  9. Integration and visualization of non-coding RNA and protein interaction networks

    OpenAIRE

    Junge, Alexander; Refsgaard, Jan Christian; Garde, Christian; Pan, Xiaoyong; Santos Delgado, Alberto; Anthon, Christian; Alkan, Ferhat; von Mering, Christian; Workman, Christopher; Jensen, Lars Juhl; Gorodkin, Jan

    2015-01-01

    Non-coding RNAs (ncRNAs) fulfill a diverse set of biological functions relying on interactions with other molecular entities. The advent of new experimental and computational approaches makes it possible to study ncRNAs and their associations on an unprecedented scale. We present RAIN (RNA Association and Interaction Networks) - a database that combines ncRNA-ncRNA, ncRNA-mRNA and ncRNA-protein interactions with large-scale protein association networks available in the STRING database. By int...

  10. Yeast Interacting Proteins Database: YNL258C, YKR022C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL258C DSL1 Peripheral membrane protein required for Golgi-to-ER retrograde traffi...equired for Golgi-to-ER retrograde traffic; component of the ER target site that interacts with coatomer, th...it ORF YNL258C Bait gene name DSL1 Bait description Peripheral membrane protein r

  11. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  12. Evidence for the additions of clustered interacting nodes during the evolution of protein interaction networks from network motifs

    Directory of Open Access Journals (Sweden)

    Guo Hao

    2011-05-01

    Full Text Available Abstract Background High-throughput screens have revealed large-scale protein interaction networks defining most cellular functions. How the proteins were added to the protein interaction network during its growth is a basic and important issue. Network motifs represent the simplest building blocks of cellular machines and are of biological significance. Results Here we study the evolution of protein interaction networks from the perspective of network motifs. We find that in current protein interaction networks, proteins of the same age class tend to form motifs and such co-origins of motif constituents are affected by their topologies and biological functions. Further, we find that the proteins within motifs whose constituents are of the same age class tend to be densely interconnected, co-evolve and share the same biological functions, and these motifs tend to be within protein complexes. Conclusions Our findings provide novel evidence for the hypothesis of the additions of clustered interacting nodes and point out network motifs, especially the motifs with the dense topology and specific function may play important roles during this process. Our results suggest functional constraints may be the underlying driving force for such additions of clustered interacting nodes.

  13. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    KAUST Repository

    Haidar, Malak

    2017-09-08

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way to explore their contribution to a particular cellular phenotype in a given disease context. Cell-penetrating peptides can be synthetically constrained through various chemical modifications that stabilize a given structural fold with the potential to improve competitive binding to specific targets. Theileria-transformed leukocytes display high PKA activity, but PKAis an enzyme that plays key roles in multiple cellular processes; consequently genetic ablation of kinase activity gives rise to a myriad of confounding phenotypes. By contrast, ablation of a specific kinase-substrate interaction has the potential to give more refined information and we illustrate this here by describing how surgically ablating PKA interactions with BAD gives precise information on the type of glycolysis performed by Theileria-transformed leukocytes. In addition, we provide two other examples of how ablating specific protein-protein interactions in Theileria-infected leukocytes leads to precise phenotypes and argue that constrained penetrating peptides have great therapeutic potential to combat infectious diseases in general.

  14. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    Science.gov (United States)

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Mapping protein-RNA interactions by RCAP, RNA-cross-linking and peptide fingerprinting.

    Science.gov (United States)

    Vaughan, Robert C; Kao, C Cheng

    2015-01-01

    RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein-RNA contacts within virions.

  16. CellMap visualizes protein-protein interactions and subcellular localization

    Science.gov (United States)

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  17. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Fan; Heck, Albert J R

    2015-01-01

    Proteins are involved in almost all processes of the living cell. They are organized through extensive networks of interaction, by tightly bound macromolecular assemblies or more transiently via signaling nodes. Therefore, revealing the architecture of protein complexes and protein interaction

  18. Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2011-10-01

    Full Text Available Abstract Background With the development of genome-sequencing technologies, protein sequences are readily obtained by translating the measured mRNAs. Therefore predicting protein-protein interactions from the sequences is of great demand. The reason lies in the fact that identifying protein-protein interactions is becoming a bottleneck for eventually understanding the functions of proteins, especially for those organisms barely characterized. Although a few methods have been proposed, the converse problem, if the features used extract sufficient and unbiased information from protein sequences, is almost untouched. Results In this study, we interrogate this problem theoretically by an optimization scheme. Motivated by the theoretical investigation, we find novel encoding methods for both protein sequences and protein pairs. Our new methods exploit sufficiently the information of protein sequences and reduce artificial bias and computational cost. Thus, it significantly outperforms the available methods regarding sensitivity, specificity, precision, and recall with cross-validation evaluation and reaches ~80% and ~90% accuracy in Escherichia coli and Saccharomyces cerevisiae respectively. Our findings here hold important implication for other sequence-based prediction tasks because representation of biological sequence is always the first step in computational biology. Conclusions By considering the converse problem, we propose new representation methods for both protein sequences and protein pairs. The results show that our method significantly improves the accuracy of protein-protein interaction predictions.

  19. Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough.

    Directory of Open Access Journals (Sweden)

    Swapnil R Chhabra

    Full Text Available Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  20. Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria M; Della Ventura, Bartolomeo; Vinciguerra, Roberto; Chino, Marco; Gesuele, Felice; Lombardi, Angelina; Velotta, Raffaele; Altucci, Carlo; Birolo, Leila; Piccoli, Renata; Arciello, Angela

    2016-02-01

    A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.

  1. Interaction of a non-histone chromatin protein (high-mobility group protein 2) with DNA

    International Nuclear Information System (INIS)

    Goodwin, G.H.; Shooter, K.V.; Johns, E.W.

    1975-01-01

    The interaction with DNA of the calf thymus chromatin non-histone protein termed the high-mobility group protein 2 has been studied by sedimentation analysis in the ultracentrifuge and by measuring the binding of the 125 I-labelled protein to DNA. The results have been compared with those obtained previously by us [Eur. J. Biochem. (1974) 47, 263-270] for the interaction of high-mobility group protein 1 with DNA. Although the binding parameters are similar for these two proteins, high-mobility group protein 2 differs from high-mobility group protein 1 in that the former appears to change the shape of the DNA to a more compact form. The molecular weight of high-mobility group protein 2 has been determined by equilibrium sedimentation and a mean value of 26,000 was obtained. A low level of nuclease activity detected in one preparation of high-mobility group protein 2 has been investigated. (orig.) [de

  2. Characterization of MRP RNA-protein interactions within the perinucleolar compartment.

    Science.gov (United States)

    Pollock, Callie; Daily, Kelly; Nguyen, Van Trung; Wang, Chen; Lewandowska, Marzena Anna; Bensaude, Olivier; Huang, Sui

    2011-03-15

    The perinucleolar compartment (PNC) forms in cancer cells and is highly enriched with a subset of polymerase III RNAs and RNA-binding proteins. Here we report that PNC components mitochondrial RNA-processing (MRP) RNA, pyrimidine tract-binding protein (PTB), and CUG-binding protein (CUGBP) interact in vivo, as demonstrated by coimmunoprecipitation and RNA pull-down experiments. Glycerol gradient analyses show that this complex is large and sediments at a different fraction from known MRP RNA-containing complexes, the MRP ribonucleoprotein ribozyme and human telomerase reverse transcriptase. Tethering PNC components to a LacO locus recruits other PNC components, further confirming the in vivo interactions. These interactions are present both in PNC-containing and -lacking cells. High-resolution localization analyses demonstrate that MRP RNA, CUGBP, and PTB colocalize at the PNC as a reticulated network, intertwining with newly synthesized RNA. Furthermore, green fluorescent protein (GFP)-PTB and GFP-CUGBP show a slower rate of fluorescence recovery after photobleaching at the PNC than in the nucleoplasm, illustrating the different molecular interaction of the complexes associated with the PNC. These findings support a working model in which the MRP RNA-protein complex becomes nucleated at the PNC in cancer cells and may play a role in gene expression regulation at the DNA locus that associates with the PNC.

  3. Small sets of interacting proteins suggest functional linkage mechanisms via Bayesian analogical reasoning.

    Science.gov (United States)

    Airoldi, Edoardo M; Heller, Katherine A; Silva, Ricardo

    2011-07-01

    Proteins and protein complexes coordinate their activity to execute cellular functions. In a number of experimental settings, including synthetic genetic arrays, genetic perturbations and RNAi screens, scientists identify a small set of protein interactions of interest. A working hypothesis is often that these interactions are the observable phenotypes of some functional process, which is not directly observable. Confirmatory analysis requires finding other pairs of proteins whose interaction may be additional phenotypical evidence about the same functional process. Extant methods for finding additional protein interactions rely heavily on the information in the newly identified set of interactions. For instance, these methods leverage the attributes of the individual proteins directly, in a supervised setting, in order to find relevant protein pairs. A small set of protein interactions provides a small sample to train parameters of prediction methods, thus leading to low confidence. We develop RBSets, a computational approach to ranking protein interactions rooted in analogical reasoning; that is, the ability to learn and generalize relations between objects. Our approach is tailored to situations where the training set of protein interactions is small, and leverages the attributes of the individual proteins indirectly, in a Bayesian ranking setting that is perhaps closest to propensity scoring in mathematical psychology. We find that RBSets leads to good performance in identifying additional interactions starting from a small evidence set of interacting proteins, for which an underlying biological logic in terms of functional processes and signaling pathways can be established with some confidence. Our approach is scalable and can be applied to large databases with minimal computational overhead. Our results suggest that analogical reasoning within a Bayesian ranking problem is a promising new approach for real-time biological discovery. Java code is available at

  4. Prediction of localization and interactions of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Matula Pavel

    2009-07-01

    Full Text Available Abstract During apoptosis several mitochondrial proteins are released. Some of them participate in caspase-independent nuclear DNA degradation, especially apoptosis-inducing factor (AIF and endonuclease G (endoG. Another interesting protein, which was expected to act similarly as AIF due to the high sequence homology with AIF is AIF-homologous mitochondrion-associated inducer of death (AMID. We studied the structure, cellular localization, and interactions of several proteins in silico and also in cells using fluorescent microscopy. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the lipid membranes. Bioinformatic predictions were conducted to analyze the interactions of the studied proteins with each other and with other possible partners. We conducted molecular modeling of proteins with unknown 3D structures. These models were then refined by MolProbity server and employed in molecular docking simulations of interactions. Our results show data acquired using a combination of modern in silico methods and image analysis to understand the localization, interactions and functions of proteins AMID, AIF, endonuclease G, and other apoptosis-related proteins.

  5. Core Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available y are in the reverse direction. *1 A comprehensive two-hybrid analysis to explore the yeast protein interact...s. 2000 Jan 1;28(1):73-6. *2 The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive...000 Jan 1;28(1):73-6. *3 A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisia

  6. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hyung [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries several regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this

  7. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    Science.gov (United States)

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  8. Distinct Mechanism Evolved for Mycobacterial RNA Polymerase and Topoisomerase I Protein-Protein Interaction.

    Science.gov (United States)

    Banda, Srikanth; Cao, Nan; Tse-Dinh, Yuk-Ching

    2017-09-15

    We report here a distinct mechanism of interaction between topoisomerase I and RNA polymerase in Mycobacterium tuberculosis and Mycobacterium smegmatis that has evolved independently from the previously characterized interaction between bacterial topoisomerase I and RNA polymerase. Bacterial DNA topoisomerase I is responsible for preventing the hyper-negative supercoiling of genomic DNA. The association of topoisomerase I with RNA polymerase during transcription elongation could efficiently relieve transcription-driven negative supercoiling. Our results demonstrate a direct physical interaction between the C-terminal domains of topoisomerase I (TopoI-CTDs) and the β' subunit of RNA polymerase of M. smegmatis in the absence of DNA. The TopoI-CTDs in mycobacteria are evolutionarily unrelated in amino acid sequence and three-dimensional structure to the TopoI-CTD found in the majority of bacterial species outside Actinobacteria, including Escherichia coli. The functional interaction between topoisomerase I and RNA polymerase has evolved independently in mycobacteria and E. coli, with distinctively different structural elements of TopoI-CTD utilized for this protein-protein interaction. Zinc ribbon motifs in E. coli TopoI-CTD are involved in the interaction with RNA polymerase. For M. smegmatis TopoI-CTD, a 27-amino-acid tail that is rich in basic residues at the C-terminal end is responsible for the interaction with RNA polymerase. Overexpression of recombinant TopoI-CTD in M. smegmatis competed with the endogenous topoisomerase I for protein-protein interactions with RNA polymerase. The TopoI-CTD overexpression resulted in decreased survival following treatment with antibiotics and hydrogen peroxide, supporting the importance of the protein-protein interaction between topoisomerase I and RNA polymerase during stress response of mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In vivo interactions between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA dependent polymerase VP1

    NARCIS (Netherlands)

    Tacken, M.G.J.; Rottier, P.J.M.; Gielkens, A.L.J.; Peeters, B.P.H.

    2000-01-01

    Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to

  10. Interactions in vivo between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA-dependent polymerase, VP1

    NARCIS (Netherlands)

    Tacken, M.G.J.; Rottier, P.J.M.; Gielkens, A.L.J.; Peeters, B.P.H.

    2000-01-01

    Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to

  11. Protein interactions in genome maintenance as novel antibacterial targets.

    Directory of Open Access Journals (Sweden)

    Aimee H Marceau

    Full Text Available Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy in which essential protein-protein interactions are targeted rather than enzymatic activities. Bacterial single-stranded DNA-binding proteins (SSBs form conserved protein interaction "hubs" that are essential for recruiting many DNA replication, recombination, and repair proteins to SSB/DNA nucleoprotein substrates. Three small molecules that block SSB/protein interactions are shown to have antibacterial activity against diverse bacterial species. Consistent with a model in which the compounds target multiple SSB/protein interactions, treatment of Bacillus subtilis cultures with the compounds leads to rapid inhibition of DNA replication and recombination, and ultimately to cell death. The compounds also have unanticipated effects on protein synthesis that could be due to a previously unknown role for SSB/protein interactions in translation or to off-target effects. Our results highlight the potential of targeting protein-protein interactions, particularly those that mediate genome maintenance, as a powerful approach for identifying new antibacterial compounds.

  12. SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803

    OpenAIRE

    Kim, Woo-Yeon; Kang, Sungsoo; Kim, Byoung-Chul; Oh, Jeehyun; Cho, Seongwoong; Bhak, Jong; Choi, Jong-Soon

    2008-01-01

    Background Cyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date. Description We report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactio...

  13. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  14. Visualization of protein interaction networks: problems and solutions

    Directory of Open Access Journals (Sweden)

    Agapito Giuseppe

    2013-01-01

    Full Text Available Abstract Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins and edges (interactions, the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i technology, i.e. availability/license of the software and supported OS (Operating System platforms; (ii interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the

  15. HCVpro: Hepatitis C virus protein interaction database

    KAUST Repository

    Kwofie, Samuel K.

    2011-12-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers. In furtherance of these goals, we have developed the hepatitis C virus protein interaction database (HCVpro) by integrating manually verified hepatitis C virus-virus and virus-human protein interactions curated from literature and databases. HCVpro is a comprehensive and integrated HCV-specific knowledgebase housing consolidated information on PPIs, functional genomics and molecular data obtained from a variety of virus databases (VirHostNet, VirusMint, HCVdb and euHCVdb), and from BIND and other relevant biology repositories. HCVpro is further populated with information on hepatocellular carcinoma (HCC) related genes that are mapped onto their encoded cellular proteins. Incorporated proteins have been mapped onto Gene Ontologies, canonical pathways, Online Mendelian Inheritance in Man (OMIM) and extensively cross-referenced to other essential annotations. The database is enriched with exhaustive reviews on structure and functions of HCV proteins, current state of drug and vaccine development and links to recommended journal articles. Users can query the database using specific protein identifiers (IDs), chromosomal locations of a gene, interaction detection methods, indexed PubMed sources as well as HCVpro, BIND and VirusMint IDs. The use of HCVpro is free and the resource can be accessed via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. © 2011 Elsevier B.V.

  16. PPI-IRO: A two-stage method for protein-protein interaction extraction based on interaction relation ontology

    KAUST Repository

    Li, Chuanxi; Chen, Peng; Wang, Rujing; Wang, Xiujie; Su, Yaru; Li, Jinyan

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identifi cation of biological regulatory networks. This paper presents a novel method based on the idea

  17. (S)Pinning down protein interactions by NMR

    DEFF Research Database (Denmark)

    Teilum, Kaare; Kunze, Micha Ben Achim; Erlendsson, Simon

    2017-01-01

    Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions...... all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative...... descriptions of protein interactions. In this review we provide an easy-access approach to NMR for the non-NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background...

  18. Prediction and Dissection of Protein-RNA Interactions by Molecular Descriptors.

    Science.gov (United States)

    Liu, Zhi-Ping; Chen, Luonan

    2016-01-01

    Protein-RNA interactions play crucial roles in numerous biological processes. However, detecting the interactions and binding sites between protein and RNA by traditional experiments is still time consuming and labor costing. Thus, it is of importance to develop bioinformatics methods for predicting protein-RNA interactions and binding sites. Accurate prediction of protein-RNA interactions and recognitions will highly benefit to decipher the interaction mechanisms between protein and RNA, as well as to improve the RNA-related protein engineering and drug design. In this work, we summarize the current bioinformatics strategies of predicting protein-RNA interactions and dissecting protein-RNA interaction mechanisms from local structure binding motifs. In particular, we focus on the feature-based machine learning methods, in which the molecular descriptors of protein and RNA are extracted and integrated as feature vectors of representing the interaction events and recognition residues. In addition, the available methods are classified and compared comprehensively. The molecular descriptors are expected to elucidate the binding mechanisms of protein-RNA interaction and reveal the functional implications from structural complementary perspective.

  19. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space

    Science.gov (United States)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-07-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.

  20. Using the clustered circular layout as an informative method for visualizing protein-protein interaction networks.

    Science.gov (United States)

    Fung, David C Y; Wilkins, Marc R; Hart, David; Hong, Seok-Hee

    2010-07-01

    The force-directed layout is commonly used in computer-generated visualizations of protein-protein interaction networks. While it is good for providing a visual outline of the protein complexes and their interactions, it has two limitations when used as a visual analysis method. The first is poor reproducibility. Repeated running of the algorithm does not necessarily generate the same layout, therefore, demanding cognitive readaptation on the investigator's part. The second limitation is that it does not explicitly display complementary biological information, e.g. Gene Ontology, other than the protein names or gene symbols. Here, we present an alternative layout called the clustered circular layout. Using the human DNA replication protein-protein interaction network as a case study, we compared the two network layouts for their merits and limitations in supporting visual analysis.

  1. An ensemble self-training protein interaction article classifier.

    Science.gov (United States)

    Chen, Yifei; Hou, Ping; Manderick, Bernard

    2014-01-01

    Protein-protein interaction (PPI) is essential to understand the fundamental processes governing cell biology. The mining and curation of PPI knowledge are critical for analyzing proteomics data. Hence it is desired to classify articles PPI-related or not automatically. In order to build interaction article classification systems, an annotated corpus is needed. However, it is usually the case that only a small number of labeled articles can be obtained manually. Meanwhile, a large number of unlabeled articles are available. By combining ensemble learning and semi-supervised self-training, an ensemble self-training interaction classifier called EST_IACer is designed to classify PPI-related articles based on a small number of labeled articles and a large number of unlabeled articles. A biological background based feature weighting strategy is extended using the category information from both labeled and unlabeled data. Moreover, a heuristic constraint is put forward to select optimal instances from unlabeled data to improve the performance further. Experiment results show that the EST_IACer can classify the PPI related articles effectively and efficiently.

  2. Brain transcriptome-wide screen for HIV-1 Nef protein interaction partners reveals various membrane-associated proteins.

    Directory of Open Access Journals (Sweden)

    Ellen C Kammula

    Full Text Available HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions. Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7, CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1 Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef interaction partners may help to further elucidate the molecular basis of HIV-related diseases.

  3. Specificity and evolvability in eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2007-02-01

    Full Text Available Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10(-5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 10(3 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.

  4. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Enhancing the Functional Content of Eukaryotic Protein Interaction Networks

    Science.gov (United States)

    Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean

    2014-01-01

    Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489

  6. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species.

    Science.gov (United States)

    López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.

  7. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    Science.gov (United States)

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. HitPredict version 4: comprehensive reliability scoring of physical protein?protein interactions from more than 100 species

    OpenAIRE

    L?pez, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein?protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein?protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of p...

  9. Protein interactions during flour mixing using wheat flour with altered starch.

    Science.gov (United States)

    Wang, Xiaolong; Appels, Rudi; Zhang, Xiaoke; Diepeveen, Dean; Torok, Kitti; Tomoskozi, Sandor; Bekes, Ferenc; Ma, Wujun; Sharp, Peter; Islam, Shahidul

    2017-09-15

    Wheat grain proteins responses to mixing and thermal treatment were investigated using Mixolab-dough analysis systems with flour from two cultivars, Ventura-26 (normal amylose content) and Ventura-19 (reduced amylose content). Size exclusion high performance liquid chromatography (SE-HPLC) and two-dimensional gel electrophoresis (2-DGE) analysis revealed that, stress associated and metabolic proteins largely interacted with dough matrix of Ventura-26 after 26min (56°C); gliadins, avenin-like b proteins, LMW-GSs, and partial globulins showed stronger interactions within the dough matrix of Ventura-26 at 32min/C3 (80°C), thereafter, however, stronger protein interactions were observed within the dough matrix of Ventura-19 at 38min/C4 (85°C) and 43min (80°C). Thirty-seven proteins associated with changes in dough matrix due to reduced amylose content were identified by mass spectrometry and mainly annotated to the chromosome group 1, 4, and 6. The findings provide new entry points for modifying final product attributes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Yeast Interacting Proteins Database: YDL239C, YDR273W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...it as prey (1) YDR273W DON1 Meiosis-specific component of the spindle pole body, part of the leading... edge protein (LEP) coat, forms a ring-like structure at the leading edge of the prospore...ption Protein required for spore wall formation, thought to mediate assembly of a Don1p-containing structure at the leading...description Meiosis-specific component of the spindle pole body, part of the leading edge protein (LEP) coat

  11. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    Science.gov (United States)

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene

  12. Catching the PEG-induced attractive interaction between proteins.

    Science.gov (United States)

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  13. Interactions between whey proteins and kaolinite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Barral, S. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Villa-Garcia, M.A. [Department of Organic and Inorganic Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)], E-mail: mavg@uniovi.es; Rendueles, M. [Project Management Area, University of Oviedo, Independencia 13, 33004 Oviedo (Spain); Diaz, M. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2008-07-15

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered.

  14. Interactions between whey proteins and kaolinite surfaces

    International Nuclear Information System (INIS)

    Barral, S.; Villa-Garcia, M.A.; Rendueles, M.; Diaz, M.

    2008-01-01

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered

  15. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  16. Characterization of MRP RNA–protein interactions within the perinucleolar compartment

    Science.gov (United States)

    Pollock, Callie; Daily, Kelly; Nguyen, Van Trung; Wang, Chen; Lewandowska, Marzena Anna; Bensaude, Olivier; Huang, Sui

    2011-01-01

    The perinucleolar compartment (PNC) forms in cancer cells and is highly enriched with a subset of polymerase III RNAs and RNA-binding proteins. Here we report that PNC components mitochondrial RNA–processing (MRP) RNA, pyrimidine tract–binding protein (PTB), and CUG-binding protein (CUGBP) interact in vivo, as demonstrated by coimmunoprecipitation and RNA pull-down experiments. Glycerol gradient analyses show that this complex is large and sediments at a different fraction from known MRP RNA–containing complexes, the MRP ribonucleoprotein ribozyme and human telomerase reverse transcriptase. Tethering PNC components to a LacO locus recruits other PNC components, further confirming the in vivo interactions. These interactions are present both in PNC-containing and -lacking cells. High-resolution localization analyses demonstrate that MRP RNA, CUGBP, and PTB colocalize at the PNC as a reticulated network, intertwining with newly synthesized RNA. Furthermore, green fluorescent protein (GFP)–PTB and GFP-CUGBP show a slower rate of fluorescence recovery after photobleaching at the PNC than in the nucleoplasm, illustrating the different molecular interaction of the complexes associated with the PNC. These findings support a working model in which the MRP RNA–protein complex becomes nucleated at the PNC in cancer cells and may play a role in gene expression regulation at the DNA locus that associates with the PNC. PMID:21233287

  17. Coevolution of interacting fertilization proteins.

    Directory of Open Access Journals (Sweden)

    Nathaniel L Clark

    2009-07-01

    Full Text Available Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied female-male coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation.

  18. Prioritizing disease candidate proteins in cardiomyopathy-specific protein-protein interaction networks based on "guilt by association" analysis.

    Directory of Open Access Journals (Sweden)

    Wan Li

    Full Text Available The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial. Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on "guilt by association" analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on "guilt by association" analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.

  19. Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

    2011-05-01

    Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  20. Enhancing the prediction of protein pairings between interacting families using orthology information

    Directory of Open Access Journals (Sweden)

    Pazos Florencio

    2008-01-01

    Full Text Available Abstract Background It has repeatedly been shown that interacting protein families tend to have similar phylogenetic trees. These similarities can be used to predicting the mapping between two families of interacting proteins (i.e. which proteins from one family interact with which members of the other. The correct mapping will be that which maximizes the similarity between the trees. The two families may eventually comprise orthologs and paralogs, if members of the two families are present in more than one organism. This fact can be exploited to restrict the possible mappings, simply by impeding links between proteins of different organisms. We present here an algorithm to predict the mapping between families of interacting proteins which is able to incorporate information regarding orthologues, or any other assignment of proteins to "classes" that may restrict possible mappings. Results For the first time in methods for predicting mappings, we have tested this new approach on a large number of interacting protein domains in order to statistically assess its performance. The method accurately predicts around 80% in the most favourable cases. We also analysed in detail the results of the method for a well defined case of interacting families, the sensor and kinase components of the Ntr-type two-component system, for which up to 98% of the pairings predicted by the method were correct. Conclusion Based on the well established relationship between tree similarity and interactions we developed a method for predicting the mapping between two interacting families using genomic information alone. The program is available through a web interface.

  1. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  2. A Bipartite Network-based Method for Prediction of Long Non-coding RNA–protein Interactions

    Directory of Open Access Journals (Sweden)

    Mengqu Ge

    2016-02-01

    Full Text Available As one large class of non-coding RNAs (ncRNAs, long ncRNAs (lncRNAs have gained considerable attention in recent years. Mutations and dysfunction of lncRNAs have been implicated in human disorders. Many lncRNAs exert their effects through interactions with the corresponding RNA-binding proteins. Several computational approaches have been developed, but only few are able to perform the prediction of these interactions from a network-based point of view. Here, we introduce a computational method named lncRNA–protein bipartite network inference (LPBNI. LPBNI aims to identify potential lncRNA–interacting proteins, by making full use of the known lncRNA–protein interactions. Leave-one-out cross validation (LOOCV test shows that LPBNI significantly outperforms other network-based methods, including random walk (RWR and protein-based collaborative filtering (ProCF. Furthermore, a case study was performed to demonstrate the performance of LPBNI using real data in predicting potential lncRNA–interacting proteins.

  3. Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

    Science.gov (United States)

    Song, Xiao; Lu, Lu-Yi; Passioura, Toby; Suga, Hiroaki

    2017-06-21

    Ebola virus infection leads to severe hemorrhagic fever in human and non-human primates with an average case fatality rate of 50%. To date, numerous potential therapies are in development, but FDA-approved drugs or vaccines are yet unavailable. Ebola viral protein 24 (VP24) is a multifunctional protein that plays critical roles in the pathogenesis of Ebola virus infection, e.g. innate immune suppression by blocking the interaction between KPNA and PY-STAT1. Here we report macrocyclic peptide inhibitors of the VP24-KPNA5 protein-protein interaction (PPI) by means of the RaPID (Random non-standard Peptides Integrated Discovery) system. These macrocyclic peptides showed remarkably high affinity to recombinant Zaire Ebola virus VP24 (eVP24), with a dissociation constant in the single digit nanomolar range, and could also successfully disrupt the eVP24-KPNA interaction. This work provides for the first time a chemical probe capable of modulating this PPI interaction and is the starting point for the development of unique anti-viral drugs against the Ebola virus.

  4. Viral Organization of Human Proteins

    Science.gov (United States)

    Wuchty, Stefan; Siwo, Geoffrey; Ferdig, Michael T.

    2010-01-01

    Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into the topology and intricate interplay between viral and host proteins on a large scale. We found that targeted and HDF proteins appear predominantly in rich-clubs, groups of human proteins that are strongly intertwined among each other. These assemblies of proteins may serve as an infection gateway, allowing the virus to take control of the human host by reaching protein pathways and diversified cellular functions in a pronounced and focused way. Particular transcription factors and protein kinases facilitate indirect interactions between HDFs and viral proteins. Discerning the entanglement of directly targeted and indirectly interacting proteins may uncover molecular and functional sites that can provide novel perspectives on the progression of HIV infection and highlight new avenues to fight this virus. PMID:20827298

  5. Positive Selection and Centrality in the Yeast and Fly Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Sandip Chakraborty

    2016-01-01

    Full Text Available Proteins within a molecular network are expected to be subject to different selective pressures depending on their relative hierarchical positions. However, it is not obvious what genes within a network should be more likely to evolve under positive selection. On one hand, only mutations at genes with a relatively high degree of control over adaptive phenotypes (such as those encoding highly connected proteins are expected to be “seen” by natural selection. On the other hand, a high degree of pleiotropy at these genes is expected to hinder adaptation. Previous analyses of the human protein-protein interaction network have shown that genes under long-term, recurrent positive selection (as inferred from interspecific comparisons tend to act at the periphery of the network. It is unknown, however, whether these trends apply to other organisms. Here, we show that long-term positive selection has preferentially targeted the periphery of the yeast interactome. Conversely, in flies, genes under positive selection encode significantly more connected and central proteins. These observations are not due to covariation of genes’ adaptability and centrality with confounding factors. Therefore, the distribution of proteins encoded by genes under recurrent positive selection across protein-protein interaction networks varies from one species to another.

  6. Network Compression as a Quality Measure for Protein Interaction Networks

    Science.gov (United States)

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  7. PIWI Proteins and PIWI-Interacting RNA

    DEFF Research Database (Denmark)

    Han, Yi Neng; Li, Yuan; Xia, Sheng Qiang

    2017-01-01

    tissue types as well and play important roles in transposon silencing, epigenetic regulation, gene and protein regulation, genome rearrangement, spermatogenesis and germ stem-cell maintenance. PIWI proteins were first discovered in Drosophila and they play roles in spermatogenesis, germline stem-cell......P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNAs (ncRNAs) and interact with PIWI proteins. piRNAs were primarily described in the germline, but emerging evidence revealed that piRNAs are expressed in a tissue-specific manner among multiple human somatic...... maintenance, self-renewal, retrotransposons silencing and the male germline mobility control. A growing number of studies have demonstrated that several piRNA and PIWI proteins are aberrantly expressed in various kinds of cancers and may probably serve as a novel biomarker and therapeutic target for cancer...

  8. Identification of novel direct protein-protein interactions by irradiating living cells with femtosecond UV laser pulses.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria Maria; Chino, Marco; Vinciguerra, Roberto; Altucci, Carlo; Lombardi, Angela; Piccoli, Renata; Birolo, Leila; Arciello, Angela

    2017-10-07

    The identification of protein-protein interaction networks in living cells is becoming increasingly fundamental to elucidate main biological processes and to understand disease molecular bases on a system-wide level. We recently described a method (LUCK, Laser UV Cross-linKing) to cross-link interacting protein surfaces in living cells by UV laser irradiation. By using this innovative methodology, that does not require any protein modification or cell engineering, here we demonstrate that, upon UV laser irradiation of HeLa cells, a direct interaction between GAPDH and alpha-enolase was "frozen" by a cross-linking event. We validated the occurrence of this direct interaction by co-immunoprecipitation and Immuno-FRET analyses. This represents a proof of principle of the LUCK capability to reveal direct protein interactions in their physiological environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Exploiting Large-Scale Drug-Protein Interaction Information for Computational Drug Repurposing

    Science.gov (United States)

    2014-06-20

    studies that have reported antimalarial activities of azole compounds [39-43] lend support to our model predictions. The highest-scored non-malarial...Table 4, verapamil and cimetidine, do not have antimal- arial activities themselves but exhibit synergism when used in combination with antimalarial ... activators . Because of their high frequencies among the antimalarial drugs, according to Eq. 3, the drug-protein interactions contributing most to the

  10. Intuitive Density Functional Theory-Based Energy Decomposition Analysis for Protein-Ligand Interactions.

    Science.gov (United States)

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2017-04-11

    First-principles quantum mechanical calculations with methods such as density functional theory (DFT) allow the accurate calculation of interaction energies between molecules. These interaction energies can be dissected into chemically relevant components such as electrostatics, polarization, and charge transfer using energy decomposition analysis (EDA) approaches. Typically EDA has been used to study interactions between small molecules; however, it has great potential to be applied to large biomolecular assemblies such as protein-protein and protein-ligand interactions. We present an application of EDA calculations to the study of ligands that bind to the thrombin protein, using the ONETEP program for linear-scaling DFT calculations. Our approach goes beyond simply providing the components of the interaction energy; we are also able to provide visual representations of the changes in density that happen as a result of polarization and charge transfer, thus pinpointing the functional groups between the ligand and protein that participate in each kind of interaction. We also demonstrate with this approach that we can focus on studying parts (fragments) of ligands. The method is relatively insensitive to the protocol that is used to prepare the structures, and the results obtained are therefore robust. This is an application to a real protein drug target of a whole new capability where accurate DFT calculations can produce both energetic and visual descriptors of interactions. These descriptors can be used to provide insights for tailoring interactions, as needed for example in drug design.

  11. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system

    DEFF Research Database (Denmark)

    Tchórzewski, M; Boldyreff, B; Issinger, O

    2000-01-01

    The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light...... forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins....

  12. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    Science.gov (United States)

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  13. Descriptor Data Bank (DDB): A Cloud Platform for Multiperspective Modeling of Protein-Ligand Interactions.

    Science.gov (United States)

    Ashtawy, Hossam M; Mahapatra, Nihar R

    2018-01-22

    Protein-ligand (PL) interactions play a key role in many life processes such as molecular recognition, molecular binding, signal transmission, and cell metabolism. Examples of interaction forces include hydrogen bonding, hydrophobic effects, steric clashes, electrostatic contacts, and van der Waals attractions. Currently, a large number of hypotheses and perspectives to model these interaction forces are scattered throughout the literature and largely forgotten. Instead, had they been assembled and utilized collectively, they would have substantially improved the accuracy of predicting binding affinity of protein-ligand complexes. In this work, we present Descriptor Data Bank (DDB), a data-driven platform on the cloud for facilitating multiperspective modeling of PL interactions. DDB is an open-access hub for depositing, hosting, executing, and sharing descriptor extraction tools and data for a large number of interaction modeling hypotheses. The platform also implements a machine-learning (ML) toolbox for automatic descriptor filtering and analysis and scoring function (SF) fitting and prediction. The descriptor filtering module is used to filter out irrelevant and/or noisy descriptors and to produce a compact subset from all available features. We seed DDB with 16 diverse descriptor extraction tools developed in-house and collected from the literature. The tools altogether generate over 2700 descriptors that characterize (i) proteins, (ii) ligands, and (iii) protein-ligand complexes. The in-house descriptors we extract are protein-specific which are based on pairwise primary and tertiary alignment of protein structures followed by clustering and trilateration. We built and used DDB's ML library to fit SFs to the in-house descriptors and those collected from the literature. We then evaluated them on several data sets that were constructed to reflect real-world drug screening scenarios. We found that multiperspective SFs that were constructed using a large number

  14. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sebastian J. Nintemann

    2017-11-01

    Full Text Available Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches—split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens—to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.

  15. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  16. PDZ domain-mediated interactions of G protein-coupled receptors with postsynaptic density protein 95

    DEFF Research Database (Denmark)

    Møller, Thor C; Wirth, Volker F; Roberts, Nina Ingerslev

    2013-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present...

  17. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  18. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  19. Regulation of PCNA-protein interactions for genome stability

    DEFF Research Database (Denmark)

    Mailand, Niels; Gibbs-Seymour, Ian; Bekker-Jensen, Simon

    2013-01-01

    Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding...

  20. The dynamic multisite interactions between two intrinsically disordered proteins

    KAUST Repository

    Wu, Shaowen

    2017-05-11

    Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well characterized folding upon binding to dynamic fuzzy complex. To date, most studies concern the binding of an IDP to a structured protein, while the Interaction between two IDPs is poorly understood. In this study, we combined NMR, smFRET, and molecular dynamics (MD) simulation to characterize the interaction between two IDPs, the C-terminal domain (CTD) of protein 4.1G and the nuclear mitotic apparatus (NuMA) protein. It is revealed that CTD and NuMA form a fuzzy complex with remaining structural disorder. Multiple binding sites on both proteins were identified by MD and mutagenesis studies. Our study provides an atomic scenario in which two IDPs bearing multiple binding sites interact with each other in dynamic equilibrium. The combined approach employed here could be widely applicable for investigating IDPs and their dynamic interactions.

  1. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    Science.gov (United States)

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  2. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    Science.gov (United States)

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  3. Identification of proteins that may directly interact with human RPA.

    Science.gov (United States)

    Nakaya, Ryou; Takaya, Junichiro; Onuki, Takeshi; Moritani, Mariko; Nozaki, Naohito; Ishimi, Yukio

    2010-11-01

    RPA, which consisted of three subunits (RPA1, 2 and 3), plays essential roles in DNA transactions. At the DNA replication forks, RPA binds to single-stranded DNA region to stabilize the structure and to assemble other replication proteins. Interactions between RPA and several replication proteins have been reported but the analysis is not comprehensive. We systematically performed the qualitative analysis to identify RPA interaction partners to understand the protein-protein interaction at the replication forks. We expressed in insect cells the three subunits of human RPA, together with one replication protein, which is present at the forks under normal conditions and/or under the replication stress conditions, to examine the interaction. Among 30 proteins examined in total, it was found that at least 14 proteins interacted with RPA. RPA interacted with MCM3-7, MCM-BP and CDC45 proteins among the proteins that play roles in the initiation and the elongation of the DNA replication. RPA bound with TIPIN, CLASPIN and RAD17, which are involved in the DNA replication checkpoint functions. RPA also bound with cyclin-dependent kinases and an amino-terminal fragment of Rb protein that negatively regulates DNA replication. These results suggest that RPA interacts with the specific proteins among those that play roles in the regulation of the replication fork progression.

  4. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    Science.gov (United States)

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  5. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+.

    Directory of Open Access Journals (Sweden)

    Yosef Y Kuttner

    2013-04-01

    Full Text Available Knowledge of the structural basis of protein-protein interactions (PPI is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s orthogonal to the complex interface and altering the protein's propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM, whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca(2+. Calmodulin is a regulatory protein that acts as an intracellular Ca(2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca(2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca(2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.

  6. Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes.

    Science.gov (United States)

    Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W

    2016-01-01

    The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.

  7. Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins.

    Science.gov (United States)

    Wang, Li; Xu, Yuan; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang; Fan, Meihua

    2016-03-01

    In this study, we investigated the interaction of Vaccinium bracteatum Thunb. leaf (VBTL) pigment and rice proteins. In the presence of rice protein, VBTL pigment antioxidant activity and free polyphenol content decreased by 67.19% and 68.11%, respectively, and L(∗) of the protein-pigment complex decreased significantly over time. L(∗) values of albumin, globulin and glutelin during 60-min pigment exposure decreased by 55.00, 57.14, and 54.30%, respectively, indicating that these proteins had bound to the pigment. A significant difference in protein surface hydrophobicity was observed between rice proteins and pigment-protein complexes, indicating that hydrophobic interaction is a major binding mechanism between VBTL pigment and rice proteins. A significant difference in secondary structures between proteins and protein-pigment complexes was also uncovered, indicating that hydrogen bonding may be another mode of interaction between VBTL pigment and rice proteins. Our results indicate that VBTL pigment can stain rice proteins with hydrophobic and hydrogen interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  9. PPI-IRO: A two-stage method for protein-protein interaction extraction based on interaction relation ontology

    KAUST Repository

    Li, Chuanxi

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identifi cation of biological regulatory networks. This paper presents a novel method based on the idea of Interaction Relation Ontology (IRO), which specifi es and organises words of various proteins interaction relationships. Our method is a two-stage PPI extraction method. At fi rst, IRO is applied in a binary classifi er to determine whether sentences contain a relation or not. Then, IRO is taken to guide PPI extraction by building sentence dependency parse tree. Comprehensive and quantitative evaluations and detailed analyses are used to demonstrate the signifi cant performance of IRO on relation sentences classifi cation and PPI extraction. Our PPI extraction method yielded a recall of around 80% and 90% and an F1 of around 54% and 66% on corpora of AIMed and Bioinfer, respectively, which are superior to most existing extraction methods. Copyright © 2014 Inderscience Enterprises Ltd.

  10. BRCA1 interacts directly with the Fanconi anemia protein FANCA.

    Science.gov (United States)

    Folias, Alexandra; Matkovic, Mara; Bruun, Donald; Reid, Sonja; Hejna, James; Grompe, Markus; D'Andrea, Alan; Moses, Robb

    2002-10-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by skeletal defects, anemia, chromosomal instability and increased risk of leukemia. At the cellular level FA is characterized by increased sensitivity to agents forming interstrand crosslinks (ICL) in DNA. Six FA genes have been cloned and interactions among individual FANC proteins have been found. The FANCD2 protein co-localizes in nuclear foci with the BRCA1 protein following DNA damage and during S-phase, requiring the FANCA, C, E and G proteins to do so. This finding may reflect a direct role for the BRCA1 protein in double strand break (DSB) repair and interaction with the FANC proteins. Therefore interactions between BRCA1 and the FANC proteins were investigated. Among the known FANC proteins, we find evidence for direct interaction only between the FANCA protein and BRCA1. The evidence rests on three different tests: yeast two-hybrid analysis, coimmunoprecipitation from in vitro synthesis, and coimmunoprecipitation from cell extracts. The amino terminal portion of FANCA and the central part (aa 740-1083) of BRCA1 contain the sites of interaction. The interaction does not depend on DNA damage, thus FANCA and BRCA1 are constitutively interacting. The demonstrated interaction directly connects BRCA1 to the FA pathway of DNA repair.

  11. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.

    Science.gov (United States)

    Wang, Yijie; Qian, Xiaoning

    2017-03-14

    Intuitively, proteins in the same protein complexes should highly interact with each other but rarely interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing computational algorithms do not directly detect protein complexes based on both of these topological properties. Most of them, depending on mathematical definitions of either "modularity" or "conductance", have their own limitations: Modularity has the inherent resolution problem ignoring small protein complexes; and conductance characterizes the separability of complexes but fails to capture the interaction density within complexes. In this paper, we propose a two-step algorithm FLCD (Finding Low-Conductance sets with Dense interactions) to predict overlapping protein complexes with the desired topological structure, which is densely connected inside and well separated from the rest of the networks. First, FLCD detects well-separated subnetworks based on approximating a potential low-conductance set through a personalized PageRank vector from a protein and then solving a mixed integer programming (MIP) problem to find the minimum-conductance set within the identified low-conductance set. At the second step, the densely connected parts in those subnetworks are discovered as the protein complexes by solving another MIP problem that aims to find the dense subnetwork in the minimum-conductance set. Experiments on four large-scale yeast PPI networks from different public databases demonstrate that the complexes predicted by FLCD have better correspondence with the yeast protein complex gold standards than other three state-of-the-art algorithms (ClusterONE, LinkComm, and SR-MCL). Additionally, results of FLCD show higher biological relevance with respect to Gene Ontology (GO) terms by GO enrichment analysis.

  12. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  13. A lock-and-key model for protein–protein interactions

    OpenAIRE

    Morrison, Julie L.; Breitling, Rainer; Higham, Desmond J.; Gilbert, David R.

    2006-01-01

    Motivation: Protein–protein interaction networks are one of the major post-genomic data sources available to molecular biologists. They provide a comprehensive view of the global interaction structure of an organism’s proteome, as well as detailed information on specific interactions. Here we suggest a physical model of protein interactions that can be used to extract additional information at an intermediate level: It enables us to identify proteins which share biological interaction motifs,...

  14. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer

    Science.gov (United States)

    CHEN, CHEN; SHEN, HONG; ZHANG, LI-GUO; LIU, JIAN; CAO, XIAO-GE; YAO, AN-LIANG; KANG, SHAO-SAN; GAO, WEI-XING; HAN, HUI; CAO, FENG-HONG; LI, ZHI-GUO

    2016-01-01

    Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963

  15. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  16. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  17. Proof of concept of a "greener" protein purification/enrichment method based on carboxylate-terminated carbosilane dendrimer-protein interactions.

    Science.gov (United States)

    González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción

    2016-11-01

    Protein sample preparation is a critical and an unsustainable step since it involves the use of tedious methods that usually require high amount of solvents. The development of new materials offers additional opportunities in protein sample preparation. This work explores, for the first time, the potential application of carboxylate-terminated carbosilane dendrimers to the purification/enrichment of proteins. Studies on dendrimer binding to proteins, based on protein fluorescence intensity and emission wavelengths measurements, demonstrated the interaction between carboxylate-terminated carbosilane dendrimers and proteins at all tested pH levels. Interactions were greatly affected by the protein itself, pH, and dendrimer concentration and generation. Especially interesting was the interaction at acidic pH since it resulted in a significant protein precipitation. Dendrimer-protein interactions were modeled observing stable complexes for all proteins. Carboxylate-terminated carbosilane dendrimers at acidic pH were successfully used in the purification/enrichment of proteins extracted from a complex sample. Graphical Abstract Images showing the growing turbidity of solutions containing a mixture of proteins (lysozyme, myoglobin, and BSA) at different protein:dendrimer ratios (1:0, 1:1, 1:8, and 1:20) at acidic pH and SDS-PAGE profiles of the corresponsing supernatants. Comparison of SDS-PAGE profiles for the pellets obtained during the purification of proteins present in a complex sample using a conventional "no-clean" method based on acetone precipitation and the proposed "greener" method using carboxylate-terminated carbosilane dendrimer at a 1:20 protein:dendrimer ratio.

  18. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  19. Prediction of protein-protein interaction sites in sequences and 3D structures by random forests.

    Directory of Open Access Journals (Sweden)

    Mile Sikić

    2009-01-01

    Full Text Available Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i a combination of sequence- and structure-derived parameters and (ii sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras-Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.

  20. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins.

    Science.gov (United States)

    Rahim, Abdur; Saha, Pinaki; Jha, Kunal Kumar; Sukumar, Nagamani; Sarma, Bani Kanta

    2017-07-19

    Carbonyl-carbonyl n→π* interactions where a lone pair (n) of the oxygen atom of a carbonyl group is delocalized over the π* orbital of a nearby carbonyl group have attracted a lot of attention in recent years due to their ability to affect the 3D structure of small molecules, polyesters, peptides, and proteins. In this paper, we report the discovery of a "reciprocal" carbonyl-carbonyl interaction with substantial back and forth n→π* and π→π* electron delocalization between neighboring carbonyl groups. We have carried out experimental studies, analyses of crystallographic databases and theoretical calculations to show the presence of this interaction in both small molecules and proteins. In proteins, these interactions are primarily found in polyproline II (PPII) helices. As PPII are the most abundant secondary structures in unfolded proteins, we propose that these local interactions may have implications in protein folding.Carbonyl-carbonyl π* non covalent interactions affect the structure and stability of small molecules and proteins. Here, the authors carry out experimental studies, analyses of crystallographic databases and theoretical calculations to describe an additional type of carbonyl-carbonyl interaction.

  1. Utilizing knowledge base of amino acids structural neighborhoods to predict protein-protein interaction sites.

    Science.gov (United States)

    Jelínek, Jan; Škoda, Petr; Hoksza, David

    2017-12-06

    Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes, and their identification is thus of great importance. Although computational prediction of which amino acids take part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect. We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood appears as interface or non-interface in the knowledge base. We evaluated INSPiRE's behavior with respect to different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with respect to Matthews correlation coefficient. In this paper we introduce a new knowledge-based method for identification of protein-protein interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show that INSPiRE significantly surpasses existing PPI approaches.

  2. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    Science.gov (United States)

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  3. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  4. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  5. The stability and formation of native proteins from unfolded monomers is increased through interactions with unrelated proteins.

    Directory of Open Access Journals (Sweden)

    Claudia Rodríguez-Almazán

    Full Text Available The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins.

  6. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    Science.gov (United States)

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions.

    Science.gov (United States)

    Basu, Sankar; Mukharjee, Debasish

    2017-07-01

    There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.

  8. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    Science.gov (United States)

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  9. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  10. The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    Directory of Open Access Journals (Sweden)

    Lomize Mikhail A

    2007-06-01

    Full Text Available Abstract Background Three-dimensional (3D structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. Results We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM database. Conclusion Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our

  11. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  12. MPact: the MIPS protein interaction resource on yeast.

    Science.gov (United States)

    Güldener, Ulrich; Münsterkötter, Martin; Oesterheld, Matthias; Pagel, Philipp; Ruepp, Andreas; Mewes, Hans-Werner; Stümpflen, Volker

    2006-01-01

    In recent years, the Munich Information Center for Protein Sequences (MIPS) yeast protein-protein interaction (PPI) dataset has been used in numerous analyses of protein networks and has been called a gold standard because of its quality and comprehensiveness [H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Genome Res., 14, 1107-1118]. MPact and the yeast protein localization catalog provide information related to the proximity of proteins in yeast. Beside the integration of high-throughput data, information about experimental evidence for PPIs in the literature was compiled by experts adding up to 4300 distinct PPIs connecting 1500 proteins in yeast. As the interaction data is a complementary part of CYGD, interactive mapping of data on other integrated data types such as the functional classification catalog [A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter and H. W. Mewes (2004) Nucleic Acids Res., 32, 5539-5545] is possible. A survey of signaling proteins and comparison with pathway data from KEGG demonstrates that based on these manually annotated data only an extensive overview of the complexity of this functional network can be obtained in yeast. The implementation of a web-based PPI-analysis tool allows analysis and visualization of protein interaction networks and facilitates integration of our curated data with high-throughput datasets. The complete dataset as well as user-defined sub-networks can be retrieved easily in the standardized PSI-MI format. The resource can be accessed through http://mips.gsf.de/genre/proj/mpact.

  13. HCVpro: Hepatitis C virus protein interaction database

    KAUST Repository

    Kwofie, Samuel K.; Schaefer, Ulf; Sundararajan, Vijayaraghava Seshadri; Bajic, Vladimir B.; Christoffels, Alan G.

    2011-01-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers

  14. Identification of FUSE-binding proteins as interacting partners of TIA proteins

    International Nuclear Information System (INIS)

    Rothe, Francoise; Gueydan, Cyril; Bellefroid, Eric; Huez, Georges; Kruys, Veronique

    2006-01-01

    TIA-1 and TIAR are closely related RNA-binding proteins involved in several mechanisms of RNA metabolism, including alternative hnRNA splicing and mRNA translation regulation. In particular, TIA-1 represses tumor necrosis factor (TNF) mRNA translation by binding to the AU-rich element (ARE) present in the mRNA 3' untranslated region. Here, we demonstrate that TIA proteins interact with FUSE-binding proteins (FBPs) and that fbp genes are co-expressed with tia genes during Xenopus embryogenesis. FBPs participate in various steps of RNA processing and degradation. In Cos cells, FBPs co-localize with TIA proteins in the nucleus and migrate into TIA-enriched cytoplasmic granules upon oxidative stress. Overexpression of FBP2-KH3 RNA-binding domain fused to EGFP induces the specific sequestration of TIA proteins in cytoplasmic foci, thereby precluding their nuclear accumulation. In cytosolic RAW 264.7 macrophage extracts, FBPs are found associated in EMSA to the TIA-1/TNF-ARE complex. Together, our results indicate that TIA and FBP proteins may thus be relevant biological involved in common events of RNA metabolism occurring both in the nucleus and the cytoplasm

  15. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    Science.gov (United States)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  16. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  17. The potential of protein-nanomaterial interaction for advanced drug delivery.

    Science.gov (United States)

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Protein-protein interactions as a strategy towards protein-specific drug design: the example of ataxin-1.

    Directory of Open Access Journals (Sweden)

    Cesira de Chiara

    Full Text Available A main challenge for structural biologists is to understand the mechanisms that discriminate between molecular interactions and determine function. Here, we show how partner recognition of the AXH domain of the transcriptional co-regulator ataxin-1 is fine-tuned by a subtle balance between self- and hetero-associations. Ataxin-1 is the protein responsible for the hereditary spinocerebellar ataxia type 1, a disease linked to protein aggregation and transcriptional dysregulation. Expansion of a polyglutamine tract is essential for ataxin-1 aggregation, but the sequence-wise distant AXH domain plays an important aggravating role in the process. The AXH domain is also a key element for non-aberrant function as it intervenes in interactions with multiple protein partners. Previous data have shown that AXH is dimeric in solution and forms a dimer of dimers when crystallized. By solving the structure of a complex of AXH with a peptide from the interacting transcriptional repressor CIC, we show that the dimer interface of AXH is displaced by the new interaction and that, when blocked by the CIC peptide AXH aggregation and misfolding are impaired. This is a unique example in which palindromic self- and hetero-interactions within a sequence with chameleon properties discriminate the partner. We propose a drug design strategy for the treatment of SCA1 that is based on the information gained from the AXH/CIC complex.

  19. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  20. Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak.

    Science.gov (United States)

    Lauf, Peter K; Alqahtani, Tariq; Flues, Karin; Meller, Jaroslaw; Adragna, Norma C

    2015-01-01

    In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257-276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis. Copyright © 2015 the American Physiological Society.

  1. Identification of NAD interacting residues in proteins

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2010-03-01

    Full Text Available Abstract Background Small molecular cofactors or ligands play a crucial role in the proper functioning of cells. Accurate annotation of their target proteins and binding sites is required for the complete understanding of reaction mechanisms. Nicotinamide adenine dinucleotide (NAD+ or NAD is one of the most commonly used organic cofactors in living cells, which plays a critical role in cellular metabolism, storage and regulatory processes. In the past, several NAD binding proteins (NADBP have been reported in the literature, which are responsible for a wide-range of activities in the cell. Attempts have been made to derive a rule for the binding of NAD+ to its target proteins. However, so far an efficient model could not be derived due to the time consuming process of structure determination, and limitations of similarity based approaches. Thus a sequence and non-similarity based method is needed to characterize the NAD binding sites to help in the annotation. In this study attempts have been made to predict NAD binding proteins and their interacting residues (NIRs from amino acid sequence using bioinformatics tools. Results We extracted 1556 proteins chains from 555 NAD binding proteins whose structure is available in Protein Data Bank. Then we removed all redundant protein chains and finally obtained 195 non-redundant NAD binding protein chains, where no two chains have more than 40% sequence identity. In this study all models were developed and evaluated using five-fold cross validation technique on the above dataset of 195 NAD binding proteins. While certain type of residues are preferred (e.g. Gly, Tyr, Thr, His in NAD interaction, residues like Ala, Glu, Leu, Lys are not preferred. A support vector machine (SVM based method has been developed using various window lengths of amino acid sequence for predicting NAD interacting residues and obtained maximum Matthew's correlation coefficient (MCC 0.47 with accuracy 74.13% at window length 17

  2. Analyses of the Sequence and Structural Properties Corresponding to Pentapeptide and Large Palindromes in Proteins.

    Directory of Open Access Journals (Sweden)

    Settu Sridhar

    Full Text Available The analyses of 3967 representative proteins selected from the Protein Data Bank revealed the presence of 2803 pentapeptide and large palindrome sequences with known secondary structure conformation. These represent 2014 unique palindrome sequences. 60% palindromes are not associated with any regular secondary structure and 28% are in helix conformation, 11% in strand conformation and 1% in the coil conformation. The average solvent accessibility values are in the range between 0-155.28 Å2 suggesting that the palindromes in proteins can be either buried, exposed to the solvent or share an intermittent property. The number of residue neighborhood contacts defined by interactions ≤ 3.2 Ǻ is in the range between 0-29 residues. Palindromes of the same length in helix, strand and coil conformation are associated with different amino acid residue preferences at the individual positions. Nearly, 20% palindromes interact with catalytic/active site residues, ligand or metal ions in proteins and may therefore be important for function in the corresponding protein. The average hydrophobicity values for the pentapeptide and large palindromes range between -4.3 to +4.32 and the number of palindromes is almost equally distributed between the negative and positive hydrophobicity values. The palindromes represent 107 different protein families and the hydrolases, transferases, oxidoreductases and lyases contain relatively large number of palindromes.

  3. Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein

    Directory of Open Access Journals (Sweden)

    Naofumi Miwa

    2015-05-01

    Full Text Available Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP, which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.

  4. Quantitative analysis of the interaction between the envelope protein domains and the core protein of human hepatitis B virus

    International Nuclear Information System (INIS)

    Choi, Kyoung-Jae; Lim, Chun-Woo; Yoon, Moon-Young; Ahn, Byung-Yoon; Yu, Yeon Gyu

    2004-01-01

    Interaction between preformed nucleocapsids and viral envelope proteins is critical for the assembly of virus particles in infected cells. The pre-S1 and pre-S2 and cytosolic regions of the human hepatitis B virus envelope protein had been implicated in the interaction with the core protein of nucleocapsids. The binding affinities of specific subdomains of the envelope protein to the core protein were quantitatively measured by both ELISA and BIAcore assay. While a marginal binding was detected with the pre-S1 or pre-S2, the core protein showed high affinities to pre-S with apparent dissociation constants (K D app ) of 7.3 ± 0.9 and 8.2 ± 0.4 μM by ELISA and BIAcore assay, respectively. The circular dichroism analysis suggested that conformational change occurs in pre-S through interaction with core protein. These results substantiate the importance of specific envelope domains in virion assembly, and demonstrate that the interaction between viral proteins can be quantitatively measured in vitro

  5. Interaction of milk proteins and Binder of Sperm (BSP) proteins from boar, stallion and ram semen.

    Science.gov (United States)

    Plante, Geneviève; Lusignan, Marie-France; Lafleur, Michel; Manjunath, Puttaswamy

    2015-08-15

    Mammalian semen contains a family of closely related proteins known as Binder of SPerm (BSP proteins) that are added to sperm at ejaculation. BSP proteins extract lipids from the sperm membrane thereby extensively modifying its composition. These changes can ultimately be detrimental to sperm storage. We have demonstrated that bovine BSP proteins interact with major milk proteins and proposed that this interaction could be the basis of sperm protection by milk extenders. In the present study, we investigated if homologous BSP proteins present in boar, stallion and ram seminal plasma display a similar affinity for the milk proteins in order to assess whether the mechanism of sperm protection by milk for these species could be general. Skim milk was incubated with seminal plasma proteins (boar, stallion and ram), chromatographed on a Sepharose CL-4B column and protein fractions were analyzed by immunoblotting. Boar, stallion and ram BSP proteins displayed affinity for a milk protein fraction (F1) mainly composed of α-lactalbumin, β-lactoglobulin, and κ-casein. They also had affinity for another milk protein fraction (F2) composed mostly of casein micelles. However, stallion BSP showed higher affinity for the fraction (F1). These results further extend our view that the association of BSP proteins with milk proteins could be a general feature of the mechanism of mammalian sperm protection by milk to prevent detrimental effect of prolonged exposure of sperm to seminal plasma.

  6. Yeast Interacting Proteins Database: YDR176W, YDL239C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle pole...ining structure at the leading edge of the prospore membrane via interaction with spindle pole body componen...DY3 Prey description Protein required for spore wall formation, thought to mediate assembly of a Don1p-conta

  7. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    Science.gov (United States)

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A systematic evaluation of protein kinase a-a-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P|info:eu-repo/dai/nl/341566551; van der Heyden, Marcel A G; Kok, Bart; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Scholten, Arjen|info:eu-repo/dai/nl/313939780

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  9. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  10. Noise reduction in protein-protein interaction graphs by the implementation of a novel weighting scheme

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos

    2011-06-01

    Full Text Available Abstract Background Recent technological advances applied to biology such as yeast-two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of protein interaction networks. These interaction networks represent a rich, yet noisy, source of data that could be used to extract meaningful information, such as protein complexes. Several interaction network weighting schemes have been proposed so far in the literature in order to eliminate the noise inherent in interactome data. In this paper, we propose a novel weighting scheme and apply it to the S. cerevisiae interactome. Complex prediction rates are improved by up to 39%, depending on the clustering algorithm applied. Results We adopt a two step procedure. During the first step, by applying both novel and well established protein-protein interaction (PPI weighting methods, weights are introduced to the original interactome graph based on the confidence level that a given interaction is a true-positive one. The second step applies clustering using established algorithms in the field of graph theory, as well as two variations of Spectral clustering. The clustered interactome networks are also cross-validated against the confirmed protein complexes present in the MIPS database. Conclusions The results of our experimental work demonstrate that interactome graph weighting methods clearly improve the clustering results of several clustering algorithms. Moreover, our proposed weighting scheme outperforms other approaches of PPI graph weighting.

  11. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  12. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Edward C Twomey

    Full Text Available Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15 protein in the complex with a mitogen-activated protein (MAP kinase, extracellular regulated kinase 2 (ERK2, which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.

  13. Database of Interacting Proteins (DIP)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent...

  14. Milk proteins interact with goat Binder of SPerm (BSP) proteins and decrease their binding to sperm.

    Science.gov (United States)

    de Menezes, Erika Bezerra; van Tilburg, Mauricio; Plante, Geneviève; de Oliveira, Rodrigo V; Moura, Arlindo A; Manjunath, Puttaswamy

    2016-11-01

    Seminal plasma Binder of SPerm (BSP) proteins bind to sperm at ejaculation and promote capacitation. When in excess, however, BSP proteins damage the sperm membrane. It has been suggested that milk components of semen extenders associate with BSP proteins, potentially protecting sperm. Thus, this study was conducted to investigate if milk proteins interact with BSP proteins and reduce BSP binding to goat sperm. Using gel filtration chromatography, milk was incubated with goat seminal plasma proteins and loaded onto columns with and without calcium. Milk was also fractionated into parts containing mostly whey proteins or mostly caseins, incubated with seminal plasma proteins and subjected to gel filtration. Eluted fractions were evaluated by immunoblot using anti-goat BSP antibodies, confirming milk protein-BSP protein interactions. As determined by ELISA, milk proteins coated on polystyrene wells bound to increasing of goat BSP proteins. Far-western dot blots confirmed that BSP proteins bound to caseins and β-lactoglobulin in a concentration-dependent manner. Then, cauda epididymal sperm from five goats was incubated with seminal plasma; seminal plasma followed by milk; and milk followed by seminal plasma. Sperm membrane proteins were extracted and evaluated by immunoblotting. The pattern of BSP binding to sperm membrane proteins was reduced by 59.3 % when epididymal sperm were incubated with seminal plasma and then with skimmed milk (p  0.05). In conclusion, goat BSP proteins have an affinity for caseins and whey proteins. Milk reduces BSP binding to goat sperm, depending whether or not sperm had been previously exposed to seminal plasma. Such events may explain the protective effect of milk during goat sperm preservation.

  15. The potential of protein-nanomaterial interaction for advanced drug delivery

    DEFF Research Database (Denmark)

    Peng, Qiang; Mu, Huiling

    2016-01-01

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself...... of such interaction for advanced drug delivery are presented........ Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized...

  16. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2015-01-01

    Full Text Available Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues’s method by employing the protein-protein interaction (PPI data, domain-domain interaction (DDI data, weighted domain frequency score (DFS, and cancer linker degree (CLD data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I using individual algorithm, (II combining algorithms, and (III combining the same classification types of algorithms. When compared with Aragues’s method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.

  17. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    Science.gov (United States)

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger

  18. Protein-Nanocellulose Interactions in Paper Filters for Advanced Separation Applications.

    Science.gov (United States)

    Gustafsson, Simon; Manukyan, Levon; Mihranyan, Albert

    2017-05-16

    Protein-based pharmaceutics are widely explored for healthcare applications, and 6 out of 10 best-selling drugs today are biologicals. The goal of this work was to evaluate the protein nanocellulose interactions in paper filter for advanced separation applications such as virus removal filtration and bioprocessing. The protein recovery was measured for bovine serum albumin (BSA), γ-globulin, and lysozyme using biuret total protein reagent and polyacrylamide gel electrophoresis (PAGE), and the throughput was characterized in terms of flux values from fixed volume filtrations at various protein concentrations and under worst-case experimental conditions. The affinity of cellulose to bind various proteins, such as BSA, lysozyme, γ-globulin, and human IgG was quantified using a quartz crystal microbalance (QCMB) by developing a new method of fixing the cellulose fibers to the electrode surface without cellulose dissolution-precipitation. It was shown that the mille-feuille filter exhibits high protein recovery, that is, ∼99% for both BSA and lysozyme. However, γ-globulin does not pass through the membrane due to its large size (i.e., >180 kDa). The PAGE data show no substantial change in the amount of dimers and trimers before and after filtration. QCMB analysis suggests a low affinity between the nanocellulose surface and proteins. The nanocellulose-based filter exhibits desirable inertness as a filtering material intended for protein purification.

  19. Boosting compound-protein interaction prediction by deep learning.

    Science.gov (United States)

    Tian, Kai; Shao, Mingyu; Wang, Yang; Guan, Jihong; Zhou, Shuigeng

    2016-11-01

    The identification of interactions between compounds and proteins plays an important role in network pharmacology and drug discovery. However, experimentally identifying compound-protein interactions (CPIs) is generally expensive and time-consuming, computational approaches are thus introduced. Among these, machine-learning based methods have achieved a considerable success. However, due to the nonlinear and imbalanced nature of biological data, many machine learning approaches have their own limitations. Recently, deep learning techniques show advantages over many state-of-the-art machine learning methods in some applications. In this study, we aim at improving the performance of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network (DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus achieves better prediction performance than existing methods on both balanced and imbalanced datasets. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Identification of in planta protein–protein interactions using IP-MS

    NARCIS (Netherlands)

    Jamge, Suraj; Angenent, Gerco; Bemer, Marian

    2018-01-01

    Gene regulation by transcription factors involves complex protein interaction networks, which include chromatin remodeling and modifying proteins as an integral part. Decoding these protein interactions is crucial for our understanding of chromatin-mediated gene regulation. Here, we describe a

  1. Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example

    DEFF Research Database (Denmark)

    Alibes, A.; Nadra, A.; De Masi, Federico

    2010-01-01

    diseases such as aniridia. The validity of FoldX to deal with protein-DNA interactions was demonstrated by showing that high levels of accuracy can be achieved for mutations affecting these interactions. Also we showed that protein-design algorithms can accurately reproduce experimental DNA-binding logos......Quite often a single or a combination of protein mutations is linked to specific diseases. However, distinguishing from sequence information which mutations have real effects in the protein's function is not trivial. Protein design tools are commonly used to explain mutations that affect protein...... stability, or protein-protein interaction, but not for mutations that could affect protein-DNA binding. Here, we used the protein design algorithm FoldX to model all known missense mutations in the paired box domain of Pax6, a highly conserved transcription factor involved in eye development and in several...

  2. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Muhammed Jamsheer K

    Full Text Available Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  3. Prediction of interactions between viral and host proteins using supervised machine learning methods.

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Barman

    Full Text Available BACKGROUND: Viral-host protein-protein interaction plays a vital role in pathogenesis, since it defines viral infection of the host and regulation of the host proteins. Identification of key viral-host protein-protein interactions (PPIs has great implication for therapeutics. METHODS: In this study, a systematic attempt has been made to predict viral-host PPIs by integrating different features, including domain-domain association, network topology and sequence information using viral-host PPIs from VirusMINT. The three well-known supervised machine learning methods, such as SVM, Naïve Bayes and Random Forest, which are commonly used in the prediction of PPIs, were employed to evaluate the performance measure based on five-fold cross validation techniques. RESULTS: Out of 44 descriptors, best features were found to be domain-domain association and methionine, serine and valine amino acid composition of viral proteins. In this study, SVM-based method achieved better sensitivity of 67% over Naïve Bayes (37.49% and Random Forest (55.66%. However the specificity of Naïve Bayes was the highest (99.52% as compared with SVM (74% and Random Forest (89.08%. Overall, the SVM and Random Forest achieved accuracy of 71% and 72.41%, respectively. The proposed SVM-based method was evaluated on blind dataset and attained a sensitivity of 64%, specificity of 83%, and accuracy of 74%. In addition, unknown potential targets of hepatitis B virus-human and hepatitis E virus-human PPIs have been predicted through proposed SVM model and validated by gene ontology enrichment analysis. Our proposed model shows that, hepatitis B virus "C protein" binds to membrane docking protein, while "X protein" and "P protein" interacts with cell-killing and metabolic process proteins, respectively. CONCLUSION: The proposed method can predict large scale interspecies viral-human PPIs. The nature and function of unknown viral proteins (HBV and HEV, interacting partners of host

  4. Rationalizing the chemical space of protein-protein interaction inhibitors.

    Science.gov (United States)

    Sperandio, Olivier; Reynès, Christelle H; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-03-01

    Protein-protein interactions (PPIs) are one of the next major classes of therapeutic targets, although they are too intricate to tackle with standard approaches. This is due, in part, to the inadequacy of today's chemical libraries. However, the emergence of a growing number of experimentally validated inhibitors of PPIs (i-PPIs) allows drug designers to use chemoinformatics and machine learning technologies to unravel the nature of the chemical space covered by the reported compounds. Key characteristics of i-PPIs can then be revealed and highlight the importance of specific shapes and/or aromatic bonds, enabling the design of i-PPI-enriched focused libraries and, therefore, of cost-effective screening strategies. 2009 Elsevier Ltd. All rights reserved.

  5. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    International Nuclear Information System (INIS)

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-01-01

    Highlights: → Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. → BAI2 interaction with GIP was revealed by yeast two-hybrid assay. → Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. → BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, β-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  6. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces.

    Science.gov (United States)

    Xia, Zheng; Wu, Ling-Yun; Zhou, Xiaobo; Wong, Stephen T C

    2010-09-13

    Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interactions and myriad unknown interactions to be predicted. To meet this challenge, a manifold regularization semi-supervised learning method is presented to tackle this issue by using labeled and unlabeled information which often generates better results than using the labeled data alone. Furthermore, our semi-supervised learning method integrates known drug-protein interaction network information as well as chemical structure and genomic sequence data. Using the proposed method, we predicted certain drug-protein interactions on the enzyme, ion channel, GPCRs, and nuclear receptor data sets. Some of them are confirmed by the latest publicly available drug targets databases such as KEGG. We report encouraging results of using our method for drug-protein interaction network reconstruction which may shed light on the molecular interaction inference and new uses of marketed drugs.

  7. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  8. Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs.

    Science.gov (United States)

    Gallina, Anna M; Bork, Peer; Bordo, Domenico

    2014-02-01

    The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein-ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug-like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co-occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    Science.gov (United States)

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  10. STITCH 2: an interaction network database for small molecules and proteins

    DEFF Research Database (Denmark)

    Kuhn, Michael; Szklarczyk, Damian; Franceschini, Andrea

    2010-01-01

    Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug......-target relationships and binding affinities. In STITCH 2, the number of relevant interactions is increased by incorporation of BindingDB, PharmGKB and the Comparative Toxicogenomics Database. The resulting network can be explored interactively or used as the basis for large-scale analyses. To facilitate links to other...... chemical databases, we adopt InChIKeys that allow identification of chemicals with a short, checksum-like string. STITCH 2.0 connects proteins from 630 organisms to over 74,000 different chemicals, including 2200 drugs. STITCH can be accessed at http://stitch.embl.de/....

  11. Extraction of Protein-Protein Interaction from Scientific Articles by Predicting Dominant Keywords.

    Science.gov (United States)

    Koyabu, Shun; Phan, Thi Thanh Thuy; Ohkawa, Takenao

    2015-01-01

    For the automatic extraction of protein-protein interaction information from scientific articles, a machine learning approach is useful. The classifier is generated from training data represented using several features to decide whether a protein pair in each sentence has an interaction. Such a specific keyword that is directly related to interaction as "bind" or "interact" plays an important role for training classifiers. We call it a dominant keyword that affects the capability of the classifier. Although it is important to identify the dominant keywords, whether a keyword is dominant depends on the context in which it occurs. Therefore, we propose a method for predicting whether a keyword is dominant for each instance. In this method, a keyword that derives imbalanced classification results is tentatively assumed to be a dominant keyword initially. Then the classifiers are separately trained from the instance with and without the assumed dominant keywords. The validity of the assumed dominant keyword is evaluated based on the classification results of the generated classifiers. The assumption is updated by the evaluation result. Repeating this process increases the prediction accuracy of the dominant keyword. Our experimental results using five corpora show the effectiveness of our proposed method with dominant keyword prediction.

  12. A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles

    Science.gov (United States)

    Bekdemir, Ahmet; Stellacci, Francesco

    2016-10-01

    Nanomedicine requires in-depth knowledge of nanoparticle-protein interactions. These interactions are studied with methods limited to large or fluorescently labelled nanoparticles as they rely on scattering or fluorescence-correlation signals. Here, we have developed a method based on analytical ultracentrifugation (AUC) as an absorbance-based, label-free tool to determine dissociation constants (KD), stoichiometry (Nmax), and Hill coefficient (n), for the association of bovine serum albumin (BSA) with gold nanoparticles. Absorption at 520 nm in AUC renders the measurements insensitive to unbound and aggregated proteins. Measurements remain accurate and do not become more challenging for small (sub-10 nm) nanoparticles. In AUC, frictional ratio analysis allows for the qualitative assessment of the shape of the analyte. Data suggests that small-nanoparticles/protein complexes significantly deviate from a spherical shape even at maximum coverage. We believe that this method could become one of the established approaches for the characterization of the interaction of (small) nanoparticles with proteins.

  13. HippDB: a database of readily targeted helical protein-protein interactions.

    Science.gov (United States)

    Bergey, Christina M; Watkins, Andrew M; Arora, Paramjit S

    2013-11-01

    HippDB catalogs every protein-protein interaction whose structure is available in the Protein Data Bank and which exhibits one or more helices at the interface. The Web site accepts queries on variables such as helix length and sequence, and it provides computational alanine scanning and change in solvent-accessible surface area values for every interfacial residue. HippDB is intended to serve as a starting point for structure-based small molecule and peptidomimetic drug development. HippDB is freely available on the web at http://www.nyu.edu/projects/arora/hippdb. The Web site is implemented in PHP, MySQL and Apache. Source code freely available for download at http://code.google.com/p/helidb, implemented in Perl and supported on Linux. arora@nyu.edu.

  14. Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2014-05-01

    rewiring of large-scale protein-protein interaction networks, and can be useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://korkinlab.org/snpintool/.

  15. Determining Effects of Non-synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-supervised Learning

    Science.gov (United States)

    Zhao, Nan; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2014-01-01

    large-scale protein-protein interaction networks, and can be useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://korkinlab.org/snpintool/. PMID:24784581

  16. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  17. In silico study of protein to protein interaction analysis of AMP-activated protein kinase and mitochondrial activity in three different farm animal species

    Science.gov (United States)

    Prastowo, S.; Widyas, N.

    2018-03-01

    AMP-activated protein kinase (AMPK) is cellular energy censor which works based on ATP and AMP concentration. This protein interacts with mitochondria in determine its activity to generate energy for cell metabolism purposes. For that, this paper aims to compare the protein to protein interaction of AMPK and mitochondrial activity genes in the metabolism of known animal farm (domesticated) that are cattle (Bos taurus), pig (Sus scrofa) and chicken (Gallus gallus). In silico study was done using STRING V.10 as prominent protein interaction database, followed with biological function comparison in KEGG PATHWAY database. Set of genes (12 in total) were used as input analysis that are PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PRKAG3, PPARGC1, ACC, CPT1B, NRF2 and SOD. The first 7 genes belong to gene in AMPK family, while the last 5 belong to mitochondrial activity genes. The protein interaction result shows 11, 8 and 5 metabolism pathways in Bos taurus, Sus scrofa and Gallus gallus, respectively. The top pathway in Bos taurus is AMPK signaling pathway (10 genes), Sus scrofa is Adipocytokine signaling pathway (8 genes) and Gallus gallus is FoxO signaling pathway (5 genes). Moreover, the common pathways found in those 3 species are Adipocytokine signaling pathway, Insulin signaling pathway and FoxO signaling pathway. Genes clustered in Adipocytokine and Insulin signaling pathway are PRKAA2, PPARGC1A, PRKAB1 and PRKAG2. While, in FoxO signaling pathway are PRKAA2, PRKAB1, PRKAG2. According to that, we found PRKAA2, PRKAB1 and PRKAG2 are the common genes. Based on the bioinformatics analysis, we can demonstrate that protein to protein interaction shows distinct different of metabolism in different species. However, further validation is needed to give a clear explanation.

  18. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  19. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  20. Dr. PIAS: an integrative system for assessing the druggability of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Furuya Toshio

    2011-02-01

    Full Text Available Abstract Background The amount of data on protein-protein interactions (PPIs available in public databases and in the literature has rapidly expanded in recent years. PPI data can provide useful information for researchers in pharmacology and medicine as well as those in interactome studies. There is urgent need for a novel methodology or software allowing the efficient utilization of PPI data in pharmacology and medicine. Results To address this need, we have developed the 'Druggable Protein-protein Interaction Assessment System' (Dr. PIAS. Dr. PIAS has a meta-database that stores various types of information (tertiary structures, drugs/chemicals, and biological functions associated with PPIs retrieved from public sources. By integrating this information, Dr. PIAS assesses whether a PPI is druggable as a target for small chemical ligands by using a supervised machine-learning method, support vector machine (SVM. Dr. PIAS holds not only known druggable PPIs but also all PPIs of human, mouse, rat, and human immunodeficiency virus (HIV proteins identified to date. Conclusions The design concept of Dr. PIAS is distinct from other published PPI databases in that it focuses on selecting the PPIs most likely to make good drug targets, rather than merely collecting PPI data.

  1. Identification of New Protein Interactions between Dengue Fever Virus and Its Hosts, Human and Mosquito

    Science.gov (United States)

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L.

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host – dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies. PMID:23326450

  2. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Science.gov (United States)

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  3. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Directory of Open Access Journals (Sweden)

    Dumrong Mairiang

    Full Text Available The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  4. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Directory of Open Access Journals (Sweden)

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  5. Annotating activation/inhibition relationships to protein-protein interactions using gene ontology relations.

    Science.gov (United States)

    Yim, Soorin; Yu, Hasun; Jang, Dongjin; Lee, Doheon

    2018-04-11

    Signaling pathways can be reconstructed by identifying 'effect types' (i.e. activation/inhibition) of protein-protein interactions (PPIs). Effect types are composed of 'directions' (i.e. upstream/downstream) and 'signs' (i.e. positive/negative), thereby requiring directions as well as signs of PPIs to predict signaling events from PPI networks. Here, we propose a computational method for systemically annotating effect types to PPIs using relations between functional information of proteins. We used regulates, positively regulates, and negatively regulates relations in Gene Ontology (GO) to predict directions and signs of PPIs. These relations indicate both directions and signs between GO terms so that we can project directions and signs between relevant GO terms to PPIs. Independent test results showed that our method is effective for predicting both directions and signs of PPIs. Moreover, our method outperformed a previous GO-based method that did not consider the relations between GO terms. We annotated effect types to human PPIs and validated several highly confident effect types against literature. The annotated human PPIs are available in Additional file 2 to aid signaling pathway reconstruction and network biology research. We annotated effect types to PPIs by using regulates, positively regulates, and negatively regulates relations in GO. We demonstrated that those relations are effective for predicting not only signs, but also directions of PPIs. The usefulness of those relations suggests their potential applications to other types of interactions such as protein-DNA interactions.

  6. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  7. Foot-printing of Protein Interactions by Tritium Labeling

    International Nuclear Information System (INIS)

    Mousseau, Guillaume; Thomas, Olivier P.; Agez, Morgane; Thai, Robert; Cintrat, Jean-Christophe; Rousseau, Bernard; Raffy, Quentin; Renault, Jean Philippe; Pin, Serge; Ochsenbein, Francoise

    2010-01-01

    A new foot-printing method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this foot-printing method to the complex formed by the histone H3 fragment H3 122-135 and the protein hAsflA 1-156 afforded data in good agreement with NMR results. (authors)

  8. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  9. KFC Server: interactive forecasting of protein interaction hot spots.

    Science.gov (United States)

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.

  10. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    Science.gov (United States)

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Detection of Locally Over-Represented GO Terms in Protein-Protein Interaction Networks

    Science.gov (United States)

    LAVALLÉE-ADAM, MATHIEU; COULOMBE, BENOIT; BLANCHETTE, MATHIEU

    2015-01-01

    High-throughput methods for identifying protein-protein interactions produce increasingly complex and intricate interaction networks. These networks are extremely rich in information, but extracting biologically meaningful hypotheses from them and representing them in a human-readable manner is challenging. We propose a method to identify Gene Ontology terms that are locally over-represented in a subnetwork of a given biological network. Specifically, we propose several methods to evaluate the degree of clustering of proteins associated to a particular GO term in both weighted and unweighted PPI networks, and describe efficient methods to estimate the statistical significance of the observed clustering. We show, using Monte Carlo simulations, that our best approximation methods accurately estimate the true p-value, for random scale-free graphs as well as for actual yeast and human networks. When applied to these two biological networks, our approach recovers many known complexes and pathways, but also suggests potential functions for many subnetworks. Online Supplementary Material is available at www.liebertonline.com. PMID:20377456

  12. Protein prenylation: a new mode of host-pathogen interaction.

    Science.gov (United States)

    Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L

    2011-12-09

    Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    Science.gov (United States)

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  14. Visualization and targeted disruption of protein interactions in living cells

    Science.gov (United States)

    Herce, Henry D.; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2013-01-01

    Protein–protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein–protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53–HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein–protein interactions in practically any cell type and species. PMID:24154492

  15. Determination and Quantification of Molecular Interactions in Protein Films: A Review

    Directory of Open Access Journals (Sweden)

    Felicia Hammann

    2014-12-01

    Full Text Available Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography and analysis of solid films (spectroscopy techniques, X-ray scattering methods. To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins.

  16. Determination and Quantification of Molecular Interactions in Protein Films: A Review.

    Science.gov (United States)

    Hammann, Felicia; Schmid, Markus

    2014-12-10

    Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins.

  17. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  18. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif.

    Directory of Open Access Journals (Sweden)

    Mostafa H Ahmed

    Full Text Available There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region.A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules.The water molecules were found to be involved in: a (bridging interactions with both proteins (21%, b favorable interactions with only one protein (53%, and c no interactions with either protein (26%. This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins' interaction (-0.46 kcal mol(-1, but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol(-1. Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å(2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or "hydrophobic bubbles". Such water molecules may have an important biological purpose in mediating protein-protein interactions.

  19. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration.

    Science.gov (United States)

    Beghein, Els; Gettemans, Jan

    2017-01-01

    Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein-protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.

  20. Electrostatic similarities between protein and small molecule ligands facilitate the design of protein-protein interaction inhibitors.

    Directory of Open Access Journals (Sweden)

    Arnout Voet

    Full Text Available One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs. We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs.