WorldWideScience

Sample records for large neutron excess

  1. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  2. Can a large neutron excess help solve the baryon loading problem in gamma-Ray burst fireballs?

    Science.gov (United States)

    Fuller; Pruet; Abazajian

    2000-09-25

    We point out that the baryon loading problem in gamma-ray burst (GRB) models can be ameliorated if a significant fraction of the baryons which inertially confine the fireball is converted to neutrons. A high neutron fraction can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. A high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.

  3. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  4. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  5. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The a...

  6. Isotonic and isotopic dependence of the radiative neutron capture cross-section on the neutron excess

    International Nuclear Information System (INIS)

    Trofimov, Yu.N.

    1991-01-01

    The radiative neutron capture cross-section of nuclei has been derived as a function of neutron excess on the basis of the exponential dependence of the cross-section on the reaction energy. It is shown that unknown cross-sections of stable and radioactive nuclei may be evaluated by using the isotonic and isotopic dependence together with available reference cross-section measurements. (author). 4 refs, 3 figs

  7. Application of revised procedure on determining large excess reactivity of operating reactor. Fuel addition method

    International Nuclear Information System (INIS)

    Nagao, Yoshiharu

    2002-01-01

    The fuel addition method or the neutron absorption substitution method have been used for determination of large excess multiplication factor of large sized reactors. It has been pointed out, however, that all the experimental methods are possibly not free from the substantially large systematic error up to 20%, when the value of the excess multiplication factor exceeds about 15%Δk. Then, a basic idea of a revised procedure was proposed to cope with the problem, which converts the increase of multiplication factor in an actual core to that in a virtual core by calculation, because its value is in principle defined not for the former but the latter core. This paper proves that the revised procedure is able to be applicable for large sized research and test reactors through the theoretical analyses on the measurements undertaken at the JMTRC and JMTR cores. The values of excess multiplication factor are accurately determined utilizing the whole core calculation by the Monte Carlo code MCNP4A. (author)

  8. Annealing behaviour of excess carriers in neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Maekawa, T.; Nogami, S.; Inoue, S.

    1993-01-01

    In neutron-transmutation-doped silicon wafers excess carriers are clearly generated over the transmuted phosphorus atoms. The generation occurs for annealing temperatures above 900 o C. The maximum percentage of excess carriers obtained is about 24.5% of the final carrier concentration. Due to the difference in energy of generation and removal, the excess carriers can be removed by annealing above 800 o C. The radiation damage responsible for generation of excess carriers is fairly thermostable in the range of annealing temperatures below 800 o C. From deep-level transient spectroscopy measurements, it is found that the radiation damage remains insensitive to changes in carrier concentration. The activation energies of excess carrier generation and removal are estimated from the analysis of the thermal and temporal behaviours of radiation damage in the annealing process. (Author)

  9. A large, high performance, curved 2D position-sensitive neutron detector

    CERN Document Server

    Fried, J W; Mahler, G J; Makowiecki, D S; Mead, J A; Radeka, V; Schaknowski, N A; Smith, G C; Yu, B

    2002-01-01

    A new position-sensitive neutron detector has been designed and constructed for a protein crystallography station at LANL's pulsed neutron source. This station will be one of the most advanced instruments at a major neutron user facility for protein crystallography, fiber and membrane diffraction. The detector, based on neutron absorption in sup 3 He, has a large sensitive area of 3000 cm sup 2 , angular coverage of 120 deg. , timing resolution of 1 mu s, rate capability in excess of 10 sup 6 s sup - sup 1 , position resolution of about 1.5 mm FWHM, and efficiency >50% for neutrons of interest in the range 1-10 A. Features that are key to these remarkable specifications are the utilization of eight independently operating segments within a single gas volume, fabrication of the detector vessel and internal segments with a radius of curvature of about 70 cm, optimized position readout based on charge division and signal shaping with gated baseline restoration, and engineering design with high-strength aluminum ...

  10. Cosmogenic excess of 40K and the flux of fast neutrons in meteorites

    International Nuclear Information System (INIS)

    Stegmann, W.; Begemann, F.

    1975-01-01

    Results are reported of a mass spectrometric investigation of the content and isotopic composition of potassium from the mesosiderite Emery (silicate phase) and the chondrite Elenovka (bulk). Normalized to the Nier value of 39 K/ 41 K = 13.47, the 40 K in Emery (K-content 220 +- 25 ppm) was found to be enriched by (4.03 +- 0.30)%, the potassium from Elenovka (760 +- 50 ppm) to be indistinguishable from terrestrial potassium. Evidence is presented that the excess 40 K in the silicates from Emery (Ca-content 6.06 weight %) has been produced essentially by secondary cosmic ray neutrons via the 40 Ca(n,p)-reaction. The total excess of (2.57 +- 0.39) x 10 14 40 K-atoms/gCa together with the excitation function of the 40 Ca(n,p)-reaction and the neutron flux spectrum of Arnold, Honda and Lal yields a dose of fast neutrons (2 MeV 16 neutrons/cm 2 and an average flux during the cosmic ray exposure age T = (134 +- 12) Myrs of PHI = (17.4 +- 3.1) neutrons/cm 2 sec. (orig./BJ) [de

  11. Nuclear Deformation and Neutron Excess as Competing Effects for Dipole Strength in the Pygmy Region

    Science.gov (United States)

    Massarczyk, R.; Schwengner, R.; Dönau, F.; Frauendorf, S.; Anders, M.; Bemmerer, D.; Beyer, R.; Bhatia, C.; Birgersson, E.; Butterling, M.; Elekes, Z.; Ferrari, A.; Gooden, M. E.; Hannaske, R.; Junghans, A. R.; Kempe, M.; Kelley, J. H.; Kögler, T.; Matic, A.; Menzel, M. L.; Müller, S.; Reinhardt, T. P.; Röder, M.; Rusev, G.; Schilling, K. D.; Schmidt, K.; Schramm, G.; Tonchev, A. P.; Tornow, W.; Wagner, A.

    2014-02-01

    The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A =124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

  12. Nuclear deformation and neutron excess as competing effects for dipole strength in the pygmy region.

    Science.gov (United States)

    Massarczyk, R; Schwengner, R; Dönau, F; Frauendorf, S; Anders, M; Bemmerer, D; Beyer, R; Bhatia, C; Birgersson, E; Butterling, M; Elekes, Z; Ferrari, A; Gooden, M E; Hannaske, R; Junghans, A R; Kempe, M; Kelley, J H; Kögler, T; Matic, A; Menzel, M L; Müller, S; Reinhardt, T P; Röder, M; Rusev, G; Schilling, K D; Schmidt, K; Schramm, G; Tonchev, A P; Tornow, W; Wagner, A

    2014-02-21

    The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

  13. Utilization of fast reactor excess neutrons for burning minor actinides and long lived FPs

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning minor actinides and long lived fission products (FPs) without imposing penalties on core nuclear and safety characteristics. The excess neutrons generated in the fast reactor core are fully utilized not only to generate the fissile material but also to transmute the minor actinides and long lived FPs. The FP target assemblies which consist of Tc-99 and I-129 are loaded into the selected blanket positions whereas the minor actinides are loaded to the rest of the blanket. A long term FP accumulation scenario is also considered in the mix of FP burner fast reactor and non-burner LWRs. (author)

  14. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of neutron flux distribution and its reactivity ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Aredes, Vitor O.G.; Mura, Luiz E.C.; Santos, Diogo F. dos; Silva, Alexandre P. da, E-mail: ubitelli@ipen.br, E-mail: vitoraredes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    When compared to a rectangular parallelepiped configuration the cylindrical configuration of a nuclear reactor core has a better neutron economy because in this configuration the probability of the neutron leakage is smaller, causing an increase in overall reactivity in the system to the same amount of fuel used. In this work we obtained a critical cylindrical configuration with the control rods 89.50% withdraw from the active region of the IPEN/MB-01 core. This is the cylindrical configuration minimum possible excess of reactivity. Thus we obtained a cylindrical configuration with a diameter of only 28 fuel rods with lowest possible excess of reactivity. For this purpose, 112 peripheral fuel rods are removed from standard reactor core (rectangular parallelepiped of 28x28 fuel rods). In this configuration the excesses of reactivity is approximated 279 pcm. From there, we characterize the neutron field by measuring the spatial distribution of the thermal and epithermal neutron flux for the reactor operating power of 83 watts measured by neutron noise analysis technique and 92.08± 0.07 watts measured by activation technique [10]. The values of thermal and epithermal neutron flux in different directions, axial, radial north-south and radial east-west, are obtained in the asymptotic region of the reactor core, away from the disturbances caused by the reflector and control bar, by irradiating thin gold foils infinitely diluted (1% Au - 99% Al) with and without (bare) cadmium cover. In addition to the distribution of neutron flux, the moderator temperature coefficient, the void coefficient, calibration of the control rods were measured. (author)

  15. The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Ren-Xin; Song, Li-Ming

    2011-12-01

    X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.

  16. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Soyama, K.; Suzuki, J. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  17. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    International Nuclear Information System (INIS)

    Ebisawa, T.; Tasaki, S.; Soyama, K.; Suzuki, J.

    2001-01-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  18. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  19. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni Garcia

    2014-01-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  20. Effect of large neutron excess in the region of the Giant Dipole and Quadrupole Resonance

    CERN Document Server

    Lanza, E G

    1999-01-01

    We study the dipole and quadrupole modes of neutron rich nuclei within the selfconsistent HF + RPA. The presence of neutron skin enhances the mixing of isoscalar and isovector modes. Then it is possible to excite modes of isovector character by an isoscalar probe. In particular we analize the excitation of dipole modes by alpha scattering. The excitation of compressional isoscalar mode is also studied.

  1. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  2. Deduction of solar neutron fluences from large gamma-ray flares

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Watanabe, Hiroyuki; Takahashi, Kazuyoshi.

    1986-01-01

    Solar neutron fluences from large gamma-ray flares are deduced from accelerated proton spectra and numbers derived from the gamma-ray observations. The deduced solar neutron fluences range from 1 to 200 neutrons cm -2 . The present result indicates a possibility that high sensitivity ground-based neutron monitors can detect solar neutron events, just as detected by the Jungfraujoch and Rome neutron monitors. (author)

  3. Time dispersion in large plastic scintillation neutron detectors

    International Nuclear Information System (INIS)

    De, A.; Dasgupta, S.S.; Sen, D.

    1993-01-01

    Time dispersion (TD) has been computed for large neutron detectors using plastic scintillators. It has been shown that TD seen by the PM tube does not necessarily increase with incident neutron energy, a result not fully in agreement with the usual finding

  4. Development of concept and neutronic calculation method for large LMFBR core

    International Nuclear Information System (INIS)

    Shirakata, K.; Ishikawa, M.; Ikegami, T.; Sanda, T.; Kaneto, K.; Kawashima, M.; Kaise, Y.; Shirakawa, M.; Hibi, K.

    1991-01-01

    Presented in this paper is the state of the art of reactor physics R and Ds for the development of concept and neutronic calculation method for large Liquid Metal Fast Breeder Reactor (LMFBR) core. Physics characteristics of concepts for mixed oxide (MOX) fueled large FBR core were investigated by a series of benchmark critical experiments. Next, an adequacy and accuracy of the current neutronic calculation method was assessed by the experiments analyses, and then neutronic prediction accuracies by the method were evaluated for physics characteristics of the large core. Concerns on core development were discussed in terms of neutronics. (author)

  5. Odd-odd neutron-excess nuclei from the magicity region close to 132Sn

    International Nuclear Information System (INIS)

    Erokhina, K.I.; Isakov, V.I.

    1994-01-01

    This is the second publication in a series devoted to theoretical study of neutron-excess nuclei close to the doubly magic nuclide 132 Sn. Odd-odd nuclei from this region are considered by using the quasi-boson approximation. Energy level spectra, electromagnetic transition probabilities, and β-decay properties of nuclei are analyzed. Among other things, the renormalization of the axial-vector constant in the nucleus is determined. Numerical calculations are made for 134 Sb, 130 In, 132 Sb, and 132 In nuclides. Whenever possible, the results are compared with experimental data. 33 refs., 11 figs., 1 tab

  6. On the properties of nuclear matter with an excess of neutrons, spin-up neutrons and spin-up protons using effective nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Hassan, M.Y.; Ramadan, S.

    1978-01-01

    The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)

  7. Off-line correction for excessive constant-fraction-discriminator walk in neutron time-of-flight experiments

    International Nuclear Information System (INIS)

    Heilbronn, Lawrence; Iwata, Yoshiyuki; Iwase, H.

    2003-01-01

    A method for reducing excessive constant-fraction-discriminator walk that utilizes experimental data in the off-line analysis stage is introduced. Excessive walk is defined here as any walk that leads to an overall timing resolution that is much greater than the intrinsic timing resolution of the detection system. The method is able to reduce the contribution to the overall timing resolution from the walk that is equal to or less than the intrinsic timing resolution of the detectors. Although the method is explained in the context of a neutron time-of-flight experiment, it is applicable to any data set that satisfies two conditions. (1) A measure of the signal amplitude for each event must be recorded on an event-by-event basis; and (2) There must be a distinguishable class of events present where the timing information is known a priori

  8. Large subcriticality measurement by pulsed neutron method

    International Nuclear Information System (INIS)

    Yamane, Y.; Yoshida, A.; Nishina, K.; Kobayashi, K.; Kanda, K.

    1985-01-01

    To establish the method determining large subcriticalities in the field of nuclear criticality safety, the authors performed pulsed neutron experiments using the Kyoto University Critical Assembly (KUCA) at Research Reactor Institute, Kyoto University and the Cockcroft-Walton type accelerator attached to the assembly. The area-ratio method proposed by Sjoestrand was employed to evaluate subcriticalities from neutron decay curves measured. This method has the shortcomings that the neutron component due to a decay of delayed neutrons remarkably decreases as the subcriticality of an objective increases. To overcome the shortcoming, the authors increased the frequency of pulsed neutron generation. The integral-version of the area-ratio method proposed by Kosaly and Fisher was employed in addition in order to remove a contamination of spatial higher modes from the decay curve. The latter becomes significant as subcriticality increases. The largest subcriticality determined in the present experiments was 125.4 dollars, which was equal to 0.5111 in a multiplication factor. The calculational values evaluated by the computer code KENO-IV with 137 energy groups based on the Monte Carlo method agreed well with those experimental values

  9. Neutron lifetime measurements with a large gravitational trap for ultracold neutrons

    Science.gov (United States)

    Serebrov, A. P.; Kolomensky, E. A.; Fomin, A. K.; Krasnoshchekova, I. A.; Vassiljev, A. V.; Prudnikov, D. M.; Shoka, I. V.; Chechkin, A. V.; Chaikovskiy, M. E.; Varlamov, V. E.; Ivanov, S. N.; Pirozhkov, A. N.; Geltenbort, P.; Zimmer, O.; Jenke, T.; Van der Grinten, M.; Tucker, M.

    2018-05-01

    Neutron lifetime is one of the most important physical constants: it determines parameters of the weak interaction and predictions of primordial nucleosynthesis theory. There remains the unsolved problem of a 3.9σ discrepancy between measurements of this lifetime using neutrons in beams and those with stored ultracold neutrons (UCN). In our experiment we measure the lifetime of neutrons trapped by Earth's gravity in an open-topped vessel. Two configurations of the trap geometry are used to change the mean frequency of UCN collisions with the surfaces; this is achieved by plunging an additional surface into the trap without breaking the vacuum. The trap walls are coated with a hydrogen-less fluorine-containing polymer to reduce losses of UCN. The stability of this coating over multiple thermal cycles between 80 and 300 K was tested. At 80 K, the probability of UCN loss due to collisions with the trap walls is just 1.5% of the probability of β decay. The free neutron lifetime is determined by extrapolation to an infinitely large trap with zero collision frequency. The result of these measurements is τn=881.5 ±0 .7stat ±0 .6syst s which is consistent with the conventional value of 880.2 ± 1.0 s presented by the Particle Data Group. Future prospects for this experiment are in further cooling to 10 K, which will lead to an improved accuracy of measurement. In conclusion we present an analysis of currently available data on various measurements of the neutron lifetime.

  10. Off-line correction for excessive constant-fraction-discriminator walk in neutron time-of-flight experiments

    International Nuclear Information System (INIS)

    Heilbronn, L.; Iwata, Y.; Iwase, H.

    2004-01-01

    A method for reducing excessive constant-fraction-discriminator walk that utilizes experimental data in the off-line analysis stage is introduced. Excessive walk is defined here as any walk that leads to an overall timing resolution that is much greater than the intrinsic timing resolution of the detection system. The method is able to reduce the contribution to the overall timing resolution from the walk to a value that is equal to or less than the intrinsic timing resolution of the detectors. Although the method is explained in the context of a neutron time-of-flight experiment, it is applicable to any data set that satisfies two conditions: (1) a measure of the signal amplitude for each event must be recorded on an event-by-event basis; and (2) there must be a distinguishable class of events present where the timing information is known a priori

  11. A large animal model for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gavin, P.R.; Kraft, S.L.; DeHaan, C.E.; Moore, M.P.; Griebenow, M.L.

    1992-01-01

    An epithermal neutron beam is needed to treat relatively deep seated tumors. The scattering characteristics of neutrons in this energy range dictate that in vivo experiments be conducted in a large animal to prevent unacceptable total body irradiation. The canine species has proven an excellent model to evaluate the various problems of boron neutron capture utilizing an epithermal neutron beam. This paper discusses three major components of the authors study: (1) the pharmacokinetics of borocaptate sodium (NA 2 B 12 H 11 SH or BSH) in dogs with spontaneously occurring brain tumors, (2) the radiation tolerance of normal tissues in the dog using an epithermal beam alone and in combination with borocaptate sodium, and (3) initial treatment of dogs with spontaneously occurring brain tumors utilizing borocaptate sodium and an epithermal neutron beam

  12. Fission meter and neutron detection using poisson distribution comparison

    Science.gov (United States)

    Rowland, Mark S; Snyderman, Neal J

    2014-11-18

    A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

  13. Investigation of the neutron production phases of a large plasma focus device

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Herold, H.; Bertalot, L.; Deutsch, R.; Grauf, W.; Jaeger, U.; Kaeppeler, H.J.; Lepper, F.; Oppenlaender, T.; Schmidt, H.; Schmidt, R.; Schwarz, J.; Schwoerer, K.; Shakhatre, M.

    1982-09-01

    Plasma dynamic behavior and neutron production in large focus devices with pinch currents of approximately 1 MA have been studied with theoretical as well as experimental methods. For treating turbulent plasma motion, a hybrid code based on the analytical computer algorithm REDUCE was developed. Experimental diagnostics include schlieren photographs, reaction proton localization with pinhole cameras and neutron measurements with Ag-counters and scintillators. Calculated and measured data concern the 280 kJ, 60 kV operational mode of the POSEIDON plasma focus. It is shown that for large pinch currents ( > 500 kA), neutron emission also appears before m = 0 onset in the intermediate phase. This part of the neutron production becomes predominant for very large currents. The lifetime of this intermediate phase strongly increases with increasing current. According to theory, the late phase of the focus is governed by strong turbulence phenomena. The lifetime of the turbulence packets is approximately 150 ns and seems to explain the long lasting neutron emission in this phase. (orig.)

  14. Diphoton excess from hidden U(1 gauge symmetry with large kinetic mixing

    Directory of Open Access Journals (Sweden)

    Fuminobu Takahashi

    2016-09-01

    Full Text Available We show that the 750 GeV diphoton excess can be explained by introducing vector-like quarks and hidden fermions charged under a hidden U(1 gauge symmetry, which has a relatively large coupling constant as well as a significant kinetic mixing with U(1Y. With the large kinetic mixing, the standard model gauge couplings unify around 1017 GeV, suggesting the grand unified theory without too rapid proton decay. Our scenario predicts events with a photon and missing transverse momentum, and its cross section is related to that for the diphoton excess through the kinetic mixing. We also discuss other possible collider signatures and cosmology, including various ways to evade constraints on exotic stable charged particles. In some cases where the 750 GeV diphoton excess is due to diaxion decays, our scenario also predicts triphoton and tetraphoton signals.

  15. Simulations of muon-induced neutron flux at large depths underground

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Spooner, N.J.C.; McMillan, J.E.

    2003-01-01

    The production of neutrons by cosmic-ray muons at large depths underground is discussed. The most recent versions of the muon propagation code MUSIC, and particle transport code FLUKA are used to evaluate muon and neutron fluxes. The results of simulations are compared with experimental data

  16. Large sample neutron activation analysis of a reference inhomogeneous sample

    International Nuclear Information System (INIS)

    Vasilopoulou, T.; Athens National Technical University, Athens; Tzika, F.; Stamatelatos, I.E.; Koster-Ammerlaan, M.J.J.

    2011-01-01

    A benchmark experiment was performed for Neutron Activation Analysis (NAA) of a large inhomogeneous sample. The reference sample was developed in-house and consisted of SiO 2 matrix and an Al-Zn alloy 'inhomogeneity' body. Monte Carlo simulations were employed to derive appropriate correction factors for neutron self-shielding during irradiation as well as self-attenuation of gamma rays and sample geometry during counting. The large sample neutron activation analysis (LSNAA) results were compared against reference values and the trueness of the technique was evaluated. An agreement within ±10% was observed between LSNAA and reference elemental mass values, for all matrix and inhomogeneity elements except Samarium, provided that the inhomogeneity body was fully simulated. However, in cases that the inhomogeneity was treated as not known, the results showed a reasonable agreement for most matrix elements, while large discrepancies were observed for the inhomogeneity elements. This study provided a quantification of the uncertainties associated with inhomogeneity in large sample analysis and contributed to the identification of the needs for future development of LSNAA facilities for analysis of inhomogeneous samples. (author)

  17. Small angle neutron scattering and calorimetric studies of large unilamellar vesicles of the phospholipid dipalmitoylphosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Mason, P.C.; Gaulin, B.D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); Epand, R.M. [Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5 (CANADA); Wignall, G.D.; Lin, J.S. [Center for Small-Angle Scattering Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    1999-03-01

    High-resolution differential scanning calorimetry (DSC) and small angle neutron scattering (SANS) experiments have been conducted on large unilamellar vesicles (LUV{close_quote}s) of the phospholipid dipalmitoylphosphatidylcholine (DPPC) in excess water. The DSC results indicate a phase transition at temperatures corresponding to the gel (L{sub {beta}{sup {prime}}}) to ripple (P{sub {beta}{sup {prime}}}) phase transition seen in multilamellar vesicles of DPPC while the SANS experiments provide direct evidence for the formation of the P{sub {beta}{sup {prime}}} phase in these systems. In addition, it is shown that SANS is an effective technique for extracting structural parameters such as vesicle radius and thickness in LUV model membrane systems. {copyright} {ital 1999} {ital The American Physical Society}

  18. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution; Caracterizacao do nucleo cilindrico de menor excesso de reatividade do reator IPEN/MB-01, pela medida da distribuicao espacial e energetica do fluxo de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni Garcia

    2014-07-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  19. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  20. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    2000-01-01

    Complete text of publication follows. The uncharted regions of the (N,Z) plane contain information that can answer many questions of fundamental importance for science: How many protons and neutrons can be clustered together by the strong interaction to form a bound nucleus? What are the proton and neutron magic numbers of the exotic nuclei? What are the properties of very short-lived exotic nuclei with extreme neutron-to-proton ratios? What is the effective nucleon-nucleon interaction in a nucleus that has a very large neutron excess? Nuclear life far from stability is different from that around the stability line; the promised access to completely new combinations of proton and neutron numbers offers prospects for new structural phenomena. The main objective of this talk is to discuss some of the challenges and opportunities of research with exotic nuclei. The covered topics will include: Theoretical challenges; Skins and halos in heavy nuclei; Shape coexistence in exotic nuclei; Beta-decays of neutron-rich nuclei. (author)

  1. Calculation of neutron die-away times in a large-vehicle portal monitor

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.

    1980-05-01

    Monte Carlo methods have been used to calculate neutron die-away times in a large-vehicle portal monitor. These calculations were performed to investigate the adequacy of using neutron die-away time measurements to detect the clandestine movement of shielded nuclear materials. The geometry consisted of a large tunnel lined with He 3 proportional counters. The time behavior of the (n,p) capture reaction in these counters was calculated when the tunnel contained a number of different tractor-trailer load configurations. Neutron die-away times obtained from weighted least squares fits to these data were compared. The change in neutron die-away time due to the replacement of cargo in a fully loaded truck with a spherical shell containing 240 kg of borated polyethylene was calculated to be less than 3%. This result together with the overall behavior of neutron die-away time versus mass inside the tunnel strongly suggested that measurements of this type will not provide a reliable means of detecting shielded nuclear materials in a large vehicle. 5 figures, 4 tables

  2. Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, V. I., E-mail: vip@nf.jinr.ru; Avdeev, M. V. [Joint Institute for Nuclear Research (Russian Federation); Bulavin, L. A. [Taras Shevchenko National University of Kyiv (Ukraine); Almasy, L. [Hungarian Academy of Science, Wigner Research Centre for Physics (Hungary); Grigoryeva, N. A. [St. Petersburg State University (Russian Federation); Aksenov, V. L. [National Research Centre “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.

  3. Prediction of mass excess, β-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and β-decay energies (β-decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV

  4. Prediction of mass excess, #betta#-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami.

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and #betta#-decay energies (#betta# - -decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV. (author)

  5. Accelerating fissile material detection with a neutron source

    Science.gov (United States)

    Rowland, Mark S.; Snyderman, Neal J.

    2018-01-30

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly to count neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a Poisson neutron generator for in-beam interrogation of a possible fissile neutron source and a DC power supply that exhibits electrical ripple on the order of less than one part per million. Certain voltage multiplier circuits, such as Cockroft-Walton voltage multipliers, are used to enhance the effective of series resistor-inductor circuits components to reduce the ripple associated with traditional AC rectified, high voltage DC power supplies.

  6. Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); College of Sciences, China Three Gorges University, Yichang 443002 (China); Mei, D.-M., E-mail: dongming.mei@usd.edu [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Davis, P.; Woltman, B. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Gray, F. [Department of Physics and Computational Science, Regis University, Denver, CO 80221 (United States)

    2013-11-21

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron–gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  7. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  8. Evolution of the low-lying dipole strength in deformed nuclei with extreme neutron excess with the Relativistic QRPA

    International Nuclear Information System (INIS)

    Pena Arteaga, D.; Khan, E.; Ring, P.

    2009-01-01

    Covariant density functional theory, in the framework of self-consistent Relativistic Hartree Bogoliubov (HFB) and Relativistic Quasiparticle Random Phase approximation (RQRPA), is for the first time applied to axially deformed nuclei [1]. The fully self-consistent RHB+RQRPA equations are posed for the case of axial symmetry and different energy functionals, and solved with the help of a new parallel code. As a sample application, the El strength is systematically analyzed in very neutron-rich Sn nuclei, beyond 1 32S n until 1 66S n [2]. The great neutron excess favors the appearance of a deformed ground state for 1 42-162S n. The evolution of the low-lying strength in deformed nuclei is discussed, and in particular its dependence on the interplay of two major and competing factors, isospin asymmetry and deformation.(author)

  9. A comparison of the free vacancy production in α brass by fission reactor neutrons and 14.8-MeV neutrons

    International Nuclear Information System (INIS)

    Damask, A.C.; Van Konynenburg, R.; Borg, R.J.; Dienes, G.J.

    1976-01-01

    Enhancement of substitutional diffusion is observed in α brass (30 wt% Zn) by following the decrease in electrical resistivity with neutron irradiation of a thermally equilibrated alloy; the decrease arises from the increase in short-range order. It was determined by previous research that this diffusion enhancement is largely caused by the annealling of radiation-produced vacancies in excess of the thermal equilibrium concentration. Therefore, the results reported here are based upon a well-established technique. The rate of resistivity change per neutron of different energies will give the relative number of free vacancies produced per neutron. This experiment compares the effect of 14.8 MeV neutrons with neutrons from a fission reactor. The results indicate that 14.8 MeV neutrons produce 10 +- 2 times as many free vacancies as reactor neutrons when the latter are expressed in terms of those neutrons with energies greater than 0.1 MeV. (author)

  10. A large neutron missing mass spectrometer using long plastic scintillators with electronical determination of the neutron interaction point

    International Nuclear Information System (INIS)

    Apel, W.D.; Mueller, H.; Schinzel, D.; Sigurdsson, G.; Staudenmaier, H.M.; Stier, U.

    1975-11-01

    A large acceptance and high efficiency neutron detector is described. The sensitive area and volume of the detector is 3.07 m 2 and 1.03 m 3 respectively. The detector consists of sixteen elements of plastic scintillator, each having the dimensions (16 x 16 x 240) cm 3 . The mean detection efficiency is about 33% for neutrons of 100-500 MeV/c momentum. An interesting feature of this instrument is the accuracy achieved in locating incident particles, which is +-3 cm for charged particles and +-4 cm for neutrons. The accuracy achieved for the time-of-flight measurement is +-1 nsec for fast neutrons. (orig.) [de

  11. Large Sample Neutron Activation Analysis: A Challenge in Cultural Heritage Studies

    International Nuclear Information System (INIS)

    Stamatelatos, I.E.; Tzika, F.

    2007-01-01

    Large sample neutron activation analysis compliments and significantly extends the analytical tools available for cultural heritage and authentication studies providing unique applications of non-destructive, multi-element analysis of materials that are too precious to damage for sampling purposes, representative sampling of heterogeneous materials or even analysis of whole objects. In this work, correction factors for neutron self-shielding, gamma-ray attenuation and volume distribution of the activity in large volume samples composed of iron and ceramic material were derived. Moreover, the effect of inhomogeneity on the accuracy of the technique was examined

  12. Prospects for accelerator neutron sources for large volume minerals analysis

    International Nuclear Information System (INIS)

    Clayton, C.G.; Spackman, R.

    1988-01-01

    The electron Linac can be regarded as a practical source of thermal neutrons for activation analysis of large volume mineral samples. With a suitable target and moderator, a neutron flux of about 10 10 n/cm/s over 2-3 kg of rock can be generated. The proton Linac gives the possibility of a high neutron yield (> 10 12 n/s) of fast neutrons at selected energies. For the electron Linac, targets of W-U and W-Be are discussed. The advantages and limitations of the system are demonstrated for the analysis of gold in rocks and ores and for platinum in chromitite. These elements were selected as they are most likely to justify an accelerator installation at the present time. Errors due to self shielding in gold particles for thermal neutrons are discussed. The proton Linac is considered for neutrons generated from a lithium target through the 7 Li(p, n) 7 Be reaction. The analysis of gold by fast neutron activation is considered. This approach avoids particle self-absorption and, by appropriate proton energy selection, avoids potentially dominating interfering reactions. The analysis of 235 U in the presence of 238 U and 232 Th is also considered. (author)

  13. Large lattice relaxation deep levels in neutron-irradiated GaN

    International Nuclear Information System (INIS)

    Li, S.; Zhang, J.D.; Beling, C.D.; Wang, K.; Wang, R.X.; Gong, M.; Sarkar, C.K.

    2005-01-01

    Deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) measurements have been carried out in neutron-irradiated n-type hydride-vapor-phase-epitaxy-grown GaN. A defect center characterized by a DLTS line, labeled as N1, is observed at E C -E T =0.17 eV. Another line, labeled as N2, at E C -E T =0.23 eV, seems to be induced at the same rate as N1 under irradiation and may be identified with E1. Other defects native to wurtzite GaN such as the C and E2 lines appear to enhance under neutron irradiation. The DLOS results show that the defects N1 and N2 have large Frank-Condon shifts of 0.64 and 0.67 eV, respectively, and hence large lattice relaxations. The as-grown and neutron-irradiated samples all exhibit the persistent photoconductivity effect commonly seen in GaN that may be attributed to DX centers. The concentration of the DX centers increases significantly with neutron dosage and is helpful in sustaining sample conductivity at low temperatures, thus making possible DLTS measurements on N1 an N2 in the radiation-induced deep-donor defect compensated material which otherwise are prevented by carrier freeze-out

  14. On the properties of nuclear matter with an excess of neutrons, of spin-up neutrons and of spin-up protons using the Skyrme interaction

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-11-01

    The binding energy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons (characterized by the corresponding parameters, αsub(tau)=(N-Z/A), αsub(n)=(Nup-Ndown)/A, and αsub(rho)=(Zup-Zdown)/A), contains three symmetry energies: the isospin symmetry energy Esub(tau), the spin symmetry energy Esub(σ), and spin-isospin symmetry energy Esub(σtau). General expressions for Esub(σ), Esub(tau) and Esub(σtau) are given in the case of the Skyrme interaction. These values are compared with previous results obtained by Dabrowski and Haensel (DH) with Brueckner-Gammel-Thaler, the Hamada-Johnston, and the Reid soft core nucleon-nucleon potentials. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the Skyrme interaction. The spin, isospin and spin-isospin incompressibility are calculated using the Skyrme interaction. The spin-spin part of the optical model potential is estimated. The results are compared with those of Dabrowski and Haensel (DH) and Hassan and Ramadan. (author)

  15. Neutron recognition in the LAND detector for large neutron multiplicity

    Energy Technology Data Exchange (ETDEWEB)

    Pawlowski, P., E-mail: piotr.pawlowski@ifj.edu.pl [Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Brzychczyk, J. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Leifels, Y.; Trautmann, W. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Adrich, P. [National Centre for Nuclear Research, PL-00681 Warsaw (Poland); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Bacri, C.O. [Institut de Physique Nucleaire, IN2P3-CNRS et Universite, F-91406 Orsay (France); Barczyk, T. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Bassini, R. [Istituto di Scienze Fisiche, Universita degli Studi and INFN, I-20133 Milano (Italy); Bianchin, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Boiano, C. [Istituto di Scienze Fisiche, Universita degli Studi and INFN, I-20133 Milano (Italy); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Boudard, A. [IRFU/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Chbihi, A. [GANIL, CEA et IN2P3-CNRS, F-14076 Caen (France); Cibor, J.; Czech, B. [Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow (Poland); De Napoli, M. [Dipartimento di Fisica e Astronomia-Universita and INFN-CT and LNS, I-95123 Catania (Italy); and others

    2012-12-01

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  16. Parasitic neutron bragg reflections from large imperfect single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M

    1998-12-01

    A formula is given which allows to calculate the contribution of the total Bragg scattering from different (hkl) planes to the neutron transmission through a large imperfect single crystals. The formula takes into account the crystal structure type, its mosaic spread value, the plane along which the crystal surface is cut along and its orientation with respect to the neutron beam direction. A computer program ISCANF-1 was developed to calculate the total parasitic scattering cross-section from different (hkl) planes as well as the nuclear and diffuse scattering cross-sections. The ISCANF-1 program was applied to calculate the neutron attenuation through Cu and Zn single crystals, each of them cut along (002) planes. The calculated values of the neutron transmission through Cu and Zn crystals were compared with the measured ones in the wavelength range 0.21-0.47 nm and 0.04-0.52 nm respectively. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The computer program ISCANF-1 was also applied to investigate the effect of parasitic Bragg scattering on the neutron filtering characteristics of both Zn and Cu single crystals as a function of their physical parameters.

  17. Parasitic neutron bragg reflections from large imperfect single crystals

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.

    1998-01-01

    A formula is given which allows to calculate the contribution of the total Bragg scattering from different (hkl) planes to the neutron transmission through a large imperfect single crystals. The formula takes into account the crystal structure type, its mosaic spread value, the plane along which the crystal surface is cut along and its orientation with respect to the neutron beam direction. A computer program ISCANF-1 was developed to calculate the total parasitic scattering cross-section from different (hkl) planes as well as the nuclear and diffuse scattering cross-sections. The ISCANF-1 program was applied to calculate the neutron attenuation through Cu and Zn single crystals, each of them cut along (002) planes. The calculated values of the neutron transmission through Cu and Zn crystals were compared with the measured ones in the wavelength range 0.21-0.47 nm and 0.04-0.52 nm respectively. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The computer program ISCANF-1 was also applied to investigate the effect of parasitic Bragg scattering on the neutron filtering characteristics of both Zn and Cu single crystals as a function of their physical parameters

  18. Large Sample Neutron Activation Analysis of Heterogeneous Samples

    International Nuclear Information System (INIS)

    Stamatelatos, I.E.; Vasilopoulou, T.; Tzika, F.

    2018-01-01

    A Large Sample Neutron Activation Analysis (LSNAA) technique was developed for non-destructive analysis of heterogeneous bulk samples. The technique incorporated collimated scanning and combining experimental measurements and Monte Carlo simulations for the identification of inhomogeneities in large volume samples and the correction of their effect on the interpretation of gamma-spectrometry data. Corrections were applied for the effect of neutron self-shielding, gamma-ray attenuation, geometrical factor and heterogeneous activity distribution within the sample. A benchmark experiment was performed to investigate the effect of heterogeneity on the accuracy of LSNAA. Moreover, a ceramic vase was analyzed as a whole demonstrating the feasibility of the technique. The LSNAA results were compared against results obtained by INAA and a satisfactory agreement between the two methods was observed. This study showed that LSNAA is a technique capable to perform accurate non-destructive, multi-elemental compositional analysis of heterogeneous objects. It also revealed the great potential of the technique for the analysis of precious objects and artefacts that need to be preserved intact and cannot be damaged for sampling purposes. (author)

  19. Hydration of alcohol clusters in 1-propanol-water mixture studied by quasielastic neutron scattering and an interpretation of anomalous excess partial molar volume.

    Science.gov (United States)

    Misawa, M; Inamura, Y; Hosaka, D; Yamamuro, O

    2006-08-21

    Quasielastic neutron scattering measurements have been made for 1-propanol-water mixtures in a range of alcohol concentration from 0.0 to 0.167 in mole fraction at 25 degrees C. Fraction alpha of water molecules hydrated to fractal surface of alcohol clusters in 1-propanol-water mixture was obtained as a function of alcohol concentration. Average hydration number N(ws) of 1-propanol molecule is derived from the value of alpha as a function of alcohol concentration. By extrapolating N(ws) to infinite dilution, we obtain values of 12-13 as hydration number of isolated 1-propanol molecule. A simple interpretation of structural origin of anomalous excess partial molar volume of water is proposed and as a result a simple equation for the excess partial molar volume is deduced in terms of alpha. Calculated values of the excess partial molar volumes of water and 1-propanol and the excess molar volume of the mixture are in good agreement with experimental values.

  20. Large animal normal tissue tolerance with boron neutron capture.

    Science.gov (United States)

    Gavin, P R; Kraft, S L; DeHaan, C E; Swartz, C D; Griebenow, M L

    1994-03-30

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA2B12H11SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood.

  1. Large animal normal tissue tolerance with boron neutron capture

    International Nuclear Information System (INIS)

    Gavin, P.R.; Swartz, C.D.; Kraft, S.L.; Briebenow, M.L.; DeHaan, C.E.

    1994-01-01

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA 2 B 12 H 11 SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood. 23 refs., 6 figs., 2 tabs

  2. Multiresolution persistent homology for excessively large biomolecular datasets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin; Zhao, Zhixiong [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-10-07

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  3. Unexpectedly large charge radii of neutron-rich calcium isotopes

    CERN Document Server

    Garcia Ruiz, R F; Blaum, K; Ekström, A; Frömmgen, N; Hagen, G; Hammen, M; Hebeler, K; Holt, J D; Jansen, G R; Kowalska, M; Kreim, K; Nazarewicz, W; Neugart, R; Neyens, G; Nörtershäuser, W; Papenbrock, T; Papuga, J; Schwenk, A; Simonis, J; Wendt, K A; Yordanov, D T

    2016-01-01

    Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-...

  4. ARMA modelling of neutron stochastic processes with large measurement noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Kostic, Lj.; Pesic, M.

    1994-01-01

    An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)

  5. Time dispersion in large plastic scintillation neutron detector [Paper No.:B3

    International Nuclear Information System (INIS)

    De, A.; Dasgupta, S.S.; Sen, D.

    1993-01-01

    Time dispersion seen by photomultiplier (PM) tube in large plastic scintillation neutron detector and the light collection mechanism by the same have been computed showing that this time dispersion (TD) seen by the PM tube does not necessarily increase with increasing incident neutron energy in contrast to the usual finding that TD increases with increasing energy. (author). 8 refs., 4 figs

  6. LANSA: A large neutron scintillator array for neutron spectroscopy at Nova

    International Nuclear Information System (INIS)

    Nelson, M.B.; Cable, M.D.; Bennett, C.K.; Mant, G.

    1992-01-01

    A very sensitive neutron time-of-flight spectrometer is now in use at Nova. LANSA consists of 960 channels of a neutron sensitive liquid scintillator (10 x lO x lO cm) coupled to a photomultiplier tube followed by a discriminator, TDC and ADC to allow the measurement of neutron arrival time as well as pulse size. LANSA is capable of measuring yields as low as 2.3 x 10 5 DT neutrons (100 detected hits) with resolution of 2.3 ns (170 key for 14 MeV neutrons with 20 m flight path). Shielding and collimation provide background levels low enough to allow measurement of secondary and tertiary reaction neutrons. Details of design, testing, calibration and experimental results will be presented. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48

  7. Using Java to visualize and manipulate large arrays of neutron scattering data

    International Nuclear Information System (INIS)

    Mikkelson, D.; Worlton, T.; Chatterjee, A.; Hammonds, J.; Chen, D.

    2000-01-01

    The Intense Pulsed Neutron Source at Argonne National Laboratory is a world class pulsed neutron source with thirteen instruments designed to characterize materials using time-of-flight neutron scattering techniques. For each instrument, a collimated pulse of neutrons is directed to a material sample. The neutrons are scattered by the sample and detected by arrays of detectors. The type, number and arrangement of detectors vary widely from instrument to instrument, depending on which properties of materials are being studied. In all cases, the faster, higher energy neutrons reach the detectors sooner than the lower energy neutrons. This produces a time-of-flight spectrum at each detector element. The time-of-flight spectrum produced by each detector element records the scattering intensity at hundreds to thousands of discrete time intervals. Since there are typically between two hundred and ten thousand distinct detector elements, a single set of raw data can include millions of points. Often many such datasets are collected for a single sample to determine the effect of different conditions on the microscopic structure and dynamics of the sample. In this project, Java was used to construct a portable highly interactive system for viewing and operating on large collections of time-of-flight spectra. Java performed surprisingly well in handling large amounts of data quickly was fast enough even with standard PC hardware. Although Java may not be the choice at this time for applications where computational efficiency is the primary refinement, any disadvantages in this case were outweighed by the advantages of a clean object oriented language with a portable set of GUI components. The authors anticipate that Java will prove useful for scientific computing and data visualization in situations where portability, case of use and effective use of software development manpower are critical

  8. Corporate Governance and the Value of Excess Cash Holdings of Large European Firms

    NARCIS (Netherlands)

    M.B.J. Schauten (Marc); D.J.C. van Dijk (Dick); J-P. van der Waal (Jan-Paul)

    2008-01-01

    textabstractWe examine the relation between the quality of corporate governance and the value of excess cash for large European firms (FTSEurofirst 300 Index). We use Deminor ratings for Shareholder rights, Takeover defences, Disclosure and Board as proxies for the quality of corporate governance.

  9. Corporate Governance and the Value of Excess Cash Holdings of Large European Firms

    NARCIS (Netherlands)

    Schauten, M.B.J.; van Dijk, D.J.C.; van der Waal, J.P.

    2013-01-01

    We examine the relation between the quality of corporate governance and the value of excess cash for large publicly listed European firms from common-law and civil-law countries. Besides different law origins, we distinguish different dimensions of corporate governance by using ratings for the

  10. A large solid angle multiparameter neutron detector

    International Nuclear Information System (INIS)

    Ricco, G.; Anghinolfi, M.; Corvisiero, P.; Durante, E.; Maggiolo, S.; Prati, P.; Rottura, A.; Taiuti, M.

    1991-01-01

    A 4π neutron detector has been realized using organic scintillators: the detector is suitable for high efficiency, low background measurements of very low neutron rates in the 0.6-5 MeV energy range. Gamma-neutron discrimination has been performed by pulse shape, energy and neutron lifetime analysis and backgrounds have been reduced by anticoincidence detectors and paraffin-lead shielding. Tests of efficiency, energy resolution and radiation identification have been made with a low intensity Am-Be neutron source. (orig.)

  11. Experimental Study of the Phenomenology of Spallation Neutrons in a Large Lead Block

    CERN Multimedia

    Galvez Altamirano, J; Lopez, C; Perlado, J M; Perez-Navarro, A

    2002-01-01

    %PS211 %title \\\\ \\\\The purpose of PS211 is to determine how neutrons, produced by spallation inside a large Lead volume are slowed down by undergoing a very large number of scatterings, losing each time a small fraction ($\\sim$ 1\\%) of their kinetic energy. The focus is in determining the probability for a spallation neutron produced at an energy of several MeV or more, to survive capture on Lead resonances and to reach resonance energies of materials to be transmuted, such as 5.6 eV for $^{99}$Tc. This process, of Adiabatic Resonance Crossing, involves a subtle interplay between the capture resonances of the Lead medium and of selected impurities. This phenomenology of spallation neutrons in a large Lead volume, is the physics foundation of the Fast Energy Amplifier proposed by C. Rubbia, and could open up new possibilities in the incineration of long-lived nuclear waste such as Actinides or Fission Fragments (e.g. $^{99}$Tc, $^{129}$I, etc.).\\\\ \\\\334 tons of high purity Lead, installed in t7, are exposed to...

  12. Technique investigation on large area neutron scintillation detector array

    International Nuclear Information System (INIS)

    Chen Jiabin

    2006-12-01

    The detailed project for developing Large Area Neutron Scintillation Detector Array (LaNSA) to be used for measuring fusion fuel area density on Shenguang III prototype is presented, including experimental principle, detector working principle, electronics system design and the needs for target chamber etc. The detailed parameters for parts are given and the main causes affecting the system function are analyzed. The realization path is introduced. (authors)

  13. Monte Carlo study of neutronics properties of the modular storage geometry

    International Nuclear Information System (INIS)

    Bell, Z.W.

    1995-01-01

    The modular storage vault (MSV) geometry was investigated for its effects on the spectrum of neutrons from the spontaneous and induced fission of plutonium. Zinc alloy and aluminum alloy plates that will house neutron detectors and weight sensors were included. It was found that because of the large number of captures by plutonium and the steel and concrete MSV structure, only 12% of the neutron spectrum in the vicinity of the detector position was thermalized and over half of the neutrons incident on the detector position have energy in excess of 100 keV. Based on this, it is recommended that both fast and slow neutron detectors be included in the instrumentation package if plutonium is to be stored an MSV structure. No differences in the neutron spectra were found with different zinc alloys. In addition, insufficient differences in the spectra were found when aluminum was substituted for zinc to warrant any recommendation for one material over the other

  14. Probing the effect of neutron excess on the dynamics of Hf compound system

    Science.gov (United States)

    Sharma, Ishita; Kumar, Raj; Sharma, Manoj K.

    2018-05-01

    The reaction dynamics of 170Hf* and 174Hf* compound systems formed in 46,50Ti +124Sn reactions have been analyzed within the framework of Dynamical Cluster-decay Model (DCM) over an energy range of Ec.m.=115-156 MeV. The experimental data of fusion evaporation cross sections for 170,174Hf* systems is successfully addressed by optimizing the value of neck length ΔR. It is to be noted that calculations are performed by taking quadrupole deformations β2 with the optimum orientation of decaying fragments. Here, the effect of neutron excess has been examined on the structural properties of decaying fragments via fragmentation potential and preformation probability. The observation depicts that the isotopic effect prevails at fission region and as we move from lighter nucleus i.e. 170Hf* to heavier nucleus i.e. 174Hf*, the heavy mass fragments (HMF) start contributing along with fission fragments which are equally evident for 170Hf* as well. The ΔR values so obtained are compared at center of mass-energies which consequently provides information regarding the relative time scale of decaying fragments.

  15. Krypton and xenon in Apollo 14 samples - Fission and neutron capture effects in gas-rich samples

    Science.gov (United States)

    Drozd, R.; Hohenberg, C.; Morgan, C.

    1975-01-01

    Gas-rich Apollo 14 breccias and trench soil are examined for fission xenon from the decay of the extinct isotopes Pu-244 and I-129, and some samples have been found to have an excess fission component which apparently was incorporated after decay elsewhere and was not produced by in situ decay. Two samples have excess Xe-129 resulting from the decay of I-129. The excess is correlated at low temperatures with excess Xe-128 resulting from neutron capture on I-127. This neutron capture effect is accompanied by related low-temperature excesses of Kr-80 and Kr-82 from neutron capture on the bromine isotopes. Surface correlated concentrations of iodine and bromine are calculated from the neutron capture excesses.

  16. Study on neutron beam probe. Study on the focused neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotajima, Kyuya; Suzuki, K.; Fujisawa, M.; Takahashi, T.; Sakamoto, I. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Wakabayashi, T.

    1998-03-01

    A monoenergetic focused neutron beam has been produced by utilizing the endoenergetic heavy ion reactions on hydrogen. To realize this, the projectile heavy ion energy should be taken slightly above the threshold energy, so that the excess energy converted to the neutron energy should be very small. In order to improve the capability of the focused neutron beam, some hydrogen stored metal targets have also been tested. Separating the secondary heavy ions (associated particles) from the primary ions (accelerated particles) by using a dipole magnet, a rf separator, and a particle identification system, we could directly count the produced neutrons. This will leads us to the possibility of realizing the standard neutron field which had been the empty dream of many neutron-related researchers in the world. (author)

  17. Large-area self-powered neutron-detectors for neutron-flux measurements in HTRs. Status of developmental work

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Serpekian, T.; Benninghofen, G.; Serafin, N.; Spillekothen, H.G.

    1982-06-01

    The development is described of the large-area SPN-detector as an out of core power monitoring system. Gadolinium or cobalt was used as the emitter. Response functions of the gadolinium SPN-detector were found with regard to the reactor power, the effect of the gamma field, its short-term behaviour following reactor shutdown and long-term behaviour during reactor operation. It was shown that a detector of 0.1 mm emitter thickness can withstand an integral thermal neutron flux of 2.10 20 nvt almost without efficiency loss thus indicating that the large-area gadolinium SPN-detector is a suitable means for power monitoring in large HTGR's

  18. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  19. A search for solar neutron response in neutron monitor data

    International Nuclear Information System (INIS)

    Kudela, K.

    1990-01-01

    The search for an impulsive increase corresponding to a solar neutron response on high-mountain neutron monitors requires control of the stability of the measurement and elimination of other sources of short-time increases of different kinds which are involved in fluctuations of cosmic-ray intensity. For the solar flare of June 3, 1982 the excess of counting rate on the Lomnicky stit neutron monitor is, within a factor or 1.8, equal to that expected from solar neutrons. Superposed epoch analysis of 17 flares with gamma-ray or hard X-ray production gives a slight tendency of an occurring signal in cases of high heliocentric angles, indicating anisotropic production of neutrons on the sun. The low statistical significance of the result indicates that higher temporal resolution, better evaluation of multiplicity, better knowledge of the power spectra of short-term intensity fluctuations on neutron monitors, as well as coordinated measurements of solar gamma-rays and neutrons on satellites, are required. 21 refs

  20. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Directory of Open Access Journals (Sweden)

    Kim Myong-Seop

    2018-01-01

    Full Text Available A calibration technology of the self-powered neutron detectors (SPNDs using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  1. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Science.gov (United States)

    Kim, Myong-Seop; Park, Byung-Gun; Kang, Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  2. Large sample neutron activation analysis: establishment at CDTN/CNEN, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.s [Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Environmental Sciences. Group for Radiochemistry and Radioecology

    2011-07-01

    In order to improve the application of the neutron activation technique at CDTN/CNEN, the large sample instrumental neutron activation analysis is being established, IAEA BRA 14798 and FAPEMIG APQ-01259-09 projects. This procedure, LS-INAA, usually requires special facilities for the activation as well as for the detection. However, the TRIGA Mark I IPR R1, CDTN/CNEN has not been adapted for the irradiation and the usual gamma spectrometry has being carried out. To start the establishment of the LS-INAA, a 5g sample - IAEA/Soil 7 reference material was analyzed by k{sub 0}-standardized method. This paper is about the detector efficiency over the volume source using KayWin v2.23 and ANGLE V3.0 software. (author)

  3. Two Proposals for determination of large reactivity of reactor

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Nagao, Yoshiharu; Yamane, Tsuyoshi; Takeuchi, Mituo

    1999-01-01

    Two Proposals for determination of large reactivity of reactors are presented. One is for large positive reactivity. The other is for large negative reactivity. Existing experimental methods for determination of large positive reactivity, the fuel addition method and the neutron adsorption substitution method were analyzed. It is found that both the experimental methods are possibly affected to the substantially large systematic error up to ∼ 20%, when the value of the excess multiplication factor comes into the range close to ∼20%Δk. To cope with this difficulty, a revised method is validly proposed. The revised method evaluates the value of the potential excess multiplication factor as the consecutive increments of the effective multiplication factor in a virtual core, which are converted from those in an actual core by multiplying a conversion factor f to it. The conversion factor f is to be obtained in principle by calculation. Numerical experiments were done on a slab reactor using one group diffusion model. The rod drop experimental method is widely used for determination of large negative negative reactivity values. The decay of the neutron density followed by initiating the insertion of the rod is obliged to be slowed down according to its speed. It is proved by analysis based on the one point reactor kinetics that in such a case the integral counting method hitherto used tend to significantly underestimate the absolute values of negative reactivity, even if the insertion time is in the range of 1-2 s. As for the High Temperature Engineering Test Reactor (HTTR), the insertion time will be lengthened up to 4-6 s. In order to overcome the difficulty , the delayed integral counting method is proposed, in which the integration of neutron counting starts after the rod drop has been completed and the counts before is evaluated by calculation using one point reactor kinetics. This is because the influence of the insertion time on the decay of the neutron

  4. Mass spectrometrical study of rare gas compositions and neutron capture effects in Yamato-74191 (L 3) Chondrite

    International Nuclear Information System (INIS)

    Takaoka, N.; Nagao, K.

    1980-01-01

    The unequilibrated hypersthene chondrite Yamato-74191 was studied mass spectrometrically for rare gases released at various temperatures. Cosmogenic gases dominate in He and Ne. The meteorite contains large amounts of trapped Ar, Kr and Xe, and radiogenic 40 Ar and 129 Xe. Cosmic-ray irradiation and K-Ar ages were determined. In addition to spallogenic components of Kr and Xe, isotopic excesses of 8 sup(O)Kr, 82 Kr, 128 Xe and 126 Xe relative to AVCC-Kr and -Xe were found. The ratio of 80 Kr-excess to 82 Kr-excess is 2.66 after correction for spallogenic Kr. A correlation between 128 Xe/ 132 Xe and 129 Xe/ 132 Xe was found. The 129 Xe/ 132 Xe ratio for trapped Xe in Yamato-74191 was determined as 1.12 +- 0.29 with the correlation plot. The excesses found in Yamato-74191 are best explained by epithermal neutron capture on Br and I, and by the 127 I(n,2nβ) 126 Xe reaction. Using neutron-produced 80 Kr, the neutron slowing-down density was estimated to be 0.14 +- 0.03 cm -3 sec -1 . A minimum mass and a preatmospheric radius was estimated to be 470 kg and 32 cm, respectively. (orig.)

  5. Cancer risks and neutron RBE's from Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Dobson, R.L.; Straume, T.

    1982-01-01

    The new radiation dose estimates for Hiroshima and Nagasaki are radiobiologically examined for compatability with other human and experimental data. The new doses show certain improvements over the original T65 doses. However, they suggest for chronic granulocytic leukemia, total malignancies, and chromosome aberrations, at neutron doses of 1 rad, RBEs in excess of 100, higher than expected from other findings. This and other indications suggest that either there are unrecognized systematic problems with the various radiobiological data, or the new doses are deficient in neutrons for Hiroshima, by a factor of about five. If in fact there were actually some 5-fold more dose from neutrons at Hiroshima than estimated by the new calculations, the RBEs would agree well with laboratory results, and other inconsistencies would largely disappear. Cancer risks are estimated for neutrons from the new doses and are compared with those estimated from radiobiologically reconciled doses (the new doses adjusted by adding approximately 5-fold more neutrons). The latter appear more reasonable. For low-LET radiation, cancer risk estimates are changed very little by the new dose estimates for Nagasaki

  6. An investigation on detection and measurement of fusion neutron spectrum and radiation flux in large tokamak

    International Nuclear Information System (INIS)

    Yang Jinwei; Li Wenzhong; Zhang Wei

    2003-01-01

    The detection methods, detectors and spectrometers of D-D and D-T fusion neutron have been overviewed in large tokamaks. Some options are proposed for developing new detection systems of fusion neutrons suitable to the HL-2A tokamak. (authors)

  7. Study of a large scale neutron measurement channel

    International Nuclear Information System (INIS)

    Amarouayache, Anissa; Ben Hadid, Hayet.

    1982-12-01

    A large scale measurement channel allows the processing of the signal coming from an unique neutronic sensor, during three different running modes: impulses, fluctuations and current. The study described in this note includes three parts: - A theoretical study of the large scale channel and its brief description are given. The results obtained till now in that domain are presented. - The fluctuation mode is thoroughly studied and the improvements to be done are defined. The study of a fluctuation linear channel with an automatic commutation of scales is described and the results of the tests are given. In this large scale channel, the method of data processing is analogical. - To become independent of the problems generated by the use of a an analogical processing of the fluctuation signal, a digital method of data processing is tested. The validity of that method is improved. The results obtained on a test system realized according to this method are given and a preliminary plan for further research is defined [fr

  8. Excessive daytime sleepiness and metabolic syndrome in men with obstructive sleep apnea: a large cross-sectional study.

    Science.gov (United States)

    Fu, Yiqun; Xu, Huajun; Xia, Yunyan; Qian, Yingjun; Li, Xinyi; Zou, Jianyin; Wang, Yuyu; Meng, Lili; Tang, Xulan; Zhu, Huaming; Zhou, Huiqun; Su, Kaiming; Yu, Dongzhen; Yi, Hongliang; Guan, Jian; Yin, Shankai

    2017-10-03

    Excessive daytime sleepiness is a common symptom in obstructive sleep apnea (OSA). Previous studies have showed that excessive daytime sleepiness is associated with some individual components of metabolic syndrome. We performed a large cross-sectional study to explore the relationship between excessive daytime sleepiness and metabolic syndrome in male OSA patients. A total of 2241 suspected male OSA patients were consecutively recruited from 2007 to 2013. Subjective daytime sleepiness was assessed using the Epworth sleepiness scale. Anthropometric, metabolic, and polysomnographic parameters were measured. Metabolic score was used to evaluate the severity of metabolic syndrome. Among the male OSA patients, most metabolic parameters varied by excessive daytime sleepiness. In the severe group, male OSA patients with excessive daytime sleepiness were more obese, with higher blood pressure, more severe insulin resistance and dyslipidemia than non-sleepy patients. Patients with metabolic syndrome also had a higher prevalence of excessive daytime sleepiness and scored higher on the Epworth sleepiness scale. Excessive daytime sleepiness was independently associated with an increased risk of metabolic syndrome (odds ratio =1.242, 95% confidence interval: 1.019-1.512). No substantial interaction was observed between excessive daytime sleepiness and OSA/ obesity. Excessive daytime sleepiness was related to metabolic disorders and independently associated with an increased risk of metabolic syndrome in men with OSA. Excessive daytime sleepiness should be taken into consideration for OSA patients, as it may be a simple and useful clinical indicator for evaluating the risk of metabolic syndrome.

  9. Calibration of a large multi-element neutron counter in the energy range 85-430 MeV

    CERN Document Server

    Strong, J A; Esterling, R J; Garvey, J; Green, M G; Harnew, N; Jane, M R; Jobes, M; Mawson, J; McMahon, T; Robertson, A W; Thomas, D H

    1978-01-01

    Describes the calibration of a large 60 element neutron counter with a threshold of 2.7 MeV equivalent electron energy. The performance of the counter has been measured in the neutron kinetic energy range 8.5-430 MeV using a neutron beam at the CERN Synchrocyclotron. The results obtained for the efficiency as a function of energy are in reasonable agreement with a Monte Carlo calculation. (7 refs).

  10. {sup 10}B multi-grid proportional gas counters for large area thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, T. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Birch, J. [Linköping University, SE-581, 83 Linköping (Sweden); Buffet, J. C.; Correa, J. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Hall-Wilton, R. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Hultman, L. [Linköping University, SE-581, 83 Linköping (Sweden); Höglund, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Linköping University, SE-581, 83 Linköping (Sweden); Guérard, B., E-mail: guerard@ill.fr [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Jensen, J. [Linköping University, SE-581, 83 Linköping (Sweden); Khaplanov, A. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Kirstein, O. [Linköping University, SE-581, 83 Linköping (Sweden); Piscitelli, F.; Van Esch, P. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Vettier, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden)

    2013-08-21

    {sup 3}He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of {sup 10}B or {sup 10}B{sub 4}C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty {sup 10}B{sub 4}C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.

  11. Neutron Optics: Towards Applications for Hot Neutrons

    International Nuclear Information System (INIS)

    Schanzer, C; Schneider, M; Böni, P

    2016-01-01

    Supermirrors with large critical angles of reflection, i.e. large index m are an essential ingredient to transport, focus and polarise neutrons over a wide range of energy. Here we summarise the recent developments of supermirror with very large critical angles of reflection and high reflectivity that were conducted at SwissNeutronics as well as their implementation in devices. Approaching critical angles m = 8 times the critical angle of natural nickel makes new applications possible and extends the use of reflection optics towards the regime of hot and epithermal neutrons. Based on comparisons of simulations with experiment we demonstrate future possibilities of applications of large-m supermirrors towards devices for neutrons with short wavelength. (paper)

  12. On the thermal properties of neutron matter with spin up excess

    International Nuclear Information System (INIS)

    Ramadan, S.; Montasser, S.S.; Hassan, M.Y.M.

    1986-07-01

    The schematic model of pure hard core neutron matter proposed by Dabrowski et al. is generalized to finite temperature, where the attractive part of nuclear forces is treated as a perturbation. We calculate the potential energy, the energy per neutron, the volume and symmetry pressure, the magnetic susceptibility, the effective mass and the velocity of sound as a function of temperature. Our results are compared with previous calculations. (author)

  13. Plant protection system optimization studies to mitigate consequences of large breaks in the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Khayat, M.I.; March-Leuba, J.

    1993-01-01

    This paper documents some of the optimization studies performed to maximize the performance of the engineered safety features and scram systems to mitigate the consequences of large breaks in the primary cooling system of the advanced neutron source (ANS) reactor. The ANS is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the field of material science and engineering, biology, chemistry, material analysis, and nuclear science. To achieve the high neutron fluxes for these state-of-the-art experiments, the ANS design has a very high power density core (330 MW fission with an active volume of 67.6 ell) surrounded by a large heavy-water reflector, where most neutrons are moderated. This design maximizes the number of neutrons available for experiments but results in a low heat capacity core that creates unique challenges to the design of the plant protection system

  14. Thermal and magnetic properties of neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.; Ragab, H.S.; Hassan, M.Y.M.

    1990-01-01

    The Thomas-Fermi model is used to calculate the equation of state of thermal polarized neutron matter applying Seyler-Blanchard interaction. The resulting equation of state is stiff and has a small dependence on both the temperature and the spin excess parameter. We expand the Fermi integrals in powers of temperature up to second order to examine the T 2 approximation for neutron matter. It is found to be reliable up to T = 10 MeV. We also studied the ferromagnetic transition in neutron matter. We found a ferromagnetic transition at density ρ ≅ 2ρ0. This ferromagnetic transition is found to have a small dependence on both the temperature and the spin excess parameter. We also studied the dependence of the effective mass and the sound velocity for polarized neutron matter on temperature. (author). 36 refs, 17 figs

  15. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Sperduti, A. [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); ENEA C.R. Frascati, via E. Fermi n. 45, 00044 Frascati, Roma (Italy); Pietropaolo, A.; Pillon, M. [ENEA C.R. Frascati, via E. Fermi n. 45, 00044 Frascati, Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN–Milano, Via Celoria 16, 20133 Milano (Italy); Gómez-Ros, J.M. [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2017-01-21

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a {sup 241}Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm{sup −2} s{sup −1} to 1000 cm{sup −2} s{sup −1} can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  16. Neutronic characteristics of linear-assembly breed-and-burn reactors

    International Nuclear Information System (INIS)

    Petroski, Robert; Forget, Benoit; Forsberg, Charles

    2012-01-01

    Highlights: ► Simple models used to characterize general behavior of linear-assembly B and B reactors. ► Diffusion theory model developed to explain axial distributions, height vs. reactivity. ► Neutron excess concept reformulated to include linear-assembly B and B reactors. ► Designed model of B and B reactor started using melt-refined B and B reactor used fuel. ► Computed doubling time of fuel cycle requiring no chemical separations. - Abstract: Linear-assembly breed-and-burn (B and B) reactors are B and B reactors that use axially connected assemblies similar to conventional LWR or fast reactor fuel assemblies. Methods for analyzing linear-assembly B and B reactors and their fuel cycles are developed and applied. General neutronic characteristics of linear-assembly B and B reactors are analyzed, including the effects that burnup, shuffling sequence, and radial and axial size have on equilibrium-cycle k-effective. The mechanisms that give rise to a highly peaked axial burnup distribution are explained, and a method for predicting peak burnup vs. k-effective based on infinite-medium depletion calculations is developed. Next, the neutron excess concept from previous studies of B and B reactors is extended to apply to linear-assembly B and B reactors, which allows the amount of starter fuel needed to establish a given equilibrium cycle to be calculated. Several example applications of the neutron excess formulation are given. First, an example model of a linear-assembly B and B reactor is analyzed to find the neutron excess cost of an equilibrium cycle. Second, simple one-dimensional models are used to predict the neutron excess value obtainable from different starter fuel configurations. Finally, these ideas are applied to design a fuel cycle consisting of linear-assembly B and B reactors and fuel recycling via a melt refining process. The neutron excess concept is used to design an appropriate starter fuel configuration made from melt refined fuel, which

  17. On the thermal properties of neutron matter with spin up excess

    International Nuclear Information System (INIS)

    Ramadan, S.; Montasser, S.S; Hassan, M.Y.M.

    1988-01-01

    The schematic model of pure hard core neutron matter proposed by Dabrowski et al. is generalized to finite temperature, where the attractive part of nuclear forces is treated as a perturbation. We calculate the potential energy, the energy per neutron, the volume and symmetry pressure, the magnetic susceptibility, the effective mass and the velocity of sound as a function of temperature. Our results are compared with previous calculations. 31 refs., 3 figs. (author)

  18. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza

    2015-01-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10 8 ± 5.25% n/cm 2 s. (author)

  19. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  20. Formation properties from high resolution neutron activation gamma-ray spectra

    International Nuclear Information System (INIS)

    Mellor, D.W.; Underwood, M.C.

    1985-01-01

    A neutron activation logging tool has been developed comprising a Five Curie /sup 241/ Am-Be neutron source and a large n-type hyper-pure germanium gamma-ray detector. The tool maintains a constant temperature cryogenic environment for periods in excess of twenty hours. No liquid nitrogen or other consumable material is used in the operating or recharging stages. A large calibration tank in simulated well-bore geometry has been constructed with sand bodies saturated with oil and low salinity water (14,000 ppm NaCl). In the water zone prompt neutron capture gamma-rays from silicon, hydrogen and chlorine were prominent; gamma-rays from inelastic scattering on oxygen and silicon were detected. No gamma-rays arising from inelastic scattering on carbon were detected. These data have been interpreted to yield the porosity, fluid saturations, salinity and matrix composition. In the oil zone, gamma-rays arising from inelastic scattering on oxygen, silicon and carbon were detected. The intensity of the carbon line was very poor, and inadequate for quantitative purposes

  1. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    OpenAIRE

    Kim Myong-Seop; Park Byung-Gun; Kang Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affe...

  2. Thermoluminescence fast neutron dosimetry by laser heating

    International Nuclear Information System (INIS)

    Mathur, V.K.; Brown, M.D.; Braeunlich, P.

    1984-01-01

    Heating rates in excess of 10 4 K.sec -1 have been achieved for thin layers of TL dosemeters by laser heating. The high heating rate improves the signal to noise ratio up to a factor of 10 3 . Thus sensitive thin film fast neutron dosemeters with negligible self-shielding have become a practical reality. Thin samples of CaSO 4 :Dy have been investigated for their response to fast neutrons from a Pu-Be source and a 14.6 MeV neutron generator by using a hydrogenous radiator. A 15 watt CO 2 laser was focussed on the thin TLD layer to a spot size of less than 1 mm to heat it. An exposure of a few tens of milliseconds was sufficient to obtain a TLD curve, which was displayed and processed by a wave form digitiser. The laser spot could be scanned over the TLD sample by a x-y positioner and a large number of observations were obtained on each sample. Preliminary results show that it is possible to obtain a figure of merit of approx. 5% in a mixed n, γ field. A practical design for a fast neutron dosemeter is proposed. (author)

  3. Nuclear reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Horvat, Andrea [TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Schrock, Philipp [CNS, University of Tokyo (Japan); Johansen, Jacob [Aarhus University (Denmark); Collaboration: R3B-Collaboration

    2016-07-01

    Nuclei with a large neutron excess are expected to form a neutron-rich surface layer which is often referred to as the neutron skin. The investigation of this phenomenon is of great interest in nuclear-structure physics and offers a possibility to constrain the equation-of-state of neutron-rich matter. Assuming a geometrical description of reaction processes as in the eikonal approximation, nuclear-induced reactions are a good tool to probe the neutron skin. Measured reaction cross sections can be used to constrain the density distributions of protons and neutrons in the nucleus and therefore the neutron-skin thickness. For this purpose, reactions of neutron-rich tin isotopes in the A=124-134 mass range have been measured on a carbon target at the R{sup 3}B-setup at GSI in inverse kinematics in a kinematically complete manner. Preliminary results for the reaction cross sections of {sup 124}Sn are presented.

  4. The Optical/UV Excess of X-Ray-dim Isolated Neutron Stars. I. Bremsstrahlung Emission from a Strangeon Star Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weiyang; Lu, Jiguang; Men, Yunpeng; Xu, Renxin [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Tong, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Ge, Mingyu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Zhaosheng, E-mail: r.x.xu@pku.edu.cn [Department of Physics, Xiangtan University, Xiangtan 411105 (China)

    2017-03-01

    X-ray-dim isolated neutron stars (XDINSs) are characterized by Planckian spectra in X-ray bands, but show optical/ultraviolet (UV) excesses: the factors by which the measured photometry exceeds those extrapolated from X-ray spectra. To solve this problem, a radiative model of bremsstrahlung emission from a plasma atmosphere is established in the regime of a strangeon star. A strangeon star atmosphere could simply be regarded as the upper layer of a normal neutron star. This plasma atmosphere, formed and maintained by the interstellar-medium-accreted matter due to the so-called strangeness barrier, is supposed to be of two temperatures. All seven XDINS spectra could be well fitted by the radiative model, from optical/UV to X-ray bands. The fitted radiation radii of XDINSs are from 7 to 13 km, while the modeled electron temperatures are between 50 and 250 eV, except RX J0806.4–4123, with a radiation radius of ∼3.5 km, indicating that this source could be a low-mass strangeon star candidate. This strangeon star model could further be tested by soft X-ray polarimetry, such as the Lightweight Asymmetry and Magnetism Probe, which is expected to be operational on China’s space station around 2020.

  5. A large-area, position-sensitive neutron detector with neutron/γ-ray discrimination capabilities

    International Nuclear Information System (INIS)

    Zecher, P.D.; Galonsky, A.; Kruse, J.J.; Gaff, S.J.; Ottarson, J.; Wang, J.; Seres, Z.; Ieki, K.; Iwata, Y.; Schelin, H.

    1997-01-01

    To further study neutron-rich halo nuclei, we have constructed a neutron detector array. The array consists of two separate banks of detectors, each of area 2 x 2 m 2 and containing 250 l of liquid scintillator. Each bank is position-sensitive to better than 10 cm. For neutron time-of-flight measurements, the time resolution of the detector has been demonstrated to be about 1 ns. By using the scintillator NE-213, we are able to distinguish between neutron and γ-ray signals above 1 MeV electron equivalent energy. Although the detector array was constructed for a particular experiment it has also been used in a number of other experiments. (orig.)

  6. Cancer risks and neutron RBE's from Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Dobson, R.L.; Straume, T.

    1982-01-01

    The new radiation dose estimates for Hiroshima and Nagasaki are here combined with epidemiologic data from the A-bomb survivors and examined radiobiologically for compatability with other human and experimental data. The new doses show certain improvements over the original T65 doses. However, they suggest for chronic granulocytic leukemia, total malignancies, and chromosome aberrations, at neutron doses of 1 rad, RBEs in excess of 100, higher than expected from other findings. This and other indications suggest that either there are unrecognized systematic problems with the various radiobiological data, or the new doses are deficient in neutrons for Hiroshima, by a factor of about five. If in fact there were actually some 5-fold more dose from neutrons at Hiroshima than estimated by the new calculations, the RBEs would agree well with laboratory results, and other inconsistencies would largely disappear. Cancer risks are estimated for neutrons from the new doses and are compared with those estimated from radiobiologically reconciled doses (the new doses adjusted by adding approximately 5-fold more neutrons). The latter estimates appear more reasonable. For low-LET radiation, cancer risk estimates are altered very little by the new dose estimates for Nagasaki

  7. Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1976-01-01

    Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)

  8. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  9. Neutron rich matter, neutron stars, and their crusts

    International Nuclear Information System (INIS)

    Horowitz, C J

    2011-01-01

    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.

  10. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.go [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-07-15

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  11. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2010-01-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  12. Large area window on vacuum chamber surface for neutron scattering instruments

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Yokoo, Tetsuya; Ueno, Kenji; Suzuki, Junichi; Teraoku, Takuji; Tsuchiya, Masao

    2012-01-01

    The feasibility of a large area window using a thin aluminum plate on the surface of the vacuum chamber for neutron scattering instruments at a pulsed neutron source was investigated. In the prototype investigation for a window with an area of 1m×1.4m and a thickness of 1 mm, the measured pressure dependence of the displacement agreed well with a calculation using a nonlinear strain–stress curve up to the plastic deformation region. In addition, we confirmed the repetition test up to 2000 pressurization-and-release cycles, which is sufficient for the lifetime of the vacuum chamber for neutron scattering instruments. Based on these investigations, an actual model of the window to be mounted on the vacuum chamber of the High Resolution Chopper Spectrometer (HRC) at J-PARC was designed. By using a calculated stress distribution on the window, the clamping structure capable of balancing the tension in the window was determined. In a model with a structure identical to the actual window, we confirmed the repetition test over more than 7000 pressurization-and-release cycles, which shows a lifetime long enough for the actual usage of the vacuum chamber on the HRC.

  13. Feasibility studies on large sample neutron activation analysis using a low power research reactor

    International Nuclear Information System (INIS)

    Gyampo, O.

    2008-06-01

    Instrumental neutron activation analysis (INAA) using Ghana Research Reactor-1 (GHARR-1) can be directly applied to samples with masses in grams. Samples weights were in the range of 0.5g to 5g. Therefore, the representativity of the sample is improved as well as sensitivity. Irradiation of samples was done using a low power research reactor. The correction for the neutron self-shielding within the sample is determined from measurement of the neutron flux depression just outside the sample. Correction for gamma ray self-attenuation in the sample was performed via linear attenuation coefficients derived from transmission measurements. Quantitative and qualitative analysis of data were done using gamma ray spectrometry (HPGe detector). The results of this study on the possibilities of large sample NAA using a miniature neutron source reactor (MNSR) show clearly that the Ghana Research Reactor-1 (GHARR-1) at the National Nuclear Research Institute (NNRI) can be used for sample analyses up to 5 grams (5g) using the pneumatic transfer systems.

  14. Tritium and neutron measurements from deuterated Pd-Si

    International Nuclear Information System (INIS)

    Claytor, T.N.; Tuggle, D.G.; Menlove, H.O.; Seeger, P.A.; Doty, W.R.; Rohwer, R.K.

    1990-01-01

    Evidence has been found for tritium and neutron production in palladium and silicon stacks when pulsed with a high electric current. These palladium-silicon stacks consist of alternating layers of pressed palladium and silicon powder. A pulsed high electric current is thought to promote non equilibrium conditions important for tritium and neutron production. More than 2000 hours of neutron counting time has been accumulated in a underground, low background, environment with high efficiency counters (21%). Neutron emission has occurred as infrequent burst or as low level emission lasting for up to 20 hours. In eight of 30 cells, excess tritium greater than 3 sigma has been observed. In each of these measurements, with the powder system, the ratio of tritium detected to total integrated total neutrons inferred has been anomalously high. Recent cells have shown reproducible tritium generation at a level of about 0.5 nCi/hr. Several hydrogen and air control cells have been run with no anomalous excess tritium or neutron emission above background. A significant amount of the total palladium inventory (18%) has been checked for tritium contamination by three independent means. 12 refs., 6 figs., 2 tabs

  15. The origin of light neutron-capture elements in very metal-poor stars

    International Nuclear Information System (INIS)

    Honda, S.; Aoki, W.; Kajino, T.; Ando, H.; Beers, T.C.

    2005-01-01

    We obtained high resolution spectra of 40 very metal-poor stars, and measured the abundances of heavy elements. The abundance pattern of the heavy neutron-capture elements (56=< Z=<70) in r-process-enhanced, metal-poor stars are quite similar to that of the r-process component in solar-system material. In contrast, the abundance ratios of the light neutron-capture elements (38=< Z=<40) to heavier ones show a large dispersion. We investigated the correlation between Sr(Z=38) and Ba(Z=56) abundances, and obtained two clear results: (1) Ba-enhanced stars also show large excess of Sr (there is no object which is Ba-rich and Sr-poor); (2) stars with low Ba abundance show large scatter in Sr abundance. This trend is naturally explained by hypothesizing the existence of two processes, one that produces Sr without Ba and the other that produces Sr and Ba in similar proportions

  16. Neutron star evolutions using tabulated equations of state with a new execution model

    Science.gov (United States)

    Anderson, Matthew; Kaiser, Hartmut; Neilsen, David; Sterling, Thomas

    2012-03-01

    The addition of nuclear and neutrino physics to general relativistic fluid codes allows for a more realistic description of hot nuclear matter in neutron star and black hole systems. This additional microphysics requires that each processor have access to large tables of data, such as equations of state, and in large simulations the memory required to store these tables locally can become excessive unless an alternative execution model is used. In this talk we present neutron star evolution results obtained using a message driven multi-threaded execution model known as ParalleX as an alternative to using a hybrid MPI-OpenMP approach. ParalleX provides the user a new way of computation based on message-driven flow control coordinated by lightweight synchronization elements which improves scalability and simplifies code development. We present the spectrum of radial pulsation frequencies for a neutron star with the Shen equation of state using the ParalleX execution model. We present performance results for an open source, distributed, nonblocking ParalleX-based tabulated equation of state component capable of handling tables that may even be too large to read into the memory of a single node.

  17. Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, David M.; Stuart, Cory R.; Klaass, R. Fred; Merrill, David B. [MSI/Photogenics Division, Orem, Utah (United States)

    2015-07-01

    This paper describes the development and testing of a neutron counter, spectrometer, and dosimeter that is compact, efficient, and accurate. A self-contained neutron detection instrument has wide applications in health physics, scientific research, and programs to detect, monitor, and control strategic nuclear materials (SNM). The 1.3 liter detector head for this instrument is a composite detector with an organic scintillator containing uniformly distributed {sup 6}Li{sub 6}{sup nat}Gd{sup 10}B{sub 3}O{sub 9}:Ce (LGB:Ce) microcrystals. The plastic scintillator acts to slow impinging neutrons and emits light proportional to the energy lost by the neutrons as they moderate in the detector body. Moderating neutrons that have slowed sufficiently capture in one of the Lithium-6, Boron-10, or Gadolinium-157 atoms in the LGB:Ce scintillator, which then releases the capture energy in a characteristic cerium emission pulse. The measured captured pulses indicate the presence of neutrons. When a scintillating fluor is present in the plastic, the light pulse resulting from the neutron moderating in the plastic is paired with the LGB:Ce capture pulse to identify the energy of the neutron. About 2% of the impinging neutrons lose all of their energy in a single collision with the detector. There is a linear relationship between the pulse areas of this group of neutrons and energy. The other 98% of neutrons have a wide range of collision histories within the detector body. When these neutrons are 'binned' into energy groups, each group contains a distribution of pulse areas. This data was used to assist in the unfolding of the neutron spectra. The unfolded spectra were then validated with known spectra, at both neutron emitting isotopes and fission/accelerator facilities. Having validated spectra, the dose equivalent and dose rate are determined by applying standard, regulatory damage coefficients to the measured neutron counts for each energy bin of the spectra. Testing

  18. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  19. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  20. Four energy group neutron flux distribution in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION code

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2009-01-01

    A 3-D (R, θ , Z) neutronic model for the Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis. The group constants for all the reactor components were generated using the WIMSD4 code. The reactor excess reactivity and the four group neutron flux distributions were calculated using the CITATION code. This model is used in this paper to calculate the point wise four energy group neutron flux distributions in the MNSR versus the radius, angle and reactor axial directions. Good agreement is noticed between the measured and the calculated thermal neutron flux in the inner and the outer irradiation site with relative difference less than 7% and 5% respectively. (author)

  1. PANDORA, a large volume low-energy neutron detector with real-time neutron-gamma discrimination

    Science.gov (United States)

    Stuhl, L.; Sasano, M.; Yako, K.; Yasuda, J.; Baba, H.; Ota, S.; Uesaka, T.

    2017-09-01

    The PANDORA (Particle Analyzer Neutron Detector Of Real-time Acquisition) system, which was developed for use in inverse kinematics experiments with unstable isotope beams, is a neutron detector based on a plastic scintillator coupled to a digital readout. PANDORA can be used for any reaction study involving the emission of low energy neutrons (100 keV-10 MeV) where background suppression and an increased signal-to-noise ratio are crucial. The digital readout system provides an opportunity for pulse shape discrimination (PSD) of the detected particles as well as intelligent triggering based on PSD. The figure of merit results of PANDORA are compared to the data in literature. Using PANDORA, 91 ± 1% of all detected neutrons can be separated, while 91 ± 1% of the detected gamma rays can be excluded, reducing the gamma ray background by one order of magnitude.

  2. Dose inhomogeneities for photons and neutrons near interfaces

    International Nuclear Information System (INIS)

    Broerse, J. J.; Zoetelief, J.

    2004-01-01

    Perturbations of charged particle equilibrium (CPE) at interfaces of materials of different atomic composition can lead to considerable differences in the energy deposition by photons and neutrons. Specific examples of these interface perturbations are encountered during irradiation of body cavities and soft tissue adjacent to bone or metallic implants and irradiation of cells in monolayer on the bottom of culture dishes. Another example is the build-up of CPE at air-tissue interfaces, referred to in radiotherapy as the skin sparing effect. For photon irradiation excess production of secondary electrons in high-Z materials, such as glass, bone or gold, will induce appreciably higher doses and decreased cell survival compared to the equilibrium situation. The energy dissipation of fast neutrons in biological materials occurs through recoil protons, heavy recoil nuclei and products of nuclear reactions. Owing to the large contribution from recoil protons to the neutron kerma, the hydrogen content of the biological material mainly determines the energy deposition. For neutron irradiation of cells in monolayer, CPE can be established or deliberately avoided by mounting tissue-equivalent plastic or carbon discs in front of the cells, respectively. This approach makes it possible to distinguish the biological effects of the low- and high-LET radiation components. (authors)

  3. Development of a large area thermal neutron detector based on a scintillator

    International Nuclear Information System (INIS)

    Engels, Ralf

    2012-01-01

    In the present work, the development and construction of a detector prototype based on wavelength shifting fiber in combination with a scintillator has been investigated and optimized. This development aims at an alternative for large area neutron detectors based on "3He detectors, which was the main construction in the past. After the study of the components and assemblies, such as: the scintillator, the wavelength-shifting-fibers and available photomultiplier tubes, the construction of the first prototype module begun. The neutron converter was selected as a "6LiF/ZnS scintillator, which produces a big light yield per absorbed neutron. The prototype itself is square and has an edge length of 30 cm in combination with two orthogonal layers of crossed wavelength-shifting-fibers. The top fiber layer, which is closer to the "6LiF/ZnS top scintillator produces the x-coordinates and the lower layer produces the y-coordinates for each event. In the prototype, MSJ-fibers from the company Kuraray were used with 1 mm diameter and spacing in the top layer of 1.5 mm and 1 mm in the lower layer. Due to the orthogonal arrangement of the wires in the two layers, one may identify where the neutron was absorbed in the scintillator and produced the light yield. In order to reduce the light loss of the absorbed photons inside the fibers, a bending radius of greater than 20 mm was used and achieved by warming up the fibers to 80 C during the bending process. The increased temperature reduces the crack formation in the fibers which increases the light loss. At this time it is expected that a photomultiplier from Hamamatsu with 256 individual pixels for readout will be used. This H9500 flat panel photomultiplier has the advantage of readout of all fibers of the prototype in one photomultiplier housing. In combination with integrated readout electronics one can minimize the homogeneity/gain differences of the photocathode pixels, the different light loss in each fiber, and the gain

  4. Large solid-angle polarisation analysis at thermal neutron wavelengths using a sup 3 He spin filter

    CERN Document Server

    Heil, W; Cywinski, R; Humblot, H; Ritter, C; Roberts, T W; Stewart, J R

    2002-01-01

    The strongly spin-dependent absorption of neutrons in nuclear spin-polarised sup 3 He opens up the possibility of polarising neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. In this paper we describe the first large solid-angle polarisation analysis measurement using a sup 3 He neutron spin filter at thermal neutron wavelengths (lambda=2.5 A). This experiment was performed on the two-axis diffractometer D1B at the Institut Laue-Langevin using a banana-shaped filter cell (530 cm sup 3 ) filled with sup 3 He gas with a polarisation of P=52% at a pressure of 2.7 bar. A comparison is made with a previous measurement on D7 using a cold neutron beam on the same sample, i.e. amorphous ErY sub 6 Ni sub 3. Using uniaxial polarisation analysis both the nuclear and magnetic cross-sections could be extracted over the range of scattering-vectors [0.5<=Q(A sup - sup 1)<=3.5]. The results are in qualitative and quantitative agreement with the D7-data, whe...

  5. A large 2D PSD for thermal neutron detection

    International Nuclear Information System (INIS)

    Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.

    1996-01-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm 2 . To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa 3 He plus 100 kPa CF 4 and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10 5 events per second. The (calculated) neutron detection efficiency was 60% for 2 angstrom neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm 2 ) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display

  6. NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Rodríguez, Héctor; Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Schwab, Josiah, E-mail: hector.mr@pitt.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼10{sup 3}–10{sup 4} years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10{sup −4}. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z {sub ⊙}. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  7. NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS

    International Nuclear Information System (INIS)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Piro, Anthony L.; Schwab, Josiah

    2016-01-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼10 3 –10 4 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10 −4 . This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙ . Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  8. Neutron Detection with Large Plastic Scintillators for RPM Applications

    International Nuclear Information System (INIS)

    Corre, G.; Boudergui, K.; Sannie, G.; Kondrasovs, V.

    2015-01-01

    Homeland security requests the use Radiation Portal Monitor (RPM). They must be able to detect and differentiate gamma and neutron radiation. Gamma detection is required for illicit transportation of radioactive matter detection. Neutron detection is important to control nonproliferation of enriched material. Manufacturers worldwide propose sensors based on 3 He which give the actual state of art in term of neutron detection. The imminent shortage of 3 He forces manufacturers to find viable alternative. From 10 years sensors providers have the challenge to replace previous 3 He detectors that are known to be the most commonly deployed neutron sensor. As 3 He detectors can only detect neutron, they must be completed with gamma detector. The proposed approach is based on pulse time correlation between adjacent sensors from signal collected by EJ200 plastic scintillators. Results obtained during FP7 Scintilla project test campaigns show the system relevance for replacement of today's 3 He detectors. (authors)

  9. A Monte-Carlo code for neutron efficiency calculations for large volume Gd-loaded liquid scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Trzcinski, A.; Zwieglinski, B. [Soltan Inst. for Nuclear Studies, Warsaw (Poland); Lynen, U. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Pochodzalla, J. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1998-10-01

    This paper reports on a Monte-Carlo program, MSX, developed to evaluate the performance of large-volume, Gd-loaded liquid scintillation detectors used in neutron multiplicity measurements. The results of simulations are presented for the detector intended to count neutrons emitted by the excited target residue in coincidence with the charged products of the projectile fragmentation following relativistic heavy-ion collisions. The latter products could be detected with the ALADIN magnetic spectrometer at GSI-Darmstadt. (orig.) 61 refs.

  10. A large 2D PSD for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B.; Watt, G.; Boldeman, J.W. [Australian Nucl. Sci. and Tech. Organ., Menai, NSW (Australia). Phys. Div.; Smith, G.C. [Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    1997-06-21

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4}, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2 A neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The proportional counter operating system (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display. (orig.).

  11. Neutronic performance of high molecular weight coolants for a prismatic VHTR

    International Nuclear Information System (INIS)

    Schriener, T. M.; El-Genk, M. S.

    2008-01-01

    A neutronic model is developed of a prismatic Very High Temperature Reactor (VHTR) to investigate the effects on the excess reactivity and operation cycle length of replacing helium with binary gas mixtures of He-Ne, He-N 2 , or He-Xe as reactor coolants and working fluids in the direct Closed Brayton Cycle (CBC) for energy conversion. Also investigated is the neutron activation of these binary gas mixtures in the VHTR. The motivation for using the heavy binary mixtures is the smaller size and the fewer number of stages of the CBC turbo-machinery. The present analysis uses the Monte Carlo code MCNPX 2.6D at typical operating conditions (500-1000 degrees and 7.12 MPa) in the VHTR. He-Ne (15 g/mol) is the best neutronically, but not thermal-hydraulically, followed by He-N 2 . Although He-Ne has ∼13.6% lower heat transfer coefficient than helium, it insignificantly affects the initial excess reactivity and the operation life cycle and experiences no neutrons activation. On the other hand, He-N 2 has 4.4% higher heat transfer coefficient than helium and experiences insignificant neutron activation in the reactor, but decreases the initial excess reactivity by ∼5.2% and the operation cycle length by 6.7%. He-Xe (15 g/mol) has 8% higher heat transfer coefficient than helium, but decreases the initial excess reactivity by 18.2% and the operational cycle length by 17%. In addition, neutron activation of xenon produces a significant source term, requiring shielding of the CBC loop and could contaminate the turbo-machinery with long-lived radioactive cesium. Thus, He-Xe is not recommended as a reactor coolant, but could be used as working fluid in a CBC loop that is indirectly coupled to helium cooled VHTR. (authors)

  12. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J.T., E-mail: ted@adelphitech.com [Adelphi Technology Inc., 2003 East Bayshore Road, Redwood City, California 94063 (United States); Williams, D.L.; Gary, C.K.; Piestrup, M.A.; Faber, D.R.; Fuller, M.J.; Vainionpaa, J.H.; Apodaca, M. [Adelphi Technology Inc., 2003 East Bayshore Road, Redwood City, California 94063 (United States); Pantell, R.H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2012-05-21

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5-50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 10{sup 9} n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  13. Characteristics of the NE-213 large-volume neutron counters for muon catalyzed fusion investigation

    International Nuclear Information System (INIS)

    Bystritsky, V.M.; Wozniak, J.; Zinov, V.G.

    1984-01-01

    The Monte-Carlo method was used to establish the properties and feasibility of a large-volume NE-213 scin illator as an efficient neutron detector. The recoil proton spectra, calculated efficiencies for different detection thresholds and scintillator sizes are presented for the neutron energy up to 15 MeV. The time characteristics, e. g., time resolution, are discussed. It is also shown that no strong influence of light attenuation by the scintilla or itself on calculated efficiencies is observed, when gamma-calibration technique is used. The detector vol me of approximately 100 l is suggested for application in investigations of μ-atom and μ-molecular processes

  14. A high gain energy amplifier operated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C. [CERN, Geneva (Switzerland)

    1995-10-01

    The basic concept and the main practical considerations of an Energy Amplifier (EA) have been exhaustively described elsewhere. Here the concept of the EA is further explored and additional schemes are described which offer a higher gain, a larger maximum power density and an extended burn-up. All these benefits stem from the use of fast neutrons, instead of thermal or epithermal ones, which was the case in the original study. The higher gain is due both to a more efficient high energy target configuration and to a larger, practical value of the multiplication factor. The higher power density results from the higher permissible neutron flux, which in turn is related to the reduced rate of {sup 233}Pa neutron captures (which, as is well known, suppress the formation of the fissile {sup 233}U fuel) and the much smaller k variations after switch-off due to {sup 233}Pa decays for a given burn-up rate. Finally a longer integrated burn-up is made possible by reduced capture rate by fission fragments of fast neutrons. In practice a 20 MW proton beam (20 mA @ 1 GeV) accelerated by a cyclotron will suffice to operate a compact EA at the level of {approx} 1 GW{sub e}. The integrated fuel burn-up can be extended in excess of 100 GW d/ton, limited by the mechanical survival of the fuel elements. Radio-Toxicity accumulated at the end of the cycle is found to be largely inferior to the one of an ordinary Reactor for the same energy produced. Schemes are proposed which make a {open_quotes}melt-down{close_quotes} virtually impossible. The conversion ratio, namely the rate of production of {sup 233}U relative to consumption is generally larger than unity, which permits production of fuel for other uses. Alternatively the neutron excess can be used to transform unwanted {open_quotes}ashes{close_quotes} into more acceptable elements.

  15. Hydrophobic hydration and anomalous excess partial molar volume of tert-butyl alcohol-water mixture studied by quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Nakada, Masaru; Maruyama, Kenji; Misawa, Masakatsu; Yamamuro, Osamu

    2007-01-01

    Quasielastic neutron scattering has been used to investigate the hydration of alcohol clusters in tert-butyl alcohol-water mixture. The measurements were made in a range of alcohol concentration, x TBA , from 0.0 to 0.17 in mole fraction at 25degC. Fraction, α, of water molecules hydrated to fractal-surface of alcohol clusters in tert-butyl alcohol-water mixture was obtained as a function of alcohol concentration. Average hydration number N WS of tert-butyl alcohol molecule was derived from the value of α as a function of alcohol concentration. The value of N WS for an isolated alcohol molecule in water was 19-21. The anomalous excess partial molar volume of tert-butyl alcohol-water mixture was interpreted successfully by applying the same model with the same values of volume parameter as used for 1-propanol-water mixture, δ 1 (=-0.36 cm 3 ·mol -1 ) and δ 2 (=0.60 cm 3 ·mol -1 ). (author)

  16. New model of universal gas-filled neutron tube

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bessarabskii, I.G.; Voitsik, L.R.; Mints, A.Z.

    1985-01-01

    The UNG-1 gas-filled neutron tube is serially produced. In type UNG neutron generators, the tube operates in the pulsed mode in the high voltage doubling circuit arrangement. During extended operation, its advantages were discovered: long operating time, fairly stable neutron yield, and simplicity of use and operation. However, the mean neutron yield (approx.10 7 s -1 ) generated by the tube in the optimal mode at the present time proved to be inadequate in solving numerous geophysical problems. So a model of a neutron tube, model UNG-2, was designed, ensuring an enhanced neutron yield of 10 8 s -1 in the continuous-operating mode. When the tube is connected to the high voltage doubling circuit, the mean neutron yield is only somewhat in excess of the neutron yield from the UNG-1 tube

  17. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  18. Penning-trap mass measurements of the neutron-rich K and Ca isotopes: Resurgence of the N=28 shell strength

    Science.gov (United States)

    Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.

    2012-02-01

    We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.

  19. Complementary technologies for verification of excess plutonium

    International Nuclear Information System (INIS)

    Langner, D.G.; Nicholas, N.J.; Ensslin, N.; Fearey, B.L.; Mitchell, D.J.; Marlow, K.W.; Luke, S.J.; Gosnell, T.B.

    1998-01-01

    Three complementary measurement technologies have been identified as candidates for use in the verification of excess plutonium of weapons origin. These technologies: high-resolution gamma-ray spectroscopy, neutron multiplicity counting, and low-resolution gamma-ray spectroscopy, are mature, robust technologies. The high-resolution gamma-ray system, Pu-600, uses the 630--670 keV region of the emitted gamma-ray spectrum to determine the ratio of 240 Pu to 239 Pu. It is useful in verifying the presence of plutonium and the presence of weapons-grade plutonium. Neutron multiplicity counting is well suited for verifying that the plutonium is of a safeguardable quantity and is weapons-quality material, as opposed to residue or waste. In addition, multiplicity counting can independently verify the presence of plutonium by virtue of a measured neutron self-multiplication and can detect the presence of non-plutonium neutron sources. The low-resolution gamma-ray spectroscopic technique is a template method that can provide continuity of knowledge that an item that enters the a verification regime remains under the regime. In the initial verification of an item, multiple regions of the measured low-resolution spectrum form a unique, gamma-radiation-based template for the item that can be used for comparison in subsequent verifications. In this paper the authors discuss these technologies as they relate to the different attributes that could be used in a verification regime

  20. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.

    Science.gov (United States)

    Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L

    2016-08-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

  1. Large solid-angle spectrometers for studies of double-differential charged-particle and neutron emission cross sections

    International Nuclear Information System (INIS)

    Baba, M.; Matsuyama, S.; Sanami, T.; Soda, D.; Matsuyama, I.; Ohkubo, T.; Iwasaki, S.; Hirakawa, N.

    1995-01-01

    The large solid-angle spectrometer developed for studies of double-differential cross sections of (n, charged particle) and (n, xn') reactions using a gas-filled gridded-ionization chamber and an 80-cm long liquid scintillator is described. The charged particle spectrometer is a twin gas-filled gridded-ionization chamber with solid angle close to 4 π designed to achieve high stopping power and background suppression. The neutron spectrometer is a long NE213 liquid scintillation detector having position sensitivity. It is used as a large single spectrometer or a position sensitive detector covering wide scattering angle. The facility design, performance and examples of application are discussed. The conclusion is made that the facility provides a useful mean for studies in particular for reactions with small cross sections and/or for neutron sources with low intensity. 15 refs., 15 figs

  2. CERN-group conceptual design of a fast neutron operated high power energy amplifier

    International Nuclear Information System (INIS)

    Rubbia, C.; Rubio, J.A.; Buono, S.

    1997-01-01

    The practical feasibility of an Energy Amplifier (EA) with power and power density which are comparable to the ones of the present generation of large PWR is discussed in this paper. This is only possible with fast neutrons. Schemes are described which offer a high gain, a large maximum power density and an extended burn-up, well in excess of 100 GW x d/t corresponding to about five years at full power operation with no intervention on the fuel core. The following topics are discussed: physics considerations and parameter definition, the accelerator complex, the energy amplifier unit, computer simulated operation, and fuel cycle closing

  3. CERN-group conceptual design of a fast neutron operated high power energy amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C; Rubio, J A [European Organization for Nuclear Research, CERN, Geneva (Switzerland); Buono, S [Laboratoire du Cyclotron, Nice (France); and others

    1997-11-01

    The practical feasibility of an Energy Amplifier (EA) with power and power density which are comparable to the ones of the present generation of large PWR is discussed in this paper. This is only possible with fast neutrons. Schemes are described which offer a high gain, a large maximum power density and an extended burn-up, well in excess of 100 GW x d/t corresponding to about five years at full power operation with no intervention on the fuel core. The following topics are discussed: physics considerations and parameter definition, the accelerator complex, the energy amplifier unit, computer simulated operation, and fuel cycle closing. 84 refs, figs, tabs.

  4. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  5. The use of large area silicon sensors for thermal neutron detection

    International Nuclear Information System (INIS)

    Schulte, R.L.; Swanson, F.; Kesselman, M.

    1994-01-01

    The use of large area planar silicon detectors coupled with gadolinium foils has been investigated to develop a thermal neutron detector having a large area-efficiency (Aε) product. Noise levels due to high detector capacitance limit the size of silicon detectors that can be utilized. Calculations using the Monte Carlo code, MCNP, have been made to determine the variation of intrinsic detection efficiency as a function of the discriminator threshold level required to eliminate the detector noise. Measurements of the noise levels for planar silicon detectors of various resistivities (400, 3000 and 5000 Ω cm) have been made and the optimal detector area-efficiency products have been determined. The response of a Si-Gd-Si sandwich detector with areas between 1 cm 2 and 10.5 cm 2 is presented and the effects of the detector capacitance and reverse current are discussed. ((orig.))

  6. Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments

    Directory of Open Access Journals (Sweden)

    Julie Hougaard Overgaard

    2016-11-01

    Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to

  7. Neutron activation analysis at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide 252 Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world's largest inventory of compact 252 Cf neutron sources. Neutron source intensities of ≤ 10 11 neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10 8 cm -2 s -1 at the sample. Total flux of ≥10 9 cm -2 s -1 is feasible for large-volume irradiation rabbits within the 252 Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis

  8. A Charged Particle Veto Wall for the Large Area Neutron Array (LANA)

    Science.gov (United States)

    Zhu, K.; Chajecki, Z.; Anderson, C.; Bromell, J.; Brown, K.; Crosby, J.; Kodali, S.; Lynch, W. G.; Morfouace, P.; Sweany, S.; Tsang, M. B.; Tsang, C.; Brett, J. J.; Swaim, J. L.

    2017-09-01

    Comparison of neutrons and protons emitted in heavy ion collisions is one of the observables to probe symmetry energy, which is related to the properties of neutron star. In general, neutrons are difficult to measure and neutron detectors are not as easy to use or as widely available as charged particle detectors. Two neutron walls (NW) called LANA exist at the National Superconducting Cyclotron Laboratory. Although the NSCL NW attains excellent discrimination of γ rays and neutron, it fails to discriminate charged particles from neutrons. To ensure near 100% rejection of charged particles, a Charged Particle Veto Wall (VW) is being jointly built by Michigan State University and Western Michigan University. It will be placed in front of one NW. To increase efficiency in detecting neutrons, the second neutron wall is stacked behind it. In this presentation, I will discuss the design, construction and testing of the VW together with the LANA in preparation of two approved NSCL experiments to probe the density and momentum dependence of the symmetry energy potentials in the equation state of the asymmetric nuclear matter. This material is based upon work supported by the National Science Foundation under Grant No. PHY 1565546.

  9. D-D neutron energy-spectra measurements in Alcator C

    International Nuclear Information System (INIS)

    Pappas, D.S.; Wysocki, F.J.; Furnstahl, R.J.

    1982-08-01

    Measurements of energy spectra of neutrons produced during high density (anti n/sub e/ > 2 x 10 14 cm -3 ) deuterium discharges have been performed using a proton-recoil (NE 213) spectrometer. A two foot section of light pipe (coupling the scintillator and photomultiplier) was used to extend the scintillator into a diagnostic viewing port to maximize the neutron detection efficiency while not imposing excessive magnetic shielding requirements. A derivative unfolding technique was used to deduce the energy spectra. The results showed a well defined peak at 2.5 MeV which was consistent with earlier neutron flux measurements on Alcator C that indicated the neutrons were of thermonuclear origin

  10. Excessive anticoagulation with warfarin or phenprocoumon may have multiple causes

    DEFF Research Database (Denmark)

    Meegaard, Peter Martin; Holck, Line H V; Pottegård, Anton

    2012-01-01

    Excessive anticoagulation with vitamin K antagonists is a serious condition with a substantial risk of an adverse outcome. We thus found it of interest to review a large case series to characterize the underlying causes of excessive anticoagulation.......Excessive anticoagulation with vitamin K antagonists is a serious condition with a substantial risk of an adverse outcome. We thus found it of interest to review a large case series to characterize the underlying causes of excessive anticoagulation....

  11. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  12. Neutron radiography using a transportable superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.A. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Hawkesworth, M.R. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Beynon, T.D. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Green, S. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Rogers, J.D. (Rolls-Royce, Derby (United Kingdom)); Allen, M.J. (Rolls-Royce, Derby (United Kingdom)); Plummer, H.C. (Rolls-Royce, MatEval, Derby (United Kingdom)); Boulding, N.J. (Oxford Instruments (United Kingdom)); Cox, M. (Oxford Instruments (United Kingdom)); McDougall, I. (Oxford Instruments (United Kingdom))

    1994-12-30

    A thermal neutron radiography system based on a compact 12 MeV superconducting proton cyclotron is described. Neutrons are generated using a thick beryllium target and moderated in high density polyethylene. Monte Carlo computer simulations have been used to model the neutron and photon transport in order to optimise the performance of the system. With proton beam currents in excess of 100 [mu]A, it can provide high thermal neutron fluxes with L/D ratios of between 50 and 300 for various applications. Both film and electronic imaging are used to produce radiographs. The electronic imaging system consists of a [sup 6]Li-loaded ZnS intensifier screen, and a low light CCD or SIT camera. High resolution images can be recorded and computer-controlled data processing, analysis and display are possible. ((orig.))

  13. The use of large area silicon sensors for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, R.L. (Research and Development Center, Mail Stop: A01-26, Grumman Aerospace Corporation, Bethpage, NY 11714 (United States)); Swanson, F. (Research and Development Center, Mail Stop: A01-26, Grumman Aerospace Corporation, Bethpage, NY 11714 (United States)); Kesselman, M. (Research and Development Center, Mail Stop: A01-26, Grumman Aerospace Corporation, Bethpage, NY 11714 (United States))

    1994-12-30

    The use of large area planar silicon detectors coupled with gadolinium foils has been investigated to develop a thermal neutron detector having a large area-efficiency (A[epsilon]) product. Noise levels due to high detector capacitance limit the size of silicon detectors that can be utilized. Calculations using the Monte Carlo code, MCNP, have been made to determine the variation of intrinsic detection efficiency as a function of the discriminator threshold level required to eliminate the detector noise. Measurements of the noise levels for planar silicon detectors of various resistivities (400, 3000 and 5000 [Omega] cm) have been made and the optimal detector area-efficiency products have been determined. The response of a Si-Gd-Si sandwich detector with areas between 1 cm[sup 2] and 10.5 cm[sup 2] is presented and the effects of the detector capacitance and reverse current are discussed. ((orig.))

  14. Neutrons at COSY

    International Nuclear Information System (INIS)

    Filges, D.; Freiesleben, H.

    1988-05-01

    For many years neutrons were considered important both as a useful probe in nuclear physics research and as an initiator and catalyst for fission, fusion and other applications. As a result knowledge about neutrons, especially below 20 MeV, received organized world-wide attention. Research with neutrons at medium energies, say 50 MeV to several GeV, has not consistently received attention and no systematic evaluations exist. But there is a large and considerable interest today because medium energy neutrons are very important in basic science and technology. The aim of this workshop was to provide an overview of the present status and the research which should be carried out in this field in future and which kind of experiments should be performed at the COSY facility: State-of-the-art about medium energy neutron experiments and existing facilities; planned experiments; needs for experiments doing research with neutrons at COSY (detectors, accelerator requirements, time structure etc.); what will be a first experiment to measure neutrons at COSY. The interest in this workshop is documented by a large number of participants. Copies of the viewgraphs of the talks are provided. (orig./HP)

  15. Design of filtered epithermal neutron beams for BNC

    International Nuclear Information System (INIS)

    Greenwood, R.C.

    1986-01-01

    The design principles of filters (installed in nuclear reactors) to provide epithermal neutron beams suitable for use in 10 B Neutron Capture Therapy (BNCT) are reviewed. The goal of such filters is to provide epithermal neutron beams within an energy range of 1 keV to 30 keV with fluxes in excess of 5 x 10 8 neutrons/cm 2 .s, and having acceptably low contaminant fast neutron (> 30 keV) and gamma components. Filters considered for this application include 238 U, Sc, Fe/Al and Al/S. It is shown that in order to achieve a goal epithermal neutron flux of > 5 x 10 8 neutrons/cm 2 .s, such filters must be located in radial beam channels which view essentially the complete reactor core. Based on considerations of estimated epithermal fluxes, cost and availability of materials, and transmitted neutron energy spectrum, it is suggested that a filter consisting of elements of Al, S, Ti and V might prove to be an optimum design for BNCT applications. 13 references, 3 figures, 8 tables

  16. Modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program

    International Nuclear Information System (INIS)

    Moskowitz, B.S.

    2000-01-01

    This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program. This effort represents a complete 'white sheet of paper' rewrite of the code. In this paper, the motivation driving this project, the design objectives for the new version of the program, and the design choices and their consequences will be discussed. The design itself will also be described, including the important subsystems as well as the key classes within those subsystems

  17. Development of fast neutron radiography system based on portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th [Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok, THAILAND 10330 (Thailand)

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  18. Plant protection system optimization studies to mitigate consequences of large breaks in the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khayat, M.I.; March-Leuba, J.

    1993-01-01

    This paper documents some of the optimization studies performed to maximize the performance of the engineered safety features and scram systems to mitigate the consequences of large breaks in the primary cooling system of the Advanced Neutron Source (ANS) Reactor

  19. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  20. An estimate of the radiation-induced cancer risk from the whole-body stray radiation exposure in neutron radiotherapy

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1982-01-01

    1980 BEIR III risk factors have been used to estimate the secondary cancer risks from the whole-body stray radiation exposures occurring in neutron radiotherapy. Risks were calculated using linear, linear-quadratic and quadratic dose-response models for the gamma component of the stray radiation. The linear dose-response model was used to calculate risk for the neutron component of the stray radiation. These estimates take into consideration for the first time the age and sex distribution of patients undergoing neutron therapy. Changes in risk as a function of the RBE (10-100) assigned to the stray neutron radiation component have also been assessed. Excess risks in neutron-treated patients have been compared with excess risks for photon-treated patients and with the expected incidence of cancer in a normal population having the same age and sex distribution. Results indicate that it will be necessary to tolerate a higher incidence of secondary cancers in patients undergoing fast neutron therapy than is the case with conventional photon therapy. For neutron RBEs of less than 50 the increased risk is only a fraction of the normal expected incidence of cancer in this population. Comparison of the radiation-induced risk with reported normal tissue complication rates in the treatment volume indicates that the excess cancer risk is substantially lower than the risk from other late normal tissue effects. (author)

  1. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Neutron physical investigations on the use of burnable poisons and gray absorber rods in large pressurized water reactors

    International Nuclear Information System (INIS)

    Brosche, C.; Katinger, T.; Kollmar, W.; Thieme, K.; Wagner, M.R.

    1977-11-01

    Methods and results of neutron physics calculations are described using burnable poisons and gray absorber rods in large PWR's. Calculated and measured values are compared, the effort for programming has been guessed. (orig.) [de

  3. Neutronics analysis of Dalat Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Nguyen Manh Hung; Pham Hong Son; Tran Quoc Duong

    2006-01-01

    Many neutronics codes have been used to calculate for Dalat Research Reactor (DRR) from 1983 (the first critical of DRR in December, 1983). The purposes of all calculations are to know exactly many important parameters related to Reactor Physics and Neutron Physics in reactor core. The results from calculation play important role in core and fuel management for DRR. Especially basing on the results we can predict about fuel cycle, fuel burn up distribution and plan for using optimize remain fresh fuel assemblies of DRR. By using system neutronics code including transport codes, diffusion codes and Mote Carlo code, many characteristics of fuel assemblies and other parameters of whole core were received such as main features of VVR-M2 fuel assembly type, multiplication factor, neutron flux distribution, power distribution, burn up distribution, excess reactivity, control rods worth, neutron spectrum, temperature reactivity coefficient ect. In the paper, brief description all computer codes to being used in DRR and the calculation results from the codes above are presented. (author)

  4. Fusion enhancement in the reactions of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Bian Baoan; Zhang Fengshou; Zhou Hongyu

    2009-01-01

    The neutron-rich fusion reactions are investigated systematically using the improved isospin dependent quantum molecular dynamics model. By studying the systematic dependence of fusion barrier on neuron excess, we find the enhancement of the fusion cross sections for neutron-rich nuclear reactions that give the lowered static Coulomb barriers. The calculated fusion cross sections agree quantitatively with the experimental data. We further discuss the mechanism of the fusion enhancement of the cross sections for neutron-rich nuclear reactions by analyzing the dynamical lowering of the Coulomb barrier that is attributed to the enhancement of the N/Z ratio at the neck region.

  5. Neutron Tomography at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Myers, William Riley

    2017-01-01

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  6. Neutron Tomography at the Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Myers, William Riley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  7. Pulse-shape discrimination of high-energy neutrons and gamma rays in NaI(Tl)

    International Nuclear Information System (INIS)

    Share, G.H.; Kurfess, J.D.; Theus, R.B.

    1978-01-01

    Pulse-shape discrimination can be used to separate neutron and gamma-ray interactions depositing energies up to in excess of 50 MeV in NaI(Tl) crystals. The secondary alpha particles, deuterons and protons produced in the neutron interactions are also resolvable. (Auth.)

  8. Neutron-rich isotopes of the lightest elements

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Penionzhkevich, Yu.Eh.; Kalpakchieva, R.

    1989-01-01

    A review is presented of the experimental investigations on the stability of very neutron-rich light nuclei carried out at the JINR Laboratory of Nuclear Reactions. Results on mass excess measurements are reported for 4 H, 5 H, 6 H, 7 H and for the superheavy helium isotope 9 He. Some results from the joint JINR-Ganil experiment on the search for and study of new neutron-rich light nuclei are also given. Analyzed are new possibilities for the investigation of multineutron decay of light nuclei. 14 refs.; 10 figs

  9. Measurement of total reaction cross sections of exotic neutron rich nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Chouvel, J.M.; Wen Long, Z.

    1987-01-01

    Total reaction cross-sections of neutron rich nuclei from C to Mg in a thick Si-target have been measured using the detection of the associated γ-rays in a 4Π-geometry. This cross-section strongly increases with neutron excess, indicating an increase of as much as 15% of the reduced strong absorption radius with respect to stable nuclei

  10. Selective Filtration of Gadolinium Trichloride for Use in Neutron Detection in Large Water Cherenkov Detectors

    International Nuclear Information System (INIS)

    Vagins, Mark R.

    2013-01-01

    Super-??Kamiokande Water Cherenkov detectors have been used for many years as inexpensive, effective detectors for neutrino interactions and nucleon decay searches. While many important measurements have been made with these detectors a major drawback has been their inability to detect the absorption of thermal neutrons. We believe an inexpensive, effective technique could be developed to overcome this situation via the addition to water of a solute with a large neutron cross section and energetic gamma daughters which would make neutrons detectable. Gadolinium seems an excellent candidate especially since in recent years it has become very inexpensive, now less than $8 per kilogram in the form of commercially-available gadolinium trichloride, GdCl 3 . This non-toxic, non-reactive substance is highly soluble in water. Neutron capture on gadolinium yields a gamma cascade which would be easily seen in detectors like Super-Kamiokande. We have been investigating the use of GdCl 3 as a possible upgrade for the Super-Kamiokande detector with a view toward improving its performance as a detector for atmospheric neutrinos, supernova neutrinos, wrong-sign solar neutrinos, reactor neutrinos, proton decay, and also as a target for the coming T2K long-baseline neutrino experiment. This focused study of selective water filtration and GdCl 3 extraction techniques, conducted at UC Irvine, followed up on highly promising benchtop-scale and kiloton-scale work previously carried out with the assistance of 2003 and 2005 Advanced Detector Research Program grants

  11. The plasma focus as a large fluence neutron source

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Long, J.; Luce, J.; Sahlin, H.

    1977-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. With I 5 scaling, predicted from analysis of existing machines, yields of 10 16 -10 17 neutrons per pulse are postulated. The average power consumption, which has become a major issue as a result of the energy crisis is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (Auth.)

  12. Large sample NAA of a pottery replica utilizing thermal neutron flux at AHWR critical facility and X-Z rotary scanning unit

    International Nuclear Information System (INIS)

    Acharya, R.; Dasari, K.B.; Pujari, P.K.; Swain, K.K.; Shinde, A.D.; Reddy, A.V.R.

    2013-01-01

    Large sample neutron activation analysis (LSNAA) of a clay pottery replica from Peru was carried out using low neutron flux graphite reflector position of Advanced Heavy Water Reactor (AHWR) critical facility. This work was taken up as a part of inter-comparison exercise under IAEA CRP on LSNAA of archaeological objects. Irradiated large size sample, placed on an X-Z rotary scanning unit, was assayed using a 40% relative efficiency HPGe detector. The k 0 -based internal monostandard NAA (IM-NAA) in conjunction with insitu relative detection efficiency was used to calculate concentration ratios of 12 elements with respect to Na. Analyses of both small and large size samples were carried out to check homogeneity and to arrive at absolute concentrations. (author)

  13. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    . In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...

  14. VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS

    International Nuclear Information System (INIS)

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Rujopakarn, Wiphu; Ivanov, Valentin D.; Vanzi, Leonardo

    2012-01-01

    Debris disks with extremely large infrared excesses (fractional luminosities >10 –2 ) are rare. Those with ages between 30 and 130 Myr are of interest because their evolution has progressed well beyond that of protoplanetary disks (which dissipate with a timescale of order 3 Myr), yet they represent a period when dynamical models suggest that terrestrial planet building may still be progressing through large, violent collisions that could yield large amounts of debris and large infrared excesses. For example, our Moon was formed through a violent collision of two large protoplanets during this age range. We report two disks around the solar-like stars ID8 and HD 23514 in this age range where the 24 μm infrared excesses vary on timescales of a few years, even though the stars are not variable in the optical. Variations this rapid are difficult to understand if the debris is produced by collisional cascades, as it is for most debris disks. It is possible that the debris in these two systems arises in part from condensates from silicate-rich vapor produced in a series of violent collisions among relatively large bodies. If their evolution is rapid, the rate of detection of extreme excesses would indicate that major collisions may be relatively common in this age range.

  15. Optimal distribution of reactivity excess in a system of reactors operating at a variable loading schedule

    International Nuclear Information System (INIS)

    Bolsunov, A.A.; Zagrebaev, A.M.; Naumov, V.I.

    1979-01-01

    Considered is the task of reactivity excess distribution optimization in the system of reactors for the purpose of minimazing the summary power production losses at the fixed loading schedule. Mathematical formulation of the task is presented. Given are the curves, characterizing the dependence of possible degree of the reactor power drop on reactivity excees for non-stationary Xe poisoning at different nominal density of neutron flux. Analyzing the results, it is concluded that in case, when the reactors differ only in neutron flux density the reactor with lower neutron flux density should be involved in the variable operation schedule first as the poisoning of this reactor will be less, and therefore, the losses of the system power production will be less. It is advisable to reserve the reactivity excess in the reactor with greater power or in the reactor with higher burnup rate. It is stressed that the obtained results of the optimization task solution point out the possibility of obtaining the certain ecomonic effect and permit to correct the requirements on mobility of separate power units at system approach to NPP operation in a variable loading schedule

  16. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  17. Neutron activation analysis of archaeological artifacts using the conventional relative method: a realistic approach for analysis of large samples

    International Nuclear Information System (INIS)

    Bedregal, P.S.; Mendoza, A.; Montoya, E.H.; Cohen, I.M.; Universidad Tecnologica Nacional, Buenos Aires; Oscar Baltuano

    2012-01-01

    A new approach for analysis of entire potsherds of archaeological interest by INAA, using the conventional relative method, is described. The analytical method proposed involves, primarily, the preparation of replicates of the original archaeological pottery, with well known chemical composition (standard), destined to be irradiated simultaneously, in a well thermalized external neutron beam of the RP-10 reactor, with the original object (sample). The basic advantage of this proposal is to avoid the need of performing complicated effect corrections when dealing with large samples, due to neutron self shielding, neutron self-thermalization and gamma ray attenuation. In addition, and in contrast with the other methods, the main advantages are the possibility of evaluating the uncertainty of the results and, fundamentally, validating the overall methodology. (author)

  18. ATLAS Z Excess in Minimal Supersymmetric Standard Model

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Terada, Takahiro

    2015-06-01

    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.

  19. Signal and noise analysis in TRION-Time-Resolved Integrative Optical Fast Neutron detector

    International Nuclear Information System (INIS)

    Vartsky, D; Feldman, G; Mor, I; Goldberg, M B; Bar, D; Dangendorf, V

    2009-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light collection conditions, a fast neutron detection system operating in an integrative mode cannot be quantum-noise-limited due to the relatively large variance in the imparted proton energy and the resulting scintillation light distributions.

  20. General-relativistic Large-eddy Simulations of Binary Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David, E-mail: dradice@astro.princeton.edu [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-20

    The flow inside remnants of binary neutron star (NS) mergers is expected to be turbulent, because of magnetohydrodynamics instability activated at scales too small to be resolved in simulations. To study the large-scale impact of these instabilities, we develop a new formalism, based on the large-eddy simulation technique, for the modeling of subgrid-scale turbulent transport in general relativity. We apply it, for the first time, to the simulation of the late-inspiral and merger of two NSs. We find that turbulence can significantly affect the structure and survival time of the merger remnant, as well as its gravitational-wave (GW) and neutrino emissions. The former will be relevant for GW observation of merging NSs. The latter will affect the composition of the outflow driven by the merger and might influence its nucleosynthetic yields. The accretion rate after black hole formation is also affected. Nevertheless, we find that, for the most likely values of the turbulence mixing efficiency, these effects are relatively small and the GW signal will be affected only weakly by the turbulence. Thus, our simulations provide a first validation of all existing post-merger GW models.

  1. Thermometric titration of thorium with EDTA in the presence of large excess of neutral sodium salts.

    Science.gov (United States)

    Doi, K

    1980-11-01

    The thermometric titration of Th(IV) in the presence of neutral sodium salts, sulphuric acid or acetic acid with EDTA has been studied. The effect of each on the observed heat values for the titration is discussed. For sodium perchlorate media, DeltaH values of -9 and -21 kJ/mole have been estimated for the formation of the Th(IV)-EDTA chelate at mu --> 0 and mu = 0.5 (NaClO(4)), respectively. The -DeltaH values increase steadily with increase in concentration of sodium perchlorate up to at least 3M. For the titration of Th(IV) in the presence of a large excess of sodium nitrate the use of sodium iodide as a masking reagent has been examined: large amounts of Bi and Cu(II) are masked and a masking effect is observed for small amounts of Ni.

  2. Is neutron evaporation from highly excited nuclei a poisson random process

    International Nuclear Information System (INIS)

    Simbel, M.H.

    1982-01-01

    It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)

  3. Comparison and Validation of FLUKA and HZETRN as Tools for Investigating the Secondary Neutron Production in Large Space Vehicles

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2015-01-01

    NASA's exploration goals are focused on deep space travel and Mars surface operations. To accomplish these goals, large structures will be necessary to transport crew and logistics in the initial stages, and NASA will need to keep the crew and the vehicle safe during transport and any surface activities. One of the major challenges of deep space travel is the space radiation environment and its impacts on the crew, the electronics, and the vehicle materials. The primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle. These interactions lead to some of the primary radiation being absorbed, being modified, or producing secondary radiation (primarily neutrons). With all vehicles, the high energy primary radiation is of most concern. However, with larger vehicles that have large shielding masses, there is more opportunity for secondary radiation production, and this secondary radiation can be significant enough to cause concern. When considering surface operations, there is also a secondary radiation source from the surface of the planet, known as albedo, with neutrons being one of the most significant species. Given new vehicle designs for deep space and Mars missions, the secondary radiation environment and the implications of that environment is currently not well understood. Thus, several studies are necessary to fill the knowledge gaps of this secondary radiation environment. In this paper, we put forth the initial steps to increasing our understanding of neutron production from large vehicles by comparing the neutron production resulting from our radiation transport codes and providing a preliminary validation of our results against flight data. This paper will review the details of these results and discuss the finer points of the analysis.

  4. Problems with the dating of sediment core using excess 210Pb in a freshwater system impacted by large scale watershed changes

    International Nuclear Information System (INIS)

    Baskaran, Mark; Nix, Joe; Kuyper, Clark; Karunakara, N.

    2014-01-01

    Pb-210 dating of freshwater and coastal sediments have been extensively conducted over the past 40 years for historical pollution reconstruction studies, sediment focusing, sediment accumulation and mixing rate determination. In areas where there is large scale disturbance of sediments and the watershed, the vertical profiles of excess 210 Pb ( 210 Pb xs ) could provide erroneous or less reliable information on sediment accumulation rates. We analyzed one sediment core from Hendrix Lake in southwestern Arkansas for excess 210 Pb and 137 Cs. There is no decrease in excess 210 Pb activity with depth while the 137 Cs profile indicates sharp peak corresponding to 1963 and the 137 Cs penetration depth of 137 Cs corresponds to 1952. The historical data on the accelerated mercury mining during 1931–1944 resulted in large-scale Hg input to this watershed. Using the peak Hg activity as a time marker, the obtained sediment accumulation rates agree well with the 137 Cs-based rates. Four independent evidences (two-marker events based on 137 Cs and two marker events based on Hg mining activity) result in about the same sedimentation rates and thus, we endorse earlier suggestion that 210 Pb profile always needs to be validated with at least one another independent method. We also present a concise discussion on what important factors that can affect the vertical profiles of 210 Pb xs in relatively smaller lakes

  5. Total-body sodium and sodium excess

    International Nuclear Information System (INIS)

    Aloia, J.F.; Cohn, S.H.; Abesamis, C.; Babu, T.; Zanzi, I.; Ellis, K.

    1980-01-01

    Total-body levels of sodium (TBNa), chlorine (TBCI), calcium (TBCa), and potassium (TBK) were measured by neutron activation and analysis of results by whole body counting in 66 postmenopausal women. The relationship between TBNa, and TBCl, TBK, and TBCa on the one hand, and height and weight on the other, were found to compare with those previously reported. The hypothesis that TBNa and TBCl are distributed normally could not be rejected. The sodium excess (Na/sub es/) is defined as the sodium that is present in excess of that associated with the extracellular fluid (chlorine) space; the Na/sub es/ approximates nonexchangeable bone sodium. In these 66 postmenopausal women, and in patients with different endocrinopathies previously described, the values on Na/sub es/ did not differ from the normal values except in the thyrotoxicosis patients, where they were decreased. A close relationship between Na/sub es/ and TBCa was maintained in the endocrinopathies studied. This relationship was found in conditions accompanied by either an increment or a loss of skeletal mass. It appears that the NA/sub es/ value is primarily dependent upon the calcium content of bone

  6. Neutron Star Astronomy in the era of the European Extremely Large Telescope

    International Nuclear Information System (INIS)

    Mignani, Roberto P.

    2011-01-01

    About 25 isolated neutron stars (INSs) are now detected in the optical domain, mainly thanks to the HST and to VLT-class telescopes. The European Extremely Large Telescope(E-ELT) will yield ∼100 new identifications, many of which from the follow-up of SKA, IXO, and Fermi observations. Moreover, the E-ELT will allow to carry out, on a much larger sample, INS observations which still challenge VLT-class telescopes, enabling studies on the structure and composition of the NS interior, of its atmosphere and magnetosphere, as well as to search for debris discs. In this contribution, I outline future perspectives for NS optical astronomy with the E-ELT.

  7. Maris polarization in neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2018-03-01

    Full Text Available We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon–nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  8. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  9. Thermometric titration of thorium with EDTA in the presence of large excess of neutral sodium salts

    International Nuclear Information System (INIS)

    Doi, K.

    1980-01-01

    The thermometric titration of Th(IV) in the presence of neutral sodium salts, sulphuric acid or acetic acid with EDT has been studied. The effect of each on the observed heat values for the titration is discussed. For sodium perchlorate media, ΔH values of -9 and -21 kJ/mole have been estimated for the formation of the Th(IV)-EDTA chelate at μ → 0 and μ = 0.5 (NaClO 4 ), respectively. The -ΔH values increase steadily with increase in concentration of sodium perchlorate up to at least 3M. For the titration of Th(IV) in the presence of a large excess of sodium nitrate the use of sodium iodide as a masking reagent has been examined: large amounts of Bi and Cu(II) are masked and a masking effect is observed for small amounts of Ni. (author)

  10. NEULAND at R{sup 3}B: Multi-neutron response and resolution of the novel neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kresan, Dmytro; Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Boretzky, Konstanze; Bertini, Denis; Heil, Michael; Rossi, Dominic; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2012-07-01

    NEULAND (New Large Area Neutron Detector) will serve for the detection of fast neutrons (200 - 1000 MeV) in the R3B experiment at the future FAIR. A high detection efficiency (> 90%), a high resolution (down to 20 keV) and a large multi-neutron-hit resolving power ({>=}5 neutrons) are demanded. The detector concept foresees a fully active and highly granular design of plastic scintillators. We present the detector capabilities, based on simulations performed within the FairRoot framework. The relevance of calorimetric properties for the multi-hit recognition is discussed, and exemplarily the performance for specific physics cases is presented.

  11. Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Charles J. [Indiana U.; Kumar, Krishna S. [UMass; Michaels, Robert W. [JLAB

    2014-02-01

    Measurement of the parity-violating electron scattering asymmetry is an established technique at Jefferson Lab and provides a new opportunity to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on ${}^{208}$Pb and ${}^{48}$Ca respectively; these are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter ${}^{48}$Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces.

  12. Feasibility of laser pumping with neutron fluxes from present-day large tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.

    1986-08-01

    The minimum fusion-neutron flux needed to observe nuclear-pumped lasing with tokamaks can be reduced substantially by optimizing neutron scattering into the laser cell, located between adjacent toroidal-field coils. The laser lines most readily pumped are probably the /sup 3/He-Ne lines at 0.633 ..mu.. and in the infrared, where the /sup 3/He-Ne gas is excited by energetic ions produced in the /sup 3/He(n,p)T reaction. These lines are expected to lase at the levels of D-T neutron flux foreseen for the TFTR in 1989 (>>10/sup 12/ n/cm/sup 2//s), while amplification should be observable at the existing levels of D-D neutron flux (greater than or equal to 5 x 10/sup 9/ n/cm/sup 2//s). Lasing on the 1.73 ..mu.. and 2.63 ..mu.. transitions of Xe may be observable at the maximum expected levels of D-T neutron flux in TFTR enhanced by scattering.

  13. Feasibility of laser pumping with neutron fluxes from present-day large tokamaks

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-08-01

    The minimum fusion-neutron flux needed to observe nuclear-pumped lasing with tokamaks can be reduced substantially by optimizing neutron scattering into the laser cell, located between adjacent toroidal-field coils. The laser lines most readily pumped are probably the 3 He-Ne lines at 0.633 μ and in the infrared, where the 3 He-Ne gas is excited by energetic ions produced in the 3 He(n,p)T reaction. These lines are expected to lase at the levels of D-T neutron flux foreseen for the TFTR in 1989 (>>10 12 n/cm 2 /s), while amplification should be observable at the existing levels of D-D neutron flux (≥ 5 x 10 9 n/cm 2 /s). Lasing on the 1.73 μ and 2.63 μ transitions of Xe may be observable at the maximum expected levels of D-T neutron flux in TFTR enhanced by scattering

  14. Large-Area Neutron Detector based on Li-6 Pulse Mode Ionization Chamber

    International Nuclear Information System (INIS)

    Chung, K.; Ianakiev, K.D.; Swinhoe, M.T.; Makela, M.F.

    2005-01-01

    Prototypes of a Li-6 Pulse Mode Ionization Chamber (LiPMIC) have been in development for the past two years for the purpose of providing large-area neutron detector. this system would be suitable for remote deployment for homeland security and counterterrorism needs at borders, ports, and nuclear facilities. A prototype of LiPMIC is expected to provide a similar level of performance to the current industry-standard, He-3 proportional counters, while keeping the initial cost of procurement down by an order of magnitude, especially where large numbers of detectors are required. The overall design aspect and the efficiency optimization process is discussed. Specifically, the MCNP simulations of a single-cell prototype were performed and benchmarked with the experimental results. MCNP simulations of a three dimensional array design show intrinsic efficiency comparable to that of an array of He-3 proportional counters. LiPMIC has shown steady progress toward fulfilling the design expectations and future design modification and optimization are discussed.

  15. Neutron transportation simulator

    International Nuclear Information System (INIS)

    Uenohara, Yuzo.

    1995-01-01

    In the present invention, problems in an existent parallelized monte carlo method is solved, and behaviors of neutrons in a large scaled system are accurately simulated at a high speed. Namely, a neutron transportation simulator according to the monte carlo method simulates movement of each of neutrons by using a parallel computer. In this case, the system to be processed is divided based on a space region and an energy region to which neutrons belong. Simulation of neutrons in the divided regions is allotted to each of performing devices of the parallel computer. Tarry data and nuclear data of the neutrons in each of the regions are memorized dispersedly to memories of each of the performing devices. A transmission means for simulating the behaviors of the neutrons in the region by each of the performing devices, as well as transmitting the information of the neutrons, when the neutrons are moved to other region, to the performing device in a transported portion are disposed to each of the performing devices. With such procedures, simulation for the neutrons in the allotted region can be conducted with small capacity of memories. (I.S.)

  16. Attenuation of Reactor Gamma Radiation and Fast Neutrons Through Large Single-Crystal Materials

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A generalized formula is given which, for neutron energies in the range 10-4< E< 10 eV and gamma rays with average energy 2 MeV , permits calculation of the transmission properties of several single crystal materials important for neutron scattering instrumentation. A computer program Filter was developed which permits the calculation of attenuation of gamma radiation, nuclear capture, thermal diffuse and Bragg-scattering cross-sections as a function of materials constants, temperature and neutron energy. The applicability of the deduced formula along with the code checked from the obtained agreement between the calculated and experimental neutron transmission through various single-crystals A feasibility study for use of Si, Ge, Pb, Bi and sapphire is detailed in terms of optimum crystal thickness, mosaic spread and cutting plane for efficient transmission of thermal reactor neutrons and for rejection of the accompanying fast neutrons and gamma rays.

  17. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  18. Methodology for Quantitative Analysis of Large Liquid Samples with Prompt Gamma Neutron Activation Analysis using Am-Be Source

    International Nuclear Information System (INIS)

    Idiri, Z.; Mazrou, H.; Beddek, S.; Amokrane, A.

    2009-01-01

    An optimized set-up for prompt gamma neutron activation analysis (PGNAA) with Am-Be source is described and used for large liquid samples analysis. A methodology for quantitative analysis is proposed: it consists on normalizing the prompt gamma count rates with thermal neutron flux measurements carried out with He-3 detector and gamma attenuation factors calculated using MCNP-5. The relative and absolute methods are considered. This methodology is then applied to the determination of cadmium in industrial phosphoric acid. The same sample is then analyzed by inductively coupled plasma (ICP) method. Our results are in good agreement with those obtained with ICP method.

  19. Effect of a neutron skin on collective dipoles modes in nuclei

    International Nuclear Information System (INIS)

    Warner, D.D.; Van Isacker, P.; Nagarajan, M.A.

    1992-01-01

    One of the principal motivations for accelerated radioactive beams is to probe nuclear structure at the limits of nuclear stability. For neutron-rich nuclei, an indication of the new phenomena which may occur has already appeared, in the guise of the neutron halo discovered in very light nuclei. More generally, a steadily increasing neutron skin thickness is expected as the neutron excess increases. The presence of such a mantle of dominantly neutron matter will then particularly affect the properties of collective modes involving the out-of-phase motion of neutrons and protons. This paper explores the effect of the neutron skin thickness on the isovector M1 and E1 modes in medium and heavy mass nuclei. A simple model is used, couched in terms of classical oscillations of neutron and proton densities. The treatment includes the open-quotes pygmyclose quotes E1 mode, which corresponds to motion of the core against the loosely-bound neutrons in the mantle and predicts a significant lowering of this mode, even at relatively modest values of the skin thickness

  20. Development of Large Sample Neutron Activation Technique for New Applications in Thailand

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.; Tippayakul, C.; Wonglee, S.; Channuie, J.

    2018-01-01

    The development of the Large Sample Neutron Activation Analysis (LSNAA) in Thailand is presented in this paper. The technique had been firstly developed with rice sample as the test subject. The Thai Research Reactor-1/Modification 1 (TRR-1/M1) was used as the neutron source. The first step was to select and characterize an appropriate irradiation facility for the research. An out-core irradiation facility (A4 position) was first attempted. The results performed with the A4 facility were then used as guides for the subsequent experiments with the thermal column facility. The characterization of the thermal column was performed with Cu-wire to determine spatial distribution without and with rice sample. The flux depression without rice sample was observed to be less than 30% while the flux depression with rice sample increased to within 60%. The flux monitors internal to the rice sample were used to determine average flux over the rice sample. The gamma selfshielding effect during gamma measurement was corrected using the Monte Carlo simulation. The ratio between the efficiencies of the volume source and the point source for each energy point was calculated by the MCNPX code. The research team adopted the k0-NAA methodology to calculate the element concentration in the research. The k0-NAA program which developed by IAEA was set up to simulate the conditions of the irradiation and measurement facilities used in this research. The element concentrations in the bulk rice sample were then calculated taking into account the flux depression and gamma efficiency corrections. At the moment, the results still show large discrepancies with the reference values. However, more research on the validation will be performed to identify sources of errors. Moreover, this LS-NAA technique was introduced for the activation analysis of the IAEA archaeological mock-up. The results are provided in this report. (author)

  1. Study on neutron streaming effect in large fast critical assembly

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamaoka, Mitsuaki; Sakurai, Shungo; Tanimoto, Koichi; Abe, Yuhei

    1981-03-01

    A cell calculation method taking into account the neutron leakage from a cell and a transport calculation method treating the neutron streaming have been developed, and their applicability has been investigated. In the cell calculation method, the neutron leakage in the perpendicular direction to plates was treated by introducing an albedo collision probability which is a first-flight collision probability incorporating albedos at cell boundaries, and that in the parallel direction was treated by the pseudo absorption method. The use of the albedo collision probability made it possible to calculate the flux tilt in a cell exactly. This cell calculation method was applied to two slab models where fuel drawers were stacked in perpendicular and parallel directions to plates. Cell averaged cross sections calculated by the proposed method agreed well with those obtained from exact transport calculations treating the plate-wise heterogeneity, while the infinite cell calculation and the conventional pseudo absorption method produced about 2% errors in the cell-averaged cross sections. The cell-averaging procedure for control-rod channels was also proposed, and this method was applied to the calculation of control-rod worths and control-rod position worths. A transport calculation method based on the response matrix method has been proposed to treat the neutron streaming in fast critical assemblies directly. A response matrix code in two dimensional XY geometry RES2D was made. The accuracy of response matrices obtained from the RES2D code was checked by applying it to a slab cell and by comparing cell-averaged cross sections and k-infinity with those from a reference cell calculation based on the collision probability. The agreement of the results was good, and it was found that the response matrix method is very promising for the treatment of the neutron streaming in fast critical assemblies. (author)

  2. Determination of residual oil saturation from time-lapse pulsed neutron capture logs in a large sandstone reservoir

    International Nuclear Information System (INIS)

    Syed, E.V.; Salaita, G.N.; McCaffery, F.G.

    1991-01-01

    Cased hole logging with pulsed neutron tools finds extensive use for identifying zones of water breakthrough and monitoring oil-water contacts in oil reservoirs being depleted by waterflooding or natural water drive. Results of such surveys then find direct use for planning recompletions and water shutoff treatments. Pulsed neutron capture (PNC) logs are useful for estimating water saturation changes behind casing in the presence of a constant, high-salinity environment. PNC log surveys run at different times, i.e., in a time-lapse mode, are particularly amenable to quantitative analysis. The combined use of the original open hole and PNC time-lapse log information can then provide information on remaining or residual oil saturations in a reservoir. This paper reports analyses of historical pulsed neutron capture log data to assess residual oil saturation in naturally water-swept zones for selected wells from a large sandstone reservoir in the Middle East. Quantitative determination of oil saturations was aided by PNC log information obtained from a series of tests conducted in a new well in the same field

  3. Microdosimetry of intermediate energy neutrons in fast neutron fields

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1988-01-01

    A coaxial double cylindrical proportional counter has been constructed for microdosimetry of intermediate energy neutrons in mixed fields. Details are given of the measured gas gain and resolution characteristics of the counter for a wide range of anode voltages. Event spectra due to intermediate neutrons in any desired energy band is achieved by an appropriate choice of thickness of the common dividing wall in the counter and by appropriate use of the coincidence, anticoincidence pulse counting arrangements. Calculated estimates indicate that the dose contribution by fast neutrons to the energy deposition events in the intermediate neutron range may be as large as 25%. Empirical procedures being investigated aim to determine the necessary corrections to be applied to the microdose distributions, with a precision of 10%. (author)

  4. Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Murphy, D.B.

    1999-01-01

    The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power (∼1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy ( 2 O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques

  5. Neutron-induced Backgrounds in 134Xe for Large-Scale Neutrinoless Double-Beta Decay Experiments

    Science.gov (United States)

    Moriguchi, Nina; Kidd, Mary; Tornow, Werner

    2016-09-01

    136Xe is used in large neutrinoless double-beta (0 νββ) decay experiments, such as KamLAND- Zen and EXO 200. Though highly purified, 136Xe still contains a significant amount of 134Xe. Recently, a new nuclear energy level was found in 134Xe. If 134Xe decays from this proposed excited state, it will emit a 2485.7 keV gamma ray. Because this energy lies near the region of interest of 136Xe νββ decay experiments (Q value 2457.8 keV), it could make a significant contribution to the background. A purified gaseous sample of 134Xe will be irradiated with neutrons of an incident energy of 4.0 MeV at Triangle Universities Nuclear Laboratory and monitored with high-purity germanium detectors. The spectra obtained from these detectors will be analyzed for the presence of the 2581 keV gamma ray. We will report on the status of this experiment. Future plans include expanding this measurement to higher initial neutron energies. Tennesse Tech University CISE Grant program.

  6. The spallation neutron source SINQ. A new large facility for research at PSI

    International Nuclear Information System (INIS)

    Bauer, G.S.; Crawford, J.F.

    1994-01-01

    This document is intended to familiarize the non-specialist with the principles of neutron scattering and some of its applications. It presents an overview of the foundations of neutron scattering, the basic types of instruments used, and their principles of operation. The design concept and some technical details of the spallation neutron source are described for the benefit of the scientifically or technically interested reader. In future this source will form the heart of the instruments available to PSI's wide community of neutron scattering researchers. (author) 32 figs., 1 tab

  7. Implosion anisotropy of neutron kinetic energy distributions as measured with the neutron time-of-flight diagnostics at the National Ignition Facility

    Science.gov (United States)

    Hartouni, Edward; Eckart, Mark; Field, John; Grim, Gary; Hatarik, Robert; Moore, Alastair; Munro, David; Sayer, Daniel; Schlossberg, David

    2017-10-01

    Neutron kinetic energy distributions from fusion reactions are characterized predominantly by the excess energy, Q, of the fusion reaction and the variance of kinetic energy which is related to the thermal temperature of the plasma as shown by e.g. Brysk. High statistics, high quality neutron time-of-flight spectra obtained at the National Ignition Facility provide a means of measuring small changes to the neutron kinetic energy due to the spatial and temporal distribution of plasma temperature, density and velocity. The modifications to the neutron kinetic energy distribution as described by Munro include plasma velocity terms with spatial orientation, suggesting that the neutron kinetic energy distributions could be anisotropic when viewed by multiple lines-of-sight. These anisotropies provide a diagnostic of burn averaged plasma velocity distributions. We present the results of measurements made for a variety of DT implosions and discuss their possible physical interpretations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  8. Neutron spectra characteristics for the intense neutron source, INS

    International Nuclear Information System (INIS)

    Battat, M.; Dierckx, R.; Emigh, C.R.

    1977-01-01

    The Intense Neutron Source, INS, facility is presently under construction at the Los Alamos Scientific Laboratory. Its purpose is to provide a broad base for research work related to the radiation effects produced by 14-MeV neutrons from a D-T burn of a fusion reactor. The INS facility produces a D-T burn-like reaction from the collision of an intense tritium-ion beam with a supersonic jet target of deuterium gas. The reaction produces a typical D-T 14-MeV neutron spectrum. By adding a fission blanket surrounding the D-T ''burn,'' the neutron spectral shape may be tailored to match almost perfectly the anticipated first-wall spectra from presently proposed fusion reactors. With a blanket in place, the total production of neutrons can be as large as 3 x 10 16 n/s and experimental volumes of the order of 1000 cm 3 can be available at flux levels greater than 0.6 x 10 14 n/cm 2 s

  9. Effect of an Excess of Chromium and Hydriding on Zircaloy-4

    International Nuclear Information System (INIS)

    Soldati, A.; Ghilarducci, A. A; Corso, H.L.; Peretti, H.A.; Bolcich, J.C

    2003-01-01

    Results of mechanical properties and microstructure morphologies of zircaloy-4 are presented.They were obtained in several laboratory made samples of chemical composition modified with respect to the ASTM B 350 by the addition of alloying elements as well as hydrides.This work is focused mainly on the effect of 900 ppm of additional Cr in excess as compared with the standard composition alloy and with two other laboratory alloys studied before, containing 250 ppm of Ni in excess and 1000 ppm of Fe in excess, respectively.The study is carried out by means of tensile tests at room temperature and at 240C, hardness tests, SEM observations and EDS microanalysis.The neutron irradiation was carried out at Bariloche in the RA6-CNEA reactor.The results indicate that precipitates concentrate along grain boundaries in all cases, and that for higher contents of alloying elements corresponds a higher quantity of precipitates and smaller grain sizes.Except for the hydrided sample, the fracture is ductile with cavities nucleated at precipitates

  10. Energy spectra of neutrons accompanying the emission fission of 238U

    International Nuclear Information System (INIS)

    Smirenkin, G.N.; Lovchikova, G.N.; Trufanov, A.M.; Svirin, M.I.; Polyakov, A.V.; Vinogradov, V.A.; Dmitriev, V.D.; Boykov, G.S.

    1996-01-01

    The spectra of fission neutrons emitted from 238U are measured for the first time by the time-of-flight method at incident-neutron energies of 16.0 and 17.7 MeV. Analysis of the neutron spectra shows that experimental results at incident-neutron energies of 14.7, 16.0, and 17.7 MeV (above the threshold of chance fission) differ significantly from those obtained at a neutron energy of 2.9 MeV (below the threshold of chance fission). Owing to the prefission emission of neutrons, the observed spectra of neutrons from emission fission exhibit a characteristic growth of the neutron yield in both hard and soft sections of the spectrum of secondary neutrons. This growth manifests itself as a step in the first case and as a rise in the second case, where it results in a noticeable excess of neutrons over the statistical-model predictions for E<2 MeV. The first feature in the spectra of neutrons from emission fission can be associated with the nonequilibrium decay of an excited fissile nucleus. On the contrary, the origin of the second feature has yet to be clarified. Additional measurements of angular distributions of secondary neutrons may prove helpful in this respect

  11. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soltes, Jaroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague, (Czech Republic); Viererbl, Ladislav; Lahodova, Zdena; Koleska, Michal; Vins, Miroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic)

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which has a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated values

  12. Material classification by fast neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, A. E-mail: abuffler@physci.uct.ac.za; Brooks, F.D. E-mail: brooks@physci.uct.ac.za; Allie, M.S.; Bharuth-Ram, K.; Nchodu, M.R

    2001-02-01

    The scattering of a beam of fast monoenergetic neutrons is used to determine elemental compositions of bulk samples (0.2-0.8 kg) of materials composed from one or more of the elements H, C, N, O, Al, S, Fe and Pb. Scattered neutrons are detected by liquid scintillators placed at forward and at backward angles. Different elements are identified by their characteristic scattering signatures derived either from a combination of time-of-flight and pulse height measurements, or from pulse height measurements alone. Scattering signatures measured for multi-element samples are analysed to determine atom fractions for H, C, N, O and other elements in the sample. Atom fractions determined from scattering signatures are insensitive to neutron interactions in material surrounding the scattering sample, provided the amount of material is not excessive. The atom fraction data are used to classify scattering material into categories including 'explosives', 'illicit drugs' and 'other materials' for the purpose of contraband detection.

  13. Development of a D-D Neutron Generator

    International Nuclear Information System (INIS)

    Kim, In Jung; Jung, Hwa Dong; Park, Chang Su; Jung, Nam Suk; Jung, Soon Wook; Hwang, Y. S.; Choi, H. D.

    2007-01-01

    To enhance neutron yield, the ion source of the D-D neutron generator is replaced by a large current helicon plasma ion source. Current and energy of deuteron beam are increased, and hence neutron yield is enhanced. The maximum neutron yield is 2x10 8 n/s

  14. Selective electronalysis of peracetic acid in the presence of a large excess of H2O2 at Au(1 1 1)-like gold electrode

    International Nuclear Information System (INIS)

    Awad, M.I.

    2012-01-01

    Highlights: ► Analysis of peracetic acid in the presence of a large excess of H 2 O 2 is introduced. ► Au(1 1 1)-like gold electrode serves as an ideal for this purpose. ► The analysis is characterized by high selectivity and sensitivity. - Abstract: Peracetic acid (PAA) has been selectively electroanalyzed in the presence of a large excess of hydrogen peroxide (H 2 O 2 ), about 500 fold that of PAA, using Au (1 1 1)-like gold electrode in acetate buffer solutions of pH 5.4. Au(1 1 1)-like gold electrode was prepared by a controlled reductive desorption of a previously assembled thiol, typically cysteine, monolayer onto the polycrystalline gold (poly-Au) electrode. Cysteine molecules were selectively removed from the Au(1 1 1) facets of the poly-Au electrode, keeping the other two facets (i.e., Au(1 1 0) and Au(1 0 0)) under the protection of the adsorbed cysteine. It has been found that Au(1 1 1)-like gold electrode positively shifts the reduction peak of PAA, while, fortunately, shifts the reduction peak of H 2 O 2 negatively, achieving a large potential separation (around 750 mV) between the two reduction peaks as compared with that (around 450 mV) obtained at the poly-Au electrode. This large potential separation between the two reduction peaks enabled the analysis of PAA in the presence of a large excess of H 2 O 2 . In addition, the positive shift of the reduction peak of PAA gives the present method a high immunity against the interference of the dissolved oxygen.

  15. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  16. Neutron microdosimetry at RARAF

    International Nuclear Information System (INIS)

    Kliauga, P.

    1986-01-01

    A comprehensive series of measurements of neutron microdosimetry spectra is underway at the RARAF facility. The neutrons generated at RARAF are semi-monoenergetic to monoenergetic, depending on energy. Thus far, measurements have concentrated on 15 MeV, with a few measurements done at 6 MeV. One of the main reasons for undertaking this project is dissatisfaction with the state of accuracy of microdosimetric measurements of neutrons, not only previous measurements done at RARAF, but reports in the literature from all over the world. Only a relatively modest amount of data has been taken for neutrons, as compared to photons, and the survey of dose mean lineal energy values done for the recent ICRU Report No. 36 (December 1983) reveals a spread of values far in excess of accepted estimates of statistical uncertainty (5-10%). One of the major motivations in undertaking this project, therefore, was to elucidate some of the factors, including experimental artifacts, which are important in contributing to systematic errors in measurements. Among the methods being employed are determination of the effect of various counter parameters on neutron spectra, and electronic parameters, also. Another important method of obtaining information is a comparison between different counters. This laboratory has access to perhaps a greater variety of microdosimetric proportional counters than any in the world, from the standard Rossi counter, to various wall-less types of differing geometries. Controlled comparisons of spectra from such differing counters using the same analysis technique can yield much information on the effect of counter geometry on the microdosimetric spectrum

  17. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  18. Polycapillary neutron lenses

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1997-01-01

    The principle of multiple mirror reflection from smooth surfaces at small grazing angles enables the transport and guiding of high intensity slow neutron beams to locations of low background for neutron scattering and absorption experiments and to provide facilities for multiple instruments. Curved guides have been widely used at cold neutron facilities to remove the unwanted radiation (fast neutrons and gamma rays) from the beam without the use of filters. A typical guide has transverse dimensions of 50 mm and, with a radius of curvature of 1 km, transmits wavelengths longer than 5 A. Much tighter curves requires narrower transverse dimensions, otherwise there is little transmission. Typical neutron benders have a number of slots with transverse dimensions of ∼5 mm. Based on the same principle but using a different technology, recent developments in glass polycapillary fibers have produced miniature versions of neutron guides. Fibers with many thousands of channels having sizes of ∼ 10 μm enable beams of long wavelength neutrons (λ > 4 A) to be transmitted efficiently in a radius of curvature as small as a fraction of 1 m. A large collection of these miniature versions of neutron guides can be used to bend the neutron trajectories such that the incident beam can be focused. (author)

  19. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  20. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    Science.gov (United States)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  1. A Neutron Sensitive Microchannel Plate Detector with Cross Delay Line Readout

    International Nuclear Information System (INIS)

    Berry, Kevin D.; Bilheux, Hassina Z.; Crow, Lowell; Diawara, Yacouba; Feller, W. Bruce; Iverson, Erik B.; Martin, Adrian; Robertson, J. Lee

    2012-01-01

    Microchannel plates containing neutron absorbing elements such as boron and gadolinium in the bulk glass are used as the sensing element in high spatial resolution, high rate neutron imaging systems. In this paper we describe one such device, using both 10 B and natural Gd, which employs cross delay line signal readout, with time-of-flight capability. This detector has a measured spatial resolution under 40 m FWHM, thermal neutron efficiency of 19%, and has recorded rates in excess of 500 kHz. A physical and functional description is presented, followed by a discussion of measurements of detector performance and a brief survey of some practical applications.

  2. Effects of core models and neutron energy group structures on xenon oscillation in large graphite-moderated reactors

    International Nuclear Information System (INIS)

    Yamasita, Kiyonobu; Harada, Hiroo; Murata, Isao; Shindo, Ryuichi; Tsuruoka, Takuya.

    1993-01-01

    Xenon oscillations of large graphite-moderated reactors have been analyzed by a multi-group diffusion code with two- and three-dimensional core models to study the effects of the geometric core models and the neutron energy group structures on the evaluation of the Xe oscillation behavior. The study clarified the following. It is important for accurate Xe oscillation simulations to use the neutron energy group structure that describes well the large change in the absorption cross section of Xe in the thermal energy range of 0.1∼0.65 eV, because the energy structure in this energy range has significant influences on the amplitude and the period of oscillations in power distributions. Two-dimensional R-Z models can be used instead of three-dimensional R-θ-Z models for evaluation of the threshold power of Xe oscillation, but two-dimensional R-θ models cannot be used for evaluation of the threshold power. Although the threshold power evaluated with the R-θ-Z models coincides with that of the R-Z models, it does not coincide with that of the R-θ models. (author)

  3. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  4. A neutron poison tritium breeding controller applied to a water cooled fusion reactor model

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Packer, L.W.

    2014-01-01

    Highlights: • The issue of a potentially producing a large tritium surplus inventory, within a solid breeder, is addressed. • A possible solution to this problem is presented in the form of a neutron poison based tritium production controller. • The tritium surplus inventory has been modelled by the FATI code for a simplified WCCB model and as a function of time. • It has been demonstrated that the tritium surplus inventory can be managed, which may impact on safety considerations. - Abstract: The generation of tritium in sufficient quantities is an absolute requirement for a next step fusion device such as DEMO due to the scarcity of tritium sources. Although the production of sufficient quantities of tritium will be one of the main challenges for DEMO, within an energy economy featuring several fusion power plants the active control of tritium production may be required in order to manage surplus tritium inventories at power plant sites. The primary reason for controlling the tritium inventory in such an economy would therefore be to minimise the risk and storage costs associated with large quantities of surplus tritium. In order to ensure that enough tritium will be produced in a reactor which contains a solid tritium breeder, over the reactor's lifetime, the tritium breeding rate at the beginning of its lifetime is relatively high and reduces over time. This causes a large surplus tritium inventory to build up until approximately halfway through the lifetime of the blanket, when the inventory begins to decrease. This surplus tritium inventory could exceed several tens of kilograms of tritium, impacting on possible safety and licensing conditions that may exist. This paper describes a possible solution to the surplus tritium inventory problem that involves neutron poison injection into the coolant, which is managed with a tritium breeding controller. A simple PID controller and is used to manage the injection of the neutron absorbing compounds into

  5. A neutron poison tritium breeding controller applied to a water cooled fusion reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@CCFE.ac.uk; Packer, L.W.

    2014-10-15

    Highlights: • The issue of a potentially producing a large tritium surplus inventory, within a solid breeder, is addressed. • A possible solution to this problem is presented in the form of a neutron poison based tritium production controller. • The tritium surplus inventory has been modelled by the FATI code for a simplified WCCB model and as a function of time. • It has been demonstrated that the tritium surplus inventory can be managed, which may impact on safety considerations. - Abstract: The generation of tritium in sufficient quantities is an absolute requirement for a next step fusion device such as DEMO due to the scarcity of tritium sources. Although the production of sufficient quantities of tritium will be one of the main challenges for DEMO, within an energy economy featuring several fusion power plants the active control of tritium production may be required in order to manage surplus tritium inventories at power plant sites. The primary reason for controlling the tritium inventory in such an economy would therefore be to minimise the risk and storage costs associated with large quantities of surplus tritium. In order to ensure that enough tritium will be produced in a reactor which contains a solid tritium breeder, over the reactor's lifetime, the tritium breeding rate at the beginning of its lifetime is relatively high and reduces over time. This causes a large surplus tritium inventory to build up until approximately halfway through the lifetime of the blanket, when the inventory begins to decrease. This surplus tritium inventory could exceed several tens of kilograms of tritium, impacting on possible safety and licensing conditions that may exist. This paper describes a possible solution to the surplus tritium inventory problem that involves neutron poison injection into the coolant, which is managed with a tritium breeding controller. A simple PID controller and is used to manage the injection of the neutron absorbing compounds into

  6. Collective modes and hydrodynamics in the inner crust of neutron stars

    International Nuclear Information System (INIS)

    Martin, Noel

    2016-01-01

    Neutron stars have been extensively studied since Baade and Zwicky have proposed their existence in 1934. Their description is at the interface of numerous domains of physics, e.g., X-ray astrophysics, pulsar signal observation, general relativity and nowadays gravitational waves, solid state physics, and also nuclear physics. In this thesis we will concentrate on the nuclear physics description, especially of the inner crust. These stars are characterized by their large mass from one to two solar masses, in a radius of 10 km. Their inner structure can be divided in three major layers: the outer crust, the inner crust and the core. The outer crust consists of nuclei coexisting with an electron gas to ensure charge neutrality. If one goes deeper into the crust, the ratio of neutrons with respect to the total nucleon number increases. Eventually, the excess of neutrons in the nuclei gets so high that they drip out from the nuclei and create a dilute neutron gas. From now on, we will speak of nuclear clusters instead of nuclei. This phenomenon defines the limit between the outer crust and the inner crust. This complicated structure and composition is at the origin of many characteristic properties of neutron stars. Hence, we will construct our work in three major parts. First, we start to account for the neutron gas surrounding the clusters, which we treat as uniform. Here, the neutron gas is assumed to be superfluid, and one can expect a Goldstone mode. This description will be done in the framework of QRPA. Second, we will focus on the study of properties of the clusters contained in the inner crust. Under these conditions we expect to see crystal of spheres, rods and plates of bound nucleons, that we will describe with the help of the ETF approximation. Third, we will finish by treating the interaction between the clusters and the gas with hydrodynamics. The results will be applied to astrophysics and in particular to glitches. (author)

  7. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. ON INFRARED EXCESSES ASSOCIATED WITH Li-RICH K GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Rebull, Luisa M. [Spitzer Science Center (SSC) and Infrared Science Archive (IRSA), Infrared Processing and Analysis Center - IPAC, 1200 E. California Blvd., California Institute of Technology, Pasadena, CA 91125 (United States); Carlberg, Joleen K. [NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Gibbs, John C.; Cashen, Sarah; Datta, Ashwin; Hodgson, Emily; Lince, Megan [Glencoe High School, 2700 NW Glencoe Rd., Hillsboro, OR 97124 (United States); Deeb, J. Elin [Bear Creek High School, 9800 W. Dartmouth Pl., Lakewood, CO 80227 (United States); Larsen, Estefania; Altepeter, Shailyn; Bucksbee, Ethan; Clarke, Matthew [Millard South High School, 14905 Q St., Omaha, NE 68137 (United States); Black, David V., E-mail: rebull@ipac.caltech.edu [Walden School of Liberal Arts, 4230 N. University Ave., Provo, UT 84604 (United States)

    2015-10-15

    Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using Infrared Astronomy Satellite (IRAS) data, and past studies have suggested a link between RGs with overabundant Li and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from the Wide-field Infrared Survey Explorer. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched Li, and IR excess. Our sample of RGs includes those with previous IR detections, a sample with well-defined rotation and Li abundance measurements with no previous IR measurements, and a large sample of RGs asserted to be Li-rich in the literature; we have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by ∼20 μm (with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few Li-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, {sup 12}C/{sup 13}C. IR excesses by 20 μm, though relatively rare, are at least twice as common among our sample of Li-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the

  9. Neutron diffraction on a large block mosaic crystal

    International Nuclear Information System (INIS)

    Kim Chir Sen; Nitts, V.V.

    1985-01-01

    The neutron diffraction by the mosaic single crystal with size of crystallites sufficient to achieve the primary extinction saturation is considered. Two cases where the proportionality between the reflection intensity and the structure amplitude is performed are analysed. Such a dependence is convenient for structure investigations. The difficulties connected with the accounting of the extinction are eliminated considerably

  10. A new method for protein estimation in large seeds using fast-neutron-activation analysis

    International Nuclear Information System (INIS)

    Gupta, U.C.; Misra, S.C.; Rao, U.S.

    1974-01-01

    A new method was developed for the determination of protein content of large seeds, using powders of different N content. The powders were obtained by mixing glucose with amino acids in different proportions and were irradiated with and without the seeds in the MeV neutron flux. The irradiated samples were counted under identical conditions and their activities were used to calculate the protein content of the seeds. The results were compared with those obtained by conventional activation technique and were found to be in good agreement. This new method has the advantage of being non-destructive. (author)

  11. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  12. Excess electron is trapped in a large single molecular cage C60F60.

    Science.gov (United States)

    Wang, Yin-Feng; Li, Zhi-Ru; Wu, Di; Sun, Chia-Chung; Gu, Feng-Long

    2010-01-15

    A new kind of solvated electron systems, sphere-shaped e(-)@C60F60 (I(h)) and capsule-shaped e(-)@C60F60 (D6h), in contrast to the endohedral complex M@C60, is represented at the B3LYP/6-31G(d) + dBF (diffusive basis functions) density functional theory. It is proven, by examining the singly occupied molecular orbital (SOMO) and the spin density map of e(-)@C60F60, that the excess electron is indeed encapsulated inside the C60F60 cage. The shape of the electron cloud in SOMO matches with the shape of C60F60 cage. These cage-like single molecular solvated electrons have considerably large vertical electron detachment energies VDE of 4.95 (I(h)) and 4.67 eV (D6h) at B3LYP/6-31+G(3df) + dBF level compared to the VDE of 3.2 eV for an electron in bulk water (Coe et al., Int Rev Phys Chem 2001, 20, 33) and that of 3.66 eV for e(-)@C20F20 (Irikura, J Phys Chem A 2008, 112, 983), which shows their higher stability. The VDE of the sphere-shaped e(-)@C60F60 (I(h)) is greater than that of the capsule-shaped e(-)@C60F60 (D6h), indicating that the excess electron prefers to reside in the cage with the higher symmetry to form the more stable solvated electron. It is also noticed that the cage size [7.994 (I(h)), 5.714 and 9.978 A (D6h) in diameter] is much larger than that (2.826 A) of (H2O)20- dodecahedral cluster (Khan, Chem Phys Lett 2005, 401, 85). Copyright 2009 Wiley Periodicals, Inc.

  13. The stationary neutron radiography system: a TRIGA-based production neutron radiography facility

    International Nuclear Information System (INIS)

    Chesworth, Robert H.; Hagmann, Dean B.

    1988-01-01

    General Atomics (GA) is under contract to construct a Stationary Neutron Radiography System (SNRS) - on a turnkey basis - at McClellan Air Force Base in Sacramento, California. The SNRS is a custom designed neutron radiography system which will utilize a 1000 KW TRIGA reactor as the neutron source. The partially below-ground reactor will be equipped with four inclined beam tubes originating near the top of the reactor graphite reflector and installed tangential to the reactor core to provide a strong current of thermal neutrons with minimum gamma ray contamination. The inclined beam tubes will terminate in four large bays and will interface with rugged component positioning systems designed to handle intact aircraft wings, other honeycomb aircraft structures, and pyrotechnics. The SNRS will be equipped with real-time, near real-time, and film radiographic imaging systems to provide a broad spectrum of capability for detection of entrained moisture or corrosion in large aircraft panels. GA is prime contractor to the Air Force for the SNRS and is specifically responsible for the TRIGA reactor system and a portion of the neutron beam system design. Science Applications International Corporation and the Lionakis-Beaumont Design Group are principal subcontractors to GA on the project. (author)

  14. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  15. Neutron Research in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho

    2005-01-01

    HANARO (High-flux Advanced Neutron Application Reactor), which was designed and constructed by indigenous technology, is a world-class multi-purpose research reactor with a design thermal power of 30 MW, providing high neutron flux for various applications in Korea. HANARO has been operated since its first criticality in February 1995, and is now successfully utilized in such areas as neutron beam research, fuel and materials tests, radioisotopes and radiopharmaceuticals production, neutron activation analysis, and neutron transmutation doping, etc. A number of experimental facilities have been developed and installed since the beginning of reactor operation, and R and D activities for installing more facilities are actively under progress. Three flux traps in the core (CT, IR1, IR2), providing a high fast neutron flux, can be used for materials and fuel irradiation tests. They are also proper for production of high specific activity radioisotopes. Four vertical holes in the outer core region, abundant in epithermal neutrons, are used for fuel or material tests and radioisotope production. In the heavy water reflector region, 25 vertical holes with high quality thermal neutrons are located for radioisotope production, neutron activation analysis, neutron transmutation doping and cold neutron source installation. The two largest holes named NTD1 and NTD2 are for neutron transmutation doping, CNS for the cold neutron source installation, and LH for the irradiation of large targets. The high resolution powder diffractometer (HRPD) became operational in 1998, followed by the four circle diffractometer (FCD) in 1999, the residual stress instrument (RSI) in 2000, and the small angle neutron spectrometer (SANS) in 2001, respectively. HRPD and SANS became the most popular instruments these days, attracting wide range of users from academia, institutes and industries. We have made a lot of efforts during the last 10 years to develop some key components such as

  16. THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 μm

    International Nuclear Information System (INIS)

    Srinivasan, Sundar; Meixner, Margaret; Leitherer, Claus; Vijh, Uma; Gordon, Karl D.; Sewilo, Marta; Volk, Kevin; Blum, Robert D.; Harris, Jason; Babler, Brian L.; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles W.; For, Bi-Qing; Misselt, Karl A.; Cohen, Martin; Hora, Joseph L.; Indebetouw, Remy; Markwick-Kemper, Francisca

    2009-01-01

    We present empirical relations describing excess emission from evolved stars in the Large Magellanic Cloud (LMC) using data from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution (SAGE) survey which includes the Infrared Array Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm and Multiband Imaging Photometer (MIPS) 24, 70, and 160 μm bands. We combine the SAGE data with the Two Micron All Sky Survey (2MASS; J, H, and K s ) and the optical Magellanic Cloud Photometric Survey (MCPS; U, B, V, and I) point source catalogs in order to create complete spectral energy distributions (SEDs) of the asymptotic giant branch (AGB) star candidates in the LMC. AGB star outflows are among the main producers of dust in a galaxy, and this mass loss results in an excess in the fluxes observed in the 8 and 24 μm bands. The aim of this work is to investigate the mass loss return by AGB stars to the interstellar medium of the LMC by studying the dependence of the infrared excess flux on the total luminosity. We identify oxygen-rich, carbon-rich, and extreme AGB star populations in our sample based on their 2MASS and IRAC colors. The SEDs of oxygen- and carbon-rich AGB stars are compared with appropriate stellar photosphere models to obtain the excess flux in all the IRAC bands and the MIPS 24 μm band. Extreme AGB stars are dominated by circumstellar emission at 8 and 24 μm; thus we approximate their excesses with the flux observed in these bands. We find about 16,000 O-rich, 6300 C-rich, and 1000 extreme sources with reliable 8 μm excesses, and about 4500 O-rich, 5300 C-rich, and 960 extreme sources with reliable 24 μm excesses. The excesses are in the range 0.1 mJy to 5 Jy. The 8 and 24 μm excesses for all three types of AGB candidates show a general increasing trend with luminosity. The color temperature of the circumstellar dust derived from the ratio of the 8 and 24 μm excesses decreases with an increase in excess, while the 24 μm optical depth increases with

  17. Analytical applications for delayed neutrons

    International Nuclear Information System (INIS)

    Eccleston, G.W.

    1983-01-01

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes

  18. Nuclear tracks, Sm isotopes and neutron capture effects in the Elephant Morraine shergottite

    International Nuclear Information System (INIS)

    Rajan, R.S.; Lugmair, G.; Tamhane, A.S.; Poupeau, G.

    1986-01-01

    Nuclear track studies, uranium concentration measurements and Sm-isotope studies have been performed on both lithologies A and B of the Elephant Morraine shergottite, EETA 79001. Track studies show that EETA 79001 was a rather small object in space with a preatmospheric radius of 12+-2 cm, corresponding to a preatmospheric mass of 28+-13 kg. Phosphates have U-concentrations ranging from 0.3 to 1.3 ppm. There are occasional phosphates with excess fission tracks, possibly produced from neutron induced fission of U and Th, during the regolith exposure in the shergottite parent body (SPB). Sm-isotope studies, while not showing any clear cut excess in 150 Sm, enable us to derive meaningful upper limits to thermal neutron fluences of 2 to 3x10 15 n/cm 2 , during a possible regolith irradiation. These limits are consistent with the track data and also enable us to derive an upper limit to the neutron exposure age of EETA 79001 of 55 Myr in the SPB regolith. (author)

  19. Nuclear tracks, Sm isotopes and neutron capture effects in the Elephant Morraine shergottite

    International Nuclear Information System (INIS)

    Rajan, R.S.; Lugmair, G.; Tamhane, A.S.; Poupeau, G.

    1985-01-01

    Nuclear track studies, uranium concentration measurements and Sm-isotope studies have been performed on both lithologies A and B of the Elephant Morraine Shergottite, EETA 79001. Track studies show that EETA 79001 was a rather small object in space with a preatmospheric radius of 12 +-2cm, corresponding to a preatmospheric mass of 28 +- 13 kg. U-concentrations measurements indicate that phosphates have concentrations ranging from 0.3 to 1.3 ppm. There are occasional phosphates with excess fission tracks, possibly produced from neutron induced fission of U and Th, during the regolith exposure in the shergottite parent body (SPB). Sm-isotope studies, while not showing any clear cut excess in 150 Sm, enable us to derive meaningful upper limits to thermal neutron fluences of 2 to 3x10 15 n/cm 2 , during a possible regolith irradiation. These limits are consistent with that required to explain the track data and also enable us to derive an upper limit to the neutron exposure age of EETA 79001 of 55 Myr in the SPB regolith. (Author) [pt

  20. Interpretations of galactic center gamma-ray excess confronting the PandaX-II constraints on dark matter-neutron spin-dependent scatterings in the NMSSM

    Science.gov (United States)

    Shang, Liangliang; He, Yangle; Lian, Jingwei; Pan, Yusi

    2018-05-01

    The Weakly Interacting Massive Particle (WIMP) has been one of the most attractive candidates for Dark Matter (DM), and the lightest neutralino (\\widetilde{χ }^0_1) in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) is an interesting realization of the WIMP framework. The Galactic Center Excess (GCE) indicated from the analysis of the photon data of the Fermi Large Area Telescope (Fermi-LAT) in the gamma-ray wavelength ≲ 1 fm, can be explained by WIMP DM annihilations in the sky, as shown in many existing works. In this work we consider an interesting scenario in the Z_3-NMSSM where the singlet S and Singlino \\widetilde{S}^0 components play important roles in the Higgs and DM sector. Guided by our analytical arguments, we perform a sophisticated scan over the NMSSM parameter space by considering various observables such as the Standard Model (SM) Higgs data measured by the ATLAS and CMS experiments at the Large Hadron Collider (LHC), and the B-physics observables BR(B_s→ X_sγ ) and BR(B_s→ μ ^+μ ^-). We first collect samples which can explain the GCE well while passing all constraints we consider except for the DM direct detection (DD) bounds from XENON1T and PandaX-II experiments. We analyze the features of these samples suitable for the GCE interpretation and find that \\widetilde{χ }^0_1 DM are mostly Singlino-like and annihilation products are mostly the bottom quark pairs \\bar{b}b through a light singlet-like CP-odd Higgs A_1. Moreover, a good fit to the GCE spectrum generically requires sizable DM annihilation rates 0 in today's Universe. However, the correlation between the coupling C_{A_1 b\\bar{b}} in 0 and the coupling C_{Z \\widetilde{χ }^0_1 \\widetilde{χ }^0_1} in DM-neutron Spin Dependent (SD) scattering rate σ ^{SD}_{\\widetilde{χ }^0_1-N} makes all samples we obtain for GCE explanation get excluded by the PandaX-II results. Although the DM resonant annihilation scenarios may be beyond the reach of our analytical

  1. Single Crystal Filters for Neutron Spectrometry

    International Nuclear Information System (INIS)

    Habib, N.

    2008-01-01

    A study of neutron transmission properties trough a large single crystals specimens of Si, Ge, Pb, Bi and sapphire at 300 K and 80 K have been made for a wide range of neutron energies. The effectiveness of such filters is given by the ratio of the total cross-section of unwanted epithermal neutrons to that the desired thermal neutron beam and by the optimum choice of the crystal orientation, its mosaic spread, thickness and temperature.Our study indicates that sapphire is significantly more effective than the others for a wide range of neutron energies

  2. Use of thermal neutron reflection method for chemical analysis of bulk samples

    International Nuclear Information System (INIS)

    Papp, A.; Csikai, J.

    2014-01-01

    Microscopic, σ β , and macroscopic, Σ β , reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ β values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ βmol (z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm 3 dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials

  3. Use of thermal neutron reflection method for chemical analysis of bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: papppa@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Csikai, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Institute of Experimental Physics, University Debrecen (IEP), 4010 Debrecen-10, Pf. 105 (Hungary)

    2014-09-11

    Microscopic, σ{sub β}, and macroscopic, Σ{sub β}, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ{sub β} values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ{sub βmol}(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm{sup 3} dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials.

  4. Coulomb displacement energies and neutron density distributions

    International Nuclear Information System (INIS)

    Shlomo, S.

    1979-01-01

    We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)

  5. A Large Neutrino Detector Facility at the Spallation Neutron Source at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Efremenko, Y.V.

    1999-01-01

    The ORLaND (Oak Ridge Large Neutrino Detector) collaboration proposes to construct a large neutrino detector in an underground experimental hall adjacent to the first target station of the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory. The main mission of a large (2000 ton) Scintillation-Cherenkov detector is to measure bar ν μ -> bar ν e neutrino oscillation parameters more accurately than they can be determined in other experiments, or significantly extending the covered parameter space below (sin'20 le 10 -4 ). In addition to the neutrino oscillation measurements, ORLaND would be capable of making precise measurements of sin 2 θ W , search for the magnetic moment of the muon neutrino, and investigate the anomaly in the KARMEN time spectrum, which has been attributed to a new neutral particle. With the same facility an extensive program of measurements of neutrino nucleus cross sections is also planned to support nuclear astrophysics

  6. Neutron monitoring system

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Arita, Setsuo.

    1994-01-01

    The present invention concerns neutron monitoring for monitoring reactor power, and presents a generation state of abnormal signals by monitoring output signals from neutron sensors, judges abnormal signals at an excessively high level outputted from the sensors to a measuring operator or a reactor operator. That is, a threshold value judging means judges whether a sensor signal exceeds a predetermined threshold value or not. When it exceeds the value, recognition signals are outputted to a memory means. The memory means memorizes the times of input of the recognition signals on every period of interval signals outputted from a reference signal generation means. The memory content of the memory means and the previously inputted hysteresis of the sensor are compared and judged, to determine the extent of the degradation of the sensors and output the result of the judgement and hysteresis information to the display means. The input means accesses to the judging means and the memory means to retrieve and correct the content of the memory means and the hysteresis information inputted to the judging means. (I.S.)

  7. Chemical behavior of tungsten trifluorophosphines following neutron activation

    International Nuclear Information System (INIS)

    Bottomley, L.D.; Clark, R.J.

    1988-01-01

    The chemical reactions that follow neutron capture have been studied for a series of tungsten trifluorophosphine carbonyls. The molecular distribution of 187 W was determined by gas chromatographic separation using scintillation detection. The chemical behavior of these compounds was examined in the condensed phase and the gas phase, both with and without excess PF 3 or CO. The retention of the parent species was measured as well as the formation of any scrambled species W(PF 3 ) x (CO) 6-x in all experiments. The results of irradiations done in condensed phase with no excess ligands were modeled by a Simplex iterative routine to calculate the distribution of recoil fragments. (orig.)

  8. Neutronic analysis of the 1D and 1E banks reflux detection system

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  9. Neutronic analysis of the 1D and 1E banks reflux detection system

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal 235 U concentration levels to reflux levels remain satisfactory detectable

  10. Determination of the neutron energy and spatial distributions of the neutron beam from the TSR-II in the large beam shield

    International Nuclear Information System (INIS)

    Clifford, C.E.; Muckenthaler, F.J.

    1976-01-01

    The TSR-II reactor of the ORNL Tower Shielding Facility has recently been relocated within a new, fixed shield. A principal feature of the new shield is a beam port of considerably larger area than that of its predecessor. The usable neutron flux has thereby been increased by a factor of approximately 200. The bare beam neutron spectrum behind the new shield has been experimentally determined over the energy range from 0.8 to 16 MeV. A high level of fission product gamma ray background prevented measurement of bare beam spectra below 0.8 MeV, however neutron spectra in the energy range from 8 keV to 1.4 MeV were obtained for two simple, calculable shielding configurations. Also measured in the present work were weighted integral flux distributions and fast neutron dose rates

  11. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Sasao, M.; Krasilnikov, A.V.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Jarvis, O.N.; Iguchi, T.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be well measured by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include: radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors, neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The neutron flux monitors need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented. (author)

  12. Neutron resonance spectroscopy

    International Nuclear Information System (INIS)

    Gunsing, F.

    2005-06-01

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  13. In situ calibration of TFTR neutron detectors

    International Nuclear Information System (INIS)

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.M.

    1990-01-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled 252 Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two 235 U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of ±13%

  14. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  15. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    International Nuclear Information System (INIS)

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-01-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  16. Determination of average fission fraction produced by 14 MeV neutrons in assemblies with large volume of depleted uranium

    International Nuclear Information System (INIS)

    Wang Dalun; Li Benci; Wang Xiuchun; Li Yijun; Zhang Shaohua; He Yongwu

    1991-07-01

    The average fission fraction of 238 U caused by 14 MeV neutrons in assemblies with large volume depleted uranium has been determined. The measured value of p f 238U (R ∞ depleted ) 14 was 0.897 ± 0.036. Measurements were also completed for neutron flux distribution and average fission fraction of 235 U isotope in depleted uranium sphere. Values of p f 238U (R depleted ) have been obtained by using a series of uranium spheres. For a sphere with Φ 600 the p f 23 '8 U (R 300 depleted ) is 0.823 ± 0.041, the density of depleted uranium assembly is 18.8g/cm 3 and total weight of assembly is about 2.8t

  17. Neutron generators at Purnima Lab

    International Nuclear Information System (INIS)

    Patel, Tarun; Sinha, Amar

    2015-01-01

    Neutron sources are in a great demand in many area like research, nuclear waste management, industrial process control, medical and also security. Major sources of neutrons are nuclear reactors, radioisotopes and accelerator based neutron generators. For many field applications, reactors cannot be used due to its large size, complicated system, high cost and also safety issues. Radioisotopes like Pu-Be, Am-Be, Cf, are extensively used for many industrial applications. But they are limited in their use due to their low source strength and also handling difficulties due to radioactivity. They are also not suitable for pulsed neutron applications. In contrast, compact size, pulsed operation, on/off operation etc.of accelerator based neutron generators make them very popular for many applications. Particle accelerators based on different types of neutron generators have been developed around the world. Among these deuteron accelerator based D-D and D-T neutron generators are widely used as they produce mono-energetic fast neutrons and in particular high yield of D-T neutron can be obtained with less than 300 KV of accelerating voltage

  18. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  19. Potassium Disorder in the Defect Pyrochlore KSbTeO6: A Neutron Diffraction Study

    Directory of Open Access Journals (Sweden)

    José Antonio Alonso

    2017-01-01

    Full Text Available KSbTeO6 defect pyrochlore has been prepared from K2C2O4, Sb2O3, and 15% excess TeO2 by solid-state reaction at 850 °C. Direct methods implemented in the software EXPO2013 allowed establishing the basic structural framework. This was followed by a combined Rietveld refinement from X-ray powder diffraction (XRD and neutron powder diffraction (NPD data, which unveiled additional structural features. KSbTeO6 is cubic, a = 10.1226(7 Å, space group F d 3 ¯ m , Z = 8 and it is made of a mainly covalent framework of corner-sharing (Sb,TeO6 octahedra, with weakly bonded K+ ions located within large cages. The large K-O distances, 3.05(3–3.07(3 Å, and quite large anisotropic atomic displacement parameters account for the easiness of K+ exchange for other cations of technological importance.

  20. SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Abraham, K. [Physik-department, Technische Universität München, D-85748 Garching (Germany); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI 53201 (United States); Anderson, T. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Archinger, M.; Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Argüelles, C.; Axani, S. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Collaboration: IceCube Collaboration; and others

    2016-10-20

    IceTop is an air-shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic-ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 ( E /PeV) pc before decay. Two searches are performed using 4 yr of the IceTop data set to look for a statistically significant excess of events with energies above 10 PeV (10{sup 16} eV) arriving within a small solid angle. The all-sky search method covers from −90° to approximately −50° in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher-energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios.

  1. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  2. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Krasilnikov, A.V.; Sasao, M.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Iguchi, T.; Jarvis, O.N.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Prosvirin, D.V.; Tsutskikh, A.Yu.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented

  3. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Zhao, Jinkui; Pierce, Josh; Robertson, J. L.; Herwig, Kenneth W.; Myles, Dean; Cuneo, Matt; Li, Le; Meilleur, Flora; Standaert, Bob

    2016-01-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals. (paper)

  4. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Akram, W.; Schönbächler, M. [School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sprung, P. [Institut für Planetologie, Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Vogel, N. [Institute for Geochemistry and Petrology, ETH, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  5. Large-scale single-crystal growth of (CH3)2NH2CuCl3 for neutron scattering experiments

    Science.gov (United States)

    Park, Garam; Oh, In-Hwan; Park, J. M. Sungil; Park, Seong-Hun; Hong, Chang Seop; Lee, Kwang-Sei

    2016-05-01

    Neutron scattering studies on low-dimensional quantum spin systems require large-size single-crystals. Single-crystals of (CH3)2NH2CuCl3 showing low-dimensional magnetic behaviors were grown by a slow solvent evaporation method in a two-solvent system at different temperature settings. The best results were obtained for the bilayer solution of methanol and isopropanol with a molar ratio of 2:1 at 35 °C. The quality of the obtained single-crystals was tested by powder and single-crystal X-ray diffraction and single-crystal neutron diffraction. In addition, to confirm structural phase transitions (SPTs), thermal analysis and single-crystal X-ray diffraction at 300 K and 175 K, respectively, were conducted, confirming the presence of a SPT at Tup=288 K on heating and Tdown=285 K on cooling.

  6. Exploring Neutron-Rich Oxygen Isotopes with MoNA

    International Nuclear Information System (INIS)

    Frank, N.; Gade, A.; Peters, W. A.; Thoennessen, M.; Baumann, T.; Bazin, D.; Lecouey, J.-L.; Scheit, H.; Schiller, A.; Brown, J.; DeYoung, P. A.; Finck, J. E.; Hinnefeld, J.; Howes, R.; Luther, B.

    2007-01-01

    The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24 O, a resonance at 45(2) keV above the neutron separation energy was observed in 23 O

  7. The direct neutron decay of giant resonances in 208Pb

    International Nuclear Information System (INIS)

    Bracco, A.

    1988-01-01

    The neutron decay of the giant multipole resonance region from 9 to 15 MeV of excitation energy in 208 Pb has been studied. Neutron branching ratios for the decay to the ground state and to the low-lying excited states of 207 Pb were measured as a function of the excitation energy of 208 Pb and compared to Hauser-Feshbach calculations. While the neutron branching ratios from the energy region of the isoscalar giant quadrupole resonance are reproduced by the calculations, the ratios from the energy region of the isoscalar giant monopole resonance show a conspicuous excess with respect to the statistical model predictions. The neutron yield from this energy region was analysed in terms of a multistep model of the compound nucleus which includes collective doorway channels. The total direct escape width as well as the associated direct partial escape widths to the lowest five valence hole states of 207 Pb were determined. (orig.)

  8. Transmutation of Minor Actinide in well thermalized neutron field and application of advanced neutron source (ANS)

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Hirakawa, Naohiro

    1995-01-01

    Transmutation of Minor Actinide (MA) in a well thermalized neutron field was studied. Since MA nuclides have large effective cross sections in the well thermalized neutron field, the transmutation in the well thermalized neutron field has an advantage of high transmutation rate. However, the transmutation rate largely decreases by accumulation of 246 Cm when MA is transmuted only in the well thermalized neutron field for a long period. An acceleration method of burn-up of 246 Cm was studied. High transmutation rate can be obtained by providing a neutron field with high flux in the energy region between 1 and 100 eV. Two stage transmutation using the well thermalized neutron field and this field can transmute MA rapidly. The applicability of the Advanced Neutron Source (ANS) to the transmutation of MA was examined for a typical MA with the composition in the high-level waste generated in the conventional PWR. If the ANS is applied without changing the fuel inventory, the amount of MA which corresponds to that produced by a conventional 1,175 MWe PWR in one year can be transmuted by the ANS in one year. Furthermore, the amount of the residual can be reduced to about 1g (10 -5 of the initial MA weight) by continuing the transmutation for 5 years owing to the two stage transmutation. (author)

  9. Readout for a large area neutron sensitive microchannel plate detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiming [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Yang, Yigang, E-mail: yangyigang@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Wang, Xuewu; Li, Yuanjing [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP–WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP–WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  10. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  11. Research trends in neutron physics

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1976-01-01

    The trends in neutron research are discussed from the viewpoints of development of pulsed neutron sources, the ingenuity of specialization of instrumentation and experimental techniques, and research programs. The latter comprise the large and still expanding requirements of nuclear data for nuclear power technology, the requirements of other fundamental sciences, and the experimental and theoretical developments required for a more fundamental understanding of the subject of neutron and related nuclear reactions itself. The general conclusion is that high energy resolution coupled with high intensity for detecting weak reactions provides the key to further progress, and that (provided financial limitations do not stifle the further development of experimental facilities, particularly neutron sources) the subject of neutron physics still has a long and fruitful future

  12. Features of the neutron spectra accompanying the fission of actinide nuclei

    International Nuclear Information System (INIS)

    Lovchikova, G.N.; Trufanov, A.M.; Svirin, M.I.; Polyakov, A.V.; Vinogradov, V.A.; Dmitriev, V.D.; Boykov, G.S.

    2000-01-01

    The spectra of fission neutrons from 238 U are measured by the time-of-flight technique at incident-neutron energies E n = 5.0 and 13.2 MeV. The data are compared with those obtained in the previous studies for 232 Th, 235,238 U, 237 Np at E n = 2.9 and 14.7 MeV; for 232 Th at E n = 14.6 and 17.7 MeV; for 238 U at 16.0 and 17.7 MeV. An excess of soft neutrons, which is observed in comparing experimental spectra for E n 13.2, 14.7, 16.0 and 17.7 MeV with the results of traditional theoretical calculations, is reproduced fairly well under the assumption that, at high excitation energies of a compound system, some part of post-fission neutrons can be emitted by nonaccelerated fragments [ru

  13. Ethical implications of excessive cluster sizes in cluster randomised trials.

    Science.gov (United States)

    Hemming, Karla; Taljaard, Monica; Forbes, Gordon; Eldridge, Sandra M; Weijer, Charles

    2018-02-20

    The cluster randomised trial (CRT) is commonly used in healthcare research. It is the gold-standard study design for evaluating healthcare policy interventions. A key characteristic of this design is that as more participants are included, in a fixed number of clusters, the increase in achievable power will level off. CRTs with cluster sizes that exceed the point of levelling-off will have excessive numbers of participants, even if they do not achieve nominal levels of power. Excessively large cluster sizes may have ethical implications due to exposing trial participants unnecessarily to the burdens of both participating in the trial and the potential risks of harm associated with the intervention. We explore these issues through the use of two case studies. Where data are routinely collected, available at minimum cost and the intervention poses low risk, the ethical implications of excessively large cluster sizes are likely to be low (case study 1). However, to maximise the social benefit of the study, identification of excessive cluster sizes can allow for prespecified and fully powered secondary analyses. In the second case study, while there is no burden through trial participation (because the outcome data are routinely collected and non-identifiable), the intervention might be considered to pose some indirect risk to patients and risks to the healthcare workers. In this case study it is therefore important that the inclusion of excessively large cluster sizes is justifiable on other grounds (perhaps to show sustainability). In any randomised controlled trial, including evaluations of health policy interventions, it is important to minimise the burdens and risks to participants. Funders, researchers and research ethics committees should be aware of the ethical issues of excessively large cluster sizes in cluster trials. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  14. Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2013-01-01

    Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10 -5 Å -1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3 He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3 He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3 He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)

  15. Atomic-resolution neutron holography

    International Nuclear Information System (INIS)

    Cser, L.; Toeroek, Gy.; Krexner, G.

    2001-01-01

    Atomic-resolution neutron holography can be realised by two different schemes. In the frame of the first approach a point-like source of slow neutrons is produced inside the investigated crystal. Due to the extremely large value of the incoherent-scattering cross-section of the proton, hydrogen atoms imbedded in a metal single-crystal lattice may serve as point-like sources when the sample is irradiated by a monochromatic beam of slow neutrons. The second approach utilizes the registration of the interference between the incident and scattered waves by means of a point-like detector inserted in the lattice of the crystal under investigation. In addition, neutron-induced electron holography is considered. The feasibility of these ideas is discussed. (orig.)

  16. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  17. Magnetic correlations and their dependence on excess oxygen in La2NiO4+δ (DK)

    International Nuclear Information System (INIS)

    Freltoft, T.; Buttrey, D.J.; Aeppli, G.; Vaknin, D.; Shirane, G.

    1991-01-01

    We report results of elastic- and inelastic-neutron-scattering studies of three single crystals of the layered perovskite La 2 NiO 4+δ , with δ=0.00, 0.067, and 0.077, as well as neutron powder diffraction on a material with an oxygen excess δ∼0.065. The magnetic correlations are highly sensitive to the oxygen content, and three-dimensional antiferromagnetic order sets in at T N ≥300 K, and T N =68, and 48 K for the single crystals, respectively, and at T N =74 K for the powder sample. The crystal with δ=0.067 was studied in detail to characterize the tetragonal to orthorhombic (T s =232--240 K) and antiferromagnetic (T N =68 K) transitions. The order parameter η(T) for the orthorhombic distortion shows a power-law dependence on temperature with the exponent β=0.21 and hysteresis, suggesting that this transition is less than second order. Two-dimensional critical scattering is observed around the antiferromagnetic phase transition. The magnetic excitation spectra in the three-dimensional ordered state are characterized by small anisotropy gaps between ∼0 and 3 meV, and large effective in-plane spin-wave velocities, which decrease with increasing δ. For δ=0.077, c∼130 meV A; and for δ=0.00, c≥300 meV A

  18. Compilation of Existing Neutron Screen Technology

    Directory of Open Access Journals (Sweden)

    N. Chrysanthopoulou

    2014-01-01

    Full Text Available The presence of fast neutron spectra in new reactors is expected to induce a strong impact on the contained materials, including structural materials, nuclear fuels, neutron reflecting materials, and tritium breeding materials. Therefore, introduction of these reactors into operation will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Due to limited availability of fast reactors, testing of future reactor materials will mostly take place in water cooled material test reactors (MTRs by tailoring the neutron spectrum via neutron screens. The latter rely on the utilization of materials capable of absorbing neutrons at specific energy. A large but fragmented experience is available on that topic. In this work a comprehensive compilation of the existing neutron screen technology is attempted, focusing on neutron screens developed in order to locally enhance the fast over thermal neutron flux ratio in a reactor core.

  19. Experimental studies of the critical scattering of neutrons for large scattering vectors

    International Nuclear Information System (INIS)

    Ciszewski, R.

    1972-01-01

    The most recent results concerned with the critical scattering of neutrons are reviewed. The emphasis is on the so-called thermal shift, that is the shift of the main maximum in the intensity of critically scattered neutrons with temperature changes. Four theories of this phenomenon are described and their shortcomings are shown. It has been concluded that the situation is involved at present and needs further theoretical and experimental study. (S.B.)

  20. Neutronics comparative analysis between MNSR and slowpoke-II reactors

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    Neutronics analysis of both MNSR and Slowpoke reactors were made. Calculations including flux distribution, power estimation, excess and shutdown reactivity margins, flooding effects of irradiation sites, and initial investigation of fuel conversion from high to low enriched uranium were discussed. A neutronic 3-D model, dedicated mainly for the MNSR, has been developed to perform such neutronic calculations for both reactors. Well-known cell and core calculation codes such as WIMSD4 and CITATIONS have been used. It was found out that it is possible to lower the fuel enrichment of the Miniature Neutron Source Reactor (MNSR) to 20% using U O 2 as fuel instead of U Al 4 . The number of fuel elements required for the new core is 199. The use of double thickness of the bottom reflector in Slowpoke reactor made it possible to load the reactor with lower enriched fuel compared to MNSR. Values of reactivity flooding effects for single or combination of inner irradiation sites were obtained accurately. Results show good agreement with reported data for MNSR. (author)

  1. Thermal neutron source study

    International Nuclear Information System (INIS)

    Holden, T.M.

    1983-05-01

    The value of intense neutron beams for condensed matter research is discussed with emphasis on the complementary nature of steady state and pulsed neutron sources. A large body of information on neutron sources, both existing and planned, is then summarized under four major headings: fission reactors, electron accelerators with heavy metal targets, pulsed spallation sources and 'steady state' spallation sources. Although the cost of a spallation source is expected to exceed that of a fission reactor of the same flux by a factor of two, there are significant advantages for a spallation device such as the proposed Electronuclear Materials Test Facility (EMTF)

  2. Diffusion of water adsorbed in hydrotalcite: neutron scattering Study

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Pramanik, A [Unilever Research India, Bangalore 500 066 (India); Chakrabarty, D [Godrej Sara Lee Limited, Research and Development Centre, Mumbai 400 079 (India); Juranyi, F [Laboratory for Neutron Scattering, ETHZ and PSI, CH-5232 Villigen PSI (Switzerland); Gautam, S [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Mukhopadhyay, R [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2007-12-15

    Layered double hydroxides (LDH) are a class of ionic lamellar solids with positively charged layers of two kinds of metallic cations and exchangeable hydrated anions. Quasi-elastic neutron scattering (QENS) measurements are performed in this type of LDH structured hydrated hydrotalcite sample to study the dynamical behaviour of the water in geometric confinement within the layers. Dynamical parameters correspond to the confined water molecules revealed that depending on the amount of excess water present, behaves differently and approaches bulk values at high concentration. Both translational and rotational dynamical parameters showed that at very low concentration of excess water, water molecules are attached to the surfaces and show the confinement effect.

  3. Nuclear-pumped lasers for large-scale applications

    International Nuclear Information System (INIS)

    Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

    1989-05-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs

  4. Moderator/collimator for a proton/deuteron linac to produce a high-intensity, high-quality thermal neutron beam for neutron radiography

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Imel, G.R.; McMichael, G.E.

    1995-01-01

    Reactor based high resolution neutron radiography facilities are able to deliver a well-collimated (L/D ≥100) thermal flux of 10 6 n/cm 2 ·sec to an image plane. This is well in excess of that achievable with the present accelerator based systems such as sealed tube D-T sources, Van der Graaff's, small cyclotrons, or low duty factor linacs. However, continuous wave linacs can accelerate tens of milliamperes of protons to 2.5 to 4 MeV. The MCNP code has been used to analyze target/moderator configurations that could be used with Argonne's Continuous Wave Linac (ACWL). These analyses have shown that ACWL could be modified to generate a neutron beam that has a high intensity and is of high quality

  5. Direct Fast-Neutron Detection

    International Nuclear Information System (INIS)

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-01

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here

  6. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  7. Twentieth century surge of excess adult male mortality

    Science.gov (United States)

    Beltrán-Sánchez, Hiram; Finch, Caleb E.; Crimmins, Eileen M.

    2015-01-01

    Using historical data from 1,763 birth cohorts from 1800 to 1935 in 13 developed countries, we show that what is now seen as normal—a large excess of female life expectancy in adulthood—is a demographic phenomenon that emerged among people born in the late 1800s. We show that excess adult male mortality is clearly rooted in specific age groups, 50–70, and that the sex asymmetry emerged in cohorts born after 1880 when male:female mortality ratios increased by as much as 50% from a baseline of about 1.1. Heart disease is the main condition associated with increased excess male mortality for those born after 1900. We further show that smoking-attributable deaths account for about 30% of excess male mortality at ages 50–70 for cohorts born in 1900–1935. However, after accounting for smoking, substantial excess male mortality at ages 50–70 remained, particularly from cardiovascular disease. The greater male vulnerability to cardiovascular conditions emerged with the reduction in infectious mortality and changes in health-related behaviors. PMID:26150507

  8. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  9. Selective electronalysis of peracetic acid in the presence of a large excess of H{sub 2}O{sub 2} at Au(1 1 1)-like gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Awad, M.I., E-mail: mawad70@yahoo.com [Department of Chemistry, Faculty of Science, Cairo University (Egypt)

    2012-06-12

    Highlights: Black-Right-Pointing-Pointer Analysis of peracetic acid in the presence of a large excess of H{sub 2}O{sub 2} is introduced. Black-Right-Pointing-Pointer Au(1 1 1)-like gold electrode serves as an ideal for this purpose. Black-Right-Pointing-Pointer The analysis is characterized by high selectivity and sensitivity. - Abstract: Peracetic acid (PAA) has been selectively electroanalyzed in the presence of a large excess of hydrogen peroxide (H{sub 2}O{sub 2}), about 500 fold that of PAA, using Au (1 1 1)-like gold electrode in acetate buffer solutions of pH 5.4. Au(1 1 1)-like gold electrode was prepared by a controlled reductive desorption of a previously assembled thiol, typically cysteine, monolayer onto the polycrystalline gold (poly-Au) electrode. Cysteine molecules were selectively removed from the Au(1 1 1) facets of the poly-Au electrode, keeping the other two facets (i.e., Au(1 1 0) and Au(1 0 0)) under the protection of the adsorbed cysteine. It has been found that Au(1 1 1)-like gold electrode positively shifts the reduction peak of PAA, while, fortunately, shifts the reduction peak of H{sub 2}O{sub 2} negatively, achieving a large potential separation (around 750 mV) between the two reduction peaks as compared with that (around 450 mV) obtained at the poly-Au electrode. This large potential separation between the two reduction peaks enabled the analysis of PAA in the presence of a large excess of H{sub 2}O{sub 2}. In addition, the positive shift of the reduction peak of PAA gives the present method a high immunity against the interference of the dissolved oxygen.

  10. Particle physics with cold neutrons

    International Nuclear Information System (INIS)

    Dubbers, D.

    1991-01-01

    Slow neutrons are used in a large number of experiments to study the physics of particles and their fundamental interactions. Some of these experiments search for manifestations of ''new physics'' like baryon- or lepton-number nonconservation, time reversal nonconservation, new particles, right-handed currents, nonzero neutron charge, nonlinear terms in the Schrodinger equation, exotic e + e - states, and others. Other slow neutron experiments test the present Standard Model. The parity nonconserving weak neutron-nucleon interaction is studied in a variety of experiments. Free neutron beta decay gives precise values for the weak vector and axialvector coupling constants, which allow precise tests of basic symmetries like the conservation of the weak vector current, the unitarity of the weak quark mixing matrix, SU(3) flavour symmetry, and right-handed currents. Neutron beta decay data are further needed to calculate weak cross-sections, for applications, in big bang cosmology, in astrophysics, in solar physics and the solar neutrino problem, and in such mundane things as neutrino detection efficiencies in neutrino oscillation or proton decay experiments. Neutron-nucleon, neutron-nucleus and neutron-electron scattering lengths are determined in high precision experiments, which use methods like neutron interferometry or neutron gravity spectrometry. The experiments give information on quantities like the neutron charge radius or the neutron electric polarizability. Precision measurements of other fundamental constants lead to a better, model-independent value of the fine structure constant. Finally, the fundamental experiments on quantum mechanics, like spinor 4π -rotation, Berry's phase, dressed neutrons, Aharanov - Casher effect, or gravitational effects on the neutron's phase will be briefly discussed. (author)

  11. LHD neutron diagnostics

    International Nuclear Information System (INIS)

    Isobe, M.; Ogawa, K.; Kobuchi, T.

    2015-01-01

    The Large Helical Device (LHD) project will step into a next stage, i.e. experiment by using deuterium gases after two years of preparation. A comprehensive set of neutron and γ-ray diagnostics is going to be installed on the LHD towards extension of energetic-particle (EP) physics research in heliotron plasmas. Conceptual design of fusion products diagnostics for the LHD was made in late 1990s. After conclusion of agreements for the LHD deuterium experiment with local government bodies, development of FPs diagnostics has begun lately. Because there are a lot of tasks to do, all Japan fusion neutron and γ-ray diagnostics team has been organized in the collaboration framework of National Institute for Fusion Science. FPs diagnostics system on the LHD will consist of 1) wide dynamic range neutron flux monitor (NFM), 2) neutron activation system (NAS), 3) vertical neutron camera (VNC). In addition to these, we are developing a directional scintillating fiber detector, an artificial diamond detector and a γ-ray scintillation detector for confinement study of MeV ions. A neutron energy spectrometer prototype is also being developed and tested in KSTAR. In this paper, roles of NFM, NAS and VNC and current status of implementation onto the LHD are briefly described. (author)

  12. Study of the muon-induced neutron background with the LVD detector

    International Nuclear Information System (INIS)

    Menghetti, H.; Selvi, M.

    2005-01-01

    High energy neutrons, generated as a product of cosmic muon interaction in the rock or in the detector passive material, represent the most dangerous background for a large list of topics like reactor neutrino studies, the search for SN relic neutrinos, solar antineutrinos, etc.Up to now there are few measurements of the muon-produced neutron flux at large depth underground. Moreover it is difficult to reproduce the measured data with Monte Carlo simulation because of the large uncertainties in the neutron production and propagation models.We present here the results of such a measurement with the LVD detector, which is well suited for the detection of neutrons produced by cosmic-ray muons, reporting the neutron flux at various distances from the muon track, for different neutron energies (E > 20 MeV) and as a function of the muon track length in scintillator

  13. Study of neutron rich nuclei by delayed neutron decay using the Tonnerre multidetector; Etude de la decroissance par neutrons retardes de noyaux legers riches en neutrons avec le multidetecteur tonnerre

    Energy Technology Data Exchange (ETDEWEB)

    Timis, C.N

    2001-07-01

    A new detection array for beta delayed neutrons was built. It includes up to 32 plastic scintillation counters 180 cm long located at 120 cm from the target. Neutron energy spectra are measured by time-of-flight in the 300 keV-15 MeV range with good energy resolution. The device was tested with several known nuclei. Its performances are discussed in comparison with Monte Carlo simulations. They very high overall detection efficiency on the TONNERRE array made it possible to study one and two neutron emission of {sup 11}Li. A complete decay scheme was obtained. The {sup 33}Mg and {sup 35}Al beta decays were investigated for the first time by neutron and gamma spectroscopy. Complete decay schemes were established and compared to large scale shell-model calculations. (authors)

  14. Device for Writing the Time Tail from Spallation Neutron Pulses

    International Nuclear Information System (INIS)

    Langan, P.; Schoenborn, Benno P.; Daemen, L.L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  15. Radiography and tomography with polarized neutrons

    International Nuclear Information System (INIS)

    Treimer, Wolfgang

    2014-01-01

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm 3 in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified

  16. Radiography and tomography with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang, E-mail: treimer@helmholtz-berlin.de [University of Applied Sciences, Beuth Hochschule für Technik Berlin, Department Mathematics Physics and Chemistry, Luxemburgerstr. 10, D-13353 Berlin (Germany); Helmholtz Zentrum für Materialien und Energie, Department G – GTOMO, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2014-01-15

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm{sup 3} in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified.

  17. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  18. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  19. Transformation of phosphatidylcholine multilayer systems in a large excess of water

    DEFF Research Database (Denmark)

    Hartung, J.; Helfrich, W.; Klösgen, B.

    1994-01-01

    The swelling of similar samples of prehydrated phosphatidylcholine in excess water (> 99 wt/wt%) was studied microscopically and by X-ray diffraction. The Bragg peaks of the lamellar repeat distance were monitored for up to ten days. After a short period of rapid water uptake, the peaks remained...... stable in width and position, thus indicating that the so-called equilibrium distance was established in the fluid membrane stack. Within the next days we usually found the peaks to decrease continuously before they vanished in the background. The results suggest that the multilayer system desintegrates...

  20. Use of the Power Burst Facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Crocker, J.G.; Griebenow, M.L.; Leatham, J.

    1990-01-01

    A program is under development at the Idaho National Engineering Laboratory (INEL) that involves using the Power Burst Facility (PBF) for research into boron neutron capture therapy (BNCT). BNCT utilizes the ionizing energy from boron-neutron capture to stop reproduction of or destroy cells in cancerous tissue in a two-step process. The first step is to selectively concentrate a boron isotope within the tumor cell, that when activated by neutron capture emits highly ionizing, short range particles. The second step involves activation of the isotope only in the vicinity of the tumor with a narrow neutron beam. The ( 10 B[n, 4 He] 7 Li) reaction with thermal neutrons produces fission products with track lengths approximately equal to a cell diameter. The INEL program includes the modification of the PBF by the addition of a filter and treatment area. The filter will down-scatter high energy neutrons into the epithermal range and remove thermal neutrons and excessively damaging gamma components. The intense source of epithermal neutrons from PBF is considered necessary to achieve optimum therapy for deep-seated tumors with minimum damage to surface tissue. THe neutron filter conceptualized for PBF utilizes aluminum and heavy water to down-scatter neutrons into the proper energy range. Bismuth will be used for gamma shielding and cadmium will remove the thermal neutron contaminant from the beam. The INEL program leads to human clinical trials at PBF which are intended to prove that brain tumors can be successfully treated through noninvasive techniques. Further research into BNCT at PBF for other cancer types is also anticipated

  1. Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Johansen, Jacob; Schrock, Philipp [IKP, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    Reactions of neutron-rich tin isotopes in a mass range of A=124 to A=134 have been measured at the R{sup 3}B setup at GSI in inverse kinematics. Due to the neutron excess, which results in a weaker binding of the valence neutrons such isotopes are expected to form a neutron skin. The investigation of this phenomenon is an important goal in nuclear-structure physics. Reactions of the tin isotopes with different targets have been performed kinematically complete. The taken data set therefore allows for the extraction of the neutron-skin thickness from two independent reaction channels. These are dipole excitations on the one hand and nuclear-induced reactions on the other hand. This contribution focuses on the latter mechanism. The analysis techniques which are used to extract the total charge-changing as well as the total neutron-removal cross section are presented using the example of {sup 124}Sn. The total neutron-removal cross section is of particular interest because of its high sensitivity to the neutron-skin thickness.

  2. Use of a large time-compensated scintillation detector in neutron time-of-flight measurements

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1979-01-01

    A scintillator for neutron time-of-flight measurements is positioned at a desired angle with respect to the neutron beam, and as a function of the energy thereof, such that the sum of the transit times of the neutrons and photons in the scintillator are substantially independent of the points of scintillations within the scintillator. Extrapolated zero timing is employed rather than the usual constant fraction timing. As a result, a substantially larger scintillator can be employed that substantially increases the data rate and shortens the experiment time. 3 claims

  3. Neutron-gamma discrimination of boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Wang Dong; He Bin; Zhang Quanhu; Wu Chuangxin; Luo Zhonghui

    2010-01-01

    Boron loaded plastic scintillator could detect both fast neutrons thanks to hydrogen and thermal neutrons thanks to 10B. Both reactions have large cross sections, and results in high detection efficiency of incident neutrons. However, similar with other organic scintillators, boron loaded plastic scintillator is sensitive to gamma rays and neutrons. So gamma rays must be rejected from neutrons using their different behavior in the scintillator. In the present research zero crossing method was used to test neutron-gamma discrimination of BC454 boron loaded plastic scintillator. There are three Gaussian peaks in the time spectrum, they are corresponding to gamma rays, fast neutrons and flow neutrons respectively. Conclusion could be made that BC454 could clear discriminate slow neutrons and gamma, but the discrimination performance turns poor as the neutrons' energy becomes larger. (authors)

  4. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Syracuse Univ., NY (United States)

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  5. Neutrons and carcinogenesis: a cautionary tale

    International Nuclear Information System (INIS)

    Hall, E.J.

    1996-01-01

    The best estimates for radiation induced cancer and leukemia are based on the Japanese survivors of Hiroshima and Nagasaki. With the earlier dosimetry systems of the 1960's, it was possible to derive an RBE (relative biological effectiveness) for neutrons from the Japanese data, because it was thought that there was a significant neutron dose at Hiroshima compared with Nagasaki. The estimated RBE of about 20 was consistent with laboratory estimates for oncogenic transformation in vitro and tumors in animals. The revised dosimetry of the 1980's [DS 86] essentially eliminated the neutron component at Hiroshima, and consequently removed the only neutron RBE estimate based on human data. However, recent neutron activation measurements indicate that these may indeed have been thermal neutrons at Hiroshima, and measurements of the ratio of inter- to intra-chromosomal aberrations in peripheral lymphocytes of survivors also tend to indicate that the biologically effective dose was dominated by neutrons. Another area in which the large biological effectiveness of neutrons assumes importance is the production of photoneutrons in high energy medical linear accelerators (Linacs). An increasing number of accelerators operating in the 18 to 20 MV range are coming into routine clinical use and at this energy, photoneutrons generated largely in the collimators result in a total body dose to the patient. The increased risk of second malignancies must be balanced against the slight improvement in percentage depth doses compared with more conventional machines operating at to 10 MV, below the threshold for photoneutron production. (author)

  6. Neutron transmission through crystalline Fe

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Kilany, M.; El-Mesiry, M.S.

    2004-01-01

    The neutron transmission through crystalline Fe has been calculated for neutron energies in the range 10 4 < E<10 eV using an additive formula. The formula permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-section as a function of temperature and crystalline form. The obtained agreement between the calculated values and available experimental ones justifies the applicability of the used formula. A feasibility study on using poly-crystalline Fe as a cold neutron filter and a large Fe single crystal as a thermal one is given

  7. Neutron radiography with sub-15 {mu}m resolution through event centroiding

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, Anton S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 (United States); McPhate, Jason B.; Vallerga, John V.; Siegmund, Oswald H.W. [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 (United States); Bruce Feller, W. [NOVA Scientific, Inc. 10 Picker Road, Sturbridge, MA 01566 (United States); Lehmann, Eberhard; Kaestner, Anders; Boillat, Pierre; Panzner, Tobias; Filges, Uwe [Spallation Neutron Source Division, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2012-10-01

    Conversion of thermal and cold neutrons into a strong {approx}1 ns electron pulse with an absolute neutron detection efficiency as high as 50-70% makes detectors with {sup 10}B-doped Microchannel Plates (MCPs) very attractive for neutron radiography and microtomography applications. The subsequent signal amplification preserves the location of the event within the MCP pore (typically 6-10 {mu}m in diameter), providing the possibility to perform neutron counting with high spatial resolution. Different event centroiding techniques of the charge landing on a patterned anode enable accurate reconstruction of the neutron position, provided the charge footprints do not overlap within the time required for event processing. The new fast 2 Multiplication-Sign 2 Timepix readout with >1.2 kHz frame rates provides the unique possibility to detect neutrons with sub-15 {mu}m resolution at several MHz/cm{sup 2} counting rates. The results of high resolution neutron radiography experiments presented in this paper, demonstrate the sub-15 {mu}m resolution capability of our detection system. The high degree of collimation and cold spectrum of ICON and BOA beamlines combined with the high spatial resolution and detection efficiency of MCP-Timepix detectors are crucial for high contrast neutron radiography and microtomography with high spatial resolution. The next generation of Timepix electronics with sparsified readout should enable counting rates in excess of 10{sup 7} n/cm{sup 2}/s taking full advantage of high beam intensity of present brightest neutron imaging facilities.

  8. Toxicological applications of neutron-activation analysis

    International Nuclear Information System (INIS)

    Cross, J.D.; Dale, I.M.; Smith, H.

    1975-01-01

    Thermal neutron-activation analysis is recognised as a useful tool for trace element studies in toxicology. This paper describes some recent applications of the technique to three elements when ingested by people in excess of normal intake Two of the elements (copper and chromium) are essential to life and one (bromine) is as yet unclassified. Three deaths were investiagted and trace element levels compared with normal levels from healthy subjects in the same geographical area who had died as a result of violence. (author)

  9. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  10. Safety requirements and options for a large size fast neutron reactor

    International Nuclear Information System (INIS)

    Cogne, F.; Megy, J.; Robert, E.; Benmergui, A.; Villeneuve, J.

    1977-01-01

    Starting from the experience gained in the safety evaluation of the PHENIX reactor, and from results already obtained in the safety studies on fast neutron reactors, the French regulatory bodies have defined since 1973 what could be the requirements and the recommendations in the matter of safety for the first large size ''prototype'' fast neutron power plant of 1200 MWe. Those requirements and recommendations, while not being compulsory due to the evolution of this type of reactors, will be used as a basis for the technical regulation that will be established in France in this field. They define particularly the care to be taken in the following areas which are essential for safety: the protection systems, the primary coolant system, the prevention of accidents at the core level, the measures to be taken with regard to the whole core accident and to the containment, the protection against sodium fires, and the design as a function of external aggressions. In applying these recommendations, the CREYS-MALVILLE plant designers have tried to achieve redundancy in the safety related systems and have justified the safety of the design with regard to the various involved phenomena. In particular, the extensive research made at the levels of the fuel and of the core instrumentation makes it possible to achieve the best defence to avoid the development of core accidents. The overall examination of the measures taken, from the standpoint of prevention and surveyance as well as from the standpoint of means of action led the French regulatory bodies to propose the construction permit of the CREYS MALVILLE plant, provided that additional examinations by the regulatory bodies be made during the construction of the plant on some technological aspects not fully clarified at the authorization time. The conservatism of the corresponding requirements should be demonstrated prior to the commissioning of the power plant. To pursue a programme on reactors of this type, or even more

  11. An absolute measurement of 252Cf prompt fission neutron spectrum at low energy range

    International Nuclear Information System (INIS)

    Lajtai, A.; Dyachenko, P.P.; Kutzaeva, L.S.; Kononov, V.N.; Androsenko, P.A.; Androsenko, A.A.

    1983-01-01

    Prompt neutron energy spectrum at low energies (25 keV 252 Cf spontaneous fission has been measured with a time-of-flight technique on a 30 cm flight-path. Ionization chamber and lithium-glass were used as fission fragment and neutron detectors, respectively. Lithium glasses of NE-912 (containing 6 Li) and of NE-913 (containing 7 Li) 45 mm in diameter and 9.5 mm in thickness have been employed alternatively, for the registration of fission neutrons and gammas. For the correct determination of the multiscattering effects - the main difficulty of the low energy neutron spectrum measurements - a special geometry for the neutron detector was used. Special attention was paid also to the determination of the absolute efficiency of the neutron detector. The real response function of the spectrometer was determined by a Monte-Carlo calculation. The scattering material content of the ionization chamber containing a 252 Cf source was minimized. As a result of this measurement a prompt fission neutron spectrum of Maxwell type with a T=1.42 MeV parameter was obtained at this low energy range. We did not find any neutron excess or irregularities over the Maxwellian. (author)

  12. Cold neutron radiography using low power accelerator

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatu

    1993-01-01

    A cold neutron source which can be adopted at a low power accelerator was studied. Time-of-flight radiography using the cold neutron source was performed. It is suggested that time-of-flight cold neutron radiography has possibility to distinguish the materials more clearly than the traditional film method since large contrast differences can be obtained by using digital data of the neutron intensity at different energies from thermal to cold region. Material will be identified at the same time by this method. (author)

  13. The spectral energy distributions of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Renxin

    2013-03-01

    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.

  14. Breaking strain of neutron star crust and gravitational waves.

    Science.gov (United States)

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  15. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    Klann, R.T.

    1996-01-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10 10 neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10 7 to 3.8x10 8 n/cm 2 depending on the type of screen and film

  16. Neutron fragmentation and inclusive charge exchange in pd and π+d interactions at 195 GeV/c

    International Nuclear Information System (INIS)

    Eisenberg, Y.; Haber, B.; Hochman, D.; Koller, E.; Ronat, E.E.; Shapira, A.; Yaari, R.; Yekutieli, G.; Braun, H.; Etienne, F.; Fridman, A.; Gerber, J.P.; Jegham, E.; Juillot, P.; Maurer, G.; Voltolini, C.

    1976-01-01

    An excess of negative particles and depletion of positives in the cms backward hemisphere is observed in π + and p interactions on neutron target. dΣ - /dy is compared with pp interactions and the difference is related to the slow proton spectrum produced in the pn interactions. A neutron fragmentation component is observed and the inclusive charge exchange probability at the nucleon vertex is found to be about 0.4. (author)

  17. Investigating The Integral Control Rod Worth Of The Miniature Neutron Source Reactor MNSR

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Do Quang Binh

    2011-01-01

    Determining control rod characteristics is an essential problem of nuclear reactor analysis. In this research, the integral control rod worth of the miniature neutron source reactor MNSR is investigated. Some other parameters of the nuclear reactor, such as core excess reactivity, shut down margin, are also calculated. Group constants for all reactor components are generated by the WIMSD code and then are used in the CITATION code to solve the neutron diffusion equations. The maximum relative error of the calculated results compared with the measurement data is about 3.5%. (author)

  18. Conducting Polymers for Neutron Detection

    International Nuclear Information System (INIS)

    Clare Kimblin; Kirk Miller; Bob Vogel; Bill Quam; Harry McHugh; Glen Anthony; Steve Jones; Mike Grover

    2007-01-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  19. Neutron measurements as fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hoek, M.

    1993-01-01

    Neutron measurements play important roles as the diagnostics of many aspects of the plasma in large tokamak devices such as JT-60U and JET. In the d-d discharges of JT-60U, the most important application of the neutron measurement is the investigation of the fusion performance using fission chambers. The ion velocity distribution function, and the triton slowing down are investigated by the neutron spectrometer and the 14 MeV neutron detector, respectively. TANSY is a combined proton-recoil and neutron time-of flight spectrometer for 14 MeV neutrons to be used during the d-t phase at JET. The detection principle is based on the measurements of the flight time of a scattered initial neutron and the energy of a corresponding recoil proton. The scattering medium is a polyethylene foil. The resolution and efficiency, using a thin foil (0.95 mg/cm 2 ), is 155 keV and 1.4x10 -5 cm 2 , respectively. (author)

  20. Neutrons and fusion

    International Nuclear Information System (INIS)

    Maynard, C.W.

    1976-01-01

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 10 20 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  1. Structure of neutron stars

    International Nuclear Information System (INIS)

    Cheong, C.K.

    1974-01-01

    Structure of neutron stars consisting of a cold and catalyzed superdense matter were investigated by integrating the equations for hydrostatic equilibrium based on the General Relativity theory. The equations of state were obtained with the help of semiempirical nuclear mass formulae. A large phase transition was found between the nuclear and subnuclear density regions. The density phase transition points were calculated as 6.2 x 10 11 and 3.8 x 10 13 g/cm 3 . Due to such a large phase transition, the equation of state practically consists of two parts: The nuclear and subnuclear phases wich are in contact under the thermodynamical equilibrium at the corresponding pressure. Some macroscopic properties of neutron stars are discussed. (Author) [pt

  2. Estimation of dependence between mean of fractionation of photons and neutrons dose and intensity of post-irradiation reaction of mouse large intestine

    International Nuclear Information System (INIS)

    Gasinska, A.

    1995-01-01

    The aim of the work was verification of mouse large intestine tolerance on fractionated 250 kV X-rays and 2.3 MeV neutrons doses. Two cm of large intestine of mouse CBA/HT strain were irradiated with various fraction doses: from 0.25 to 35 Gy of X-rays and 0.05-12 Gy of neutrons. The measure of injury was handicap of intestine function. Early post-irradiation reaction was measured by loss of body weight (2-3 weeks after irradiation) and mouse mortality (till 2 months after irradiation, LD50/2). The late reaction was measured on the base of maximal body weight in 1 year period after irradiation, deformation of excrements (after 10 months) and death of animals (till 12. month after irradiation, LD50/12). Fractionation of X-ray dose influenced on decrease of intensification of late irradiation effects. After fractionation of neutrons this effect has not been observed. α/β coefficient for X-rays was 19.9 Gy [15.2; 27.0] for body weight nadir, 13.4 Gy [9.3; 19.5] for early mortality (LD50/2), 6.4 Gy [3.6;11.0] for maximal body weight and 6.9 [4.2; 10.8] for late mortality (LD50/12). Analysis of influence of low doses of photons 90.25-4 Gy) and neutrons (0.05-0.8 Gy) showed trend to reduction α/β for photons only (LD50/2=5.4 Gy; LD50/12=4.6 Gy). α/β coefficient for neutrons was defined by LQ model only for maximal body weight and was 19.9 Gy [9.5; 61.0]. In application of graphic method α/β for neutrons was 230 Gy for early and 48 Gy for late effects. Lower values of α/β coefficient for late irradiation effects for photon radiation demonstrate the big influence of fractionation of photons dose on large intestine tolerance (decrease intensity in all biological effects). Author did not observe increase of intestine tolerance in fractionation of neutrons dose. Effect of irradiation damages repair in interfraction pauses, measured by percent of regenerated dose (F r ) was much bigger for photons. For X-rays it was 50% for early and 63% for late effects. In case of

  3. Earnings Quality Measures and Excess Returns.

    Science.gov (United States)

    Perotti, Pietro; Wagenhofer, Alfred

    2014-06-01

    This paper examines how commonly used earnings quality measures fulfill a key objective of financial reporting, i.e., improving decision usefulness for investors. We propose a stock-price-based measure for assessing the quality of earnings quality measures. We predict that firms with higher earnings quality will be less mispriced than other firms. Mispricing is measured by the difference of the mean absolute excess returns of portfolios formed on high and low values of a measure. We examine persistence, predictability, two measures of smoothness, abnormal accruals, accruals quality, earnings response coefficient and value relevance. For a large sample of US non-financial firms over the period 1988-2007, we show that all measures except for smoothness are negatively associated with absolute excess returns, suggesting that smoothness is generally a favorable attribute of earnings. Accruals measures generate the largest spread in absolute excess returns, followed by smoothness and market-based measures. These results lend support to the widespread use of accruals measures as overall measures of earnings quality in the literature.

  4. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  5. Medical use of fast neutrons in radiotherapy and radiography

    International Nuclear Information System (INIS)

    Bewley, D.K.

    1975-01-01

    Over 400 patients have been treated with fast neutrons from a cyclotron at Hammersmith Hospital, London, using 16 MeV deuterons on beryllium. A large variety of malignant disease is included in this trial. A randomized trial of fast neutron therapy for cancer of the mouth and throat is in progress and preliminary results will be given. Fast neutron radiographs are often taken to check the positions of the fields used on the patients. These show no contrast from bone, but demonstrate only the presence of gas-filled cavities. As a diagnostic method, fast neutron radiography suffers from a number of disadvantages, the main ones being lack of sensitivity of the image-forming system and the hazard to the patient due to a large Quality Factor. Estimation of the absorbed dose given to different types of tissue is an important factor in the medical use of fast neutrons. More data are needed on the processes whereby fast neutrons impart energy to matter, particularly for neutrons above 15 MeV

  6. Advances in Neutron Activation Analysis of Large Objects with Emphasis on Archaeological Examples. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2018-03-01

    This publication is a compilation of the main results and findings of an IAEA coordinated research project (CRP). In particular, it discusses an innovative variation of neutron activation analysis (NAA) known as large sample NAA (LSNAA). There is no other way to measure the bulk mass fractions of the elements present in a large sample (up to kilograms in mass) non-destructively. Examples amenable to LSNAA include irregularly shaped archaeological artefacts, excavated rock samples, large samples of assorted ore, and finished products, such as nuclear reactor components. The CRP focused primarily on the application of LSNAA in the areas of archaeology and geology; however it was also open for further exploration in other areas such as industry and life sciences as well as in basic research. The CRP contributed to establish the validation of the methodology, and, in particular, it provided an opportunity for developing trained manpower. The specific objectives of this CRP were to: i) Validate and optimize the experimental procedures for LSNAA applications in archaeology and geology; ii) Identify the needs for development or upgrade of the neutron irradiation facility for irradiation of large samples; iii) Develop and standardize data acquisition and data analysis systems; iv) Harmonize and standardize data collection from facilities with similar kind of instrumentation for further analysis and benchmarking. Advantages of LSNAA applications, limitations and scientific and technological requirements are described in this publication, which serves as a reference of interest not only to the NAA experts, research reactor personnel, and those considering this technique, but also to various stakeholders and users such as researchers, industrialists, environmental and legal experts, and administrators.

  7. Measurements of DT and DD neutron yields by neutron activation on TFTR

    International Nuclear Information System (INIS)

    Barnes, C.W.; Larson, A.R.; LeMunyan, G.

    1994-01-01

    A variety of elemental foils have been activated by neutron fluence from TFTR under conditions with the DT neutron yield per shot ranging from 10 12 to over 10 18 , and with the DT/(DD+DT) neutron ratio varying from 0.5% (from triton burnup) to unity. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants. and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the ±9% (one-sigma,) accuracy of the measurements: also agreeing are yields from silicon foils using the ACTL library cross-section. While the ENDF/B-V library has too low a cross-section. Preliminary results from a variety of other threshold reactions are presented. Use of the 115 In(n,n) 115m In reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments

  8. Measurements of DT and DD neutron yields by neutron activation on TFTR

    International Nuclear Information System (INIS)

    Barnes, C.W.; Larson, A.R.; LeMunyan, G.

    1995-03-01

    A variety of elemental foils have been activated by neutron fluence from TFTR under conditions with the DT neutron yield per shot ranging from 10 12 to over 10 18 , and with the DT/(DD+DT) neutron ratio varying from 0.5% (from triton burnup) to unity. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants, and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the ±9% (one-sigma) accuracy of the measurements; also agreeing are yields from silicon foils using the ACTL library cross-section, while the ENDF/B-V library has too low a cross-section. Preliminary results from a variety of other threshold reactions are presented. Use of the 115 In(n.n') 115m In reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments

  9. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Wolff, Ronald [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Detwiler, Ryan [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Maurer, Richard [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Mitchell, Stephen [National Security Technologies, LLC, Las Vegas, NV (United States); Guss, Paul [Remote Sensing Lab. - Nellis, Las Vegas, NV (United States); Lacy, Jeffrey L. [Proportional Technologies, Inc., Houston, TX (United States); Sun, Liang [Proportional Technologies, Inc., Houston, TX (United States); Athanasiades, Athanasios [Proportional Technologies, Inc., Houston, TX (United States)

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and

  10. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator

    International Nuclear Information System (INIS)

    Reijonen, J.; Leung, K.-N.; Firestone, R.B.; English, J.A.; Perry, D.L.; Smith, A.; Gicquel, F.; Sun, M.; Bandong, B.; Garabedian, G.; Revay, Zs.; Szentmiklosi, L.; Molnar, G.

    2003-01-01

    Various types of neutron generator systems have been designed and tested at the Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory. These generators are based on a D-D fusion reaction. These high power D-D neutron generators can provide neutron fluxes in excess of the current state of the art D-T neutron generators, without the use of pre-loaded targets or radioactive tritium gas. Safe and reliable long-life operations are the typical features of these D-D generators. All of the neutron generators developed in the Plasma and Ion Source Technology Group are utilizing powerful RF-induction discharge to generate the deuterium plasma. One of the advantages of using the RF-induction discharge is it's ability to generate high fraction of atomic ions from molecular gases, and the ability to generate high plasma densities for high extractable ion current from relatively small discharge volume

  11. Gamma-neutron activation experiments using laser wakefield accelerators

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.

    2001-01-01

    Gamma-neutron activation experiments have been performed with relativistic electron beams produced by a laser wakefield accelerator. The electron beams were produced by tightly focusing (spot diameter ≅6 μm) a high power (up to 10 TW), ultra-short (≥50 fs) laser beam from a high repetition rate (10 Hz) Ti:sapphire (0.8 μm) laser system, onto a high density (>10 19 cm -3 ) pulsed gasjet of length ≅1.5 mm. Nuclear activation measurements in lead and copper targets indicate the production of electrons with energy in excess of 25 MeV. This result was confirmed by electron distribution measurements using a bending magnet spectrometer. Measured γ-ray and neutron yields are also found to be in reasonable agreement with simulations using a Monte Carlo transport code

  12. Electric Form Factor of the Neutron

    Science.gov (United States)

    Feuerbach, Robert

    2007-10-01

    Recent polarization-based precision measurements of the nucleons' elastic electric form factors have led to surprising results. The measurement of the ratio of the proton's electromagnetic form factors, μpGE^p/GM^p, was found to drop nearly linearly with Q^2 out to at least 5 GeV^2, inconsistent with the older Rosenbluth-type experiments. A recent measurement of GE^n, the neutron's electric form-factor saw GE^n does not fall off as quickly as commonly expected up to Q^2 1.5 GeV^2. Extending this study, a precision measurement of GE^n up to Q^2=3.5 GeV^2 was completed in Hall A at Jefferson Lab. The ratio GE^n/GM^n was measured through the beam-target asymmetry A of electrons quasi-elastically scattered off polarized neutrons in the reaction ^3He(e,e' n). The experiment took full advantage of the electron beam, recent target developments, as well as two detectors new to Jefferson Lab. The measurement used the accelerator's 100% duty-cycle high-polarization (typically 84%) electron beam and a new, hybrid optically-pumped polarized ^3He target which achieved in-beam polarizations in excess of 50%. A medium acceptance (80msr) open-geometry magnetic spectrometer (BigBite) detected the scattered electron, while a geometrically matched neutron detector observed the struck neutron. Preliminary results from this measurement will be discussed and compared to modern calculations of GE^n.

  13. Disposition of excess weapon grade plutonium: Status of the Russian program

    Energy Technology Data Exchange (ETDEWEB)

    Diyakov, Anatoly [Center for Arms Control, Energy and Environmental Studies, Moscow (Russian Federation)

    2015-07-01

    During the Cold War, the Soviet Union and United States produced huge quantities of plutonium for weapons. Substantial cuts in their nuclear arsenals released of huge amounts of weapon grade nuclear materials. This put into the agenda the problem what to do with the excess weapon materials. In 2000 Russia and the United States concluded a Plutonium Management and Disposition Agreement (PMDA), committing each to eliminate 34 tons of excess weapon plutonium. It was expected that the implementation of the PMDA Agreement will start in the second half of the year 2009 and the disposition programs finalized in 2025. But from the very beginning the practical implementation of the PMDA agreement met with substantial difficulties. After the consultations held in 2006-2007 the PMDA Agreement was modified. In compliance with the modified Agreement each side pledged to start the disposition of 34 tons of excess plutonium (25 tons in the form of metal and 9 tons in dioxide) in 2018 and to finalize the process in 15 years. Both sides were supposed to use the same disposition method through use in the MOX fuel and its subsequent irradiation in civil nuclear reactors: in light reactors for the USA and in fast neutron reactors for Russia. The presentation is going to provide the current status of the disposition program.

  14. Excessive Daytime Sleepiness

    Directory of Open Access Journals (Sweden)

    Yavuz Selvi

    2016-06-01

    Full Text Available Excessive daytime sleepiness is one of the most common sleep-related patient symptoms, with preva-lence in the community estimated to be as high as 18%. Patients with excessive daytime sleepiness may exhibit life threatening road and work accidents, social maladjustment, decreased academic and occupational performance and have poorer health than comparable adults. Thus, excessive daytime sleepiness is a serious condition that requires investigation, diagnosis and treatment primarily. As with most medical condition, evaluation of excessive daytime sleepiness begins a precise history and various objective and subjective tools have been also developed to assess excessive daytime sleepiness. The most common causes of excessive daytime sleepiness are insufficient sleep hygiene, chronic sleep deprivation, medical and psychiatric conditions and sleep disorders, such as obstructive sleep apnea, medications, and narcolepsy. Treatment option should address underlying contributors and promote sleep quantity by ensuring good sleep hygiene. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 114-132

  15. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    International Nuclear Information System (INIS)

    Schaetzler, R.; Monkenbusch, M.

    1998-01-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  16. The initiation of excess power and possible products of nuclear interactions during the electrolysis of heavy water

    International Nuclear Information System (INIS)

    Scott, C.D.; Mrochek, J.E.; Scott, T.C.; Michaels, G.E.; Newman, E.; Petek, M.

    1990-01-01

    The electrolysis of heavy water is being investigated with an insulated flow calorimetric system. The electrolyte was 0.1 to 1.0 N LiOD in D 2 O and cylindrical palladium cathodes surrounded by wire-wound platinum anodes have been used at cathode current densities of 100 to 800 mA/cm 2 . The most recent test has been made with a ''closed system'' without off-gal in which the electrolysis gases were internally recombined. Fast neutrons and gamma rays were measured continuously during the tests. It was shown that certain system perturbations could initiate and extend generation of excess power. In one test, there was an apparent increase in the neutron count rate that was also coincident with system perturbations. 4 refs., 6 figs

  17. Lowering the enrichment of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    An investigation of lowering the fuel enrichment of MNSR was realized. A 3-D neutronic model was developed for the analysis of the reactor. It was found that lower number of fuel elements is needed when UO 2 is used with 5.45 g of 235 U content in each fuel rod. Sensitivity of the reactor to the purity of the beryllium reflector proved to be an important factor in determining the reactor neutronics as well as the weight of loaded fuel in the core. Inherent safety features of low excess reactivity and shutdown margins are preserved and enhanced. Average thermal fluxes over different zones of the core are kept very much unchanged

  18. Lowering the enrichment of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Kamis, I.; Khattab, K.

    1999-01-01

    An investigation of lowering the fuel enrichment of MNSR was realized. A 3-D neutronic model was developed for the analysis of the reactor. It was found that lower number of fuel elements is needed when UO 2 is used with 5.45 g of 235 U content in each fuel rod. sensitivity of the reactor to the purity of the beryllium reflector proved to be an important factor in determining the reactor neutronics as well as the weight of loaded fuel in the core. Inherent safety feature of low excess reactivity and shutdown margins are preserved and enhanced. average thermal fluxes over different zones of the core are kept very much unchanged. (author)

  19. Performance of an elliptically tapered neutron guide

    International Nuclear Information System (INIS)

    Muehlbauer, Sebastian; Stadlbauer, Martin; Boeni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-01-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics

  20. Neutron fragmentation and inclusive charge exchange in pd and π+d interactions at 195 GeV/c

    International Nuclear Information System (INIS)

    Eisenberg, Y.; Haber, B.; Hochman, D.; Koller, E.; Ronat, E.E.; Shapira, A.; Yaari, R.; Yekutieli, G.; Braun, H.; Etienne, F.; Fridman, A.; Gerber, J.P.; Jegham, E.; Juillot, P.; Maurer, G.; Voltolini, C.

    1977-01-01

    An excess of negative particles and depletion of positive particles in the backward hemisphere (c.m. system) is observed in π + and p interactions on neutron target. dsigma - /dy is compared with pp interactions and the difference is related to the slow-proton spectrum produced in the pn interactions. A neutron fragmentation component is observed, and the inclusive charge-exchange probability at the nucleon vertex is found to be about 0.4

  1. Background model systematics for the Fermi GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Calore, Francesca; Cholis, Ilias; Weniger, Christoph

    2015-03-01

    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2° < |b| < 20° and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.0° (95% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy E(break) = 2.1 ± 0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bar bb final states a dark matter mass of m(χ)=49(+6.4)(-)(5.4)  GeV.

  2. Neutron Skins and Neutron Stars in the Multimessenger Era

    Science.gov (United States)

    Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.

    2018-04-01

    The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017), 10.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4 M⊙ neutron star of R⋆1.4Pb 208 to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about Rskin208≲0.25 fm . However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities—likely indicative of a phase transition in the interior of neutron stars.

  3. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  4. Old and new neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10 38 s -1 of 10 12 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10 8 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  5. The TUNL neutron-neutron scattering length experiment

    International Nuclear Information System (INIS)

    Trotter, D.E.G.; Tornow, W.; Howell, C.R.

    1995-01-01

    Since an accurate value for the neutron-neutron (nn) scattering length a nn is of fundamental interest, its determination should not rely on one source of experimental information only. Besides the π d capture reaction, the nd breakup reaction has been the classical reaction used for determining a nn . However, none of the published values for a nn obtained from kinematically complete nd → n+n+p breakup data are based on a rigorous treatment of the three-nucleon continuum. In addition, the scale uncertainty associated with the existing nd breakup cross-section data in the region of the nn final-state interaction peak is too large to allow for a meaningful reanalysis. Therefore, a new kinematically complete nd breakup experiment is underway at TUNL at an incident neutron energy of 13 MeV. State-of-the-art three-nucleon continuum calculations will be used to analyze the data. In order to investigate the possible influence of three-nucleon force effects, a nn will be determined from data taken at four production angles of the nn pair between 20.5 degrees and 43 degrees (lab)

  6. Zeeman splitting of surface-scattered neutrons

    International Nuclear Information System (INIS)

    Felcher, G.P.; Adenwalla, S.; De Haan, V.O.; Van Well, A.A.

    1995-01-01

    If a beam of slow neutrons impinges on a solid at grazing incidence, the neutrons reflected can be used to probe the composition and magnetization of the solid near its surface. In this process, the incident and reflected neutrons generally have identical kinetic energies. Here we report the results of an experiment in which subtle inelastic scattering processes are revealed as relatively large deviations in scattering angle. The neutrons are scattered from a ferromagnetic surface in the presence of a strong ambient magnetic field, and exhibit a small but significant variation in kinetic energy as a function of the reflection angle. This effect is attributable to the Zeeman splitting of the energies of the neutron spin states due to the ambient magnetic field: some neutrons flip their spins upon reflection from the magnetized surface, thereby exchanging kinetic energy for magnetic potential energy. The subtle effects of Zeeman splitting are amplified by the extreme sensitivity of grazing-angle neutron scattering, and might also provide a useful spectroscopic tool if significant practical obstacles (such as low interaction cross-sections) can be overcome. (author)

  7. Country Fundamentals and Currency Excess Returns

    Directory of Open Access Journals (Sweden)

    Daehwan Kim

    2014-06-01

    Full Text Available We examine whether country fundamentals help explain the cross-section of currency excess returns. For this purpose, we consider fundamental variables such as default risk, foreign exchange rate regime, capital control as well as interest rate in the multi-factor model framework. Our empirical results show that fundamental factors explain a large part of the cross-section of currency excess returns. The zero-intercept restriction of the factor model is not rejected for most currencies. They also reveal that our factor model with country fundamentals performs better than a factor model with usual investment-style factors. Our main empirical results are based on 2001-2010 balanced panel data of 19 major currencies. This paper may fill the gap between country fundamentals and practitioners' strategies on currency investment.

  8. Detail analysis of fusion neutronics benchmark experiment on beryllium

    International Nuclear Information System (INIS)

    Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Ohnishi, Seiki; Kondo, Keitaro; Wada, Masayuki; Sato, Satoshi

    2010-01-01

    Our previous analysis of the integral experiments (in situ and TOF experiments) on beryllium with DT neutrons at JAEA/FNS pointed out two problems by using MCNP4C and the latest nuclear data libraries; one was a strange larger neutron peak around 12 MeV appearing in the TOF experiment analysis with JEFF-3.1 and the other was an overestimation on law energy neutrons in the in situ experiment analyses with all the nuclear data libraries. We investigated reasons for these problems in detail. It was found out that the official ACE file MCJEFF3.1 of JEFF-3.1 had an inconsistency with the original JEFF-3.1, which caused the strange larger neutron peak around 12 MeV in the TOF experiment analysis. We also found out that the calculated thermal neutron peak was probably too large in the in situ experiment. On trial we examined influence of the thermal neutron scattering law data of beryllium metal in ENDF/B-VI. The result pointed out that the coherent elastic scattering cross-section data in the thermal neutron scattering law data of beryllium metal were probably too large.

  9. Transmission efficiency of neutron guide tube with alignment errors

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Suzuki, Masatoshi; Sakamoto, Masanobu; Harami, Taikan; Takahashi, Hidetake; Onishi, Nobuaki

    1990-01-01

    The experimental studies on the neutron transmission efficiencies of neutron guide tubes were carried out by using thermal neutrons from the JAERI electron linac. The neutron guide tube facility on a large scale have been planned on the reconstructed JRR-3 in JAERI. The neutron efficiencies of the 1/10 scale neutron guide tube, which is 2 mm width and 1.8 m length, with and without appreciable alignment errors were studied to evaluate the efficiencies of the planned ones. Calculated results by the Neutron Guide Tube Analysis Code 'NEUGT' were also assessed by these neutron experiments. The experimental results agree well with the calculated results by 'NEUGT' even with alignment errors. From this experimental study, the efficiency of the planned neutron guide tubes is estimated to be good enough for the neutron beam experiments. (author)

  10. Neutron calorimeter as a fusion diagnostic

    International Nuclear Information System (INIS)

    Proctor, A.E.; Nieschmidt, E.B.

    1986-01-01

    A calorimeter is described which is applicable as a fusion neutron diagnostic. The device has the following distinct advantages: low sensitivity to thermal neutrons, large dynamic range, small mass resulting in fair time resolution, small physical size, independent calibration, little shielding required, no heat loss to surroundings, and low cost. The heat generation is provided by neutron induced fissions in a foil of 235 U or 238 U. The effects, advantages, and disadvantages of these target materials are discussed. The expected time resolution and dynamic range are estimated for both target materials

  11. Neutron spectrum unfolding using neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2004-01-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)

  12. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  13. The NSCL neutron wall facility

    International Nuclear Information System (INIS)

    Zecher, P.; Galonsky, A.; Kruse, J.

    1995-01-01

    The authors have constructed and installed a large-area, high-efficiency neutron detector at the NSCL. The motivation behind the detector's design was provided by their desire to improve a previous experiment, where they measured the soft-dipole-resonance parameters and ground state n-n correlations in 11 Li, and to perform similar experiments on other neutron-rich halo nuclei. The detector consists of two planes of liquid scintillator, each 4 square meters in area; it is position sensitive and is capable of neutron-γ-ray discrimination. A general overview of the detector's design and measurements of its performance in test experiments will be presented

  14. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  15. γ-transitions from neutron resonances and many-quasiparticle configurations

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1991-01-01

    One should answer the question posed in 1972: Are there large many-quasiparticle components in the wave functions of highly excited low-spin states and, in particular, of neutron resonances? With increasing excitation energy the structure of states becomes more complex; the contribution of few-quasiparticle components to wave function normalization decreases exponentially and for the neutron resonances of heavy nuclei it equals 10 -6 . It is obvious that the wave function of neutron resonances contain many thousands of various quasiparticle components. Two extreme cases are possible. In the first case all the components are small and distributed according to statistical laws. In the second case among many components there is one or a few large many-quasiparticle components. There are many-quasiparticle isomers with high spins whose large life-time is due to the absence of few-quasiparticle components. This indicates a small fragmentation of these states. Low-spin states are fragmented more strongly than high-spin ones. What experiments are to be performed to answer the question about the existence are to be performed to answer the question about the existence of many-quasiparticle components of the wave functions of neutron resonances? It seems that the most straight way for observing large many-quasiparticle components is many-nucleon transfer reactions. However, in this way one faces great difficulties. The author thinks it to be more convenient to study γ transitions from neutron resonances to the states with energies by 1-2 MeV less than the energies of neutron resonances

  16. DS86 neutron dose. Monte Carlo analysis for depth profile of {sup 152}Eu activity in a large stone sample

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Satoru; Hoshi, Masaharu; Takada, Jun [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Iwatani, Kazuo; Oka, Takamitsu; Shizuma, Kiyoshi; Imanaka, Tetsuji; Fujita, Shoichiro; Hasai, Hiromi

    1999-06-01

    The depth profile of {sup 152}Eu activity induced in a large granite stone pillar by Hiroshima atomic bomb neutrons was calculated by a Monte Carlo N-Particle Transport Code (MCNP). The pillar was on the Motoyasu Bridge, located at a distance of 132 m (WSW) from the hypocenter. It was a square column with a horizontal sectional size of 82.5 cm x 82.5 cm and height of 179 cm. Twenty-one cells from the north to south surface at the central height of the column were specified for the calculation and {sup 152}Eu activities for each cell were calculated. The incident neutron spectrum was assumed to be the angular fluence data of the Dosimetry System 1986 (DS86). The angular dependence of the spectrum was taken into account by dividing the whole solid angle into twenty-six directions. The calculated depth profile of specific activity did not agree with the measured profile. A discrepancy was found in the absolute values at each depth with a mean multiplication factor of 0.58 and also in the shape of the relative profile. The results indicated that a reassessment of the neutron energy spectrum in DS86 is required for correct dose estimation. (author)

  17. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Vacca, W.D.; Torres-Dodgen, A.V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates. 78 refs

  18. Neutron absorber qualification and acceptance testing from the designer's perspective

    International Nuclear Information System (INIS)

    Bracey, W.; Chiocca, R.

    2004-01-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3σ. The original and current bases for the reduced 10 B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and process controls

  19. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Saito, Y.; Hibiki, T.; Mishima, K.; Nishihara, H.; Yamamoto, A.; Kanda, K.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1998-01-01

    In a core melt accident of a fast breeder reactor there is a possibility of boiling of fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the recriticality of melted core. Gas-liquid two-phase flow with a large density difference is formed due to the boiling of fuel-steel mixture. Although the large density difference may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with large density difference has not been performed well. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography. The effect of the large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified. (author)

  20. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  1. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  2. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  3. American National Standard: neutron and gamma-ray flux-to-dose rate factors

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard presents data recommended for computing biological dose rates due to neutron and gamma-ray radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are given; the energy range for the gamma-ray conversion factors is 0.01 to 15 MeV. Specifically, this Standard is intended for use by shield designers to calculate wholebody dose rates to radiation workers and the general public. Establishing dose-rate limits is outside the scope of this Standard. Use of this Standard in cases where the dose equivalents are far in excess of occupational exposure guidelines is not recommended

  4. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  5. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  6. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  7. Neutron diagnostics on TFTR utilizing the Campbelling technique

    International Nuclear Information System (INIS)

    England, A.C.; Hendel, H.W.; Neischmidt, E.B.

    1986-01-01

    The authors report modified commercial neutron counting equipment installed on a tokamak fusion test reactor (TFTR) which utilizes the Campbelling theorem to monitor the neutron source strength at very high neutron count rates. Campbelling utilizes the large amplitude fluctuation from neutron events in the detectors to discriminate against small amplitude noise events. Source strengths yielding equivalent count rates a factor of five higher than possible in the conventional count rate mode have been obtained to date. The concept of Campbelling is discussed and the particular application to TFTR is illustrated

  8. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  9. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  10. Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles

    International Nuclear Information System (INIS)

    Steven Wallace

    2007-01-01

    A gamma-free neutron-sensitive scintillator is needed to enhance radiation sensing and detection for nonproliferation applications. Such a scintillator would allow very large detectors to be placed at the perimeter of spent-fuel storage facilities at commercial nuclear power plants, so that any movement of spontaneously emitted neutrons from spent nuclear fuel or weapons grade plutonium would be noted in real-time. This task is to demonstrate that the technology for manufacturing large panels of fluor-doped plastic containing lithium-6 phosphate nanoparticles can be achieved. In order to detect neutrons, the nanoparticles must be sufficiently small so that the plastic remains transparent. In this way, the triton and alpha particles generated by the capture of the neutron will result in a photon burst that can be coupled to a wavelength shifting fiber (WLS) producing an optical signal of about ten nanoseconds duration signaling the presence of a neutron emitting source

  11. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yoshimasa, E-mail: yoshimasa.ikeda@riken.jp [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Kumagai, Masayoshi [Faculty of Engineering, Tokyo City University, Setagaya, Tokyo 158-8857 (Japan); Oba, Yojiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Otake, Yoshie [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, Hiroshi [Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2016-10-11

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  12. A neutron calorimeter as a fusion diagnostic

    International Nuclear Information System (INIS)

    Proctor, A.E.; Harker, Y.D.; Neischmidt, E.B.

    1986-01-01

    A calorimeter is described which is applicable as a fusion neutron diagnostic. The advantages of the device are discussed, including: low sensitivity to thermal neutrons, no heat loss to surroundings, large dynamic range, small mass resulting in fair time resolution, and small physical size. The heat generation is provided by neutron induced fissions in a foil of 238 U and a calorimeter is isothermal. The effects, advantages and disadvantages of other target materials are discussed. Also discussed are time resolution and calibration

  13. Characteristics of the JRR-3M neutron guide tubes

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Ichikawa, Hiroki; Kawabata, Yuji.

    1993-01-01

    Large scale neutron guide tubes have been installed in the upgraded JRR-3 (Japan Research Reactor No.3, JRR-3M). The total length of the guide tubes is 232m. The neutron fluxes and spectra were measured at the end of the neutron guide tubes. The neutron fluxes of thermal neutron guide tubes with characteristic wavelength of 2A are 1.2 x 10 8 n/cm 2 · s. The neutron fluxes of cold guide tubes are 1.4 x 10 8 n/cm 2 · s with characteristic wavelength of 4A and 2.0 x 10 8 n/cm 2 · s with 6A when the cold neutron source is operated. The neutron spectra measured by time-of-flight method agree well with their designed ones. (author)

  14. neutron detector for in-beam studies

    International Nuclear Information System (INIS)

    Schmitt, R.P.; Nebbia, G.; Fabris, D.; Natowitz, J.B.; Utsunomiya, H.; Wada, R.

    1987-01-01

    Flexible, high-geometry detection systems are indispensable in unraveling the complexities of the contributing reaction mechanisms in medium energy heavy-ion collisions. In preparation for the K500 cyclotron, which will come on-line in 1987, they are constructing a 4π neutron ball. Like the fission neutron tanks first constructed more than three decades ago, the neutron ball consists of a large volume (approximately 1700 1) of Gd-doped liquid scintillator. However, the ball is distinguished from these systems in its relatively large scattering chamber and modular design. The design features and the expected performance of the ball will be described. They will also report on the current status of the project

  15. Neutron-scattering study of low-energy excitations in triphenyl phosphite

    CERN Document Server

    Mayer, J; Massalska-Arodz, M; Janik, J A; Natkaniec, I; Steinsvoll, O

    2002-01-01

    The low-energy excitations in crystalline and glassy triphenyl phosphite were studied by inelastic incoherent neutron scattering with two different instruments. The results - the incoherent dynamic structure factor S(2 theta,omega) and the density of states G(omega) - were obtained using direct and inverted geometry time-of-flight spectrometers, respectively. The probable origin of the excess density of states in the glass (boson peak) is discussed. (orig.)

  16. Neutron-scattering study of low-energy excitations in triphenyl phosphite

    International Nuclear Information System (INIS)

    Mayer, J.; Krawczyk, J.; Massalska-Arodz, M.; Janik, J.A.; Natkaniec, I.; Steinsvoll, O.

    2002-01-01

    The low-energy excitations in crystalline and glassy triphenyl phosphite were studied by inelastic incoherent neutron scattering with two different instruments. The results - the incoherent dynamic structure factor S(2θ,ω) and the density of states G(ω) - were obtained using direct and inverted geometry time-of-flight spectrometers, respectively. The probable origin of the excess density of states in the glass (boson peak) is discussed. (orig.)

  17. Test of sup 3 He-based neutron polarizers at NIST

    CERN Document Server

    Jones, G L; Thompson, A K; Chowdhuri, Z; Dewey, M S; Snow, W M; Wietfeldt, F E

    2000-01-01

    Neutron spin filters based on polarized sup 3 He are useful over a wide neutron energy range and have a large angular acceptance among other advantages. Two optical pumping methods, spin-exchange and metastability-exchange, can produce the volume of highly polarized sup 3 He gas required for such neutron spin filters. We report a test of polarizers based on each of these two methods on a new cold, monochromatic neutron beam line at the NIST Center for Neutron Research.

  18. The neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, Wolfgang [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    The neutron lifetime τ{sub n}=880.3±1.1 s is an important parameter in the Standard Model of particle physics and in Big Bang cosmology. Several systematic corrections of previously published results reduced the PDG world average by several σ in the last years and call for a new experiment with complementary systematics. The experiment PENeLOPE, currently under construction at the Physik-Department of Technische Universitaet Muenchen, aims to determine the neutron lifetime with a precision of 0.1 s. It will trap ultra-cold neutrons in a magneto-gravitational trap using a large superconducting magnet and will measure their lifetime by both neutron counting and online proton detection. This presentation gives an overview over the latest developments of the experiment.

  19. Neutron radiography with ultracold neutrons

    International Nuclear Information System (INIS)

    Bates, J.C.

    1981-01-01

    The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)

  20. Neutron moisture gaging of agricultural soil

    International Nuclear Information System (INIS)

    Pospisil, S.; Janout, Z.; Kovacik, M.

    1987-01-01

    The design is described of a neutron moisture gage which consists of a measuring probe, neutron detector, small electronic recording device and a 241 Am-Be radionuclide source. The neutron detector consists of a surface barrier semiconductor silicon detector and a conversion layer of lithium fluoride. The detection of triton which is the reaction product of lithium with neutrons by the silicon detector is manifested as a voltage pulse. The detector has low sensitivity for fast neutrons and for gamma radiation and is suitable for determining moisture values in large volume samples. Verification and calibration measurements were carried out of chernozem, brown soil and podzolic soils in four series. The results are tabulated. Errors of measurement range between 0.8 to 1.0%. The precision of measurement could be improved by the calibration of the device for any type of soil. (E.S.). 4 tabs., 6 refs., 5 figs

  1. Neutron slowing-down time in matter

    Energy Technology Data Exchange (ETDEWEB)

    Chabod, Sebastien P., E-mail: sebastien.chabod@lpsc.in2p3.fr [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 38000 Grenoble (France)

    2012-03-21

    We formulate the neutron slowing-down time through elastic collisions in a homogeneous, non-absorbing, infinite medium. Our approach allows taking into account for the first time the energy dependence of the scattering cross-section as well as the energy and temporal distribution of the source neutron population in the results. Starting from this development, we investigate the specific case of the propagation in matter of a mono-energetic neutron pulse. We then quantify the perturbation on the neutron slowing-down time induced by resonances in the scattering cross-section. We show that a resonance can induce a permanent reduction of the slowing-down time, preceded by two discontinuities: a first one at the resonance peak position and an echo one, appearing later. From this study, we suggest that a temperature increase of the propagating medium in presence of large resonances could modestly accelerate the neutron moderation.

  2. Thermal neutrons streaming in straight duct

    International Nuclear Information System (INIS)

    Jehouani, A.; Boulkheir, M.; Ichaoui, R.

    2000-01-01

    The neutron streaming in duct is due to two phenomena: a) direct propagation and b) reflection on duct wall. We have used the Monte Carlo method to evaluate the ratio of the reflected neutrons flux by the duct wall to the total flux at the exit of the duct for iron and aluminium. Ten neutrons energy groups are considered between 10 -5 eV and 10 eV. A Fortran program is developed to evaluate the neutron double differential albedo. It is shown that the two following approximations are largely justified: i) Three collisions in the duct wall are sufficient to attain the asymptotic limit of the multiscattered neutron double differential albedo ii) The points of entry and exit of the neutron in the duct wall may be considered the same for the multiscattered neutrons. For a punctual source at the mouth of the duct, we have determined the direct and the reflected part of the total thermal neutron flux at the exit of the duct for different lengths and different radius of the duct. For a punctual source, we have found that the major contribution to the total flux of neutrons at the exit is due to the neutron reflection by walls and the reflection contribution decreases when the neutron energy decreases. For a constant length of the duct, the reflected part decreases when the duct radius increases while for the disk shaped source we have found the opposite phenomena. The transmitted neutron flux distribution at the exit of the duct are determined for disk shaped source for different neutron energy and for different distance from the exit center. (author)

  3. The effective delayed neutron fraction for bare-metal criticals

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1999-01-01

    Given sufficient material, a large number of actinides could be used to form bare-metal criticals. The effective delayed neutron fraction for a bare critical comprised of a fissile material is comparable with the absolute delayed neutron fraction. The effective delayed neutron fraction for a bare critical composed of a fissionable material is reduced by factors of 2 to 10 when compared with the absolute delayed neutron fraction. When the effective delayed neutron fraction is small, the difference between delayed and prompt criticality is small, and extreme caution must be used in critical assemblies of these materials. This study uses an approximate but realistic model to survey the actinide region to compare effective delayed neutron fractions with absolute delayed neutron fractions

  4. Disposition of excess weapons plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1997-01-01

    With the end of the Cold War and the implementation of various nuclear arms reduction agreements, US and Russia have been actively dismantling tens of thousands of nuclear weapons. As a result,large quantities of fissile materials, including more than 100 (tonnes?) of weapons-grade Pu, have become excess to both countries' military needs. To meet nonproliferation goals and to ensure the irreversibility of nuclear arms reductions, this excess weapons Pu must be placed in secure storage and then, in timely manner, either used in nuclear reactors as fuel or discarded in geologic repositories as solid waste. This disposition in US and Russia must be accomplished in a safe, secure manner and as quickly as practical. Storage of this Pu is a prerequisite to any disposition process, but the length of storage time is unknown. Whether by use as fuel or discard as solid waste, disposition of that amount of Pu will require decades--and perhaps longer, if disposition operations encounter delays. Neither US nor Russia believes that long-term secure storage is a substitute for timely disposition of excess Pu, but long-term, safe, secure storage is a critical element of all excess Pu disposition activities

  5. Neutron flux measurement utilizing Campbell technique

    International Nuclear Information System (INIS)

    Kropik, M.

    2000-01-01

    Application of the Campbell technique for the neutron flux measurement is described in the contribution. This technique utilizes the AC component (noise) of a neutron chamber signal rather than a usually used DC component. The Campbell theorem, originally discovered to describe noise behaviour of valves, explains that the root mean square of the AC component of the chamber signal is proportional to the neutron flux (reactor power). The quadratic dependence of the reactor power on the root mean square value usually permits to accomplish the whole current power range of the neutron flux measurement by only one channel. Further advantage of the Campbell technique is that large pulses of the response to neutrons are favoured over small pulses of the response to gamma rays in the ratio of their mean square charge transfer and thus, the Campbell technique provides an excellent gamma rays discrimination in the current operational range of a neutron chamber. The neutron flux measurement channel using state of the art components was designed and put into operation. Its linearity, accuracy, dynamic range, time response and gamma discrimination were tested on the VR-1 nuclear reactor in Prague, and behaviour under high neutron flux (accident conditions) was tested on the TRIGA nuclear reactor in Vienna. (author)

  6. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  7. Search for free neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Genoni, M.; Gigli Berzolari, A.; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Ratti, S.P.; Torre, P.; Bini, C.; Conversi, M.; De Zorzi, G.; Gauzzi, P.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Scannicchio, D.; Terrani, M.

    1989-01-01

    A search for free neutron-antineutron oscillations has been carried out at the Pavia Triga Mark II research reactor. A thin carbon target is crossed by a beam of thermal neutrons propagating in a 18.5 m long channel where the earth magnetic field is attenuated by a factor of 50. The total neutron current through the target is 3.2x10 10 n/s. Possible antineutron annihilations are identified by a large track detector surrounding the target. A lower limit on the oscillation time of 4.7x10 5 s (90% C.L.) has been reached. (orig.)

  8. Neutron personal dosimetry: state-of-art

    International Nuclear Information System (INIS)

    Spurný, František

    2005-03-01

    State-of-art of the personal neutron dosimetry is presented, analysed and discussed. Particular attention is devoted to the problems of this type of the dosimetry of external exposure for radiation fields at nuclear power plants. A review of general problems of neutron dosimetry is given and the active individual dosimetry methods available and/or in the stage of development are briefly reviewed. Main attention is devoted to the analysis of the methods available for passive individual neutron dosimetry. The characteristics of these dosemeters were studied and are compared: their energy response functions, detection thresholds and the highest detection limits, the linearity of response, the influence of environmental factors, etc. Particular attention is devoted to their behavior in reactor neutron fields. It is concluded that the choice of the neutron personal dosemeter depends largely on the conditions in which the instrument should be used (neutron spectrum, the level of exposure and the exposure rate, etc.). The results obtained with some of these dosemeters during international intercomparisons are also presented. Particular attention is paid to the personal neutron dosimeter developed and routinely used by National Personal Dosimetry Service Ltd. in the Czech Republic. (author)

  9. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  10. Neutrons and fusion nuclear technology

    International Nuclear Information System (INIS)

    Hirayama, Shoichi

    1991-01-01

    The strategy of the devolopment of the fusion reactor has been compared with the history of the development of the fission reactor. More than 50 neutron reactors (neutron sources for research and development of reactor components and materials, and for Pu production) have been constructed and operated before the introduction of demonstration power reactors. This fact suggests us to introduce a new path of neutron reactor in the strategy of the development of fusion power reactor in addition to the orthodox approach which goes through the break-even, self-ignition, ETR, and DEMO. One of the benefits of the introduction of such neutron reactor or into the strategy of the fusion reactor development has been studied numerically. The results demonstrate that the introduction of fission-fusion hybrid reactor in 2030, can save ∝20% of natural uranium by 2100 in Japan, in comparison with the case when the fast breeder reactor is introduced in 2030. This saving is recognized large enough to justify earlier construction of the fusion neutron reactor. (orig.)

  11. Developing neutronics calculation tools for MYRRHA

    International Nuclear Information System (INIS)

    Van den Eynde, G.

    2006-01-01

    The design of the Accelerator Driven System MYRRHA requires adequate and specialised tools in the field of neutronics calculations. In order to fill the gaps, several PhD programmes were launched. In 2005 three such PhD projects were running. Each of them focuses on different stages in the computation of a core of MYRRHA. The first project I mprovements of the spallation reaction model , a collaboration with the University of Liege, deals with the characterisation of the spallation neutron source using the INCL (Intra-Nuclear Cascade of Liege) model. Since at high energies, nuclear data are sparse, calculations rely on models. Especially for spallation reactions that occur at proton energies of several hundreds of MeV, models are the only means to evaluate the spallation source in MYRRHA. The second project 'Neutron transport with anisotropic scattering', a collaboration with the Universite Libre de Bruxelles, works on the development of a neutronics code, CASE-BSM, for systems with highly anisotropic scattering. The presence in large amounts of both lead and bismuth atoms in the MYRRHA core results in a highly anisotropic scattering of the neutrons in the bulk of the coolant. Neglecting this effect has large consequences on both global parameters, like keff, as well as on local parameters, like the neutron flux seen by the vessel. The third project, 'ALEPH: An integrated Monte Carlo bun-up tool', a collaboration with Ghent University, treats the last phase of a core calculation: the depletion of the fuel during irradiation. For an experimental machine like MYRRHA it is of utmost importance to have a fast calculational tool to evaluate the incineration of both isotopes present in the fuel as isotopes present in experimental devices. The main objective is to improve the current quality of the neutronics codes focused on ADS applications and to have this knowledge 'in-house'

  12. Neutron radiography by using JSW baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Yojiro

    1995-01-01

    At present, JSW baby cyclotrons are mostly used for the production of the radioisotopes for medical use. The attempt to use this baby cyclotron for neutron radiography began already in 1981. The feasibility of the neutron radiography for the explosives in metallic cases which are used for H1 rockets was investigated. In 1983, it was shown that the neutron radiography by using the baby cyclotron in Muroran Works, Japan Steel Works, Ltd. was able to be carried out as a routine work. Since then, the nondestructive inspection by neutron radiography has been performed for rocket pyrotechnic articles, and contributed to heighten their reliability. Further, the radiography by using fast neutrons was developed and put to practical use for recent large H2 rockets. The JSW baby cyclotron BC 168 which has been used for neutron radiography can accelerate 16 MeV protons or 8 MeV deuterons up to 50 μA. The principle of thermal neutron radiography is the generation of fast neutrons by irradiating a Be target with the proton beam accelerated by a baby cyclotron, the moderation of the fast neutrons, the formation of the thermal neutron flux of uniform distribution with a collimator, the thermal neutron flux hitting the Gd plate in a film cassette through an object, and the exposure of an X-ray film to electrons from the Gd plate. Fast neutron radiography apparatus, and commercial neutron radiography are described. (K.I.)

  13. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  14. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  15. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  16. Long-Range Neutron Detection

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Stromswold, D.C.; Hansen, R.R.; Reeder, P.L.; Barnett, D.S.

    1999-01-01

    A neutron detector designed for detecting neutron sources at distances of 50 to 100 m has been constructed and tested. This detector has a large surface area (1 m 2 ) to enhance detection efficiency, and it contains a collimator and shielding to achieve direction sensitivity and reduce background. An unusual feature of the detector is that it contains no added moderator, such as polyethylene, to moderate fast neutrons before they reach the 3 He detector. As a result, the detector is sensitive mainly to thermal neutrons. The moderator-free design reduces the weight of the detector, making it more portable, and it also aids in achieving directional sensitivity and background reduction. Test results show that moderated fission-neutron sources of strength about 3 x 10 5 n/s can be detected at a distance out to 70 m in a counting time of 1000 s. The best angular resolution of the detector is obtained at distances of 30 m or less. As the separation .distance between the source and detector increases, the contribution of scattered neutrons to the measured signal increases with a resultant decrease in the ability to detect the direction to a distant source. Applications for which the long-range detector appears to be suitable include detecting remote neutron sources (including sources in moving vehicles) and monitoring neutron storage vaults for the intrusion of humans and the effects they make on the detected neutron signal. Also, the detector can be used to measure waste for the presence of transuranic material in the presence of high gamma-ray background. A test with a neutron source (3 x 10 5 n/s) in a vehicle showed that the detector could readily measure an increase in count rate at a distance of 10 m for vehicle speeds up to 35 mph (the highest speed tested). These results. indicate that the source should be detectable at this distance at speeds up to 55 mph

  17. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    International Nuclear Information System (INIS)

    Guerard, Bruno

    2015-01-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, 3 He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using 3 He PSDs mounted side by side to cover tens of m 2 . As a result of the so-called ' 3 He shortage crisis , the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B 4 C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard equipment. Prototypes of

  18. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Guerard, Bruno [ILL-ESS-LiU collaboration, CRISP project, Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard

  19. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  20. Large sample NAA facility and methodology development

    International Nuclear Information System (INIS)

    Roth, C.; Gugiu, D.; Barbos, D.; Datcu, A.; Aioanei, L.; Dobrea, D.; Taroiu, I. E.; Bucsa, A.; Ghinescu, A.

    2013-01-01

    A Large Sample Neutron Activation Analysis (LSNAA) facility has been developed at the TRIGA- Annular Core Pulsed Reactor (ACPR) operated by the Institute for Nuclear Research in Pitesti, Romania. The central irradiation cavity of the ACPR core can accommodate a large irradiation device. The ACPR neutron flux characteristics are well known and spectrum adjustment techniques have been successfully applied to enhance the thermal component of the neutron flux in the central irradiation cavity. An analysis methodology was developed by using the MCNP code in order to estimate counting efficiency and correction factors for the major perturbing phenomena. Test experiments, comparison with classical instrumental neutron activation analysis (INAA) methods and international inter-comparison exercise have been performed to validate the new methodology. (authors)

  1. Bulk media assay using backscattered neutron spectrometry

    International Nuclear Information System (INIS)

    Csikai, J.

    2000-01-01

    determination of H and observation of anomaly in soils offers a possibility for AP landmine identification. It was found that an amount of 250 g polyethylene or water placed below a 20 cm layer of dry sand can be observed. However, the excess count rates decrease exponentially with the deepness of the sample in the sand and the air gap between the soil surface and the neutron detector. (S.Y.)

  2. Application of neural networks and neutron noise for diagnostics of reactor internals vibration

    International Nuclear Information System (INIS)

    Garis, N.S.; Pazsit, I.; Gloeckler, O.

    1995-01-01

    It has long been known that vibration of reactor internals, in particular excessive vibrations of control rods, can be detected via the neutron noise they induce. Noise measurements are actually suitable to determine important diagnostic parameters such as the location of the vibrating rod and the vibration amplitude. An algorithm was earlier elaborated for this purpose, which is based on inversion of the expression describing the neutron noise as a function of vibration parameters. This inversion procedure is nevertheless complicated and not always unique. It was investigated whether a properly trained neural network can perform the inversion more effectively. It was found that artificial neural networks can be trained effectively to perform vibration diagnostics from neutron noise data fast, effectively and reliably. The present paper gives a description of the development and use of the neural networks for purposes of vibration diagnostics

  3. Albedo's determination by the method of neutron impulse

    International Nuclear Information System (INIS)

    Flores Calderon, J.E.

    1982-01-01

    Experiments with non-stationary neutron transport in large cavity moderators (l>>Σsub(tr) -1 ) (where l is the characteristic cavity length and Σsub(tr) -1 the macroscopic transport section of the moderator) led to the method reported in this study which, based on neutron impulses for determining albedo of thermal neutrons, gave a precision greater by an order of magnitude over previous methods. A sufficient time interval after introduction of the neutron flux into the moderator chamber decreased exponentially the decay constant L, which was itself related to albedo by a function called f. Numerical calculations of albedo were assisted. (author)

  4. Neutron spectrum measurement using rise-time discrimination method

    International Nuclear Information System (INIS)

    Luo Zhiping; Suzuki, C.; Kosako, T.; Ma Jizeng

    2009-01-01

    PSD method can be used to measure the fast neutron spectrum in n/γ mixed field. A set of assemblies for measuring the pulse height distribution of neutrons is built up,based on a large volume NE213 liquid scintillator and standard NIM circuits,through the rise-time discrimination method. After that,the response matrix is calculated using Monte Carlo method. The energy calibration of the pulse height distribution is accomplished using 60 Co radioisotope. The neutron spectrum of the mono-energetic accelerator neutron source is achieved by unfolding process. Suggestions for further improvement of the system are presented at last. (authors)

  5. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  6. Paschos-Wolfenstein relationship for nuclei and the NuTeV sin2θW measurement

    International Nuclear Information System (INIS)

    Kulagin, S.A.

    2003-01-01

    We discuss the nuclear effects in the Paschos-Wolfenstein relationship in the context of the extraction of the weak mixing angle. We point out that the neutron excess correction to the Paschos-Wolfenstein relationship for a neutron-rich target is negative and large on the scale of the experimental errors of a recent NuTeV measurement. We find a larger neutron excess correction to the Paschos-Wolfenstein relationship for the total cross sections than that discussed by the NuTeV Collaboration. The phenomenological applications of this observation are discussed in the context of the NuTeV deviation. The uncertainties in the neutron excess correction are estimated. The effects due to the Fermi motion, nuclear binding, and nuclear shadowing are also discussed in the context of the total cross sections

  7. Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: simple microscopic models

    International Nuclear Information System (INIS)

    Carter, Brandon; Chamel, Nicolas; Haensel, Pawel

    2005-01-01

    In the inner crust of a neutron star, at densities above the 'drip' threshold, unbound 'conduction' neutrons can move freely past through the ionic lattice formed by the nuclei. The relative current density ni=nv-bar i of such conduction neutrons will be related to the corresponding mean particle momentum pi by a proportionality relation of the form ni=Kpi in terms of a physically well defined mobility coefficient K whose value in this context has not been calculated before. Using methods from ordinary solid state and nuclear physics, a simple quantum mechanical treatment based on the independent particle approximation, is used here to formulate K as the phase space integral of the relevant group velocity over the neutron Fermi surface. The result can be described as an 'entrainment' that changes the ordinary neutron mass m to a macroscopic effective mass per neutron that will be given-subject to adoption of a convention specifying the precise number density n of the neutrons that are considered to be 'free'-by m-bar =n/K. The numerical evaluation of the mobility coefficient is carried out for nuclear configurations of the 'lasagna' and 'spaghetti' type that may be relevant at the base of the crust. Extrapolation to the middle layers of the inner crust leads to the unexpected prediction that m-bar will become very large compared with m

  8. Crystal structure solution of hydrides containing natEu from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Kohlmann, H.

    1999-01-01

    Complete text of publication follows. The location of hydrogen in crystal structures of metal hydrides usually requires neutron diffraction data. Some elements, however, show excessively high absorption cross sections, σ a , for neutrons, thus making this technique seemingly impractical. Therefore no complete, refined crystal structure data of europium hydrides (σ a ( nat Eu) = .4530 barns at λ = 179.8 pm [1]) have been reported so far. It is shown that the absorption can be reduced to a value reasonable for neutron diffraction experiments by taking advantage of the wavelength dependence of σ a combined with the use of annular samples at advanced diffractometers. Neutron powder diffraction data on several nat Eu containing deuterides suitable for the ab initio crystal structure solution and refinement have been taken at D20 and D4 (ILL, Grenoble). The crystal chemistry of these europium hydrides, among them the two new compounds EuMg 2 H 6 and EuMgH 4 [2], is discussed. (author) [1] V.F. Sears, Neutron News 1992, 3, 26-37.; [2] H. Kohlmann, F. Gingl, T. Hansen, K. Yvon, Angew. Chem. Int. Ed. Eng. 1999, 38, accepted

  9. Soft error modeling and analysis of the Neutron Intercepting Silicon Chip (NISC)

    International Nuclear Information System (INIS)

    Celik, Cihangir; Unlue, Kenan; Narayanan, Vijaykrishnan; Irwin, Mary J.

    2011-01-01

    Soft errors are transient errors caused due to excess charge carriers induced primarily by external radiations in the semiconductor devices. Soft error phenomena could be used to detect thermal neutrons with a neutron monitoring/detection system by enhancing soft error occurrences in the memory devices. This way, one can convert all semiconductor memory devices into neutron detection systems. Such a device is being developed at The Pennsylvania State University and named Neutron Intercepting Silicon Chip (NISC). The NISC is envisioning a miniature, power efficient, and active/passive operation neutron sensor/detector system. NISC aims to achieve this goal by introducing 10 B-enriched Borophosphosilicate Glass (BPSG) insulation layers in the semiconductor memories. In order to model and analyze the NISC, an analysis tool using Geant4 as the transport and tracking engine is developed for the simulation of the charged particle interactions in the semiconductor memory model, named NISC Soft Error Analysis Tool (NISCSAT). A simple model with 10 B-enriched layer on top of the lumped silicon region is developed in order to represent the semiconductor memory node. Soft error probability calculations were performed via the NISCSAT with both single node and array configurations to investigate device scaling by using different node dimensions in the model. Mono-energetic, mono-directional thermal and fast neutrons are used as the neutron sources. Soft error contribution due to the BPSG layer is also investigated with different 10 B contents and the results are presented in this paper.

  10. Attenuation of thermal neutron through graphite

    International Nuclear Information System (INIS)

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  11. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  12. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  13. Test of parity and time reversal invariance with low energy polarized neutrons

    International Nuclear Information System (INIS)

    Masaike, Akira

    1996-01-01

    Measurements of helicity asymmetries in slow neutron reactions on nuclei have been performed by transmission and capture γ-ray detection. Large enhancements of parity-violation effects have been observed on p-wave resonances of various medium and heavy nuclei. The weak matrix elements in hadron reactions have been deduced from these experimental results. Neutron spin precession near the p-wave resonance has been measured. In recent years violation of time reversal invariance is being searched for in the neutron reactions in which large enhancements of the parity violation effects have been observed. The measurement of the term σ n ·(k n x I) in a neutron reaction using polarized neutrons and a polarized target is an example of the test of T-violation. Polarizations of the neutron and lanthanum nucleus for these experiments are also presented. (author)

  14. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    International Nuclear Information System (INIS)

    Trotter, D.E. Gonzalez; Meneses, F. Salinas; Tornow, W.; Crowell, A.S.; Howell, C.R.; Schmidt, D.; Walter, R.L.

    2009-01-01

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the 1 S 0 neutron-neutron and neutron-proton scattering lengths a nn and a np , respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E n =13MeV.

  15. Nuclear reactor with a fixed system of neutron poison, which can be burnt up, introduced into the reactor core

    International Nuclear Information System (INIS)

    Mueller, E.; Roegler, H.J.; Wickert, M.

    1985-01-01

    The fixed system consists of neutron poison which can be burnt up, in an uneven distribution, and with adjustable absorber rods for output control, which are driven into the reactor core from the side along the fuel elements. There is an excess of neutron poison which can be burnt up, overall, on the side of the reactor core away from the absorber rods. The reactor core is free of neutron poison which can be burnt up on the side where the absorber rods are driven in, so that the ratio of maximum to mean power density with reference to a possible absorber rod positions is less than for homogeneous distribution of the neutron poison which can be burnt up. (orig./HP) [de

  16. Options for the Delft advanced neutron source

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Leege, P.F.A. de; Labohm, F.; Vries, J.W. de; Verkooijen, A.H.M.; Valko, J.; Feltes, W.; Heinecke, J.

    2003-01-01

    Results of feasibility studies are presented for options for an advanced neutron source for the Delft reactor including upgrading the HOR, a 2 MW pool-type research reactor at the Delft University of Technology. The primary utilisation of the HOR focuses on beam research applications with neutrons and positrons. The aim of being scientifically competitive in that research area requires a thermal neutron flux level of at least 1x10 14 n/cm 2 /s. The feasibility of an accelerator driven neutron source and upgrading the present core to a super compact core for reaching this goal has been investigated at large from a safety and operational point of view. For the upgraded core, a 3x3 fuel assembly arrangement and beryllium reflected at all sides was chosen. Figures on the system performance, including the merits of a cold neutron source application feeding the neutron guide system, are presented. (author)

  17. Modulation Spectrometry Of Neutrons With Diffractometry Applications

    International Nuclear Information System (INIS)

    Hiismaki, P.

    1997-01-01

    Modulation spectrometry of neutrons refers to a measuring principle, characterized by classification of neutron histories in a probabilistic way, not the usual deterministic way. In order to accomplish this, neutron beams entering the sample are modulated by high-transmission, white-beam selectors of the multislit type, such as Fourier or statistical choppers or high-frequency-modulated spin-flippers. In this scheme it is impossible to decide in a unique way through which particular slit any single neutron passed, but the distribution of histories for a large population of neutrons can nevertheless be correctly obtained, by classifying each conceivable history either as a high-probability or as a low-probability event,based on the actual observed state of the neutron selector. So far the principle has been successfully applied to powder diffraction, but it seems to offer extra degrees of freedom if applied to measuring dispersion curves of coherent excitations, such as phonons in single crystals

  18. Neutron gauging to detect voids in polyurethane

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Alger, D.M.; Brugger, R.M.

    1978-01-01

    Thermal-neutron radiography and fast-neutron gauging measurements were made to evaluate the feasibility of detecting voids in a polyurethane block placed between steel plates. This sandwich of polyurethane and steel simulates the walls of a canister being designed to hold explosive devices. The polyurethane would act as a shock absorber in the canister. A large fabrication cost saving would result by casting the polyurethane, but a nondestructive testing (NDT) method is needed to determine the uniformity of the polyurethane fill. The radiography measurements used a beam of thermal neutrons, while the gauging used filtered beams of 24 keV and fission spectrum neutrons. For the 83-mm-thick polyurethane and 130-mm-thick steel matrix, the thermal-neutron radiography was able to detect only those voids equal to about one-half the polyurethane thickness. The gauging detected voids in the path of the neutron beam of a few millimetres thickness in seconds to minutes. The gauging is feasible as an NDT method for the canister application

  19. Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

    CERN Document Server

    Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W.C.; Zhou, Q.D.

    2015-01-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-...

  20. The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

    Science.gov (United States)

    Lavelle, Christopher M.

    Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.

  1. Production of unstable heavy neutrinos in proto-neutron stars

    Directory of Open Access Journals (Sweden)

    C. Albertus

    2015-12-01

    Full Text Available We discuss the production of a class of heavy sterile neutrinos νh in proto-neutron stars. The neutrinos, of mass around 50 MeV, have a negligible mixing with the active species but relatively large dimension-5 electromagnetic couplings. In particular, a magnetic dipole moment μ≈10−6 GeV−1 implies that they are thermally produced through e+e−→ν¯hνh in the early phase of the core collapse, whereas a heavy–light transition moment μtr≈10−8 GeV−1 allows their decay νh→νiγ with a lifetime around 10−3 s. This type of electromagnetic couplings has been recently proposed to explain the excess of electron-like events in baseline experiments. We show that the production and decay of these heavy neutrinos would transport energy from the central regions of the star to distances d≈400 km, providing a very efficient mechanism to enhance the supernova shock front and heat the material behind it.

  2. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  3. Neutron-capture cross-section measurement for 163Dy In the neutron energy range from 15 to 75 keV

    International Nuclear Information System (INIS)

    Kim, Hyun Duk; Jung, Eui Jung; Ahn, Jung Keun; Lee, Dae Won; Kim, Guin Yun; Ro, Tae Ik; Min, Young Ki; Igashira, Masayuki; Ohsaki, Toshiro; Mizuno, Satoshi

    2002-01-01

    The neutron-capture cross-section of 163 Dy were measured in the neutron energy range from 15 to 75 keV at the 3-MV Pelletron accelerator of the Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology. Pulsed neutrons were produced from the 7 Li(p,n) 7 Be reaction by bombarding a metallic lithium target with the 1.903-MeV proton beam. The incident neutron spectra were measured by means of a neutron time-of-flight method with a 6 Li-glass detector. Capture γ-rays were detected with a large anti-Compton NaI(Tl) spectrometer. A pulse-height weighting technique was applied to the capture γ-ray pulse-height spectra to obtain capture yields. The neutron capture cross-section were determined relative to the standard capture cross-sections of 197 Au. The present results were compared with the previous measurements and the evaluated values of ENDF/B-VI

  4. Design of neutron detectors utilising luminescent glass

    International Nuclear Information System (INIS)

    Spowart, A.R.

    1983-01-01

    Impetus for the development of new neutron detector designs has derived from the worldwide commissioning of neutron spallation sources. The design concepts, and principal methods of utilisation of these major installations, have been recently reviewed. Their principal feature of interest is their broadband neutron emission allowing neutron investigations of all types of structure in materials from biological molecules to steels. Conventional neutron detectors are gas-filled devices, based on BF/sub 3/ or /sup 3/He gas. Their major advantage is their intrinsically low background count. Their principal disadvantage is their slow response time (10-100 μs), high cost and relative lack of flexibility in design to cope with large areas or complex geometry detection. They are, however, long established and the research facilities around the world have a heavy investment in the interpretative hardware for gas detectors

  5. EOSCOR: a light weight, microprocessor controlled solar neutron detector

    International Nuclear Information System (INIS)

    Koga, R.; Albats, P.; Frye, G.M. Jr.; Schindler, S.M.; Denehy, B.V.; Hopper, V.D.; Mace, O.B.

    1979-01-01

    A light weight high energy neutron detector with vertical detection efficiency of 0.005 at 40 MeV and 1.4 m 2 sensitive area has been developed for long duration super-pressure balloon flight observations of solar neutrons and gamma rays. It consists of two sets of four plastic scintillator hodoscopes separated by a 1 m time-of-flight path to observe n-p, C(n,p), and C(n,d) interactions. The neutron interactions are separated from gamma ray events through TOF measurements. For a large flare, the signal from solar neutrons is expected to be an order of magnitude greater than that of the atmospheric background. The microprocessor controls the data acquisition, accumulation of histograms, and the encoding of data for the telemetry systems. A test flight of the detector was made with a zero-pressure balloon. The expected many-week duration of a super-pressure balloon flight would significantly increase the probability of observing 20-150 MeV neutrons from a medium or large flare. (Auth.)

  6. MINER - A Mobile Imager of Neutrons for Emergency Responders

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John E. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, James S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark D [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kiff, Scott D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mascarenhas, Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van De Vreugde, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    We have developed a mobile fast neutron imaging platform to enhance the capabilities of emergency responders in the localization and characterization of special nuclear material. This mobile imager of neutrons for emergency responders (MINER) is based on the Neutron Scatter Camera, a large segmented imaging system that was optimized for large-area search applications. Due to the reduced size and power requirements of a man-portable system, MINER has been engineered to fit a much smaller form factor, and to be operated from either a battery or AC power. We chose a design that enabled omnidirectional (4π) imaging, with only a ~twofold decrease in sensitivity compared to the much larger neutron scatter cameras. The system was designed to optimize its performance for neutron imaging and spectroscopy, but it does also function as a Compton camera for gamma imaging. This document outlines the project activities, broadly characterized as system development, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.

  7. Analysis of the 48Ca neutron skin using a nonlocal dispersive-optical-model self-energy

    Science.gov (United States)

    Atkinson, Mack; Mahzoon, Hossein; Dickhoff, Willem; Charity, Robert

    2017-09-01

    A nonlocal dispersive-optical-model (DOM) analysis of the 40Ca and 48Ca nuclei has been implemented. The real and imaginary potentials are constrained by fitting to elastic-scattering data, total and reaction cross sections, energy level information, particle number, and the charge densities of 40Ca and 48Ca, respectively. The nonlocality of these potentials permits a proper dispersive self-energy which accurately describes both positive and negative energy observables. 48Ca is of particular interest because it is doubly magic and has a neutron skin due to the excess of neutrons. The DOM neutron skin radius is found to be rskin = 0.245 , which is larger than most previous calculations. The neutron skin is closely related to the symmetry energy which is a crucial part of the nuclear equation of state. The combined analysis of 40Ca and 48Ca energy densities provides a description of the density dependence of the symmetry energy which is compared with the 48Ca neutron skin. Results for 208Pb will also become available in the near future. NSF.

  8. Texture analysis using angle dispersive neutron nuclear scattering

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1995-01-01

    This paper describes in detail the method of texture determination using neutron diffraction. The main advantages of neutron diffraction arise from the high penetration depth for most materials which is a factor of 10 2 -10 4 higher than for X-ray diffraction. Consequently neutron diffraction is an efficient tool for the investigation of global textures and coarse grained materials. Moreover, the measurement of large sample volumes gives excellent grain statistics, allows the influence of texture inhomogeneities to be neglected and allows the measurement of complete pole figures even of minority phases. A number of examples show the application of neutron diffraction to measure textures of metals, alloys, composites, intermetallic compounds and rocks. A detailed description of TEX-2 the neutron texture diffractometer at GKSS Research Centre is given which is completed by a comparison to other neutron texture diffractometers. (orig.) [de

  9. Predictors of excessive use of social media and excessive online gaming in Czech teenagers.

    Science.gov (United States)

    Spilková, Jana; Chomynová, Pavla; Csémy, Ladislav

    2017-12-01

    Background and aims Young people's involvement in online gaming and the use of social media are increasing rapidly, resulting in a high number of excessive Internet users in recent years. The objective of this paper is to analyze the situation of excessive Internet use among adolescents in the Czech Republic and to reveal determinants of excessive use of social media and excessive online gaming. Methods Data from secondary school students (N = 4,887) were collected within the 2015 European School Survey Project on Alcohol and Other Drugs. Logistic regression models were constructed to describe the individual and familial discriminative factors and the impact of the health risk behavior of (a) excessive users of social media and (b) excessive players of online games. Results The models confirmed important gender-specific distinctions - while girls are more prone to online communication and social media use, online gaming is far more prevalent among boys. The analysis did not indicate an influence of family composition on both the excessive use of social media and on excessive online gaming, and only marginal effects for the type of school attended. We found a connection between the excessive use of social media and binge drinking and an inverse relation between excessive online gaming and daily smoking. Discussion and conclusion The non-existence of significant associations between family environment and excessive Internet use confirmed the general, widespread of this phenomenon across the social and economic strata of the teenage population, indicating a need for further studies on the topic.

  10. Electromagnetic dipole strength distribution in $^{124,128,132,134}$Xe below the neutron separation energy

    CERN Document Server

    Massarczyk, R; Dönau, F; Frauendorf, S; Bemmerer, D; Beyer, R; Butterling, M; Hannaske, R; Junghans, A; Koegler, T; Rusev, G; Schilling, K D; Schramm, G; Tonchev, A P; Tornow, W; Wagner, A

    2014-01-01

    Dipole strength functions in the chain of xenon isotopes are analyzed on the basis of photon-scatterde experiments with bremsstrahlung at the ELBE facility in Dresden, Germany, and at the HI S facility in Durham, North Carolina, USA. The evolution of dipole strength with neutron excess and nuclear deformation is studied.

  11. Evaluation of response function of moderating-type neutron detector and application to environmental neutron measurement

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakamura, Takashi; Iwai, Satoshi; Katsuki, Shinji; Kamata, Masashi.

    1983-08-01

    The energy-dependent response function of a multi-cylinder moderating-type BF 3 counter, so-called Bonner counter, was calculated by the time-dependent multi-group Monte Carlo code, TMMCR. The calculated response function was evaluated experimentally for neutron energy below about 50 keV down to epithermal energy by the time-of-flight method combining with a large lead pile at the Nuclear Engineering Research Laboratory, University of Tokyo and also above 50 keV by using the monoenergetic neutron standard field a t the Electrotechnical Laboratory. The time delay in the polyethylene moderator of the Bonner counter due to multiple collisions with hydrogen was analyzed by the TMMCR code and used for the time-spectrum analysis of the time-of-flight measurement. The response function obtained by these two experiments showed good agreement with the calculated results. This Bonner counter having a response function evaluated from thermal to MeV energy range was used for spectrometry and dosimetry of environmental neutrons around some nuclear facilities. The neutron spectra and dose measured in the environment around a 252 Cf fission source, fast neutron source reactor and electron synchrotron were all in good agreement with the calculated results and the measured results with other neutron detectors. (author)

  12. German neutron scattering conference. Programme and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas (ed.)

    2012-07-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  13. German neutron scattering conference. Programme and abstracts

    International Nuclear Information System (INIS)

    Brueckel, Thomas

    2012-01-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  14. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  15. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Nishihara, H.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1999-01-01

    In a core melt accident of a fast breeder reactor, there is a possibility of boiling of the fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the possibility of re-criticality of melted core. Gas-liquid two-phase flow with a large liquid-to-gas density ratio is formed due to the boiling of fuel-steel mixture. Although it is anticipated that the large density ratio may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with a large liquid-to-gas density ratio. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography and image processing techniques. Then, the effect of large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified

  16. Baryon superfluidity and neutrino emissivity of neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo

    2004-01-01

    For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the properties of neutron star matter determined under the equation of state, which is obtained by introducing a repulsive three-body force universal for all the baryons so as to assure the maximum mass of neutron stars compatible with observations. The case without a meson condensate is treated. We choose the inputs provided by nuclear physics, with a reliable allowance. Paying attention to the density dependence of the critical temperatures of the baryon superfluids, which reflect the nature of the baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in regions both with and without hyperon mixing. By comparing the calculated emissivities with respect to densities, we can conclude that at densities lower than about 4 times the nuclear density, the Cooper-pair process arising from the neutron 3 P 2 superfluid dominates, while at higher densities the hyperon direct Urca process dominates. For the hyperon direct Urca process to be a candidate responsible for rapid cooling compatible with observations, a moderately large energy gap of the Λ-particle 1 S 0 superfluid is required to suppress its large emissivity. The implications of these results are discussed in the relation to thermal evolution of neutron stars. (author)

  17. TREAT neutron-radiography facility

    International Nuclear Information System (INIS)

    Harrison, L.J.

    1981-01-01

    The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists

  18. Towards Hydrological Applications of Stationary and Roving Cosmic-Ray Neutron Sensors in the Light of Spatial Sensitivity

    Science.gov (United States)

    Schrön, M.; Köhli, M.; Rosolem, R.; Baroni, G.; Bogena, H. R.; Brenner, J.; Zink, M.; Rebmann, C.; Oswald, S. E.; Dietrich, P.; Samaniego, L. E.; Zacharias, S.

    2017-12-01

    Cosmic-Ray Neutron Sensing (CRNS) has become a promising and unique method to monitor water content at an effective scale of tens of hectares in area and tens of centimeters in depth. The large footprint is particularly beneficial for hydrological models that operate at these scales.However, reliable estimates of average soil moisture require a detailed knowledge about the sensitivity of the signal to spatial inhomogeneity within the footprint. From this perspective, the large integrating volume challenges data interpretation, validation, and calibration of the sensor. Can we still generate reliable data for hydrological applications? One of the top challenges in the last years was to find out where the signal comes from, and how sensitive it is to spatial variabilities of moisture. Neutron physics simulations have shown that the neutron signal represents a non-linearly weighted average of soil water in the footprint. With the help of the so-called spatial sensitivity functions it is now possible to quantify the contribution of certain regions to the neutron signal. We present examples of how this knowledge can help (1) to understand the contribution of irrigated and sealed areas in the footprint, (2) to improve calibration and validation of the method, and (3) to even reveal excess water storages, e.g. from ponding or rain interception.The spatial sensitivity concept can also explain the influence of dry roads on the neutron signal. Mobile surveys with the CRNS rover have been a common practice to measure soil moisture patterns at the kilometer scale. However, dedicated experiments across agricultural fields in Germany and England have revealed that field soil moisture is significantly underestimated when moving the sensor on roads. We show that knowledge about the spatial sensitivity helps to correct survey data for these effects, depending on road material, width, and distance from the road. The recent methodological advances allow for improved signal

  19. Determination of the design excess reactivity for the TREAT Upgrade reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Hanan, N.A.

    1983-01-01

    The excess reactivity designed to be built into a reactor core is a primary determinant of the fissile loadings of the fuel rods in the core. For the TREAT Upgrade (TU) reactor the considerations that enter into the determination of the excess reactivity are different from those of conventional power reactors. The reactor is designed to operate in an adiabatic transient mode for reactor safety in-pile test programs. The primary constituent of the excess reactivity is the calculated reactivity required to perform the most demanding transient experiments. Because of the unavailability of supporting critical experiments for the core design, the uncertainty terms that add on to this basic constituent are rather large. The burnup effects in TU are negligible and no refueling is planned. In this paper the determination of the design excess reactivity of the TREAT Upgrade reactor is discussed

  20. Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: jonathan_mueller@ncsu.edu; Mattingly, J.

    2016-07-21

    There is a significant and well-known anisotropy between the prompt neutrons emitted from a single fission event; these neutrons are most likely to be observed at angles near 0° or 180° relative to each other. However, the propagation of this anisotropy through different generations of a fission chain reaction has not been previously studied. We have measured this anisotropy in neutron–neutron coincidences from a subcritical highly-multiplying assembly of plutonium metal. The assembly was a 4.5 kg α-phase plutonium metal sphere composed of 94% {sup 239}Pu and 6% {sup 240}Pu by mass. Data were collected using two EJ-309 liquid scintillators and two EJ-299 plastic scintillators. The angular distribution of neutron–neutron coincidences was measured at 90° and 180° and found to be largely isotropic. Simulations were performed using MCNPX-PoliMi of similar plutonium metal spheres of varying sizes and a correlation between the neutron multiplication of the assembly and the anisotropy of neutron–neutron coincidences was observed. In principle, this correlation could be used to assess the neutron multiplication of an unknown assembly.

  1. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  2. Enhancing neutron beam production with a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ansell, S.; Dalgliesh, R. [ISIS Facility, Rutherford Appleton Laboratory, Chilton (United Kingdom); Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-10-21

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally enhanced neutron beam source, improving beam emission over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  3. Recent measurements of the flux excess from solar faculae and the implication for the solar oblateness

    International Nuclear Information System (INIS)

    Chapman, G.A.

    1975-01-01

    Direct observation of the excess brightness from photospheric faculae are presented. This excess brightness is, at times, large enough to produce an apparent oblateness that exceeds that reported by Dicke and Goldenberg. These results support the Chapman-Ingersoll facular explanation for the excess solar oblateness and support the findings of Hill et al. by offering a possible source for their excess equatorial brightness which, they showed, can produce an apparent, nongeometrical oblateness

  4. Investigation of excess thyroid cancer incidence in Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980`s. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report.

  5. Investigation of excess thyroid cancer incidence in Los Alamos County

    International Nuclear Information System (INIS)

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980's. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report

  6. Exploitation of "Excess" Data Now Routinely Collected by Large N, Continuously Recorded Oil Exploration Surveys: From Microseismicity to Deep Crustal Imaging

    Science.gov (United States)

    Brown, L. D.

    2014-12-01

    The rapidly expanding use by the oil and gas industry of "nodal", large channel capacity areal arrays that record continuously for extended periods of time is generating large volumes of data in excess of that needed for the conventional CMP reflection imaging that is the primary goal of such surveys. These excess data, once considered as simply "noise", have recently been recognized to have utility not only for the exploration seismologist but also for addressing a diverse range of phenomena. The most widely recognized use for these "noise" records is surface wave tomographic imaging of near surface velocity structure via seismic interferometry of ambient natural noise. Such results are proving to be of great value in enhancing conventional 3D exploration imagery, but they should be appreciated in their own right for the information they provide on the shallow subsurface to the hydrologist, engineer and tectonicist. Another relatively dramatic application is the delineation of local structure by tracing the propagation of body and surface waves from local and teleseismic events across these dense arrays. Here I would like draw attention to three other promising uses for such data: a) detection and mapping of microseismicity below the detection thresholds of conventional earthquake monitoring networks, especially in areas of low conventional seismicity; b) reflection and refraction imaging of structure using cultural, as opposed to natural, energy sources, and c) systematic mapping of the basement in 3D using the existing exploration sources recorded at travel times longer than that typically harvested for resource purposes. We conclude by emphasizing that these potentially invaluable "extras" are now being recorded routinely around the world, but there is as yet no mechanism in place to ensure they are exploited rather than simply deleted.

  7. EDM: Neutron electric dipole moment measurement

    Directory of Open Access Journals (Sweden)

    Peter Fierlinger

    2016-02-01

    Full Text Available An electric dipole moment (EDM of the neutron would be a clear sign of new physics beyond the standard model of particle physics. The search for this phenomenon is considered one of the most important experiments in fundamental physics and could provide key information on the excess of matter versus antimatter in the universe. With high measurement precision, this experiment aims to ultimately achieve a sensitivity of 10-28 ecm, a 100-fold improvement in the sensitivity compared to the state-of-the-art. The EDM instrument is operated by an international collaboration based at the Technische Universität München.

  8. Application of backscatter electrons for large area imaging of cavities produced by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pastukhov, V.I. [Joint Stock Company “Institute of Nuclear Materials” (JSC “INM”), Zarechny, Sverdlovsk Region (Russian Federation); Ural Federal University Named After the First President of Russia, B. N. Yeltsyn, Ekaterinburg (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Averin, S.A.; Panchenko, V.L. [Joint Stock Company “Institute of Nuclear Materials” (JSC “INM”), Zarechny, Sverdlovsk Region (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Portnykh, I.A. [Joint Stock Company “Institute of Nuclear Materials” (JSC “INM”), Zarechny, Sverdlovsk Region (Russian Federation); Freyer, P.D. [Westinghouse Electric Company, Pittsburgh, PA (United States); Giannuzzi, L.A. [L.A. Giannuzzi & Associates LLC, Fort Myers, FL (United States); Garner, F.A., E-mail: frank.garner@dslextreme.com [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Radiation Effects Consulting LLC, Richland, WA (United States); Texas A& M University, College Station, TX (United States)

    2016-11-15

    It is shown that with proper optimization, backscattered electrons in a scanning electron microscope can produce images of cavity distribution in austenitic steels over a large specimen surface for a depth of ∼500–700 nm, eliminating the need for electropolishing or multiple specimen production. This technique is especially useful for quantifying cavity structures when the specimen is known or suspected to contain very heterogeneous distributions of cavities. Examples are shown for cold-worked EK-164, a very heterogeneously-swelling Russian fast reactor fuel cladding steel and also for AISI 304, a homogeneously-swelling Western steel used for major structural components of light water cooled reactors. This non-destructive overview method of quantifying cavity distribution can be used to direct the location and number of required focused ion beam prepared transmission electron microscopy specimens for examination of either neutron or ion-irradiated specimens. This technique can also be applied in stereo mode to quantify the depth dependence of cavity distributions.

  9. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  10. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Cobb, John W.; Geist, Al; Kohl, James Arthur; Miller, Stephen D; Peterson, Peter F.; Pike, Gregory; Reuter, Michael A; Swain, William; Vazhkudai, Sudharshan S.; Vijayakumar, Nithya N.

    2006-01-01

    The National Science Foundation's (NSF's) Extensible Terascale Facility (ETF), or TeraGrid (1) is entering its operational phase. An ETF science gateway effort is the Neutron Science TeraGrid Gateway (NSTG.) The Oak Ridge National Laboratory (ORNL) resource provider effort (ORNL-RP) during construction and now in operations is bridging a large scale experimental community and the TeraGrid as a large-scale national cyberinfrastructure. Of particular emphasis is collaboration with the Spallation Neutron Source (SNS) at ORNL. The U.S. Department of Energy's (DOE's) SNS (2) at ORNL will be commissioned in spring of 2006 as the world's brightest source of neutrons. Neutron science users can run experiments, generate datasets, perform data reduction, analysis, visualize results; collaborate with remotes users; and archive long term data in repositories with curation services. The ORNL-RP and the SNS data analysis group have spent 18 months developing and exploring user requirements, including the creation of prototypical services such as facility portal, data, and application execution services. We describe results from these efforts and discuss implications for science gateway creation. Finally, we show incorporation into implementation planning for the NSTG and SNS architectures. The plan is for a primarily portal-based user interaction supported by a service oriented architecture for functional implementation

  11. A group of neutronics calculations in the MNSR using the MCNP-4C code

    International Nuclear Information System (INIS)

    Khattab, K.; Sulieman, I.

    2009-11-01

    The MCNP-4C code was used to model the 3-D core configuration for the Syrian Miniature Neutron Source Reactor (MNSR). The continuous energy neutron cross sections were evaluated from ENDF/B-VI library to calculate the thermal and fast neutron fluxes in the MNSR inner and outer irradiation sites. The thermal fluxes in the MNSR inner irradiation sites were measured for the first time using the multiple foil activation method. Good agreements were noticed between the calculated and measured results. This model is used as well to calculate neutron flux spectrum in the reactor inner and outer irradiation sites and the reactor thermal power. Three 3-D neutronic models for the Syrian MNSR reactor using the MCNP-4C code were developed also to assess the possibility of fuel conversion from 89.87 % HEU fuel (UAl 4 -Al) to 19.75 % LEU fuel (UO 2 ). This model is used in this paper to calculate the following reactor core physics parameters: clean cold core excess reactivity, calibration of the control rod worth and calculation its shut down margin, calibration of the top beryllium shim plate reflector, axial neutron flux distributions in the inner and outer irradiation sites and the kinetics parameters ( ι p l and β e ff). (authors)

  12. The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Sethian, J.D.; Hagenson, R.L.

    1989-01-01

    The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s μm in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experiments. These encouraging results along with debt of a number of proof-of principle, high-current (1--2 MA in 10--100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (/dot S//sub N/ ≥ 10 19 n/s) to provide uncollided neutron fluxes in excess of I/sub ω/ = 5--10 MW/m 2 over test volumes of 10--30 litre or greater. While this neutron source would be pulsed (100s ns pulse widths, 10--100 Hz pulse rate), giving flux time compressions in the range 10 5 --10 6 , its simplicity, near-time feasibility, low cost, high-Q operation, and relevance to fusion systems that may provide a pulsed commercial end-product (e.g., inertial confinement or the DZP itself) together create the impetus for preliminary considerations as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost versus performance analyses are presented. The DZP promises an expensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 10 19 n/s, with neutron currents I/sub ω/ /approx lt/ 10 MW/m 2 over volumes V/sub exp/ ≥ 30 litre using single-pulse technologies that differ little from those being used in present-day experiments. 34 refs., 17 figs., 6 tabs

  13. Hyperon-mixed neutron star matter and neutron stars

    International Nuclear Information System (INIS)

    Nishizaki, Shigeru; Takatsuka, Tatsuyuki; Yamamoto, Yasuo

    2002-01-01

    Effective Σ - n and Σ - Σ - interactions are derived from the G-matrix calculations for {n+Σ - } matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities ρ t (Y) at which hyperons start to appear are between 2ρ 0 and 3ρ 0 (where ρ 0 is the normal nuclear density) for both Λ and Σ - , and their fractions increase rapidly with baryon density, reaching 10% already for ρ≅ρ t + ρ 0 . The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M obs =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked that ρ t (Y) would be as large as 4ρ 0 for neutron stars compatible with M obs . A comment is given regarding the effects on the Y-mixing problem from a less attractive ΛΛ interaction, newly suggested by the NAGARA event. (author)

  14. Determination of the excess of reactivity in a nuclear configuration and its influence on the power level

    International Nuclear Information System (INIS)

    Zuniga, Agustin; Tapia, Jose

    2014-01-01

    This work presents experimental results which show that the critical position of a given nuclear configuration changes with the reactor power (expressed by the current measurement). Thus, if the current is 0.6 x 10 -11 A (1 W), then the critical position is, BC1 = 0.0 % while 0.6 x 10 -9 A (100 W), BC1= 46.5 %. The difference is apparent because under a current of 10 -10 A, the reactivity is not significant. Therefore, it is recommended that for reactors like the RP-10 with a lot of neutrons at the 'background' level, the excess reactivity must be measured in current as 0.6 x 10 -9 A (100 W) not less. Finally, the excess of reactivity for the N o 42 configuration was determined, which was 3032 pcm with uncertainty less than 1 %. (authors).

  15. Some neutron measurements with simulated ING targets

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J

    1966-07-01

    Thermal neutron fluxes in the vicinity of a simulated Intense Neutron Generator target have been measured using Mn and Au foils, and a small BF{sub 3} detector. The target was a Pb cylinder either 4-inch or 8-inch in diameter with a 1.2 g Ra-Be neutron source at its centre. This was centrally mounted in a 5' diam. x 5' high tank which was filled with either H{sub 2}O or D{sub 2}O moderator. Various gaps and absorbing annuli were placed around the target, and air-filled aluminum 'beam tubes' were mounted radially or tangentially from the target to simulate typical ING conditions. The measured thermal neutron fluxes were less than calculated at all radii. The single-age computation clearly gives large errors at large radii, but the multi-energy approach seems to give a useful indication of the thermal flux distribution in spite of the extreme simplicity of the model. The fall in measured fluxes at small radii in both D{sub 2}O and H{sub 2}O is most likely caused by absorption in the target material which is not allowed for in the computational model. (author)

  16. Some neutron measurements with simulated ING targets

    International Nuclear Information System (INIS)

    Walker, J.

    1966-01-01

    Thermal neutron fluxes in the vicinity of a simulated Intense Neutron Generator target have been measured using Mn and Au foils, and a small BF 3 detector. The target was a Pb cylinder either 4-inch or 8-inch in diameter with a 1.2 g Ra-Be neutron source at its centre. This was centrally mounted in a 5' diam. x 5' high tank which was filled with either H 2 O or D 2 O moderator. Various gaps and absorbing annuli were placed around the target, and air-filled aluminum 'beam tubes' were mounted radially or tangentially from the target to simulate typical ING conditions. The measured thermal neutron fluxes were less than calculated at all radii. The single-age computation clearly gives large errors at large radii, but the multi-energy approach seems to give a useful indication of the thermal flux distribution in spite of the extreme simplicity of the model. The fall in measured fluxes at small radii in both D 2 O and H 2 O is most likely caused by absorption in the target material which is not allowed for in the computational model. (author)

  17. Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars

    Science.gov (United States)

    Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.

    2013-09-01

    Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.

  18. In-situ calibration of TFTR [Tokamak Fusion Test Reactor] neutron detectors

    International Nuclear Information System (INIS)

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.P.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.

    1990-03-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled 252 Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two 235 U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source, and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of ± 13%. 21 refs., 23 figs., 4 tabs

  19. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  20. Recent activities for β-decay half-lives and β-delayed neutron emission of very neutron-rich isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dillmann, Iris [TRIUMF, Vancouver BC, V6T 2A3, Canada and GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Abriola, Daniel [Laboratorio Tandar, Comisión Nacional de Energía Atómica, B1650KINA, San Martín, Buenos Aires (Argentina); Singh, Balraj [Department of Physics and Astronomy, McMaster University, Hamilton ON, L8S 4M1 (Canada)

    2014-05-02

    Beta-delayed neutron (βn) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material β-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure βn-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 β-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 β-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of β-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and

  1. High resolution fast neutron spectrometry without time-of-flight

    International Nuclear Information System (INIS)

    Evans, A.E.; Brandenberger, J.D.

    1978-01-01

    Performance tests of a spectrometer tube of the type developed by Cuttler and Shalev show that the measurement of fast neutron spectra with this device can be made with an energy resolution previously obtainable only in large time-of-flight facilities. In preliminary tests, resolutions of 16.4 keV for thermal neutrons and 30.9 keV for 1-MeV neutrons were obtained. A broad-window pulse-shape discrimination (PSD) system is used to remove from pulse-height distributions most of the continua due to 3 He-recoil events, noise, and wall effect. Use of PSD improved the energy resolution to 12.9 keV for thermal neutrons and 29.2 keV for 1-MeV neutrons. The detector is a viable tool for neutron research at nominally equipped accelerator laboratories

  2. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  3. Simultaneous measurement of neutrons and fission fragments of thermal neutron fission of U-233

    International Nuclear Information System (INIS)

    Itsuro Kimura; Katsuhisa Nishio; Yoshihiro Nakagome

    2000-01-01

    The multiplicity and the energy of prompt neutrons from the fragments for 233 U(n th , f) were measured as functions of fragment mass and total kinetic energy. Average neutron energy against the fragment mass showed a nearly symmetric distribution about the half mass division with two valleys at 98 and 145 u. The slope of the neutron multiplicity with total kinetic energy depended on the fragment mass and showed the minimum at about 130 u. The obtained neutron data were applied to determine the total excitation energy of the system, and the resulting value in the typical asymmetric fission lied between 22 and 25 MeV. The excitation energy agreed with that determined by subtracting the total kinetic energy from the Q-value within 1 MeV, thus satisfied the energy conservation. In the symmetric fission, where the mass yield was drastically suppresses, the total excitation energy is significantly large and reaches to about 40 MeV, suggesting that fragment pairs are preferentially formed in a compact configuration at the scission point [ru

  4. Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M. [Hokkaido University, Department of Physics, Sapporo (Japan); Hokkaido University, Nuclear Reaction Data Centre, Faculty of Science, Sapporo (Japan); Suhara, T. [Matsue College of Technology, Matsue (Japan); Kanada-En' yo, Y. [Kyoto University, Department of Physics, Kyoto (Japan)

    2016-12-15

    We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular and atomic orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this ''molecular-orbit picture'' reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3α linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering. (orig.)

  5. Bench mark spectra for high-energy neutron dosimetry

    International Nuclear Information System (INIS)

    Dierckx, R.

    1986-01-01

    To monitor radiation damage experiments, activation detectors are commonly used. The precision of the results obtained by the multiple foil analysis is largely increased by the intercalibration in bench-mark spectra. This technique is already used in dosimetry measurements for fission reactors. To produce neutron spectra similar to fusion reactor and high-energy high-intensity neutron sources (d-Li or spallation), accelerators can be used. Some possible solutions as p-Be and d-D 2 O neutron sources, useful as bench-mark spectra are described. (author)

  6. Evaluation of neutronic characteristics of STACY 80-cm-diameter cylindrical core fueled with 6% enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Sono, Hiroki

    2003-06-01

    For the examination of neutronic safety design of forthcoming experimental core configurations in the Static Experiment Critical Facility (STACY), neutronic characteristics of 80-cm-diameter cylindrical cores fueled with 6% enriched uranyl nitrate solution have been evaluated by computational analyses. In the analyses, the latest nuclear data library, JENDL-3.3, was used as neutron cross section data. The neutron diffusion and transport calculations were performed using a diffusion code, CITATION, in the SRAC code system and a continuous-energy Monte Carlo code, MVP. Critical level heights of the cores were obtained using such parameters as uranium concentration (up to 500 gU/l), free nitric acid concentration (up to 8 mol/l), and concentration of soluble neutron poisons, gadolinium and boron. It has been confirmed from the evaluation that all critical cores comply with safety criteria required in the STACY operation concerning excess reactivity, reactivity addition rates and shutdown margins by safety rods. (author)

  7. On the fate of superheavy magnetic monopoles in a neutron star

    International Nuclear Information System (INIS)

    Kuzmin, V.A.; Rubakov, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1983-02-01

    We propose two possible scenarios of the behaviour of superheavy magnetic monopoles in a neutron star, in which the monopole-antimonopole annihilation rate is sufficiently large to prevent the enormous heating of a neutron star due to the monopole induced neutron decays. We find that the galactic monopole flux of order 10 -16 cm -2 s -1 ster -1 can be compatible with the observational limit on the X-ray luminosity of neutron stars. (author)

  8. Development of a High Fluence Neutron Source for Nondestructive Characterization of Nuclear Waste

    International Nuclear Information System (INIS)

    Pickrell, Mark M.

    1999-01-01

    Target or Already Proven Neutron Yield (n/s) 108 1011 Lifetime (hours) 500 10,000 Operation Pulsed Pulsed or steady state Nominal cost $k $100k Same Power 1kW 25kW 5. Methods and Results: The design of a conventional IEC source is deceptively simple. The basic system is a spherical vacuum chamber containing a spherical grid. The grid is raised to a high negative potential. A breakdown develops between the chamber wall and the grid, and this plasma becomes a source of positive deuterium and tritium ions. These ions are accelerated to the center of the vacuum chamber sphere where they may collide. The ion energy may achieve the full potential of the accelerating grid. If the grid is raised to a nominal 100 kV, the D-T fusion cross section becomes large and the neutron production proceeds. The IEC concept was initially developed in the 1950s and 1960s by R. L. Hirsch and collaborators. It was originally proposed as a possible plasma fusion energy device. The idea was initially presented to the DOE with a table-top experiment using ordinary office power. That system produced in excess of 106 neutrons per second. Although the IEC was not favored for a future electric energy generator, the application as a potential neutron source was clearly established. Using nominal laboratory power and a modest sized sphere, Hirsch was able to achieve a maximum neutron yield of 2xl010 neutrons per second (in D-T)in the mid 1960s

  9. ACTIVATION PARAMETERS AND EXCESS THERMODYANAMIC ...

    African Journals Online (AJOL)

    Applying these data, viscosity-B-coefficients, activation parameters (Δμ10≠) and (Δμ20≠) and excess thermodynamic functions, viz., excess molar volume (VE), excess viscosity, ηE and excess molar free energy of activation of flow, (GE) were calculated. The value of interaction parameter, d, of Grunberg and Nissan ...

  10. Neutron absorber qualification and acceptance testing from the designer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bracey, W. [Transnuclear, Inc, Hawthorne, NY (United States); Chiocca, R. [Cogema Logistics, St. Quentin en Yvelines (France)

    2004-07-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3{sigma}. The original and current bases for the reduced {sup 10}B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and

  11. Design and characterisation of a pulsed neutron interrogation facility

    International Nuclear Information System (INIS)

    Favalli, A.; Pedersen, B.

    2007-01-01

    The Joint Research Centre recently obtained a license to operate a new experimental device intended for research in the field of nuclear safeguards. The research projects currently being planned for the new device includes mass determination of fissile materials in matrices and detection of contraband non-nuclear materials. The device incorporates a commercial pulsed neutron generator and a large graphite mantle surrounding the sample cavity. In this configuration, a relatively high thermal neutron flux with a long lifetime is achieved inside the sample cavity. By pulsing the neutron generator, a sample may be interrogated by a pure thermal neutron flux during repeated time periods. The paper reports on the design of the new device and the pulsed fast and thermal neutron source. The thermal neutron flux caused by the neutron generator and the graphite structure has been characterised by foil activation, fission chamber and 3 He proportional counter measurements. (authors)

  12. Neutron imaging options at the BOA beamline at Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Morgano, M.; Peetermans, S.; Lehmann, E.H.; Panzner, T.; Filges, U.

    2014-01-01

    The BOA beamline at the Swiss spallation neutron source SINQ at Paul Scherrer Institut is a flexible instrument used mainly for testing novel techniques and devices for neutron scattering and optics, but, due to the large and relatively homogeneous field of view, it can be successfully used for experiments in the field of neutron imaging. The beamline allows also for the exploitation of advanced imaging concepts such as polarized neutron imaging and diffractive neutron imaging. In this paper we present the characterization of the BOA beamline in the light of its neutron imaging capabilities. We show also the different techniques that can be employed there as user-friendly plugins for non-standard neutron imaging experiments

  13. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  14. Benchmark experiments on neutron streaming through JET Torus Hall penetrations

    Science.gov (United States)

    Batistoni, P.; Conroy, S.; Lilley, S.; Naish, J.; Obryk, B.; Popovichev, S.; Stamatelatos, I.; Syme, B.; Vasilopoulou, T.; contributors, JET

    2015-05-01

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in 6LiF/7LiF, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40 m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% 7Li were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with natLi and 7Li crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the

  15. Neutron radiography using neutron imaging plate

    International Nuclear Information System (INIS)

    Chankow, Nares; Wonglee, Sarinrat

    2008-01-01

    Full text: The aims of this research are to study properties of neutron imaging plate, to obtain a suitable condition for neutron radiography and to use the neutron imaging plate for testing of materials nondestructively. The experiments were carried out by using a neutron beam from the Thai Research Reactor TRR-1/M1 at a power of 1.2 MW. A BAS-ND 2040 FUJI neutron imaging plate and a MX125 Kodak X-ray film/Gadolinium neutron converter screen combination were tested for comparison. It was found that the photostimulated light (PSL) read out of the imaging plate was directly proportional to the exposure time. It was also found that radiography with neutron using the imaging plate was approximately 40 times faster than the conventional neutron radiography using x-ray film/Gd converter screen combination. The sensitivity of the imaging plate to gamma-rays was investigated by using gamma-rays from an 192 Ir and a 60 Co radiographic sources. The imaging plate was found to be 5-6 times less sensitive to gamma-rays than a FUJI BAS-MS 2040 gamma-ray imaging plate. Finally, some specimens were selected to be radiographed with neutrons using the imaging plate and the x-ray film/Gd converter screen combination in comparison to x-rays. Parts containing light elements could be clearly observed by the two neutron radiographic techniques. It could be concluded that the image quality from the neutron imaging plate was comparable to the conventional x-ray film/Gd converter screen combination but the exposure time could be approximately reduced by a factor of 40

  16. Calculation of neutron kerma in tissues

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.

    2004-01-01

    Neutron kerma of normal and tumor tissues has been calculated using the tissues elemental concentration. A program developed in Math cad contains the kerma factors of C, H, O, N, Na, Mg, P, S, Cl, K, etc. that are in normal and tumor human tissues. Having the elemental composition of any human tissue the neutron kerma can be calculated. The program was tested using the elemental composition of tumor tissues such as sarcoma, melanoma, carcinoma and adenoid cystic, also neutron kerma for adipose and muscle tissue for normal adult was calculated. The results are in agreement with those published in literature. The neutron kerma for water was also calculated because in some dosimetric calculations water is used to describe normal and tumor tissues. From this comparison was found that at larger energies kerma factors are approximately the same, but energies less than 100 eV the differences are large. (Author)

  17. Basic research of neutron radiography using cold neutron beam

    International Nuclear Information System (INIS)

    Oda, Masahiro; Tamaki, Masayoshi; Tasaka, Kanji

    1995-01-01

    As the result of demanding high quality images, now the nuclear reactors which can supply stably intense neutron beam have become the most general neutron source for radiography. For the purpose, mostly thermal neutrons have been used, but it is indispensable to use other neutrons than thermal neutrons for advancing neutron radiography technology and expanding the application fields. The radiography using cold neutrons is most behind in the development because the suitable neutron source was not available in Japan. The neutron sources for exclusively obtaining intense cold neutron beam were installed in the Kyoto University reactor in 1986 and in the JRR-3M of Japan Atomic Energy Research Institute in 1991. Basically as neutron energy lowers, the cross section of substances increases. In certain crystalline substances, the Bragg cutoff arises. The removal of scattered neutrons, the measurement of parallelism of beam and the relation of the thickness of objects with the transmissivity of cold neutrons are described. The imaging by TV method and the cold neutron CT in the CNRF and the simplified neutron CT by film method are reported. (K.I.)

  18. Advanced Neutron Source Reactor zoning, shielding, and radiological optimization guide

    International Nuclear Information System (INIS)

    Westbrook, J.L.; DeVore, J.R.

    1995-08-01

    In the design of major nuclear facilities, it is important to protect both humans and equipment excessive radiation dose. Past experience has shown that it is very effective to apply dose reduction principles early in the design of a nuclear facility both to specific design features and to the manner of operation of the facility, where they can aid in making the facility more efficient and cost-effective. Since the appropriate choice of radiological controls and practices varies according to the case, each area of the facility must be analyzed for its radiological impact, both by itself and in interactions with other areas. For the Advanced Neutron Source (ANS) project, a large relational database will be used to collect facility information by system and relate it to areas. The database will also hold the facility dose and shielding information as it is produced during the design process. This report details how the ANS zoning scheme was established and how the calculation of doses and shielding are to be done

  19. Proton-neutron correlations in a broken-pair model

    International Nuclear Information System (INIS)

    Akkermans, J.N.L.

    1981-01-01

    In this thesis nuclear-structure calculations are reported which were performed with the broken-pair model. The model which is developed, is an extension of existing broken-pair models in so far that it includes both proton and neutron valence pairs. The relevant formalisms are presented. In contrast to the number-non-conserving model, a proton-neutron broken-pair model is well suited to study the correlations which are produced by the proton-neutron interaction. It is shown that the proton-neutron force has large matrix elements which mix the proton- with neutron broken-pair configurations. This occurs especially for Jsup(PI)=2 + and 3 - pairs. This property of the proton-neutron force is used to improve the spectra of single-closed shell nuclei, where particle-hole excitations of the closed shell are a special case of broken-pair configurations. Using Kr and Te isotopes it is demonstrated that the proton-neutron force gives rise to correlated pair structures, which remain remarkably constant with varying nucleon numbers. (Auth.)

  20. Experimental characterization of semiconductor-based thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Bortot, D.; Pola, A.; Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN—Milano, Via Celoria 16, 20133 Milano (Italy); Gómez-Ros, J.M. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Sacco, D. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); INAIL—DIT, Via di Fontana Candida 1, 00040 Monteporzio Catone (Italy); Esposito, A.; Gentile, A.; Buonomo, B. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Palomba, M.; Grossi, A. [ENEA Triga RC-1C.R. Casaccia, via Anguillarese 301, 00060 S. Maria di Galeria, Roma (Italy)

    2015-04-21

    In the framework of NESCOFI@BTF and NEURAPID projects, active thermal neutron detectors were manufactured by depositing appropriate thickness of {sup 6}LiF on commercially available windowless p–i–n diodes. Detectors with different radiator thickness, ranging from 5 to 62 μm, were manufactured by evaporation-based deposition technique and exposed to known values of thermal neutron fluence in two thermal neutron facilities exhibiting different irradiation geometries. The following properties of the detector response were investigated and presented in this work: thickness dependence, impact of parasitic effects (photons and epithermal neutrons), linearity, isotropy, and radiation damage following exposure to large fluence (in the order of 10{sup 12} cm{sup −2})

  1. Applications of TOF neutron diffraction in archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Kockelmann, W. [Rutherford Appleton Laboratory, ISIS Facility, Chilton (United Kingdom); Siano, S.; Bartoli, L. [Istituto di Fisica Applicata - CNR, Sesto Fiorentino (Italy); Visser, D. [Rutherford Appleton Laboratory, ISIS Facility, Chilton (United Kingdom); Netherlands Organisation for Scientific Research (NWO), Den Haag (Netherlands); Hallebeek, P. [Netherlands Institute for Cultural Heritage (ICN), Amsterdam (Netherlands); Traum, R. [Kunsthistorisches Museum Wien, Muenzkabinett, Vienna (Austria); Linke, R.; Schreiner, M. [Akademie der Bildenden Kuenste, Institut fuer Wissenschaften und Technologien in der Kunst, Vienna (Austria); Kirfel, A. [Universitaet Bonn, Mineralogisch-Petrologisches Institut, Bonn (Germany)

    2006-05-15

    Neutron radiation meets the demand for a versatile diagnostic probe for collecting information from the interior of large, undisturbed museum objects or archaeological findings. Neutrons penetrate through coatings and corrosion layers deep into centimetre-thick materials, a property that makes them ideal for non-destructive examination of objects for which sampling is impractical or unacceptable. A particular attraction of neutron techniques for archaeologists and conservation scientists is the prospect of locating hidden materials and structures inside objects. Time-of-flight (TOF) neutron diffraction allows for the examination of mineral and metal phase contents, crystal structures, grain orientations, and microstructures as well as micro- and macro strains. A promising application is texture analysis which may provide clues to the deformation history of the material, and hence to specific working processes. Here we report on instructive examples of TOF neutron diffraction, including phase analyses of medieval Dutch tin-lead spoons, texture analyses of bronze specimens as well as of 16th-century silver coins. (orig.)

  2. Activation analysis opportunities using cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Rossbach, M

    1987-05-01

    Guided beams of cold neutrons being installed at a number of research reactors may become increasingly available for analytical research. A guided cold beam will provide higher neutron fluence rates and lower background interferences than in present facilities. In an optimized facility, fluence rates of 10/sup 9/ nxcm/sup -2/xs/sup -1/ are obtainable. Focusing a large area beam onto a small target will further increase the neutron intensity. In addition, the shift to lower neutron energy increases the effective cross sections. The absence of fast neutrons and gamma rays permits detectors to be placed near the sample without intolerable background, and thus the efficiency for counting prompt gamma rays can be much higher than in present systems. Measurements made at the hydrogen cold source of the FRJ-2 (DIDO) reactor at the KFA provide a numerical evaluation of the improvements in PGAA with respect to signal-to-background ratios of important elements and matrices. (author) 15 refs.

  3. Neutrons for global energy solutions. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book of abstracts of the conference on neutrons for global energy solutions include contributions to the following topics: Views from politics: What do we need in European energy research: cooperation, large facilities, more science? Fundamental research for energy supply. View from the United States. View from industry: Neutrons for nuclear reactor development in transition stage between generation III and generation IV. Toyotas's expectations for neutron analysis. Instrumentation and cross cutting issues. Energy sources. Waste management and environment. Li ion batteries. Photovoltaics. Savings and catalysis. Fuel cells. Hydrogen storage.

  4. Neutrons for global energy solutions. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book of abstracts of the conference on neutrons for global energy solutions include contributions to the following topics: Views from politics: What do we need in European energy research: cooperation, large facilities, more science? Fundamental research for energy supply. View from the United States. View from industry: Neutrons for nuclear reactor development in transition stage between generation III and generation IV. Toyotas's expectations for neutron analysis. Instrumentation and cross cutting issues. Energy sources. Waste management and environment. Li ion batteries. Photovoltaics. Savings and catalysis. Fuel cells. Hydrogen storage.

  5. Neutron multicounter detector for investigation of content and spatial distribution of fission materials in large volume samples

    International Nuclear Information System (INIS)

    Swiderska-Kowalczyk, M.; Starosta, W.; Zoltowski, T.

    1998-01-01

    The experimental device is a neutron coincidence well counter. It can be applied for passive assay of fissile - especially for plutonium bearing - materials. It consist of a set of 3 He tubes placed inside a polyethylene moderator; outputs from the tubes, first processed by preamplifier/amplifier/discriminator circuits, are then analysed using neutron correlator connected with a PC, and correlation techniques implemented in software. Such a neutron counter allows for determination of plutonium mass ( 240 Pu effective mass) in nonmultiplying samples having fairly big volume (up to 0.14 m 3 ). For determination of neutron sources distribution inside the sample, the heuristic methods based on hierarchical cluster analysis are applied. As an input parameters, amplitudes and phases of two-dimensional Fourier transformation of the count profiles matrices for known point sources distributions and for the examined samples, are taken. Such matrices are collected by means of sample scanning by detection head. During clustering process, counts profiles for unknown samples fitted into dendrograms using the 'proximity' criterion of the examined sample profile to standard samples profiles. Distribution of neutron sources in an examined sample is then evaluated on the basis of comparison with standard sources distributions. (author)

  6. Combined proton-recoil and neutron time-of-flight spectrometer for 14 MeV neutrons

    International Nuclear Information System (INIS)

    Grosshoeg, G.; Aronsson, D.; Arvidsson, E.; Beimer, K.-H.; Pekkari, L.-O.; Rydz, R.; Sjoestrand, N.G.

    1983-05-01

    The main effort put into this work is the foundation of a reliable physical basis for a 12-16 MeV neutron-spectrometer at JET. The essential problem is the amount of scatterer that can be incorporated without losing resolution. We have found two possible methods, the use of a pure hydrogen scatterer and the use of a polyethylene foil scatterer. The pure hydrogen solution gives a very complicated spectrometer with large detectors. The polyethylene solution is limited by the thickness and the width of the foil. We judge the solution with the polyethylene foil to be the most promising one for a reliable spectrometer. However, a large foil area is needed. This gives a spectrometer design with an annular foil, an annular neutron detection system, and a central proton-detector. An efficiency of 10 - 6 counts/s per n/cm 2 ,s at the foil can be obtained with a resolution in the order of 100 keV for 14 MeV neutrons. Following the General Requirements given in the contract of this work, we concluded that an instrument with the desired properties can be made. The instruments is able to give useful information about the plasma from plasma temperatures of about 5 keV. (Authors)

  7. Strong Neutron-γ Competition above the Neutron Threshold in the Decay of ^{70}Co.

    Science.gov (United States)

    Spyrou, A; Liddick, S N; Naqvi, F; Crider, B P; Dombos, A C; Bleuel, D L; Brown, B A; Couture, A; Crespo Campo, L; Guttormsen, M; Larsen, A C; Lewis, R; Möller, P; Mosby, S; Mumpower, M R; Perdikakis, G; Prokop, C J; Renstrøm, T; Siem, S; Quinn, S J; Valenta, S

    2016-09-30

    The β-decay intensity of ^{70}Co was measured for the first time using the technique of total absorption spectroscopy. The large β-decay Q value [12.3(3) MeV] offers a rare opportunity to study β-decay properties in a broad energy range. Two surprising features were observed in the experimental results, namely, the large fragmentation of the β intensity at high energies, as well as the strong competition between γ rays and neutrons, up to more than 2 MeV above the neutron-separation energy. The data are compared to two theoretical calculations: the shell model and the quasiparticle random phase approximation (QRPA). Both models seem to be missing a significant strength at high excitation energies. Possible interpretations of this discrepancy are discussed. The shell model is used for a detailed nuclear structure interpretation and helps to explain the observed γ-neutron competition. The comparison to the QRPA calculations is done as a means to test a model that provides global β-decay properties for astrophysical calculations. Our work demonstrates the importance of performing detailed comparisons to experimental results, beyond the simple half-life comparisons. A realistic and robust description of the β-decay intensity is crucial for our understanding of nuclear structure as well as of r-process nucleosynthesis.

  8. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  9. Verification for excess reactivity on beginning equilibrium core of RSG GAS

    International Nuclear Information System (INIS)

    Daddy Setyawan; Budi Rohman

    2011-01-01

    BAPETEN is an institution authorized to control the use of nuclear energy in Indonesia. Control for the use of nuclear energy is carried out through three pillars: regulation, licensing, and inspection. In order to assure the safety of the operating research reactors, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the Power Peaking Factor in the equilibrium silicide core of RSG GAS reactor by computational method using MCNP-ORIGEN. This verification calculation results for is 9.4 %. Meanwhile, the RSG-GAS safety analysis report shows that the excess reactivity on equilibrium core of RSG GAS is 9.7 %. The verification calculation results show a good agreement with the report. (author)

  10. The development of the measurement technique of the control rod worth with the inverse kinetics method considering the influence of the steady neutron source

    International Nuclear Information System (INIS)

    Takeuchi, Mitsuo; Wada, Shigeru; Takahashi, Hiroyuki; Hayashi, Kazuhiko; Murayama, Yoji

    2000-09-01

    At the research reactor such as JRR-3M, the operation management is carried out in order to ensure safe operation, for example, the excess reactivity is measured regularly and confirmed that it satisfies a safety condition. The excess reactivity is calculated using control rod position in criticality and control rod worth measured by a positive period method (P.P method), the conventional inverse kinetic method (IK method) and so on. The neutron source, however, influences measurement results and brings in a measurement error. A new IK method considering the influence of the steady neutron sources is proposed and applied to the JRR-3M. This report shows that the proposed IK method measures control rod worth more precisely than a conventional IK method. (author)

  11. Calibration of a compact magnetic proton recoil neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfu, E-mail: zhang_jianfu@163.com [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ouyang, Xiaoping; Zhang, Xianpeng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ruan, Jinlu [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, Guoguang [Applied Institute of Nuclear Technology, China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Xiaodong [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-21

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium–tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  12. User Facilities: The Education of New Neutron Users

    International Nuclear Information System (INIS)

    Hernandez, Yamali; Brown, Craig M.

    2009-01-01

    Neutron scattering is a particularly useful tool enabling the study of compositional, structural and dynamical properties of materials down to the atomic scale. Due to the complexity of operating an intense source of neutrons, this technique is primarily practiced at large national facilities that cater to the research needs of chemists, biologists, physicists, engineers, and material scientists in general. In particular, these user facilities provide specialized instrumentation along with the scientific and technical support required to efficiently utilize it. Since neutron scattering experiments are performed at central facilities rather than in the home-laboratories of individual investigators, the facilities themselves must play a key role in the education and development of new users. The role of neutron scattering facilities in educating young scientists will be examined using examples from current programs at the National Institute of Standards and Technology Center for Neutron Research.

  13. Normal levels of total body sodium and chlorine by neutron activation analysis

    International Nuclear Information System (INIS)

    Kennedy, N.S.J.; Eastell, R.; Smith, M.A.; Tothill, P.

    1983-01-01

    In vivo neutron activation analysis was used to measure total body sodium and chlorine in 18 male and 18 female normal adults. Corrections for body size were developed. Normalisation factors were derived which enable the prediction of the normal levels of sodium and chlorine in a subject. The coefficient of variation of normalised sodium was 5.9% in men and 6.9% in women, and of normalised chlorine 9.3% in men and 5.5% in women. In the range examined (40-70 years) no significant age dependence was observed for either element. Total body sodium was correlated with total body chlorine and total body calcium. Sodium excess, defined as the amount of body sodium in excess of that associated with chlorine, also correlated well with total body calcium. In females there was a mean annual loss of sodium excess of 1.2% after the menopause, similar to the loss of calcium. (author)

  14. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    Klann, R.T.

    1997-01-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this system, objects as small as a coin and as large as a 19 liter container have been radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3 x 10[sup 10] neutrons/second with an average energy of 14. 5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available light-tight cassettes. The cassettes have been modified to include a thin sheet of plastic to produce protons from the neutron beam through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9 x 10[sup 7] n/cm[sup 2] to 3.8 x 10[sup 8] n/cm[sup 2] depending on the type of screen and film. The optimum source-to-film distance was found to be 150 cm. At this distance, the geometric unsharpness was determined to be approximately 2.2-2.3 mm and the smallest hole that could be resolved in a 1.25 cm thick sample had a diameter of 0.079 cm

  15. Phototransistor response under a neutron fluence

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Ursulino, Luciano C.; Silva Junior, Eronides F.; Antonio Filho, Joao

    2009-01-01

    The purpose of this communication is to show some effects on a bipolar phototransistor after it has been under a neutron fluence. Unlike a transistor, a phototransistor is designed so that the collector has a large area and consequently it has a higher radiation detection probability. Then, it is possible to have a certain number of interactions so that any changes in the internal structure of the phototransistor can be observed after a neutron irradiation. If a phototransistor is under a certain spectra of neutron fluence the interaction depends on the cross section of the either silicon chip or its encapsulation, and recoil protons could be the charged particle responsible for changes in the semiconductor structure. Furthermore, neutron irradiation could give to the device a state of vanishing in its electrical characteristic which can be performed tracing the current versus voltage curve (I x V). The experimental arrangement basically consists of a photonic device, a neutron-gamma radiation source and a Flip-Flop electrometer second generation (EFF-2G). One of the main parameters of evaluation was the phototransistor dark current. In fact, the first results demonstrate that when the phototransistor is neutron irradiated there is a significant variation in its I x V characteristic curve. (author)

  16. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  17. Neutron Interferometry at the National Institute of Standards and Technology

    International Nuclear Information System (INIS)

    Huber, M. G.; Sarenac, D.; Nsofini, J.; Pushin, D. A.; Arif, M.; Wood, C. J.; Cory, D. G.; Shahi, C. B.

    2015-01-01

    Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR’s older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research

  18. MAGNETIC GRAIN TRAPPING AND THE HOT EXCESSES AROUND EARLY-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, G. H.; Gáspár, András; Ballering, N. P., E-mail: grieke@as.arizona.edu, E-mail: agaspar@as.arizona.edu, E-mail: ballerin@email.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-01-10

    A significant fraction of main sequence stars observed interferometrically in the near-infrared have slightly extended components that have been attributed to very hot dust. To match the spectrum appears to require the presence of large numbers of very small (<200 nm in radius) dust grains. However, particularly for the hotter stars, it has been unclear how such grains can be retained close to the star against radiation pressure force. We find that the expected weak stellar magnetic fields are sufficient to trap nm-sized dust grains in epicyclic orbits for a few weeks or longer, sufficient to account for the hot excess emission. Our models provide a natural explanation for the requirement that the hot excess dust grains be smaller than 200 nm. They also suggest that magnetic trapping is more effective for rapidly rotating stars, consistent with the average vsini measurements of stars with hot excesses being larger (at ∼2σ) than those for stars without such excesses.

  19. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  20. Neutron measurements in search of cold fusion

    International Nuclear Information System (INIS)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-μs intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term ''neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs