WorldWideScience

Sample records for large muscle afferents

  1. Extraocular muscle afferent signals modulate visual attention.

    Science.gov (United States)

    Balslev, Daniela; Newman, William; Knox, Paul C

    2012-10-09

    Extraocular muscle afferent signals contribute to oculomotor control and visual localization. Prompted by the close links between the oculomotor and attention systems, it was investigated whether these proprioceptive signals also modulated the allocation of attention in space. A suction sclera contact lens was used to impose an eye rotation on the nonviewing, dominant eye. With their viewing, nondominant eye, participants (n = 4) fixated centrally and detected targets presented at 5° in the left or right visual hemifield. The position of the viewing eye was monitored throughout the experiment. As a control, visual localization was tested using finger pointing without visual feedback of the hand, whereas the nonviewing eye remained deviated. The sustained passive rotation of the occluded, dominant eye, while the other eye maintained central fixation, resulted in a lateralized change in the detectability of visual targets. In all participants, the advantage in speed and accuracy for detecting right versus left hemifield targets that occurred during a sustained rightward eye rotation of the dominant eye was reduced or reversed by a leftward eye rotation. The control experiment confirmed that the eye deviation procedure caused pointing errors consistent with an approximately 2° shift in perceived eye position, in the direction of rotation of the nonviewing eye. With the caveat of the small number of participants, these results suggest that extraocular muscle afferent signals modulate the deployment of attention in visual space.

  2. Human intersegmental reflexes from intercostal afferents to scalene muscles.

    Science.gov (United States)

    McBain, Rachel A; Taylor, Janet L; Gorman, Robert B; Gandevia, Simon C; Butler, Jane E

    2016-10-01

    What is the central question of this study? The aim was to determine whether specific reflex connections operate between intercostal afferents and the scalene muscles in humans, and whether these connections operate after a clinically complete cervical spinal cord injury. What is the main finding and its importance? This is the first description of a short-latency inhibitory reflex connection between intercostal afferents from intercostal spaces to the scalene muscles in able-bodied participants. We suggest that this reflex is mediated by large-diameter afferents. This intercostal-to-scalene inhibitory reflex is absent after cervical spinal cord injury and may provide a way to monitor the progress of the injury. Short-latency intersegmental reflexes have been described for various respiratory muscles in animals. In humans, however, only short-latency reflex responses to phrenic nerve stimulation have been described. Here, we examined the reflex connections between intercostal afferents and scalene muscles in humans. Surface EMG recordings were made from scalene muscles bilaterally, in seven able-bodied participants and seven participants with motor- and sensory-complete cervical spinal cord injury (median 32 years postinjury, range 5 months to 44 years). We recorded the reflex responses produced by stimulation of the eighth or tenth left intercostal nerve. A short-latency (∼38 ms) inhibitory reflex was evident in able-bodied participants, in ipsilateral and contralateral scalene muscles. This bilateral intersegmental inhibitory reflex occurred in 46% of recordings at low stimulus intensities (at three times motor threshold). It was more frequent (in 75-85% of recordings) at higher stimulus intensities (six and nine times motor threshold), but onset latency (38 ± 9 ms, mean ± SD) and the size of inhibition (23 ± 10%) did not change with stimulus intensity. The reflex was absent in all participants with spinal cord injury. As the intercostal

  3. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis

    DEFF Research Database (Denmark)

    Roos, Ewa M.; Herzog, Walter; Block, Joel A

    2011-01-01

    Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is confli...... with previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset....... a possibility for achieving preventive structure or load modifications. In contrast, large randomized controlled trials of patients with established OA have failed to demonstrate beneficial effects of strengthening exercises. Subgroups of individuals who are at increased risk of knee OA (such as those...

  4. Reticulospinal actions on primary afferent depolarization of cutaneous and muscle afferents in the isolated frog neuraxis.

    Science.gov (United States)

    González, H; Jiménez, I; Rudomin, P

    1993-01-01

    The effects of the brainstem reticular formation on the intraspinal excitability of low threshold cutaneous and muscle afferents were studied in the frog neuraxis isolated together with the right hindlimb nerves. Stimulation of low threshold fibers (less than two times threshold) in cutaneous nerves produced short latency, negative field potentials in the ipsilateral dorsal neuropil (200-400 microns depth) that reversed to positivity at deeper regions (500-700 microns). Stimulation of low threshold fibers (less than two times threshold) in muscle nerves produced, instead, negative response that acquired their maximum amplitude in the ventral neuropil (700-900 microns depth). These electrophysiological findings suggest, in agreement with observations in the cat, that low threshold cutaneous and muscle afferents end at different sites in the spinal cord. Intraspinal microstimulation applied within the dorsal neuropil produced antidromic responses in low threshold cutaneous afferents that were increased in size following stimulation of the dorsal or ventral roots, as well as of the brainstem reticular formation. This increase in excitability is interpreted as being due to primary afferent depolarization (PAD) of the intraspinal terminals of cutaneous fibers. Antidromic responses recorded in muscle nerves following intraspinal stimulation within the ventral neuropil were also increased following conditioning stimulation of adjacent dorsal or ventral roots. However, stimulation of the bulbar reticular formation produced practically no changes in the antidromic responses, but was able to inhibit the PAD of low threshold muscle afferents elicited by stimulation of the dorsal or ventral roots. It is suggested that the PAD of low threshold cutaneous and muscle afferents is mediated by independent sets of interneurons. Reticulospinal fibers would have excitatory connections with the interneurons mediating the PAD of cutaneous fibers and inhibitory connections with the

  5. Patterns of connectivity of spinal interneurons with single muscle afferents.

    Science.gov (United States)

    Quevedo, J; Eguibar, J R; Lomeli, J; Rudomin, P

    1997-07-01

    A technique was developed to measure, in the anesthetized and paralyzed cat under artificial ventilation, changes of excitability to intraspinal stimulation simultaneously in two different afferent fibers or in two collaterals of the same afferent fiber. Intraspinal stimulation reduced the threshold of single muscle afferent fibers ending in the intermediate nucleus. This effect was seen with strengths below those required to activate the afferent fiber tested (1.5-12 microA), occurred at a short latency (1.5-2.0 ms), reached a maximum between 15 and 30 ms, and lasted up to 100 ms. The effects produced by graded stimulation applied at the shortest conditioning-testing stimulus time intervals increased by fixed steps, suggesting recruitment of discrete elements, most likely of last-order interneurons mediating primary afferent depolarization (PAD). The short-latency increases in excitability produced by the weakest effective intraspinal stimuli were usually detected only in the collateral closest to the stimulating micropipette, indicating that the stimulated interneurons mediating PAD have spatially restricted actions. The short-latency PAD produced by intraspinal stimuli, as well as the PAD produced by stimulation of the posterior biceps and semitendinosus (PBSt) nerve or by stimulation of the bulbar reticular formation (RF), was depressed 19-30 min after the i.v. injection of 0.5 mg/kg of picrotoxin, suggesting that all these effects were mediated by GABAergic mechanisms. The PAD elicited by stimulation of muscle and/or cutaneous nerves was depressed following the i.v. injection of (-)-baclofen, whereas the PAD elicited in the same collateral by stimulation of the RF was baclofen-resistant. The short-latency PAD produced by intraspinal stimulation was not always depressed by i.v. injections of (-)-baclofen. Baclofen-sensitive and baclofen-resistant monosynaptic PADs could be produced in different collaterals of the same afferent fiber. The results suggest that

  6. Regenerating sprouts of axotomized cat muscle afferents express characteristic firing patterns to mechanical stimulation.

    Science.gov (United States)

    Johnson, R D; Munson, J B

    1991-12-01

    1. In cats, we studied the physiological properties of regenerating sprouts of muscle afferent fibers and compared them with sprouts from cutaneous afferent fibers. 2. Muscle nerves to the triceps surae and cutaneous sural nerves were axotomized in the popliteal fossa, and the proximal ends were inserted into nerve cuffs. Six days later, we recorded action potentials from single Groups I and II muscle and mostly Group II cutaneous afferents driven by mechanostimulation of the cuff. 3. Most muscle afferent sprouts (91%) had a regular slowly adapting discharge in response to sustained mechanical displacement of the cuff, particularly to sustained stretch stimuli, whereas most cutaneous afferents (92%) did not. Muscle afferents were more likely to have a spontaneous discharge and afterdischarge. 4. Group II muscle afferent sprouts had lower stretch thresholds and a higher incidence of spontaneous discharge compared with Group I fiber sprouts, whereas Group I fibers had a higher incidence of high-frequency afterdischarge to mechanical stimuli. 5. We conclude that, 6 days after axotomy, regenerating sprouts of muscle afferents, particularly Group II afferents, have become mechanosensitive in the absence of a receptor target and exhibit physiological properties similar to those found when innervating their native muscle but significantly different from sprouts of cutaneous afferents. Expression of these native muscle afferent firing patterns after the inappropriate reinnervation of hairy skin may be due to inherent properties of the muscle afferent fiber.

  7. Enhanced Muscle Afferent Signals during Motor Learning in Humans.

    Science.gov (United States)

    Dimitriou, Michael

    2016-04-25

    Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning.

  8. Genioglossus muscle responses to upper airway pressure changes: afferent pathways.

    Science.gov (United States)

    Mathew, O P; Abu-Osba, Y K; Thach, B T

    1982-02-01

    The afferent pathway of an upper airway reflex in which genioglossus muscle electromyographic (GG EMG) activity is influenced by pharyngeal pressure changes was investigated in 20 anesthetized rabbits. We took advantage of the fact that the upper airway was separated into two compartments by pharyngeal closure occurring when the animals breathe through a tracheostomy. This allowed pressure to be delivered selectively either to the nose and nasopharynx or to the larynx and hypopharynx. Midcervical vagotomy did not eliminate the GG EMG response to pressure stimuli. On the other hand high cervical vagotomy or superior laryngeal nerve section eliminated the response in the laryngeal compartment, but not in the nasopharyngeal compartment. Topical anesthesia of the mucosa of the nose, pharynx, and larynx abolished the response in both compartments. Therefore we conclude that more than one afferent pathway exists for this upper airway pressure reflex; the primary afferent pathway from the laryngeal compartment is the superior laryngeal branch of the vagus nerve, whereas the primary afferent pathway for the nasopharynx is nonvagal. Trigeminal nerve, glossopharyngeal nerve, and/or nervus intermedius carry nonvagal afferents from the nasopharynx and nose. The topical anesthetic and nerve section studies suggest that superficial receptors mediate this response. The occurrence of swallowing in response to upper airway pressure changes and its elimination by topical anesthesia or superior mechanoreceptors may mediate both genioglossus respiratory responses and swallowing responses.

  9. Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord.

    Science.gov (United States)

    Rudomin, P

    1990-12-01

    More than 30 years ago, Frank and Fuortes proposed that the synaptic effectiveness of muscle spindle afferents associated with spinal motoneurones could be diminished by the activation of nerves from flexor muscles. Since that time, research has focused on disclosing the mode of operation and the spinal pathways involved in this presynaptic inhibitory control. Initially, it was assumed that the same last-order interneurones mediated presynaptic inhibition of both muscle spindle and tendon organ afferent fibres. More recent evidence indicates that the synaptic effectiveness of these two groups of afferents is controlled by separate sets of GABAergic interneurones synapsing directly with the intraspinal terminals of the afferent fibres. This unique arrangement allows for selective control of the information on muscle length or muscle tension, despite the convergence of muscle spindle and tendon organ afferents on second-order interneurones.

  10. EFFECT OF ANGELICA SINENSIS ON AFFERENT DISCHARGE OF SINGLE MUSCLE SPINDLE IN TOADS

    Institute of Scientific and Technical Information of China (English)

    高云芳; 樊小力

    2004-01-01

    Objective In drugs for invigorating blood circulation, to find a herb that can stimulate afferent discharge of muscle spindle. Methods A single muscle spindle was isolated from sartorial muscle of toad. Using air-gap technique, afferent discharge of the muscle spindle was recorded. Effects of Angelica Sinensis, Salvia Miltiorrhiza, and Safflower on afferent discharge of the muscle spindle were observed. Results Angelica Sinensis could distinctly increase afferent discharge frequency of the muscle spindle, and this increase was dose-dependent. But Salvia Miltiorrhiza and Safflower had no this excitatory effect. Conclusion It is known that Angelica Sinensis can invigorate blood circulation, and we have found its excitatory effect on muscle spindle which makes it possible to serve people with muscle atrophy if more evidences from clinical experiments are available.

  11. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    Science.gov (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  12. Persistence of PAD and presynaptic inhibition of muscle spindle afferents after peripheral nerve crush.

    Science.gov (United States)

    Enríquez-Denton, M; Manjarrez, E; Rudomin, P

    2004-11-19

    Two to twelve weeks after crushing a muscle nerve, still before the damaged afferents reinnervate the muscle receptors, conditioning stimulation of group I fibers from flexor muscles depolarizes the damaged afferents [M. Enriquez, I. Jimenez, P. Rudomin, Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Exp. Brain Res., 107 (1996), 405-420]. It is not known, however, if this primary afferent depolarization (PAD) is indeed related to presynaptic inhibition. We now show in the cat that 2-12 weeks after crushing the medial gastrocnemius nerve (MG), conditioning stimulation of group I fibers from flexors increases the excitability of the intraspinal terminals of both the intact lateral gastrocnemius plus soleus (LGS) and of the previously damaged MG fibers ending in the motor pool, because of PAD. The PAD is associated with the depression of the pre- and postsynaptic components of the extracellular field potentials (EFPs) evoked in the motor pool by stimulation of either the intact LGS or of the previously damaged MG nerves. These observations indicate, in contrast to what has been reported for crushed cutaneous afferents [K.W. Horch, J.W. Lisney, Changes in primary afferent depolarization of sensory neurones during peripheral nerve regeneration in the cat, J. Physiol., 313 (1981), 287-299], that shortly after damaging their peripheral axons, the synaptic efficacy of group I spindle afferents remains under central control. Presynaptic inhibitory mechanisms could be utilized to adjust the central actions of muscle afferents not fully recovered from peripheral lesions.

  13. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  14. Afferent contribution to locomotor muscle activity during unconstrained overground human walking: an analysis of triceps surae muscle fascicles

    DEFF Research Database (Denmark)

    Klint, Richard af; Cronin, Neil J.; Ishikawa, Masaki

    2010-01-01

    Plantar flexor series elasticity can be used to dissociate muscle fascicle and muscle tendon behaviour and, therefore, afferent feedback during human walking. We used electromyography (EMG) and high speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behaviour in ni...

  15. Comparison between the effect of static contraction and tendon stretch on the discharge of group III and IV muscle afferents

    National Research Council Canada - National Science Library

    Shawn G. Hayes; Angela E. Kindig; Marc P. Kaufman

    2005-01-01

    ... afferents as does static contraction. We have tested the veracity of this assumption in decerebrated cats by comparing the responses of group III and IV muscle afferents to tendon stretch with those to static contraction...

  16. Can loss of muscle spindle afferents explain the ataxic gait in Riley–Day syndrome?

    OpenAIRE

    Macefield, Vaughan G.; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B.; Kaufmann, Horacio

    2011-01-01

    The Riley–Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10...

  17. Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes.

    Science.gov (United States)

    Djilas, Milan; Azevedo-Coste, Christine; Guiraud, David; Yoshida, Ken

    2009-10-01

    In this study, we explored the feasibility of estimating muscle length in passive conditions by interpreting nerve responses from muscle spindle afferents recorded with thin-film longitudinal intrafascicular electrodes. Afferent muscle spindle response to passive stretch was recorded in ten acute rabbit experiments. A newly proposed first-order model of muscle spindle response to passive sinusoidal muscle stretch manages to capture the relationship between afferent neural firing rate and muscle length. We demonstrate that the model can be used to track random motion trajectories with bandwidth from 0.1 to 1 Hz over a range of 4 mm with a muscle length estimation error of 0.3 mm (1.4 degrees of joint angle). When estimation is performed using four-channel ENG there is a 50% reduction in estimate variation, compared to using single-channel recordings.

  18. Effects of electrical and natural stimulation of skin afferents on the gamma-spindle system of the triceps surae muscle.

    Science.gov (United States)

    Johansson, H; Sjölander, P; Sojka, P; Wadell, I

    1989-08-01

    The aim of the present study was to investigate the extent to which skin receptors might influence the responses of primary muscle spindle afferents via reflex actions on the fusimotor system. The experiments were performed on 43 cats anaesthetized with alpha-chloralose. The alterations in fusimotor activity were assessed from changes in the responses of the muscle spindle afferents to sinusoidal stretching of their parent muscles (triceps surae and plantaris). The mean rate of firing and the modulation of the afferent response were determined. Control measurements were made in absence of any cutaneous stimulation. Tests were made (a) during physiological stimulation of skin afferents of the ipsilateral pad or of the contralateral hindlimb, or (b) during repetitive electrical stimulation of the sural nerve in the ipsilateral hindlimb, or of sural or superficial peroneal nerve in the contralateral hindlimb. Of the total number of 113 units tested with repetitive electrical stimulation of the ipsilateral sural nerve (at 20 Hz), 24.8% exhibited predominantly dynamic fusimotor reflexes, 5.3% mixed or predominantly static fusimotor reflexes. One unit studied in a preparation with intact spinal cord exhibited static reflexes at low stimulation intensities and dynamic ones at higher stimulation strengths. The remaining units (69%) were uninfluenced. When the receptor-bearing muscle was held at constant length and a train of stimuli (at 20 Hz) was applied to the ipsilateral sural nerve, the action potentials in the primary muscle spindle afferent could be stimulus-locked to the 3rd or 4th pulse in the train (and to the pulses following thereafter), with a latency of about 24 ms from the effective pulse. This 1:1 pattern of driving seemed to be mediated via static and/or dynamic fusimotor neurons. Natural stimulation influenced comparatively few units (3 of 65 units tested from the ipsilateral pad and 10 of 98 tested from the contralateral hindlimb), but when the effects

  19. Interneurones in pathways from group II muscle afferents in sacral segments of the feline spinal cord.

    Science.gov (United States)

    Jankowska, E; Riddell, J S

    1994-03-15

    1. Properties of dorsal horn interneurones that process information from group II muscle afferents in the sacral segments of the spinal cord have been investigated in the cat using both intracellular and extracellular recording. 2. The interneurones were excited by group II muscle afferents and cutaneous afferents but not by group I muscle afferents. They were most effectively excited by group II afferents of the posterior biceps, semitendinosus, triceps surae and quadriceps muscle nerves and by cutaneous afferents running in the cutaneous femoris, pudendal and sural nerves. The earliest synaptic actions were evoked monosynaptically and were very tightly locked to the stimuli. 3. EPSPs evoked monosynaptically by group II muscle afferents and cutaneous afferents of the most effective nerves were often cut short by disynaptic IPSPs. As a consequence of this negative feedback the EPSPs gave rise to single or double spike potentials and only a minority of interneurones responded with repetitive discharges. However, the neurones that did respond repetitively did so at a very high frequency of discharges (0.8-1.2 ms intervals between the first 2-3 spikes). 4. Sacral dorsal horn group II interneurones do not appear to act directly upon motoneurones because: (i) these interneurones are located outside the area within which last order interneurones have previously been found and (ii) the latencies of PSPs evoked in motoneurones by stimulation of the posterior biceps and semitendinosus, cutaneous femoris and pudendal nerves (i.e. the main nerves providing input to sacral interneurones) are compatible with a tri- but not with a disynaptic coupling. Spatial facilitation of EPSPs and IPSPs following synchronous stimulation of group II and cutaneous afferents of these nerves shows, however, that sacral interneurones may induce excitation or inhibition of motoneurones via other interneurones. 5. Comparison of the properties of group II interneurones in the sacral segments with

  20. Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush.

    Science.gov (United States)

    Enríquez, M; Jiménez, I; Rudomin, P

    1996-01-01

    In the anesthetized cat we have analyzed the changes in primary afferent depolarization (PAD) evoked in single muscle spindle and tendon organ afferents at different times after their axons were crushed in the periphery and allowed to regenerate. Medial gastrocnemius (MG) afferents were depolarized by stimulation of group I fibers in the posterior biceps and semitendinosus nerve (PBSt), as soon as 2 weeks after crushing their axons in the periphery, in some cases before they could be activated by physiological stimulation of muscle receptors. Two to twelve weeks after crushing the MG nerve, stimulation of the PBSt produced PAD in all MG fibers reconnected with presumed muscle spindles and tendon organs. The mean amplitude of the PAD elicited in afferent fibers reconnected with muscle spindles was increased relative to values obtained from Ia fibers in intact (control) preparations, but remained essentially the same in fibers reconnected with tendon organs. Quite unexpectedly, we found that, between 2 and 12 weeks after crushing the MG nerve, stimulation of the bulbar reticular formation (RF) produced PAD in most afferent fibers reconnected with muscle spindle afferents. The mean amplitude of the PAD elicited in these fibers was significantly increased relative to the PAD elicited in muscle spindle afferents from intact preparations (from 0.08 +/- 0.4 to 0.47 +/- 0.34 mV). A substantial recovery was observed between 6 months and 2.5 years after the peripheral nerve injury. Stimulation of the sural (SU) nerve produced practically no PAD in muscle spindles from intact preparations, and this remained so in those afferents reconnected with muscle spindles impaled 2-12 weeks after the nerve crush. The mean amplitude of the PAD produced in afferent fibers reconnected with tendon organs by stimulation of the PBSt nerve and of the bulbar RF remained essentially the same as the PAD elicited in intact afferents. However, SU nerve stimulation produced a larger PAD in afferents

  1. Group Ia afferents contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    and velocity of the iKnee rotations. Methods 11 seated participants (mean age: 25 ± 5 years) performed a voluntary isometric knee extension with the ipsilateral leg and contralateral knee flexion to 10% of maximum voluntary contraction (MVC). A mechanical actuator (MTS-Systems Corporation) imposed i...... amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...

  2. Segmental and supraspinal control of synaptic effectiveness of functionally identified muscle afferents in the cat.

    Science.gov (United States)

    Enríquez, M; Jiménez, I; Rudomin, P

    1996-01-01

    The present investigation documents the patterns of primary afferent depolarization (PAD) of single, functionally identified muscle afferents from the medial gastrocnemius nerve in the intact, anesthetized cat. Classification of the impaled muscle afferents as from muscle spindles or from tendon organs was made according to several criteria, which comprised measurement of conduction velocity and electrical threshold of the peripheral axons, and the maximal frequency followed by the afferent fibers during vibration, as well as the changes in discharge frequency during longitudinal stretch, the projection of the afferent fiber to the motor pool, and, in unparalyzed preparations, the changes in afferent activity during a muscle twitch. In confirmation of a previous study, we found that most muscle spindle afferents (46.1-66.6%, depending on the combination of criteria utilized for receptor classification) had a type A PAD pattern. That is, they were depolarized by stimulation of group I fibers of the posterior biceps and semitendinosus (PBSt) nerve, but not by stimulation of cutaneous nerves (sural and superficial peroneus) or the bulbar reticular formation (RF), which in many cases inhibited the PBSt-induced PAD. In addition, we found a significant fraction of muscle spindle primaries that were depolarized by stimulation of group I PBSt fibers and also by stimulation of the bulbar RF. Stimulation of cutaneous nerves produced PAD in 9.1-31.2% of these fibers (type B PAD pattern) and no PAD in 8.2-15.4% (type C PAD pattern). In contrast to muscle spindle afferents, only the 7.7-15.4% of fibers from tendon organs had a type A PAD pattern, 23-46.1% had a type B and 50-61.5% a type C PAD pattern. These observations suggest that the neuronal circuitry involved in the control of the synaptic effectiveness of muscle spindles and tendon organs is subjected to excitatory as well as to inhibitory influences from cutaneous and reticulospinal fibers. As shown in the accompanying

  3. Intercostal muscles and purring in the cat: the influence of afferent inputs.

    Science.gov (United States)

    Kirkwood, P A; Sears, T A; Stagg, D; Westgaard, R H

    1987-03-03

    Feline purring has previously been reported as originating in a central oscillator, independent of afferent inputs, and also as not involving expiratory muscles. Here we show, via electromyographic recordings from intercostal muscles, quantified by cross-correlation, that expiratory muscles can be involved and that even if the oscillator is central, reflex components nevertheless play a considerable part in the production of the periodic pattern of muscle activation seen during purring.

  4. Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber.

    Science.gov (United States)

    Eguibar, J R; Quevedo, J; Jiménez, I; Rudomin, P

    1994-04-18

    We have analyzed in the anesthetized cat the effects of electrical stimulation of the cerebral cortex on the intraspinal threshold of two collaterals belonging to the same muscle spindle or tendon organ afferent fiber. The results obtained provide, for the first time, direct evidence showing that the motor cortex is able to modify, in a highly selective manner, the synaptic effectiveness of individual collaterals of the same primary afferent fiber. This presynaptic control could function as a mechanism that allows funneling of information to specific groups of spinal neurons in the presence of extensive intraspinal branching of the afferent fibers.

  5. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Nielsen, Jørgen Feldbæk; Grey, Michael James

    2007-01-01

    We investigated the contribution of afferent feedback to the soleus (SOL) muscle activity during the stance phase of walking in patients with spastic stroke. A total of 24 patients with hemiparetic spastic stroke and age-matched healthy volunteers participated in the study. A robotic actuator...... by the Ashworth score. These results indicate that although the stretch reflex response is facilitated during spastic gait, the contribution of afferent feedback to the ongoing locomotor SOL activity is depressed in patients with spastic stroke....

  6. Is human muscle spindle afference dependent on perceived size of error in visual tracking?

    Science.gov (United States)

    Kakuda, N; Wessberg, J; Vallbo, A B

    1997-04-01

    Impulses of 16 muscle spindle afferents from finger extensor muscles were recorded from the radial nerve along with electromyographic (EMG) activity and kinematics of joint movement. Twelve units were classified as Ia and 4 as II spindle afferents. Subjects were requested to perform precision movements at a single metacarpophalangeal joint in an indirect visual tracking task. Similar movements were executed under two different conditions, i.e. with high and low error gain. The purpose was to explore whether different precision demands were associated with different spindle firing rates. With high error gain, a small but significantly higher impulse rate was found in pooled data from Ia afferents during lengthening movements but not during shortening movements, nor with II afferents. EMG was also significantly higher with high error gain in recordings with Ia afferents. When the effect of EMG was factored out, using partial correlation analysis, the significant difference in Ia firing rate vanished. The findings suggest that fusimotor drive as well as skeletomotor activity were both marginally higher when the precision demand was higher, whereas no indication of independent fusimotor adjustments was found. These results are discussed with respect to data from behaving animals and the role of fusimotor independence in various limb muscles proposed.

  7. Task-dependent effects evoked by foot muscle afferents on leg muscle activity in humans.

    Science.gov (United States)

    Abbruzzese, M; Rubino, V; Schieppati, M

    1996-08-01

    The effect of low intensity electrical stimulation of the posterior tibial nerve (PTN) at the ankle on the active triceps surae (TS) muscles was studied in normal subjects, both in a prone position and while standing. PTN stimulation regularly evoked the H-reflex in the flexor digitorum brevis and, in the prone position, a short-latency facilitatory effect in the soleus muscle. During standing, the facilitatory effect was preceded by a clear-cut reduction in electromyograph (EMG) activity. The inhibition-facilitation sequence was evoked in the gastrocnemii under both conditions, on average, though individual differences were present. An EMG modulation similar to that observed under standing conditions was present also in the prone position when subjects pressed the sole of the foot against the wall. Stimulation of sural or digital nerves did not evoke similar effects. It is concluded that foot muscle afferents establish oligosynaptic connections transmitting mixed effects to the TS motoneuronal pool, and that contact with the sole of the foot plays an enabling role for the inhibitory pathway directed to the soleus muscle.

  8. Sympathetic modulation of muscle spindle afferent sensitivity to stretch in rabbit jaw closing muscles.

    Science.gov (United States)

    Roatta, S; Windhorst, U; Ljubisavljevic, M; Johansson, H; Passatore, M

    2002-04-01

    Previous reports showed that sympathetic stimulation affects the activity of muscle spindle afferents (MSAs). The aim of the present work is to study the characteristics of sympathetic modulation of MSA response to stretch: (i) on the dynamic and static components of the stretch response, and (ii) on group Ia and II MSAs to evaluate potentially different effects. In anaesthetised rabbits, the peripheral stump of the cervical sympathetic nerve (CSN) was stimulated at 10 impulses s(-1) for 45-90 s. The responses of single MSAs to trapezoidal displacement of the mandible were recorded from the mesencephalic trigeminal nucleus. The following characteristic parameters were determined from averaged trapezoidal responses: initial frequency (IF), peak frequency at the end of the ramp (PF), and static index (SI). From these, other parameters were derived: dynamic index (DI = PF - SI), dynamic difference (DD = PF - IF) and static difference (SD = SI - IF). The effects of CSN stimulation were also evaluated during changes in the state of intrafusal muscle fibre contraction induced by succinylcholine and curare. In a population of 124 MSAs, 106 units (85.4 %) were affected by sympathetic stimulation. In general, while changes in resting discharge varied among different units (Ia vs. II) and experimental conditions (curarised vs. non-curarised), ranging from enhancement to strong depression of firing, the amplitude of the response to muscle stretches consistently decreased. This was confirmed and detailed in a quantitative analysis performed on 49 muscle spindle afferents. In both the non-curarised (23 units) and curarised (26 units) condition, stimulation of the CSN reduced the response amplitude in terms of DD and SD, but hardly affected DI. The effects were equally present in both Ia and II units; they were shown to be independent from gamma drive and intrafusal muscle tone and not secondary to muscle hypoxia. Sympathetic action on the resting discharge (IF) was less

  9. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  10. Selective cortical and segmental control of primary afferent depolarization of single muscle afferents in the cat spinal cord.

    Science.gov (United States)

    Eguibar, J R; Quevedo, J; Rudomin, P

    1997-03-01

    This study was primarily aimed at investigating the selectivity of the cortico-spinal actions exerted on the pathways mediating primary afferent depolarization (PAD) of muscle spindle and tendon organ afferents ending within the intermediate nucleus at the L6-L7 segmental level. To this end we analyzed, in the anesthetized cat, the effects produced by electrical stimulation of sensory nerves and of the cerebral cortex on (a) the intraspinal threshold of pairs of single group I afferent fibers belonging to the same or to different hindlimb muscles and (b) the intraspinal threshold of two collaterals of the same muscle afferent fiber. Afferent fibers were classified in three categories, according to the effects produced by stimulation of segmental nerves and of the cerebral cortex. Twenty-five of 40 fibers (62.5%) were depolarized by stimulation of group I posterior biceps and semitendinosus (PBSt) or tibialis (Tib) fibers, but not by stimulation of the cerebral cortex or of cutaneous and joint nerves, which instead inhibited the PBSt- or Tib-induced PAD (type A PAD pattern, usually seen in Ia fibers). The remaining 15 fibers (37.5%) were all depolarized by stimulation of the PBSt or Tib nerves and the cerebral cortex. Stimulation of cutaneous and joint nerves produced PAD in 10 of those 15 fibers (type B PAD pattern) and inhibited the PBSt- or Tib-induced PAD in the 5 remaining fibers (type C PAD pattern). Fibers with a type B or C PAD pattern are likely to be Ib. Not all sites in the cerebral cortex inhibited with the same effectiveness the segmentally induced PAD of group I fibers with a type A PAD pattern. With the weakest stimulation of the cortical surface, the most effective sites that inhibited the PAD of individual fibers were surrounded by less effective sites, scattered all along the motor cortex (area 4gamma and 6) and sensory cortex (areas 3, 2 and 1), far beyond the area of projection of group I fibers from the hindlimb. With higher strengths of

  11. Emulated muscle spindle and spiking afferents validates VLSI neuromorphic hardware as a testbed for sensorimotor function and disease.

    Science.gov (United States)

    Niu, Chuanxin M; Nandyala, Sirish K; Sanger, Terence D

    2014-01-01

    The lack of multi-scale empirical measurements (e.g., recording simultaneously from neurons, muscles, whole body, etc.) complicates understanding of sensorimotor function in humans. This is particularly true for the understanding of development during childhood, which requires evaluation of measurements over many years. We have developed a synthetic platform for emulating multi-scale activity of the vertebrate sensorimotor system. Our design benefits from Very Large Scale Integrated-circuit (VLSI) technology to provide considerable scalability and high-speed, as much as 365× faster than real-time. An essential component of our design is the proprioceptive sensor, or muscle spindle. Here we demonstrate an accurate and extremely fast emulation of a muscle spindle and its spiking afferents, which are computationally expensive but fundamental for reflex functions. We implemented a well-known rate-based model of the spindle (Mileusnic et al., 2006) and a simplified spiking sensory neuron model using the Izhikevich approximation to the Hodgkin-Huxley model. The resulting behavior of our afferent sensory system is qualitatively compatible with classic cat soleus recording (Crowe and Matthews, 1964b; Matthews, 1964, 1972). Our results suggest that this simplified structure of the spindle and afferent neuron is sufficient to produce physiologically-realistic behavior. The VLSI technology allows us to accelerate this behavior beyond 365× real-time. Our goal is to use this testbed for predicting years of disease progression with only a few days of emulation. This is the first hardware emulation of the spindle afferent system, and it may have application not only for emulation of human health and disease, but also for the construction of compliant neuromorphic robotic systems.

  12. Primary afferent depolarization of muscle afferents elicited by stimulation of joint afferents in cats with intact neuraxis and during reversible spinalization.

    Science.gov (United States)

    Quevedo, J; Eguibar, J R; Jiménez, I; Schmidt, R F; Rudomin, P

    1993-11-01

    1. In the anesthetized and artificially ventilated cat, stimulation of the posterior articular nerve (PAN) with low strengths (1.2-1.4 x T) produced a small negative response (N1) in the cord dorsum of the lumbosacral spinal cord with a mean onset latency of 5.2 ms. Stronger stimuli (> 1.4 x T) produced two additional components (N2 and N3) with longer latencies (mean latencies 7.5 and 15.7 ms, respectively), usually followed by a slow positivity lasting 100-150 ms. With stimulus strengths above 10 x T there was in some experiments a delayed response (N4; mean latency 32 ms). 2. Activation of posterior knee joint nerve with single pulses and intensities producing N1 responses only, usually produced no dorsal root potentials (DRPs), or these were rather small. Stimulation with strengths producing N2 and N3 responses produced distinct DRPs. Trains of pulses were clearly more effective than single pulses in producing DRPs, even in the low-intensity range. 3. Cooling the thoracic spinal cord to block impulse conduction, increased the DRPs and the N3 responses produced by PAN stimulation without significantly affecting the N2 responses. Reversible spinalization also increased the DRPs produced by stimulation of cutaneous nerves. In contrast, the DRPs produced by stimulation of group I afferents from flexors were reduced. 4. Conditioning electrical stimulation of intermediate and high-threshold myelinated fibers in the PAN depressed the DRPs produced by stimulation of group I muscle and of cutaneous nerves. 5. Analysis of the intraspinal threshold changes of single Ia and Ib fibers has provided evidence that stimulation of intermediate and high threshold myelinated fibers in the posterior knee joint nerve inhibits the primary afferent depolarization (PAD) of Ia fibers, and may either produce PAD or inhibit the PAD in Ib fibers, in the same manner as stimulation of cutaneous nerves. In 7/16 group I fibers the inhibition of the PAD was increased during reversible

  13. THE ROLE OF NUCLEUS RAPHE MAGNUS IN THE ANTINOCICEPTIVE EFFECT OF MUSCLE SPINDLE AFFERENTS IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To investigate the role of NRM in the antinociceptive effect of muscle spindle afferents, the influence of NRM lesion on the inhibitory effect of muscle spindle afferents on the nociceptive responses of wide dynamic range (WDR) neurons and the effects of the muscle spindle afferents on the NRM neuronal activities were observed. Methods The single units of WDR neurons in the spinal dorsal horn were recorded extracellularly, and the inhibitory effects of activating muscle spindle afferents by intravenous administration of succinyicholine (SCH) on the C-fibers evoked responses (C-responses) of WDR neurons were tested before and after lesion of NRM. The ef- fects of the muscle spindle afferents activated by administrating SCH on the single NRM neurons were also examined. Results ①lt was found that the C-responses of WDR neurons were significantly inhibited by intravenously adminis- tration of SCH, and the inhibitory effect was reduced after lesion of NRM ;②The activities of most of the NRM neu- rons could be changed significantly by administrating SCH. According to their responses, NRM neurons could be classified into three types:excitatory, inhibitory and non-responsive neurons, and the responses were dose-depen- dent. Conclusion These results suggest that the muscle spindle afferents evoked by SCH may activate the NRM neu- rons, which plays an important role in the antinociception of muscle spindle afferents.

  14. Autonomic control of the heart during exercise in humans: role of skeletal muscle afferents.

    Science.gov (United States)

    Fisher, James P

    2014-02-01

    What is the topic of this review? The autonomic nervous system plays a key role in bringing about the cardiovascular responses to exercise necessitated by the increased metabolic requirements of the active skeletal muscle. The complex interaction of central and peripheral neural control mechanisms evokes a decrease in parasympathetic activity and an increase sympathetic activity to the heart during exercise. What advances does it highlight? This review presents some of the recent insights provided by human studies into the role of mechanically and metabolically sensitive skeletal muscle afferents in the regulation of cardiac autonomic control during exercise. The autonomic responses to exercise are orchestrated by the interactions of several central and peripheral neural mechanisms. This report focuses on the role of peripheral feedback from skeletal muscle afferents in the autonomic control of the heart during exercise in humans. Heart rate responses to passive calf stretch are abolished with cardiac parasympathetic blockade, indicating that the activation of mechanically sensitive skeletal muscle afferents (muscle mechanoreceptors) can inhibit cardiac parasympathetic activity and is likely to contribute to the increase in heart rate at the onset of exercise. Recent experiments show that the partial restriction of blood flow to the exercising skeletal muscles, to augment the activation of metabolically sensitive skeletal muscle afferents (muscle metaboreceptors) in humans, evokes an increase in heart rate that is attenuated with β1-adrenergic blockade, thus suggesting that this response is principally mediated via an increase in cardiac sympathetic activity. Heart rate remains at resting levels during isolated activation of muscle metaboreceptors with postexercise ischaemia following hand grip, unless cardiac parasympathetic activity is inhibited, whereupon a sympathetically mediated increase in heart rate is unmasked. During postexercise ischaemia following leg

  15. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    Science.gov (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  16. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    Science.gov (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  17. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study.

    Science.gov (United States)

    Wardman, Daniel L; Gandevia, Simon C; Colebatch, James G

    2014-01-01

    Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor-related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement.

  18. Tactile stimulation with kinesiology tape alleviates muscle weakness attributable to attenuation of Ia afferents.

    Science.gov (United States)

    Konishi, Yu

    2013-01-01

    Prolonged vibration stimulation to normal individuals could lead to muscle weakness attributable to attenuation of afferent feedback. This weakness is neurophysiologically similar to that seen in patients with knee injury. Theoretically, increasing input to gamma motor neurons could reverse this weakness. Sensory input to these neurons from skin could indirectly increase Ia afferent feedback. The present study examined the effect of this tactile stimulation in the form of Kinesiology tape on muscle weakness attributable to attenuation of afferent feedback. Randomized, crossover design. All participants were measured their eccentric maximal voluntary contractions under the 2 conditions (taping and non-taping). First, maximal voluntary contraction during eccentric contraction was measured as baseline. For the taping condition, Kinesiology tape was applied around each subject's knee joint during maximal voluntary contraction measurement after vibration. For the non-taping condition, tape was not applied during maximal voluntary contraction measurement after vibration. Mean percentage changes between pre- and post-vibration stimulation were compared between two conditions. Maximal voluntary contraction and average electromyography of taping condition was significantly larger than that of non-taping condition. Our results suggest that tactile stimulation in the form of Kinesiology tape inhibits the decline of both strength and electromyography. Alpha motor neuron activity attenuated by prolonged vibration would thus be partially rescued by tactile stimulation. These results indirectly suggest that stimulation of skin around the knee could counter quadriceps femoris weakness due to attenuated Ia afferent activity. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Contributions of skin and muscle afferent input to movement sense in the human hand.

    Science.gov (United States)

    Cordo, Paul J; Horn, Jean-Louis; Künster, Daniela; Cherry, Anne; Bratt, Alex; Gurfinkel, Victor

    2011-04-01

    In the stationary hand, static joint-position sense originates from multimodal somatosensory input (e.g., joint, skin, and muscle). In the moving hand, however, it is uncertain how movement sense arises from these different submodalities of proprioceptors. In contrast to static-position sense, movement sense includes multiple parameters such as motion detection, direction, joint angle, and velocity. Because movement sense is both multimodal and multiparametric, it is not known how different movement parameters are represented by different afferent submodalities. In theory, each submodality could redundantly represent all movement parameters, or, alternatively, different afferent submodalities could be tuned to distinctly different movement parameters. The study described in this paper investigated how skin input and muscle input each contributes to movement sense of the hand, in particular, to the movement parameters dynamic position and velocity. Healthy adult subjects were instructed to indicate with the left hand when they sensed the unseen fingers of the right hand being passively flexed at the metacarpophalangeal (MCP) joint through a previously learned target angle. The experimental approach was to suppress input from skin and/or muscle: skin input by anesthetizing the hand, and muscle input by unexpectedly extending the wrist to prevent MCP flexion from stretching the finger extensor muscle. Input from joint afferents was assumed not to play a significant role because the task was carried out with the MCP joints near their neutral positions. We found that, during passive finger movement near the neutral position in healthy adult humans, both skin and muscle receptors contribute to movement sense but qualitatively differently. Whereas skin input contributes to both dynamic position and velocity sense, muscle input may contribute only to velocity sense.

  20. Rescue of neuronal function by cross-regeneration of cutaneous afferents into muscle in cats.

    Science.gov (United States)

    Nishimura, H; Johnson, R D; Munson, J B

    1993-07-01

    1. This study investigates the relation between the peripheral innervation of low-threshold cutaneous afferents and the postsynaptic potentials elicited by electrical stimulation of those afferents. 2. In cats deeply anesthetized with pentobarbital sodium, cord dorsum potentials (CDPs) and postsynaptic potentials (PSPs) in spinal motoneurons were elicited by stimulation of the caudal cutaneous sural nerve (CCS), the lateral cutaneous sural nerve (LCS), and the medial gastrocnemius (MG) muscle nerve. We tested 1) unoperated cats, and cats in which CCS has been 2) chronically axotomized and ligated, 3) cut and self-reunited, 4) cut and cross-united with LCS, or 5) cut and cross-united with the MG. Terminal experiments were performed 3-36 mo after initial surgery. 3. In cats in which the CCS had been self-reunited or cross-united distally with LCS, tactile stimulation of the hairy skin normally innervated by the distal nerve activated afferents in the CCS central to the coaptation, indicating that former CCS afferents had regenerated into native or foreign skin, respectively. 4. In cats in which the CCS had been cross-united distally with the MG, both stretch and contraction of the MG muscle activated the former CCS afferents. 5. In unoperated cats, CDPs elicited by stimulation of CCS and of LCS exhibited a low-threshold N1 wave and a higher-threshold N2 wave. These waves were greatly delayed and appeared to merge after chronic axotomy of CCS. Regeneration of CCS into itself, into LCS, or into MG restored the normal latencies and configurations of these potentials. 6. In unoperated cats, stimulation of CCS, of LCS, and of MG each produced PSPs of characteristic configurations in the various subpopulations of motoneurons of the triceps surae. CDPs and PSPs elicited by the CCS cross-regenerated into LCS or MG were typical of those generated by the normal CCS, i.e., there was no evidence of respecification of central synaptic connections to bring accord between center

  1. THE ROLE OF RED NUCLEUS IN THE MODULATION OF SPINAL NOCICEPTIVE TRANSMISSION AND IN NOCICEPTION ELICITED BY MUSCLE SPINDLE AFFERENTS

    Institute of Scientific and Technical Information of China (English)

    唐斌; 樊小力; 吴苏娣

    2003-01-01

    Objective To analyse the antinociceptive effect of red nucleus (RN) and its role in the antinociceptive effect of muscle spindle afferents. Methods The single units of RN or wide dynamic range (WDR) neuron in the spinal cord dorsal horn were extracelluarly recorded. The effects of RN stimulation on nociceptive responses (C-fibers-evoked responses, C-responses) of WDR neurons were observed. The influence of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on the spontaneous discharge of RN neurons and on C-responses of WDR neurons were observed. The effect of muscle spindle afferents on C-responses of WDR neurons after unilateral lesions of RN was also observed. Results Electrical stimulation of the RN produced a significantly inhibitory effect on the nociceptive responses of WDR neurons. RN neurons were excited by muscle spindle afferents. Muscle spindle afferents significantly inhibited C-response of WDR neurons and this inhibitory effect was reduced by lesions of RN. Conclusion RN neurons have a significant antinociceptive effect and might be involved in the antinociceptive effects elicited by muscle spindle afferents.

  2. THE ROLE OF BRAIN-STEM DISCENDING INHIBITORY SYSTEM IN THE ANTINOCICEPTIVE EFFECT ELICITED BY MUSCLE SPINDLE AFFERENTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To analyse the antinociceptive effect of muscle spindle afferents and the involved mechanism.Methods The single unit of wide dynamic range(WDR) neurons in the spinal cord dorsal horn were recorded extracelluarly.The effects of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on nociceptive responses (C-fibres-evoked responses,C-responses) of WDR neurons were observed before and after bilateral lesions of ventrolateral periaqueduct gray (PAG).And the effects of muscle spindle afferents on the spontaneous discharge of the tail-flick related cell in the rostral ventro medial medulla (RVM) and on the spontaneous discharge of the PAG neurons were observed.Results The C-responses of WDR neurons were significantly inhibited by muscle spindle afferents,and the inhibitory effects were reduced by bilateral lesions of ventrolateral PAG.The spontaneous discharge of the off-cell in the RVM was excited while the on-cell was inhibited by intravenous administration of Sch.The spontaneous discharge of the PAG neurons were excited by muscle spindle afferents.Conclusion Muscle spindle afferents show a distinct effect of antinociception.PAG-RVM descending inhibitory system may play an important role in this nociceptive modulative mechanism.

  3. Afferent contribution to locomotor muscle activity during unconstrained overground human walking: an analysis of triceps surae muscle fascicles.

    Science.gov (United States)

    af Klint, R; Cronin, N J; Ishikawa, M; Sinkjaer, T; Grey, M J

    2010-03-01

    Plantar flexor series elasticity can be used to dissociate muscle-fascicle and muscle-tendon behavior and thus afferent feedback during human walking. We used electromyography (EMG) and high-speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behavior in 19 healthy volunteers as they walked across a platform. On random trials, the platform was dropped (8 cm, 0.9 g acceleration) or held at a small inclination (up to +/-3 degrees in the parasagittal plane) with respect to level ground. Dropping the platform in the mid and late phases of stance produced a depression in the soleus muscle activity with an onset latency of about 50 ms. The reduction in ground reaction force also unloaded the plantar flexor muscles. The soleus muscle fascicles shortened with a minimum delay of 14 ms. Small variations in platform inclination produced significant changes in triceps surae muscle activity; EMG increased when stepping on an inclined surface and decreased when stepping on a declined surface. This sensory modulation of the locomotor output was concomitant with changes in triceps surae muscle fascicle and gastrocnemius tendon length. Assuming that afferent activity correlates to these mechanical changes, our results indicate that within-step sensory feedback from the plantar flexor muscles automatically adjusts muscle activity to compensate for small ground irregularities. The delayed onset of muscle fascicle movement after dropping the platform indicates that at least the initial part of the soleus depression is more likely mediated by a decrease in force feedback than length-sensitive feedback, indicating that force feedback contributes to the locomotor activity in human walking.

  4. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure.

    Science.gov (United States)

    Olson, Thomas P; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Johnson, Bruce D

    2014-02-01

    What is the central question of this study? Patients with heart failure often develop ventilatory abnormalities at rest and during exercise, but the mechanisms underlying these abnormalities remain unclear. This study investigated the influence of inhibiting afferent neural feedback from locomotor muscles on the ventilatory response during exercise in heart failure patients. What is the main finding and its importance? Our results suggest that inhibiting afferent feedback from locomotor muscle via intrathecal opioid administration significantly reduces the ventilatory response to exercise in heart failure patients. Patients with heart failure (HF) develop ventilatory abnormalities at rest and during exercise, but the mechanism(s) underlying these abnormalities remain unclear. We examined whether the inhibition of afferent neural feedback from locomotor muscles during exercise reduces exercise ventilation in HF patients. In a randomized, placebo-controlled design, nine HF patients (age, 60 ± 2 years; ejection fraction, 27 ± 2%; New York Heart Association class 2 ± 1) and nine control subjects (age, 63 ± 2 years) underwent constant-work submaximal cycling (65% peak power) with intrathecal fentanyl (impairing the cephalad projection of opioid receptor-sensitive afferents) or sham injection. The hypercapnic ventilatory response was measured to determine whether cephalad migration of fentanyl occurred. There were no differences in hypercapnic ventilatory response within or between groups in either condition. Despite a lack of change in ventilation, tidal volume or respiratory rate, HF patients had a mild increase in arterial carbon dioxide (P(aCO(2)) and a decrease in oxygen (P(aO(2)); P rate at rest. In response to fentanyl during exercise, HF patients had a reduction in ventilation (63 ± 6 versus 44 ± 3 l min(-1), P rate (30 ± 1 versus 26 ± 2 breaths min(-1), P increased P(aCO(2)) (37.3 ± 0.9 versus 43.5 ± 1.1 mmHg, P exercise in HF patients.

  5. Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat.

    Science.gov (United States)

    Shiba, K; Yoshida, K; Nakajima, Y; Konno, A

    1997-01-01

    The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization.

  6. NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics

    NARCIS (Netherlands)

    Schouten, Alfred C.; Mugge, Winfred; Helm, van der Frans C.T.

    2008-01-01

    The dynamic behavior of a neuromusculoskeletal system results from the complex mechanical interaction between muscle visco-elasticity resulting from (co-)contraction and afferent feedback from muscle spindles and Golgi tendon organs. As a result of the multiple interactions the individual effect of

  7. TRPA1 Mediates Amplified Sympathetic Responsiveness to Activation of Metabolically Sensitive Muscle Afferents in Rats with Femoral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Jihong eXing

    2015-09-01

    Full Text Available Autonomic responses to stimulation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1 has been reported to contribute to sympathetic nerve activity (SNA and arterial blood pressure (BP responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves’ TRPA1plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 hrs of femoral artery occlusion 1 upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG tissues; 2 selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV; and 3 enhances renal SNA and BP responses to AITC (a TRPA1 agonist injected into the arterial blood supply of the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves’TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

  8. Contribution of afferent feedback to the soleus muscle activity during human locomotion

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Grey, Michael James; Sinkjær, Thomas

    2005-01-01

    During the stance phase of the human step cycle, the ankle undergoes a natural dorsiflexion that stretches the soleus muscle. The afferent feedback resulting from this stretch enhances the locomotor drive. In this study a robotic actuator was used to slightly enhance or reduce the natural ankle...... dorsiflexion, in essence, mimicking the small variations in the ankle dorsiflexion movement that take place during the stance phase of the step cycle. The soleus (SOL) and tibialis anterior EMG were analyzed in response to the ankle trajectory modifications. The dorsiflexion enhancements and reductions...

  9. PAD patterns of physiologically identified afferent fibres from the medial gastrocnemius muscle.

    Science.gov (United States)

    Jiménez, I; Rudomin, P; Solodkin, M

    1988-01-01

    Intracellular recordings were made in the barbiturate-anesthetized cat from single afferent fibres left in continuity with the medial gastrocnemius muscle to document the transmembrane potential changes produced in functionally identified fibres by stimulation of sensory nerves and of the contralateral red nucleus (RN). Fifty five fibres from muscle spindles had conduction velocities above 70 m/s and were considered as from group Ia. Stimulation of group I afferent fibres of the posterior biceps and semitendinosus nerve (PBSt) produced primary afferent depolarization (PAD) in 30 (54%) Ia fibres. Stimulation of the sural (SU) nerve produced no transmembrane potential changes in 39 (71%) group Ia fibres and dorsal root reflex-like activity (DRRs) in 16 (29%) fibres. In 17 out of 28 group Ia fibres (60.7%) SU conditioning inhibited the PAD generated by stimulation of the PBSt nerve. Facilitation of the PBSt-induced PAD by SU conditioning was not seen. Repetitive stimulation of the RN had mixed effects: it produced PAD in 1 out of 8 fibres and inhibited the PAD induced by PBSt stimulation in 2 other fibres. Nine fibres connected to muscle spindles had conduction velocities below 70 m/s and were considered to be group II afferents. No PAD was produced in these fibres by SU stimulation but DRRs were generated in 5 of them. In 23 out of 31 fibres identified as from tendon organs group I PBSt volleys produced PAD. However, stimulation of the SU nerve produced PAD only in 3 out of 34 fibres, no transmembrane potential changes in 30 fibres and DRRs in 1 fibre. The effects of SU conditioning on the PAD produced by PBSt stimulation were tested in 19 Ib fibres and were inhibitory in 12 of them. In 9 of these fibres SU alone produced no transmembrane potential changes. Repetitive stimulation of the RN produced PAD in 3 out of 9 Ib fibres. SU conditioning inhibited the RN-induced PAD. The present findings support the existence of an alternative inhibitory pathway from cutaneous

  10. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  11. Cortico-muscular synchronization by proprioceptive afferents from the tongue muscles during isometric tongue protrusion.

    Science.gov (United States)

    Maezawa, Hitoshi; Mima, Tatsuya; Yazawa, Shogo; Matsuhashi, Masao; Shiraishi, Hideaki; Funahashi, Makoto

    2016-03-01

    Tongue movements contribute to oral functions including swallowing, vocalizing, and breathing. Fine tongue movements are regulated through efferent and afferent connections between the cortex and tongue. It has been demonstrated that cortico-muscular coherence (CMC) is reflected at two frequency bands during isometric tongue protrusions: the beta (β) band at 15-35Hz and the low-frequency band at 2-10Hz. The CMC at the β band (β-CMC) reflects motor commands from the primary motor cortex (M1) to the tongue muscles through hypoglossal motoneuron pools. However, the generator mechanism of the CMC at the low-frequency band (low-CMC) remains unknown. Here, we evaluated the mechanism of low-CMC during isometric tongue protrusion using magnetoencephalography (MEG). Somatosensory evoked fields (SEFs) were also recorded following electrical tongue stimulation. Significant low-CMC and β-CMC were observed over both hemispheres for each side of the tongue. Time-domain analysis showed that the MEG signal followed the electromyography signal for low-CMC, which was contrary to the finding that the MEG signal preceded the electromyography signal for β-CMC. The mean conduction time from the tongue to the cortex was not significantly different between the low-CMC (mean, 80.9ms) and SEFs (mean, 71.1ms). The cortical sources of low-CMC were located significantly posterior (mean, 10.1mm) to the sources of β-CMC in M1, but were in the same area as tongue SEFs in the primary somatosensory cortex (S1). These results reveal that the low-CMC may be driven by proprioceptive afferents from the tongue muscles to S1, and that the oscillatory interaction was derived from each side of the tongue to both hemispheres. Oscillatory proprioceptive feedback from the tongue muscles may aid in the coordination of sophisticated tongue movements in humans.

  12. A MUSCLE-SPINDLE MODEL FOR PRIMARY AFFERENT FIRING BASED ON A SIMULATION OF INTRAFUSAL MECHANICAL EVENTS

    NARCIS (Netherlands)

    SCHAAFSMA, A; OTTEN, E; VANWILLIGEN, JD

    1991-01-01

    1. A muscle spindle model for primary afferent firing is presented that contains two components representing a gamma-d-dependent (bag1) and gamma-s-dependent (bag2/nuclear chain) intrafusal fiber. Each of the intrafusal fibers is composed of a linear elastic element representing the sensory part and

  13. Ultrasonography as a tool to study afferent feedback from the muscle-tendon complex during human walking

    DEFF Research Database (Denmark)

    Cronin, Neil J.; Klint, Richard af; Grey, Michael James

    2011-01-01

    In humans, one of the most common tasks in everyday life is walking, and sensory afferent feedback from peripheral receptors, particularly the muscle spindles and Golgi tendon organs (GTO), makes an important contribution to the motor control of this task. One factor that can complicate the abili...

  14. Short-latency tachycardia evoked by stimulation of muscle and cutaneous afferents.

    Science.gov (United States)

    Gelsema, A J; Bouman, L N; Karemaker, J M

    1985-04-01

    The short-latency effect on heart rate of peripheral nerve stimulation was studied in decerebrate cats. Selective activation (17-40 microA, 100 Hz, 1 s long) of low-threshold fibers in the nerves to the triceps surae muscle yielded isometric contractions of maximal force that were accompanied by a cardiac cycle length shortening within 0.4 s from the start of stimulation. This effect was abolished by pharmacologically induced neuromuscular blockade. The cardiac cycle length shortening during paralysis reappeared after a 6- to 10-fold increase of the stimulation strength. Cutaneous (sural) nerve stimulation (15-25 microA, 100 Hz, 1 s long) elicited reflex contractions in the stimulated limb, which were also accompanied by a cardiac acceleration with similar latency. Paralysis prevented the reflex contractions and reduced the cardiac response in some cats and abolished it in others. The response reappeared in either case after a 5- to 10-fold increase of the stimulus strength. It is concluded that muscle nerve and cutaneous nerve activity both cause a similar cardiac acceleration with a latency of less than 0.4 s. The response to muscle nerve stimulation is elicited by activity in group III afferents. It is excluded that the cardiac response to nerve stimulation is secondary to a change in the respiratory pattern.

  15. Reflex control of posterior shoulder muscles from arm afferents in healthy people.

    Science.gov (United States)

    Elliott, S C; Hanson, J R; Wellington, J; Alexander, C M

    2011-12-01

    In order to position the hand during functional tasks, control of the shoulder is required. Heteronymous reflexes from the upper limb to shoulder muscles are used to assist in this control. To investigate this further, the radial and ulnar nerves were stimulated at elbow level whilst surface electromyographic activity of posterior deltoid, infraspinatus and latissimus dorsi muscles were recorded. In addition, the cutaneous branch of the radial nerve and the skin of the fifth digit were stimulated in order to investigate any cutaneous contribution to reflex activity. Reflexes were evoked in all three of these shoulder muscles from hand and/or forearm afferents. However, the reflexes differed; whereas both excitatory and inhibitory reflexes were evoked in posterior deltoid and infraspinatus, the reflexes in latissimus dorsi were mainly excitatory. Cutaneomuscular reflexes were seldom evoked here, but when they were present they were generally evoked at longer latencies than the reflexes evoked by mixed nerve stimulation. The results suggest a role for reflexes originating from the forearm and/or hand in the control of the shoulder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Afferent-induced facilitation of primary motor cortex excitability in the region controlling hand muscles in humans.

    Science.gov (United States)

    Devanne, H; Degardin, A; Tyvaert, L; Bocquillon, P; Houdayer, E; Manceaux, A; Derambure, P; Cassim, F

    2009-08-01

    Sensory inputs from cutaneous and limb receptors are known to influence motor cortex network excitability. Although most recent studies have focused on the inhibitory influences of afferent inputs on arm motor responses evoked by transcranial magnetic stimulation (TMS), facilitatory effects are rarely considered. In the present work, we sought to establish how proprioceptive sensory inputs modulate the excitability of the primary motor cortex region controlling certain hand and wrist muscles. Suprathreshold TMS pulses were preceded either by median nerve stimulation (MNS) or index finger stimulation with interstimulus intervals (ISIs) ranging from 20 to 200 ms (with particular focus on 40-80 ms). Motor-evoked potentials recorded in the abductor pollicis brevis (APB), first dorsalis interosseus and extensor carpi radialis muscles were strongly facilitated (by up to 150%) by MNS with ISIs of around 60 ms, whereas digit stimulation had only a weak effect. When MNS was delivered at the interval that evoked the optimal facilitatory effect, the H-reflex amplitude remained unchanged and APB motor responses evoked with transcranial electric stimulation were not increased as compared with TMS. Afferent-induced facilitation and short-latency intracortical inhibition (SICI) and intracortical facilitation (ICF) mechanisms are likely to interact in cortical circuits, as suggested by the strong facilitation observed when MNS was delivered concurrently with ICF and the reduction of SICI following MNS. We conclude that afferent-induced facilitation is a mechanism which probably involves muscle spindle afferents and should be considered when studying sensorimotor integration mechanisms in healthy and disease situations.

  17. The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor

    Directory of Open Access Journals (Sweden)

    Christopher M Laine

    2016-08-01

    Full Text Available Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary tremor. Specifically, participants were asked to produce isometric force with the index finger and use visual feedback to track a sinusoidal target spanning 5 to 9 % of each individual’s maximal voluntary force level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS muscle were recorded and their frequency content was analyzed as a function target phase. Force variability in either the 1 to 5 or 6 to 15 Hz frequency ranges tended to be largest at the peaks and valleys of the target sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce phase-dependent modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from muscle spindles was critical for appropriately amplifying and shaping this tremor. We suggest that the experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to dynamic drive, and therefore does not fall into known categories of tremor generation, such as tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical resonance. Our findings motivate future efforts to understand tremor from a perspective that considers neuromechanical coupling within the context of closed-loop control. The strategy of combining experimental recordings with physiologically-sound simulations will

  18. Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat.

    Science.gov (United States)

    Quevedo, J; Eguibar, J R; Jiménez, I; Rudomin, P

    1995-02-01

    1. In the anaesthetized cat, electrical stimulation of the bulbar reticular formation produced a short latency (2.1 +/- 0.3 ms) positive potential in the cord dorsum. In contrast, stimulation of the nucleus raphe magnus with strengths below 50 microA evoked a slow negative potential with a mean latency of 5.5 +/- 0.6 ms that persisted after sectioning the contralateral pyramid and was abolished by sectioning the ipsilateral dorsolateral funiculus. 2. The field potentials evoked by stimulation of the bulbar reticular formation and of the nucleus raphe magnus had a different intraspinal distribution, suggesting activation of different sets of segmental interneurones. 3. Stimulation of these two supraspinal nuclei produced primary afferent depolarization (PAD) in single Ib fibres and inhibited the PAD elicited by group I volleys in single Ia fibres. The inhibition of the PAD of Ia fibres produced by reticulospinal and raphespinal inputs appears to be exerted on different interneurones along the PAD pathway. 4. It is concluded that, although reticulospinal and raphespinal pathways have similar inhibitory effects on PAD of Ia fibres, and similar excitatory effects on the PAD of Ib fibres, their actions are conveyed by partly independent pathways. This would allow their separate involvement in the control of posture and movement.

  19. Representation of Afferent Signals from Forearm Muscle and Cutaneous Nerves in the Primary Somatosensory Cortex of the Macaque Monkey

    Science.gov (United States)

    Yamada, Hiroshi; Yaguchi, Hiroaki; Tomatsu, Saeka; Takei, Tomohiko; Oya, Tomomichi

    2016-01-01

    Proprioception is one’s overall sense of the relative positions and movements of the various parts of one’s body. The primary somatosensory cortex (SI) is involved in generating the proprioception by receiving peripheral sensory inputs from both cutaneous and muscle afferents. In particular, area 3a receives input from muscle afferents and areas 3b and 1 from cutaneous afferents. However, segregation of two sensory inputs to these cortical areas has not been evaluated quantitatively because of methodological difficulties in distinguishing the incoming signals. To overcome this, we applied electrical stimulation separately to two forearm nerves innervating muscle (deep radial nerve) and skin (superficial radial nerve), and examined the spatiotemporal distribution of sensory evoked potentials (SEPs) in SI of anaesthetized macaques. The SEPs arising from the deep radial nerve were observed exclusively at the bottom of central sulcus (CS), which was identified as area 3a using histological reconstruction. In contrast, SEPs evoked by stimulation of the superficial radial nerve were observed in the superficial part of SI, identified as areas 3b and 1. In addition to these earlier, larger potentials, we also found small and slightly delayed SEPs evoked by cutaneous nerve stimulation in area 3a. Coexistence of the SEPs from both deep and superficial radial nerves suggests that area 3a could integrate muscle and cutaneous signals to shape proprioception. PMID:27701434

  20. Effects of PAD on conduction of action potentials within segmental and ascending branches of single muscle afferents in the cat spinal cord.

    Science.gov (United States)

    Lomelí, J; Castillo, L; Linares, P; Rudomin, P

    2000-11-01

    In anesthetized and paralyzed cats under artificial respiration, we examined the extent to which primary afferent depolarization (PAD) might affect invasion of action potentials in intraspinal axonal and/or terminal branches of single muscle afferents. To this end, one stimulating micropipette was placed at the L6 spinal level within the intermediate or motor nucleus, and another one at the L3 level, in or close to Clarke's column. Antidromically conducted responses produced in single muscle afferents by stimulation at these two spinal levels were recorded from fine lateral gastrocnemius nerve filaments. In all fibers examined, stimulation of one branch, with strengths producing action potentials, increased the intraspinal threshold of the other branch when applied at short conditioning testing stimulus intervals (<1.5-2.0 ms), because of the refractoriness produced by the action potentials invading the tested branch. Similar increases in the intraspinal threshold were found in branches showing tonic PAD and also during the PAD evoked by stimulation of group I afferent fibers in muscle nerves. It is concluded that during tonic or evoked PAD, axonal branches in the dorsal columns and myelinated terminals of muscle afferents ending deep in the L6 and L3 segmental levels continue to be invaded by action potentials. These findings strengthen the view that presynaptic inhibition of muscle afferents produced by activation of GABAergic mechanisms is more likely to result from changes in the synaptic effectiveness of the afferent terminals than from conduction failure because of PAD.

  1. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  2. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.

    Science.gov (United States)

    Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J

    1994-03-01

    Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the

  3. A comparative study of changes operated by sympathetic nervous system activation on spindle afferent discharge and on tonic vibration reflex in rabbit jaw muscles.

    Science.gov (United States)

    Passatore, M; Deriu, F; Grassi, C; Roatta, S

    1996-03-07

    The effect of sympathetic activation on the spindle afferent response to vibratory stimuli eliciting the tonic vibration reflex in jaw closing muscles was studied in precollicularly decerebrate rabbits. Stimulation of the cervical sympathetic trunk, at frequencies within the physiologic range, consistently induced a decrease in spindle response to muscle vibration, which was often preceded by a transient enhancement. Spindle discharge was usually correlated with the EMG activity in the masseter muscle and the tension reflexly developed by jaw muscles. The changes in spindle response to vibration were superimposed on variations of the basal discharge which exhibited different patterns in the studied units, increases in the firing rate being more frequently observed. These effects were mimicked by close arterial injection of the selective alpha 1-adrenoceptor agonist phenylephrine. Data presented here suggest that sympathetically-induced modifications of the tonic vibration reflex are due to changes exerted on muscle spindle afferent information.

  4. The role of proprioceptive afferents in the control of respiratory muscles.

    Science.gov (United States)

    von Euler, C

    1973-01-01

    Building largely on the results of previous studies of motor control in respiration the role of proprioceptive control of respiratory movements is discussed with particular reference to the significance of the following points: (i) The co-activation of fusimotor and alpha motoneurons in load compensation and in the control of velocity and force of the respiratory movements. (ii) The convergence onto the same intercostal spindle of fusimotor fibres for respiratory movements and for postural activity. (iii) The difference between proprioceptive control of intercostal muscles on the one hand and the diaphragm on the other, and of the control of the phrenic motoneuron pool exerted by intercostal proprioceptors. (iv) The cerebellar control both of the fusimotor-alpha balance between the indirect drive of the intercostal motoneurons and of the responsiveness of the phrenic motoneuron pool to respiratory and reflex influences. (v) Results suggesting spinobulbar reflex effects on the control of rate and depth of respiration from muscle and joint receptors of the thoracic wall.

  5. Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord.

    Science.gov (United States)

    Rudomin, P; Lomelí, J; Quevedo, J

    2004-11-01

    We compared in the anesthetized cat the effects of reversible spinalization by cold block on primary afferent depolarization (PAD) and primary afferent hyperpolarization (PAH) elicited in pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pairs ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. The results indicate that the segmental and ascending collaterals of individual afferents are subjected to a tonic PAD of descending origin affecting in a differential manner the excitatory and inhibitory actions of cutaneous and joint afferents on the pathways mediating the PAD of group I fibers. The PAD-mediating networks appear to function as distributed systems whose output will be determined by the balance of the segmental and supraspinal influences received at that moment. It is suggested that the descending differential modulation of PAD enables the intraspinal arborizations of the muscle afferents to function as dynamic systems, in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs, and funneled to specific targets according to the motor tasks to be performed.

  6. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord.

    Science.gov (United States)

    Rudomin, P; Lomelí, J; Quevedo, J

    2004-06-01

    We examined primary afferent depolarization (PAD) in the anesthetized cat elicited in 109 pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pair ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. Tests for refractoriness were made to assess whether the responses produced by intraspinal stimulation in the L3 and L6 segments were due to activation of collaterals of the same afferent fiber. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. In most fibers, stimulation of the ipsilateral posterior biceps and semitendinosus (PBSt) nerve with trains of pulses maximal for group I afferents had a qualitatively similar effect but produced a larger PAD in the L6 than in the L3 collaterals. Stimulation of cutaneous nerves (sural and superficial peroneus) with single pulses and of the posterior articular nerve, the ipsilateral reticular formation, nucleus raphe magnus and contralateral motor cortex with trains of pulses often had qualitatively different effects. They could produce PAD and/or facilitate the PBSt-induced PAD in one collateral, and produce PAH and/or inhibit the PAD in the other collateral. These patterns could be changed in a differential manner by sensory or supraspinal conditioning stimulation. In summary, the present investigation suggests that the segmental and ascending collaterals of individual afferents are not fixed routes for information transmission, but parts of dynamic systems in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs and funneled to specific targets according to the motor tasks to be performed.

  7. Efferents and afferents in an intact muscle nerve: background activity and effects of sural nerve stimulation in the cat.

    Science.gov (United States)

    Bessou, P; Joffroy, M; Pagès, B

    1981-11-01

    1. The background activity was observed in gamma and alpha efferent fibres and in group I and II fibres innervating the muscle gastrocnemius lateralis or medialis. The reflex effects of ipsilateral and contralateral sural nerve stimulations on the muscle efferents were analysed together with their consequences upon the afferents of the same muscle. The observations were made in the decerebrated cat without opening the neural loops between the muscle and the spinal cord.2. The multi-unit discharges of each category of fibres were obtained, on line, by an original electronic device (Joffroy, 1975, 1980) that sorted the action potentials from the whole electrical activity of a small branch of gastrocnemius lateralis or medialis nerve according to the direction and velocity of propagation of the potentials.3. The small nerve may be regarded as a representative sample of different functional groups of fibres conducting faster than 12 m.sec(-1) and supplying gastrocnemius muscles.4. Some gamma efferents were always tonically firing except when a transient flaccid state developed. Usually the alpha efferents were silent, probably because the muscle was fixed close to the minimal physiological length.5. Separate and selective stimulations of Abeta, Adelta and C fibres of ipsilateral and contralateral sural nerve showed that each group could induce the excitation of gamma neurones. The reciprocal inhibition period of alpha efferents during a flexor reflex was only once accompanied by a small decrease in gamma-firing.6. The reflex increase of over-all frequency of gamma efferents resulted from an increased firing rate of tonic gamma neurones and from the recruitment of gamma neurones previously silent. When the gamma efferents in the small nerve naturally occurred in two subgroups, the slower-conducting subgroup (mainly composed of tonic gamma axons) was activated before the faster-conducting subgroup (mostly composed by gamma axons with no background discharge). Some rare

  8. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    Directory of Open Access Journals (Sweden)

    Guillaume Caron

    Full Text Available The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1 untreated animals acting as control and 2 treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i no recovery (B0, ii 50% recovery (B50 and iii full recovery (B100. Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl and lactic acid injections and Electrically-Induced Fatigue (EIF, and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  9. Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Seifert, Thomas; Hartwich, Doreen

    2010-01-01

    moderate (PEI-M) and high (PEI-H) intensity isometric handgrip performed at 25% and 40% maximum voluntary contraction, under control (no drug), parasympathetic blockade (glycopyrrolate) and beta-adrenergic blockade (metoprolol or propranalol) conditions, while beat-to-beat HR and BP were continuously...... was similarly increased from rest during PEI-M and further elevated during PEI-H (P Collectively, these findings suggest that the muscle metaboreflex increases cardiac SNA during PEI in humans; however, it requires a robust muscle metaboreflex activation to offset the influence...

  10. Afferent-mediated modulation of the soleus muscle activity during the stance phase of human walking

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; do Nascimento, Omar Feix

    2006-01-01

    modifications. Blocking sensory feedback from the foot did not have an effect on the soleus muscle activity. Changes in body load affected the ongoing soleus activity level; however, it did not affect the amplitude of the soleus EMG responses to the ankle trajectory modifications. These results suggest...

  11. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... component (P = 0.004), whereas the medium latency component was unchanged (P = 0.437). 6. Two hours after the ingestion of tizanidine, an alpha(2)-adrenergic receptor agonist known to selectively depress the transmission in the group II afferent pathway, the medium latency reflex was strongly depressed (P...... = 0.007), whereas the short latency component was unchanged (P = 0.653). 7. An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. 8. Our results support...

  12. Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin.

    Science.gov (United States)

    Burke, R E; Rudomin, P; Vyklický, L; Zajac, F E

    1971-02-01

    1. The reflex effects of pulses of intense radiant heat applied to the skin of the central plantar pad have been studied in unanaesthetized (decerebrate) spinal cats.2. Pad heat pulses produced flexion of the ipsilateral hind limb and increased ipsilateral flexor monosynaptic reflexes, due to post-synaptic excitation of flexor alpha motoneurones. These effects were accompanied by reduction of extensor monosynaptic reflexes and post-synaptic inhibition of extensor motoneurones.3. Ipsilateral (and contralateral) pad heat pulses consistently evoked negative dorsal root potentials (DRPs) as well as increased excitability of both cutaneous and group Ib muscle afferent terminals. The excitability of group Ia afferents was sometimes also increased during pad heat pulses, but to a lesser extent.4. Pad heat pulses produced negative DRPs in preparations in which positive DRP components could be demonstrated following electrical stimulation of both skin and muscle nerves.5. The motor and primary afferent effects of heat pulses always accompanied one another, beginning after the pad surface temperature had reached rather high levels (usually 48-55 degrees C).6. Negative DRPs increased excitability of cutaneous and group Ib afferents, and motoneurone activation produced by pad heat pulses was essentially unmodified when conduction in large myelinated afferents from the central plantar pad was blocked by cooling the posterior tibial nerve trunk.7. It is concluded that adequate noxious activation of cutaneous afferents of small diameter produces primary afferent depolarization in a variety of large diameter afferent fibres, as well as post-synaptic effects in alpha motoneurones.

  13. Pharmacology of airway afferent nerve activity

    Directory of Open Access Journals (Sweden)

    Carr Michael J

    2001-05-01

    Full Text Available Abstract Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology.

  14. The effects of centrally acting muscle relaxants on the intrathecal noradrenaline-induced facilitation of the flexor reflex mediated by group II afferent fibers in rats.

    Science.gov (United States)

    Sakitama, K

    1993-11-01

    The effects of centrally acting muscle relaxants on the flexor reflex mediated by group II afferent fibers (group II flexor reflex) in anesthetized intact rats and on the intrathecal noradrenaline-HCl-induced facilitation of the group II flexor reflex in anesthetized spinal rats were investigated. In anesthetized intact rats, mephenesin, tolperisone-HCl, chlorpromazine-HCl and baclofen inhibited the group II flexor reflex dose-dependently, whereas the inhibitory effect of tizanidine-HCl was bell-shaped. The effect of diazepam tended to be saturated. In anesthetized spinal rats, mephenesin, tolperisone-HCl, chlorpromazine-HCl, diazepam and baclofen also depressed the group II flexor reflex, but tizanidine-HCl slightly increased it. The intrathecal noradrenaline-HCl-induced facilitation of the group II flexor reflex was not affected by mephenesin or diazepam, but was inhibited by tizanidine-HCl, tolperisone-HCl, chlorpromazine-HCl and baclofen. These results suggest that compounds with centrally acting muscle relaxant activity depress the group II flexor reflex in different manners, and the inhibition of descending noradrenergic tonic facilitation within the spinal cord participates in the depressant action of the group II flexor reflex produced by tolperisone-HCl, tizanidine-HCl, chlorpromazine-HCl and baclofen.

  15. Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon.

    Science.gov (United States)

    Zagorodnyuk, Vladimir P; Kyloh, Melinda; Brookes, Simon J; Nicholas, Sarah J; Spencer, Nick J

    2012-08-01

    The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 μM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in naïve mouse colorectum.

  16. The organization of primary afferent depolarization in the isolated spinal cord of the frog

    Science.gov (United States)

    Carpenter, D. O.; Rudomin, P.

    1973-01-01

    1. The organization of primary afferent depolarization (PAD) produced by excitation of peripheral sensory and motor nerves was studied in the frog cord isolated with hind limb nerves. 2. Dorsal root potentials from sensory fibres (DR-DRPs) were evoked on stimulation of most sensory nerves, but were largest from cutaneous, joint and flexor muscle afferents. With single shock stimulation the largest cutaneous and joint afferent fibres gave DR-DRPs, but potentials from muscle nerves resulted from activation of sensory fibres with thresholds to electrical stimulation higher than 1·2-1·5 times the threshold of the most excitable fibres in the nerve. This suggests that PAD from muscle afferents is probably due to excitation of extrafusal receptors. 3. Dorsal root potentials produced by antidromic activation of motor fibres (VR-DRPs) were larger from extensor muscles and smaller or absent from flexor muscles. The VR-DRPs were produced by activation of the lowest threshold motor fibres. 4. Three types of interactions were found between test and conditioning DRPs from the same or different nerves. With maximal responses occlusion was usually pronounced. At submaximal levels linear summation occurred. Near threshold the conditioning stimulus frequently resulted in a large facilitation of the test DRP. All three types of interactions were found with two DR-DRPs, two VR-DRPs or one DR-DRP and one VR-DRP. 5. The excitability of sensory nerve terminals from most peripheral nerves was increased during the DR-DRP. The magnitude of the excitability increase varied roughly with the magnitude of the DR-DRP evoked by the conditioning stimulus. 6. There was a marked excitability increase of cutaneous and extensor muscle afferent terminals during the VR-DRP. Flexor muscle afferent terminals often showed no excitability changes to ventral root stimulation. In those experiments where afferent terminals from flexor muscles did show an excitability increase, the effects were smaller than

  17. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2000-01-01

    in rat aorta, brain, aortic smooth muscle cells (A7r5), VSMCs, and mesangial cells. Immunolabeling with an anti-alpha(1A) antibody was positive in acid-macerated, microdissected preglomerular vessels and in A7r5 cells. Patch-clamp experiments on aortic A7r5 cells showed 22+/-4% (n=6) inhibition of inward...... Ca(2+) current by omega-Agatoxin IVA (10(-8) mol/L), which in this concentration is a specific inhibitor of P-type VDCCs. Measurements of intracellular Ca(2+) in afferent arterioles with fluorescence-imaging microscopy showed 32+/-9% (n=10) inhibition of the K(+)-induced rise in Ca(2...... preglomerular resistance vessels and aorta, as well as mesangial cells, and that P-type VDCCs contribute to Ca(2+) influx in aortic and renal VSMCs and are involved in depolarization-mediated contraction in renal afferent arterioles....

  18. Cerebellar and afferent ataxias.

    Science.gov (United States)

    Pandolfo, Massimo; Manto, Mario

    2013-10-01

    Ataxia is the predominant manifestation of many acquired and inherited neurologic disorders affecting the cerebellum, its connections, and the afferent proprioceptive pathways. This article reviews the phenomenology and etiologies of cerebellar and afferent ataxias and provides indications for a rational approach to diagnosis and management. The pathophysiology of ataxia is being progressively understood and linked to the functional organization of the cerebellum. The impact of cerebellar diseases on different neurologic functions has been better defined and shown not to be limited to loss of motor coordination. The role of autoimmunity is increasingly recognized as a cause of sporadic cases of ataxia. Large collaborative studies of long duration are providing crucial information on the clinical spectrum and natural history of both sporadic ataxias (such as the cerebellar form of multiple system atrophy) and inherited ataxias. New dominant and recessive ataxia genes have been identified. On the therapeutic front, progress mostly concerns the development of treatments for Friedreich ataxia. Ataxia is the clinical manifestation of a wide range of disorders. In addition to accurate clinical assessment, MRI plays a major role in the diagnostic workup, allowing us to distinguish degenerative conditions from those due to other types of structural damage to the cerebellar or proprioceptive systems. Diagnostic algorithms based on clinical features, imaging, and neurophysiologic and biochemical parameters can be used to guide genetic testing for hereditary ataxias, the diagnosis of which is likely to be greatly improved by the introduction of new-generation DNA-sequencing approaches. Some rare forms of ataxia can be treated, so their diagnosis should not be missed. Proven symptomatic treatments for ataxia are still lacking, but intensive physical therapy appears to be helpful.

  19. Effects of stimulation of group I afferents from flexor muscles on heterosynaptic facilitation of monosynaptic reflexes produced by Ia and descending inputs: a test for presynaptic inhibition.

    Science.gov (United States)

    Rudomin, P; Jiménez, I; Enriquez, M

    1991-01-01

    1. In the chloralose anesthetized cat, conditioning stimulation of group I flexor afferents depresses the monosynaptic potentials generated by Ia afferents in single spinal motoneurons or in populations of motoneurons without affecting the monosynaptic potentials produced by stimulation of descending fibers in the ipsilateral ventromedial fasciculus (VMF). 2. Heterosynaptic facilitation of monosynaptic reflexes was used to test changes in the presynaptic effectiveness of excitatory inputs with direct connections with motoneurons. We found that the heterosynaptic facilitation of Ia origin was reduced by conditioning stimulation of group I afferents from flexors, without affecting the heterosynaptic facilitation produced by stimulation of the VMF. 3. These results confirm and expand previous observations showing that the synaptic effectiveness of descending fibers synapsing with motoneurons is not subjected to a presynaptic control mechanism of the type acting on Ia fiber terminals, and provide further basis for the use of changes in heterosynaptic facilitation of monosynaptic reflexes of Ia origin as an estimate of changes in presynaptic inhibition of Ia fibers (Hultborn et al. 1987a).

  20. Why adductor magnus muscle is large: the function based on muscle morphology in cadavers.

    Science.gov (United States)

    Takizawa, M; Suzuki, D; Ito, H; Fujimiya, M; Uchiyama, E

    2014-02-01

    The aim of this study was to examine anatomical properties of the adductor magnus through a detailed classification, and to hypothesize its function and size to gather enough information about morphology. Ten cadaveric specimens of the adductor magnus were used. The muscle was separated into four portios (AM1-AM4) based on the courses of the corresponding perforating arteries, and its volume, muscle length, muscle fiber length and physiological cross-sectional area were assessed. The architectural characteristics of these four portions of the adductor magnus were then classified with the aid of principal component analysis. The results led us into demarcating the most proximal part of the adductor magnus (AM1) from the remaining parts (AM2, AM3, and AM4). Classification of the adductor magnus in terms of architectural characteristics differed from the more traditional anatomical distinction. The AM2, AM3, and AM4, having longer muscle fiber lengths than the AM1, appear to be designed as displacers for moving the thigh through a large range of motion. The AM1 appears instead to be oriented principally toward stabilizing the hip joint. The large mass of the adductor magnus should thus be regarded as a complex of functionally differentiable muscle portions.

  1. Inhibitory mechanisms following electrical stimulation of tendon and cutaneous afferents in the lower limb.

    Science.gov (United States)

    Khan, Serajul I; Burne, John A

    2010-01-13

    Electrical stimulation of the Achilles tendon (TES) produced strong reflex depression (duration>250 ms) of a small background contraction in both heads of gastrocnemius (GA) via large diameter electrodes localized to the tendon. The inhibitory responses were produced without electrical (M wave) or mechanical (muscle twitch) signs of direct muscle stimulation. In this study, the contribution of presynaptic and postsynaptic mechanisms to the depression was investigated by studying conditioning effects of tendon afferent stimulation on the mechanical tendon reflex (TR) and magnetic motor evoked potential (MEP). TES completely inhibited the TR over an ISI of 300 ms that commenced before and continued during and after the period of voluntary EMG depression. Tendon afferent conditioning stimuli also partially inhibited the MEP, but over a short time course confined to the period of voluntary EMG depression. The strength and extended time course of tendon afferent conditioning of the TR and its failure to produce a similar depression of the MEP are consistent with a mechanism involving presynaptic inhibition of Ia terminals. Cutaneous (sural nerve) afferent conditioning partially inhibited the TR and MEP over a short time course (ISI voluntary EMG. This was consistent with the postsynaptic origin of cutaneous inhibition of the motoneurons.

  2. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat.

    Science.gov (United States)

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P

    2000-12-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  3. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord.

    Science.gov (United States)

    Semba, K; Masarachia, P; Malamed, S; Jacquin, M; Harris, S; Yang, G; Egger, M D

    1985-02-08

    The intra-axonal horseradish peroxidase technique was used to examine the central terminals of 7 A beta primary afferent fibers from rapidly adapting (RA) mechanoreceptors in the glabrous skin of the cat's hindpaw. At the light microscopic level, labelled collaterals were seen to bear occasional boutonlike swellings, mostly (75-82%) of the en passant type. These swellings were distributed more or less uniformly from lamina III to a dorsal part of lamina VI in the dorsal horn, over a maximum longitudinal extent of about 4 mm. At the electron microscopic level, we observed that labelled boutons of RA afferent fibers were 1.0 to 3.3 micrometers in longest sectional dimension, and contained clear, round synaptic vesicles. They frequently formed asymmetric axospinous and axodendritic synapses and commonly appeared to receive contacts from unlabelled structures containing flattened or pleomorphic vesicles plus occasional large dense-cored vesicles. The examination of synaptic connectivity over the entire surface of individual boutons indicated that RA afferent boutons each made contacts with an average of one spine and one dendrite and, in addition, appeared to be postsynaptic to an average of two unlabelled vesicle-containing structures. This synaptic organization was, in general, more complex than that we had seen previously in Pacinian corpuscle (PC) and slowly adapting (SA) type I mechanoreceptive afferent fibers. Our findings indicate that RA, SA, and PC afferent terminals, while displaying some differential synaptic organizations, have many morphological and synaptological characteristics in common. These afferent terminals, in turn, seem to be generally distinguishable from the terminals of muscle spindle Ia afferents or unmyelinated primary afferents.

  4. Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat.

    Science.gov (United States)

    Rudomin, P; Lomelí, J

    2007-01-01

    We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke's column, and 70 fibers in the L6-L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6-L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6-L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6-L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6-L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation

  5. Tonic and phasic differential GABAergic inhibition of synaptic actions of joint afferents in the cat.

    Science.gov (United States)

    Rudomin, P; Hernández, E; Lomelí, J

    2007-01-01

    The aim of this study was to examine the functional organization of the spinal neuronal networks activated by myelinated afferent fibers in the posterior articular nerve (PAN) of the anesthetized cat. Particular attention was given to the tonic and phasic GABAa inhibitory modulation of these networks. Changes in the synaptic effectiveness of the joint afferents were inferred from changes in the intraspinal focal potentials produced by electrical stimulation of the PAN. We found that conditioning stimulation of cutaneous nerves (sural, superficial peroneus and saphenous) and of the nucleus raphe magnus often inhibited, in a differential manner, the early and late components of the intraspinal focal potentials produced by stimulation of low and high threshold myelinated PAN afferents, respectively. The degree of the inhibition depended on the strength of both the conditioning and test stimuli and on the segmental level of recording. Conditioning stimulation of group I muscle afferents was less effective, but marked depression of the early and late focal potentials was produced by stimuli exceeding 5 xT. The i.v. injection of 1-2.5 mg/kg of picrotoxin, a GABAa blocker, had relatively minor effects on the early components of the PAN focal potentials, but was able to induce a significant increase of the late components. It also reduced the inhibitory effects of cutaneous and joint nerve conditioning on PAN focal responses. Conditioning autogenetic stimulation with high-frequency trains depressed the PAN focal potentials. The late components of the PAN responses remained depressed several minutes after discontinuing the conditioning train, even after picrotoxin administration. The present observations indicate that the neuronal networks activated by the low threshold PAN afferents show a relatively small post-activation depression and appear to be subjected to a minor tonic inhibitory GABAa control. In contrast, the pathways activated by stimulation of high threshold

  6. Presynaptic selection of afferent inflow in the spinal cord.

    Science.gov (United States)

    Rudomin, P

    1999-01-01

    The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of

  7. Large Lightweight Mirrors Controlled by Dielectric Elastomer Artifical Muscle

    Science.gov (United States)

    Kornbluh, R. D.; Flamm, D. S.; Vujkovic-Civijin, P.; Pelrine, R. E.; Huestis, D. L.

    2002-05-01

    We will describe a new concept for control of the lightweight large-aperture mirrors that will be required for future space-based astronomy and remote sensing applications. To be cost effective and practical, such optical systems must be lightweight and capable of deployment from highly compacted stowed configurations. Optical systems based on membrane mirrors or other lightweight structures can address some of these needs, but such flexible gossamer structures present challenges in achieving and maintaining the required shape or figure. For the past 9 years SRI has been exploring dielectric elastomer artifical muscle technology for active control of objects and structures [1-2]. The basic functional element is a thin polymer film coated on both sides by a compliant electrode material. When voltage is applied between the top and bottom electrodes, an electrostrictive compressive force squeezes the film, causing it to expand in area. The induced forces are related to the square of the voltage. If we assemble a large mirror from numerous independently addressable elements, sophisticated control is possible, even including adaptive optics. Dielectric elastomers have many advantages over other electroactive polymers and other smart-materials actuation technologies that have been considered in the past. For example, from many candidate materials we can choose ones with high planar strains, low power dissipation, tolerance of the space environment, and ease of commercial fabrication into large sheets. [1] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 386 (2000). [2] R. Pelrine, P. Sommer-Larson, R. Kornbluh, R. Heydt, G. Kofod, Q. Pei, and P. Gravesen, in Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, ed. Y. Bar-Cohen, Proc. SPIE 4329, 335 (2001).

  8. Smooth muscle cells largely develop independently of functional hemogenic endothelium

    Directory of Open Access Journals (Sweden)

    Monika Stefanska

    2014-01-01

    Full Text Available Vascular smooth muscle cells represent a major component of the cardiovascular system. In vitro studies have shown that FLK1+ cells derived from embryonic stem (ES cells can differentiate into both endothelial and smooth muscle cells. These FLK1+ cells also contain a mesodermal precursor, the hemangioblast, able to produce endothelial, blood and smooth muscle cells. The generation of blood precursors from the hemangioblast was recently shown to occur through a transient cell population of specialised endothelium, a hemogenic endothelium. To date, the lineage relationship between this cell population and smooth muscle cell progenitors has not been investigated. In this study, we generated a reporter ES cell line in which expression of the fluorescent protein H2B-VENUS is driven by the α-smooth muscle actin (α-SMA regulatory sequences. We demonstrated that this reporter cell line efficiently trace smooth muscle development during ES cell differentiation. Although some smooth muscle cells are associated with broad endothelial development, we established that smooth muscle cells are mostly generated independently from a specialised functional hemogenic endothelium. This study provides new and important insights into hematopoietic and vascular development, which may help in driving further progress towards the development of bioengineered vascular grafts for regenerative medicine.

  9. Hill-type muscle model parameters determined from experiments on single muscles show large animal-to-animal variation.

    Science.gov (United States)

    Blümel, Marcus; Guschlbauer, Christoph; Daun-Gruhn, Silvia; Hooper, Scott L; Büschges, Ansgar

    2012-11-01

    Models built using mean data can represent only a very small percentage, or none, of the population being modeled, and produce different activity than any member of it. Overcoming this "averaging" pitfall requires measuring, in single individuals in single experiments, all of the system's defining characteristics. We have developed protocols that allow all the parameters in the curves used in typical Hill-type models (passive and active force-length, series elasticity, force-activation, force-velocity) to be determined from experiments on individual stick insect muscles (Blümel et al. 2012a). A requirement for means to not well represent the population is that the population shows large variation in its defining characteristics. We therefore used these protocols to measure extensor muscle defining parameters in multiple animals. Across-animal variability in these parameters can be very large, ranging from 1.3- to 17-fold. This large variation is consistent with earlier data in which extensor muscle responses to identical motor neuron driving showed large animal-to-animal variability (Hooper et al. 2006), and suggests accurate modeling of extensor muscles requires modeling individual-by-individual. These complete characterizations of individual muscles also allowed us to test for parameter correlations. Two parameter pairs significantly co-varied, suggesting that a simpler model could as well reproduce muscle response.

  10. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape.

    Science.gov (United States)

    Taylor, Andrea B; Vinyard, Christopher J

    2009-12-01

    Tufted capuchins (sensu lato) are renowned for their dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between C. apella (n=12) and two "untufted" capuchins (C. capucinus, n=3; C. albifrons, n=5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that tufted capuchins exhibit architectural properties of their jaw muscles that facilitate relatively large forces including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P(0)). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P(0). As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in tufted capuchins primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear to have

  11. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions

    Directory of Open Access Journals (Sweden)

    Jose eGonzalez-Vargas

    2015-09-01

    Full Text Available Humans can efficiently walk across a large variety of terrains and locomotion conditions with little or no mental effort. It has been hypothesized that the nervous system simplifies neuromuscular control by using muscle synergies, thus organizing multi-muscle activity into a small number of coordinative co-activation modules. In the present study we investigated how muscle modularity is structured across a large repertoire of locomotion conditions including five different speeds and five different ground elevations. For this we have used the non-negative matrix factorization technique in order to explain EMG experimental data with a low-dimensional set of four motor components. In this context each motor components is composed of a non-negative factor and the associated muscle weightings. Furthermore, we have investigated if the proposed descriptive analysis of muscle modularity could be translated into a predictive model that could: 1 Estimate how motor components modulate across locomotion speeds and ground elevations. This implies not only estimating the non-negative factors temporal characteristics, but also the associated muscle weighting variations. 2 Estimate how the resulting muscle excitations modulate across novel locomotion conditions and subjects.The results showed three major distinctive features of muscle modularity: 1 the number of motor components was preserved across all locomotion conditions, 2 the non-negative factors were consistent in shape and timing across all locomotion conditions, and 3 the muscle weightings were modulated as distinctive functions of locomotion speed and ground elevation. Results also showed that the developed predictive model was able to reproduce well the muscle modularity of un-modeled data, i.e. novel subjects and conditions. Muscle weightings were reconstructed with a cross-correlation factor greater than 70% and a root mean square error less than 0.10. Furthermore, the generated muscle excitations

  12. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions.

    Science.gov (United States)

    Gonzalez-Vargas, Jose; Sartori, Massimo; Dosen, Strahinja; Torricelli, Diego; Pons, Jose L; Farina, Dario

    2015-01-01

    Humans can efficiently walk across a large variety of terrains and locomotion conditions with little or no mental effort. It has been hypothesized that the nervous system simplifies neuromuscular control by using muscle synergies, thus organizing multi-muscle activity into a small number of coordinative co-activation modules. In the present study we investigated how muscle modularity is structured across a large repertoire of locomotion conditions including five different speeds and five different ground elevations. For this we have used the non-negative matrix factorization technique in order to explain EMG experimental data with a low-dimensional set of four motor components. In this context each motor components is composed of a non-negative factor and the associated muscle weightings. Furthermore, we have investigated if the proposed descriptive analysis of muscle modularity could be translated into a predictive model that could: (1) Estimate how motor components modulate across locomotion speeds and ground elevations. This implies not only estimating the non-negative factors temporal characteristics, but also the associated muscle weighting variations. (2) Estimate how the resulting muscle excitations modulate across novel locomotion conditions and subjects. The results showed three major distinctive features of muscle modularity: (1) the number of motor components was preserved across all locomotion conditions, (2) the non-negative factors were consistent in shape and timing across all locomotion conditions, and (3) the muscle weightings were modulated as distinctive functions of locomotion speed and ground elevation. Results also showed that the developed predictive model was able to reproduce well the muscle modularity of un-modeled data, i.e., novel subjects and conditions. Muscle weightings were reconstructed with a cross-correlation factor greater than 70% and a root mean square error less than 0.10. Furthermore, the generated muscle excitations matched

  13. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.

    Science.gov (United States)

    Kargo, W J; Giszter, S F

    2000-03-01

    and its degree of change after loss of proprioception depended on the degree of joint staggering used by the frog (i.e., the relative phasing between knee and hip motion) and on the degree of motor-pattern change. We examined these variations in 31 frogs. Twenty percent (6/31) of frogs showed largely synchronous joint coordination and little effect of deafferentation on joint coordination, end-point path, or the underlying synchronous motor pattern. Eighty percent of frogs (25/31) showed some degree of staggered joint coordination and also strong effects of loss of afferents. Loss of afferents caused two major joint level changes in these frogs: collapse of joint phasing into synchronous joint motion and increased hip velocity. Fifty percent of frogs (16/31) showed joint-coordination changes of type (1) without type (2). This change was associated with reduction, loss, or collapse of phasing of the sartorius, semitendinosus and biceps (iliofibularis) in the initial EMG burst in the motor pattern. The remaining 30% (9/31) of frogs showed both joint-coordination changes 1 and 2. These changes were associated with both the knee flexor EMG changes seen in the other frogs and with additional increased activity of rectus internus and semimembranosus muscles. Our data show that multiple ipsilateral modalities all play some role in regulating muscle activity patterns in the wiping limb. Our data support a strong role of ipsilateral proprioception in the process of trajectory formation and specifically in the control of limb segment interactions during wiping by way of the regulation and coordination of muscle groups based on initial limb configuration.

  14. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    . The results show that K+-induced contraction of smooth muscle cells in the afferent arteriole is highly sensitive to chloride, whereas neurotransmitter release and ensuing contraction is not dependent on chloride. Thus, there are different activation pathways for depolarizing vasoconstrictors......-Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...

  15. The responses of frog muscle spindles and fast and slow muscle fibres to a variety of mechanical inputs.

    Science.gov (United States)

    Brown, M C

    1971-10-01

    1. The tension in the iliofibularis muscle of frogs was recorded while the muscle was stretched or released. At the same time recordings were made from single spindle afferents in dorsal root filaments. Either large or small motor nerve fibres were stimulated in split ventral root filaments.2. While small motor nerve fibres were stimulated the discharge from muscle spindle afferents was greatly increased by stretching, and greatly reduced by shortening the muscle. This sensitivity to movement was shown even if the movements were small, so that a stretch of 0.2% of the muscle length was sufficient to cause a pronounced increase in the afferent discharge.3. In contrast, during stimulation of the large motor nerve fibres the spindle was much less sensitive to movements with the result that even stretches or releases of the muscle by 1 mm did not cause very large changes in the discharge frequency.4. The tension in slow extrafusal muscle fibres in many ways mirrored the spindle discharge during the stimulation of small motor nerve fibres, for the tension was greatly increased by stretching, even through small distances, and greatly reduced by releasing the muscle. The tension in fast extrafusal muscle fibres was much less changed by such movements, and thus was rather like the spindle discharge during stimulation of large motor nerve fibres.5. As the extrafusal muscle fibres do not directly pull on and excite the spindle afferents, the simplest explanation for the similarities between the muscle tension and the spindle discharge is that the mechanical properties of the intrafusal muscle fibres innervated by the large motor nerve fibres are like those of fast extrafusal muscle fibres, and that the mechanical properties of the small intrafusal fibres are similar to those of slow extrafusal muscle fibres.6. It is shown that the cross-bridge sliding filament mechanism of muscle contraction provides a ready explanation for the differences found between fast and slow muscles

  16. Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle.

    Directory of Open Access Journals (Sweden)

    Martin Brockington

    Full Text Available BACKGROUND: LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored. METHODOLOGY/PRINCIPAL FINDINGS: In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage. CONCLUSIONS/SIGNIFICANCE: This work shows that

  17. Specific and potassium components in the depolarization of the la afferents in the spinal cord of the cat.

    Science.gov (United States)

    Jiménez, I; Rudomin, P; Solodkin, M; Vyklicky, L

    1983-08-01

    In the cat spinal cord, primary afferent depolarization (PAD) of group Ia fibers of extensor muscles is produced by high-frequency stimulation (100 Hz) of group I muscle flexor afferents without significant increases in extracellular potassium. On the other hand, the PAD produced by stimulation of mixed and pure cutaneous nerves correlates well with increases in potassium ions. We conclude that the PAD produced by group I muscle afferents results from the activation of specific pathways making axo-axonic synapses with the Ia fiber terminals. The PAD of Ia fibers resulting from activation of cutaneous nerves involves instead unspecific accumulation of potassium ions.

  18. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  19. Increasing cutaneous afferent feedback improves proprioceptive accuracy at the knee in patients with sensory ataxia.

    Science.gov (United States)

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Goulding, Niamh; Palma, Jose-Alberto; Fuente Mora, Cristina; Kaufmann, Horacio

    2016-02-01

    Hereditary sensory and autonomic neuropathy type III (HSAN III) features disturbed proprioception and a marked ataxic gait. We recently showed that joint angle matching error at the knee is positively correlated with the degree of ataxia. Using intraneural microelectrodes, we also documented that these patients lack functional muscle spindle afferents but have preserved large-diameter cutaneous afferents, suggesting that patients with better proprioception may be relying more on proprioceptive cues provided by tactile afferents. We tested the hypothesis that enhancing cutaneous sensory feedback by stretching the skin at the knee joint using unidirectional elasticity tape could improve proprioceptive accuracy in patients with a congenital absence of functional muscle spindles. Passive joint angle matching at the knee was used to assess proprioceptive accuracy in 25 patients with HSAN III and 9 age-matched control subjects, with and without taping. Angles of the reference and indicator knees were recorded with digital inclinometers and the absolute error, gradient, and correlation coefficient between the two sides calculated. Patients with HSAN III performed poorly on the joint angle matching test [mean matching error 8.0 ± 0.8° (±SE); controls 3.0 ± 0.3°]. Following application of tape bilaterally to the knee in an X-shaped pattern, proprioceptive performance improved significantly in the patients (mean error 5.4 ± 0.7°) but not in the controls (3.0 ± 0.2°). Across patients, but not controls, significant increases in gradient and correlation coefficient were also apparent following taping. We conclude that taping improves proprioception at the knee in HSAN III, presumably via enhanced sensory feedback from the skin.

  20. Characterising skeletal muscle under large strain using eccentric and Fourier Transform-rheology.

    Science.gov (United States)

    Tan, Kristy; Cheng, Shaokoon; Jugé, Lauriane; Bilston, Lynne E

    2015-11-05

    Characterising the passive anisotropic properties of soft tissues has been largely limited to the linear viscoelastic regime and shear loading is rarely done in the large deformation regime, despite the physiological significance of such properties. This paper demonstrates the use of eccentric rheology, which allows the anisotropy of skeletal muscle to be investigated. The large amplitude oscillatory strain properties of skeletal muscle were also investigated using Fourier Transform-rheology. Histology was used to qualitatively assess the microstructure changes induced by large strain. Results showed that skeletal muscle was strongly anisotropic in the linear regime. The storage and loss moduli were found to be significantly different (p<0.05) between the three fibre alignment groups; for the group tested with fibres perpendicular to plane of shear was 12.3±1.3 kPa and 3.0±0.35 kPa, parallel to shear direction was 10.6±1.2 kPa and 2.4±0.23 kPa, and perpendicular to shear direction was 5.5±0.90 kPa and 1.3±0.21 kPa. The appearance and growth of higher order harmonics at large strain was different in the three testing directions indicating that the anisotropy of muscle affects skeletal muscle behaviour in the nonlinear regime. Histological analysis showed an increasing destruction of extracellular matrix and the rearrangement of fibres with increasing strain indicating mechanical damage at strains of larger than 10%. These microstructural changes could contribute to the complex nonlinear behaviour in skeletal muscle. This paper demonstrates a method of characterising the anisotropic properties in skeletal muscle under large strain whilst giving meaningful information on the physical response of tissue at various strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Local control of information flow in segmental and ascending collaterals of single afferents.

    Science.gov (United States)

    Lomelí, J; Quevedo, J; Linares, P; Rudomin, P

    1998-10-08

    In the vertebrate spinal cord, the activation of GABA(gamma-amino-butyric acid)-releasing interneurons that synapse with intraspinal terminals of sensory fibres leading into the central nervous system (afferent fibres) produces primary afferent depolarization and presynaptic inhibition. It is not known to what extent these presynaptic mechanisms allow a selective control of information transmitted through specific sets of intraspinal branches of individual afferents. Here we study the local nature of the presynaptic control by measuring primary afferent depolarization simultaneously in two intraspinal collaterals of the same muscle spindle afferent. One of these collaterals ends at the L6-L7 segmental level in the intermediate nucleus, and the other ascends to segment L3 within Clarke's column, the site of origin of spinocerebellar neurons. Our results indicate that there are central mechanisms that are able to affect independently the synaptic effectiveness of segmental and ascending collaterals of individual muscle spindle afferents. Focal control of presynaptic inhibition thus allows the intraspinal branches of afferent fibres to function as a dynamic assembly that can be fractionated to convey information to selected neuronal targets. This may be a mechanism by which different spinal postsynaptic targets that are coupled by sensory input from a common source could be uncoupled.

  2. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    Science.gov (United States)

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  3. Closure of large oroantronasal fistula residual after gunshot injuries with temporalis muscle flap.

    Science.gov (United States)

    Waheeb, Aliaa M

    2012-07-01

    Large oroantronasal fistulas have a detrimental effect on patient nutrition and speech, not to mention its moral effect when combined with devastating deformity associated with high-energy gunshot injuries to the face. Despite the fact that temporalis muscle flap was first described nearly 116 years ago, it still represents a useful tool in craniofacial and oral reconstruction. The aim of this article was to describe the utilization of temporalis muscle flap for reconstructing large oroantronasal fistula residual after gunshot injuries. Three clinical cases were described with emphasis on surgical technique. The flap was reliable because of its rich blood supply and close proximity to the oral cavity. Major complications were not observed. In hospitals lacking facilities for extensive reconstructive procedure, temporalis muscle flap should be taken into consideration when tackling difficult oral defects.

  4. Constriction velocities of renal afferent and efferent arterioles of mice are not related to SMB expression.

    Science.gov (United States)

    Patzak, Andreas; Petzhold, Daria; Wronski, Thomas; Martinka, Peter; Babu, Gopal J; Periasamy, Muthu; Haase, Hannelore; Morano, Ingo

    2005-12-01

    Constriction of renal arterioles contributes significantly to the control of perfusion and glomerular filtration. Afferent but not efferent arterioles express smooth muscle myosin heavy chain B (SMB) (with a 5'-insert of seven amino acids). The aim of the present study was to investigate (1) the constriction characteristics of afferent and efferent arterioles under physiologic load and (2) whether expression of SMB may causally contribute to these constriction characteristics. We compared constriction parameters [constriction amplitude, maximal rate of constriction velocity ("dc/dt(max)"), and time to half-maximal constriction (t(1/2)) of in vitro perfused renal afferent and efferent arterioles of wild-type (smb(+/+)] and homozygous SMB knockout [smb(-/-)] mice upon stimulation with angiotensin II (Ang II) (10(-8) mol/L) and potassium chloride (KCl) (100 mmol/L). SMB expression was investigated by double-labeling immunofluorescence. Contraction amplitude and dc/dt(max) of mouse afferent arterioles upon Ang II stimulation were significantly greater compared to efferent arterioles. However, constriction amplitudes, dc/dt(max), and t(1/2) of afferent as well as efferent arterioles upon Ang II stimulation were similar in smb(+/+) and smb(-/-) mice. Constriction amplitudes upon KCl stimulation of afferent arterioles were similar in both smb(+/+) and smb(-/-) mice. Furthermore, KCl-induced dc/dt(max) and t(1/2) of afferent arterioles were similar in both smb(+/+) and smb(-/-) mice. SMB expression could be detected in afferent but not efferent arterioles in smb(+/+) mice. No SMB expression in either arteriole could be observed in smb(-/-) mice. Our results suggest that the presence of different alternatively 5'-spliced smooth muscle-myosin heavy chain (SM-MHC) isoforms does not dominate the different contractile features of physiologically loaded renal afferent or efferent arterioles.

  5. Nonabsorbable versus absorbable sutures in large, hang-back medial rectus muscle recessions.

    Science.gov (United States)

    Awadein, Ahmed; Marsh, Justin D; Guyton, David L

    2016-06-01

    To investigate the value of nonabsorbable sutures in reducing the incidence of consecutive exotropia after large, "hang-back" medial rectus recessions. The medical records of patients who underwent medial rectus recession of ≥6.5 mm in individuals ≤2 years of age, or ≥7.0 mm in those >2 years were retrospectively reviewed. Patients were divided into two groups based on suture material used: absorbable, polyglactin 910 sutures (44 patients); nonabsorbable, polyester sutures (50 patients). Preoperative measurements, ductions, strabismus surgery, and postoperative results were analyzed. Inadequate anchoring of the medial rectus muscle was suspected when consecutive exotropia developed 4-7 weeks after surgery after initial satisfactory alignment and was confirmed if during reoperation the medial rectus muscle appeared recessed >2 mm beyond the originally intended recession. Consecutive exotropia due to inadequate anchoring of the medial rectus muscle occurred in 11 of 66 muscles (17%) in the absorbable suture group. The muscle was found 6-10 mm posterior to the intended recession. Limited duction in the field of action of the involved medial rectus muscle occurred in 9 of the 11 muscles (82%). None of the eyes with nonabsorbable sutures showed inadequate anchoring. The incidence of consecutive exotropia was higher in the absorbable suture group (30%) than in the nonabsorbable suture group (6%) (P < 0.005). Using nonabsorbable suture for large, hang-back medial rectus recessions greatly reduces the incidence of consecutive exotropia that can occur when absorbable suture dissolves. Copyright © 2016 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  6. Explosive development of pectoral muscle fibres in large juvenile blue catfish Ictalurus furcatus.

    Science.gov (United States)

    Lahiri, S; Fine, M L

    2015-11-01

    As part of an effort on scaling of pectoral spines and muscles, the basis for growth was examined in six pectoral muscles in juvenile blue catfish Ictalurus furcatus, the largest catfish in North America. Fibre number increases slowly in fish from 13.0 to 26.4 cm in total length, doubles by 27.0 cm and remains stable in larger individuals. Simultaneously, mean fibre diameter decreases by half, caused by the addition of new small fibres, before increasing non-linearly in larger fish. The orders of magnitude disparity between the size at hatching and the size of large adults may have selected for rapid muscle fibre addition at a threshold size.

  7. Characterisation of the primary afferent spinal innervation of mouse uterus

    Directory of Open Access Journals (Sweden)

    Geraldine eHerweijer

    2014-07-01

    Full Text Available The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP. Using retrograde tracing, injection of 5-10µL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG with peak labelling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labelled cells was 463 µm2 +/- SEM. A significantly greater proportion of labelled neurons consisted of small cell bodies (<300 µm2 in the sacral spinal cord (S2 compared with peak labelling at the lumbar (L2 region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibres located primarily at the border between the circular and longitudinal muscle layers (N=4. The nerve endings were classified into three distinct types: single, branching or complex, that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus.

  8. Input-output functions of vestibular afferent responses to air-conducted clicks in rats.

    Science.gov (United States)

    Zhu, Hong; Tang, Xuehui; Wei, Wei; Maklad, Adel; Mustain, William; Rabbitt, Richard; Highstein, Steve; Allison, Jerome; Zhou, Wu

    2014-02-01

    Sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles (the cervical vestibular-evoked myogenic potential or cVEMP) and the extraocular muscles (the ocular VEMP or oVEMP) have proven useful in clinical assessment of vestibular function. VEMPs are commonly interpreted as a test of saccular function, based on neurophysiological evidence showing activation of saccular afferents by intense acoustic click stimuli. However, recent neurophysiological studies suggest that the clicks used in clinical VEMP tests activate vestibular end organs other than the saccule. To provide the neural basis for interpreting clinical VEMP testing results, the present study examined the extent to which air-conducted clicks differentially activate the various vestibular end organs at several intensities and durations in Sprague-Dawley rats. Single unit recordings were made from 562 vestibular afferents that innervated the otoliths [inferior branch otolith (IO) and superior branch otolith (SO)], the anterior canal (AC), the horizontal canal (HC), and the posterior canal (PC). Clicks higher than 60 dB SL (re-auditory brainstem response threshold) activated both semicircular canal and otolith organ afferents. Clicks at or below 60 dB SL, however, activated only otolith organ afferents. Longer duration clicks evoked larger responses in AC, HC, and SO afferents, but not in IO afferents. Intra-axonal recording and labeling confirmed that sound sensitive vestibular afferents innervated the horizontal and anterior canal cristae as well as the saccular and utricular maculae. Interestingly, all sound sensitive afferents are calyx-bearing fibers. These results demonstrate stimulus-dependent acoustic activation of both semicircular canals and otolith organs, and suggest that sound activation of vestibular end organs other than the saccule should not be ruled out when designing and interpreting clinical VEMP tests.

  9. Analysis of Large Array Surface Myoelectric Potentials for the Low Back Muscles

    Science.gov (United States)

    2007-11-02

    ANALYSIS OF LARGE ARRAY SURFACE MYOELECTRIC POTENTIALS FOR THE LOW BACK MUSCLES Steven I Reger, Ph.D. Vinod Sahgal M.D. Department of Physical...fewer subjects. The results indicated a potential of the model for clinical patient classification. Keywords - Myoelectric potential distribution, Low...computer science have improved signal processing, sensitivity and simultaneous multiple site data collection methods essential to the clinical

  10. Differential activation of sympathetic discharge to skin and skeletal muscle in humans.

    Science.gov (United States)

    Vissing, S F

    1997-01-01

    emanates from the rostral brain. The other is that a contraction induced reflex arises in chemically and mechanically sensitive muscle afferents. Although animal studies have provided experimental support for both theories, studies in humans with direct recordings of muscle sympathetic nerve activity have only provided convincing evidence for the muscle afferent theory. The present experiments are the first in humans to provide direct evidence in support of the "central motor command" theory. In addition, these experiments demonstrated a highly dissociated pattern of sympathetic activation to skin and skeletal muscle. Thus, during static handgrip exercise sympathetic outflow to skin of the resting limb showed an initial burst of activity preceding the onset of tension development. This was followed by an increase in sympathetic activity that continued throughout the exercise period. Sympathetic outflow to resting muscle showed a slow pattern of response with a latent period between the onset of exercise and the onset of sympathetic activation. Stimulation of central command during neuromuscular blockade evoked large increases in skin sympathetic discharge with only minor increases in muscle sympathetic discharge. During stimulation of metaboreceptor afferents with post-handgrip muscle ischaemia, muscle sympathetic nerve activity was maintained while skin sympathetic nerve activity showed an immediate return to pre-exercise levels. These data provide evidence that during moderate levels of static exercise sympathetic activation of skin is predominantly influenced by central motor command. In contrast, sympathetic activation of muscle is to a large extent driven by feedback from metaboreceptor afferents in the working muscle.

  11. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Robert Jarosch

    2008-12-01

    Full Text Available This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit. Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation. Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding, the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  12. Comparative Analyses between Skeletal Muscle miRNAomes from Large White and Min Pigs Revealed MicroRNAs Associated with Postnatal Muscle Hypertrophy.

    Science.gov (United States)

    Sheng, Xihui; Wang, Ligang; Ni, Hemin; Wang, Lixian; Qi, Xiaolong; Xing, Shuhan; Guo, Yong

    2016-01-01

    The molecular mechanism regulated by microRNAs (miRNAs) that underlies postnatal hypertrophy of skeletal muscle is complex and remains unclear. Here, the miRNAomes of longissimus dorsi muscle collected at five postnatal stages (60, 120, 150, 180, and 210 days after birth) from Large White (commercial breed) and Min pigs (indigenous breed of China) were analyzed by Illumina sequencing. We identified 734 miRNAs comprising 308 annotated miRNAs and 426 novel miRNAs, of which 307 could be considered pig-specific. Comparative analysis between two breeds suggested that 60 and 120 days after birth were important stages for skeletal muscle hypertrophy and intramuscular fat accumulation. A total of 263 miRNAs were significantly differentially expressed between two breeds at one or more developmental stages. In addition, the differentially expressed miRNAs between every two adjacent developmental stages in each breed were determined. Notably, ssc-miR-204 was significantly more highly expressed in Min pig skeletal muscle at all postnatal stages compared with its expression in Large White pig skeletal muscle. Based on gene ontology and KEGG pathway analyses of its predicted target genes, we concluded that ssc-miR-204 may exert an impact on postnatal hypertrophy of skeletal muscle by regulating myoblast proliferation. The results of this study will help in elucidating the mechanism underlying postnatal hypertrophy of skeletal muscle modulated by miRNAs, which could provide valuable information for improvement of pork quality and human myopathy.

  13. Optimization of Large Gel 2D Electrophoresis for Proteomic Studies of Skeletal Muscle

    Science.gov (United States)

    Reed, Patrick W.; Densmore, Allison; Bloch, Robert J.

    2013-01-01

    We describe improved methods for large format, 2-dimensional gel electrophoresis (2-DE) that improve protein solubility and recovery, minimize proteolysis, and reduce the loss of resolution due to contaminants and manipulations of the gels, and thus enhance quantitative analysis of protein spots. Key modifications are: (i) the use of 7M urea + 2 M thiourea, instead of 9M urea, in sample preparation and in the tops of the gel tubes; (ii) standardized deionization of all solutions containing urea with a mixed bed ion exchange resin and removal of urea from the electrode solutions; and (iii) use of a new gel tank and cooling device that eliminate the need to run two separating gels in the SDS dimension. These changes make 2D-GE analysis more reproducible and sensitive, with minimal artifacts. Application of this method to the soluble fraction of muscle tissues reliably resolves ~1800 protein spots in adult human skeletal muscle and over 2800 spots in myotubes. PMID:22589104

  14. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans.

    Science.gov (United States)

    Helmich, R C G; Bäumer, T; Siebner, H R; Bloem, B R; Münchau, A

    2005-11-01

    A conditioning electrical stimulus to a digital nerve can inhibit the motor-evoked potentials (MEPs) in adjacent hand muscles elicited by transcranial magnetic stimulation (TMS) to the contralateral primary motor cortex (M1) when given 25-50 ms before the TMS pulse. This is referred to as short-latency afferent inhibition (SAI). We studied inter-hemispheric differences (Experiment 1) and within-limb somatotopy (Experiment 2) of SAI in healthy right-handers. In Experiment 1, conditioning electrical pulses were applied to the right or left index finger (D2) and MEPs were recorded from relaxed first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscles ipsilateral to the conditioning stimulus. We found that SAI was more pronounced in right hand muscles. In Experiment 2, electrical stimulation was applied to the right D2 and MEPs were recorded from ipsilateral FDI, extensor digitorum communis (EDC) and biceps brachii (BB) muscles. The amount of SAI did not differ between FDI, EDC and BB muscles. These data demonstrate inter-hemispheric differences in the processing of cutaneous input from the hand, with stronger SAI in the dominant left hemisphere. We also found that SAI occurred not only in hand muscles adjacent to electrical digital stimulation, but also in distant hand and forearm and also proximal arm muscles. This suggests that SAI induced by electrical D2 stimulation is not focal and somatotopically specific, but a more widespread inhibitory phenomenon.

  15. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses to norepineph......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular...... chloride. We conclude that norepinephrine and ANG II use different mechanisms for contraction and that extracellular chloride is essential for contraction in afferent arterioles after activation of voltage-dependent calcium channels. We suggest that a chloride influx pathway is activated concomitantly...

  16. Susceptibility to Exercise-Induced Muscle Damage: a Cluster Analysis with a Large Sample.

    Science.gov (United States)

    Damas, F; Nosaka, K; Libardi, C A; Chen, T C; Ugrinowitsch, C

    2016-07-01

    We investigated the responses of indirect markers of exercise-induced muscle damage (EIMD) among a large number of young men (N=286) stratified in clusters based on the largest decrease in maximal voluntary contraction torque (MVC) after an unaccustomed maximal eccentric exercise bout of the elbow flexors. Changes in MVC, muscle soreness (SOR), creatine kinase (CK) activity, range of motion (ROM) and upper-arm circumference (CIR) before and for several days after exercise were compared between 3 clusters established based on MVC decrease (low, moderate, and high responders; LR, MR and HR). Participants were allocated to LR (n=61), MR (n=152) and HR (n=73) clusters, which depicted significantly different cluster centers of 82%, 61% and 42% of baseline MVC, respectively. Once stratified by MVC decrease, all muscle damage markers were significantly different between clusters following the same pattern: small changes for LR, larger changes for MR, and the largest changes for HR. Stratification of individuals based on the magnitude of MVC decrease post-exercise greatly increases the precision in estimating changes in EIMD by proxy markers such as SOR, CK activity, ROM and CIR. This indicates that the most commonly used markers are valid and MVC orchestrates their responses, consolidating the role of MVC as the best EIMD indirect marker.

  17. Differential action of (-)-baclofen on the primary afferent depolarization produced by segmental and descending inputs.

    Science.gov (United States)

    Quevedo, J; Eguibar, J R; Jiménez, I; Rudomin, P

    1992-01-01

    The purpose of the present series of experiments was to analyze, in anesthetized and paralyzed cats, the effects of (-)-baclofen and picrotoxin on the primary afferent depolarization (PAD) generated in single Ib afferent fibers by either intraspinal microstimulation or stimulation of the segmental and descending pathways. PAD was estimated by recording dorsal root potentials and by measuring the changes in the intraspinal activation threshold of single Ib muscle afferent fibers. The PAD elicited by stimulation of group I muscle or cutaneous afferents was readily depressed and often abolished 20-40 min after the intravenous injection of 1-2 mg/kg (-)-baclofen. In contrast, the same amounts of (-)-baclofen produced a relatively small depression of the PAD elicited by stimulation of the brainstem reticular formation (RF). The monosynaptic PAD produced in single Ib fibers by intraspinal microstimulation within the intermediate nucleus was depressed and sometimes abolished following the i.v. injections of 1-2 mg/kg (-)-baclofen. Twenty to forty minutes after the i.v. injection of picrotoxin (0.5-1 mg/kg), there was a strong depression of the PAD elicited by stimulation of muscle and cutaneous afferents as well as of the PAD produced by stimulation of the RF and the PAD produced by intraspinal microstimulation. The results obtained suggest that, in addition to its action on primary afferents, (-)-baclofen may depress impulse activity and/or transmitter release in a population of last-order GABAergic interneurons that mediate the PAD of Ib fibers. The existence of GABAb autoreceptors in last-order interneurons mediating the PAD may function as a self-limiting mechanism controlling the synaptic efficacy of these interneurons.

  18. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia.

    Science.gov (United States)

    Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim

    2016-10-15

    In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Serotonin, Dopamine and Noradrenaline Adjust Actions of Myelinated Afferents via Modulation of Presynaptic Inhibition in the Mouse Spinal Cord

    Science.gov (United States)

    García-Ramírez, David L.; Calvo, Jorge R.; Hochman, Shawn; Quevedo, Jorge N.

    2014-01-01

    Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD). PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT), dopamine (DA) and noradrenaline (NA) on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs) or intracellular excitatory postsynaptic currents (EPSCs). The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs) recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75%) but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic transmission in the

  20. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  1. Loop myopexy with true muscle transplantation for very large angle heavy eye syndrome patient

    Directory of Open Access Journals (Sweden)

    Jitendra Jethani

    2015-01-01

    Full Text Available A 42-year-old man presenting with complaints of squint for last 20 years. His visual acuity was 20/400 in right eye (RE and 20/30 in left eye (LE with glasses. His refraction was RE -16.75/-2.5 D cycl 180 and LE was -14.5/-1.5 D cycl 180. His axial length was 31.23 mm In RE and 29.72 mm in LE. On examination we found he had RE large esotropia with hypotropia measuring 130 pd base out and 40 pd base up in RE. A computerized tomography scan revealed that the superior rectus (SR was shifted nasally, and lateral rectus (LR was shifted inferiorly. A RE medial rectus (MR recession and LR resection with muscle transplantation on the MR was done. A loop myopexy was done to correct the path of the LR and SR. The patient had only 18 pd eso and 20 pd hypo on follow-up after 3 months. Loop myopexy in conjunction with muscle transplantation is a safe and effective procedure for large angle esotropia associated with heavy eye syndrome.

  2. C-tactile afferent stimulating touch carries a positive affective value

    Science.gov (United States)

    Pawling, Ralph; Cannon, Peter R.; McGlone, Francis P.; Walker, Susannah C.

    2017-01-01

    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major—smile muscle, positive affect & corrugator supercilii—frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other

  3. Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat.

    Science.gov (United States)

    Ichinose, Tsuyoshi; Yamamoto, Atsushi; Kobayashi, Tsutomu; Shitara, Hitoshi; Shimoyama, Daisuke; Iizuka, Haku; Koibuchi, Noriyuki; Takagishi, Kenji

    2016-02-01

    Rotator cuff tear (RCT) is a common musculoskeletal disorder in the elderly. The large RCT is often irreparable due to the retraction and degeneration of the rotator cuff muscle. The integrity of the teres minor (TM) muscle is thought to affect postoperative functional recovery in some surgical treatments. Hypertrophy of the TM is found in some patients with large RCTs; however, the process underlying this hypertrophy is still unclear. The objective of this study was to determine if compensatory hypertrophy of the TM muscle occurs in a large RCT rat model. Twelve Wistar rats underwent transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons in the left shoulder. The rats were euthanized 4 weeks after the surgery, and the cuff muscles were collected and weighed. The cross-sectional area and the involvement of Akt/mammalian target of rapamycin (mTOR) signaling were examined in the remaining TM muscle. The weight and cross-sectional area of the TM muscle was higher in the operated-on side than in the control side. The phosphorylated Akt/Akt protein ratio was not significantly different between these sides. The phosphorylated-mTOR/mTOR protein ratio was significantly higher on the operated-on side. Transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons activates mTOR signaling in the TM muscle, which results in muscle hypertrophy. The Akt-signaling pathway may not be involved in this process. Nevertheless, activation of mTOR signaling in the TM muscle after RCT may be an effective therapeutic target of a large RCT. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age

    Science.gov (United States)

    Tang, Hong-gang; Chen, Li-hong; Xiao, Chao-geng; Wu, Tian-xing

    2009-01-01

    We investigated the fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age. One- and two-year-old fish were cultured in floating net cages and sampled randomly for analysis. Moisture, protein, lipid and ash contents were determined by methods of Association of Analytical Chemist (AOAC) International. Fatty acid profile was determined by gas chromatography. Crude protein, fat, moisture and ash contents showed no significant differences between the two age groups. The contents of total polyunsaturated fatty acids and docosahexaenoic acid (DHA) were significantly higher and eicosapentaenoic acid (EPA) content was significantly lower in the two-year-old large yellow croaker than in the one-year-old (P<0.05). No significant differences were observed in the contents of total saturated fatty acids and monounsaturated fatty acids, or the ratio of n-3/n-6 fatty acids among the large yellow croakers of the two age groups. We conclude that large yellow croakers are good food sources of EPA and DHA. PMID:19235275

  5. Fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age

    Institute of Scientific and Technical Information of China (English)

    Hong-gang TANG; Li-hong CHEN; Chao-geng XIAO; Tian-xing WU

    2009-01-01

    We investigated the fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age.One- and two-year-old fish were cultured in floating net cages and sampled randomly for analysis.Moisture,protein,lipid and ash contents were determined by methods of Association of Analytical Chemist (AOAC) International.Fatty acid profile was determined by gas chromatography.Crude protein,fat,moisture and ash contents showed no significant differences between the two age groups.The contents of total polyunsaturated fatty acids and docosahexaenoic acid (DHA) were significantly higher and eicosapentaenoic acid (EPA) content was significantly lower in the two-year-old large yellow croaker than in the one-year-old (P<0.05).No significant differences were observed in the contents of total saturated fatty acids and monounsaturated fatty acids,or the ratio of n-3/n-6 fatty acids among the large yellow croakers of the two age groups.We conclude that large yellow croakers are good food sources of EPA and DHA.

  6. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.

    Science.gov (United States)

    Elson, R C; Sillar, K T; Bush, B M

    1992-03-01

    1. In crayfish, Pacifastacus leniusculus, remotion of a walking leg stretches the thoraco-coxal (TC) muscle receptor organ (TCMRO), located at the leg's articulation with the thorax. In vitro, alternate stretch and release of the fourth leg's TCMRO entrained the centrally generated rhythmic motor output to that leg, with the remotor phase of the rhythm entraining to TCMRO stretch, the promoter phase to release. This coordination of motor bursts to afferent input corresponds to that of active, rhythmic movements in vivo. 2. Entrainment was rapid in onset (stable coordination resulting within the first or second stimulus cycle) and was relatively phase-constant (whatever the stimulus frequency, during 1:1 entrainment, remotor bursts began near the onset of stretch and promotor bursts began near the onset of release). Outside the range of 1:1 entrainment, 2:1, 1:2, and 1:3 coordination ratios (rhythm:stimulus) were encountered. Resetting by phasic stimulation of the TCMRO was complete and probabilistic: effective stimuli triggered rapid transitions between the two burst phases. 3. The TCMRO is innervated by two afferents, the nonspiking S and T fibers, which generate graded depolarizing receptor potentials in response to stretch. During proprioceptive entrainment, the more phasic T fiber depolarized and hyperpolarized more rapidly or in advance of the more tonic S fiber. These receptor potentials were modified differently in the two afferents by interaction with central synaptic inputs that were phase-locked to the entrained motor rhythm. 4. Injecting slow sinusoidal current into either afferent alone could entrain motor rhythms: promoter phase bursts were entrained to depolarization of the S fiber or hyperpolarization of the T fiber, whereas the converse response was obtained for remotor phase bursts. 5. During proprioceptive entrainment, tonic hyperpolarization of the S fiber weakened entrained promotor bursts and allowed remotor burst durations to increase

  7. Fine motor control of the jaw following alteration of orofacial afferent inputs.

    Science.gov (United States)

    Kumar, Abhishek; Castrillon, Eduardo; Trulsson, Mats; Svensson, Krister G; Svensson, Peter

    2017-03-01

    The study was designed to investigate if alteration of different orofacial afferent inputs would have different effects on oral fine motor control and to test the hypothesis that reduced afferent inputs will increase the variability of bite force values and jaw muscle activity, and repeated training with splitting of food morsel in conditions with reduced afferent inputs would decrease the variability and lead to optimization of bite force values and jaw muscle activity. Forty-five healthy volunteers participated in a single experimental session and were equally divided into incisal, mucosal, and block anesthesia groups. The participants performed six series (with ten trials) of a standardized hold and split task after the intervention with local anesthesia was made in the respective groups. The hold and split forces along with the corresponding jaw muscle activity were recorded and compared to a reference group. The hold force and the electromyographic (EMG) activity of the masseter muscles during the hold phase were significantly higher in the incisal and block anesthesia group, as compared to the reference group (P motor control. Further, inhibition of afferent inputs from the orofacial or periodontal mechanoreceptors did not increase the variability of bite force values and jaw muscle activity; indicating that the relative precision of the oral fine motor task was not compromised inspite of the anesthesia. The results also suggest the propensity of optimization of bite force values and jaw muscle activity due to repeated splitting of the food morsels, inspite of alteration of sensory inputs. Skill acquisition following a change in oral sensory environment is crucial for understanding how humans learn and re-learn oral motor behaviors and the kind of adaptation that takes place after successful oral rehabilitation procedures.

  8. Mechanically insensitive afferents (MIAs) in cutaneous nerves of monkey.

    Science.gov (United States)

    Meyer, R A; Davis, K D; Cohen, R H; Treede, R D; Campbell, J N

    1991-10-11

    A problem in the study of nociceptors is that intense stimuli are used to locate the receptive field (RF), and thus the receptor may be damaged before the first responses are recorded. In addition, some nociceptors do not respond to the mechanical stimuli often used to search for the RF. To overcome these problems, an electrical search technique was developed to locate the RF of cutaneous nociceptors. In the hairy skin of anesthetized monkey, we used this technique to locate the RF of 63 A delta-fibers and 22 C-fibers that had extremely high thresholds or were unresponsive to mechanical stimuli. We refer to these afferents as mechanically insensitive afferents (MIAs). Ten A delta-fiber MIAs had a short latency response to stepped heat stimuli and could be responsible for first pain sensation. Five A delta-fiber MIAs and one C-fiber MIA did not respond to mechanical or heat stimuli but did respond to injection into the electrical RF of an artificial inflammatory soup containing histamine, bradykinin, prostaglandin E1, and serotonin. These chemoreceptors might be responsible for the pain and itch sensations that result from chemical stimuli. Some MIAs became more responsive to mechanical stimuli after injection into the RF of the inflammatory soup and, thus, may contribute to the hyperalgesia to mechanical stimuli associated with cutaneous injury. A large proportion of the A delta-fiber (48%) and C-fiber (30%) afferents in this study were insensitive to mechanical stimuli. The role of these MIAs in sensation needs to be studied further. The electrical search technique enables a systematic study of these afferents to be performed. This technique may also be of use to identify and characterize dorsal horn neurons that have inputs from MIAs.

  9. Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area.

    Science.gov (United States)

    Bell, C C; Russell, C J

    1978-12-01

    The projection regions of electroreceptor and mechanical lateral line afferents in electric fish of the mormyridae family are described. Electroreceptor afferents from the posterior dorsal skin run in the dorsal branch of the posterior lateral line nerve. Electroreceptor afferents from ventral skin and mechanical lateral line afferents and efferents run in the ventral branch of the nerve. Horseradish peroxidase (HRP) injections into each branch resulted in filling of its central terminals with the marker enzyme. The method yields a Golgi-like staining of afferent terminals, allowing some aspects of their morphology to be described. Comparison of results from dorsal and ventral branch injections shows the separate medullary regions to which electroreceptor and mechanical afferents project, and also demonstrates four separate somatotopic maps within the electroreceptor region. Mechanical afferents end predominantly ipsilaterally in nucleus anterior and eminentia granularis as has been suggested by others. Ipsilateral endings in nucleus octavius are also seen. Electroreceptor afferents end exclusively in the cortex and nucleus of posterior lateral line lobe (PLLL). Within the cortex there are three distinct maps of the skin surface which are separated from each other by discontinuities in the cellular layers. Somatotopic mapping is also present in the nucleus of PLLL though it is less precise than in the cortical zones. Large club endings of the cells of this nucleus are filled with HRP. Labeled cells are seen within a small midline nucleus located at the level of the eighth nerve just above the medial longitudinal fasciculus. These are probably the cell bodies of lateral line efferents.

  10. The role of the renal afferent and efferent nerve fibers in heart failure.

    Science.gov (United States)

    Booth, Lindsea C; May, Clive N; Yao, Song T

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.

  11. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  12. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    Science.gov (United States)

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents.

  13. An in vitro method for recording single unit afferent activity from mesenteric nerves innervating isolated segments of rat ileum.

    Science.gov (United States)

    Sharkey, K A; Cervero, F

    1986-04-01

    A technique has been developed for recording single unit afferent activity from mesenteric nerves in isolated segments of rat distal ileum in vitro. The preparation consists of a 3-cm segment of ileum, containing a single neurovascular bundle, held horizontally in an organ bath. One end of the segment is attached to a tension transducer to record changes in longitudinal tension of the gut muscle and the other is connected to a pressure transducer to record changes in intra-luminal pressure. Electromyographic activity of the smooth muscle is recorded using glass-insulated tungsten microelectrodes inserted in the wall of the gut. Afferent nerve activity is recorded with a monopolar platinum wire electrode from filaments of the mesenteric nerves that run between the artery and vein supplying the segment. This preparation permits the detailed analysis of the electrical activity of intestinal afferent nerve fibres correlated with mechanical and chemical events occurring naturally in the gut or imposed experimentally on it.

  14. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings.

    Science.gov (United States)

    Banks, R W; Hulliger, M; Saed, H H; Stacey, M J

    2009-06-01

    to be located closer to the main divisions of the nerve. Next, based on a sample of tendon organs from several hind-foot muscles of the cat, we demonstrate the existence in at least a large proportion of tendon organs of a structural substrate to account for multiple spike-initiation sites and pacemaker switching, namely the distribution of sensory terminals supplied by the different first-order branches of the Ib afferent to separate, parallel, tendinous compartments of individual tendon organs. We then show that the numbers of spindles, tendon organs and paciniform corpuscles vary independently in a sample of (mainly) hind-foot muscles of the cat. Grouping muscles by anatomical region in the cat indicated the existence of a gradual proximo-distal decline in the overall average size of the afferent complement of muscle spindles from axial through hind limb to intrinsic foot muscles, but with considerable muscle-specific variability. Finally, we present some comparative data on muscle-spindle afferent complements of rat, rabbit and guinea pig, one particularly notable feature being the high incidence of multiple primary endings in the rat.

  15. Blocking of periodontal afferents with anesthesia and its influence on elevator EMG activity.

    Science.gov (United States)

    Manns, A E; Garcia, C; Miralles, R; Bull, R; Rocabado, M

    1991-07-01

    The effect of anesthetic blocking of the periodontal afferents of the canine teeth was studied in order to determine its influence on any changes in the jaw elevation activity. Unilateral integrated EMG recordings were made of the masseter and anterior temporal muscles during maximal voluntary clenching in centric occlusion and laterotrusive position with canine contact. After anesthetic blocking of the periodontal afferents of one or both ipsilateral canines, a significant increase was observed of the EMG activity of both jaw elevator muscles studied, in centric occlusion as well as with canine contact. The elevator activity increase was of a greater magnitude when antagonistic canines were anesthetized. These findings thus support the hypothesis that high threshold periodontal receptors exert an inhibitory effect on jaw elevator muscular activity.

  16. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking

    Science.gov (United States)

    Gervasio, Sabata; Voigt, Michael; Kersting, Uwe G.; Farina, Dario; Sinkjær, Thomas

    2017-01-01

    A constant coordination between the left and right leg is required to maintain stability during human locomotion, especially in a variable environment. The neural mechanisms underlying this interlimb coordination are not yet known. In animals, interneurons located within the spinal cord allow direct communication between the two sides without the need for the involvement of higher centers. These may also exist in humans since sensory feedback elicited by tibial nerve stimulation on one side (ipsilateral) can affect the muscles activation in the opposite side (contralateral), provoking short-latency crossed responses (SLCRs). The current study investigated whether contralateral afferent feedback contributes to the mechanism controlling the SLCR in human gastrocnemius muscle. Surface electromyogram, kinematic and kinetic data were recorded from subjects during normal walking and hybrid walking (with the legs moving in opposite directions). An inverse dynamics model was applied to estimate the gastrocnemius muscle proprioceptors’ firing rate. During normal walking, a significant correlation was observed between the magnitude of SLCRs and the estimated muscle spindle secondary afferent activity (P = 0.04). Moreover, estimated spindle secondary afferent and Golgi tendon organ activity were significantly different (P ≤ 0.01) when opposite responses have been observed, that is during normal (facilitation) and hybrid walking (inhibition) conditions. Contralateral sensory feedback, specifically spindle secondary afferents, likely plays a significant role in generating the SLCR. This observation has important implications for our understanding of what future research should be focusing on to optimize locomotor recovery in patient populations. PMID:28060839

  17. Bilateral sensory deprivation of trigeminal afferent fibers on corticomotor control of human tongue musculature: A preliminary study

    DEFF Research Database (Denmark)

    Kothari, Mohit; Baad-Hansen, Lene; Svensson, Peter

    2016-01-01

    Background: Transcranial magnetic stimulation (TMS) has demonstrated changes in motor evoked potentials (MEPs) in human limb muscles following modulation of sensory afferent inputs. Objective: The aim of the present study was to determine whether bilateral local anaesthesia (LA) of the lingual ne...

  18. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Directory of Open Access Journals (Sweden)

    Huang Dongyue

    2012-09-01

    Full Text Available Abstract Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir and isolectin B4 (IB4 binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent

  19. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  20. Whisker-related afferents in superior colliculus.

    Science.gov (United States)

    Castro-Alamancos, Manuel A; Favero, Morgana

    2016-05-01

    Rodents use their whiskers to explore the environment, and the superior colliculus is part of the neural circuits that process this sensorimotor information. Cells in the intermediate layers of the superior colliculus integrate trigeminotectal afferents from trigeminal complex and corticotectal afferents from barrel cortex. Using histological methods in mice, we found that trigeminotectal and corticotectal synapses overlap somewhat as they innervate the lower and upper portions of the intermediate granular layer, respectively. Using electrophysiological recordings and optogenetics in anesthetized mice in vivo, we showed that, similar to rats, whisker deflections produce two successive responses that are driven by trigeminotectal and corticotectal afferents. We then employed in vivo and slice experiments to characterize the response properties of these afferents. In vivo, corticotectal responses triggered by electrical stimulation of the barrel cortex evoke activity in the superior colliculus that increases with stimulus intensity and depresses with increasing frequency. In slices from adult mice, optogenetic activation of channelrhodopsin-expressing trigeminotectal and corticotectal fibers revealed that cells in the intermediate layers receive more efficacious trigeminotectal, than corticotectal, synaptic inputs. Moreover, the efficacy of trigeminotectal inputs depresses more strongly with increasing frequency than that of corticotectal inputs. The intermediate layers of superior colliculus appear to be tuned to process strong but infrequent trigeminal inputs and weak but more persistent cortical inputs, which explains features of sensory responsiveness, such as the robust rapid sensory adaptation of whisker responses in the superior colliculus. Copyright © 2016 the American Physiological Society.

  1. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    Science.gov (United States)

    Fenwick, Axel J; Wu, Shaw-Wen; Peters, James H

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  2. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    Science.gov (United States)

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  3. Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs.

    Science.gov (United States)

    Snively, Eric; Russell, Anthony P

    2007-08-01

    Reconstructed neck muscles of large theropod dinosaurs suggest influences on feeding style that paralleled variation in skull mechanics. In all examined theropods, the head dorsiflexor m. transversospinalis capitis probably filled in the posterior dorsal concavity of the neck, for a more crocodilian- than avian-like profile in this region. The tyrannosaurine tyrannosaurids Daspletosaurus and Tyrannosaurus had relatively larger moment arms for latero-flexion by m. longissimus capitis superficialis and m. complexus than albertosaurine tyrannosaurids, and longer dorsiflexive moment arms for m. complexus. Areas of dorsiflexor origination are significantly larger relative to neck length in adult Tyrannosaurus rex than in other tyrannosaurids, suggesting relatively large muscle cross-sections and forces. Tyrannosaurids were not particularly specialized for neck ventro-flexion. In contrast, the hypothesis that Allosaurus co-opted m. longissimus capitis superficialis for ventro-flexion is strongly corroborated. Ceratosaurus had robust insertions for the ventro-flexors m. longissimus capitis profundus and m. rectus capitis ventralis. Neck muscle morphology is consistent with puncture-and-pull and powerful shake feeding in tyrannosaurids, relatively rapid strikes in Allosaurus and Ceratosaurus, and ventroflexive augmentation of weaker jaw muscle forces in the non tyrannosaurids. (c) 2007 Wiley-Liss, Inc.

  4. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension.

    Science.gov (United States)

    Wirth, Angela; Benyó, Zoltán; Lukasova, Martina; Leutgeb, Barbara; Wettschureck, Nina; Gorbey, Stefan; Orsy, Petra; Horváth, Béla; Maser-Gluth, Christiane; Greiner, Erich; Lemmer, Björn; Schütz, Günther; Gutkind, J Silvio; Offermanns, Stefan

    2008-01-01

    The tone of vascular smooth muscle cells is a primary determinant of the total peripheral vascular resistance and hence the arterial blood pressure. Most forms of hypertension ultimately result from an increased vascular tone that leads to an elevated total peripheral resistance. Regulation of vascular resistance under normotensive and hypertensive conditions involves multiple mediators, many of which act through G protein-coupled receptors on vascular smooth muscle cells. Receptors that mediate vasoconstriction couple with the G-proteins G(q)-G11 and G12-G13 to stimulate phosphorylation of myosin light chain (MLC) via the Ca2+/MLC kinase- and Rho/Rho kinase-mediated signaling pathways, respectively. Using genetically altered mouse models that allow for the acute abrogation of both signaling pathways by inducible Cre/loxP-mediated mutagenesis in smooth muscle cells, we show that G(q)-G11-mediated signaling in smooth muscle cells is required for maintenance of basal blood pressure and for the development of salt-induced hypertension. In contrast, lack of G12-G13, as well as of their major effector, the leukemia-associated Rho guanine nucleotide exchange factor (LARG), did not alter normal blood pressure regulation but did block the development of salt-induced hypertension. This identifies the G12-G13-LARG-mediated signaling pathway as a new target for antihypertensive therapies that would be expected to leave normal blood pressure regulation unaffected.

  5. Meningeal afferent signaling and the pathophysiology of migraine.

    Science.gov (United States)

    Burgos-Vega, Carolina; Moy, Jamie; Dussor, Gregory

    2015-01-01

    Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.

  6. Changes in muscle spindle firing in response to length changes of neighboring muscles.

    Science.gov (United States)

    Smilde, Hiltsje A; Vincent, Jake A; Baan, Guus C; Nardelli, Paul; Lodder, Johannes C; Mansvelder, Huibert D; Cope, Tim C; Maas, Huub

    2016-06-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.

  7. Stretchable Multichannel Electromyography Sensor Array Covering Large Area for Controlling Home Electronics with Distinguishable Signals from Multiple Muscles.

    Science.gov (United States)

    Kim, Namyun; Lim, Taehoon; Song, Kwangsun; Yang, Sung; Lee, Jongho

    2016-08-17

    Physiological signals provide important information for biomedical applications and, more recently, in the form of wearable electronics for active interactions between bodies and external environments. Multiple physiological sensors are often required to map distinct signals from multiple points over large areas for more diverse applications. In this paper, we present a reusable, multichannel, surface electromyography (EMG) sensor array that covers multiple muscles over relatively large areas, with compliant designs that provide different levels of stiffness for repetitive uses, without backing layers. Mechanical and electrical characteristics along with distinct measurements from different muscles demonstrate the feasibility of the concept. The results should be useful to actively control devices in the environment with one array of wearable sensors, as demonstrated with home electronics.

  8. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions.

  9. A comparison of the spindles in two different muscles of the frog.

    Science.gov (United States)

    Brown, M C

    1971-08-01

    1. The responses of spindles in the iliofibularis muscle of frogs to stretch during either small motor nerve fibre stimulation or the application of suxamethonium were compared.2. All spindles which were excited by small motor nerve fibre stimulation were also excited by suxamethonium, and their responses to these two methods of excitation were very similar. The drug dose was usually 5-10 mug/ml. but smaller and larger doses were effective. Large doses (> 100 mug/ml.) could sometimes lead to a reversible partial block of the spindle response to stretch.3. Suxamethonium also caused a prolonged contraction in extrafusal slow muscle fibres. This contraction was not responsible for the effect on the spindle, because the time course of its action on the muscle tension and on the spindle afferent was different.4. It was concluded that suxamethonium stimulated prolonged contraction in the small intrafusal muscle fibres, which are known to be innervated by the small motor nerve fibres.5. Only about half of the spindles in the iliofibularis muscle were excited by suxamethonium.6. In the sartorius muscle which has no slow extrafusal muscle fibres, no spindles were found to be excited by suxamethonium in the way characteristic of that due to small intrafusal muscle fibre contraction.7. It is concluded that, in frog muscles which have no slow extrafusal fibres, the muscle spindles do not have small intrafusal muscle fibres of the kind found in the iliofibularis muscle.

  10. Pain processing by spinal microcircuits: afferent combinatorics.

    Science.gov (United States)

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.

  11. Mechanical properties of mammalian single smooth muscle cells. I. A low cost large range microforce transducer.

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron)

    1990-01-01

    textabstractA transducer has been developed for measuring the minute forces generated during isometric contractions (1.0-10.0 microN) of single smooth muscle cells from the pig urinary bladder and the human uterus. In addition to its high sensitivity, resolution and stability (100 mV microN-1, and l

  12. Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles.

    Science.gov (United States)

    Li, Lingli; Lai, En Yin; Wellstein, Anton; Welch, William J; Wilcox, Christopher S

    2016-06-01

    Myogenic contraction is the principal component of renal autoregulation that protects the kidney from hypertensive barotrauma. Contractions are initiated by a rise in perfusion pressure that signals a reduction in membrane potential (Em) of vascular smooth muscle cells to activate voltage-operated Ca(2+) channels. Since ROS have variable effects on myogenic tone, we investigated the hypothesis that superoxide (O2 (·-)) and H2O2 differentially impact myogenic contractions. The myogenic contractions of mouse isolated and perfused single afferent arterioles were assessed from changes in luminal diameter with increasing perfusion pressure (40-80 mmHg). O2 (·-), H2O2, and Em were assessed by fluorescence microscopy during incubation with paraquat to increase O2 (·-) or with H2O2 Paraquat enhanced O2 (·-) generation and myogenic contractions (-42 ± 4% vs. -19 ± 4%, P contractions (-10 ± 1% vs. -19 ± 2%, P contractions with paraquat without preventing the reduction in Em Myogenic contractions were independent of the endothelium and largely independent of nitric oxide. We conclude that O2 (·-) and H2O2 activate different signaling pathways in vascular smooth muscle cells linked to discreet membrane channels with opposite effects on Em and voltage-operated Ca(2+) channels and therefore have opposite effects on myogenic contractions.

  13. Jun kinase-induced overexpression of leukemia-associated Rho GEF (LARG) mediates sustained hypercontraction of longitudinal smooth muscle in inflammation.

    Science.gov (United States)

    Al-Shboul, Othman; Nalli, Ancy D; Kumar, Divya P; Zhou, Ruizhe; Mahavadi, Sunila; Kuemmerle, John F; Grider, John R; Murthy, Karnam S

    2014-06-15

    The signaling pathways mediating sustained contraction of mouse colonic longitudinal smooth muscle and the mechanisms involved in hypercontractility of this muscle layer in response to cytokines and TNBS-induced colitis have not been fully explored. In control longitudinal smooth muscle cells, ACh acting via m3 receptors activated sequentially Gα12, RhoGEF (LARG), and the RhoA/Rho kinase pathway. There was abundant expression of MYPT1, minimal expression of CPI-17, and a notable absence of a PKC/CPI-17 pathway. LARG expression was increased in longitudinal muscle cells isolated from muscle strips cultured for 24 h with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice. The increase in LARG expression was accompanied by a significant increase in ACh-stimulated Rho kinase and ZIP kinase activities, and sustained muscle contraction. The increase in LARG expression, Rho kinase and ZIP kinase activities, and sustained muscle contraction was abolished in cells pretreated with the Jun kinase inhibitor, SP600125. Expression of the MLCP activator, telokin, and MLCP activity were also decreased in longitudinal muscle cells from TNBS-treated mice or from strips treated with IL-1β or TNF-α. In contrast, previous studies had shown that sustained contraction in circular smooth muscle is mediated by sequential activation of Gα13, p115RhoGEF, and dual RhoA-dependent pathways involving phosphorylation of MYPT1 and CPI-17. In colonic circular smooth muscle cells isolated from TNBS-treated mice or from strips treated with IL-1β or TNF-α, CPI-17 expression and sustained muscle contraction were decreased. The disparate changes in the two muscle layers contribute to intestinal dysmotility during inflammation.

  14. Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity.

    Science.gov (United States)

    Holmes, William R; Huwe, Janice A; Williams, Barbara; Rowe, Michael H; Peterson, Ellengene H

    2017-05-01

    Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents.NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational

  15. Population coding of forelimb joint kinematics by peripheral afferents in monkeys.

    Directory of Open Access Journals (Sweden)

    Tatsuya Umeda

    Full Text Available Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates.

  16. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.

    Science.gov (United States)

    Turco, Claudia V; El-Sayes, Jenin; Fassett, Hunter J; Chen, Robert; Nelson, Aimee J

    2017-07-01

    Long-latency afferent inhibition (LAI) is the inhibition of the transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) by the sensory afferent volley following electrical stimulation of a peripheral nerve. It is unknown how the activation of sensory afferent fibers relates to the magnitude of LAI. This study investigated the relationship between LAI and the sensory nerve action potentials (SNAP) from the median nerve (MN) and the digital nerves (DN) of the second digit. LAI was obtained by delivering nerve stimulation 200 ms before a TMS pulse delivered over the motor cortex. Experiment 1 assessed the magnitude of LAI following stimulation of the contralateral MN or DN using nerve stimulus intensities relative to the maximum SNAP (SNAPmax) of that nerve and two TMS intensities (0.5- and 1-mV MEP). Results indicate that MN LAI is maximal at ~50% SNAPmax, when presumably all sensory afferents are recruited for TMS of 0.5-mV MEP. For DN, LAI appears at ~50% SNAPmax and does not increase with further recruitment of sensory afferents. Experiment 2 investigated the magnitude of LAI following ipsilateral nerve stimulation at intensities relative to SNAPmax Results show minimal LAI evoked by ipsilateral MN and no LAI following ipsilateral DN stimulation. Implications for future studies investigating LAI include adjusting nerve stimulation to 50% SNAPmax to obtain maximal LAI. Additionally, MN LAI can be used as a marker for neurological disease or injury by using a nerve stimulation intensity that can evoke a depth of LAI capable of increasing or decreasing.NEW & NOTEWORTHY This is the first investigation of the relationship between long-latency afferent inhibition (LAI) and the sensory afferent volley. Differences exist between median and digital nerve LAI. For the median nerve, LAI increases until all sensory fibers are presumably recruited. In contrast, digital nerve LAI does not increase with the recruitment of additional sensory fibers but rather is

  17. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    Science.gov (United States)

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  18. Hair-Cell Versus Afferent Adaptation in the Semicircular Canals

    OpenAIRE

    Rabbitt, R. D.; Boyle, R.; Holstein, G. R.; Highstein, S. M.

    2004-01-01

    The time course and extent of adaptation in semicircular canal hair cells was compared to adaptation in primary afferent neurons for physiological stimuli in vivo to study the origins of the neural code transmitted to the brain. The oyster toadfish, Opsanus tau, was used as the experimental model. Afferent firing-rate adaptation followed a double-exponential time course in response to step cupula displacements. The dominant adaptation time constant varied considerably among afferent fibers an...

  19. K+ Currents in Isolated Vestibular Afferent Calyx Terminals

    National Research Council Canada - National Science Library

    Dhawan, Ritu; Mann, Scott E; Meredith, Frances L; Rennie, Katherine J

    2010-01-01

    Vestibular hair cells transduce mechanical displacements of their hair bundles into an electrical receptor potential which modulates transmitter release and subsequent action potential firing in afferent neurons...

  20. Targeted Collection of Plasmid DNA in Large and Growing Animal Muscles 6 Weeks after DNA Vaccination with and without Electroporation

    Directory of Open Access Journals (Sweden)

    Daniel Dory

    2015-01-01

    Full Text Available DNA vaccination has been developed in the last two decades in human and animal species as a promising alternative to conventional vaccination. It consists in the injection, in the muscle, for example, of plasmid DNA encoding the vaccinating polypeptide. Electroporation which forces the entrance of the plasmid DNA in cells at the injection point has been described as a powerful and promising strategy to enhance DNA vaccine efficacy. Due to the fact that the vaccine is composed of DNA, close attention on the fate of the plasmid DNA upon vaccination has to be taken into account, especially at the injection point. To perform such studies, the muscle injection point has to be precisely recovered and collected several weeks after injection. This is even more difficult for large and growing animals. A technique has been developed to localize precisely and collect efficiently the muscle injection points in growing piglets 6 weeks after DNA vaccination accompanied or not by electroporation. Electroporation did not significantly increase the level of remaining plasmids compared to nonelectroporated piglets, and, in all the cases, the levels were below the limit recommended by the FDA to research integration events of plasmid DNA into the host DNA.

  1. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    Science.gov (United States)

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.

  2. Synaptic transmission of baro- and chemoreceptors afferents in the NTS second order neurons.

    Science.gov (United States)

    Accorsi-Mendonça, Daniela; Machado, Benedito H

    2013-04-01

    Second order neurons in the nucleus tractus solitarius (NTS) process and integrate the afferent information from arterial baroreceptors with high fidelity and precise timing synaptic transmission. Since 2nd-order NTS neurons receiving baroreceptors inputs are relatively well characterized, their electrophysiological profile has been accepted as a general characteristic for all 2nd-order NTS neurons involved with the processing of different sensorial inputs. On the other hand, the synaptic properties of other afferent systems in NTS, such as the peripheral chemoreceptors, are not yet well understood. In this context, in previous studies we demonstrated that in response to repetitive afferents stimulation, the chemoreceptors 2nd-order NTS neurons also presented high fidelity of synaptic transmission, but with a large variability in the latency of evoked responses. This finding is different in relation to the precise timing transmission for baroreceptor 2nd-order NTS neurons, which was accepted as a general characteristic profile for all 2nd order neurons in the NTS. In this brief review we discuss this new concept as an index of complexity of the sensorial inputs to NTS with focus on the synaptic processing of baro- and chemoreceptor afferents.

  3. Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat

    Directory of Open Access Journals (Sweden)

    Connor Mark

    2005-10-01

    Full Text Available Abstract Background Despite the clinical significance of muscle pain, and the extensive investigation of the properties of muscle afferent fibers, there has been little study of the ion channels on sensory neurons that innervate muscle. In this study, we have fluorescently tagged sensory neurons that innervate the masseter muscle, which is unique because cell bodies for its muscle spindles are in a brainstem nucleus (mesencephalic nucleus of the 5th cranial nerve, MeV while all its other sensory afferents are in the trigeminal ganglion (TG. We examine the hypothesis that certain molecules proposed to be used selectively by nociceptors fail to express on muscle spindles afferents but appear on other afferents from the same muscle. Results MeV muscle afferents perfectly fit expectations of cells with a non-nociceptive sensory modality: Opiates failed to inhibit calcium channel currents (ICa in 90% of MeV neurons, although ICa were inhibited by GABAB receptor activation. All MeV afferents had brief (1 msec action potentials driven solely by tetrodotoxin (TTX-sensitive Na channels and no MeV afferent expressed either of three ion channels (TRPV1, P2X3, and ASIC3 thought to be transducers for nociceptive stimuli, although they did express other ATP and acid-sensing channels. Trigeminal masseter afferents were much more diverse. Virtually all of them expressed at least one, and often several, of the three putative nociceptive transducer channels, but the mix varied from cell to cell. Calcium currents in 80% of the neurons were measurably inhibited by μ-opioids, but the extent of inhibition varied greatly. Almost all TG masseter afferents expressed some TTX-insensitive sodium currents, but the amount compared to TTX sensitive sodium current varied, as did the duration of action potentials. Conclusion Most masseter muscle afferents that are not muscle spindle afferents express molecules that are considered characteristic of nociceptors, but these

  4. Large asymmetric hypertrophy of rectus abdominis muscle in professional tennis players.

    Directory of Open Access Journals (Sweden)

    Joaquin Sanchis-Moysi

    Full Text Available PURPOSE: To determine the volume and degree of asymmetry of the musculus rectus abdominis (RA in professional tennis players. METHODS: The volume of the RA was determined using magnetic resonance imaging (MRI in 8 professional male tennis players and 6 non-active male control subjects. RESULTS: Tennis players had 58% greater RA volume than controls (P = 0.01, due to hypertrophy of both the dominant (34% greater volume, P = 0.02 and non-dominant (82% greater volume, P = 0.01 sides, after accounting for age, the length of the RA muscle and body mass index (BMI as covariates. In tennis players, there was a marked asymmetry in the development of the RA, which volume was 35% greater in the non-dominant compared to the dominant side (P<0.001. In contrast, no side-to-side difference in RA volume was observed in the controls (P = 0.75. The degree of side-to-side asymmetry increased linearly from the first lumbar disc to the pubic symphysis (r = 0.97, P<0.001. CONCLUSIONS: Professional tennis is associated with marked hypertrophy of the musculus rectus abdominis, which achieves a volume that is 58% greater than in non-active controls. Rectus abdominis hypertrophy is more marked in the non-dominant than in the dominant side, particularly in the more distal regions. Our study supports the concept that humans can differentially recruit both rectus abdominis but also the upper and lower regions of each muscle. It remains to be determined if this disequilibrium raises the risk of injury.

  5. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Correia

    2010-01-01

    Full Text Available OBJECTIVE: Blood neurotrophins, such as the brain-derived neurotrophic factor, are considered to be of great importance in mediating the benefits of physical exercise. In this study, the effect of acute strength exercise and the involvement of small versus large muscle mass on the levels of plasma brain-derived neurotrophic factor were evaluated in healthy individuals. METHODS: The concentric strengths of knee (large and elbow (small flexor and extensor muscles were measured on two separate days. Venous blood samples were obtained from 16 healthy subjects before and after exercise. RESULTS: The levels of brain-derived neurotrophic factor in the plasma did not significantly increase after both arm and leg exercise. There was no significant difference in the plasma levels of the brain-derived neurotrophic factor in the arms and legs. CONCLUSION: The present results demonstrate that acute strength exercise does not induce significant alterations in the levels of brain-derived neurotrophic factor plasma concentrations in healthy individuals. Considering that its levels may be affected by various factors, such as exercise, these findings suggest that the type of exercise program may be a decisive factor in altering peripheral brain-derived neurotrophic factor.

  6. CLINICAL AND EXPERIMENTAL STUDIES OF LARGE AMPLITUDE ACTION POTENTIAL OF THE SUFFERED FACIAL MUSCLES IN INTRATEMPORAL FACIAL NERVE PARALYSIS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ojective. To testify the phenomenon that large amplitude action potential appears at the early stage of facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(animals) and methods. The action potentials of the orbicular ocular and oral muscles were recorded in 34 normal persons by electromyogram instruments. The normal range of amplitude percentage was found out according to he normal distribution. One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded in 17 guinea pigs before and after the facial nerve was compressed and the facial nerve was examined under electromicroscope before and after the compression.Results. The amplitude percentage of the suffered ide to the healthy side was more than 153 percent in 6 of the 100 patients. Lare amplitude action potential ocured in 35 per cent guinea pigs which were performed the experiment of facial nrve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve's myelin sheath in the guinea pigs which exhibited large amplitude action potential.Conclusion. The facial nerve exhibited a temporary over-exciability at the early stage of facial nerve injury in some patients and guinea pigs. If the injury waslimited in the myelin sheath, te prognosis was relatively good.

  7. Effects of movement-related afferent inputs on spinal reflexes evoked by transcutaneous spinal cord stimulation during robot-assisted passive stepping.

    Science.gov (United States)

    Masugi, Yohei; Kawashima, Noritaka; Inoue, Daisuke; Nakazawa, Kimitaka

    2016-08-03

    Studies of robot-assisted passive stepping paradigms have reported that movement-related afferent inputs strongly inhibit the excitability of the Hoffmann (H) reflex in the soleus (Sol) during walking. However, it is unknown if movement-related afferent inputs have the same effect on the excitability of spinal reflexes in the other lower-limb muscles that are involved in normal walking in healthy subjects. The aim of this study was to examine the effects of movement-related afferent inputs on the spinal reflexes in lower-limb muscles during walking. Spinal reflexes that were elicited by transcutaneous spinal cord stimulation (tSCS) were recorded during passive air standing and air stepping at three stepping velocities (stride frequencies: 14, 25, and 36 strides/min). The amplitude of the spinal reflexes was reduced in most of the recorded muscles during passive air stepping compared with air standing. Furthermore, in the Sol and lateral gastrocnemius, the amplitude of the reflexes during air stepping significantly decreased as stride frequency increased. These results demonstrate that movement-related afferent inputs inhibit spinal reflexes in the Sol and other lower-limb muscles during walking. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Significance of peripheral afferent input to the alpha-motoneurone pool for enhancement of tremor during an isometric fatiguing contraction.

    Science.gov (United States)

    Cresswell, A G; Löscher, W N

    2000-05-01

    The objective of this study was to investigate the contribution of peripheral afferent input to the enhancement of isometric tremor during a sustained submaximal isometric contraction. It was hypothesised that during muscle fatigue, when excitatory drive is high, peripheral afferent input may augment oscillations in the stretch reflex arc and result in bursting motor-unit activity and increased tremor. Nine healthy subjects maintained isometric plantar flexions at 30% of their maximum voluntary contraction until the limit of endurance, under three test conditions. Two paradigms were used to reduce afferent input to the triceps surae alpha-motoneurone pool: (1) continued vibration of the Achilles tendon, and (2) ischaemic partial block of the tibial nerve. These were compared to a control experiment, in which there was no intervention. By recording H-reflexes from the gastrocnemius and soleus muscles, it was possible to assess the effectiveness of reducing the afferent input. When H-reflex suppression had stabilised, the fatiguing contraction was commenced and tremor was computed from the continuously recorded torque signal. Superimposed maximum twitches were elicited as indirect measures of excitatory drive. The increase in tremor root mean square throughout the fatiguing contraction was significantly less for both the vibration and ischaemic conditions. Furthermore, tremor mean power frequency decreased significantly with endurance time in the control experiment, while no significant change was seen in the other two experimental conditions. It is concluded that the enhancement of isometric tremor seen during a fatiguing submaximal isometric contraction is facilitated by peripheral afferent input to the alpha-motoneurone pool.

  9. Angiotensin Ⅱ regulates the LARG/RhoA/MYPT1 axis in rat vascular smooth muscle in vitro

    Institute of Scientific and Technical Information of China (English)

    Wei-chiao CHIU; Jyh-ming JUANG; Shen-nan CHANG; Cho-kai WU; Chia-ti TSAI; Yung-zu TSENG; Fu-tien CHIANG

    2012-01-01

    Aim: To identify a key protein that binds monomeric G protein RhoA and activates the RhoA/Rho kinase/MYPT1 axis in vascular smooth muscle cells (VSMCs) upon angiotensin Ⅱ (Ang Ⅱ) stimulation.Methods: Primary cultured VSMCs from Sprague-Dawley rats were transfected with siRNAs against leukemia-associated RhoGEF (LARG),and then treated with Ang Ⅱ,Iosartan,PD123319,or Val5-Ang Ⅱ.The target mRNA and protein levels were determined using qPCR and Western blot analysis,respectively.Rat aortic rings were isolated,and the isometric contraction was measured with a force transducer and recorder.Results: Stimulation with Ang Ⅱ (0.1 μmol/L) for 0.5 h significantly increased the level of LARG mRNA in VSMCs.At 3,6,and 9 h after the treatment with Ang Ⅱ (0.1 μmol/L) plus AT2 antagonist PD123319 (1 μmol/L) or with AT1 agonist Val5-Ang Ⅱ (1 μmol/L),the LARG protein,RhoA activity,and phosphorylation level of myosin phosphatase target subunit 1 (MYPT1) in VSMCs were significantly increased.Knockdown of LARG with siRNA reduced these effects caused by AT1 receptor activation.In rat aortic rings pretreated with LARG siRNA,Ang Ⅱ-induced contraction was diminished.Conclusion: Ang Ⅱ upregulates LARG gene expression and activates the LARG/RhoA/MYPT1 axis via AT1,thereby maintaining vascular tone.

  10. Chicken (Gallus domesticus) inner ear afferents

    Science.gov (United States)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  11. CLINICAL AND EXPERIMENTAL STUDIES OF LARGE AMPLITUDE ACTION POTENTIAL OF THE SUFFERED FACIAL MUSCLES IN INTRATEMPORAL FACIAL NERVE PARALYSIS

    Institute of Scientific and Technical Information of China (English)

    任重; 惠莲

    1999-01-01

    Objctive. To testify the phenomenon that large amplitude action potential appears at the early stage oil facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(aninmls) and methods. The action potentials of the orbicular ocular and oral museles were recorded in 34 normal persons by electromyogram instrtiments. The normal range of amplitude percentage was found out according to the normal distribution, One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded ia 17 guinea pigs before and after the facial nerve was comp~ and the facial nerve was examined under electromicroscope before and after the compression.Results. The amplitude percentage of the suffered side to the healthy side was more than 153 percent in 6 of the 100 patients. Large amplitude action potential occured in 35 per cent guinea pigs which were performed the experiment of facial nerve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve's myelin sheath in the guinea pigs which exhibited large amplitude action potential Conclusion. The facial nerve exhibited a temporary over-excitability at the early stage of facial nerve injury in scane patients and guinea pigs. If the injury was limited in the myelin sheath, the prognods was relatively good.

  12. Afferent projections from the brainstem to the area hypothalamica dorsalis: a horseradish peroxidase study in the cat.

    Science.gov (United States)

    Aguirre, J A; Coveñas, R; Alonso, J R; Lara, J M; Aijón, J

    1989-06-01

    Experiments using the retrograde transport of horseradish peroxidase were performed in order to identify the cells of origin the ascending projections from different brainstem regions to the area hypothalamica dorsalis (aHd) in the cat. The afferent inputs to this area originate mainly from the midbrain and medulla oblongata regions. The main afferent source of the area hypothalamica dorsalis arises from the substantia grisea centralis, where a large number of labeled cells were observed bilaterally, although more abundant on the ipsilateral side. Substantial afferents reach the aHd from the nuclei vestibularis medialis and inferior and the formatio reticularis mesencephali. A modest number of peroxidase-labeled neurons were observed in the nuclei ruber, interpeduncularis, substantia nigra, reticularis gigantocellularis, vestibularis lateralis, cuneatus and gracilis. From the pons, the nucleus raphe magnus sends a weak projection to the aHd. These anatomical data suggest that such area could be involved in visceral, sexual, nociceptive somatosensorial, sleep-waking and motor mechanisms.

  13. Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats.

    Science.gov (United States)

    Duysens, J

    1977-07-01

    1. Stimulation of different hindlimb nerves in spontaneously walking premammillary cats was used in order to examine the effects of sensory input on the rhythmic motor output. 2. Stimulation of the tibial or sural nerve at low intensities caused the burst of activity in the triceps surae or semimembranosus to be prolonged if stimuli were given during the extension phase. When applied during the flexion phase, the same stimuli shortened the burst of activity in the pretibial flexors and induced an early onset of the extensor activity, except if stimuli were given at the very beginning of the flexion phase, when flexor burst prolongations or rebounds were observed instead. 3. These effects were related to activation of large cutaneous afferents in these nerves since the results could be duplicated by low-intensity stimulation of the tibial nerve at the ankle or by direct stimulation of the pad. 4. In contrast, activation of smaller afferents by high-intensity stimulation resulted prolongations of the flexor burst and/or shortenings of the extensor burst for stimuli applied before or during these bursts, respectively. 5. It was concluded that the large and small cutaneous afferents make, respectively, inhibitory and excitatory connections with the central structure involved in the generation of flexion during walking.

  14. Primary afferent response to signals in the intestinal lumen.

    Science.gov (United States)

    Raybould, H

    2001-02-01

    The first recordings of vagal afferent nerve fibre activity were performed by Paintal in the early 1950s. In these experiments, he showed that phenyldiguanide (later recognized as a 5-HT3 receptor agonist) stimulated the firing of C-fibres innervating the intestine. In the following years, ample physiological and psychological studies have demonstrated the importance of afferent information arising from the gut in the regulation of gastrointestinal function and behaviour. Many stimuli are capable of eliciting these functional effects and of stimulating afferent fibre discharge, including mechanical, chemical, nutrient- and immune-derived stimuli. Studies in the last 10 years have begun to focus on the precise sensory transduction mechanisms by which these visceral primary afferent nerve terminals are activated and, like the contribution by Zhu et al. in this issue of The Journal of Physiology, are revealing some novel and exciting findings.

  15. Neurogenic muscle cramps.

    Science.gov (United States)

    Katzberg, Hans D

    2015-08-01

    Muscle cramps are sustained, painful contractions of muscle and are prevalent in patients with and without medical conditions. The objective of this review is to present updates on the mechanism, investigation and treatment of neurogenic muscle cramps. PubMed and Embase databases were queried between January 1980 and July 2014 for English-language human studies. The American Academy of Neurology classification of studies (classes I-IV) was used to assess levels of evidence. Mechanical disruption, ephaptic transmission, disruption of sensory afferents and persistent inward currents have been implicated in the pathogenesis of neurogenic cramps. Investigations are directed toward identifying physiological triggers or medical conditions predisposing to cramps. Although cramps can be self-limiting, disabling or sustained muscle cramps should prompt investigation for underlying medical conditions. Lifestyle modifications, treatment of underlying conditions, stretching, B-complex vitamins, diltiezam, mexiletine, carbamazepine, tetrahydrocannabinoid, leveteracitam and quinine sulfate have shown evidence for treatment.

  16. Visceral perception: sensory transduction in visceral afferents and nutrients.

    Science.gov (United States)

    Raybould, H E

    2002-07-01

    The possible mechanisms that may be involved in nutrient detection in the wall of the gastrointestinal tract are reviewed. There is strong functional and electrophysiological evidence that both intrinsic and extrinsic primary afferent neurones mediate mechano- and chemosensitive responses in the gastrointestinal tract. This review focuses on the extrinsic afferent pathways as these are the ones that convey information to the central nervous system which is clearly necessary for perception to occur.

  17. Biliary stone causing afferent loop syndrome and pancreatitis

    Institute of Scientific and Technical Information of China (English)

    André Roncon Dias; Roberto Iglesias Lopes

    2006-01-01

    We report the case of an 84-year-old female who had a partial gastrectomy with Billroth-Ⅱ anastomosis 24years ago for a benign peptic ulcer who now presented an acute pancreatitis secondary to an afferent loop syndrome. The syndrome was caused by a gallstone that migrated through a cholecystoenteric fistula. This is the first description in the literature of a biliary stone causing afferent loop syndrome.

  18. Estimation of the number of angiotensin II AT1 receptors in rat kidney afferent and efferent arterioles

    DEFF Research Database (Denmark)

    Razga, Zsolt; Nyengaard, Jens Randel

    2007-01-01

    of angiotensin II AT1 receptors along the length of the arterioles and per arteriole, we combined immunoelectron microscopy with stereology. RESULTS: The number of AT1 receptor molecules was significantly lower in the renin-positive smooth muscle cells (SMCs) than in the renin-negative SMCs of the afferent......OBJECTIVE: To examine the effects of the renin-angiotensin system (RAS) on renal arterioles to determine the association between the distribution of angiotensin II AT1 receptors and the morphologic and physiologic heterogeneity of renal arterioles. STUDY DESIGN: To estimate the number...... and efferent arterioles. There were no significant differences along and between the afferent and efferent arterioles in relative number of AT1 receptors of endothelial cells or SMCs. CONCLUSION: Our results suggest that the heterogeneous activity of angiotensin II in SMCs and the different permeabilities...

  19. Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension.

    Science.gov (United States)

    Su, X; Sengupta, J N; Gebhart, G F

    1997-08-01

    study, U50,488 (10(-4) M) did not produce any significant change in the tension of colonic smooth muscle. These results document that responses of mechanosensitive pelvic nerve afferent fibers innervating the colon are inhibited by kappa-opioid receptor agonists having varying affinities for putative kappa-opioid receptor subtypes. The inhibitory effects of these drugs likely are mediated by an action at receptors associated with the afferent fibers. The receptor at which these effects are produced is kappa-opioid-like but clearly different from the kappa-opioid receptor characterized in the CNS and is perhaps an orphan receptor.

  20. The Effects of Group Relaxation Training/Large Muscle Exercise, and Parental Involvement on Attention to Task, Impulsivity, and Locus of Control among Hyperactive Boys.

    Science.gov (United States)

    Porter, Sally S.; Omizo, Michael M.

    1984-01-01

    The study examined the effects of group relaxation training/large muscle exercise and parental involvement on attention to task, impulsivity, and locus of control among 34 hyperactive boys. Following treatment both experimental groups recorded significantly higher attention to task, lower impulsivity, and lower locus of control scores. (Author/CL)

  1. Reflex influences on muscle spindle activity in relaxed human leg muscles.

    Science.gov (United States)

    Gandevia, S C; Miller, S; Aniss, A M; Burke, D

    1986-07-01

    The study was designed to determine whether low-threshold cutaneous and muscle afferents from the foot reflexly activate gamma-motoneurons innervating relaxed muscles of the leg. In 15 experiments multiunit recordings were made from 21 nerve fascicles innervating triceps surae or tibialis anterior. In a further nine experiments the activity of 19 identified single muscle spindle afferents was recorded, 13 from triceps surae, 5 from tibialis anterior, and 1 from extensor digitorum longus. Trains of electrical stimuli (5 stimuli, 300 Hz) were delivered to the sural nerve at the ankle (intensity, twice sensory threshold) and the posterior tibial nerve at the ankle (intensity, 1.1 times motor threshold for the small muscles of the foot). In addition, a tap on the appropriate tendon at varying times after the stimuli was used to assess the dynamic responsiveness of the afferents under study. The conditioning electrical stimuli did not change the discharge of single spindle afferents. Recordings of rectified and averaged multiunit activity also revealed no change in the overall level of background neural activity following the electrical stimuli. The afferent responses to tendon taps did not differ significantly whether or not they were preceded by stimulation of the sural or posterior tibial nerves. These results suggest that low-threshold afferents from the foot do not produce significant activation of fusimotor neurons in relaxed leg muscles, at least as judged by their ability to alter the discharge of muscle spindle afferents. As there may be no effective background activity in fusimotor neurons innervating relaxed human muscles, it is possible that these inputs from the foot could influence the fusimotor system during voluntary contractions when the fusimotor neurons have been brought to firing threshold. In one subject trains of stimuli were delivered to the posterior tibial nerve at painful levels (30 times motor threshold). They produced an acceleration of the

  2. Induction and modulation of referred muscle pain in humans

    DEFF Research Database (Denmark)

    Laursen, René Johannes

    afferents. Furthermore, cutaneous anesthesia of the RP area resulted in a reduction of RP intensity of 22%, while a complete nerve block of afferents from the RP area resulted in a 40% reduction. In summary, observations from the presented experiments suggest that elicitation of referred muscle pain...... are needed. Spinal cord and higher centers are likely structures to study. The data presented in this thesis have made further contributions to understanding the mechanisms of muscle pain and RP that can be helpful in diagnosis, control, and treatment of muscle pain. Moreover, the intramuscular, electrical...

  3. Slow temporal filtering may largely explain the transformation of stick insect (Carausius morosus) extensor motor neuron activity into muscle movement.

    Science.gov (United States)

    Hooper, Scott L; Guschlbauer, Christoph; von Uckermann, Géraldine; Büschges, Ansgar

    2007-09-01

    Understanding how nervous systems generate behavior requires understanding how muscles transform neural input into movement. The stick insect extensor tibiae muscle is an excellent system in which to study this issue because extensor motor neuron activity is highly variable during single leg walking and extensor muscles driven with this activity produce highly variable movements. We showed earlier that spike number, not frequency, codes for extensor amplitude during contraction rises, which implies the muscle acts as a slow filter on the time scale of burst interspike intervals (5-10 ms). We examine here muscle response to spiking variation over entire bursts, a time scale of hundreds of milliseconds, and directly measure muscle time constants. Muscle time constants differ during contraction and relaxation, and contraction time constants, although variable, are always extremely slow (200-700 ms). Models using these data show that extremely slow temporal filtering alone can explain much of the observed transform properties. This work also revealed an unexpected (to us) ability of slow filtering to transform steadily declining inputs into constant amplitude outputs. Examination of the effects of time constant variability on model output showed that variation within an SD primarily altered output amplitude, but variation across the entire range also altered contraction shape. These substantial changes suggest that understanding the basis of this variation is central to predicting extensor activity and that the animal could theoretically vary muscle time constant to match extensor response to changing behavioral need.

  4. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin.

    Science.gov (United States)

    Vallbo, A B; Olausson, H; Wessberg, J

    1999-06-01

    Impulses were recorded from unmyelinated afferents innervating the forearm skin of human subjects using the technique of microneurography. Units responding to innocuous skin deformation were selected. The sample (n = 38) was split into low-threshold units (n = 27) and high-threshold units (n = 11) on the basis of three distinctive features, i.e., thresholds to skin deformation, size of response to innocuous skin deformation, and differential response to sharp and blunt stimuli. The low-threshold units provisionally were denoted tactile afferents on the basis of their response properties, which strongly suggest that they are coding some feature of tactile stimuli. They exhibited, in many respects, similar functional properties as described for low-threshold C-mechanoreceptive units in other mammals. However, a delayed acceleration, not previously demonstrated, was observed in response to long-lasting innocuous indentations. It was concluded that human hairy skin is innervated by a system of highly sensitive mechanoreceptive units with unmyelinated afferents akin to the system previously described in other mammals. The confirmation that the system is present in the forearm skin and not only in the face area where it first was identified suggests a largely general distribution although there are indications that the tactile C afferents may be lacking in the very distal parts of the limbs. The functional role of the system remains to be assessed although physiological properties of the sense organs invite to speculations that the slow tactile system might have closer relations to limbic functions than to cognitive and motor functions.

  5. Reconstruction with latissimus dorsi, external abdominal oblique and cranial sartorius muscle flaps for a large defect of abdominal wall in a dog after surgical removal of infiltrative lipoma

    OpenAIRE

    2016-01-01

    This animal was presented with a large-sized infiltrative lipoma in the abdominal wall that had been noted for 4 years. This lipoma was confirmed by histological examination from a previous biopsy, and the infiltrative features were identified by a computerized tomography scan. The surgical removal created a large-sized abdominal defect that was closed by a combination of latissimus dorsi and external abdominal oblique muscle flaps in a pedicle pattern. A small dehiscence at the most distal e...

  6. Respiratory pattern changes produced by intercostal muscle/rib vibration.

    Science.gov (United States)

    Bolser, D C; Lindsey, B G; Shannon, R

    1988-06-01

    Large-amplitude vibration of the intercostal muscles/ribs has an inhibitory effect on inspiratory motor output. This effect has been attributed, in part, to the stimulation of intercostal muscle tendon organs. Intercostal muscle/rib vibration can also produce a decrease or increase in respiratory frequency. Studies were conducted 1) to determine whether, in addition to intercostal tendon organs, costovertebral joint mechanoreceptors (CVJR's) contribute to the inspiratory inhibitory effect of intercostal muscle/rib vibration (IMV) and 2) to explain the different respiratory frequency responses to IMV previously reported. Phrenic (C5) activity was monitored in paralyzed thoracotomized, artificially ventilated cats. Vibration (125 Hz) at amplitudes greater than 1,200 micron of one T6 intercostal space in decerebrated vagotomized rats reduced phrenic activity. This response was still present but weaker in some animals after denervation of the T6 intercostal muscles. Subsequent denervation of the T6 CVJR's by dorsal root sections eliminated this effect. Respiratory frequency decreased during simultaneous vibration (greater than 1,200 micron) of the T5 and T7 intercostal spaces in vagotomized cats. Respiratory frequency increased during IMV of two intercostal spaces (greater than 1,300 micron) in vagal intact cats. The use of different anesthetics (pentobarbital, allobarbital) did not alter these results. We conclude that CVJR's may contribute to the inhibitory effect of IMV on medullary inspiratory activity. The presence or absence of pulmonary vagal afferents can account for the different respiratory frequency responses to IMV, and different anesthetics did not influence these results.

  7. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys

    Directory of Open Access Journals (Sweden)

    Tatsuya eUmeda

    2014-05-01

    Full Text Available Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for determining the optimal parameters of afferent stimulation to transmit proprioceptive signals in neuroprosthetics. To investigate whether the spike timing of dorsal root ganglion (DRG neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The spike timing of the DRG neurons was calculated using an IF model, in which a spike occurs if the cumulative sum of the firing frequency value exceeded a constant threshold. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that the simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine

  8. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  9. Muscle pain: animal and human experimental and clinical studies.

    Science.gov (United States)

    Marchettini, P

    1993-10-01

    The search for the identification of the sensory apparatus encoding muscle pain sensation in humans is recounted. Basic neurophysiologic animal studies, leading to a description of slowly conducting afferent from muscle and definition of high threshold polymodal muscle nociceptors, and pioneer psychophysic human studies together with recent microneurographic experiments in humans are described. The phenomena of muscle pain broad localization and distant referral are discussed, and clinical implications are extrapolated to interpret muscle pain as a localizing sign of mononeuropathy or radiculopathy. The identification of human muscle nociceptors has defined the scientific standard to test emerging clinical descriptions having muscle pain as a symptom.

  10. Large Conductance Ca2+-Activated K+ Channel (BKCa) α-Subunit Splice Variants in Resistance Arteries from Rat Cerebral and Skeletal Muscle Vasculature

    OpenAIRE

    Zahra Nourian; Min Li; M Dennis Leo; Jaggar, Jonathan H.; Braun, Andrew P.; Hill, Michael A.

    2014-01-01

    Previous studies report functional differences in large conductance Ca2+ activated-K+ channels (BKCa) of smooth muscle cells (VSMC) from rat cerebral and cremaster muscle resistance arteries. The present studies aimed to determine if this complexity in BKCa activity may, in part, be due to splice variants in the pore-forming α-subunit. BKCa variants in the intracellular C terminus of the α-subunit, and their relative expression to total α-subunit, were examined by qPCR. Sequencing of RT-PCR p...

  11. Organization of vagal afferents in pylorus: mechanoreceptors arrayed for high sensitivity and fine spatial resolution?

    Science.gov (United States)

    Powley, Terry L; Hudson, Cherie N; McAdams, Jennifer L; Baronowsky, Elizabeth A; Martin, Felecia N; Mason, Jacqueline K; Phillips, Robert J

    2014-07-01

    The pylorus is innervated by vagal mechanoreceptors that project to gastrointestinal smooth muscle, but the distributions and specializations of vagal endings in the sphincter have not been fully characterized. To evaluate their organization, the neural tracer dextran biotin was injected into the nodose ganglia of rats. Following tracer transport, animals were perfused, and their pylori and antra were prepared as whole mounts. Specimens were processed to permanently label the tracer, and subsets were counterstained with Cuprolinic blue or immunostained for c-Kit. Intramuscular arrays (IMAs) in the circular muscle comprised the principal vagal afferent innervation of the sphincter. These pyloric ring IMAs were densely distributed and evidenced a variety of structural specializations. Morphometric comparisons between the arbors innervating the pylorus and a corresponding sample of IMAs in the adjacent antral circular muscle highlighted that sphincter IMAs branched profusely, forming more than twice as many branches as did antral IMAs (means of 405 vs. 165, respectively), and condensed their numerous neurites into compact receptive fields (∼48% of the area of antral IMAs) deep in the circular muscle (∼6μm above the submucosa). Separate arbors of IMAs in the sphincter interdigitated and overlapped to form a 360° band of mechanoreceptors encircling the pyloric canal. The annulus of vagal IMA arbors, putative stretch receptors tightly intercalated in the sphincter ring and situated near the lumen of the pyloric canal, creates an architecture with the potential to generate gut reflexes on the basis of pyloric sensory maps of high sensitivity and fine spatial resolution.

  12. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  13. Adipose afferent reflex: sympathetic activation and obesity hypertension.

    Science.gov (United States)

    Xiong, X-Q; Chen, W-W; Zhu, G-Q

    2014-03-01

    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.

  14. Distinct target cell-dependent forms of short-term plasticity of the central visceral afferent synapses of the rat

    Directory of Open Access Journals (Sweden)

    Watabe Ayako M

    2010-10-01

    Full Text Available Abstract Background The visceral afferents from various cervico-abdominal sensory receptors project to the dorsal vagal complex (DVC, which is composed of the nucleus of the solitary tract (NTS, the area postrema and the dorsal motor nucleus of the vagus nerve (DMX, via the vagus and glossopharyngeal nerves and then the solitary tract (TS in the brainstem. While the excitatory transmission at the TS-NTS synapses shows strong frequency-dependent suppression in response to repeated stimulation of the afferents, the frequency dependence and short-term plasticity at the TS-DMX synapses, which also transmit monosynaptic information from the visceral afferents to the DVC neurons, remain largely unknown. Results Recording of the EPSCs activated by paired or repeated TS stimulation in the brainstem slices of rats revealed that, unlike NTS neurons whose paired-pulse ratio (PPR is consistently below 0.6, the distribution of the PPR of DMX neurons shows bimodal peaks that are composed of type I (PPR, 0.6-1.5; 53% of 120 neurons recorded and type II (PPR, Conclusions These two general types of short-term plasticity might contribute to the differential activation of distinct vago-vagal reflex circuits, depending on the firing frequency and type of visceral afferents.

  15. Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala

    Directory of Open Access Journals (Sweden)

    Nakao Ayano

    2012-07-01

    Full Text Available Abstract Background Neurons in the capsular part of the central nucleus of the amygdala (CeC, a region also called "nociceptive amygdala," receive nociceptive information from the dorsal horn via afferent pathways relayed from the lateral parabrachial nucleus (LPB. As the central amygdala is known to be involved in the acquisition and expression of emotion, this pathway is thought to play central roles in the generation of affective responses to nociceptive inputs. Excitatory synaptic transmission between afferents arising from the LPB and these CeC neurons is potentiated in arthritic, visceral, neuropathic, inflammatory and muscle pain models. In neuropathic pain models following spinal nerve ligation (SNL, in which we previously showed a robust LPB-CeC potentiation, the principal behavioral symptom is tactile allodynia triggered by non-C-fiber low-threshold mechanoreceptor afferents. Conversely, recent anatomical studies have revealed that most of the spinal neurons projecting to the LPB receive C-fiber afferent inputs. Here, we examined the hypothesis that these C-fiber-mediated inputs are necessary for the full establishment of robust synaptic potentiation of LPB-CeC transmission in the rats with neuropathic pain. Results Postnatal capsaicin treatment, which has been shown to denervate the C-fibers expressing transient receptor potential vanilloid type-1 (TRPV1 channels, completely abolished eye-wiping responses to capsaicin eye instillation in rats, but this treatment did not affect mechanical allodynia in the nerve-ligated animals. However, the postnatal capsaicin treatment prevented LPB-CeC synaptic potentiation after SNL, unlike in the vehicle-treated rats, primarily due to the decreased incidence of potentiated transmission by elimination of TRPV1-expressing C-fiber afferents. Conclusions C-fiber-mediated afferents in the nerve-ligated animals may be a required facilitator of the establishment of nerve injury-evoked synaptic

  16. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length

    DEFF Research Database (Denmark)

    Svendsen, Morten B S; Domenici, Paolo; Marras, Stefano;

    2016-01-01

    , and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s(-1)), followed by barracuda (6.2±1.0 m s(-1)), little tunny (5.6±0.2 m s(-1)) and dorado (4...

  17. Sensations evoked by microstimulation of single mechanoreceptive afferents innervating the human face and mouth.

    Science.gov (United States)

    Trulsson, M; Essick, G K

    2010-04-01

    Intraneural microneurography and microstimulation were performed on single afferent axons in the inferior alveolar and lingual nerves innervating the face, teeth, labial, or oral mucosa. Using natural mechanical stimuli, 35 single mechanoreceptive afferents were characterized with respect to unit type [fast adapting type I (FA I), FA hair, slowly adapting type I and II (SA I and SA II), periodontal, and deep tongue units] as well as size and shape of the receptive field. All afferents were subsequently microstimulated with pulse trains at 30 Hz lasting 1.0 s. Afferents recordings whose were stable thereafter were also tested with single pulses and pulse trains at 5 and 60 Hz. The results revealed that electrical stimulation of single FA I, FA hair, and SA I afferents from the orofacial region can evoke a percept that is spatially matched to the afferent's receptive field and consistent with the afferent's response properties as observed on natural mechanical stimulation. Stimulation of FA afferents typically evoked sensations that were vibratory in nature; whereas those of SA I afferents were felt as constant pressure. These afferents terminate superficially in the orofacial tissues and seem to have a particularly powerful access to perceptual levels. In contrast, microstimulation of single periodontal, SA II, and deep tongue afferents failed to evoke a sensation that matched the receptive field of the afferent. These afferents terminate more deeply in the tissues, are often active in the absence of external stimulation, and probably access perceptual levels only when multiple afferents are stimulated. It is suggested that the spontaneously active afferents that monitor tension in collagen fibers (SA II and periodontal afferents) may have the role to register the mechanical state of the soft tissues, which has been hypothesized to help maintain the body's representation in the central somatosensory system.

  18. Ex Vivo Smooth Muscle Pharmacological Effects of a Novel Bradykinin-Related Peptide, and Its Analogue, from Chinese Large Odorous Frog, Odorrana livida Skin Secretions

    Science.gov (United States)

    Xiang, Jie; Wang, Hui; Ma, Chengbang; Zhou, Mei; Wu, Yuxin; Wang, Lei; Guo, Shaodong; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Bradykinin-related peptides (BRPs) are one of the most extensively studied frog secretions-derived peptide families identified from many amphibian species. The diverse primary structures of BRPs have been proven essential for providing valuable information in understanding basic mechanisms associated with drug modification. Here, we isolated, identified and characterized a dodeca-BRP (RAP-L1, T6-BK), with primary structure RAPLPPGFTPFR, from the skin secretions of Chinese large odorous frogs, Odorrana livida. This novel peptide exhibited a dose-dependent contractile property on rat bladder and rat ileum, and increased the contraction frequency on rat uterus ex vivo smooth muscle preparations; it also showed vasorelaxant activity on rat tail artery smooth muscle. In addition, the analogue RAP-L1, T6, L8-BK completely abolished these effects on selected rat smooth muscle tissues, whilst it showed inhibition effect on bradykinin-induced rat tail artery relaxation. By using canonical antagonist for bradykinin B1 or B2 type receptors, we found that RAP-L1, T6-BK -induced relaxation of the arterial smooth muscle was very likely to be modulated by B2 receptors. The analogue RAP-L1, T6, L8-BK further enhanced the bradykinin inhibitory activity only under the condition of co-administration with HOE140 on rat tail artery, suggesting a synergistic inhibition mechanism by which targeting B2 type receptors. PMID:27690099

  19. Gut chemosensing: interactions between gut endocrine cells and visceral afferents.

    Science.gov (United States)

    Raybould, Helen E

    2010-02-16

    Chemosensing in the gastrointestinal tract is less well understood than many aspects of gut mechanosensitivity; however, it is important in the overall function of the GI tract and indeed the organism as a whole. Chemosensing in the gut represents a complex interplay between the function of enteroendocrine (EEC) cells and visceral (primarily vagal) afferent neurons. In this brief review, I will concentrate on a new data on endocrine cells in chemosensing in the GI tract, in particular on new findings on glucose-sensing by gut EEC cells and the importance of incretin peptides and vagal afferents in glucose homeostasis, on the role of G protein coupled receptors in gut chemosensing, and on the possibility that gut endocrine cells may be involved in the detection of a luminal constituent other than nutrients, the microbiota. The role of vagal afferent pathways as a downstream target of EEC cell products will be considered and, in particular, exciting new data on the plasticity of the vagal afferent pathway with respect to expression of receptors for GI hormones and how this may play a role in energy homeostasis will also be discussed.

  20. Temperature-dependent variation in afferent nerve discharge in rat jejunum

    DEFF Research Database (Denmark)

    Gregersen, Hans; Yang, Jian; Zhao, Jingbo

    2015-01-01

    baseline discharge and on distension-induced afferent fibers innervating the rat jejunum. Methods: Multi-unit afferent activity was recorded in vitro from jejunum afferents from 9 Wistar rats. The segments were immersed in oxygenated Krebs solution varied between 21–43 °C. The mesenteric nerve bundle...

  1. DMPD: Afferent pathways of pyrogen signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9917870 Afferent pathways of pyrogen signaling. Blatteis CM, Sehic E, Li S. Ann N Y... Acad Sci. 1998 Sep 29;856:95-107. (.png) (.svg) (.html) (.csml) Show Afferent pathways of pyrogen signaling.... PubmedID 9917870 Title Afferent pathways of pyrogen signaling. Authors Blatteis CM, Sehic E, Li S. Publica

  2. Identification of quantitative trait transcripts for growth traits in the large scales of liver and muscle samples.

    Science.gov (United States)

    Xiong, Xinwei; Yang, Hui; Yang, Bin; Chen, Congying; Huang, Lusheng

    2015-07-01

    Growth-related traits are economically important traits to the pig industry. Identification of causative gene and mutation responsible for growth-related QTL will facilitate the improvement of pig growth through marker-assisted selection. In this study, we applied whole genome gene expression and quantitative trait transcript (QTT) analyses in 497 liver and 586 longissimus dorsi muscle samples to identify candidate genes and dissect the genetic basis of pig growth in a white Duroc × Erhualian F2 resource population. A total of 20,108 transcripts in liver and 23,728 transcripts in muscle with expression values were used for association analysis between gene expression level and phenotypic value. At the significance threshold of P growth-related traits in liver and muscle, respectively. We also found that some QTTs were correlated to more than one trait. The QTTs identified here showed high tissue specificity. We did not identify any QTTs that were associated with one trait in both liver and muscle. Through an integrative genomic approach, we identified SDR16C5 as the important candidate gene in pig growth trait. These findings contribute to further identification of the causative genes for porcine growth traits and facilitate improvement of pig breeding.

  3. Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus interneurons in the cat spinal cord.

    Science.gov (United States)

    Rudomin, P; Solodkin, M; Jiménez, I

    1987-05-01

    Spike-triggered averaging of dorsal and ventral root potentials was used in anesthetized cats to disclose possible synaptic connections of spinal interneurons in the intermediate nucleus with afferent fibers and/or motoneurons. With this method we have been able to document the existence of a distinct group of interneurons whose activity was associated with the recording of inhibitory potentials in the ventral roots (iVRPs), but not with negative dorsal root potentials (nDRPs). The iVRPs had mean durations of 60.8 +/- 22.1 ms and latencies between 1.7 and 5.1 ms relative to the onset of the interneuronal spikes. Within this group of neurons it was possible to characterize two categories depending on their responses to segmental inputs. Most type A interneurons were mono- or disynaptically activated by group I muscle afferents and polysynaptically by low threshold (1.08-1.69 X T) cutaneous fibers. Type B interneurons were instead polysynaptically activated by group II muscle and by cutaneous fibers with thresholds ranging from 1.02 to 3.1 X T. Whenever tested, both type A and B interneurons could be antidromically activated from Clarke's columns. There was a second group of interneurons whose activity was associated with the generation of both iVRPs and nDRPs. These potentials had mean durations of 107.5 +/- 35.6 and 131.5 +/- 32 ms, respectively, and onset latencies between 1.7 and 6.1 ms. The interneurons belonging to this group, which appear not to send axonal projections to Clarke's column, could be classified in three categories depending on their responses to peripheral inputs. Type C interneurons responded mono- or disynaptically to group I muscle volleys and polysynaptically to intermediate threshold (1.22-2.7 X T) cutaneous afferents. Type D interneurons were polysynaptically activated by group II muscle afferents (2.3-8.5 X T) and by intermediate threshold (1.4-3 X T) cutaneous fibers and type E interneurons only by group I muscle afferents with mono- or

  4. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report

    Directory of Open Access Journals (Sweden)

    De Cicco Vincenzo

    2012-09-01

    Full Text Available Abstract Introduction A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. Case presentation A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. Conclusions A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be

  5. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report.

    Science.gov (United States)

    De Cicco, Vincenzo

    2012-09-03

    A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent

  6. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: An electrophysiological study in healthy volunteers.

    Science.gov (United States)

    Nonis, Romain; D'Ostilio, Kevin; Schoenen, Jean; Magis, Delphine

    2017-01-01

    Background Benefits of cervical non-invasive vagus nerve stimulation (nVNS) devices have been shown in episodic cluster headache and preliminarily suggested in migraine, but direct evidence of vagus nerve activation using such devices is lacking. Vagal somatosensory evoked potentials (vSEPs) associated with vagal afferent activation have been reported for invasive vagus nerve stimulation (iVNS) and non-invasive auricular vagal stimulation. Here, we aimed to show and characterise vSEPs for cervical nVNS. Methods vSEPs were recorded for 12 healthy volunteers who received nVNS over the cervical vagus nerve, bipolar electrode/DS7A stimulation over the inner tragus, and nVNS over the sternocleidomastoid (SCM) muscle. We measured peak-to-peak amplitudes (P1-N1), wave latencies, and N1 area under the curve. Results P1-N1 vSEPs were observed for cervical nVNS (11/12) and auricular stimulation (9/12), with latencies similar to those described previously, whereas SCM stimulation revealed only a muscle artefact with a much longer latency. A dose-response analysis showed that cervical nVNS elicited a clear vSEP response in more than 80% of the participants using an intensity of 15 V. Conclusion Cervical nVNS can activate vagal afferent fibres, as evidenced by the recording of far-field vSEPs similar to those seen with iVNS and non-invasive auricular stimulation.

  7. The effect of between-set rest intervals on the oxygen uptake during and after resistance exercise sessions performed with large- and small-muscle mass.

    Science.gov (United States)

    Farinatti, Paulo T V; Castinheiras Neto, Antonio G

    2011-11-01

    Between-set rest intervals (RIs) may influence accumulated fatigue, work volume, and therefore oxygen uptake (VO2) and energy expenditure (EE) during resistance training. The study investigated the effects of different RIs on VO2 and EE in resistance exercises performed with multiple sets and recruiting large and small-muscle mass. Ten healthy men performed 4 randomized protocols (5 sets of 10 repetitions with 15 repetition maximum workloads in either horizontal leg press [LP] or chest fly [CF] with an RI of 1 and 3 minutes). The VO2 was measured at rest, within sets, and during 90-minute postexercise recovery (excess postexercise oxygen consumption [EPOC]). The EE was estimated from VO2net (total VO2 - rest VO2). The VO2 increased in all protocols, being higher within the exercises and during EPOC in the LP than in the CF regardless of the RI. The 1-minute RI induced higher accumulated VO2 during LP (p EPOC lasted approximately 40 minutes after LP1, LP3, and CF1, being longer than after CF3 (20 minutes, p CF1 = 50.3 ± 14.4 kcal ∼ CF3 = 54.1 ± 12.0 kcal). In conclusion, total VO2 was always higher in LP than in CF. Shortening RI enhanced the accumulated fatigue throughout sets only in LP and increased VO2 in the initial few minutes of EPOC, whereas it did not influence total VO2 and EE in both exercises. Therefore, (a) the role of RI in preventing early fatigue seems to be more important when large-muscle groups are recruited; (b) resistance exercises recruiting large-muscle mass induce higher EE because of a greater EPOC magnitude.

  8. Expression of the gene for large subunit of m-calpain is elevated in skeletal muscle from Duchenne muscular dystrophy patients

    Indian Academy of Sciences (India)

    Tajamul Hussain; Harleen Mangath; C. Sundaram; M. P. J. S. Anandaraj

    2000-08-01

    Calpain is an intracellular nonlysosomal protease involved in essential regulatory or processing functions of the cell, mediated by physiological concentrations of Ca2+. However, in an environment of abnormal intracellular calcium, such as that seen in Duchenne muscular dystrophy (DMD), calpain is suggested to cause degeneration of muscle owing to enhanced activity. To test whether the reported increase in calpain activity in DMD results from de novo synthesis of the protease, we have assessed the quantitative changes in mRNA specific for m-calpain. mRNA isolated from DMD and control muscle was analysed by dot blot hybridization using a cDNA probe for the large subunit of m-calpain. Compared to control a four-fold increase in specific mRNAwas observed in dystrophic muscle. This enhanced expression of the m-calpain gene in dystrophic condition suggests that the reported increase in m-calpain activity results from de novo synthesis of protease and underlines the important role of m-calpain in DMD.

  9. Distinct recurrent versus afferent dynamics in cortical visual processing.

    Science.gov (United States)

    Reinhold, Kimberly; Lien, Anthony D; Scanziani, Massimo

    2015-12-01

    How intracortical recurrent circuits in mammalian sensory cortex influence dynamics of sensory representation is not understood. Previous methods could not distinguish the relative contributions of recurrent circuits and thalamic afferents to cortical dynamics. We accomplish this by optogenetically manipulating thalamus and cortex. Over the initial 40 ms of visual stimulation, excitation from recurrent circuits in visual cortex progressively increased to exceed direct thalamocortical excitation. Even when recurrent excitation exceeded thalamic excitation, upon silencing thalamus, sensory-evoked activity in cortex decayed rapidly, with a time constant of 10 ms, which is similar to a neuron's integration time window. In awake mice, this cortical decay function predicted the time-locking of cortical activity to thalamic input at frequencies thalamocortical synapses disrupted the fidelity of sensory transmission. Thus, we determine dynamics intrinsic to cortical recurrent circuits that transform afferent input in time.

  10. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys.

    Science.gov (United States)

    Umeda, Tatsuya; Watanabe, Hidenori; Sato, Masa-Aki; Kawato, Mitsuo; Isa, Tadashi; Nishimura, Yukio

    2014-01-01

    Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that a simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine interface.

  11. Chronic salt-loading downregulates large-conductance Ca~(2+)-activated potassium channel in mesenteric arterial smooth muscle cells from SD rats

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective Large-conductance calcium-activated potassium(BKCa)channel modulates vascular smooth muscle tone.In the present study,we tested the hypothesis that salt,one of the factors which significantly influence blood pressure(BP),can regulate BKCa activity and then elevate blood pressure.Methods Male Sprague-Dawley rats aged 6 weeks were randomized into high salt diet group(HS)and control group,fed with high salt diet(containing 5% NaCl)and standard rat chow(containing 0.4% NaCl)respectively for 16 weeks.T...

  12. NEURAL PATHWAYS OF TRIGEMINAL PROPRIOCEPTIVE AFFERENTS COORDINATE ORAL MOTOR BEHAVIORS

    Institute of Scientific and Technical Information of China (English)

    Luo Pifu; Zhang Jingdong; Li Jishuo

    2003-01-01

    Neural pathways and synaptic connections from the trigeminal mesencephalic nucleus (Vme) neurons to the cranial motor nuclei were studied in the rat using double labelling methodologies of intracellular Neurobiotin staining combined with retrograde horseradish peroxidase (HRP) transport, anterograde biotinylated dextran amine (BDA) tracing combined with retrograde HRP transport, and a dual fluorescent labelling of BDA anterograde combined tracing with Cholera Toxin B (CTB) retrograde transport. Direct projections and synapses were demonstrated from Vme neuronal boutons to motoneurons (MNs) of the trigeminal motor nucleus (Vmo), the hypoglossal nucleus (Ⅻ) and the ambiguus nucleus (Amb). Indirect projections and pathways from Vme neurons to the cranial motor nuclei including Vmo, Ⅻ, the facial nucleus (Ⅶ) and the cervical spinal cord (C1~5) were seen to relay on their premotor neurons. The premotor neurons of above cranial motor nuclei were overlapped in bilateral premotor neuronal pool including the parvocellular reticular formation (PCRt) and its alpha division (PCRtA), the dorsomedial part of the spinal trigeminal nucleus oralis (Vodm), and interpolaris (Vidm), the medullary reticular nucleus dorsal division (MdD), the supratrigeminal region (Vsup) and the dorsomedial part of the principal trigeminal sensory nucleus (Vpdm).Synapses between Vme neuronal boutons and Vmo and Ⅻ MNs and Ⅻ premotor neurons were predominantly asymmetric.There were four types of synaptic organizations, i.e. synaptic convergence; synaptic divergence presynaptic inhibition and afferent feedforward inhibition seen between Vme boutons and Vmno, Ⅻ MNs and between Vme boutons and Ⅻ premotor neurons.The results of present studies have demonstrated direct pathways from the trigeminal proprioceptive afferents to Vmo, Ⅻ and Amb MNs, and indirect pathways from the trigeminal proprioceptive afferents to bilateral Vmno, Ⅻ, Ⅶ and C1~s via their premotor neurons. It provides

  13. Rapid inhibition of vasoconstriction in renal afferent arterioles by aldosterone.

    Science.gov (United States)

    Uhrenholt, T R; Schjerning, J; Hansen, P B; Nørregaard, R; Jensen, B L; Sorensen, G L; Skøtt, O

    2003-12-12

    Aldosterone has been suggested to elicit vessel contraction via a nongenomic mechanism. We tested this proposal in microdissected, perfused rabbit renal afferent arterioles. Aldosterone had no effect on internal diameter in concentrations from 10(-10) to 10(-5) mol/L, but aldosterone abolished the ability of 100 mmol/L KCl to induce vascular contraction. The inhibitory effect of aldosterone was observed from 1 pmol/L. The inhibitory effect was significant after 5 minutes and maximal after 20 minutes and was fully reversible. Actinomycin D (10(-6) mol/L) prolonged the effect of aldosterone. The effect was abolished by the mineralocorticoid receptor antagonist spironolactone (10(-7) mol/L) but not by the glucocorticoid receptor antagonist mifepristone (10(-6) mol/L). The K+-mediated increase of intracellular calcium concentration in afferent arterioles was not affected by aldosterone. Mineralocorticoid receptor was detected by reverse transcription-polymerase chain reaction and immunohistochemistry in rat renal vasculature and rabbit endothelial cells. Inhibition of phosphatidylinositol (PI)-3 kinase with LY 294002 (3x10(-6) mol/L) restored sensitivity to K+ in the presence of aldosterone, and afferent arterioles were immunopositive for PI-3 kinase subunit p110alpha. Inhibition of NO formation by L-NAME (10(-4) mol/L) or inhibition of soluble guanylyl cyclase with 1H-(1,2,4)Oxadiazolo[4,3-a]quinoxaline-1-one restored K+-induced vasoreactivity in the presence of aldosterone. Similar to aldosterone, the NO donor sodium nitroprusside inhibited K+-induced vascular contraction. Geldanamycin (10(-6) mol/L), an inhibitor of heat shock protein 90, abolished aldosterone-induced vasorelaxation. We conclude that aldosterone inhibits depolarization-induced vasoconstriction in renal afferent arterioles by a rapid nongenomic mechanism that is initiated by mineralocorticoid receptor activation and involves PI-3 kinase, protein kinase B, and heat shock protein 90-mediated

  14. How to test for a relative afferent pupillary defect (RAPD

    Directory of Open Access Journals (Sweden)

    David C Broadway

    2012-01-01

    Full Text Available The 'swinging light test' is used to detect a relative afferent pupil defect (RAPD: a means of detecting differences between the two eyes in how they respond to a light shone in one eye at a time. The test can be very useful for detecting unilateral or asymmetrical disease of the retina or optic nerve (but only optic nerve disease that occurs in front of the optic chiasm.

  15. Modulation of short-latency afferent inhibition depends on digit and task-relevance.

    Science.gov (United States)

    Asmussen, Michael J; Zapallow, Christopher M; Jacobs, Mark F; Lee, Kevin G H; Tsang, Philemon; Nelson, Aimee J

    2014-01-01

    Short-latency afferent inhibition (SAI) occurs when a single transcranial magnetic stimulation (TMS) pulse delivered over the primary motor cortex is preceded by peripheral electrical nerve stimulation at a short inter-stimulus interval (∼ 20-28 ms). SAI has been extensively examined at rest, but few studies have examined how this circuit functions in the context of performing a motor task and if this circuit may contribute to surround inhibition. The present study investigated SAI in a muscle involved versus uninvolved in a motor task and specifically during three pre-movement phases; two movement preparation phases between a "warning" and "go" cue and one movement initiation phase between a "go" cue and EMG onset. SAI was tested in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles in twelve individuals. In a second experiment, the origin of SAI modulation was investigated by measuring H-reflex amplitudes from FDI and ADM during the motor task. The data indicate that changes in SAI occurred predominantly in the movement initiation phase during which SAI modulation depended on the specific digit involved. Specifically, the greatest reduction in SAI occurred when FDI was involved in the task. In contrast, these effects were not present in ADM. Changes in SAI were primarily mediated via supraspinal mechanisms during movement preparation, while both supraspinal and spinal mechanisms contributed to SAI reduction during movement initiation.

  16. Modulation of short-latency afferent inhibition depends on digit and task-relevance.

    Directory of Open Access Journals (Sweden)

    Michael J Asmussen

    Full Text Available Short-latency afferent inhibition (SAI occurs when a single transcranial magnetic stimulation (TMS pulse delivered over the primary motor cortex is preceded by peripheral electrical nerve stimulation at a short inter-stimulus interval (∼ 20-28 ms. SAI has been extensively examined at rest, but few studies have examined how this circuit functions in the context of performing a motor task and if this circuit may contribute to surround inhibition. The present study investigated SAI in a muscle involved versus uninvolved in a motor task and specifically during three pre-movement phases; two movement preparation phases between a "warning" and "go" cue and one movement initiation phase between a "go" cue and EMG onset. SAI was tested in the first dorsal interosseous (FDI and abductor digiti minimi (ADM muscles in twelve individuals. In a second experiment, the origin of SAI modulation was investigated by measuring H-reflex amplitudes from FDI and ADM during the motor task. The data indicate that changes in SAI occurred predominantly in the movement initiation phase during which SAI modulation depended on the specific digit involved. Specifically, the greatest reduction in SAI occurred when FDI was involved in the task. In contrast, these effects were not present in ADM. Changes in SAI were primarily mediated via supraspinal mechanisms during movement preparation, while both supraspinal and spinal mechanisms contributed to SAI reduction during movement initiation.

  17. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  18. Effectiveness and Complications of Percutaneous Needle Tenotomy with a Large Needle for Muscle Contractures: A Cadaver Study.

    Science.gov (United States)

    Chesnel, Camille; Genêt, François; Almangour, Waleed; Denormandie, Philippe; Parratte, Bernard; Schnitzler, Alexis

    2015-01-01

    Twenty-two percent of institutionalised elderly persons have muscle contractures. Contractures have important functional consequences, rendering hygiene and positioning in bed or in a chair difficult. Medical treatment (such as botulinum toxin injections, physiotherapy or positioning) is not very effective and surgery may be required. Surgery is carried out in the operating theatre, under local or general anaesthesia but is often not possible in fragile patients. Mini-invasive tenotomy could be a useful alternative as it can be carried out in ambulatory care, under local anaesthesia. To evaluate the effectiveness of percutaneous needle tenotomy and the risks of damage to adjacent structures in cadavers. Thirty two doctors who had never practiced the technique (physical medicine and rehabilitation specialists, geriatricians and orthopaedic surgeons) carried out 401 tenotomies on the upper and lower limbs of 8 fresh cadavers. A 16G needle was used percutaneous following location of the tendons. After each tenotomy, a neuro-orthopaedic surgeon and an anatomist dissected the area in order to evaluate the success of the tenotomy and any adjacent lesions which had occurred. Of the 401 tenotomies, 72% were complete, 24.9% partial and 2.7% failed. Eight adjacent lesions occurred (2%): 4 (1%) in tendons or muscles, 3 (0.7%) in nerves and 1 (0.2%) in a vessel. This percutaneous needle technique effectively ruptured the desired tendons, with few injuries to adjacent structures. Although this study was carried out on cadavers, the results suggest it is safe to carry out on patients.

  19. Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells

    Science.gov (United States)

    Alexandrova, Elena; Nassa, Giovanni; Corleone, Giacomo; Buzdin, Anton; Aliper, Alexander M.; Terekhanova, Nadezhda; Shepelin, Denis; Zhavoronkov, Alexander; Tamm, Michael; Milanesi, Luciano; Weisz, Alessandro

    2016-01-01

    Background Bronchial smooth muscle (BSM) cells from asthmatic patients maintain in vitro a distinct hyper-reactive (“primed”) phenotype, characterized by increased release of pro-inflammatory factors and mediators, as well as hyperplasia and/or hypertrophy. This “primed” phenotype helps to understand pathogenesis of asthma, as changes in BSM function are essential for manifestation of allergic and inflammatory responses and airway wall remodelling. Objective To identify signalling pathways in cultured primary BSMs of asthma patients and non-asthmatic subjects by genome wide profiling of differentially expressed mRNAs and activated intracellular signalling pathways (ISPs). Methods Transcriptome profiling by cap-analysis-of-gene-expression (CAGE), which permits selection of preferentially capped mRNAs most likely to be translated into proteins, was performed in human BSM cells from asthmatic (n=8) and non-asthmatic (n=6) subjects and OncoFinder tool were then exploited for identification of ISP deregulations. Results CAGE revealed >600 RNAs differentially expressed in asthma vs control cells (p≤0.005), with asthma samples showing a high degree of similarity among them. Comprehensive ISP activation analysis revealed that among 269 pathways analysed, 145 (ppromoting pathways and up-regulated ones affecting cell growth and proliferation, inflammatory response, control of smooth muscle contraction and hypoxia-related signalization. Conclusions These first-time results can now be exploited toward development of novel therapeutic strategies targeting ISP signatures linked to asthma pathophysiology. PMID:26863634

  20. Effect of hypergravity on the development of vestibulocerebellar afferent fibers

    Science.gov (United States)

    Bruce, L. L.

    Gravity is a critical factor in the normal development of the vestibular system, as prolonged prenatal exposures to either micro- or hypergravity will alter the pattern of projections from specific vestibular organs to specific targets in the vestibular nuclei. This study addresses the effect of gravity on the development of vestibulocerebellar projections. In adult rats the semicircular canal afferents project mainly to the cerebellar nodulus whereas the otolith maculae project mainly to the ventral uvula of the cerebellum. To determine if the distribution pattern of these afferents is altered by exposures to altered gravity, 10 pregnant rats were exposed to hypergravity (1.5g) from embryonic day 12 (before vestibular ganglion neurons contact vestibular nuclei) to embryonic day 21 (near the time when the vestibular system becomes functional). Controls were exposed to Earth's gravity but otherwise received the same treatment. At the end of the exposure the embryos were deeply anesthetized and fixed by transcardiac perfusion with 4% paraformaldehyde in 0.1 M phosphate buffer (pH7.4). Filter strips coated with DiI and PTIR were implanted into the saccule (gravistatic vestibular receptor) or into the posterior vertical canal (angular acceleration receptor), and allowed to diffuse for 2 weeks at 37°C. Then the brains were dissected and sectioned for fluorescent confocal imaging. Examination of the control cerebella revealed that the canal and otolith afferents have reached the nodulus and uvula, and axons extend into the internal granular, Purkinje, and molecular layers. Projections from the saccule and posterior vertical canal were partially segregated into their respective domains, the uvula and nodulus. In contrast, in hypergravity-exposed rat fetuses the saccule and posterior vertical canal projections were poorly segregated, and both organs contributed labeled fibers to all layers of the nodulus and uvula. This contrasts with the increased afferent segregation

  1. [The characteristics and oxidative modulation of large-conductance calcium-activated potassium channels in guinea-pig colon smooth muscle cells.].

    Science.gov (United States)

    Huang, Wei-Feng; Ouyang, Shou; Zhang, Hui

    2009-06-25

    To investigate the characteristics of large-conductance calcium-activated potassium channels (BK(Ca)) and the effect of hydrogen peroxide (H2O2) on BK(Ca) in guinea-pig proximal colon smooth muscle cells, single smooth muscle cells of guinea-pig colon were enzymatically isolated in low calcium solution containing papain (3 mg/mL), DTT (2 mg/mL), and bovine serum albumin (BSA, 2 mg/mL). Tissues were incubated at 36 degrees C in enzyme solution for 15 min and were then suspended in enzyme-free low calcium solution. Inside-out single channel recording technique was used to record BK(Ca) current. The intracellular (bath) and microelectrode solution both contained symmetrical high potassium. The BK(Ca) in guinea-pig colon smooth muscle cell possesses: 1) voltage-dependence, 2) high selectivity for potassium ion, 3) large conductance (223.7 pS+/-9.2 pS), 4) dependence of [Ca(2+)](i). Intracellular application of H2O2 decreased the open probability (P(o)) of BK(Ca) at low concentration (Ca) at high concentration (5 mmol/L), without affecting the unitary conductance. The effects of H2O2 were reversed by reducing agent dithiothreitol (DTT). Similarly, cysteine specific oxidizing agent, DTNB, also increased or decreased P(o) of BK(Ca) and DTT partially reversed the effect of DTNB. It is thus suggested that H2O2 and DTNB may modulate P(o) of BK(Ca) via the oxidation of cysteine residue.

  2. Effectiveness and Complications of Percutaneous Needle Tenotomy with a Large Needle for Muscle Contractures: A Cadaver Study.

    Directory of Open Access Journals (Sweden)

    Camille Chesnel

    Full Text Available Twenty-two percent of institutionalised elderly persons have muscle contractures. Contractures have important functional consequences, rendering hygiene and positioning in bed or in a chair difficult. Medical treatment (such as botulinum toxin injections, physiotherapy or positioning is not very effective and surgery may be required. Surgery is carried out in the operating theatre, under local or general anaesthesia but is often not possible in fragile patients. Mini-invasive tenotomy could be a useful alternative as it can be carried out in ambulatory care, under local anaesthesia.To evaluate the effectiveness of percutaneous needle tenotomy and the risks of damage to adjacent structures in cadavers.Thirty two doctors who had never practiced the technique (physical medicine and rehabilitation specialists, geriatricians and orthopaedic surgeons carried out 401 tenotomies on the upper and lower limbs of 8 fresh cadavers. A 16G needle was used percutaneous following location of the tendons. After each tenotomy, a neuro-orthopaedic surgeon and an anatomist dissected the area in order to evaluate the success of the tenotomy and any adjacent lesions which had occurred.Of the 401 tenotomies, 72% were complete, 24.9% partial and 2.7% failed. Eight adjacent lesions occurred (2%: 4 (1% in tendons or muscles, 3 (0.7% in nerves and 1 (0.2% in a vessel.This percutaneous needle technique effectively ruptured the desired tendons, with few injuries to adjacent structures. Although this study was carried out on cadavers, the results suggest it is safe to carry out on patients.

  3. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

    Science.gov (United States)

    Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D; Fiege, Jessica K; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W

    2016-12-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague-Dawley rats (275-300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA-Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. © 2016 American Heart Association, Inc.

  4. Case report: a unique pediatric case of a primary CD8 expressing ALK-1 positive anaplastic large cell lymphoma of skeletal muscle

    Directory of Open Access Journals (Sweden)

    Gaiser Timo

    2012-04-01

    Full Text Available Abstract Primary involvement of skeletal muscle is a very rare event in ALK-1 positive anaplastic large cell lymphoma (ALCL. We describe a case of a 10-year old boy presenting with a three week history of pain and a palpable firm swelling at the dorsal aspect of the left thigh. Histological examination of the lesion revealed a tumoral and diffuse polymorphic infiltration of the muscle by large lymphoid cells. Tumor cells displayed eccentric, lobulated "horse shoe" or "kidney-shape" nuclei. The cells showed immunohistochemical positivity for CD30, ALK-1, CD2, CD3, CD7, CD8, and Perforin. Fluorescence in situ hybridization analysis revealed a characteristic rearrangement of the ALK-1 gene in 2p23 leading to the diagnosis of ALK-1 positive ALCL. Chemotherapy according to the ALCL-99-NHL-BFM protocol was initiated and resulted in a complete remission after two cycles. This case illustrates the unusual presentation of a pediatric ALCL in soft tissue with a good response to chemotherapy.

  5. Aetiology of skeletal muscle 'cramps' during exercise: a novel hypothesis.

    Science.gov (United States)

    Schwellnus, M P; Derman, E W; Noakes, T D

    1997-06-01

    The aetiology of exercise-associated muscle cramps (EAMC), defined as 'painful, spasmodic, involuntary contractions of skeletal muscle during or immediately after physical exercise', has not been well investigated and is therefore not well understood. This review focuses on the physiological basis for skeletal muscle relaxation, a historical perspective and analysis of the commonly postulated causes of EAMC, and known facts about EAMC from recent clinical studies. Historically, the causes of EAMC have been proposed as (1) inherited abnormalities of substrate metabolism ('metabolic theory') (2) abnormalities of fluid balance ('dehydration theory'), (3) abnormalities of serum electrolyte concentrations ('electrolyte theory') and (4) extreme environmental conditions of heat or cold ('environmental theory'). Detailed analyses of the available scientific literature including data from recent studies do not support these hypothesis for the causes of EAMC. In a recent study, electromyographic (EMG) data obtained from runners during EAMC revealed that baseline activity is increased (between spasms of cramping) and that a reduction in the baseline EMG activity correlates well with clinical recovery. Furthermore, during acute EAMC the EMG activity is high, and passive stretching is effective in reducing EMG activity. This relieves the cramp probably by invoking the inverse stretch reflex. In two animal studies, abnormal reflex activity of the muscle spindle (increased activity) and the Golgi tendon organ (decreased activity) has been observed in fatigued muscle. We hypothesize that EAMC is caused by sustained abnormal spinal reflex activity which appears to be secondary to muscle fatigue. Local muscle fatigue is therefore responsible for increased muscle spindle afferent and decreased Golgi tendon organ afferent activity. Muscles which cross two joints can more easily be placed in shortened positions during exercise and would therefore decrease the Golgi tendon organ

  6. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters

    Directory of Open Access Journals (Sweden)

    Jinzhong Jeremy Goh

    2013-01-01

    Full Text Available Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP and long-term depression (LTD, it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction in mice in the CA1 region has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7 or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g. 900 pulses given twice at 5 min intervals, or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g. learning conditions.

  7. Repeated Muscle Injury as a Presumptive Trigger for Chronic Masticatory Muscle Pain

    Directory of Open Access Journals (Sweden)

    Dean Dessem

    2011-01-01

    Full Text Available skeletal muscles sustain a significant loss of maximal contractile force after injury, but terminally damaged fibers can eventually be replaced by the growth of new muscle (regeneration, with full restoration of contractile force over time. After a second injury, limb muscles exhibit a smaller reduction in maximal force and reduced inflammation compared with that after the initial injury (i.e., repeated bout effect. In contrast, masticatory muscles exhibit diminished regeneration and persistent fibrosis, after a single injury; following a second injury, plasma extravasation is greater than after a single injury and maximal force is decreased more than after the initial injury. Thus, masticatory muscles do not exhibit a repeated bout effect and are instead increasingly damaged by repeated injury. We propose that the impaired ability of masticatory muscles to regenerate contributes to chronic muscle pain by leading to an accumulation of tissue damage, fibrosis, and a persistent elevation and prolonged membrane translocation of nociceptive channels such as P2X3 as well as enhanced expression of neuropeptides including CGRP within primary afferent neurons. These transformations prime primary afferent neurons for enhanced responsiveness upon subsequent injury thus triggering and/or exacerbating chronic muscle pain.

  8. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.

    Directory of Open Access Journals (Sweden)

    James H Peters

    Full Text Available TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS. TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5 direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.

  9. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum.

    Science.gov (United States)

    Feng, Bin; Brumovsky, Pablo R; Gebhart, Gerald F

    2010-03-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception.

  10. The future of GI and liver research: editorial perspectives. IV. Visceral afferents: an update.

    Science.gov (United States)

    Raybould, Helen E

    2003-06-01

    The number of articles published in American Journal of Physiology Gastrointestinal and Liver Physiology over the last 15 years on visceral afferents has increased dramatically. This reflects our growing ability to study the characteristics and function of visceral afferents and also the recognition of their importance in the maintenance of homeostasis and also in a number of pathophysiological conditions. However, there are several key unanswered questions concerning the function of visceral afferents that await further investigation.

  11. Degeneration of primary afferent terminals following brachial plexus extensive avulsion injury in rats

    OpenAIRE

    Muñetón-Gómez, Vilma; Taylor, Julian S.; Averill, Sharon; Priestley, John V.; Nieto-Sampedro, Manuel

    2004-01-01

    Important breakthroughs in the understanding regeneration failure in an injured CNS have been made by studies of primary afferent neurons. Dorsal rhizotomy has provided an experimental model of brachial plexus (BP) avulsion. This is an injury in which the central branches of primary afferents are disrupted at their point of entry into the spinal cord, bringing motor and sensory dysfunction to the upper limbs. In the present work, the central axonal organization of primary afferents was examin...

  12. Kv1 channels and neural processing in vestibular calyx afferents

    Directory of Open Access Journals (Sweden)

    Frances L Meredith

    2015-06-01

    Full Text Available Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space.

  13. Distal Traditional Acupuncture Points of the Large Intestinal Meridian and the Stomach Meridian Differently Affect Heart Rate Variability and Oxygenation of the Trapezius Muscle

    Directory of Open Access Journals (Sweden)

    Yukiko Shiro

    2014-01-01

    Full Text Available Physicians in traditional Chinese medicine have found that acupoints and meridians have effects on specific parts of the body. The aim of this study was to see how acupressure at distal acupuncture points of a specific meridian affects heart rate variability (HRV and oxygenation of the trapezius muscle. Forty-one female participants were randomly allocated to three groups. Subjects in the Stomach Meridian acupuncture point (ST group received acupressure at ST 34, ST 36, and ST 41, subjects in the Large Intestinal Meridian acupuncture point (LI group received acupressure at LI 4, LI 10, and LI 11, and subjects in the control group did not receive any stimuli. HRV and oxygenation of the trapezius muscles were measured. The high frequency components of HRV in the control and LI groups tended to be higher than those in the ST group. Total hemoglobin in the control and LI groups eventually reached significantly higher levels than in the ST group. While oxyhemoglobin (ΔO2Hb in the control and LI groups did not change, ΔO2Hb in the ST significantly decreased temporarily.

  14. Involvement of large-conductance Ca2+-activated K+ channels in chloroquine-induced force alterations in pre-contracted airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ming-Yu Wei

    Full Text Available The participation of large-conductance Ca2+ activated K+ channels (BKs in chloroquine (chloro-induced relaxation of precontracted airway smooth muscle (ASM is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs and chloro both completely blocked spontaneous transient outward currents (STOCs in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs. We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH. Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax, BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.

  15. Anatomy and physiology of the afferent visual system.

    Science.gov (United States)

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders.

  16. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley

    2015-08-01

    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  17. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    Science.gov (United States)

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  18. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    Science.gov (United States)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  19. Latissimus dorsi muscle-flap over Gore-Tex patch for coverage of large thoracic defects in paediatric Ewing sarcoma.

    Science.gov (United States)

    Gapany, Christophe; Raffoul, Wassim; Zambelli, Pierre-Yves; Joseph, Jean-Marc

    2009-05-01

    Primary rib involvement accounts for 16% of paediatric Ewing sarcoma (ES). Neo-adjuvant chemotherapy and surgical tumor resection may leave large thoracic wall defects requiring complex reconstruction in a growing individual. We report our experience in three children aged 3, 10, and 12 years, in whom single-stage resection and reconstruction were performed using a Gore-Tex Dualmesh patch, covered by a latissimus dorsi rotation flap harvested in continuity with the thoracolumbar fascia. The youngest patient also had a vertical expandable prosthetic titanium rib (VEPTR) anchored to help prevent subsequent scoliosis throughout growth. (c) 2009 Wiley-Liss, Inc.

  20. Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition.

    Science.gov (United States)

    Tsang, Philemon; Jacobs, Mark F; Lee, Kevin G H; Asmussen, Michael J; Zapallow, Christopher M; Nelson, Aimee J

    2014-11-01

    The present study investigated the effects of continuous theta-burst stimulation (cTBS) over primary somatosensory (SI) and motor (M1) cortices on motor-evoked potentials (MEPs) and short-latency afferent inhibition (SAI). MEPs and SAI were recorded from the first dorsal interosseous (FDI) muscle of the right hand following 30Hz cTBS over left-hemisphere SI and M1 delivered to the same participants in separate sessions. Measurements were taken before and up to 60min following cTBS. CTBS over M1 suppressed MEPs and did not alter SAI. In contrast cTBS over SI facilitated MEPs and decreased median and digital nerve evoked SAI. These findings indicate that SAI amplitude is influenced by cTBS over SI but not M1, suggesting an important role for SI in the modulation of this circuit. These data provide further evidence that cTBS over SI versus M1 has opposite effects on corticospinal excitability. To date, plasticity-inducing TMS protocols delivered over M1 have failed to modulate SAI, and the present research continues to support these findings. However, in young adults, cTBS over SI acts to reduce SAI and simultaneously increase corticospinal excitability. Future studies may investigate the potential to modulate SAI via targeting neural activity within SI. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla.

    Science.gov (United States)

    Hirvonen, Timo P; Minor, Lloyd B; Hullar, Timothy E; Carey, John P

    2005-02-01

    Gentamicin is toxic to vestibular hair cells, but its effects on vestibular afferents have not been defined. We treated anesthetized chinchillas with one injection of gentamicin (26.7 mg/ml) into the middle ear and made extracellular recordings from afferents after 5-25 (early) or 90-115 days (late). The relative proportions of regular, intermediate, and irregular afferents did not change after treatment. The spontaneous firing rate of regular afferents was lower (P galvanic currents was unaffected for all afferents. Intratympanic gentamicin treatment reduced the histological density of all hair cells by 57% (P = 0.04). The density of hair cells with calyx endings was reduced by 99% (P = 0.03), although some remaining hair cells had other features suggestive of type I morphology. Type II hair cell density was not significantly reduced. These findings suggest that a single intratympanic gentamicin injection causes partial damage and loss of vestibular hair cells, particularly type I hair cells or their calyceal afferent endings, does not damage the afferent spike initiation zones, and preserves enough hair cell synaptic activity to drive the spontaneous activity of vestibular afferents.

  2. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents

    NARCIS (Netherlands)

    van de Wall, EHEM; Duffy, P; Ritter, RC

    2005-01-01

    Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhanc

  3. Modulation of gastrointestinal afferent sensitivity by a novel substituted benzamide (ecabapide).

    Science.gov (United States)

    Jiang, W; Grundy, D

    2000-01-14

    The effects of ecabapide, a novel substituted benzamide compound (3-[2-(3,4-dimethoxyphenyl)ethylcarbamoylmethyl]amino-N-methylb enzamide) that has gastrointestinal prokinetic action, were examined on the discharge of extrinsic afferent nerves supplying the stomach and jejunum in anaesthetized rats. Ecabapide (60 and 180 microg kg(-1), i.v.) had no effect on the baseline discharge of vagal gastric distension-sensitive afferents or the stimulus-response profile to gastric distension. Ecabapide also had no effect on either spontaneous jejunal mesenteric afferent nerve discharge or responses to intestinal distension. Ecabapide (180 microg kg(-1)) significantly inhibited the maximum discharge of jejunal afferents induced by cholecystokinin (CCK8; 50 pmol, i.v.), whereas it failed to inhibit the excitatory action of 2-methyl-5-hydroxytryptamine (2Me-5-HT; 10 microg, i.v.), a selective 5-HT3 receptor agonist. A model of acute focal intestinal ischaemia was used to evaluate the actions of ecabapide on the discharge of activated jejunal afferents. Ischaemia produced a substantial increase in afferent discharge which was reproducible when the duration of ischaemia was limited to less than 10 min and repeated every 15 min. Ecabapide at doses of 60 and 180 microg kg(-1) significantly reduced ischaemia-induced increases in afferent discharge. In addition to its therapeutic efficacy as a gastrointestinal prokinetic agent, these findings show also that ecabapide may also have an inhibitory action on the discharge of intestinal afferents activated by ischaemia.

  4. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: II. Phase asymmetry.

    Science.gov (United States)

    Spardy, Lucy E; Markin, Sergey N; Shevtsova, Natalia A; Prilutsky, Boris I; Rybak, Ilya A; Rubin, Jonathan E

    2011-12-01

    In this paper we analyze a closed loop neuromechanical model of locomotor rhythm generation. The model is composed of a spinal central pattern generator (CPG) and a single-joint limb, with CPG outputs projecting via motoneurons to muscles that control the limb and afferent signals from the muscles feeding back to the CPG. In a preceding companion paper (Spardy et al 2011 J. Neural Eng. 8 065003), we analyzed how the model generates oscillations in the presence or absence of feedback, identified curves in a phase plane associated with the limb that signify where feedback levels induce phase transitions within the CPG, and explained how increasing feedback strength restores oscillations in a model representation of spinal cord injury; from these steps, we derived insights about features of locomotor rhythms in several scenarios and made predictions about rhythm responses to various perturbations. In this paper, we exploit our analytical observations to construct a reduced model that retains important characteristics from the original system. We prove the existence of an oscillatory solution to the reduced model using a novel version of a Melnikov function, adapted for discontinuous systems, and also comment on the uniqueness and stability of this solution. Our analysis yields a deeper understanding of how the model must be tuned to generate oscillations and how the details of the limb dynamics shape overall model behavior. In particular, we explain how, due to the feedback signals in the model, changes in the strength of a tonic supra-spinal drive to the CPG yield asymmetric alterations in the durations of different locomotor phases, despite symmetry within the CPG itself.

  5. Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP-/- mice with cyclophosphamide (CYP)-induced cystitis

    DEFF Research Database (Denmark)

    Jensen, Dorthe G; Studeny, Simon; May, Victor

    2008-01-01

    The expression of phosphorylated cAMP response element binding protein (p-CREB) in dorsal root ganglia (DRG) with and without cyclophosphamide (CYP)-induced cystitis (150 mg/kg, i.p; 48 h) was determined in VIP(-/-) and wild-type (WT) mice. p-CREB immunoreactivity (IR) was determined in bladder...... (Fast blue) afferent cells. Nerve growth factor (NGF) bladder content was determined by enzyme-linked immunosorbent assays. Basal expression of p-CREB-IR in DRG of VIP(-/-) mice was (p .... Detrusor smooth muscle thickness was significantly increased in VIP(-/-) mice. Bladder NGF expression may contribute to differences in p-CREB expression....

  6. Total Reconstruction of the Afferent Loop for Treatment of Radiation-Induced Afferent Loop Obstruction with Segmental Involvement after Pancreaticoduodenectomy with Roux-en-Y Reconstruction

    Directory of Open Access Journals (Sweden)

    Konstantinos Blouhos

    2013-08-01

    Full Text Available As the literature on afferent loop obstruction (ALO after pancreaticoduodenectomy (PD is very limited, standardized rules for its management do not exist. Herein, we report the case of a 65-year-old male patient with chronic ALO who had undergone PD with single Roux-en-Y limb reconstruction and adjuvant chemoradiation therapy for pancreatic head adenocarcinoma 2 years earlier. The patient was brought to the operating room with the diagnosis of radiation enteritis of the afferent loop with segmental involvement and concurrent hepaticojejunostomy (HJ and pancreaticojejunostomy (PJ stricture. Complete mobilization of the afferent loop, removal of the affected segment and reconstruction were performed. Reconstruction of the afferent loop was a one-way option for the surgeons because the Roux-en-Y reconstruction limited endoscopic access to the afferent loop, and the segmental radiation injury of the afferent loop ruled out bypass surgery. However, mobilization of the affected segment through a field of dense adhesions and revision of the HJ and PJ were technically demanding.

  7. Vagal and splanchnic afferent nerves are not essential for anorexia associated with abomasal parasitism in sheep.

    Science.gov (United States)

    Fox, M T; Reynolds, G W; Scott, I; Simcock, D C; Simpson, H V

    2006-02-18

    Heavy burdens of the abomasal nematode, Ostertagia (Telodorsagia) circumcincta, in growing lambs result in a reduction in liveweight gain due largely to a drop in voluntary feed intake. The present study investigated: (1) the role of subdiaphragmatic vagal and non-vagal visceral afferent nerves in mediating a reduction in voluntary feed intake, using subdiaphragmatic vagal deafferentation (vagotomy) either alone or in combination with coeliac-superior mesenteric ganglionectomy (vagotomy and sympathectomy); and (2) the association between appetite, abomasal pH, selected blood values (amidated gastrin (G-17-amide), glycine-extended gastrin (G-17-Gly), pepsinogen and leptin) and worm burden, in sheep experimentally infected with 100,000 O. circumcincta infective larvae per os. Neither vagotomy alone nor vagotomy and sympathectomy in combination adversely affected the establishment or course of development of the parasite burden, when compared with a control group subject to sham surgery. Furthermore, neither surgical procedure prevented the drop in appetite seen 5-10 days post-infection, although combined vagotomy and sympathectomy did reduce voluntary feed intake prior to the start of the study. Ostertagia infection resulted in a significant increase in abomasal pH in all three groups, which was accompanied by an increase in blood G-17-amide and in G-17-Gly, the latter reported for the first time in parasitized ruminants. There were no significant differences in blood leptin, also reported for the first time in parasitized sheep, either between groups or in comparison with pre-infection levels, though weak negative correlations were established between blood leptin and appetite from day 5 to the end of the study in all three groups and a positive correlation with blood G-17-amide in the control group over the same period. These data suggest that neither intact subdiaphragmatic vagal afferent nerves or coeliac-superior mesenteric ganglion fibres, nor changes in

  8. Block-step asymmetry 5 years after large-head metal-on-metal total hip arthroplasty is related to lower muscle mass and leg power on the implant side.

    Science.gov (United States)

    Hjorth, M H; Stilling, M; Lorenzen, N D; Jakobsen, S S; Soballe, K; Mechlenburg, I

    2014-06-01

    Metal-on-metal articulations mimic the human hip anatomy, presumably lower dislocation rates and increase the range-of-motion. This study aims to measure the muscle mass and power of both legs in patients with unilateral metal-on-metal total hip arthroplasty, and to investigate their effect on block-step test, spatio-temporal gait parameters and self-reported function. Twenty-eight patients (7 women), mean age 50 (28-68) years, participated in a 5-7 year follow-up. Patients had received one type unilateral large-head metal-on-metal total hip articulation, all of which were well-functioning at follow-up. Mean muscle mass was measured by the total-body Dual energy X-ray Absorption scans, and muscle power was measured in a leg extensor power rig. Block-step test and spatio-temporal gait parameters were measured with an inertial measurement unit. Self-reported function was assessed by the Hip Disability and Osteoarthritis Outcome Score. We found a significant difference between the mean muscle mass of the implant-side leg and the non-implant-side leg in hip, thigh and calf areas (Pmuscle power (P=0.025). Correlations between mean muscle mass and mean muscle power were significant for both the implant-side leg (r=0.45, P=0.018) and the non-implant-side leg (r=0.51, P=0.007). The difference in mean muscle power between legs correlated with block-step test asymmetry during ascending (r=0.40, P=0.047) and descending (r=0.53, P=0.006). Correlations between self-reported function and power of the implant-side leg were not significant. Young patients have not fully regained muscle mass, muscle power and function 5-7 years after metal-on-metal total hip arthroplasty. Copyright © 2014. Published by Elsevier Ltd.

  9. Muscle Disorders

    Science.gov (United States)

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  10. Muscle Cramps

    Science.gov (United States)

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur ... minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves that malfunction. Sometimes ...

  11. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    Science.gov (United States)

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  12. Experimental muscle pain decreases the frequency threshold of electrically elicited muscle cramps.

    Science.gov (United States)

    Serrao, Mariano; Arendt-Nielsen, Lars; Ge, Hong-You; Pierelli, Francesco; Sandrini, Giorgio; Farina, Dario

    2007-09-01

    This study in humans tested the hypothesis that nociceptive muscle afferent input facilitates the occurrence of muscle cramps. In 13 healthy adults, muscle cramps were experimentally induced in the foot by stimulating the tibialis posterior nerve at the ankle with 2-s bursts of stimuli separated by 30 s, with stimulation frequency increasing by 2-Hz increments from 10 Hz until the cramp appeared. The minimum stimulation frequency that induced the cramp was defined "cramp frequency threshold". In 2 days, elicitation of the cramp was performed in the two-feet with and without (baseline condition) injection of hypertonic (painful condition) or isotonic (control condition) saline into the deep midportion of the flexor hallucis brevis muscle, from where surface EMG signals were recorded. The cramp frequency threshold was lower for the painful condition with respect to its baseline (mean +/- SE, hypertonic saline: 25.7 +/- 2.1 Hz, corresponding baseline: 31.2 +/- 2.8 Hz; P cramp than immediately before the stimulation that elicited the cramp (pre-cramp: 13.9 +/- 1.6 muV and 75.4 +/- 3.8 Hz, respectively; post-cramp: 19.9 +/- 3.2 muV and 101.6 +/- 6.0 Hz; P muscle afferent activity induced by injection of hypertonic saline facilitates the generation of electrically elicited muscle cramps.

  13. Task-dependent changes in the responses to low-threshold cutaneous afferent volleys in the human lower limb.

    Science.gov (United States)

    Burke, D; Dickson, H G; Skuse, N F

    1991-01-01

    1. In seven human subjects who were standing without support the sural nerves were stimulated electrically using trains of non-painful stimuli (five pulses at 300 Hz), designed to activate afferents from cutaneous mechanoreceptors. The reflex effects of the stimulus train on different muscles of the ipsilateral and contralateral legs were sought in post-stimulus averages of rectified EMG. Changes in the pattern of reflex influence were investigated when the subjects maintained different postures. 2. Clear reflex responses were seen in ipsilateral tibialis anterior, soleus, biceps femoris and vastus lateralis, but only when the muscles were actively contracting. In each muscle, inhibition was the dominant reflex response within the first 100 ms. In four of the seven subjects, reflex changes were detectable in the contralateral tibialis anterior and soleus, the peak-to-peak modulation within the first 200 ms being 25-50% of that for the homologous ipsilateral muscle. 3. When subjects attempted to stand on a tilted platform, an unstable platform or on one leg with the other flexed, different combinations of muscles were active, involving both flexors and extensors or predominantly flexors or predominantly extensors. In each posture the reflex effects were demonstrable only in the active muscles. 4. With ipsilateral tibialis anterior, there were task-dependent changes in the short-latency components of the EMG response, approximately 60 ms and 80 ms after the stimulus. When seated performing voluntary contractions these components were difficult to define, and when standing on a platform tilted toe-up they were small. When the ipsilateral leg was flexed or when standing on an unstable base, these early components were more prominent in each subject. With contralateral tibialis anterior, the dominant reflex pattern was inhibition when seated and contracting voluntarily, and facilitation during bipedal stance tilted toe-up. These changes in reflex pattern could not be

  14. Trichinella spiralis in human muscle (image)

    Science.gov (United States)

    This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked ... produce large numbers of larvae that migrate into muscle tissue. The cysts may cause muscle pain and ...

  15. Distribution of presumptive chemosensory afferents with FMRFamide- or substance P-like immunoreactivity in decapod crustaceans.

    Science.gov (United States)

    Schmidt, M

    1997-01-23

    In five species of decapod crustaceans--Cherax destructor (crayfish), Carcinus maenas (crab), Homarus americanus (clawed lobster), Eriocheir sinensis (crab), Macrobrachium rosenbergii (shrimp)--immunocytochemical stainings revealed the presence of sensory afferents with FMRFamide-like immunoreactivity in the central nervous system. These afferents were extremely thin, very numerous, and innervated all sensory neuropils except the optic and olfactory lobes. In their target neuropils they gave rise to condensed net- or ball-like terminal structures. Only in Homarus americanus but not in any other studied species immunocytochemistry revealed a separate, non-overlapping class of sensory afferents with substance P-like immunoreactivity. Also the afferents with substance P-like immunoreactivity were very thin and numerous, innervated all sensory neuropils except optic and olfactory lobes, and gave rise to condensed terminal structures. From their morphological characteristics it can be concluded that likely both classes of afferents are chemosensory. The substance P-like immunoreactivity suggests a link with the nociceptor afferents of vertebrates, with which both classes of afferents share several other morphological features.

  16. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role.

    Science.gov (United States)

    Iwasaki, Yusaku; Yada, Toshihiko

    2012-12-01

    Some gastrointestinal and pancreatic hormones are potently secreted by meal intake and reduce food intake, therefore these hormones play a role in the meal-evoked satiety peptides. Previous reports have demonstrated that peripheral administration of these gastrointestinal or pancreatic hormones decrease feeding and the anorectic effects are abolished by lesions of vagal afferent nerves using surgical or chemical protocols, indicative of the involvement of the vagal afferents. Vagal afferent nerves link between several peripheral organs and the nucleus tractus solitarius of the brainstem. The present review focuses on cholecystokinin, peptide YY(3-36), pancreatic polypeptide, and nesfatin-1 released from endocrine cells of the gut and pancreas. These hormonal peptides directly act on and increase cytosolic Ca(2+) in vagal afferent nodose ganglion neurons and finally suppress food intake via vagal afferents. Therefore, peripheral terminals of vagal afferents could sense gastrointestinal and pancreatic hormones and regulate food intake. Here, we review how the vagal afferent neurons sense a variety of gastrointestinal and pancreatic hormones and discuss its physiological significance in regulation of feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Lipolysis sensation by white fat afferent nerves triggers brown fat thermogenesis.

    Science.gov (United States)

    Garretson, John T; Szymanski, Laura A; Schwartz, Gary J; Xue, Bingzhong; Ryu, Vitaly; Bartness, Timothy J

    2016-08-01

    Metabolic challenges, such as a cold environment, stimulate sympathetic neural efferent activity to white adipose tissue (WAT) to drive lipolysis, thereby increasing the availability of free fatty acids as one source of fuel for brown adipose tissue (BAT) thermogenesis. WAT is also innervated by sensory nerve fibers that network to metabolic brain areas; moreover, activation of these afferents is reported to increase sympathetic nervous system outflow. However, the endogenous stimuli sufficient to drive WAT afferents during metabolic challenges as well as their functional relation to BAT thermogenesis remain unknown. We tested if local WAT lipolysis directly activates WAT afferent nerves, and then assessed whether this WAT sensory signal affected BAT thermogenesis in Siberian hamsters (Phodopus sungorus). 2-deoxyglucose, a sympathetic nervous system stimulant, caused β-adrenergic receptor dependent increases in inguinal WAT (IWAT) afferent neurophysiological activity. In addition, direct IWAT injections of the β3-AR agonist CL316,243 dose-dependently increased: 1) phosphorylation of IWAT hormone sensitive lipase, an indicator of SNS-stimulated lipolysis, 2) expression of the neuronal activation marker c-Fos in dorsal root ganglion neurons receiving sensory input from IWAT, and 3) IWAT afferent neurophysiological activity, an increase blocked by antilipolytic agent 3,5-dimethylpyrazole. Finally, we demonstrated that IWAT afferent activation by lipolysis triggers interscapular BAT thermogenesis through a neural link between these two tissues. These data suggest IWAT lipolysis activates local IWAT afferents triggering a neural circuit from WAT to BAT that acutely induces BAT thermogenesis.

  18. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited

    Directory of Open Access Journals (Sweden)

    Morten B. S. Svendsen

    2016-10-01

    Full Text Available Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1, followed by barracuda (6.2±1.0 m s−1, little tunny (5.6±0.2 m s−1 and dorado (4.0±0.9 m s−1; although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues.

  19. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited

    Science.gov (United States)

    Svendsen, Morten B. S.; Domenici, Paolo; Marras, Stefano; Krause, Jens; Boswell, Kevin M.; Rodriguez-Pinto, Ivan; Wilson, Alexander D. M.; Kurvers, Ralf H. J. M.; Viblanc, Paul E.; Finger, Jean S.; Steffensen, John F.

    2016-01-01

    ABSTRACT Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1), followed by barracuda (6.2±1.0 m s−1), little tunny (5.6±0.2 m s−1) and dorado (4.0±0.9 m s−1); although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues. PMID:27543056

  20. Isolation, Sequence Analysis and Expression Profile of a Novel Swine Gene Differentially Expressed in the Longissimus Dorsi Muscle Tissues from Landrace×Large White Cross-combination

    Institute of Scientific and Technical Information of China (English)

    Yong-Gang LIU; Yuan-Zhu XIONG; Chang-Yan DENG

    2005-01-01

    The mRNA differential display technique was performed to investigate the differences in gene expression in the Longissimus dorsi muscle tissues from Landrace×Large White cross-combination. One novel gene that was differentially expressed was identified using semi-quantitative reverse transcriptasepolymerase chain reaction (RT-PCR) and its complete cDNA sequence was obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 260 amino acids that contains the putative conserved domain of the carbonic anhydrase,and this protein has high homology with the carbonic anhydrase Ⅲ (CA-Ⅲ) of four species-mouse (91%),horse (91%), rat (89%) and human (86%)-so that it can be defined as swine carbonic anhydrase Ⅲ. The phylogenetic tree analysis revealed that the swine CA-Ⅲ has a closer genetic relationship with the horse CA-Ⅲ than with those of mouse, rat and human. The tissue expression analysis indicated that the swine CA-Ⅲ gene is generally expressed in most tissues. Our experiment is the first to establish the primary foundation for further research on the swine CA-Ⅲ gene.

  1. Wavelet Packet Analysis for Angular Data Extraction from Muscle Afferent Cuff Electrode Signals

    Science.gov (United States)

    2001-10-25

    from rabbits. In order to estimate ankle flexion /extension angles, we recorded ENG signals from the left Tibial and Peroneal nerves, both during FES...study, angle predictions have yet to be assessed regarding inter-rabbit variability. Keywords – Natural sensors, neural prosthesis , implanted cuff...fixating the knee and ankle joints in place (see [3] for more details) . For extracting the ENG signals, tripolar cuff electrodes were implanted onto the

  2. Within-step modulation of leg muscles activity by afferent feedback in human walking

    DEFF Research Database (Denmark)

    Klint, Richard af; Nielsen, Jens Bo; Cole, Jonathan D.;

    2008-01-01

    .153+/-0.051; 3 degrees : 0.156+/-0.053) and significantly decreased when the platform was declined (-3 degrees : 0.133+/-0.048; -2 degrees : 0.132+/-0.049) compared with level walking (0.141+/-0.048) for the able-bodied subjects. A similar experiment was performed with a subject who lacked proprioception...

  3. Opioid Actions in Primary-Afferent Fibers—Involvement in Analgesia and Anesthesia

    Directory of Open Access Journals (Sweden)

    Tsugumi Fujita

    2011-01-01

    Full Text Available Opioids inhibit glutamatergic excitatory transmission from the periphery by activating G-protein coupled opioid receptors in the central terminals of primary-afferent neurons in the spinal substantia gelatinosa, resulting in antinociception. Opioid receptor activation in the peripheral terminals of primary-afferent neurons inhibits the production of action potentials in response to nociceptive stimuli given to the periphery, leading to antinociception. Opioids also exhibit a local anesthetic effect without opioid receptor activation in peripheral nerve fibers. This review article will focus on analgesia and anesthesia produced by the actions of opioids on primary-afferent fibers.

  4. Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat.

    Science.gov (United States)

    Ollivier-Lanvin, Karen; Krupka, Alexander J; AuYong, Nicholas; Miller, Kassi; Prilutsky, Boris I; Lemay, Michel A

    2011-05-01

    Sensory feedback plays a crucial role in the control of locomotion and in the recovery of function after spinal cord injury. Investigations in reduced preparations have shown that the locomotor cycle can be modified through the activation of afferent feedback at various phases of the gait cycle. We investigated the effect of phase-dependent electrical stimulation of a cutaneous afferent nerve on the locomotor pattern of trained spinal cord-injured cats. Animals were first implanted with chronic nerve cuffs on the sural and sciatic nerves and electromyographic electrodes in different hindlimb muscles. Cats were then transected at T12 and trained daily to locomote on a treadmill. We found that electrical stimulation of the sural nerve can enhance the ongoing flexion phase, producing higher (+129%) and longer (+17.4%) swing phases of gait even at very low threshold of stimulation. Sural nerve stimulation can also terminate an ongoing extension and initiate a flexion phase. A higher prevalence of early switching to the flexion phase was observed at higher stimulation levels and if stimulation was applied in the late stance phase. All flexor muscles were activated by the stimulation. These results suggest that electrical stimulation of the sural nerve may be used to increase the magnitude of the swing phase and control the timing of its onset after spinal cord injury and locomotor training.

  5. Large conductance Ca2+-activated K+ channel (BKCa α-subunit splice variants in resistance arteries from rat cerebral and skeletal muscle vasculature.

    Directory of Open Access Journals (Sweden)

    Zahra Nourian

    Full Text Available Previous studies report functional differences in large conductance Ca2+ activated-K+ channels (BKCa of smooth muscle cells (VSMC from rat cerebral and cremaster muscle resistance arteries. The present studies aimed to determine if this complexity in BKCa activity may, in part, be due to splice variants in the pore-forming α-subunit. BKCa variants in the intracellular C terminus of the α-subunit, and their relative expression to total α-subunit, were examined by qPCR. Sequencing of RT-PCR products showed two α-subunit variants, ZERO and STREX, to be identical in cremaster and cerebral arteries. Levels of STREX mRNA expression were, however, significantly higher in cremaster VSMCs (28.9±4.2% of total α-BKCa compared with cerebral vessels (16.5±0.9%. Further, a low level of BKCa SS4 α-subunit variant was seen in cerebral arteries, while undetectable in cremaster arteries. Protein biotinylation assays, in expression systems and arterial preparations, were used to determine whether differences in splice variant mRNA expression affect surface membrane/cytosolic location of the channel. In AD-293 and CHO-K1 cells, rat STREX was more likely to be located at the plasma membrane compared to ZERO, although the great majority of channel protein was in the membrane in both cases. Co-expression of β1-BKCa subunit with STREX or ZERO did not influence the dominant membrane expression of α-BKCa subunits, whereas in the absence of α-BKCa, a significant proportion of β1-subunit remained cytosolic. Biotinylation assays of cremaster and cerebral arteries showed that differences in STREX/ZERO expression do not alter membrane/cytosolic distribution of the channel under basal conditions. These data, however, revealed that the amount of α-BKCa in cerebral arteries is approximately 20X higher than in cremaster vessels. Thus, the data support the major functional differences in BKCa activity in cremaster, as compared to cerebral VSMCs, being related to total

  6. Skeletal muscle

    Science.gov (United States)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  7. Lipopolysaccharide-induced hyperalgesia of intracranial capsaicin sensitive afferents in conscious rats

    NARCIS (Netherlands)

    Kemper, RHA; Spoelstra, MB; Meijler, WJ; Ter Horst, GJ

    1998-01-01

    Migraineous and non-migraineous headache is reported to be at highest intensity after an infection. This study investigated whether activation of the immune system can induce hyperalgesia in intracranial capsaicin sensitive afferents. The effects of intraperitoneal injected lipopolysaccharides (LPS)

  8. Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission.

    Science.gov (United States)

    Bagnall, Martha W; Hull, Court; Bushong, Eric A; Ellisman, Mark H; Scanziani, Massimo

    2011-07-14

    Thalamic afferents supply the cortex with sensory information by contacting both excitatory neurons and inhibitory interneurons. Interestingly, thalamic contacts with interneurons constitute such a powerful synapse that even one afferent can fire interneurons, thereby driving feedforward inhibition. However, the spatial representation of this potent synapse on interneuron dendrites is poorly understood. Using Ca imaging and electron microscopy we show that an individual thalamic afferent forms multiple contacts with the interneuronal proximal dendritic arbor, preferentially near branch points. More contacts are correlated with larger amplitude synaptic responses. Each contact, consisting of a single bouton, can release up to seven vesicles simultaneously, resulting in graded and reliable Ca transients. Computational modeling indicates that the release of multiple vesicles at each contact minimally reduces the efficiency of the thalamic afferent in exciting the interneuron. This strategy preserves the spatial representation of thalamocortical inputs across the dendritic arbor over a wide range of release conditions.

  9. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin.

    Science.gov (United States)

    de Lartigue, Guillaume; de La Serre, Claire Barbier; Raybould, Helen E

    2011-11-30

    The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the CNS and influences both GI function and feeding behavior. Vagal afferent neurons (VAN) express receptors for many of the regulatory peptides and molecules released from the intestinal wall, pancreas, and adipocytes that influence GI function, glucose homeostasis, and regulate food intake and body weight. As such, they play a critical role in both physiology and pathophysiology, such as obesity, where there is evidence that vagal afferent function is altered. This review will summarize recent findings on changes in vagal afferent function in response to ingestion of high fat diets and explore the hypothesis that changes in gut microbiota and integrity of the epithelium may not only be important in inducing these changes but may be the initial events that lead to dysregulation of food intake and body weight in response to high fat, high energy diets.

  10. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation

    National Research Council Canada - National Science Library

    Ueno, Hiroaki; Nakazato, Masamitsu

    2016-01-01

    .... Of such peptides, gut peptides are known to bind to receptors at the vagal afferent pathway terminal that extend into the mucosal layer of the digestive tract, modulate the electrical activity...

  11. Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing

    Science.gov (United States)

    Hickman, Tyler T.; Liberman, M. Charles

    2015-01-01

    Normal hearing requires proper differentiation of afferent ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) that carry acoustic information to the brain. Within individual IHCs, presynaptic ribbons show a size gradient with larger ribbons on the modiolar face and smaller ribbons on the pillar face. This structural gradient is associated with a gradient of spontaneous rates and threshold sensitivity, which is essential for a wide dynamic range of hearing. Despite their importance for hearing, mechanisms that direct ribbon differentiation are poorly defined. We recently identified adenomatous polyposis coli protein (APC) as a key regulator of interneuronal synapse maturation. Here, we show that APC is required for ribbon size heterogeneity and normal cochlear function. Compared with wild-type littermates, APC conditional knock-out (cKO) mice exhibit decreased auditory brainstem responses. The IHC ribbon size gradient is also perturbed. Whereas the normal-developing IHCs display ribbon size gradients before hearing onset, ribbon sizes are aberrant in APC cKOs from neonatal ages on. Reporter expression studies show that the CaMKII-Cre used to delete the floxed APC gene is present in efferent olivocochlear (OC) neurons, not IHCs or SGNs. APC loss led to increased volumes and numbers of OC inhibitory dopaminergic boutons on neonatal SGN fibers. Our findings identify APC in efferent OC neurons as essential for regulating ribbon heterogeneity, dopaminergic terminal differentiation, and cochlear sensitivity. This APC effect on auditory epithelial cell synapses resembles interneuronal and nerve–muscle synapses, thereby defining a global role for APC in synaptic maturation in diverse cell types. Significance Statement This study identifies novel molecules and cellular interactions that are essential for the proper maturation of afferent ribbon synapses in sensory cells of the inner ear, and for normal hearing. PMID:26085645

  12. Computed tomographic features of afferent loop syndrome: pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Zissin, R. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Hertz, M. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Paran, H. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Surgery ' A' , Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Osadchy, A. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Gayer, G. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Assaf Harofe Medical Center, Zrifin, Sackler Faculty of Medicine, Tel Aviv (Israel)

    2005-04-15

    This pictorial essay reviews the computed tomography (CT) findings of afferent loop syndrome (ALS) in various pathological conditions to demonstrate the contribution of a common imaging modality-that is, abdominal CT, used nowadays for various abdominal complaints-to the diagnosis of ALS. ALS is caused by obstruction of the duodenum and jejunum proximal to a gastrojejunostomy anastomosis. It is a rare complication after Billroth II subtotal gastrectomy and even more rare after total or subtotal gastrectomy with Roux-en-Y reconstruction. Although currently advanced medical treatment and endoscopic interventions have dramatically decreased the necessity of surgery for peptic ulcer disease, ALS may appear years after previously common operations. Alternatively, the use of surgical resection for early gastric cancer nowadays leads to an increasing rate of malignancy-related ALS. Clinically, ALS may be difficult to diagnose as its presentation may be vague and nonspecific, but it has a characteristic appearance on CT. Clinicians and radiologists should therefore be familiar with this rare complication. Prompt recognition and correct diagnosis of this syndrome and its probable etiology are important as a guide for treatment. This review illustrates the CT features of ALS in various conditions. (author)

  13. Dynamic GABAergic afferent modulation of AgRP neurons

    Science.gov (United States)

    Garfield, Alastair S; Shah, Bhavik P; Burgess, Christian R; Li, Monica M; Li, Chia; Steger, Jennifer S; Madara, Joseph C; Campbell, John N; Kroeger, Daniel; Scammell, Thomas E; Tannous, Bakhos A; Myers, Martin G; Andermann, Mark L; Krashes, Michael J; Lowell, Bradford B

    2017-01-01

    Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) promote homeostatic feeding at times of caloric insufficiency, yet they are rapidly suppressed by food-related sensory cues prior to ingestion. Here we identify a highly selective inhibitory afferent to AgRP neurons that serves as a neural determinant of this rapid modulation. Specifically, GABAergic projections arising from the ventral compartment of the dorsomedial nucleus of the hypothalamus (vDMH) contribute to the pre-consummatory modulation of ARCAgRP neurons. In a manner reciprocal to ARCAgRP neurons, ARC-projecting leptin receptor (LepR)-expressing GABAergic DMH neurons exhibit rapid activation upon availability of food that additionally reflects the relative value of the food. Thus, DMHLepR neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior. PMID:27643429

  14. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.

    Science.gov (United States)

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2014-10-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  15. External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1.

    Science.gov (United States)

    Hofmann, Mackenzie E; Largent-Milnes, Tally M; Fawley, Jessica A; Andresen, Michael C

    2014-12-01

    The cell-impermeant lidocaine derivative QX-314 blocks sodium channels via intracellular mechanisms. In somatosensory nociceptive neurons, open transient receptor potential vanilloid type 1 (TRPV1) receptors provide a transmembrane passageway for QX-314 to produce long-lasting analgesia. Many cranial primary afferents express TRPV1 at synapses on neurons in the nucleus of the solitary tract and caudal trigeminal nucleus (Vc). Here, we investigated whether QX-314 interrupts neurotransmission from primary afferents in rat brain-stem slices. Shocks to the solitary tract (ST) activated highly synchronous evoked excitatory postsynaptic currents (ST-EPSCs). Application of 300 μM QX-314 increased the ST-EPSC latency from TRPV1+ ST afferents, but, surprisingly, it had similar actions at TRPV1- ST afferents. Continued exposure to QX-314 blocked evoked ST-EPSCs at both afferent types. Neither the time to onset of latency changes nor the time to ST-EPSC failure differed between responses for TRPV1+ and TRPV1- inputs. Likewise, the TRPV1 antagonist capsazepine failed to prevent the actions of QX-314. Whereas QX-314 blocked ST-evoked release, the frequency and amplitude of spontaneous EPSCs remained unaltered. In neurons exposed to QX-314, intracellular current injection evoked action potentials suggesting a presynaptic site of action. QX-314 acted similarly at Vc neurons to increase latency and block EPSCs evoked from trigeminal tract afferents. Our results demonstrate that QX-314 blocked nerve conduction in cranial primary afferents without interrupting the glutamate release mechanism or generation of postsynaptic action potentials. The TRPV1 independence suggests that QX-314 either acted extracellularly or more likely entered these axons through an undetermined pathway common to all cranial primary afferents.

  16. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  17. Muscle disorder

    Science.gov (United States)

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  18. Histological Profile of the Longissimus Dorsi Muscle in Polish Large White and Polish Landrace Pigs and its Effect on Loin Parameters and Intramuscular Fat Content

    National Research Council Canada - National Science Library

    Anna Bereta; Mirosław Tyra; Katarzyna Ropka-Molik; Dorota Wojtysiak; Marian Różycki; Robert Eckert

    2014-01-01

    The objective of this study was to analyse differences in individual fibre types in the histological profile of the longissimus dorsi muscle and their effect on pork carcass lean content and level of intramuscular fat (IMF...

  19. Regulation of Guinea Pig Detrusor Smooth Muscle Excitability by 17β-Estradiol: The Role of the Large Conductance Voltage- and Ca2+-Activated K+ Channels.

    Science.gov (United States)

    Provence, Aaron; Hristov, Kiril L; Parajuli, Shankar P; Petkov, Georgi V

    2015-01-01

    Estrogen replacement therapies have been suggested to be beneficial in alleviating symptoms of overactive bladder. However, the precise regulatory mechanisms of estrogen in urinary bladder smooth muscle (UBSM) at the cellular level remain unknown. Large conductance voltage- and Ca2+-activated K+ (BK) channels, which are key regulators of UBSM function, are suggested to be non-genomic targets of estrogens. This study provides an electrophysiological investigation into the role of UBSM BK channels as direct targets for 17β-estradiol, the principle estrogen in human circulation. Single BK channel recordings on inside-out excised membrane patches and perforated whole cell patch-clamp were applied in combination with the BK channel selective inhibitor paxilline to elucidate the mechanism of regulation of BK channel activity by 17β-estradiol in freshly-isolated guinea pig UBSM cells. 17β-Estradiol (100 nM) significantly increased the amplitude of depolarization-induced whole cell steady-state BK currents and the frequency of spontaneous transient BK currents in freshly-isolated UBSM cells. The increase in whole cell BK currents by 17β-estradiol was eliminated upon blocking BK channels with paxilline. 17β-Estradiol (100 nM) significantly increased (~3-fold) the single BK channel open probability, indicating direct 17β-estradiol-BK channel interactions. 17β-Estradiol (100 nM) caused a significant hyperpolarization of the membrane potential of UBSM cells, and this hyperpolarization was reversed by blocking the BK channels with paxilline. 17β-Estradiol (100 nM) had no effects on L-type voltage-gated Ca2+ channel currents recorded under perforated patch-clamp conditions. This study reveals a new regulatory mechanism in the urinary bladder whereby BK channels are directly activated by 17β-estradiol to reduce UBSM cell excitability.

  20. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle.

    Science.gov (United States)

    Hristov, Kiril L; Smith, Amy C; Parajuli, Shankar P; Malysz, John; Petkov, Georgi V

    2014-03-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca(2+) imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca(2+) sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca(2+) levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca(2+)-dependent mechanism, thus increasing DSM contractility.

  1. Impaired excitability of renal afferent innervation after exposure to the inflammatory chemokine CXCL1.

    Science.gov (United States)

    Ditting, Tilmann; Freisinger, Wolfgang; Rodionova, Kristina; Schatz, Johannes; Lale, Nena; Heinlein, Sonja; Linz, Peter; Ott, Christian; Schmieder, Roland E; Scrogin, Karie E; Veelken, Roland

    2016-03-01

    Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation.

  2. Reflex inhibition of normal cramp following electrical stimulation of the muscle tendon.

    Science.gov (United States)

    Khan, Serajul I; Burne, John A

    2007-09-01

    Muscle cramp was induced in one head of the gastrocnemius muscle (GA) in eight of thirteen subjects using maximum voluntary contraction when the muscle was in the shortened position. Cramp in GA was painful, involuntary, and localized. Induction of cramp was indicated by the presence of electromyographic (EMG) activity in one head of GA while the other head remained silent. In all cramping subjects, reflex inhibition of cramp electrical activity was observed following Achilles tendon electrical stimulation and they all reported subjective relief of cramp. Thus muscle cramp can be inhibited by stimulation of tendon afferents in the cramped muscle. When the inhibition of cramp-generated EMG and voluntary EMG was compared at similar mean EMG levels, the area and timing of the two phases of inhibition (I(1), I(2)) did not differ significantly. This strongly suggests that the same reflex pathway was the source of the inhibition in both cases. Thus the cramp-generated EMG is also likely to be driven by spinal synaptic input to the motorneurons. We have found that the muscle conditions that appear necessary to facilitate cramp, a near to maximal contraction of the shortened muscle, are also the conditions that render the inhibition generated by tendon afferents ineffective. When the strength of tendon inhibition in cramping subjects was compared with that in subjects that failed to cramp, it was found to be significantly weaker under the same experimental conditions. It is likely that reduced inhibitory feedback from tendon afferents has an important role in generating cramp.

  3. A dual physiological character for cerebral mechanisms of sexuality and cognition: common somatic peripheral afferents.

    Science.gov (United States)

    Motofei, Ion G

    2011-11-01

    The dual theory of sexuality is a work in progress that tries to put together all the significant physiological aspects described on this subject, the most recent published article discussing about the hormonal and pheromonal neuromodulation of somatic peripheral afferents. But sexuality and cognition shares common somatic peripheral afferents, so that a good understanding of sexual mechanisms supposes also a good knowledge of the essential psychological mechanisms/neuromodulators. Current psychological approaches could be limited to two general tendencies. Some authors consider that cerebral neuronal connexions generate a unitary network substrate that - increasing in its complexity - becomes compatible with our complex mental function. Others suggest that such a complex cerebral function correspond actually to a system based on subsystems, represented by distinct neuronal units (not necessarily complexes) that interact each other. Starting from basic somatic/sexual neurophysiological elements and general accepted psychological aspects, the discussion gave sense to the last point of view, namely that genesis of a new function is the result of cooperation between distinct structural and functional units. Contrary to the classical concepts, this paper sows the fact that mental perception corresponds actually (in term of touch/tangibility) to the internal representation of an external object while sensations realize an internal representation of the external characteristics of environmental object. As a conclusion, sexuality and cognition are two distinct autonomic/dual functions, interrelated at both cerebral and peripheral level. Peripheral interference implies intervention of some specific (mental and sexual) neuromodulators, making external information act as internal mental or internal sexual stimuli. Central cerebral interferences are also clinically and pharmacologically documented, specific neuromodulators being taken into account. Supplementary studies would

  4. Modulation of reflex responses in hand muscles during rhythmical finger tasks in a subject with writer's cramp.

    Science.gov (United States)

    Xia, Ruiping; Bush, Brian M H

    2007-03-01

    The objective of this study was to examine phase- and task-dependent modulation of stretch reflexes during repetitive finger movements in writer's cramp, and compare them with normal controls from our previous study. A subject with writer's cramp conducted two rhythmic tasks, index finger abduction (RFA) and a pen-squeezing (RPS) task akin to handwriting. Stretch reflexes were evoked by mechanical perturbations at random phases of each task. Surface electromyograms (EMG) were recorded from two hand muscles, first dorsal interosseous (FDI) and flexor digitorum superficialis (FDS). The reflex response and background EMG activity of each muscle were modulated in a phase-dependent manner in both tasks. However, they varied largely in phase during the RFA task, but in approximately inverse phase-relationship during RPS. Reflex sensitivity, as represented by the slope of the linear regression between response and background, was much lower for both muscles in the 'writing' task (RPS) than in the RFA task with its positively correlated responses. These phase- and task-related modulation patterns differed dramatically from those observed in our control subjects, where reflex responses were modulated largely in phase with background activity and reflex sensitivity was much higher, particularly in FDI during RFA and FDS during RPS. The altered reflex modulation patterns in writer's cramp may reflect deficiencies of integration of proprioceptive afferent inputs and reduced inhibition at cortical and spinal levels during writing performance. Results from this case study support clinically identified task-specific feature of focal hand dystonia.

  5. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.

    Science.gov (United States)

    Hennig, R M

    1988-05-01

    Ascending auditory interneurons of the cricket, Teleogryllus commodus (Walker), were investigated using simultaneous intracellular and extracellular recording in order to identify units which had previously been characterized only by extracellular recording. The morphology and physiology of the large adapting unit (LAU: Fig. 1) and of the small tonic unit (STU: Fig. 2) of Teleogryllus correspond well to those of the ascending neuron 2 (AN2) and the ascending neuron 1 (AN1) of Gryllus (Figs. 1, 2), respectively. A summary of the ascending auditory interneurons described by various authors in 5 species of crickets is presented in order to establish common identities. Physiological evidence for direct connections between auditory afferents and the ascending auditory interneurons AN1 (STU) and AN2 (LAU) is presented. Simultaneous intracellular recordings from receptors and interneurons in response to sound as well as the activity of auditory interneurons upon electrical stimulation of the tympanal nerve reveal short and constant latencies of receptor-evoked synaptic activity in AN1 (STU) and AN2 (LAU).

  6. The area acustico-vestibularis of Discoglossus pictus. II. The primary afferent projections.

    Science.gov (United States)

    Gonzalez, A; Muñoz, M

    1988-01-01

    In the present report the primary projections to the dorsal rhombencephalic alar plate (area acustico-vestibularis, AAV) of the adult anuran amphibian Discoglossus pictus have been studied by means of the anterograde transport of horseradish peroxidase (HRP). As in Alytes cisternasii, other member of the family Discoglossidae, no primary afferent fibers to the AAV were found from nerves other than the VIIIth cranial nerve. No remanent of the lateral line system in the adult stage is present. The projections of the dorsal root of nerve VIIIth distribute over the dorsal nucleus and rostrally reach the aspect of the cerebellum. Caudally projects to the large cells of the ventral nucleus and terminate caudally, in the dorsolateral neuropil, at levels coincident with the IX motor nucleus. The projection of the ventral root also reaches the cerebellum in its lateral aspect but also fibers to the nucleus cerebelli were observed. The extensive projection to the ventral nucleus is also continued caudally to the caudal nucleus and ends around the solitary tract. Main terminal fields were located in two neuropils, one subventricular and other in an intermediate position. In addition, from both nerve branches, fibers leave the AAV and reach the reticular formation. Particularly, fibers from the posterior branch enter the superior olivary nucleus. Retrograde labeled neurons in the vicinity of the VII motor nucleus are interpreted as efferent cells to the labyrinth.

  7. The transduction properties of intercostal muscle mechanoreceptors

    Directory of Open Access Journals (Sweden)

    Johnson Richard D

    2002-10-01

    Full Text Available Abstract Background Intercostal muscles are richly innervated by mechanoreceptors. In vivo studies of cat intercostal muscle have shown that there are 3 populations of intercostal muscle mechanoreceptors: primary muscle spindles (1°, secondary muscle spindles (2° and Golgi tendon organs (GTO. The purpose of this study was to determine the mechanical transduction properties of intercostal muscle mechanoreceptors in response to controlled length and velocity displacements of the intercostal space. Mechanoreceptors, recorded from dorsal root fibers, were localized within an isolated intercostal muscle space (ICS. Changes in ICS displacement and the velocity of ICS displacement were independently controlled with an electromagnetic motor. ICS velocity (0.5 – 100 μm/msec to a displacement of 2,000 μm and displacement (50–2,000 μm at a constant velocity of 10 μm/msec parameters encompassed the full range of rib motion. Results Both 1° and 2° muscle spindles were found evenly distributed within the ICS. GTOs were localized along the rib borders. The 1° spindles had the greatest discharge frequency in response to displacement amplitude followed by the 2° afferents and GTOs. The 1° muscle spindles also possessed the greatest discharge frequency in response to graded velocity changes, 3.0 spikes·sec-1/μm·msec-1. GTOs had a velocity response of 2.4 spikes·sec-1/μm·msec-1 followed by 2° muscle spindles at 0.6 spikes·sec-1/μm·msec-1. Conclusion The results of this study provide a systematic description of the mechanosenitivity of the 3 types of intercostal muscle mechanoreceptors. These mechanoreceptors have discharge properties that transduce the magnitude and velocity of intercostal muscle length.

  8. The action of knee joint afferents and the concomitant influence of cutaneous (sural) afferents on the discharge of triceps surae gamma-motoneurones in the cat.

    Science.gov (United States)

    Ellaway, P H; Davey, N J; Ferrell, W R; Baxendale, R H

    1996-01-01

    Electrical stimulation of group II joint afferents of the posterior articular nerve (PAN) to the knee evoked short-latency facilitation and/or inhibition of the background discharge of gastrocnemius-soleus (GS) gamma-motoneurones in decerebrated spinal cats. The latencies of these responses were consistent with mediation via segmental oligosynaptic spinal pathways. In addition, a longer-latency facilitation was frequently observed. Mechanical non-noxious stimulation of the skin within the field of innervation of the sural nerve, on the lateral aspect of the heel, suppressed the short-latency facilitation, but not the inhibition or long-latency facilitation. Brief mechanical indentation of the posterior aspect of the knee joint capsule could elicit facilitation or inhibition of gamma-motoneurones. Facilitation, but not inhibition, was blocked by anaesthesia or section of the PAN. Both actions could be suppressed by mechanical stimulation of the heel. We conclude that GS gamma-motoneurones receive both facilitatory and inhibitory segmental inputs from group II articular afferents arising in the knee joint. Cutaneous afferents from the sural field exert a selective inhibitory influence over the facilitation of fusimotor discharge by articular afferents.

  9. KCa1.1 is potential marker for distinguishing Ah-type baroreceptor neurons in NTS and contributes to sex-specific presynaptic neurotransmission in baroreflex afferent pathway.

    Science.gov (United States)

    Zhang, Yu-Yao; Yan, Zhen-Yu; Qu, Mei-Yu; Guo, Xin-Jing; Li, Guo; Lu, Xiao-Long; Liu, Yang; Ban, Tao; Sun, Hong-Li; Qiao, Guo-Fen; Li, Bai-Yan

    2015-09-14

    Sexual-dimorphic neurocontrol of circulation has been described in baroreflex due largely to the function of myelinated Ah-type baroreceptor neurons (BRNs, 1st-order) in nodose. However, it remains unclear if sex- and afferent-specific neurotransmission could also be observed in the central synapses within nucleus of solitary track (NTS, 2nd-order). According to the principle of no mixed neurotransmission among afferents and differentiation of Ah- and A-types to iberiotoxin (IbTX) observed in nodose, the 2nd-order Ah-type BRNs are highly expected. To test this hypothesis, the excitatory post-synaptic currents (EPSCs) were recorded in identified 2nd-order BRNs before and after IbTX using brain slice and whole-cell patch. These results showed that, in male rats, the dynamics of EPSCs in capsaicin-sensitive C-types were dramatically altered by IbTX, but not in capsaicin-insensitive A-types. Interestingly, near 50% capsaicin-insensitive neurons in females showed similar effects to C-types, suggesting the existence of Ah-types in NTS, which may be the likely reason why the females had lower blood pressure and higher sensitivity to aortic depressor nerve stimulation via KCa1.1-mediated presynaptic glutamate release from Ah-type afferent terminals.

  10. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans.

    NARCIS (Netherlands)

    Helmich, R.C.G.; Baumer, T.; Siebner, H.R.; Bloem, B.R.; Munchau, A.

    2005-01-01

    A conditioning electrical stimulus to a digital nerve can inhibit the motor-evoked potentials (MEPs) in adjacent hand muscles elicited by transcranial magnetic stimulation (TMS) to the contralateral primary motor cortex (M1) when given 25-50 ms before the TMS pulse. This is referred to as short-late

  11. Limb position sense, proprioceptive drift and muscle thixotropy at the human elbow joint.

    Science.gov (United States)

    Tsay, A; Savage, G; Allen, T J; Proske, U

    2014-06-15

    These experiments on the human forearm are based on the hypothesis that drift in the perceived position of a limb over time can be explained by receptor adaptation. Limb position sense was measured in 39 blindfolded subjects using a forearm-matching task. A property of muscle, its thixotropy, a contraction history-dependent passive stiffness, was exploited to place muscle receptors of elbow muscles in a defined state. After the arm had been held flexed and elbow flexors contracted, we observed time-dependent changes in the perceived position of the reference arm by an average of 2.8° in the direction of elbow flexion over 30 s (Experiment 1). The direction of the drift reversed after the arm had been extended and elbow extensors contracted, with a mean shift of 3.5° over 30 s in the direction of elbow extension (Experiment 2). The time-dependent changes could be abolished by conditioning elbow flexors and extensors in the reference arm at the test angle, although this led to large position errors during matching (±10°), depending on how the indicator arm had been conditioned (Experiments 3 and 4). When slack was introduced in the elbow muscles of both arms, by shortening muscles after the conditioning contraction, matching errors became small and there was no drift in position sense (Experiments 5 and 6). These experiments argue for a receptor-based mechanism for proprioceptive drift and suggest that to align the two forearms, the brain monitors the difference between the afferent signals from the two arms.

  12. After-effects of peripheral neurostimulation on brain plasticity and ankle function in chronic stroke: The role of afferents recruited.

    Science.gov (United States)

    Beaulieu, Louis-David; Massé-Alarie, Hugo; Camiré-Bernier, Samuel; Ribot-Ciscar, Édith; Schneider, Cyril

    2017-09-01

    This study tested the after-effects of neuromuscular electrical stimulation (NMES), repetitive peripheral magnetic stimulation (rPMS) and muscle tendon vibration (VIB) on brain plasticity and sensorimotor impairments in chronic stroke to investigate whether different results could depend on the nature of afferents recruited by each technique. Fifteen people with chronic stroke participated in five sessions (one per week). Baseline measures were collected in session one, then, each participant received 4 randomly ordered interventions (NMES, rPMS, VIB and a 'control' intervention of exercises). Interventions were applied to the paretic ankle muscles and parameters of application were matched as closely as possible. Standardized clinical measures of the ankle function on the paretic side and transcranial magnetic stimulation (TMS) outcomes of both primary motor cortices (M1) were collected at pre- and post-application of each intervention. The ankle muscle strength was significantly improved by rPMS and VIB (P≤0.02). rPMS influenced M1 excitability (increase in the contralesional hemisphere, P=0.03) and inhibition (decrease in both hemispheres, P≤0.04). The group mean of a few clinical outcomes improved across sessions, i.e. independently of the order of interventions. Some TMS outcomes at baseline could predict the responsiveness to rPMS and VIB. This original study suggests that rPMS and VIB were efficient to drive M1 plasticity and sensorimotor improvements, likely via massive inflows of 'pure' proprioceptive information generated. Usefulness of some TMS outcomes to predict which intervention a patient could be more responsive to should be further tested in future studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents

    Directory of Open Access Journals (Sweden)

    André eMaia Chagas

    2013-12-01

    Full Text Available Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of ‘how much’ information is conveyed by primary afferents, using the direct method, a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s. Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on ‘what’ is coded by primary afferents. Amongst the kinematic variables tested - position, velocity, and acceleration - primary afferent spikes encoded velocity best. The other two variables contribute to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e. well separated sets of combinations of the three instantaneous kinematic variables. Secondly, spikes are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time, and thirdly, they show spike patterns (precise doublet and triplet spiking. In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the direct method. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80-90%. The final 10-20% were found to be due to non-linear coding by spike bursts.

  14. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

    Science.gov (United States)

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A

    2012-12-15

    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  15. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  16. Genome-wide association study for rib eye muscle area in a Large White×Minzhu F2 pig resource population

    Institute of Scientific and Technical Information of China (English)

    GUO Yun-yan; ZHANG Long-chao; WANG Li-xian; LIU Wen-zhong

    2015-01-01

    Rib eye muscle area (REMA) is an economicaly important trait and one of the main selection criteria for breeding in the swine industry. In the genome-wide association study (GWAS), the Ilumina PorcineSNP60 BeadChip containing 62163 single nucleotide polymorphisms (SNPs) was used to genotype 557 pigs from a porcine Large White×Minzhu intercross population. The REMA (at the 5th–6th, 10th–11th and the last ribs) was measured after slaughtered at the age of (240±7) d for each animal. Association tests between REMA trait and SNPs were performedvia the Genome-Wide Rapid Asso-ciation using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. From the Ensembl porcine database, SNP annotation was implemented usingSus scrofa Build 10.2. Thirty-three SNPs on SSC12 and 3 SNPs on SSC2 showed signiifcant association with REMA at the last rib at the chromosome-wide signiifcance level. None of the SNPs of REMA at the 5th–6th rib and only a few numbers of the SNPs of REMA at the 10th–11th ribs were found in this study. The Haploview V3.31 program and the Haplo.Stats R package were used to detect and visualize haplotype blocks and to analyze the association of the detected haplotype blocks with REMA at the last rib. A linkage analysis revealed that 4 haplotype blocks contained 4, 4, 2, and 4 SNPs, respectively. Annotations from pig reference genome suggested 2 genes (NOS2,NLK) in block 1 (266 kb), one gene (TMIGD1) in block 2 (348 kb), and one gene (MAP2K4) in block 3 (453 kb). A functional analysis indicated thatMYH3andMYH13 genes are the potential genes controling REMA at the last rib. We screened several candidate intervals and genes based on the SNPs location and the gene function, and inferred thatNOS2 and NLK genes maybe the main genes of REMA at the last ribs.

  17. Serotonin, Dopamine and Noradrenaline Adjust Actions of Myelinated Afferents via Modulation of Presynaptic Inhibition in the Mouse Spinal Cord

    OpenAIRE

    García-Ramírez, David L.; Calvo, Jorge R.; Shawn Hochman; Jorge N Quevedo

    2014-01-01

    Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD). PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT), dopamine (DA) and noradrenaline...

  18. Effects of NGF-induced muscle sensitization on proprioception and nociception.

    Science.gov (United States)

    Svensson, Peter; Wang, Kelun; Arendt-Nielsen, Lars; Cairns, Brian E

    2008-07-01

    NGF is associated with a distinct and prolonged sensitization to mechanical stimuli, but without an effect on large-diameter mechanoreceptive and the muscle spindle afferents. Additional challenge of the NGF pretreated muscle with glutamate did not indicate a conspicuous sensitization to noxious chemical stimuli. These findings are discussed in terms of the concept of "proprioceptive allodynia".

  19. Beyond muscles stiffness: importance of state-estimation to account for very fast motor corrections.

    Directory of Open Access Journals (Sweden)

    Frédéric Crevecoeur

    2014-10-01

    Full Text Available Feedback delays are a major challenge for any controlled process, and yet we are able to easily control limb movements with speed and grace. A popular hypothesis suggests that the brain largely mitigates the impact of feedback delays (∼50 ms by regulating the limb intrinsic visco-elastic properties (or impedance with muscle co-contraction, which generates forces proportional to changes in joint angle and velocity with zero delay. Although attractive, this hypothesis is often based on estimates of limb impedance that include neural feedback, and therefore describe the entire motor system. In addition, this approach does not systematically take into account that muscles exhibit high intrinsic impedance only for small perturbations (short-range impedance. As a consequence, it remains unclear how the nervous system handles large perturbations, as well as disturbances encountered during movement when short-range impedance cannot contribute. We address this issue by comparing feedback responses to load pulses applied to the elbow of human subjects with theoretical simulations. After validating the model parameters, we show that the ability of humans to generate fast and accurate corrective movements is compatible with a control strategy based on state estimation. We also highlight the merits of delay-uncompensated robust control, which can mitigate the impact of internal model errors, but at the cost of slowing feedback corrections. We speculate that the puzzling observation of presynaptic inhibition of peripheral afferents in the spinal cord at movement onset helps to counter the destabilizing transition from high muscle impedance during posture to low muscle impedance during movement.

  20. Neuromuscular electrical stimulation has a global effect on corticospinal excitability for leg muscles and a focused effect for hand muscles.

    Science.gov (United States)

    Mang, C S; Clair, J M; Collins, D F

    2011-03-01

    The afferent volley generated during neuromuscular electrical stimulation (NMES) can increase the excitability of human corticospinal (CS) pathways to muscles of the leg and hand. Over time, such increases can strengthen CS pathways damaged by injury or disease and result in enduring improvements in function. There is some evidence that NMES affects CS excitability differently for muscles of the leg and hand, although a direct comparison has not been conducted. Thus, the present experiments were designed to compare the strength and specificity of NMES-induced changes in CS excitability for muscles of the leg and hand. Two hypotheses were tested: (1) For muscles innervated by the stimulated nerve (target muscles), CS excitability will increase more for the hand than for the leg. (2) For muscles not innervated by the stimulated nerve (non-target muscles), CS excitability will increase for muscles of the leg but not muscles of the hand. NMES was delivered over the common peroneal (CP) nerve in the leg or the median nerve at the wrist using a 1-ms pulse width in a 20 s on, 20 s off cycle for 40 min. The intensity was set to evoke an M-wave that was ~15% of the maximal M-wave in the target muscle: tibialis anterior (TA) in the leg and abductor pollicis brevis (APB) in the hand. Ten motor-evoked potentials (MEPs) were recorded from the target muscles and from 2 non-target muscles of each limb using transcranial magnetic stimulation delivered over the "hotspot" for each muscle before and after the NMES. MEP amplitude increased significantly for TA (by 45 ± 6%) and for APB (56 ± 8%), but the amplitude of these increases was not different. In non-target muscles, MEPs increased significantly for muscles of the leg (42 ± 4%), but not the hand. Although NMES increased CS excitability for target muscles to the same extent in the leg and hand, the differences in the effect on non-target muscles suggest that NMES has a "global" effect on CS excitability for the leg and a

  1. Referred muscle pain/hyperalgesia and central sensitisation.

    Science.gov (United States)

    Giamberardino, Maria Adele

    2003-05-01

    Referred muscle pain, resulting from algogenic conditions in viscera or other deep somatic structures (another muscle, a joint), is most often accompanied by secondary hyperalgesia and trophic changes (hypotrophy). Referred pain/ hyperalgesia from viscera is partly due to central sensitisation of viscero-somatic convergent neurons (triggered by the massive afferent visceral barrage) but also probably results from a reflex arc activation (the visceral input triggers reflex muscle contraction in turn responsible for sensitisation of muscle nociceptors). Referred pain/hyperalgesia from deep somatic structures is not explained by the mechanism of central sensitisation of convergent neurons in its original form, since there is little,convergence from deep tissues in the dorsal horn neurons. It has been proposed that these connections, not present from the beginning, are opened by nociceptive input from skeletal muscle, and that referral to myotomes outside the lesion results from the spread of central sensitisation to adjacent spinal segments.

  2. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut.

    Science.gov (United States)

    Riley, T P; Neal-McKinney, J M; Buelow, D R; Konkel, M E; Simasko, S M

    2013-04-15

    Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first determined if selective lesions of capsaicin-sensitive vagal afferents altered c-Fos expression in the nucleus of the solitary tract (nTS) after mice were inoculated with either Campylobacter jejuni or Salmonella typhimurium. Our results demonstrate that the activation of nTS neurons by intraluminal pathogenic bacteria is dependent on intact, capsaicin sensitive vagal afferents. We next determined if inflammatory mediators could cause the observed increase in c-Fos expression in the nTS by a direct action on vagal afferents. This was tested by the use of single-cell calcium measurements in cultured vagal afferent neurons. We found that tumor necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) directly activate cultured vagal afferent neurons and that almost all TNFα and LPS responsive neurons were sensitive to capsaicin. We conclude that activation of the afferent arm of the parasympathetic neuroimmune reflex by pathogenic bacteria in the gut is dependent on capsaicin sensitive vagal afferent neurons and that the release of inflammatory mediators into intestinal tissue can be directly sensed by these neurons.

  3. Origin and chemical coding of primary afferent neurones supplying the prostate of the dog.

    Science.gov (United States)

    Arciszewski, M B; Zacharko, A

    2004-12-01

    Retrograde tracing technique combined with the double-fluorescent immunohistochemistry were used to investigate the distribution and chemical coding of primary afferent neurones supplying the canine prostate. After the injection of Fast Blue (FB) into the prostatic tissue retrogradely-labelled (FB(+)) primary afferent neurones were localized in bilateral L(1)-Ca(1) dorsal root ganglia (DRG). Statistical analysis using anova test showed that there are two major sources of afferent prostate innervation. The vast majority of prostate-supplying primary afferent neurones were located in bilateral L(2)-L(4) DRG (56.9 +/- 0.6%). The second source of the afferent innervation of canine prostate were bilateral S(1)-Ca(1) DRG (40.6 +/- 1.0%). No statistically significant differences were found between average number of FB(+) neurones localized in the left and right DRG (49.5 +/- 1.7 and 50.5 +/- 1.7%, respectively). Immunohistochemistry revealed that FB(+) primary afferent neurones contain several neuropeptides in various combinations. In the prostate-supplying neurones of lumbar and sacro-caudal DRG the immunoreactivity to substance P (SP) and calcitonin gene-related peptide (CGRP) was found most frequently (50 +/- 3.7 and 37.3 +/- 1.9%, respectively). Both in the lumbar and sacro-caudal DRG, considerable population of FB(+) neurones immunoreactive neither to SP nor CGRP were also found (23 +/- 2.6 and 32.8 +/- 2.3%, respectively). In the lumbar DRG 10.7 +/- 1.1% of SP-immunoreactive FB(+) neurones also contained galanin (GAL). In 9.2 +/- 2.2% of the prostate-supplying primary afferent neurones located in the sacro-caudal DRG the co-localization of SP and GAL was also reported. Results of the retrograde tracing experiment demonstrated for the first time sources of afferent innervation of the canine prostate. Double immunohistochemistry revealed that many of the prostate-supplying primary afferent neurones express some of sensory neuropeptides which presumably may be involved

  4. Effect of Preoperative Fatty Degeneration of the Rotator Cuff Muscles on the Clinical Outcome of Patients With Intact Tendons After Arthroscopic Rotator Cuff Repair of Large/Massive Cuff Tears.

    Science.gov (United States)

    Ohzono, Hiroki; Gotoh, Masafumi; Nakamura, Hidehiro; Honda, Hirokazu; Mitsui, Yasuhiro; Kakuma, Tatsuyuki; Okawa, Takahiro; Shiba, Naoto

    2017-09-01

    Fatty degeneration of the rotator cuff muscles is associated not only with postoperative retear but also with postoperative muscle weakness; therefore, fatty changes in the muscles may affect the clinical outcome even in patients with these tears who have intact tendons after arthroscopic rotator cuff repair (ARCR). To evaluate the effect of fatty infiltration on the clinical outcome in patients with intact tendons after arthroscopic repair of large/massive cuff tears. Case-control study; Level of evidence, 3. One hundred fifty-five consecutive patients with large/massive rotator cuff tears underwent ARCR. Of these, 55 patients (mean ± SD age, 64.4 ± 9.1 years) in whom intact tendons after surgery were confirmed with magnetic resonance imaging at final follow-up (mean ± SD, 2.5 ± 1.4 years) were included in this study. Depending on their University of California Los Angeles (UCLA) score at the final follow-up, they were assigned to either the unsatisfactory group (score ≤27; n = 12) or the satisfactory group (score >27; n = 43). Various clinical parameters affecting the clinical outcome were examined through univariate and multivariate analyses. The UCLA score of all patients significantly improved from 18.1 ± 4.4 points preoperatively to 29.8 ± 4.5 points postoperatively ( P muscles, with area under the curve values of 0.79 (sensitivity 91% and specificity 51%) and 0.84 (sensitivity 100% and specificity 54%) in the infraspinatus and subscapularis, respectively. Preoperative fatty degeneration of the infraspinatus and/or subscapularis with Goutallier stage 2 or higher was significantly associated with worse outcome in patients with large/massive tears who had intact tendons after ARCR.

  5. Injection of adjuvant but not acidic saline into craniofacial muscle evokes nociceptive behaviors and neuropeptide expression.

    Science.gov (United States)

    Ambalavanar, R; Yallampalli, C; Yallampalli, U; Dessem, D

    2007-11-09

    Craniofacial muscle pain including muscular temporomandibular disorders accounts for a substantial portion of all pain perceived in the head and neck region. In spite of its high clinical prevalence, the mechanisms of chronic craniofacial muscle pain are not well understood. Injection of acidic saline into rodent hindlimb muscles produces pathologies which resemble muscular pathologies in chronic pain patients. Here we investigated whether analogous transformations occur following repeated injections of acidic saline into the rat masseter muscle. Injection of acidic saline (pH 4) into the masseter muscle transiently lowered i.m. pH to levels comparable to those reported for rodent hindlimb muscles. Nevertheless, repeated unilateral or bilateral injections of acidic saline (pH 4) into the masseter muscle failed to alter nociceptive behavioral responses as occurs in the hindlimb. Changing the pH of injected saline to pH 3.0 or 5.0 also did not evoke nocifensive behavior. Acid sensing ion channel 3 receptors, which are implicated in transformations following acidification of hindlimb muscles, were found on trigeminal ganglion muscle afferent neurons via combined neuronal tracing and immunocytochemistry. In contrast to the acidic saline, injection of complete Freund's adjuvant (CFA) into the masseter muscle induced mechanical allodynia for 3 weeks, thermal hyperalgesia for 1 week and an increase in the number of calcitonin gene-related peptide (CGRP)-immunoreactive muscle afferent neurons in the trigeminal ganglion. Although pH may alter CGRP release in primary afferent neurons, the number of CGRP-muscle afferent neurons did not change following i.m. injection of acidic saline. Further, there was no change in ganglionic iCGRP levels at 1, 4 or 12 days after i.m. injection of acidic saline. While these findings extend our earlier reports that CFA-induced muscle inflammation results in behavioral and neuropeptide changes they further suggest that i.m. acidification in

  6. A Beetle Flight Muscle Displays Leg Muscle Microstructure.

    Science.gov (United States)

    Shimomura, Toshiki; Iwamoto, Hiroyuki; Vo Doan, Tat Thang; Ishiwata, Shin'ichi; Sato, Hirotaka; Suzuki, Madoka

    2016-09-20

    In contrast to major flight muscles in the Mecynorrhina torquata beetle, the third axillary (3Ax) muscle is a minor flight muscle that uniquely displays a powerful mechanical function despite its considerably small volume, ∼1/50 that of a major flight muscle. The 3Ax muscle contracts relatively slowly, and in flight strongly pulls the beating wing to attenuate the stroke amplitude. This attenuation leads to left-right turning in flight or wing folding to cease flying. What enables this small muscle to be so powerful? To explore this question, we examined the microstructure of the 3Ax muscle using synchrotron x-ray diffraction, optical microscopy, and immunoblotting analysis. We found that the 3Ax muscle has long (∼5 μm) myofilaments and that the ratio of thick (myosin) filaments to thin (actin) filaments is 1:5 or 1:6. These characteristics are not observed in the major flight muscles, which have shorter myofilaments (∼3.5 μm) with a smaller ratio (1:3), and instead are more typical of a leg muscle. Furthermore, the flight-muscle-specific troponin isoform, TnH, is not expressed in the 3Ax muscle. Since such a microstructure is suitable for generating large tension, the 3Ax muscle is appropriately designed to pull the wing strongly despite its small volume.

  7. Management of afferent loop obstruction from recurrent metastatic pancreatic cancer using a venting gastrojejunostomy.

    Science.gov (United States)

    Bakes, Debbie; Cain, Christian; King, Michael; Dong, Xiang Da Eric

    2013-12-15

    Pancreatic cancer is an aggressive malignancy potentially curable with surgical intervention. Following pancreaticoduodenectomy for suspected pancreatic head malignancy, patients have a high risk for both immediate and delayed problems due to surgical complications and recurrent disease. We report here a patient with pancreatic cancer treated with pancreaticoduodenectomy who developed recurrent disease resulting in obstruction of the afferent limb. The patient developed biliary obstruction and cholangitis at presentation. Her biliary tree failed to dilate which precluded safe percutaneous biliary decompression. During surgical exploration, she was found to have a dilated afferent limb at the level of the transverse mesocolon. The patient underwent decompression of the afferent limb as well as the biliary tree using a venting gastrojejunostomy to the blind loop. This represents a novel surgical approach for management of this complicated and difficult problem.

  8. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...... revealed the occurrence of axosomatic and axodendritic contacts between labeled boutons and giant neurons. The synaptic nature of these contacts has been confirmed by use of electron microscope procedures involving the partial three-dimensional reconstruction of identified giant neurons. Intracellular...... recording in spinal cord slices provided functional evidence indicating the monosynaptic connections between dorsal root afferents and giant neurons. The recorded neurons were morphologically identified by means of biocytin injection and with avidin conjugates. Electrical stimulation of the ipsilateral...

  9. Structure of the afferent terminals in terminal ganglion of a cricket and persistent homology.

    Directory of Open Access Journals (Sweden)

    Jacob Brown

    Full Text Available We use topological data analysis to investigate the three dimensional spatial structure of the locus of afferent neuron terminals in crickets Acheta domesticus. Each afferent neuron innervates a filiform hair positioned on a cercus: a protruding appendage at the rear of the animal. The hairs transduce air motion to the neuron signal that is used by a cricket to respond to the environment. We stratify the hairs (and the corresponding afferent terminals into classes depending on hair length, along with position. Our analysis uncovers significant structure in the relative position of these terminal classes and suggests the functional relevance of this structure. Our method is very robust to the presence of significant experimental and developmental noise. It can be used to analyze a wide range of other point cloud data sets.

  10. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen

    2013-01-01

    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  11. Direct and indirect regulation of spinal cord Ia afferent terminal formation by the γ-Protocadherins

    Directory of Open Access Journals (Sweden)

    Tuhina ePrasad

    2011-12-01

    Full Text Available The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons, do not undergo excessive apoptosis in Pcdh-γdel/del null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants are expanded, clumped, and fill the space between individual motor neurons; quantitative analysis shows a ~2.5 fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons, many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of ventral interneurons, which act as intermediate Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for ventral interneurons; Hb9-Cre for motor neurons also revealed a direct requirement for the γ-Pcdhs in Ia neurons and ventral interneurons, but not in motor neurons themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of ventral interneurons that act as intermediate Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target ventral interneurons.

  12. Botulinum toxin in migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents.

    Science.gov (United States)

    Ramachandran, Roshni; Lam, Carmen; Yaksh, Tony L

    2015-07-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi)-SO capsaicin (20 μl of 0.5mM solution) or meningeal capsaicin (4 μl of 0.35 μM). Pre-treatment with ipsi-SO BoNT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; and vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent.

  13. Contractile Properties of Esophageal Striated Muscle: Comparison with Cardiac and Skeletal Muscles in Rats

    Directory of Open Access Journals (Sweden)

    Takahiko Shiina

    2010-01-01

    Full Text Available The external muscle layer of the mammalian esophagus consists of striated muscles. We investigated the contractile properties of esophageal striated muscle by comparison with those of skeletal and cardiac muscles. Electrical field stimulation with single pulses evoked twitch-like contractile responses in esophageal muscle, similar to those in skeletal muscle in duration and similar to those in cardiac muscle in amplitude. The contractions of esophageal muscle were not affected by an inhibitor of gap junctions. Contractile responses induced by high potassium or caffeine in esophageal muscle were analogous to those in skeletal muscle. High-frequency stimulation induced a transient summation of contractions followed by sustained contractions with amplitudes similar to those of twitch-like contractions, although a large summation was observed in skeletal muscle. The results demonstrate that esophageal muscle has properties similar but not identical to those of skeletal muscle and that some specific properties may be beneficial for esophageal peristalsis.

  14. Bioaccumulation of mercury, cadmium, zinc, chromium, and lead in muscle, liver, and spleen tissues of a large commercially valuable catfish species from Brazil

    Directory of Open Access Journals (Sweden)

    Fábio P. Arantes

    2016-03-01

    Full Text Available The increasing amounts of heavy metals entering aquatic environments can result in high accumulation levels of these contaminants in fish and their consumers, which pose a serious risk to ecosystems and human health. We investigated the concentrations of mercury (Hg, cadmium (Cd, zinc (Zn, chromium (Cr, and lead (Pb in muscle, liver, and spleen tissues of Pseudoplatystoma corruscans specimens collected from two sites on the Paraopeba River, Brazil. The level of heavy metals concentrations in the tissues was often higher in viscera (i.e. liver and spleen than in muscle, and thus, the viscera should not be considered for human consumption. Correlations between metal concentrations and fish size were not significant. Although the levels of muscle bioaccumulation of Hg, Cd, Zn, Cr, and Pb, generally do not exceed the safe levels for human consumption, the constant presence of heavy metals in concentrations near those limits considered safe for human consumption, is a reason for concern, and populations who constantly consume fish from polluted rivers should be warned. Our findings also indicate that in a river network where certain areas are connected to other areas with high rates of environmental pollutants, people should be cautious about the regular consumption of fish, even when the fish consumed are caught in stretches of the basin where contamination levels are considered low, since many of the freshwater fish with high commercial value, such as the catfish surubim, are migratory.

  15. Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing.

    Science.gov (United States)

    Johannsson, J; Duchateau, J; Baudry, S

    2015-07-09

    The present work was designed to investigate the presynaptic modulation of soleus Ia afferents with the position and the direction of the displacement of the center of pressure (CoP) during unperturbed upright standing and exaggerated CoP displacements in young adults. Hoffmann (H) reflex was evoked in the soleus by stimulating the tibial nerve at the knee level. Modulation of Ia presynaptic inhibition was assessed by conditioning the H reflex with fibular nerve (D1 inhibition) and femoral nerve (heteronymous facilitation) stimulation. Leg muscle activity was assessed by electromyography (EMG). The results indicate that in unperturbed standing and exaggerated CoP displacements, the H-reflex amplitude was greater during forward than backward CoP direction (pEMG was greater during forward than backward CoP direction and during anterior than posterior position in both experimental conditions (pmodulation of the unconditioned H reflex with CoP direction was positively associated with the corresponding changes in soleus EMG (r(2)>0.34). The tibialis anterior EMG did not change during unperturbed standing, but was greater for backward than forward CoP direction during exaggerated CoP displacements. In this experimental condition, soleus EMG was negatively associated with tibialis anterior EMG (r(2)=0.81). These results indicate that Ia presynaptic inhibition is not modulated with CoP direction and position, but rather suggest that CoP displacements induced changes in excitability of the soleus motor neuron pool.

  16. Exercise-induced muscle cramp. Proposed mechanisms and management.

    Science.gov (United States)

    Bentley, S

    1996-06-01

    Muscle cramp is a common, painful, physiological disturbance of skeletal muscle. Many athletes are regularly frustrated by exercise-induced muscle cramp yet the pathogenesis remains speculative with little scientific research on the subject. This has resulted in a perpetuation of myths as to the cause and treatment of it. There is a need for scientifically based protocols for the management of athletes who suffer exercise-related muscle cramp. This article reviews the literature and neurophysiology of muscle cramp occurring during exercise. Disturbances at various levels of the central and peripheral nervous system and skeletal muscle are likely to be involved in the mechanism of cramp and may explain the diverse range of conditions in which cramp occurs. The activity of the motor neuron is subject to a multitude of influences including peripheral receptor sensory input, spinal reflexes, inhibitory interneurons in the spinal cord, synaptic and neurotransmitter modulation and descending CNS input. The muscle spindle and golgi tendon organ proprioceptors are fundamental to the control of muscle length and tone and the maintenance of posture. Disturbance in the activity of these receptors may occur through faulty posture, shortened muscle length, intense exercise and exercise to fatigue, resulting in increased motor neuron activity and motor unit recruitment. The relaxation phase of muscle contraction is prolonged in a fatigued muscle, raising the likelihood of fused summation of action potentials if motor neuron activity delivers a sustained high firing frequency. Treatment of cramp is directed at reducing muscle spindle and motor neuron activity by reflex inhibition and afferent stimulation. There are no proven strategies for the prevention of exercise-induced muscle cramp but regular muscle stretching using post-isometric relaxation techniques, correction of muscle balance and posture, adequate conditioning for the activity, mental preparation for competition and

  17. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice

    DEFF Research Database (Denmark)

    Oppermann, Mona; Hansen, Pernille B; Castrop, Hayo;

    2007-01-01

    Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or N...... that furosemide, despite its direct vasodilator potential in isolated afferent arterioles, causes a marked increase in flow resistance of the vascular bed of the intact mouse kidney. We suggest that generation of angiotensin II and/or a vasoconstrictor prostaglandin combined with compression of peritubular...

  18. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    AIMS: Adenosine causes vasoconstriction of afferent arterioles of the mouse kidney through activation of adenosine A(1) receptors and Gi-mediated stimulation of phospholipase C. In the present study, we further explored the signalling pathways by which adenosine causes arteriolar vasoconstriction....... METHODS AND RESULTS: Adenosine (10(-7) M) significantly increased the intracellular calcium concentration in mouse isolated afferent arterioles measured by fura-2 fluorescence. Pre-treatment with thapsigargin (2 microM) blocked the vasoconstrictor action of adenosine (10(-7) M) indicating that release...

  19. Muscle biopsy

    Science.gov (United States)

    ... Inflammatory diseases of muscle (such as polymyositis or dermatomyositis ) Diseases of the connective tissue and blood vessels ( ... disease that involves inflammation and a skin rash ( dermatomyositis ) Inherited muscle disorder ( Duchenne muscular dystrophy ) Inflammation of ...

  20. Muscle atrophy

    Science.gov (United States)

    ... atrophy. Exercises may include ones done in a swimming pool to reduce the muscle workload, and other types ... a physical examination and ask about your medical history and symptoms, including: When did the muscle atrophy ...

  1. Polymer artificial muscles

    Directory of Open Access Journals (Sweden)

    Tissaphern Mirfakhrai

    2007-04-01

    Full Text Available The various types of natural muscle are incredible material systems that enable the production of large deformations by repetitive molecular motions. Polymer artificial muscle technologies are being developed that produce similar strains and higher stresses using electrostatic forces, electrostriction, ion insertion, and molecular conformational changes. Materials used include elastomers, conducting polymers, ionically conducting polymers, and carbon nanotubes. The mechanisms, performance, and remaining challenges associated with these technologies are described. Initial applications are being developed, but further work by the materials community should help make these technologies applicable in a wide range of devices where muscle-like motion is desirable.

  2. Acquired smooth muscle hamartoma

    Directory of Open Access Journals (Sweden)

    Bari Arfan ul

    2006-01-01

    Full Text Available Smooth muscle hamartoma is an uncommon, usually congenital, cutaneous hyperplasia of the arrectores pilorum muscles. When it is acquired, it may be confused with Becker′s nevus. We report a case of this rare tumor in a 19-year-old man. The disease started several years ago as multiple small skin-colored papules that subsequently coalesced to form a large soft plaque on the back of the left shoulder. The diagnosis of acquired smooth muscle hamartoma was confirmed on histopathology. The patient was reassured about the benign nature of the lesion and was not advised any treatment.

  3. Your Muscles

    Science.gov (United States)

    ... develops. There they help to push the baby out of the mother's body when it's time to be born. You'll find smooth muscles at work behind the scenes in your eyes, too. These muscles keep the eyes ... thick muscles of the heart contract to pump blood out and then relax to let blood back in ...

  4. Modeling Muscles

    Science.gov (United States)

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  5. Bilateral sensory deprivation of trigeminal afferent fibres on corticomotor control of human tongue musculature: a preliminary study.

    Science.gov (United States)

    Kothari, M; Baad-Hansen, L; Svensson, P

    2016-09-01

    Transcranial magnetic stimulation (TMS) has demonstrated changes in motor evoked potentials (MEPs) in human limb muscles following modulation of sensory afferent inputs. The aim of this study was to determine whether bilateral local anaesthesia (LA) of the lingual nerve affects the excitability of the tongue motor cortex (MI) as measured by TMS. The effect on MEPs after bilateral LA of the lingual nerve was studied, while the first dorsal interosseous (FDI) muscle served as a control in ten healthy participants. MEPs were measured on the right side of the tongue dorsum in four different conditions: (i) immediately prior to anaesthesia (baseline), (ii) during bilateral LA block of the lingual nerve, (iii) after anaesthesia had subjectively subsided (recovery) and (iv) 3 h after bilateral lingual block injection. MEPs were assessed using stimulus-response curves in steps of 10% of motor threshold (T). Eight stimuli were given at each stimulus level. The amplitudes of the tongue MEPs were significantly influenced by the stimulus intensity (P < 0·001) but not by condition (P = 0·186). However, post hoc tests showed that MEPS were statistically significantly higher during bilateral LA block condition compared with baseline at T + 40%, T + 50% and T + 60% (P < 0·028) and also compared with recovery at T + 60% (P = 0·010) as well as at 3 h after injection at T + 50% and T + 60% (P < 0·029). Bilateral LA block of the lingual nerve seems to be associated with a facilitation of the corticomotor pathways related to the tongue musculature.

  6. Development of Postural Muscles and Their Innervation

    Directory of Open Access Journals (Sweden)

    J. IJkema-Paassen

    2005-01-01

    Full Text Available Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control.

  7. Paramyotonia congenita and hyperkalemic periodic paralysis associated with a Met 1592 Val substitution in the skeletal muscle sodium channel alpha subunit--a large kindred with a novel phenotype.

    Science.gov (United States)

    Kelly, P; Yang, W S; Costigan, D; Farrell, M A; Murphy, S; Hardiman, O

    1997-03-01

    Paramyotonia congenita (PC) and Hyperkalemic periodic paralysis (HyperPP) are caused by amino acid substitutions in the alpha subunit of the human skeletal muscle sodium channel. One such substitution, methionine for valine at position 1592, has been associated with HyperPP with myotonia and cold sensitivity. We report clinical, electromyographic (EMG), genetic and pathological features of a large kindred with the Met1592Val substitution. Affected members were phenotypically heterogenous and had episodic potassium-sensitive paralysis, and stiffness and weakness induced by exercise and cold, which was confirmed by EMG studies. These features indicate a combined PC-HyperPP phenotype not previously described with this mutation.

  8. Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture.

    Science.gov (United States)

    Maaswinkel, E; Veeger, H E J; Dieen, J Hv

    2014-02-01

    This study investigated the effect of touch on trunk sway in a seated position. Two touch conditions were included: touching an object with the index finger of the right hand (hand-touch) and maintaining contact with an object at the level of the spine of T10 on the mid back (back-touch). In both touch conditions, the exerted force stayed below 2N. Furthermore, the interaction of touch with paraspinal muscle vibration and galvanic vestibular stimulation (GVS) was studied. Thirteen healthy subjects with no history of low-back pain participated in this study. Subjects sat on a stool and trunk sway was measured with a motion capture system tracking a cluster marker on the trunk. Subjects performed a total of 12 trials of 60-s duration in a randomized order, combining the experimental conditions of no-touch, hand-touch or back-touch with no sensory perturbation, paraspinal muscle vibration or GVS. The results showed that touch through hand or back decreased trunk sway and decreased the effects of muscle vibration and GVS. GVS led to a large increase in sway whereas the effect of muscle vibration was only observed as an increase of drift and not of sway. In the current experimental set-up, the stabilizing effect of touch was strong enough to mask any effects of perturbations of vestibular and paraspinal muscle spindle afference. In conclusion, tactile information, whenever available, seems to play a dominant role in seated postural sway and therefore has important implications for studying trunk control. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Relationship between cortisone and muscle work in determining muscle size

    Science.gov (United States)

    Goldberg, A. L.; Goodman, H. M.

    1969-01-01

    1. Large doses of cortisone caused marked atrophy of the plantaris muscle and other pale muscles of hind limbs of hypophysectomized rats, but hormone treatment had little effect on the size of the red soleus muscle. 2. Denervation increased the sensitivity of the soleus and plantaris to the catabolic effects of cortisone. 3. Increased work induced by tenotomy of the synergistic gastrocnemius made the plantaris muscle less sensitive to cortisone-induced atrophy. 4. Since the catabolic effects of cortisone are more pronounced in the less active muscles, it is suggested that in mobilizing body protein for gluconeogenesis the hormone spares those muscles physiologically most active. 5. The rapidity with which muscles lose weight in response to cortisone indicates that the hormone must decrease protein half-lives as well as decrease protein synthesis. PMID:5765854

  10. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents

    NARCIS (Netherlands)

    A.M. Chagas (André); L. Theis (Lucas); B. Sengupta (Biswa); M.C. Stüttgen (Maik); M. Bethge (Matthias); C. Schwarz (Cornelius)

    2013-01-01

    textabstractSensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of "how much" information is

  11. Nesfatin-1 modulates murine gastric vagal afferent mechanosensitivity in a nutritional state dependent manner.

    Science.gov (United States)

    Kentish, Stephen J; Li, Hui; Frisby, Claudine L; Page, Amanda J

    2017-03-01

    Food intake is regulated by vagal afferent signals from the stomach. Nesfatin-1 is an anorexigenic peptide produced within the gastrointestinal tract and has well defined central effects. We aimed to determine if nesfatin-1 can modulate gastric vagal afferent signals in the periphery and further whether this is altered in different nutritional states. Female C57BL/6J mice were fed either a standard laboratory diet (SLD) or a high fat diet (HFD) for 12 weeks or fasted overnight. Plasma nucleobindin-2 (NUCB2; nesfatin-1 precursor)/nesfatin-1 levels were assayed, the expression of NUCB2 in the gastric mucosa and adipose tissue was assessed using real-time quantitative reverse-transcription polymerase chain reaction. An in vitro preparation was used to determine the effect of nesfatin-1 on gastric vagal afferent mechanosensitivity. HFD mice exhibited an increased body weight and adiposity. Plasma NUCB2/nesfatin-1 levels were unchanged between any of the groups of mice. NUCB2 mRNA was detected in the gastric mucosa and gonadal fat of SLD, HFD and fasted mice with no difference in mRNA abundance between groups in either tissue. In SLD and fasted mice nesfatin-1 potentiated mucosal receptor mechanosensitivity, an effect not observed in HFD mice. Tension receptor mechanosensitivity was unaffected by nesfatin-1 in SLD and fasted mice, but was inhibited in HFD mice. In conclusion, Nesfatin-1 modulates gastric vagal afferent mechanosensitivity in a nutritional state dependent manner.

  12. Afferent loop syndrome - a case report; Sindrome da alca aferente - relato de um caso

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig [Fundacao Pio XII - Hospital do Cancer de Barretos, SP (Brazil)

    2000-02-01

    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  13. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor.

    Science.gov (United States)

    Iwasaki, Yusaku; Dezaki, Katsuya; Kumari, Parmila; Kakei, Masafumi; Yada, Toshihiko

    2015-08-01

    Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.

  14. Vagal afferents are essential for maximal resection-induced intestinal adaptive growth in orally fed rats

    DEFF Research Database (Denmark)

    Nelson, David W; Liu, Xiaowen; Holst, Jens Juul

    2006-01-01

    Small bowel resection stimulates intestinal adaptive growth by a neuroendocrine process thought to involve both sympathetic and parasympathetic innervation and enterotrophic hormones such as glucagon-like peptide-2 (GLP-2). We investigated whether capsaicin-sensitive vagal afferent neurons are es...

  15. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons.

    Science.gov (United States)

    de La Serre, Claire B; de Lartigue, Guillaume; Raybould, Helen E

    2015-02-01

    Bacterially derived factors are implicated in the causation and persistence of obesity. Ingestion of a high fat diet in rodents and obesity in human subjects is associated with chronic elevation of low plasma levels of lipopolysaccharide (LPS), a breakdown product of Gram-negative bacteria. The terminals of vagal afferent neurons are positioned within the gut mucosa to convey information from the gut to the brain to regulate food intake and are responsive to LPS. We hypothesized that chronic elevation of LPS could alter vagal afferent signaling. We surgically implanted osmotic mini-pumps that delivered a constant, low-dose of LPS into the intraperitoneal cavity of rats (12.5 μg/kg/hr for 6 weeks). LPS-treated rats developed hyperphagia and showed marked changes in vagal afferent neuron function. Chronic LPS treatment reduced vagal afferent leptin signaling, characterized by a decrease in leptin-induced STAT3 phosphorylation. In addition, LPS treatment decreased cholecystokinin-induced satiety. There was no alteration in leptin signaling in the hypothalamus. These findings offer a mechanism by which a change in gut microflora can promote hyperphagia, possibly leading to obesity.

  16. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2008-01-01

    maximal voluntary plantar- and dorsiflexion torque (MVC) was significantly reduced and the maximal SOL H-reflex amplitude increased with no changes in Mmax. Decreased presynaptic inhibition of the Ia afferents likely contributed to the increase of the H-reflex size, since we observed a significant...

  17. Afferent and Efferent Connections of the Optic Tectum in the Carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of the tectum opticum in the carp (Cyprinus carpio L.) were studied with the HRP method. Following iontophoretic peroxidase injections in several parts of the rectum anterograde transport of the enzyme revealed tectal projections to the lateral geniculate nucleu

  18. Influence of muscle length on muscle atrophy in the mouse tibialis anterior and soleus muscles.

    Science.gov (United States)

    Fujita, Naoto; Fujimoto, Taro; Tasaki, Hiromitsu; Arakawa, Takamitsu; Matsubara, Takako; Miki, Akinori

    2009-02-01

    The tibialis anterior and soleus muscles were fixed at the stretched or shortened positions to examine the influence of muscle length on muscle atrophy. Mice were divided into control (C), hindlimb suspension (HS), hindlimb suspension with ankle joint fixation at the maximum dorsiflexion (HSD), and hindlimb suspension with ankle joint fixation at the maximum plantarflexion (HSP). During the hindlimb suspension, the length of these muscles in the HS and HSP groups was very similar. Fourteen days after the hindlimb suspension, the atrophy of the tibialis anterior muscle in the HS and HSP groups was evidently milder than that in the HSD group, and that in the HS and HSP groups was very similar, suggesting that atrophy of the tibialis anterior muscle might largely depend on muscle length. Atrophy of the soleus muscle in the HSD group was milder than that in the HS and HSP groups, indicating that atrophy of the soleus muscle might also depend on muscle length. But atrophy of this muscle in the HSP group was milder than that in the HS group. These results demonstrate that some factors induced by the joint immobilization might be effective in preventing atrophy of the soleus muscle.

  19. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  20. Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae).

    Science.gov (United States)

    Bell, C C

    1981-01-20

    The central distribution of afferents from individual eight nerve branches (N VIII) and mechanical lateral line end organs in mormyrid fish are described. Afferents were labeled with horseradish peroxidase (HRP) placed on the cut ends of the different N VIII branches and the anterior and posterior lateral line nerves. Descending, tangential, and magnocellular nuclei receive input almost exclusively from the utriculus and canals. Nucleus octavius receives afferents from the lateral line nerves and all N VIII branches, with one part receiving exclusive and bilateral input from the sacculus. Afferents from both lateral line nerves and all N VII branches, except the sacculus, end in eminentia granularis. Afferents from each of the two lateral line nerves and from each of three otolith branches of N VIII end in different regions of the anterior lateral line lobe, with some areas of overlap. Behavioral studies in other families of fish indicate that the utriculus and canals are critical for postural control, whereas the sacculus and possibly the lagena are concerned with hearing. Such findings, together with the results of this study, suggest that mormyrids and perhaps other fish possess separate auditory and vestibular centers within the octavolateral area. The HRP method also shows the cell bodies and axons of octavolateral efferents. N VIII and lateral line efferents arise from a common nucleus, and the central course of their axons parallels that of facial motoneurons. Axons of efferent cells divide to supply two or more branches of N VIII and some axons supply both lateral line and N VIII end organs.

  1. Identification of multisegmental nociceptive afferents that modulate locomotor circuits in the neonatal mouse spinal cord.

    Science.gov (United States)

    Mandadi, Sravan; Hong, Peter; Tran, Michelle A; Bráz, Joao M; Colarusso, Pina; Basbaum, Allan I; Whelan, Patrick J

    2013-08-15

    Compared to proprioceptive afferent collateral projections, less is known about the anatomical, neurochemical, and functional basis of nociceptive collateral projections modulating lumbar central pattern generators (CPG). Quick response times are critical to ensure rapid escape from aversive stimuli. Furthermore, sensitization of nociceptive afferent pathways can contribute to a pathological activation of motor circuits. We investigated the extent and role of collaterals of capsaicin-sensitive nociceptive sacrocaudal afferent (nSCA) nerves that directly ascend several spinal segments in Lissauer's tract and the dorsal column and regulate motor activity. Anterograde tracing demonstrated direct multisegmental projections of the sacral dorsal root 4 (S4) afferent collaterals in Lissauer's tract and in the dorsal column. Subsets of the traced S4 afferent collaterals expressed transient receptor potential vanilloid 1 (TRPV1), which transduces a nociceptive response to capsaicin. Electrophysiological data revealed that S4 dorsal root stimulation could evoke regular rhythmic bursting activity, and our data suggested that capsaicin-sensitive collaterals contribute to CPG activation across multiple segments. Capsaicin's effect on S4-evoked locomotor activity was potent until the lumbar 5 (L5) segments, and diminished in rostral segments. Using calcium imaging we found elevated calcium transients within Lissauer's tract and dorsal column at L5 segments when compared to the calcium transients only within the dorsal column at the lumbar 2 (L2) segments, which were desensitized by capsaicin. We conclude that lumbar locomotor networks in the neonatal mouse spinal cord are targets for modulation by direct multisegmental nSCA, subsets of which express TRPV1 in Lissauer's tract and the dorsal column. J. Comp. Neurol. 521:2870-2887, 2013. © 2013 Wiley Periodicals, Inc.

  2. Functional sparing of intrafusal muscle fibers in muscular dystrophies.

    Science.gov (United States)

    Aimonetti, Jean-Marc; Ribot-Ciscar, Edith; Rossi-Durand, Christiane; Attarian, Shahram; Pouget, Jean; Roll, Jean-Pierre

    2005-07-01

    In a previous study, we showed that patients with muscular dystrophies (MDs) perceive passive movements, experience sensations of illusory movement induced by muscle tendon vibration, and have proprioceptive-regulated sways in response to vibratory stimulation applied to the neck and ankle muscle tendons. These findings argue for preserved proprioceptive functions of muscle spindles. However, it is unclear whether the function of intrafusal muscle fibers is spared, i.e., whether they retain their ability to contract when submitted to a fusimotor drive. To answer this question, we analyzed the effects of reinforcement maneuvers (mental computation and the Jendrassik maneuver) that are known to increase muscle spindle sensitivity via fusimotor drive in healthy subjects. Nine patients with different MDs participated in the study. Reinforcement maneuvers increased both the mean amplitude of the Achilles tendon reflex (187 +/- 52.9% of the mean control amplitude) and the sensitivity of muscle spindle afferents to imposed movements of the ankle. The same reinforcement maneuvers failed to alter the amplitude of the Hoffmann reflex in the triceps surae muscle. These results suggest that the intrafusal muscle fibers preserve their contractile abilities in slowly progressive MDs. The reasons for a differential impairment of intrafusal and extrafusal muscle fibers and the clinical implications of the present results are discussed.

  3. Flexible adaptation to an artificial recurrent connection from muscle to peripheral nerve in man.

    Science.gov (United States)

    Kato, Kenji; Sasada, Syusaku; Nishimura, Yukio

    2016-02-01

    Controlling a neuroprosthesis requires learning a novel input-output transformation; however, how subjects incorporate this into limb control remains obscure. To elucidate the underling mechanisms, we investigated the motor adaptation process to a novel artificial recurrent connection (ARC) from a muscle to a peripheral nerve in healthy humans. In this paradigm, the ulnar nerve was electrically stimulated in proportion to the activation of the flexor carpi ulnaris (FCU), which is ulnar-innervated and monosynaptically innervated from Ia afferents of the FCU, defined as the "homonymous muscle," or the palmaris longus (PL), which is not innervated by the ulnar nerve and produces similar movement to the FCU, defined as the "synergist muscle." The ARC boosted the activity of the homonymous muscle and wrist joint movement during a visually guided reaching task. Participants could control muscle activity to utilize the ARC for the volitional control of wrist joint movement and then readapt to the absence of the ARC to either input muscle. Participants reduced homonymous muscle recruitment with practice, regardless of the input muscle. However, the adaptation process in the synergist muscle was dependent on the input muscle. The activity of the synergist muscle decreased when the input was the homonymous muscle, whereas it increased when it was the synergist muscle. This reorganization of the neuromotor map, which was maintained as an aftereffect of the ARC, was observed only when the input was the synergist muscle. These findings demonstrate that the ARC induced reorganization of neuromotor map in a targeted and sustainable manner.

  4. Fatiguing stimulation of one skeletal muscle triggers heat shock protein activation in several rat organs: the role of muscle innervation.

    Science.gov (United States)

    Jammes, Yves; Steinberg, Jean Guillaume; By, Youlet; Brerro-Saby, Christelle; Condo, Jocelyne; Olivier, Marine; Guieu, Regis; Delliaux, Stephane

    2012-11-15

    We hypothesised that activation of muscle afferents by fatigue triggers a widespread activation of heat shock proteins (HSPs) in resting muscles and different organs. In anaesthetised rats, HSP25 and HSP70 levels were determined in both tibialis anterior (TA) and extensor digitorum longus (EDL) muscles and in the diaphragm, kidney and brain by ELISA, which mostly identifies phosphorylated HSP, and western blotting. One TA muscle was electrically stimulated and tissues were sampled 10 or 60 min after the stimulation had ended. The nerve supply to the stimulated TA or its counterpart in the contralateral limb was left intact or suppressed. In control rats, no muscle stimulation was performed and tissues were sampled at the same time points (10 or 60 min). After TA stimulation, ELISA showed an increased HSP25 content in the contralateral TA, EDL and diaphragm at 10 min but not at 60 min, and HSP70 increased in all sampled tissues at 60 min. Western blotting did not show any changes in HSP25 and HSP70 at 10 min, while at 60 min HSP25 increased in all sampled tissues except the brain and HSP70 was elevated in all tissues. Denervation of the contralateral non-stimulated limb suppressed HSP changes in TA and after denervation of the stimulated TA the widespread activation of HSPs in other organs was absent. Our data suggest that fatigue-induced activation of skeletal muscle afferents triggers an early increase in phosphorylated HSP25 in muscles and a delayed elevation of non-phosphorylated HSP25 and HSP70 in skeletal and respiratory muscles, kidney and brain.

  5. Effects of substituting a concentrated diet for chestnuts on the lipid traits of muscle and adipose tissues in corsican and corsican × large white pigs reared in a sylvo-pastoral system in corsica.

    Science.gov (United States)

    Coutron-Gambotti, C; Gandemer, G; Casabianca, F

    1998-10-01

    In the sylvo-pastoral extensive system in Corsica, pigs are fattened with chestnuts. The decrease in chestnut resource forces the farmers to use more and more concentrated diets for feeding the pigs but so far they have disregarded the consequences of this on meat quality. The aim of the present study was to evaluate the effects of substituting a concentrated diet for chestnuts during the fattening period on the lipid composition of adipose and muscle tissues of ham in Corsican and Corsican × Large-White pigs. The results showed that the Corsican × Large-White pigs had heavier carcasses (125kg versus 106kg) and hams (12·5kg versus 10·2kg) but the genotype affected neither the carcass fatness nor the lipid composition of the adipose and muscle tissues. In addition, compared to chestnuts, the concentrated diet used did not affect live-weight, carcass and ham weights, or the carcass fatness of the pigs at slaughter. However, pigs fattened with a concentrated diet had adipose tissue lipids, intramuscular triglycerides and phospholipids with a lower proportion of polyunsaturated fatty acids (8·1% versus 6·2%, 5·8% versus 4·5%, and 47·7% versus 37·1%, respectively).

  6. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying.

    Science.gov (United States)

    Raybould, Helen E; Glatzle, Jorg; Robin, Carla; Meyer, James H; Phan, Thomas; Wong, Helen; Sternini, Catia

    2003-03-01

    Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.

  7. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  8. In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization.

    Science.gov (United States)

    Ford, Anthony P

    2012-02-01

    Treating pain by inhibiting ATP activation of P2X3-containing receptors heralds an exciting new approach to pain management, and Afferent's program marks the vanguard in a new class of drugs poised to explore this approach to meet the significant unmet needs in pain management. P2X3 receptor subunits are expressed predominately and selectively in so-called C- and Aδ-fiber primary afferent neurons in most tissues and organ systems, including skin, joints, and hollow organs, suggesting a high degree of specificity to the pain sensing system in the human body. P2X3 antagonists block the activation of these fibers by ATP and stand to offer an alternative approach to the management of pain and discomfort. In addition, P2X3 is expressed pre-synaptically at central terminals of C-fiber afferent neurons, where ATP further sensitizes transmission of painful signals. As a result of the selectivity of the expression of P2X3, there is a lower likelihood of adverse effects in the brain, gastrointestinal, or cardiovascular tissues, effects which remain limiting factors for many existing pain therapeutics. In the periphery, ATP (the factor that triggers P2X3 receptor activation) can be released from various cells as a result of tissue inflammation, injury or stress, as well as visceral organ distension, and stimulate these local nociceptors. The P2X3 receptor rationale has aroused a formidable level of investigation producing many reports that clarify the potential role of ATP as a pain mediator, in chronic sensitized states in particular, and has piqued the interest of pharmaceutical companies. P2X receptor-mediated afferent activation has been implicated in inflammatory, visceral, and neuropathic pain states, as well as in airways hyperreactivity, migraine, itch, and cancer pain. It is well appreciated that oftentimes new mechanisms translate poorly from models into clinical efficacy and effectiveness; however, the breadth of activity seen from P2X3 inhibition in models offers

  9. High fat diet induced changes in gastric vagal afferent response to adiponectin.

    Science.gov (United States)

    Kentish, Stephen J; Ratcliff, Kyle; Li, Hui; Wittert, Gary A; Page, Amanda J

    2015-12-01

    Food intake is regulated by vagal afferent signals from the stomach. Adiponectin, secreted primarily from adipocytes, also has a role in regulating food intake. However, the involvement of vagal afferents in this effect remains to be established. We aimed to determine if adiponectin can modulate gastric vagal afferent (GVA) satiety signals and further whether this is altered in high fat diet (HFD)-induced obesity. Female C57BL/6J mice were fed either a standard laboratory diet (SLD) or a HFD for 12weeks. Plasma adiponectin levels were assayed, and the expression of adiponectin in the gastric mucosa was assessed using real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The location of adiponectin protein within the gastric mucosa was determined by immunohistochemistry. To evaluate the direct effect of adiponectin on vagal afferent endings we determined adiponectin receptor expression in whole nodose ganglia (NDG) and also specifically in GVA neurons using retrograde tracing and qRT-PCR. An in vitro preparation was used to determine the effect of adiponectin on GVA response to mechanical stimulation. HFD mice exhibited an increased body weight and adiposity and showed delayed gastric emptying relative to SLD mice. Plasma adiponectin levels were not significantly different in HFD compared to SLD mice. Adiponectin mRNA was detected in the gastric mucosa of both SLD and HFD mice and presence of protein was confirmed immunohistochemically by the detection of adiponectin immunoreactive cells in the mucosal layer of the stomach. Adiponectin receptor 1 (ADIPOR1) and 2 (ADIPOR2) mRNA was present in both the SLD and HFD whole NDG and also specifically traced gastric mucosal and muscular neurons. There was a reduction in ADIPOR1 mRNA in the mucosal afferents of the HFD mice relative to the SLD mice. In HFD mice adiponectin potentiated gastric mucosal afferent responses to mucosal stroking, an effect not observed in SLD mice. Adiponectin reduced

  10. Expression of Ankrd2 in fast and slow muscles and its response to stretch are consistent with a role in slow muscle function.

    NARCIS (Netherlands)

    Mckoy, G.; Hou, Y.; Yang, S.Y.; Vega Avelaira, D.; Degens, H.; Goldspink, G.; Coulton, G.R.

    2005-01-01

    In striated muscle, the structural genes associated with muscle fiber phenotype determination as well as muscle mass accretion are regulated largely by mechanical stimuli. Passive stretch of skeletal muscle stimulates muscle growth/hypertrophy and an increased expression of slow muscle genes. We pre

  11. Linkage of malignant hyperthermia and hyperkalemic periodic paralysis to the adult skeletal muscle sodium channel (SCN4A) gene in a large pedigree.

    Science.gov (United States)

    Moslehi, R; Langlois, S; Yam, I; Friedman, J M

    1998-02-26

    Hyperkalemic periodic paralysis (HPP) is caused by mutations of the adult skeletal muscle sodium channel (SCN4A) gene on chromosome 17. Malignant hyperthermia (MH) is a genetically heterogeneous autosomal-dominant disorder occurring in association with various neuromuscular diseases or without other apparent abnormalities. In some families, MH is associated with mutations of a calcium release channel (RYR1) gene on chromosome 19. In other families, linkage of this disorder to the SCN4A gene on chromosome 17 has been suggested. We report on linkage analysis in a family in which both HPP and MH are inherited as autosomal-dominant traits. Two polymorphisms within the SCN4A locus, an RFLP and a (C-A)n repeat, were typed on multiple family members. The findings were consistent with linkage of the polymorphic markers within the SCN4A gene to both HPP (Zmax = 6.79 at theta = 0.0) and MH (Zmax = 1.76 at theta = 0) in this family. Our data provide further evidence that MH is linked to the SCN4A locus in some families.

  12. Effect of muscle contraction strength on gating of somatosensory magnetic fields.

    Science.gov (United States)

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kotan, Shinichi; Kojima, Sho; Miyaguchi, Shota; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-11-01

    Afferent somatosensory information is modulated before the afferent input arrives at the primary somatosensory cortex during voluntary movement. The aim of the present study was to clarify the effect of muscular contraction strength on somatosensory evoked fields (SEFs) during voluntary movement. In addition, we examined the differences in gating between innervated and non-innervated muscle during contraction. We investigated the changes in gating effect by muscular contraction strength and innervated and non-innervated muscles in human using 306-channel magnetoencephalography. SEFs were recorded following the right median nerve stimulation in a resting condition and during isometric muscular contractions from 10 % electromyographic activity (EMG), 20 and 30 % EMG of the right extensor indicis muscle and abductor pollicis brevis muscle. Our results showed that the equivalent current dipole (ECD) strength for P35m decreased with increasing strength of muscular contraction of the right abductor pollicis brevis muscle. However, changes were observed only at 30 % EMG contraction level of the right extensor indicis muscle, which was not innervated by the median nerve. There were no significant changes in the peak latencies and ECD locations of each component in all conditions. The ECD strength did not differ significantly for N20m and P60m regardless of the strength of muscular contraction and innervation. Therefore, we suggest that the gating of SEF waveforms following peripheral nerve stimulation was affected by the strength of muscular contraction and innervation of the contracting muscle.

  13. Experimental Muscle Pain Impairs the Synergistic Modular Control of Neck Muscles.

    Directory of Open Access Journals (Sweden)

    Leonardo Gizzi

    Full Text Available A motor task can be performed via different patterns of muscle activation that show regularities that can be factorized in combinations of a reduced number of muscle groupings (also referred to as motor modules, or muscle synergies. In this study we evaluate whether an acute noxious stimulus induces a change in the way motor modules are combined to generate movement by neck muscles. The neck region was selected as it is a region with potentially high muscular redundancy. We used the motor modules framework to assess the redistribution of muscular activity of 12 muscles (6 per side in the neck region of 8 healthy individuals engaged in a head and neck aiming task, in non-painful conditions (baseline, isotonic saline injection, post pain and after the injection of hypertonic saline into the right splenius capitis muscle. The kinematics of the task was similar in the painful and control conditions. A general decrease of activity was noted for the injected muscle during the painful condition together with an increase or decrease of the activity of the other muscles. Subjects did not adopt shared control strategies (motor modules inter subject similarity at baseline 0.73±0.14; the motor modules recorded during the painful condition could not be used to reconstruct the activation patterns of the control conditions, and the painful stimulus triggered a subject-specific redistribution of muscular activation (i.e., in some subjects the activity of a given muscle increased, whereas in other subjects it decreased with pain. Alterations of afferent input (i.e., painful stimulus influenced motor control at a multi muscular level, but not kinematic output. These findings provide new insights into the motor adaptation to pain.

  14. Experimental Muscle Pain Impairs the Synergistic Modular Control of Neck Muscles.

    Science.gov (United States)

    Gizzi, Leonardo; Muceli, Silvia; Petzke, Frank; Falla, Deborah

    2015-01-01

    A motor task can be performed via different patterns of muscle activation that show regularities that can be factorized in combinations of a reduced number of muscle groupings (also referred to as motor modules, or muscle synergies). In this study we evaluate whether an acute noxious stimulus induces a change in the way motor modules are combined to generate movement by neck muscles. The neck region was selected as it is a region with potentially high muscular redundancy. We used the motor modules framework to assess the redistribution of muscular activity of 12 muscles (6 per side) in the neck region of 8 healthy individuals engaged in a head and neck aiming task, in non-painful conditions (baseline, isotonic saline injection, post pain) and after the injection of hypertonic saline into the right splenius capitis muscle. The kinematics of the task was similar in the painful and control conditions. A general decrease of activity was noted for the injected muscle during the painful condition together with an increase or decrease of the activity of the other muscles. Subjects did not adopt shared control strategies (motor modules inter subject similarity at baseline 0.73±0.14); the motor modules recorded during the painful condition could not be used to reconstruct the activation patterns of the control conditions, and the painful stimulus triggered a subject-specific redistribution of muscular activation (i.e., in some subjects the activity of a given muscle increased, whereas in other subjects it decreased with pain). Alterations of afferent input (i.e., painful stimulus) influenced motor control at a multi muscular level, but not kinematic output. These findings provide new insights into the motor adaptation to pain.

  15. Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    Directory of Open Access Journals (Sweden)

    Katafuchi Toshihiko

    2005-03-01

    Full Text Available Abstract Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250, whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000 was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three

  16. Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve.

    Science.gov (United States)

    Hellström, F; Roatta, S; Thunberg, J; Passatore, M; Djupsjöbacka, M

    2005-09-01

    Previous studies performed in jaw muscles of rabbits and rats have demonstrated that sympathetic outflow may affect the activity of muscle spindle afferents (MSAs). The resulting impairment of MSA information has been suggested to be involved in the genesis and spread of chronic muscle pain. The present study was designed to investigate sympathetic influences on muscle spindles in feline trapezius and splenius muscles (TrSp), as these muscles are commonly affected by chronic pain in humans. Experiments were carried out in cats anesthetized with alpha-chloralose. The effect of electrical stimulation (10 Hz for 90 s or 3 Hz for 5 min) of the peripheral stump of the cervical sympathetic nerve (CSN) was investigated on the discharge of TrSp MSAs (units classified as Ia-like and II-like) and on their responses to sinusoidal stretching of these muscles. In some of the experiments, the local microcirculation of the muscles was monitored by laser Doppler flowmetry. In total, 46 MSAs were recorded. Stimulation of the CSN at 10 Hz powerfully depressed the mean discharge rate of the majority of the tested MSAs (73%) and also affected the sensitivity of MSAs to sinusoidal changes of muscle length, which were evaluated in terms of amplitude and phase of the sinusoidal fitting of unitary activity. The amplitude was significantly reduced in Ia-like units and variably affected in II-like units, while in general the phase was affected little and not changed significantly in either group. The discharge of a smaller percentage of tested units was also modulated by 3-Hz CSN stimulation. Blockade of the neuromuscular junctions by pancuronium did not induce any changes in MSA responses to CSN stimulation, showing that these responses were not secondary to changes in extrafusal or fusimotor activity. Further data showed that the sympathetically induced modulation of MSA discharge was not secondary to the concomitant reduction of muscle blood flow induced by the stimulation. Hence

  17. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke.

    Science.gov (United States)

    Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling

    2014-02-01

    Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.

  18. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    arterioles with the chloride channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Renin secretion was equally enhanced by omission of extracellular calcium and by addition of 0.5 mM DIDS. The inhibitory effect of calcium was blocked by DIDS. The stimulatory effects of low calcium [with....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...... the duration of the contractile response to norepinephrine. The results support the hypothesis that DIDS-sensitive calcium-activated chloride channels are involved in regulation of renin release and in the afferent arteriolar contraction after angiotensin II but do not play a pivotal role in the response...

  19. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  20. Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Lan Bao

    2012-01-01

    μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy.However,the use of these drugs is limited by their side-effects,which include antinociceptive tolerance and dependence.Earlier studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with MORs.Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion may contribute to morphine analgesic tolerance.Further analysis of the mechanisms for regulating the trafficking of receptors,ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive mechanisms and improve pain therapy.

  1. Activation of kinetically distinct synaptic conductances on inhibitory interneurons by electrotonically overlapping afferents.

    Science.gov (United States)

    Walker, Harrison C; Lawrence, J Josh; McBain, Chris J

    2002-07-03

    Mossy fiber (MF) and CA3 collateral (CL) axons activate common interneurons via synapses comprised of different AMPA receptors to provide feedforward and feedback inhibitory control of the CA3 hippocampal network. Because synapses potentially occur over variable electrotonic distances that distort somatically recorded synaptic currents, it is not known whether the underlying afferent-specific synaptic conductances are associated with different time courses. Using a somatic voltage jump technique to alter the driving force at the site of the synapse, we demonstrate that MF and CL synapses overlap in electrotonic location yet differ in conductance time course. Thus, afferent-specific conductance time courses allow single interneurons to differentially integrate feedforward and feedback information without the need to segregate distinct AMPA receptor subunits to different electrotonic domains.

  2. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. Copyright © 2014 the American Physiological Society.

  3. Lack of on-going adaptations in the soleus muscle activity during walking in patients affected by large-fiber neuropathy

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; Sinkjær, Thomas;

    2005-01-01

    applied during the stance phase of the gait cycle to mimic the normal variability of the ankle trajectory during walking. Patients with demyelination of large sensory fibers (Charcot-Marie-Tooth type 1A and antibodies to myelin-associated glycoprotein neuropathy) and age-matched controls participated...... in this study. The patients had absent light-touch sense in the toes and feet and absent quadriceps and Achilles tendon reflexes, indicating functional loss of large sensory fibers. Moreover, their soleus stretch reflex response consisted of a single electromyographic (EMG) burst with delayed onset and longer...... duration (P

  4. Monosynaptic Ia projections from intrinsic hand muscles to forearm motoneurones in humans

    Science.gov (United States)

    Marchand-Pauvert, V; Nicolas, G; Pierrot-Deseilligny, E

    2000-01-01

    Heteronymous Ia excitatory projections from intrinsic hand muscles to human forearm motoneurones (MNs) were investigated. Changes in firing probability of single motor units (MUs) in the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC) were studied after electrical stimuli were applied to the median and ulnar nerve at wrist level and to the corresponding homonymous nerve at elbow level.Homonymous facilitation, occurring at the same latency as the H reflex, and therefore attributed to monosynaptic Ia EPSPs, was found in all the sampled units. In many MUs an early facilitation was also evoked by heteronymous low-threshold afferents from intrinsic hand muscles. The low threshold (between 0.5 and 0.6 times motor threshold (MT)) and the inability of a pure cutaneous stimulation to reproduce this effect indicate that it is due to stimulation of group I muscle afferents.Evidence for a similar central delay (monosynaptic) in heteronymous as in homonymous pathways was accepted when the difference in latencies of the homonymous and heteronymous peaks did not differ from the estimated supplementary afferent conduction time from wrist to elbow level by more than 0.5 ms (conduction velocity in the fastest Ia afferents between wrist and elbow levels being equal to 69 m s−1).A statistically significant heteronymous monosynaptic Ia excitation from intrinsic hand muscles supplied by both median and ulnar nerves was found in MUs belonging to all forearm motor nuclei tested (although not in ECU MUs after ulnar stimulation). It was, however, more often found in flexors than in extensors, in wrist than in finger muscles and in muscles operating in the radial than in the ulnar side.It is argued that the connections of Ia afferents from intrinsic hand muscles to forearm MNs, which are stronger and more widely distributed than in the cat, might

  5. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat

    DEFF Research Database (Denmark)

    Bucinskaite, V; Tolessa, T; Pedersen, J

    2009-01-01

    The vagus nerve plays a role in mediating effects of the two glucagon-like peptides GLP-1 and GLP-2 on gastrointestinal growth, functions and eating behaviour. To obtain electrophysiological and molecular evidence for the contribution of afferent pathways in chemoreception from the gastrointestinal...... tract, afferent mass activity in the ventral gastric branch of the vagus nerve and gene expression of GLP-1 receptors and GLP-2 receptors in the nodose ganglion were examined in Sprague-Dawley rats. Intravenous administration of GLP-1 (30-1000 pmol kg(-1)), reaching high physiological plasma...... afferent nerves mediate sensory input from the gastrointestinal tract or pancreas; either directly or indirectly via the release of another mediator. GLP-2 receptors appear not be functionally expressed on vagal afferents....

  6. Presynaptic α2-GABAA Receptors in Primary Afferent Depolarization and Spinal Pain Control

    OpenAIRE

    2011-01-01

    Spinal dorsal horn GABAA receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution of ...

  7. Presynaptic {alpha}2-GABAA receptors in primary afferent depolarization and spinal pain control

    OpenAIRE

    2011-01-01

    Spinal dorsal horn GABA(A) receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution o...

  8. Lack of central sprouting of primary afferent fibers after ricin deafferentation.

    Science.gov (United States)

    Pubols, L M; Bowen, D C

    1988-09-08

    A new deafferentation technique, the application of ricin to peripheral nerves, was used to test for collateral sprouting of undamaged primary afferent fibers within the adult mammalian spinal cord dorsal horn. The right sciatic nerves in rats were injected with ricin 14 to 57 days prior to bilateral labelling of dorsal rootlets with horseradish peroxidase. To equate the number of surviving dorsal root fibers on the two sides, the left sciatic nerves were injected 5 days prior to labelling. In each animal, horseradish peroxidase was applied to a bilateral pair of lumbar or low thoracic dorsal rootlets 18 hours prior to sacrifice to test for sprouting by labelling primary afferent fibers and terminals in the right (experimental) and left (control) dorsal horns. Although there is overlap of degenerated and intact primary afferent fields in this preparation, a postulated precondition for sprouting (Murray and Goldberger: J. Neurosci. 6:3205-3217, '86), we found no evidence for sprouting of undamaged, myelinated afferent fibers in the experimental dorsal horns. The pattern of labelling was symmetrical in all animals, and the density of labelling was not consistently greater on the experimental side. These results support the conclusions of Rodin et al. (J. Comp. Neurol. 215:187-198, '83) and Rodin and Kruger (Somatosens. Res. 2:171-192, '84), who also found no sprouting in the rat's dorsal horn after surgical deafferentation, and do not support the assertion that the difference between the results of those studies and earlier studies in cats was due to a lack of overlap of degenerated and intact dorsal roots in the rat.

  9. Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    OpenAIRE

    Katafuchi Toshihiko; Takaki Atsushi; Rashid Md Harunor; Furue Hidemasa; Koga Kohei; Yoshimura Megumu

    2005-01-01

    Abstract Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer) are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs) generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG) preparations using intracellular recordings. We also measured e...

  10. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons.

    Science.gov (United States)

    Jeong, Seok-Gwon; Choi, In-Sun; Cho, Jin-Hwa; Jang, Il-Sung

    2013-12-01

    Although muscarinic acetylcholine (mACh) receptors are expressed in trigeminal ganglia, it is still unknown whether mACh receptors modulate glutamatergic transmission from primary afferents onto medullary dorsal horn neurons. In this study, we have addressed the cholinergic modulation of primary afferent glutamatergic transmission using a conventional whole cell patch clamp technique. Glutamatergic excitatory postsynaptic currents (EPSCs) were evoked from primary afferents by electrical stimulation of trigeminal tract and monosynaptic EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices. Muscarine and ACh reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, muscarine reduced the frequency of miniature EPSCs without affecting the current amplitude, suggesting that muscarine acts presynaptically to decrease the probability of glutamate release onto medullary dorsal horn neurons. The muscarine-induced decrease of glutamatergic EPSCs was significantly occluded by methoctramine or AF-DX116, M2 receptor antagonists, but not pirenzepine, J104129 and MT-3, selective M1, M3 and M4 receptor antagonists. The muscarine-induced decrease of glutamatergic EPSCs was highly dependent on the extracellular Ca2+ concentration. Physostigmine and clinically available acetylcholinesterase inhibitors, such as rivastigmine and donepezil, significantly shifted the concentration-inhibition relationship of ACh for glutamatergic EPSCs. These results suggest that muscarine acts on presynaptic M2 receptors to inhibit glutamatergic transmission by reducing the Ca2+ influx into primary afferent terminals, and that M2 receptor agonists and acetylcholinesterase inhibitors could be, at least, potential targets to reduce nociceptive transmission from orofacial tissues.

  11. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  12. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin?

    OpenAIRE

    Fyffe, R E; Perl, E R

    1984-01-01

    The possibility that ATP acts as a synaptic mediator at the central terminals of primary afferent fibers was examined by applying it iontophoretically to neurons of the outer layers of the cat spinal cord in vivo. ATP proved to be selectively excitatory for a limited subset of spinal neurons. Those units consistently excited by ATP iontophoresis with very small currents (2-15 nA) responded to gentle mechanical stimulation of the skin and usually evidenced excitatory input from unmyelinated pr...

  13. Electron microscopic observations of terminals of functionally identified afferent fibers in cat spinal cord.

    Science.gov (United States)

    Egger, M D; Freeman, N C; Malamed, S; Masarachia, P; Proshansky, E

    1981-02-23

    Using the method of intra-axonal injection of horseradish peroxidase, functionally identified afferent fibers from three slowly adapting (Type I) receptors and one Pacinian corpuscle in the glabrous skin of the hind paw of the cat were stained. Electron microscopic observation of the terminals of these fibers revealed predominantly axodendritic asymmetric synapses containing round, clear vesicles. Multiple synapses on a single dendrite were observed, separated by as little as 900 mm from one another.

  14. Immune derived opioidergic inhibition of viscerosensory afferents is decreased in Irritable Bowel Syndrome patients.

    Science.gov (United States)

    Hughes, Patrick A; Moretta, Melissa; Lim, Amanda; Grasby, Dallas J; Bird, Daniel; Brierley, Stuart M; Liebregts, Tobias; Adam, Birgit; Blackshaw, L Ashley; Holtmann, Gerald; Bampton, Peter; Hoffmann, Peter; Andrews, Jane M; Zola, Heddy; Krumbiegel, Doreen

    2014-11-01

    Alterations in the neuro-immune axis contribute toward viscerosensory nerve sensitivity and symptoms in Irritable Bowel Syndrome (IBS). Inhibitory factors secreted from immune cells inhibit colo-rectal afferents in health, and loss of this inhibition may lead to hypersensitivity and symptoms. We aimed to determine the immune cell type(s) responsible for opioid secretion in humans and whether this is altered in patients with IBS. The β-endorphin content of specific immune cell lineages in peripheral blood and colonic mucosal biopsies were compared between healthy subjects (HS) and IBS patients. Peripheral blood mononuclear cell (PBMC) supernatants from HS and IBS patients were applied to colo-rectal sensory afferent endings in mice with post-inflammatory chronic visceral hypersensitivity (CVH). β-Endorphin was identified predominantly in monocyte/macrophages relative to T or B cells in human PBMC and colonic lamina propria. Monocyte derived β-endorphin levels and colonic macrophage numbers were lower in IBS patients than healthy subjects. PBMC supernatants from healthy subjects had greater inhibitory effects on colo-rectal afferent mechanosensitivity than those from IBS patients. The inhibitory effects of PBMC supernatants were more prominent in CVH mice compared to healthy mice due to an increase in μ-opioid receptor expression in dorsal root ganglia neurons in CVH mice. Monocyte/macrophages are the predominant immune cell type responsible for β-endorphin secretion in humans. IBS patients have lower monocyte derived β-endorphin levels than healthy subjects, causing less inhibition of colonic afferent endings. Consequently, altered immune function contributes toward visceral hypersensitivity in IBS.

  15. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development.

    Science.gov (United States)

    Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E

    2016-05-13

    The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Neurotrophin-3 administration attenuates deficits of pyridoxine-induced large-fiber sensory neuropathy.

    Science.gov (United States)

    Helgren, M E; Cliffer, K D; Torrento, K; Cavnor, C; Curtis, R; DiStefano, P S; Wiegand, S J; Lindsay, R M

    1997-01-01

    Chronic treatment of adult rats for 2-3 weeks with high doses of pyridoxine (vitamin B6) produced a profound proprioceptive loss, similar to that found in humans overdosed with this vitamin or treated with the chemotherapeutic agent cisplatin. Pyridoxine toxicity was manifest as deficits in simple and precise locomotion and sensory nerve function and as degeneration of large-diameter/large-fiber spinal sensory neurons. As assessed quantitatively in a beam-walking task and by EMG recording of H waves evoked by peripheral nerve stimulation, coadministration of the neurotrophic factor neurotrophin-3 (NT-3; 5-20 mg . kg-1 . d-1, s.c.) during chronic pyridoxine treatment largely attenuated the behavioral and electrophysiological sequelae associated with pyridoxine toxicity. Furthermore, NT-3 administration prevented degeneration of sensory fibers in the dorsal column of the spinal cord. These data are consistent with the evidence that NT-3 is a target-derived neurotrophic factor for muscle sensory afferents and suggest that pharmacological doses of NT-3 may be beneficial in the treatment of large-fiber sensory neuropathies.

  17. Large/Massive Tears, Fatty Infiltration, and Rotator Cuff Muscle Atrophy: A Review Article With Management Options Specific to These Types of Cuff Deficiencies

    OpenAIRE

    Gandhi Nathan Solayar; Bradley Seeto; Darren Chen; Samuel Mac Dessi

    2016-01-01

    Context There are many studies in the literature looking into factors affecting outcomes in rotator cuff surgery. The aetiology of rotator cuff deficiency is often multi-factorial and there are many facets towards successful management in this often debilitating condition. Evidence Acquisition We performed a literature search of MEDLINE and Embase databases using the terms large rotator cuff tears, fatty infiltration rotator cuff,...

  18. 大电导钙激活钾通道对平滑肌的调控作用研究进展%Progress in regulation of large-conductance calcium-activated potassium channels on smooth muscle

    Institute of Scientific and Technical Information of China (English)

    李汉高; 李芳萍; 张雪梅

    2011-01-01

    Potassium channels are important to distribute in almost each tissue and implicated with many functions of cells, such as the formation of action potential and signal transduction. Large-conductance calcium-activated potassium channel ( BKca/Maxi K) is one of the potassium channels and expressed in many types of cells. The activation of BKca/Maxi K is able to induce the hyperpolarization of plasma membrane and the inhibition of voltagedependent calcium channel activity. So BKca/Maxi K plays an important role in the relaxation of smooth muscle.The pathogenesis of many diseases is also involved in activation and inactivation, expression, or mutation of this potassium channel. BKca/Maxi K participates in the regulation of cardiovascular smooth muscle, myometrial smooth muscle, smooth muscle in the airway and penile erection. Especially, the gene therapy of BKca/Maxi K to erectile dysfunction enjoys some advantages over medication.%钾通道是组织器官中的一种重要通道,几乎所有的组织中都有该通道的分布,并且它在调节细胞功能方面起着极其重要的作用,例如动作电位的形成和信号传导等.大电导钙激活钾通道(BKca/Maxi K)以其广泛的分布,以及参与调节多种细胞功能吸引了更多研究者的关注.BKca/Maxi K的激活可导致细胞膜的超极化,从而抑制电压依赖性钙通道的激活,抑制钙离子内流,引起平滑肌舒张.近年来研究发现,BKca/Maxi K的激活、失活和变异与多种疾病的发病有关,BKca/Maxi K对心血管平滑肌、子宫平滑肌、呼吸道平滑肌和阴茎勃起等具有调控作用,尤其是其基因疗法对阴茎勃起障碍的治疗逐渐显现出较大的优势.

  19. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut

    OpenAIRE

    2013-01-01

    Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first d...

  20. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole.

    Science.gov (United States)

    Vogel, Paul A; Yang, Xi; Moss, Nicholas G; Arendshorst, William J

    2015-08-01

    Reactive oxygen species regulate cardiovascular and renal function in health and disease. Superoxide participates in acute calcium signaling in afferent arterioles and renal vasoconstriction produced by angiotensin II, endothelin, thromboxane, and pressure-induced myogenic tone. Known mechanisms by which superoxide acts include quenching of nitric oxide and increased ADP ribosyl cyclase/ryanodine-mediated calcium mobilization. The effect(s) of superoxide on other calcium signaling pathways in the renal microcirculation is poorly understood. The present experiments examined the acute effect of superoxide generated by paraquat on calcium entry pathways in isolated rat afferent arterioles. The peak increase in cytosolic calcium concentration caused by KCl (40 mmol/L) was 99±14 nmol/L. The response to this membrane depolarization was mediated exclusively by L-type channels because it was abolished by nifedipine but was unaffected by the T-type channel blocker mibefradil. Paraquat increased superoxide production (dihydroethidium fluorescence), tripled the peak response to KCl to 314±68 nmol/L (Psuperoxide and not of hydrogen peroxide. Unaffected by paraquat and superoxide was calcium entry through store-operated calcium channels activated by thapsigargin-induced calcium depletion of sarcoplasmic reticular stores. Also unresponsive to paraquat was ryanodine receptor-mediated calcium-induced calcium release from the sarcoplasmic reticulum. Our results provide new evidence that superoxide enhances calcium entry through L-type channels activated by membrane depolarization in rat cortical afferent arterioles, without affecting calcium entry through store-operated entry or ryanodine receptor-mediated calcium mobilization.

  1. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  2. A DSP for sensing the bladder volume through afferent neural pathways.

    Science.gov (United States)

    Mendez, Arnaldo; Belghith, Abrar; Sawan, Mohamad

    2014-08-01

    In this paper, we present a digital signal processor (DSP) capable of monitoring the urinary bladder volume through afferent neural pathways. The DSP carries out real-time detection and can discriminate extracellular action potentials, also known as on-the-fly spike sorting. Next, the DSP performs a decoding method to estimate either three qualitative levels of fullness or the bladder volume value, depending on the selected output mode. The proposed DSP was tested using both realistic synthetic signals with a known ground-truth, and real signals from bladder afferent nerves recorded during acute experiments with animal models. The spike sorting processing circuit yielded an average accuracy of 92% using signals with highly correlated spike waveforms and low signal-to-noise ratios. The volume estimation circuits, tested with real signals, reproduced accuracies achieved by offline simulations in Matlab, i.e., 94% and 97% for quantitative and qualitative estimations, respectively. To assess feasibility, the DSP was deployed in the Actel FPGA Igloo AGL1000V2, which showed a power consumption of 0.5 mW and a latency of 2.1 ms at a 333 kHz core frequency. These performance results demonstrate that an implantable bladder sensor that perform the detection, discrimination and decoding of afferent neural activity is feasible.

  3. Comparison of the inhibitory response to tendon and cutaneous afferent stimulation in the human lower limb.

    Science.gov (United States)

    Rogasch, Nigel C; Burne, John A; Türker, Kemal S

    2012-01-01

    A powerful early inhibition is seen in triceps surae after transcutaneous electrical stimulation of the Achilles tendon [tendon electrical stimulation (TES)]. The aim of the present study was to confirm results from surface electromyogram (SEMG) recordings that the inhibition is not wholly or partly due to stimulation of cutaneous afferents that may lie within range of the tendon electrodes. Because of methodological limitations, SEMG does not reliably identify the time course of inhibitory and excitatory reflex components. This issue was revisited here with an analysis of changes in single motor unit (SMU) firing rate [peristimulus frequencygram (PSF)] and probability [peristimulus time histogram (PSTH)] to reexamine the time course of inhibitory SMU events that follow purely cutaneous (superficial sural) nerve stimulation. Results were then compared with similar data from TES. When compared with the reflex response to TES, sural nerve stimulation resulted in a longer onset latency of the primary inhibition and a weaker effect on SMU firing probability and rate. PSF also revealed that decreased SMU firing rates persisted during the excitation phase in SEMG, suggesting that the initial inhibition was more prolonged than previously reported. In a further study, the transcutaneous SEMG Achilles tendon response was compared with that from direct intratendon stimulation with insulated needle electrodes. This method should attenuate the SEMG response if it is wholly or partly dependent on cutaneous afferents. However, subcutaneous stimulation of the tendon produced similar components in the SEMG, confirming that cutaneous afferents made little or no contribution to the initial inhibition following TES.

  4. The Organization of Submodality-Specific Touch Afferent Inputs in the Vibrissa Column

    Directory of Open Access Journals (Sweden)

    Katsuyasu Sakurai

    2013-10-01

    Full Text Available The rodent tactile vibrissae are innervated by several different types of touch sensory neurons. The central afferents of all touch neurons from one vibrissa collectively project to a columnar structure called a barrelette in the brainstem. Delineating how distinct types of sensors connect to second-order neurons within each barrelette is critical for understanding tactile information coding and processing. Using genetic and viral techniques, we labeled slowly adapting (SA mechanosensory neurons, rapidly adapting (RA mechanosensory neurons, afferent synapses, and second-order projection neurons with four different fluorescent markers to examine their connectivity. We discovered that within each vibrissa column, individual sensory neurons project collaterals to multiply distributed locations, inputs from SA and RA afferents are spatially intermixed without any discernible stereotypy or topography, and second-order projection neurons receive convergent SA and RA inputs. Our findings reveal a “one-to-many and many-to-one” connectivity scheme and the circuit architecture for tactile information processing at the first-order synapses.

  5. Peripheral relays in stress-induced activation of visceral afferents in the gut.

    Science.gov (United States)

    van den Wijngaard, René M; Klooker, Tamira K; de Jonge, Wouter J; Boeckxstaens, Guy E

    2010-02-16

    Multiple organs are targeted by the stress response, but the focus of this article is on stress-induced activation of visceral afferents in the gut. During recent years it became apparent that mast cells are pivotal in this response. Peripheral corticotrophin releasing factor (CRF) induces their degranulation whereupon mast cell mediators activate visceral afferents. In addition, these mediators are responsible for gut barrier dysfunction and subsequent influx of luminal antigens and bacteria. Some research groups have begun to investigate the possible importance of barrier dysfunction for enhanced visceral sensitivity. After reviewing the current knowledge on CRF-induced mast cell degranulation we will discuss these groundbreaking papers in a more elaborate way. They form the basis for a hypothesis in which not only CRF-induced but also antigen-mediated mast cell degranulation is relevant to stress-related afferent activation. Part of this hypothesis is certainly speculative and needs further investigation. At the end of this article we sum up some of the unanswered questions raised by others and during this review.

  6. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats.

    Science.gov (United States)

    Makimura, Yukitoshi; Ito, Koichi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-08-01

    Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.

  7. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    Science.gov (United States)

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  8. Contributions of central command and muscle feedback to sympathetic nerve activity in contracting human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2016-05-01

    Full Text Available During voluntary contractions, muscle sympathetic nerve activity (MSNA to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-minute isometric dorsiflexion contractions (left leg separated by 2-minute rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10 % of maximum. MSNA was recorded continuously (microneurography from the left peroneal nerve and quantified from cardiac-synchronised, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34 % (P 0.05. MSNA analysed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01, remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  9. Association of polymorphisms in calpain 1, (mu/I) large subunit, calpastatin, and cathepsin D genes with meat quality traits in double-muscled Piemontese cattle.

    Science.gov (United States)

    Ribeca, Cinzia; Bonfatti, Valentina; Cecchinato, Alessio; Albera, Andrea; Maretto, Fabio; Gallo, Luigi; Carnier, Paolo

    2013-04-01

    Five single-nucleotide polymorphisms (SNPs) located in the calpain 1, (mu/I) large subunit (CAPN1), calpastatin (CAST), and cathepsin D (CTSD) genes were analyzed in a large sample of Piemontese cattle. The aim of this study was to evaluate allele and genotype frequencies of these SNPs and to investigate associations of CAPN1, CAST, and CTSD gene variants with meat quality traits. Minor allele frequencies ranged from 30 to 48%. The presence of the A allele at CAPN530 increased yellowness and drip loss. The CAST282 G allele was associated with an increased drip loss compared to the C allele, and the CAST2959 A allele decreased redness compared to the G allele.

  10. Muscle pain

    African Journals Online (AJOL)

    Causes of muscle pain include stress, physical activity, infections, hyper or .... Acupuncture. It is a traditional Chinese-based therapeutic method which ..... and Spinal Mechanisms of Pain and Dry Needling Mediated Analgesia: A Clinical.

  11. Intrafusal muscle fibre types in frog spindles.

    Science.gov (United States)

    Diwan, F H; Ito, F

    1989-04-01

    Muscle spindles from bullfrog semitendinosus, iliofibularis and sartorius muscles were examined with light and electron microscopy. Four types of intrafusal muscle fibre were identified according to their diameter, central nucleation and reticular zone arrangement: a large nuclear bag fibre, a medium nuclear bag fibre, and two types of small nuclear chain fibres with and without a reticular zone, respectively. It is suggested that they are comparable to the nuclear bag1, bag2 and chain fibres in mammalian muscle spindles.

  12. Mitochondrial signaling contributes to disuse muscle atrophy

    OpenAIRE

    Powers, Scott K.; Wiggs, Michael P.; Duarte, Jose A.; Zergeroglu, A. Murat; Demirel, Haydar A.

    2012-01-01

    It is well established that long durations of bed rest, limb immobilization, or reduced activity in respiratory muscles during mechanical ventilation results in skeletal muscle atrophy in humans and other animals. The idea that mitochondrial damage/dysfunction contributes to disuse muscle atrophy originated over 40 years ago. These early studies were largely descriptive and did not provide unequivocal evidence that mitochondria play a primary role in disuse muscle atrophy. However, recent exp...

  13. Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles.

    Science.gov (United States)

    Blümel, Marcus; Hooper, Scott L; Guschlbauerc, Christoph; White, William E; Büschges, Ansgar

    2012-11-01

    Characterizing muscle requires measuring such properties as force-length, force-activation, and force-velocity curves. These characterizations require large numbers of data points because both what type of function (e.g., linear, exponential, hyperbolic) best represents each property, and the values of the parameters in the relevant equations, need to be determined. Only a few properties are therefore generally measured in experiments on any one muscle, and complete characterizations are obtained by averaging data across a large number of muscles. Such averaging approaches can work well for muscles that are similar across individuals. However, considerable evidence indicates that large inter-individual variation exists, at least for some muscles. This variation poses difficulties for across-animal averaging approaches. Methods to fully describe all muscle's characteristics in experiments on individual muscles would therefore be useful. Prior work in stick insect extensor muscle has identified what functions describe each of this muscle's properties and shown that these equations apply across animals. Characterizing these muscles on an individual-by-individual basis therefore requires determining only the values of the parameters in these equations, not equation form. We present here techniques that allow determining all these parameter values in experiments on single muscles. This technique will allow us to compare parameter variation across individuals and to model muscles individually. Similar experiments can likely be performed on single muscles in other systems. This approach may thus provide a widely applicable method for characterizing and modeling muscles from single experiments.

  14. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats.

    Science.gov (United States)

    Asgar, J; Zhang, Y; Saloman, J L; Wang, S; Chung, M-K; Ro, J Y

    2015-12-03

    Transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is expressed in muscle afferents and direct activation of these receptors induces acute mechanical hypersensitivity. However, the functional role of TRPA1 under pathological muscle pain conditions and mechanisms by which TRPA1 mediate muscle pain and hyperalgesia are not clearly understood. Two rodent behavioral models validated to assess craniofacial muscle pain conditions were used to study ATP- and N-Methyl-D-aspartate (NMDA)-induced acute mechanical hypersensitivity and complete Freund's adjuvant (CFA)-induced persistent mechanical hypersensitivity. The rat grimace scale (RGS) was utilized to assess inflammation-induced spontaneous muscle pain. Behavioral pharmacology experiments were performed to assess the effects of AP18, a selective TRPA1 antagonist under these conditions. TRPA1 expression levels in trigeminal ganglia (TG) were examined before and after CFA treatment in the rat masseter muscle. Pre-treatment of the muscle with AP18 dose-dependently blocked the development of acute mechanical hypersensitivity induced by NMDA and α,β-methylene adenosine triphosphate (αβmeATP), a specific agonist for NMDA and P2X3 receptor, respectively. CFA-induced mechanical hypersensitivity and spontaneous muscle pain responses were significantly reversed by post-treatment of the muscle with AP18 when CFA effects were most prominent. CFA-induced myositis was accompanied by significant up-regulation of TRPA1 expression in TG. Our findings showed that TRPA1 in muscle afferents plays an important role in the development of acute mechanical hypersensitivity and in the maintenance of persistent muscle pain and hypersensitivity. Our data suggested that TRPA1 may serve as a downstream target of pro-nociceptive ion channels, such as P2X3 and NMDA receptors in masseter afferents, and that increased TRPA1 expression under inflammatory conditions may contribute to the maintenance of persistent muscle pain

  15. New twist on artificial muscles

    Science.gov (United States)

    Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.

    2016-01-01

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626

  16. Reflex pathways connect receptors in the human lower leg to the erector spinae muscles of the lower back.

    Science.gov (United States)

    Clair, J M; Okuma, Y; Misiaszek, J E; Collins, D F

    2009-06-01

    Reflex pathways connect all four limbs in humans. Presently, we tested the hypothesis that reflexes also link sensory receptors in the lower leg with muscles of the lower back (erector spinae; ES). Taps were applied to the right Achilles' tendon and electromyographic activity was recorded from the right soleus and bilaterally from ES. Reflexes were compared between sitting and standing and between standing with the eyes open versus closed. Reflexes were evoked bilaterally in ES and consisted of an early latency excitation, a medium latency inhibition, and a longer latency excitation. During sitting but not standing, the early excitation was larger in the ES muscle ipsilateral to the stimulation (iES) than in the contralateral ES (cES). During standing but not sitting, the longer latency excitation in cES was larger than in iES. This response in cES was also larger during standing compared to sitting. Responses were not significantly different between the eyes open and eyes closed conditions. Taps applied to the lateral calcaneus (heel taps) evoked responses in ES that were not significantly different in amplitude or latency than those evoked by tendon taps, despite a 75-94% reduction in the amplitude of the soleus stretch reflex evoked by the heel taps. Electrical stimulation of the sural nerve, a purely cutaneous nerve at the ankle, evoked ES reflexes that were not significantly different in amplitude but had significantly longer latencies than those evoked by the tendon and heel taps. These results support the hypothesis that reflex pathways connect receptors in the lower leg with muscles of the lower back and show that that the amplitude of these reflexes is modulated by task. Responses evoked by stimulation of the sural nerve establish that reflex pathways connect the ES muscles with cutaneous receptors of the foot. In contrast, the large volley in muscle spindle afferents induced by the tendon taps compared to the heel taps did not alter the ES responses

  17. Isolation, cDNA sequence analysis and tissue expression profile of a novel swine gene differentially expressed in the Longissimus dorsi muscle tissues from Large White × Meishan cross combination

    Institute of Scientific and Technical Information of China (English)

    LIU Yonggang; LEI Minggang; XIONG Yuanzhu; DENG Changyan

    2005-01-01

    In order to study the molecular mechanism of heterosis in pigs, the mRNA differential display technique was performed to investigate the differences in gene expression in the Longissimus dorsi muscle tissues from Large White × Meishan cross combination.One novel gene differentially expressed between the hybrids and the purebreds was isolated and subsequently identified using semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and its complete cDNA sequence was obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the gene is not homologous to any of the known porcine genes. The sequence prediction revealed that the open reading frame of this gene encodes a protein of 188 amino acids that contains the putative conserved domain of the PRA1 family protein and this protein has high homology with the PRA1 family protein 3 of three species-rat (88 % ), human(88 % ), and mouse (87 % ), -so that it can be defined as swine PRA1 family protein 3. The phylogenetic tree analysis revealed that the swine PRA1 family protein 3 has a closer genetic relationship with the human PRA1 family protein 3 than with those of mouse and rat.The tissue expression analysis indicated that swine PRA1family protein 3 gene is highly-expressed in muscle and fat, moderately in spleen,weakly in heart, kidney, ovary, lung, and almost not expressed in small intestine and liver. The function of this gene and the relationship between this gene and heterosis are also discussed.

  18. Establishment and Optimization of 2-DE Technique in Muscle Proteome of Large Yellow Croaker (Pseudosciaena Crocea)%大黄鱼肌肉组织双向凝胶电泳方法的建立

    Institute of Scientific and Technical Information of China (English)

    王任; 王彦波; 李婷婷; 李学鹏; 励建荣

    2012-01-01

    双向凝胶电泳技术为基于蛋白质的鱼类品质研究提供了新的思路.本试验中建立了大黄鱼肌肉组织蛋白质的双向凝胶电泳方法.在建立的大黄鱼肌肉组织样品处理模式的基础上,对双向电泳方法的关键因素和环节进行比较分析,优化水化上样方式、等电聚焦程序和染色方式.获得了较满意的双向凝胶电泳图谱,其具有较高的分辨率和重复性.成功建立了大黄鱼肌肉组织蛋白质双向凝胶电泳方法,为后续品质研究奠定了基础.%Two-dimensional electrophoresis technology provides new thoughts for the research for the quality of fish. So the objective of this research is to compare and analyze vital factors and procedures of two-dimensional electrophoresis (2-DE) technology for muscle proteins of Large Yellow Croaker (Pseudosciaena crocea), which is on the base of successful treatment of fish muscle sample. We optimize the loading mode, the IEF program and dye method. After a series of trials, we finally get satisfactory 2-ED patterns with high quality and repetition. With optimization of these conditions, the technique of 2-DE has been successfully established, which is foundation of later research of fish quality.

  19. Convergence of ipsi- and contralateral muscle afferents on common interneurons mediating reciprocal inhibition of ankle plantarflexors in humans

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Geertsen, Svend Sparre; Stevenson, Andrew James Thomas

    2017-01-01

    reciprocal Ia inhibition of the opposite limb. This study was designed to investigate whether this pathway is similar in humans to that described in animals. Thirteen healthy volunteers participated in one of two experiments. In experiment 1, the effects of ipsilateral posterior tibial nerve (i......CPN stimulation were delivered separately or in combination and changes in the ongoing electromyography (EMG) quantified. In experiment 2, the amplitude of a test SOL H-reflex elicited by contralateral PTN (cPTN) stimulation was quantified following iPTN, cCPN or iPTN + cCPN nerve stimulation (n = 5). Intensities...... used during the H-reflex conditioning experiment were 1.79 ± 0.4 × MT for the iPTN stimulation and 0.88 ± 0.16 × MT for cCPN stimulation. Across all participants, the onset of the cSOL EMG suppression was 42 ± 4, 44 ± 3 and 44 ± 3 ms for iPTN, cCPN and iPTN + cCPN conditions, respectively...

  20. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons

    Science.gov (United States)

    With insulin-resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives (markers of incomple...

  1. Integrin mobilizes intracellular Ca(2+) in renal vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Chan, W L; Holstein-Rathlou, N H; Yip, K P

    2001-01-01

    Peptides with the Arg-Gly-Asp (RGD) motif induce vasoconstriction in rat afferent arterioles by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). This finding suggests that occupancy of integrins on the plasma membrane of VSMC might affect...... vascular tone. The purpose of this study was to determine whether occupancy of integrins by exogenous RGD peptides initiates intracellular Ca(2+) signaling in cultured renal VSMC. When smooth muscle cells were exposed to 0.1 mM hexapeptide GRGDSP, [Ca(2+)](i) rapidly increased from 91 +/- 4 to 287 +/- 37 n...

  2. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

    Science.gov (United States)

    Capra, N F; Ro, J Y

    2000-05-01

    The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the

  3. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat.

    Science.gov (United States)

    Zhou, Shi-Yi; Lu, Yuan-Xu; Owyang, Chung

    2008-05-01

    Hyperglycemia has a profound effect on gastric motility. However, little is known about the site and mechanism that sense alteration in blood glucose level. The identification of glucose-sensing neurons in the nodose ganglia led us to hypothesize that hyperglycemia acts through vagal afferent pathways to inhibit gastric motility. With the use of a glucose-clamp rat model, we showed that glucose decreased intragastric pressure in a dose-dependent manner. In contrast to intravenous infusion of glucose, intracisternal injection of glucose at 250 and 500 mg/dl had little effect on intragastric pressure. Pretreatment with hexamethonium, as well as truncal vagotomy, abolished the gastric motor responses to hyperglycemia (250 mg/dl), and perivagal and gastroduodenal applications of capsaicin significantly reduced the gastric responses to hyperglycemia. In contrast, hyperglycemia had no effect on the gastric contraction induced by electrical field stimulation or carbachol (10(-5) M). To rule out involvement of serotonergic pathways, we showed that neither granisetron (5-HT(3) antagonist, 0.5 g/kg) nor pharmacological depletion of 5-HT using p-chlorophenylalanine (5-HT synthesis inhibitor) affected gastric relaxation induced by hyperglycemia. Lastly, N(G)-nitro-L-arginine methyl ester (L-NAME) and a VIP antagonist each partially reduced gastric relaxation induced by hyperglycemia and, in combination, completely abolished gastric responses. In conclusion, hyperglycemia inhibits gastric motility through a capsaicin-sensitive vagal afferent pathway originating from the gastroduodenal mucosa. Hyperglycemia stimulates vagal afferents, which, in turn, activate vagal efferent cholinergic pathways synapsing with intragastric nitric oxide- and VIP-containing neurons to mediate gastric relaxation.

  4. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals.

    Science.gov (United States)

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S; Kim, Hyeyoung; McRoberts, James A; Marvizón, Juan Carlos G

    2014-05-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75(NTR) ), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75(NTR) inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr(1472) phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and a Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  5. Biochemical evidence that L-glutamate is a neurotransmitter of primary vagal afferent nerve fibers

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, M.H. (Cornell Univ., New York (USA). Medical Coll.)

    1981-12-28

    To determine in rat if vagal afferent fibers projecting into the intermediate one third of the nucleus tractus solitarius (NTS), the site of termination of baroafferents, utilize glutamate as a neurotransmitter, the high-affinity uptake of (/sup 3/H)L-glutamate and content of glutamate were analyzed in micropunches of rat brain stem. The intermediate NTS contains a high-affinity synaptosomal uptake system for (/sup 3/H)L-glutamate that is greater in capacity than that in areas adjacent to the NTS; it is almost two-fold higher than uptake in medial septum and nucleus accumbens and equal to that of hippocampal regions purportedly containing a rich glutamatergic innervation. Unilateral ablation of the nodose ganglion (i.e. cells of origin of vagal afferents) resulted, within 24 h in a prolonged significant reduction, to 56% of control, of (/sup 3/H)L-glutamate uptake, bilaterally in the NTS. The reduction of Na/sup +/-dependent synaptosomal uptake of (/sup 3/H)L-glutamate, resulted from a decrease in Vsub(max) without change in the Ksub(m) of the process, was anatomically restricted to the intermediate NTS, and was not associated with changes in (/sup 3/H)GABA uptake. The content of glutamate in the NTS was significantly (P < 0.01) decreased by 30% 7 days following unilateral extirpation of the nodose ganglion without changes in the concentrations of aspartate, glycine, glutamine, or GABA. A population of vagal afferent fibers projecting to NTS are glutamatergic. The results are consistent with the hypothesis obtained by physiological and pharmacological techniques that glutamate is a neurotransmitter of baroafferents.

  6. Vagal afferents are essential for maximal resection-induced intestinal adaptive growth in orally fed rats.

    Science.gov (United States)

    Nelson, David W; Liu, Xiaowen; Holst, Jens J; Raybould, Helen E; Ney, Denise M

    2006-11-01

    Small bowel resection stimulates intestinal adaptive growth by a neuroendocrine process thought to involve both sympathetic and parasympathetic innervation and enterotrophic hormones such as glucagon-like peptide-2 (GLP-2). We investigated whether capsaicin-sensitive vagal afferent neurons are essential for maximal resection-induced intestinal growth. Rats received systemic or perivagal capsaicin or ganglionectomy before 70% midjejunoileal resection or transection and were fed orally or by total parenteral nutrition (TPN) for 7 days after surgery. Growth of residual bowel was assessed by changes in mucosal mass, protein, DNA, and histology. Both systemic and perivagal capsaicin significantly attenuated by 48-100% resection-induced increases in ileal mucosal mass, protein, and DNA in rats fed orally. Villus height was significantly reduced in resected rats given capsaicin compared with vehicle. Sucrase specific activity in jejunal mucosa was not significantly different; ileal mucosal sucrase specific activity was significantly increased by resection in capsaicin-treated rats. Capsaicin did not alter the 57% increase in ileal proglucagon mRNA or the 150% increase in plasma concentration of bioactive GLP-2 resulting from resection in orally fed rats. Ablation of spinal/splanchnic innervation by ganglionectomy failed to attenuate resection-induced adaptive growth. In TPN rats, capsaicin did not attenuate resection-induced mucosal growth. We conclude that vagal afferents are not essential for GLP-2 secretion when the ileum has direct contact with luminal nutrients after resection. In summary, vagal afferent neurons are essential for maximal resection-induced intestinal adaptation through a mechanism that appears to involve stimulation by luminal nutrients.

  7. Cutaneous neurturin overexpression alters mechanical, thermal, and cold responsiveness in physiologically identified primary afferents.

    Science.gov (United States)

    Jankowski, Michael P; Baumbauer, Kyle M; Wang, Ting; Albers, Kathryn M; Davis, Brian M; Koerber, H Richard

    2017-03-01

    Neurotrophic factors play an important role in the regulation of functional properties of sensory neurons under normal and pathological conditions. The GDNF family member neurturin is one such factor that has been linked to modulating responsiveness to peripheral stimuli. Neurturin binds to the GFRα2 receptor, a receptor found primarily in isolectin B4-expressing polymodal cutaneous nociceptors. Previous work has shown that knockout of GFRα2 alters heat, but not mechanical, responses in dissociated sensory neurons and reduces pain-related behaviors during the second phase of the formalin test. Research has also shown that overexpression of neurturin in basal keratinocytes increases behavioral responsiveness to mechanical stimulation and innocuous cooling of the skin without affecting noxious heat responses. Here we directly examined the impact of neurturin overexpression on cutaneous afferent function. We compared physiological responses of individual sensory neurons to mechanical and thermal stimulation of the skin, using an ex vivo skin-nerve-dorsal root ganglion-spinal cord preparation produced from neurturin-overexpressing (NRTN/OE) mice and wild-type littermate controls. We found that neurturin overexpression increases responsiveness to innocuous mechanical stimuli in A-fiber nociceptors, alters thermal responses in the polymodal subpopulation of C-fiber sensory neurons, and changes the relative numbers of mechanically sensitive but thermally insensitive C-fiber afferents. These results demonstrate the potential roles of different functional groups of sensory neurons in the behavioral changes observed in mice overexpressing cutaneous neurturin and highlight the importance of neurturin in regulating cutaneous afferent response properties.NEW & NOTEWORTHY GDNF family neurotrophic factors regulate the development and function of primary sensory neurons. Of these, neurturin has been shown to modulate mechanical and cooling sensitivity behaviorally. Here we show

  8. High-Fat Diet-Induced Obesity Ablates Gastric Vagal Afferent Circadian Rhythms.

    Science.gov (United States)

    Kentish, Stephen J; Vincent, Andrew D; Kennaway, David J; Wittert, Gary A; Page, Amanda J

    2016-03-16

    Rats with high-fat diet (HFD)-induced obesity increase daytime eating, suggesting an alteration in circadian food intake mechanisms. Gastric vagal afferents (GVAs) respond to mechanical stimuli to initiate satiety. These signals are dampened in HFD mice and exhibit circadian variations inversely with food intake in lean mice. Furthermore, leptin shows circadian variation in its circulating level and is able to modulate GVA mechanosensitivity. However, whether leptin's ability to modulate GVAs occurs in a circadian manner is unknown. Therefore, we investigated whether changes in the circadian intake of food in HFD-induced obesity is associated with a disruption in GVA circadian rhythms. Eight-week-old male C57BL/6 mice were fed a standard laboratory diet (SLD) or a HFD for 12 weeks. A subgroup of SLD and HFD mice were housed in metabolic cages. After 12 weeks, ex vivo GVA recordings were taken at 3 h intervals starting at zeitgeber time 0 (ZT0) and stomach content was measured. After 12 weeks, HFD mice consumed more food during the light phase through larger and more frequent meals compared with SLD mice. SLD mice exhibited circadian fluctuation in stomach content, which peaked at ZT18 and reached a nadir at ZT9. At these time points, both tension and mucosal receptor mechanosensitivity were the lowest and highest, respectively. HFD mice exhibited little circadian variation in stomach content or GVA mechanosensitivity. Leptin potentiated mucosal receptor mechanosensitivity only in SLD mice and with reduced potency during the dark phase. In conclusion, loss of circadian variation in GVA signaling may underpin changes in eating behavior in HFD-induced obesity. Appropriate circadian control of food intake is vital for maintaining metabolic health. Diet-induced obesity is associated with strong circadian changes in food intake, but the contributing mechanisms have yet to be determined. Vagal afferents are involved in regulation of feeding behavior, particularly meal

  9. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yong Seek; Park, Cheung-Seog [Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jin, Young-Ho, E-mail: jinyh@khu.ac.kr [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  10. Craniofacial muscle pain: review of mechanisms and clinical manifestations.

    Science.gov (United States)

    Svensson, P; Graven-Nielsen, T

    2001-01-01

    Epidemiologic surveys of temporomandibular disorders (TMD) have demonstrated that a considerable proportion of the population--up to 5% or 6%--will experience persistent pain severe enough to seek treatment. Unfortunately, the current diagnostic classification of craniofacial muscle pain is based on descriptions of signs and symptoms rather than on knowledge of pain mechanisms. Furthermore, the pathophysiology and etiology of craniofacial muscle pain are not known in sufficient detail to allow causal treatment. Many hypotheses have been proposed to explain cause-effect relationships; however, it is still uncertain what may be the cause of muscle pain and what is the effect of muscle pain. This article reviews the literature in which craniofacial muscle pain has been induced by experimental techniques in animals and human volunteers and in which the effects on somatosensory and motor function have been assessed under standardized conditions. This information is compared to the clinical correlates, which can be derived from the numerous cross-sectional studies in patients with craniofacial muscle pain. The experimental literature clearly indicates that muscle pain has significant effects on both somatosensory and craniofacial motor function. Typical somatosensory manifestations of experimental muscle pain are referred pain and increased sensitivity of homotopic areas. The craniofacial motor function is inhibited mainly during experimental muscle pain, but phase-dependent excitation is also found during mastication to reduce the amplitude and velocity of jaw movements. The underlying neurobiologic mechanisms probably involve varying combinations of sensitization of peripheral afferents, hyperexcitability of central neurons, and imbalance in descending pain modulatory systems. Reflex circuits in the brain stem seem important for the adjustment of sensorimotor function in the presence of craniofacial pain. Changes in somatosensory and motor function may therefore be

  11. In vivo passive mechanical behaviour of muscle fascicles and tendons in human gastrocnemius muscle-tendon units.

    Science.gov (United States)

    Herbert, Robert D; Clarke, Jillian; Kwah, Li Khim; Diong, Joanna; Martin, Josh; Clarke, Elizabeth C; Bilston, Lynne E; Gandevia, Simon C

    2011-11-01

    Ultrasound imaging was used to measure the length of muscle fascicles in human gastrocnemius muscles while the muscle was passively lengthened and shortened by moving the ankle. In some subjects the muscle belly 'buckled' at short lengths. When the gastrocnemius muscle-tendon unit was passively lengthened from its shortest in vivo length by dorsiflexing the ankle, increases in muscle-tendon length were not initially accompanied by increases in muscle fascicle lengths (fascicle length remained constant), indicating muscle fascicles were slack at short muscle-tendon lengths. The muscle-tendon length at which slack is taken up differs among fascicles: some fascicles begin to lengthen at very short muscle-tendon lengths whereas other fascicles remain slack over a large range of muscle-tendon lengths. This suggests muscle fascicles are progressively 'recruited' and contribute sequentially to muscle-tendon stiffness during passive lengthening of the muscle-tendon unit. Even above their slack lengths muscle fascicles contribute only a small part (tendon length. The contribution of muscle fascicles to muscle-tendon length increases with muscle length. The novelty of this work is that it reveals a previously unrecognised phenomenon (buckling at short lengths), posits a new mechanism of passive mechanical properties of muscle (recruitment of muscle fascicles), and confirms with high-resolution measurements that the passive compliance of human gastrocnemius muscle-tendon units is due largely to the tendon. It would be interesting to investigate if adaptations of passive properties of muscles are associated with changes in the distribution of muscle lengths at which fascicles fall slack.

  12. Muscle strain (image)

    Science.gov (United States)

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  13. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss

    Science.gov (United States)

    2015-07-01

    ORIGINAL RESEARCH ARTICLE Open Access An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss Catherine L. Ward...regeneration. But they require ample donor muscle tissue and therefore may be limited in their application for large clinical VML. Here, we tested the...autologous minced grafts for the regeneration of muscle tissue after VML, but indicate the need to identify optimal carrier materials for expansion

  14. 肌肉包埋法旷置大段裸露跟腱的初步报告%Muscle embedment spacer for large segmental exposed Achilles tendon: a preliminary report

    Institute of Scientific and Technical Information of China (English)

    王永会; 毕建耀; 孙占胜; 王伯珉

    2009-01-01

    Objective to access the therapeutic methods and results of muscle embedment spac-er for large segemental exposed achilles tendon. Methods There were 21 patients diagnosed as Achil-les tendon rupture combined with local cutaneous deficiency, of whom 16 patients were combined with comminuted tibial fractures and artery and nerve injury, 13 combined with shock, six combined with pel-vic fractures, two combined with open homolateral femoral fractures and three combined with hepatorrhexis and splenic rupture. All patients received fracture fixation and treatment for vascular and nural injuries, hepatorrhexis and splenic rupture. The ruptured Achilles tendons were embedded in the triceps surae muscle at one stage. The Achilles tendons and cutaneous deficiency were repaired at second stage. Re-suits The embedded Achilles tendons assumed a relatively fresh and tramosericeous adventitious coat and retained good tenacity, with no signs of necrosis, colliquation or infection. The follow-up time after second operation was 15-27 months (average 18 months), which showed excellent results in 15 patients, good in four and poor in two, with excellence rate of 90%. All skin flaps and residual wounds were pri-marily healed and no repaired Achilles tendons disrupted again. Conclusion The muscle embedment spacer method can largely avoid the ischemic necrosis of Achilles tendon due to long time exposure and hence provide adequate conditions for second stage operation.%目的 探讨肌肉包埋法旷置大段裸露跟腱的手术方法和疗效.方法 本组21例跟腱断裂合并跟区皮肤缺损,16例合并胫腓骨粉碎骨折及动脉、神经损伤,13例合并休克,6例合并骨盆骨折,2例合并同侧开放性股骨骨折,3例合并肝脾破裂.急诊手术固定骨折,修复动脉、神经损伤,修复肝脾破裂;清创后小腿三头肌包埋、旷置跟腱.二次手术修复跟腱和跟区皮肤缺损.结果 跟腱与肌肉组织紧密粘连,外膜新鲜有光泽,腱性组

  15. Myelinated Afferents Are Involved in Pathology of the Spontaneous Electrical Activity and Mechanical Hyperalgesia of Myofascial Trigger Spots in Rats

    Directory of Open Access Journals (Sweden)

    Fei Meng

    2015-01-01

    Full Text Available Myofascial trigger points (MTrPs are common causes for chronic pain. Myelinated afferents were considered to be related with muscular pain, and our clinical researches indicated they might participate in the pathology of MTrPs. Here, we applied myofascial trigger spots (MTrSs, equal to MTrPs in human of rats to further investigate role of myelinated afferents. Modified pyridine-silver staining revealed more nerve endings at MTrSs than non-MTrSs (P0.05. 30 min after the injection, MPTs at MTrSs were significantly lower than those of non-MTrSs (P<0.01. Therefore, we concluded that proliferated myelinated afferents existed at MTrSs, which were closely related to pathology of SEA and mechanical hyperalgesia of MTrSs.

  16. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo

    1997-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  17. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig.

    Science.gov (United States)

    Hong, Sung Hwa; Park, Sook Kyung; Cho, Yang-Sun; Lee, Hyun-Seok; Kim, Ki Ryung; Kim, Myung Gu; Chung, Won-Ho

    2006-01-01

    Gentamicin is a well-known ototoxic aminoglycoside. However, the mechanism underlying this ototoxicity remains unclear. One of the mechanisms which may be responsible for this ototoxicity is excitotoxic damage to hair cells. The overstimulation of the N-methyl-d-aspartate (NMDA) receptors increases the production of nitric oxide (NO), which induces oxidative stress on hair cells. In order to determine the mechanism underlying this excitotoxicity, we treated guinea pigs with gentamicin by placing gentamicin (0.5 mg) pellets into a round window niche. After the sacrifice of the animals, which occurred at 3, 7 and 14 days after the treatment, the numbers of hair cells in the animals were counted with a scanning electron microscope. We then performed immunostaining using neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS) and nitrotyrosine antibodies. The number of hair cells in the animals was found to decrease significantly after 7 days. nNOS and iNOS expression levels were observed to have increased 3 days after treatment. Nitrotyrosine was expressed primarily at the calyceal afferents of the type I hair cells 3 days after treatment. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining revealed positive hair cells 3 days after treatment. Our results suggest that inner ear treatment with gentamicin may upregulate nNOS and iNOS to induce oxidative stress in the calyceal afferents of type I hair cells, via nitric oxide overproduction.

  18. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  19. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus.

    Science.gov (United States)

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T; Corrales, C Eduardo; Most, Sam P; Chai, Renjie; Jan, Taha A; van Amerongen, Renée; Cheng, Alan G; Heller, Stefan

    2013-08-27

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling.

  20. Afferent electrical stimulation during cycling improves spinal processing of sensorimotor function after incomplete spinal cord injury.

    Science.gov (United States)

    Piazza, Stefano; Serrano-Muñoz, Diego; Gómez-Soriano, Julio; Torricelli, Diego; Segura-Fragosa, Antonio; Pons, José Luis; Taylor, Julian

    2017-01-01

    Appropriate afferent feedback delivery during the execution of motor tasks is important for rehabilitation after incomplete spinal cord injury (iSCI). However, during leg-cycling therapy, the plantar afferent feedback is minimal. We hypothesize that the augmentation of sensory input by combining cycling with a locomotor-like stimulation of plantar cutaneous innervations (ES-cycling), might help to restore proper spinal processing of sensorimotor function. Thirteen non-injured subjects and 10 subjects with iSCI performed 10 minutes of cycling and, on another session, of ES-cycling. To assess spinal processing of sensorimotor function, soleus H-reflex response was tested following a conditioning plantar electrical stimulation applied at 25-100 ms inter-stimulus intervals (ISI's), measured before and after the execution of the tasks. Before tasks execution, the conditioned H-reflex response was modulated in non-injured subjects, and absent in subjects with iSCI; after cycling, modulation profiles were unchanged. However, after ES-cycling a significant increase in H-reflex excitability was observed in the non-injured group at 100 ms ISI (p spinal processing of sensorimotor function. Reflex modulation recovery after ES-cycling may indicate the partial reactivation of these mechanisms.

  1. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity.

    Science.gov (United States)

    de Lartigue, Guillaume; Ronveaux, Charlotte C; Raybould, Helen E

    2014-09-01

    The vagal afferent pathway senses hormones released from the gut in response to nutritional cues and relays these signals to the brain. We tested the hypothesis that leptin resistance in vagal afferent neurons (VAN) is responsible for the onset of hyperphagia by developing a novel conditional knockout mouse to delete leptin receptor selectively in sensory neurons (Nav1.8/LepR (fl/fl) mice). Chow fed Nav1.8/LepR (fl/fl) mice weighed significantly more and had increased adiposity compared with wildtype mice. Cumulative food intake, meal size, and meal duration in the dark phase were increased in Nav1.8/LepR (fl/fl) mice; energy expenditure was unaltered. Reduced satiation in Nav1.8/LepR (fl/fl) mice is in part due to reduced sensitivity of VAN to CCK and the subsequent loss of VAN plasticity. Crucially Nav1.8/LepR (l/fl) mice did not gain further weight in response to a high fat diet. We conclude that disruption of leptin signaling in VAN is sufficient and necessary to promote hyperphagia and obesity.

  2. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    Science.gov (United States)

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (pwater drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  3. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    Directory of Open Access Journals (Sweden)

    Benjamin J. Harrison

    2015-12-01

    Full Text Available Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1–9]. In the model used here (the “spared dermatome” model, the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days and maintenance (14 days phases of the spared dermatome model relative to intact (“naïve” sensory ganglia. Data has been deposited into GEO (GSE72551.

  4. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available UNLABELLED: Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups after 30-40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. TRIAL REGISTRATION: ClinicalTrials.gov NCT01237431.

  5. Disappearance of click-evoked potentials on the neck of the guinea pig by pharmacological and surgical destruction of the peripheral vestibular afferent system.

    Science.gov (United States)

    Matsuzaki, Masaki; Murofushi, Toshihisa

    2003-10-01

    In order to establish an animal model of acoustically evoked vestibulo-collic reflex, the so-called vestibular evoked myogenic potential in humans, potentials evoked by loud clicks on the neck of the guinea pig were recorded using subjects whose peripheral vestibular endorgans or vestibular afferents had been damaged. Four normal control guinea pigs, four guinea pigs that received an intramuscular injection of gentamicin for 20 days (90 mg/kg/day) and five guinea pigs whose vestibular nerves were surgically sectioned were used in this study. Under general anesthesia with an intraperitoneal injection of pentobarbital sodium (40 mg/kg), auditory brainstem responses (ABRs) were recorded. Then, potentials evoked by loud clicks on the pre-vertebral muscle at the level of the third cervical vertebral bone were recorded using silver ball electrodes. As a result, a distinctive negative peak (NP) with a latency of 6-8 ms was recorded in all animals in the control group. NP was not observed in the gentamicin-administered group while ABR was preserved. After sectioning the vestibular nerve, NP was abolished while ABR was preserved. From these results, NP could be of vestibular origin. These results are in agreement with a previous report of NP using subjects whose cochlea had been damaged pharmacologically.

  6. Calpains in muscle wasting.

    Science.gov (United States)

    Bartoli, Marc; Richard, Isabelle

    2005-10-01

    Calpains are intracellular nonlysosomal Ca(2+)-regulated cysteine proteases. They mediate regulatory cleavages of specific substrates in a large number of processes during the differentiation, life and death of the cell. The purpose of this review is to synthesize our current understanding of the participation of calpains in muscle atrophy. Muscle tissue expresses mainly three different calpains: the ubiquitous calpains and calpain 3. The participation of the ubiquitous calpains in the initial degradation of myofibrillar proteins occurring in muscle atrophy as well as in the necrosis process accompanying muscular dystrophies has been well characterized. Inactivating mutations in the calpain 3 gene are responsible for limb-girdle muscular dystrophy type 2A and calpain 3 has been found to be downregulated in different atrophic situations, suggesting that it has to be absent for the atrophy to occur. The fact that similar regulations of calpain activities occur during exercise as well as in atrophy led us to propose that the calpains control cytoskeletal modifications needed for muscle plasticity.

  7. Inflammatory muscle diseases

    Directory of Open Access Journals (Sweden)

    Mastaglia F

    2008-01-01

    Full Text Available The three major immune-mediated inflammatory myopathies, dermatomyositis (DM, polymyositis (PM and inclusion body myositis (IBM, each have their own distinctive clinical features, underlying pathogenetic mechanisms and patterns of muscle gene expression. In DM a complement-dependent humoral process thought to be initiated by antibodies to endothelial cells results in a microangiopathy with secondary ischemic changes in muscles. On the other hand, in PM and IBM there is a T-cell response with invasion of muscle fibers by CD8+ lymphocytes and perforin-mediated cytotoxic necrosis. In IBM degenerative changes are also a feature and comprise autophagia with rimmed vacuole formation and inclusions containing β-amyloid and other proteins whose accumulation may be linked to impaired proteasomal function. The relationship between the inflammatory and degenerative component remains unclear, as does the basis for the selective vulnerability of certain muscles and the resistance to conventional forms of immunotherapy in most cases of IBM. Patients with DM or PM usually respond to treatment with glucocorticoids and immunosuppressive agents but their use remains largely empirical. Intravenous immunoglobulin therapy can be used to achieve disease control in patients with severe weakness or dysphagia, or in patients with immunodeficiency, but its use is limited by expense. Emerging therapies for resistant cases include TNFα inhibitors (etanercept, infliximab and monoclonal antibodies (rituximab, alemtuzumab. However, experience with these therapies is still limited and there is a need for randomized trials to test their efficacy and establish guidelines for their use in clinical practice.

  8. Non-peptidergic primary afferents are presynaptic to neurokinin-1 receptor immunoreactive lamina I projection neurons in rat spinal cord

    Directory of Open Access Journals (Sweden)

    Saeed Abeer W

    2012-09-01

    Full Text Available Abstract Background Pain-related (nociceptive information is carried from the periphery to the dorsal horn of the spinal cord mostly by two populations of small diameter primary afferents, the peptidergic and the non-peptidergic. The peptidergic population expresses neuropeptides, such as substance P and calcitonin gene-related peptide, while the non-peptidergic fibers are devoid of neuropeptides, express the purinergic receptor P2X3, and bind the isolectin B4 (IB4. Although it has been known for some time that in rat the peptidergic afferents terminate mostly in lamina I and outer lamina II and non-peptidergic afferents in inner lamina II, the extent of the termination of the latter population in lamina I was never investigated as it was considered as very minor. Because our preliminary evidence suggested otherwise, we decided to re-examine the termination of non-peptidergic afferents in lamina I, in particular with regards to their innervation of projection neurons expressing substance P receptors (NK-1r. We used retrograde labeling of neurons from the parabrachial nucleus combined with lectin IB4 binding and immunocytochemistry. Samples were examined by confocal and electron microscopy. Results By confocal microscopy, we studied the termination of non-peptidergic afferents in lamina I using IB4 binding and P2X3 immunoreactivity as markers, in relation to CGRP immunoreactivy, a marker of peptidergic afferents. The number of IB4 or P2X3-labeled fibers in lamina I was higher than previously thought, although they were less abundant than CGRP-labeled afferents. There were very few fibers double-labeled for CGRP and either P2X3 or IB4. We found a considerable number of IB4-positive fiber varicosities in close apposition to NK-1r-positive lamina I projection neurons, which were distinct from peptidergic varicosities. Furthermore, we confirmed at the ultrastructural level that there were bona fide synapses between P2X3-immunoreactive non

  9. Frequency response of vestibular reflexes in neck, back, and lower limb muscles.

    Science.gov (United States)

    Forbes, Patrick A; Dakin, Christopher J; Vardy, Alistair N; Happee, Riender; Siegmund, Gunter P; Schouten, Alfred C; Blouin, Jean-Sébastien

    2013-10-01

    Vestibular pathways form short-latency disynaptic connections with neck motoneurons, whereas they form longer-latency disynaptic and polysynaptic connections with lower limb motoneurons. We quantified frequency responses of vestibular reflexes in neck, back, and lower limb muscles to explain between-muscle differences. Two hypotheses were evaluated: 1) that muscle-specific motor-unit properties influence the bandwidth of vestibular reflexes; and 2) that frequency responses of vestibular reflexes differ between neck, back, and lower limb muscles because of neural filtering. Subjects were exposed to electrical vestibular stimuli over bandwidths of 0-25 and 0-75 Hz while recording activity in sternocleidomastoid, splenius capitis, erector spinae, soleus, and medial gastrocnemius muscles. Coherence between stimulus and muscle activity revealed markedly larger vestibular reflex bandwidths in neck muscles (0-70 Hz) than back (0-15 Hz) or lower limb muscles (0-20 Hz). In addition, vestibular reflexes in back and lower limb muscles undergo low-pass filtering compared with neck-muscle responses, which span a broader dynamic range. These results suggest that the wider bandwidth of head-neck biomechanics requires a vestibular influence on neck-muscle activation across a larger dynamic range than lower limb muscles. A computational model of vestibular afferents and a motoneuron pool indicates that motor-unit properties are not primary contributors to the bandwidth filtering of vestibular reflexes in different muscles. Instead, our experimental findings suggest that pathway-dependent neural filtering, not captured in our model, contributes to these muscle-specific responses. Furthermore, gain-phase discontinuities in the neck-muscle vestibular reflexes provide evidence of destructive interaction between different reflex components, likely via indirect vestibular-motor pathways.

  10. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force.

    Science.gov (United States)

    Proske, Uwe; Gandevia, Simon C

    2012-10-01

    This is a review of the proprioceptive senses generated as a result of our own actions. They include the senses of position and movement of our limbs and trunk, the sense of effort, the sense of force, and the sense of heaviness. Receptors involved in proprioception are located in skin, muscles, and joints. Information about limb position and movement is not generated by individual receptors, but by populations of afferents. Afferent signals generated during a movement are processed to code for endpoint position of a limb. The afferent input is referred to a central body map to determine the location of the limbs in space. Experimental phantom limbs, produced by blocking peripheral nerves, have shown that motor areas in the brain are able to generate conscious sensations of limb displacement and movement in the absence of any sensory input. In the normal limb tendon organs and possibly also muscle spindles contribute to the senses of force and heaviness. Exercise can disturb proprioception, and this has implications for musculoskeletal injuries. Proprioceptive senses, particularly of limb position and movement, deteriorate with age and are associated with an increased risk of falls in the elderly. The more recent information available on proprioception has given a better understanding of the mechanisms underlying these senses as well as providing new insight into a range of clinical conditions.

  11. Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.

    Science.gov (United States)

    Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E

    2014-03-01

    Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.

  12. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... sympathetic vasoconstriction. ATP is released into plasma from erythrocytes and endothelial cells and the plasma concentration increases in both the feeding artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine...... and endothelial cells. In the interstitium, both ATP and adenosine stimulate the formation of NO and prostaglandins, but ATP has also been suggested to induce vasoconstriction and stimulate afferent nerves that signal to increase sympathetic nerve activity. Adenosine has been shown to contribute to exercise...

  13. Connections between the facial and trigeminal nerves: Anatomical basis for facial muscle proprioception

    Directory of Open Access Journals (Sweden)

    J.L. Cobo

    2017-06-01

    Full Text Available Proprioception is a quality of sensibility that originates in specialized sensory organs (proprioceptors that inform the central nervous system about static and dynamic conditions of muscles and joints. The facial muscles are innervated by efferent motor nerve fibers and typically lack proprioceptors. However, facial proprioception plays a key role in the regulation and coordination of the facial musculature and diverse reflexes. Thus, facial muscles must be necessarily supplied also for afferent sensory nerve fibers provided by other cranial nerves, especially the trigeminal nerve. Importantly, neuroanatomical studies have demonstrated that facial proprioceptive impulses are conveyed through branches of the trigeminal nerve to the central nervous system. The multiple communications between the facial and the trigeminal nerves are at the basis of these functional characteristics. Here we review the literature regarding the facial (superficial communications between the facial and the trigeminal nerves, update the current knowledge about proprioception in the facial muscles, and hypothesize future research in facial proprioception.

  14. Complement activation promotes muscle inflammation during modified muscle use

    Science.gov (United States)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  15. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  16. Does dystonic muscle activity affect sense of effort in cervical dystonia?

    Science.gov (United States)

    Carment, Loïc; Maier, Marc A.; Sangla, Sophie; Guiraud, Vincent; Mesure, Serge; Vidailhet, Marie

    2017-01-01

    Background Focal dystonia has been associated with deficient processing of sense of effort cues. However, corresponding studies are lacking in cervical dystonia (CD). We hypothesized that dystonic muscle activity would perturb neck force control based on sense of effort cues. Methods Neck extension force control was investigated in 18 CD patients with different clinical features (7 with and 11 without retrocollis) and in 19 control subjects. Subjects performed force-matching and force-maintaining tasks at 5% and 20% of maximum voluntary contraction (MVC). Three task conditions were tested: i) with visual force feedback, ii) without visual feedback (requiring use of sense of effort), iii) without visual feedback, but with neck extensor muscle vibration (modifying muscle afferent cues). Trapezius muscle activity was recorded using electromyography (EMG). Results CD patients did not differ in task performance from healthy subjects when using visual feedback (ANOVA, p>0.7). In contrast, when relying on sense of effort cues (without visual feedback, 5% MVC), force control was impaired in patients without retrocollis (p = 0.006), but not in patients with retrocollis (p>0.2). Compared to controls, muscle vibration without visual feedback significantly affected performance in patients with retrocollis (p<0.001), but not in patients without retrocollis. Extensor EMG during rest, included as covariate in ANOVA, explained these group differences. Conclusion This study shows that muscle afferent feedback biases sense of effort cues when controlling neck forces in patients with CD. The bias acts on peripheral or central sense of effort cues depending on whether the task involves dystonic muscles. This may explain why patients with retrocollis more accurately matched isometric neck extension forces. This highlights the need to consider clinical features (pattern of dystonic muscles) when evaluating sensorimotor integration in CD. PMID:28192488

  17. Transient inflammation-induced ongoing pain is driven by TRPV1 sensitive afferents

    Directory of Open Access Journals (Sweden)

    Mercado Ramon

    2011-01-01

    Full Text Available Abstract Background Tissue injury elicits both hypersensitivity to evoked stimuli and ongoing, stimulus-independent pain. We previously demonstrated that pain relief elicits reward in nerve-injured rats. This approach was used to evaluate the temporal and mechanistic features of inflammation-induced ongoing pain. Results Intraplantar Complete Freund's Adjuvant (CFA produced thermal hyperalgesia and guarding behavior that was reliably observed within 24 hrs and maintained, albeit diminished, 4 days post-administration. Spinal clonidine produced robust conditioned place preference (CPP in CFA treated rats 1 day, but not 4 days following CFA administration. However, spinal clonidine blocked CFA-induced thermal hyperalgesia at both post-CFA days 1 and 4, indicating different time-courses of ongoing and evoked pain. Peripheral nerve block by lidocaine administration into the popliteal fossa 1 day following intraplantar CFA produced a robust preference for the lidocaine paired chamber, indicating that injury-induced ongoing pain is driven by afferent fibers innervating the site of injury. Pretreatment with resiniferatoxin (RTX, an ultrapotent capsaicin analogue known to produce long-lasting desensitization of TRPV1 positive afferents, fully blocked CFA-induced thermal hypersensitivity and abolished the CPP elicited by administration of popliteal fossa lidocaine 24 hrs post-CFA. In addition, RTX pretreatment blocked guarding behavior observed 1 day following intraplantar CFA. In contrast, administration of the selective TRPV1 receptor antagonist, AMG9810, at a dose that reversed CFA-induced thermal hyperalgesia failed to reduce CFA-induced ongoing pain or guarding behavior. Conclusions These data demonstrate that inflammation induces both ongoing pain and evoked hypersensitivity that can be differentiated on the basis of time course. Ongoing pain (a is transient, (b driven by peripheral input resulting from the injury, (c dependent on TRPV1 positive

  18. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    Science.gov (United States)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  19. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...... on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise....... Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins...

  20. Variation in response dynamics of regular and irregular vestibular-nerve afferents during sinusoidal head rotations and currents in the chinchilla.

    Science.gov (United States)

    Kim, Kyu-Sung; Minor, Lloyd B; Della Santina, Charles C; Lasker, David M

    2011-05-01

    In mammals, vestibular-nerve afferents that innervate only type I hair cells (calyx-only afferents) respond nearly in phase with head acceleration for high-frequency motion, whereas afferents that innervate both type I and type II (dimorphic) or only type II (bouton-only) hair cells respond more in phase with head velocity. Afferents that exhibit irregular background discharge rates have a larger phase lead re-head velocity than those that fire more regularly. The goal of this study was to investigate the cause of the variation in phase lead between regular and irregular afferents at high-frequency head rotations. Under the assumption that externally applied galvanic currents act directly on the nerve, we derived a transfer function describing the dynamics of a semicircular canal and its hair cells through comparison of responses to sinusoidally modulated head velocity and currents. Responses of all afferents were fit well with a transfer function with one zero (lead term). Best-fit lead terms describing responses to current for each group of afferents were similar to the lead term describing responses to head velocity for regular afferents (0.006 s + 1). This finding indicated that the pre-synaptic and synaptic inputs to regular afferents were likely to be pure velocity transducers. However, the variation in phase lead between regular and irregular afferents could not be explained solely by the ratio of type I to II hair cells (Baird et al 1988), suggesting that the variation was caused by a combination of pre- (type of hair cell) and post-synaptic properties.

  1. Fatigue related changes in electromyographic coherence between synergistic hand muscles.

    Science.gov (United States)

    Kattla, Shashikala; Lowery, Madeleine M

    2010-04-01

    The aim of this study was to examine coherence between surface electromyographic (EMG) signals from two index finger flexor muscles, the first dorsal interosseous (FDI) and flexor digitorum superficialis (FDS), during and immediately following sustained, fatiguing isometric contraction. Coherence was observed between the FDI and FDS EMG signals in the tremor (8-12 Hz), beta (15-35 Hz) and gamma (35-60 Hz) bands in all subjects. A significant increase in EMG-EMG coherence in the beta and gamma frequency bands was observed immediately following the fatiguing contraction. No significant difference was observed in the tremor band coherence before and after fatigue. Coherence was observed between EMG and force in the tremor band during both the pre- and post-fatigue contractions and a significant increase in the FDI EMG-force coherence post-fatigue was observed. It is suggested that the increase in beta and gamma band coherence with fatigue may be due to increased levels of corticomotoneuronal drive to both muscles. Alternatively, the increased EMG-EMG coherence may reflect an increased contribution of peripheral afferents to coupling across the muscle with fatigue. Although the functional significance is not clear, the increase in coherence may help to overcome reduced motoneuron excitability with fatigue, to bind together different sensorimotor elements or to coordinate force generation across muscles in a more synergistic manner as the force generating capacity of the muscle is decreased.

  2. Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells.

    Science.gov (United States)

    Defourny, Jean; Poirrier, Anne-Lise; Lallemend, François; Mateo Sánchez, Susana; Neef, Jakob; Vanderhaeghen, Pierre; Soriano, Eduardo; Peuckert, Christiane; Kullander, Klas; Fritzsch, Bernd; Nguyen, Laurent; Moonen, Gustave; Moser, Tobias; Malgrange, Brigitte

    2013-01-01

    Hearing requires an optimal afferent innervation of sensory hair cells by spiral ganglion neurons in the cochlea. Here we report that complementary expression of ephrin-A5 in hair cells and EphA4 receptor among spiral ganglion neuron populations controls the targeting of type I and type II afferent fibres to inner and outer hair cells, respectively. In the absence of ephrin-A5 or EphA4 forward signalling, a subset of type I projections aberrantly overshoot the inner hair cell layer and invade the outer hair cell area. Lack of type I afferent synapses impairs neurotransmission from inner hair cells to the auditory nerve. By contrast, radial shift of type I projections coincides with a gain of presynaptic ribbons that could enhance the afferent signalling from outer hair cells. Ephexin-1, cofilin and myosin light chain kinase act downstream of EphA4 to induce type I spiral ganglion neuron growth cone collapse. Our findings constitute the first identification of an Eph/ephrin-mediated mutual repulsion mechanism responsible for specific sorting of auditory projections in the cochlea.

  3. Differential presynaptic control of the synaptic effectiveness of cutaneous afferents evidenced by effects produced by acute nerve section.

    Science.gov (United States)

    Rudomin, P; Jiménez, I; Chávez, D

    2013-05-15

    In the anaesthetized cat, the acute section of the saphenous (Saph) and/or the superficial peroneal (SP) nerves was found to produce a long-lasting increase of the field potentials generated in the dorsal horn by stimulation of the medial branch of the sural (mSU) nerve. This facilitation was associated with changes in the level of the tonic primary afferent depolarization (PAD) of the mSU intraspinal terminals. The mSU afferent fibres projecting into Rexed's laminae III-IV were subjected to a tonic PAD that was reduced by the acute section of the SP and/or the Saph nerves. The mSU afferents projecting deeper into the dorsal horn (Rexed's laminae V-VI) were instead subjected to a tonic PAD that was increased after Saph and SP acute nerve section. A differential control of the synaptic effectiveness of the low-threshold cutaneous afferents according to their sites of termination within the dorsal horn is envisaged as a mechanism that allows selective processing of sensory information in response to tactile and nociceptive stimulation or during the execution of different motor tasks.

  4. Afferent facilitation of corticomotor responses is increased by IgGs of patients with NMDA-receptor antibodies.

    Science.gov (United States)

    Manto, Mario; Dalmau, Josep; Didelot, Adrien; Rogemond, Véronique; Honnorat, Jérôme

    2011-01-01

    A severe subacute encephalitis associated with auto-antibodies to the NMDA receptor (NMDA-R) has been reported in humans. These antibodies are directed to NR1/NR2 heteromers of the NMDA receptor. We studied the effects of patients' cerebrospinal fluid (CSF) injected in rFr2 (the prefrontal area) on the afferent facilitation in a conditioning paradigm for corticomotor responses. The afferent facilitation was assessed in forelimbs and hindlimbs of rats, before and after application of trains of high-frequency stimulation (HFS) which are known to modulate the excitability of M1. Before HFS, patients' CSF did not modify afferent facilitation. After HFS, the amplitudes of corticomotor responses before conditioning were significantly larger in forelimbs and hindlimbs. There was an increase of the afferent facilitation in forelimbs. The same effect was observed after injection of purified IgGs from patients' sera. Our results highlight that IgGs of patients with NMDA-R antibodies induce a state of corticomotor hyperexcitability following application of HFS over the prefrontal area.

  5. Intrafusal muscle fibre types in frog spindles.

    OpenAIRE

    Diwan, F H; Ito, F

    1989-01-01

    Muscle spindles from bullfrog semitendinosus, iliofibularis and sartorius muscles were examined with light and electron microscopy. Four types of intrafusal muscle fibre were identified according to their diameter, central nucleation and reticular zone arrangement: a large nuclear bag fibre, a medium nuclear bag fibre, and two types of small nuclear chain fibres with and without a reticular zone, respectively. It is suggested that they are comparable to the nuclear bag1, bag2 and chain fibres...

  6. The role of resting frontal EEG asymmetry in psychopathology: afferent or efferent filter?

    Science.gov (United States)

    Gatzke-Kopp, Lisa M; Jetha, Michelle K; Segalowitz, Sidney J

    2014-01-01

    Resting EEG asymmetry evident early in life is thought to bias affective behaviors and contribute to the development of psychopathology. However, it remains unclear at what stage of information processing this bias occurs. Asymmetry may serve as an afferent filter, modulating emotional reactivity to incoming stimuli; or as an efferent filter, modulating behavioral response tendencies under emotional conditions. This study examines 209 kindergarten children (M = 6.03 years old) to test predictions put forth by the two models. Resting asymmetry was examined in conjunction with electrodermal and cardiac measures of physiological reactivity to four emotion-inducing film clips (fear, sad, happy, anger) and teacher ratings of psychopathology. Results confirm an association between increased right side cortical activation and internalizing symptom severity as well as left activation and externalizing symptom severity. Significant interactions between resting asymmetry and physiological reactivity to emotion indicate that physiological reactivity moderates the association between resting asymmetry and symptoms of psychopathology.

  7. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Science.gov (United States)

    Hu, Rongfeng; Jin, Sen; He, Xiaobin; Xu, Fuqiang; Hu, Ji

    2016-01-01

    The basal forebrain cholinergic system (BFCS) robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum, central amygdala, paraventricular nucleus of hypothalamus, dorsal raphe, and parabrachial nucleus. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal–hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function. PMID:27777554

  8. Endomorphins decrease heart rate and blood pressure possibly by activating vagal afferents in anesthetized rats.

    Science.gov (United States)

    Kwok, E H; Dun, N J

    1998-08-24

    Endomorphin 1 (10, 30, 100 nmol/kg) administered intravenously (i.v. ) to urethane-anesthetized rats consistently and dose-dependently lowered heart rate (HR) and mean arterial pressure (MAP); the decrease in blood pressure recovered faster as compared to the HR. The effects of endomorphin 2 were qualitatively similar. Naloxone (2 mg/kg, i.v.) completely antagonized the bradycardia and hypotension caused by endomorphin 1. Pretreatment of the rats with atropine methylnitrate, atropine sulfate (2 mg/kg, i.v.) or bilateral vagotomy nearly abolished the bradycardia and attenuated the hypotensive effect of endomorphin 1. Our studies suggest that the bradycardia effect following systemic administration of the new opioid peptide may be explained by activation of vagal afferents and the hypotensive effect may be secondary to a reduction of cardiac output and/or a direct vasodilation.

  9. Phrenic nerve afferents elicited cord dorsum potential in the cat cervical spinal cord

    Directory of Open Access Journals (Sweden)

    Davenport Paul W

    2005-05-01

    Full Text Available Abstract Background The diaphragm has sensory innervation from mechanoreceptors with myelinated axons entering the spinal cord via the phrenic nerve that project to the thalamus and somatosensory cortex. It was hypothesized that phrenic nerve afferent (PnA projection to the central nervous system is via the spinal dorsal column pathway. Results A single N1 peak of the CDP was found in the C4 and C7 spinal segments. Three peaks (N1, N2, and N3 were found in the C5 and C6 segments. No CDP was recorded at C8 dorsal spinal cord surface in cats. Conclusion These results demonstrate PnA activation of neurons in the cervical spinal cord. Three populations of myelinated PnA (Group I, Group II, and Group III enter the cat's cervical spinal segments that supply the phrenic nerve

  10. Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area

    Directory of Open Access Journals (Sweden)

    Lauren Faget

    2016-06-01

    Full Text Available The ventral tegmental area (VTA plays a central role in the neural circuit control of behavioral reinforcement. Though considered a dopaminergic nucleus, the VTA contains substantial heterogeneity in neurotransmitter type, containing also GABA and glutamate neurons. Here, we used a combinatorial viral approach to transsynaptically label afferents to defined VTA dopamine, GABA, or glutamate neurons. Surprisingly, we find that these populations received qualitatively similar inputs, with dominant and comparable projections from the lateral hypothalamus, raphe, and ventral pallidum. However, notable differences were observed, with striatal regions and globus pallidus providing a greater share of input to VTA dopamine neurons, cortical input preferentially on to glutamate neurons, and GABA neurons receiving proportionally more input from the lateral habenula and laterodorsal tegmental nucleus. By comparing inputs to each of the transmitter-defined VTA cell types, this study sheds important light on the systems-level organization of diverse inputs to VTA.

  11. Muscle damage induced by electrical stimulation.

    Science.gov (United States)

    Nosaka, Kazunori; Aldayel, Abdulaziz; Jubeau, Marc; Chen, Trevor C

    2011-10-01

    Electrical stimulation (ES) induces muscle damage that is characterised by histological alterations of muscle fibres and connective tissue, increases in circulating creatine kinase (CK) activity, decreases in muscle strength and development of delayed onset muscle soreness (DOMS). Muscle damage is induced not only by eccentric contractions with ES but also by isometric contractions evoked by ES. Muscle damage profile following 40 isometric contractions of the knee extensors is similar between pulsed current (75 Hz, 400 μs) and alternating current (2.5 kHz delivered at 75 Hz, 400 μs) ES for similar force output. When comparing maximal voluntary and ES-evoked (75 Hz, 200 μs) 50 isometric contractions of the elbow flexors, ES results in greater decreases in maximal voluntary contraction strength, increases in plasma CK activity and DOMS. It appears that the magnitude of muscle damage induced by ES-evoked isometric contractions is comparable to that induced by maximal voluntary eccentric contractions, although the volume of affected muscles in ES is not as large as that of eccentric exercise-induced muscle damage. It seems likely that the muscle damage in ES is associated with high mechanical stress on the activated muscle fibres due to the specificity of motor unit recruitment (i.e., non-selective, synchronous and spatially fixed manner). The magnitude of muscle damage induced by ES is significantly reduced when the second ES bout is performed 2-4 weeks later. It is possible to attenuate the magnitude of muscle damage by "pre-conditioning" muscles, so that muscle damage should not limit the use of ES in training and rehabilitation.

  12. Effect of muscle mass on muscle mechanoreflex-mediated heart rate increase at the onset of dynamic exercise.

    Science.gov (United States)

    Vianna, Lauro C; Oliveira, Ricardo B; Ramos, Plínio S; Ricardo, Djalma R; Araújo, Claudio Gil S

    2010-02-01

    This study was conducted to determine whether the heart rate increase at the onset of passive dynamic exercise is related to the amount of skeletal muscle mass engaged in movement. Fifteen healthy male subjects, 18-30 years old, performed, from the 4th to the 8th second of a 12-s apnea, four different 4-s bouts of passive cycling assigned in a counterbalanced order, each one different from the others by the number of limbs engaged in the movement (i.e., 1 arm, 2 arms, 2 arms + 1 leg and 2 arms + 2 legs), while respiratory movements and limb muscle electromyography were recorded. A repeated-measures ANOVA showed that the RR interval at the end of 4-s passive cycling was reduced in all the four different bouts (P exercise to the end of 4 s of passive cycling) were directly related, in a non-linear trend, to the amount of muscle mass engaged in movement. These variations were more expressive when extremes were compared (110 +/- 16 vs. 184 +/- 24 ms, respectively, 1 limb vs. 4 limbs, P exercise. It was concluded that in healthy subjects, heart rate increase at the onset of passive cycling is directly related to the number of limbs and consequently the amount of muscle mass engaged, which is possibly related to a greater afferent input from stretch-sensitive muscle mechanoreceptors.

  13. Muscle disease.

    Science.gov (United States)

    Tsao, Chang-Yong

    2014-02-01

    On the basis of strong research evidence, Duchenne muscular dystrophy (DMD), the most common severe childhood form of muscular dystrophy, is an X-linked recessive disorder caused by out-of-frame mutations of the dystrophin gene. Thus, it is classified asa dystrophinopathy. The disease onset is before age 5 years. Patients with DMD present with progressive symmetrical limb-girdle muscle weakness and become wheelchair dependent after age 12 years. (2)(3). On the basis of some research evidence,cardiomyopathy and congestive heart failure are usually seen in the late teens in patients with DMD. Progressive scoliosis and respiratory in sufficiency often develop once wheelchair dependency occurs. Respiratory failure and cardiomyopathy are common causes of death, and few survive beyond the third decade of life. (2)(3)(4)(5)(6)(7). On the basis of some research evidence, prednisone at 0.75 mg/kg daily (maximum dose, 40 mg/d) or deflazacort at 0.9 mg/kg daily (maximum dose, 39 mg/d), a derivative of prednisolone (not available in the United States), as a single morning dose is recommended for DMD patients older than 5 years, which may prolong independent walking from a few months to 2 years. (2)(3)(16)(17). Based on some research evidence, treatment with angiotensin-converting enzyme inhibitors, b-blockers, and diuretics has been reported to be beneficial in DMD patients with cardiac abnormalities. (2)(3)(5)(18). Based on expert opinion, children with muscle weakness and increased serum creatine kinase levels may be associated with either genetic or acquired muscle disorders (Tables 1 and 3). (14)(15)

  14. CXCR4 is dispensable for T cell egress from chronically inflamed skin via the afferent lymph.

    Directory of Open Access Journals (Sweden)

    Skye A Geherin

    Full Text Available T cell recirculation through extralymphoid tissues is essential to immune surveillance, host defense and inflammation. In this process, T cells enter the tissue from the blood and subsequently leave via the afferent lymph. In the absence of inflammation, T cells require CCR7 expression to egress from the skin or lung, which is consistent with the constitutive expression of the CCR7 ligand CCL21 on lymphatic endothelium. However, during chronic inflammation alternative chemoattractants come into play, allowing Ccr7-deficient (Ccr7-/- T cells to egress efficiently from affected skin. As T cell egress from inflamed sites is a potential control point of the inflammatory response, we aimed to determine alternative T cell exit receptors using a mouse and a sheep model. We show that CCR7+ and CCR7- T cells exiting from the chronically inflamed skin were highly responsive to the CXCR4 ligand CXCL12, which was induced in the lymphatics in the inflamed site. Based on these findings, we hypothesized that CXCR4 mediates T cell egress from inflamed skin. However, pharmacological inhibition of CXCR4 did not affect the tissue egress of wildtype or Ccr7-/- CD4 and CD8 T cells after adoptive transfer into chronically inflamed skin. Similarly, adoptively transferred Cxcr4-/- Ccr7-/- and Ccr7-/- T cells egressed from the inflamed skin equally well. Based on these data, we conclude that, while CXCR4 might play an essential role for other cell types that enter the afferent lymphatics, it is dispensable for T cell egress from the chronically inflamed skin.

  15. Evolution of a new sense for wind in flying phasmids? Afferents and interneurons

    Science.gov (United States)

    Hustert, Reinhold; Klug, Rebecca

    2009-12-01

    The evolution of winged stick insects (phasmids) from secondarily wingless ancestors was proposed in recent studies. We explored the cuticle of flying phasmids for wind sensors that could be involved in their flight control, comparable to those known for locusts. Surprisingly, wind-sensitive hairs (wsH) occur on the palps of mouthparts and on the antennae of the winged phasmid Sipyloidea sipylus which can fly in tethered position only when air currents blow over the mouthparts. The present study describes the morphology and major functional properties of these “new” wsH with soft and bulging hair bases which are different from the beaker-like hair bases of the wsH on the cerci of phasmids and the wsH described in other insects. The most sensitive wsH of antennae and palps respond with phasic-tonic afferents to air currents exceeding 0.2 ms-1. The fields of wsH on one side of the animal respond mainly to ventral, lateral, and frontal wind on the ipsilateral side of the head. Afferent inputs from the wsH converge but also diverge to a group of specific interneurons at their branches in the suboesoph