Seismic evaluation of a large nuclear pump bearing using non-linear dynamic analysis
International Nuclear Information System (INIS)
Huber, K.A.; Hugins, M.S.
1983-01-01
Hydrostatic bearings of a large vertical pump using sodium as the lubricant were critically examined to determine their ability to withstand seismic loads. Initial linear dynamics analyses predicted journal displacements to exceed bearing clearance by a ratio of 3:1. Equivalent time-history excitations were then developed from the response spectra to determine the number, magnitude, and duration of the bearing impact loads. Predicted loads were further reduced by 50% by modeling non-linear bearing characteristics normally present but not generally included in conventional linear analyses. Results are presented of the comprehensive design evaluation performed, based on these non-linear predictions, that assess stress, wear, and fatigue to demonstrate hydrostatic bearing integrity
A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV
International Nuclear Information System (INIS)
Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng
2013-01-01
A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)
Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.
Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van
2017-06-01
In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.
Parametric Linear Dynamic Logic
Directory of Open Access Journals (Sweden)
Peter Faymonville
2014-08-01
Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.
Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system.
DeMars, Craig A; Boutin, Stan
2018-01-01
Rapid landscape alteration associated with human activity is currently challenging the evolved dynamical stability of many predator-prey systems by forcing species to behaviourally respond to novel environmental stimuli. In many forested systems, linear features (LFs) such as roads, pipelines and resource exploration lines (i.e. seismic lines) are a ubiquitous form of landscape alteration that have been implicated in altering predator-prey dynamics. One hypothesized effect is that LFs facilitate predator movement into and within prey refugia, thereby increasing predator-prey spatial overlap. We evaluated this hypothesis in a large mammal system, focusing on the interactions between boreal woodland caribou (Rangifer tarandus caribou) and their two main predators, wolves (Canis lupus) and black bears (Ursus americanus), during the calving season of caribou. In this system, LFs extend into and occur within peatlands (i.e. bogs and nutrient-poor fens), a habitat type highly used by caribou due to its refugia effects. Using resource selection analyses, we found that LFs increased predator selection of peatlands. Female caribou appeared to respond by avoiding LFs and areas with high LF density. However, in our study area, most caribou cannot completely avoid exposure to LFs and variation in female response had demographic effects. In particular, increasing proportional use of LFs by females negatively impacted survival of their neonate calves. Collectively, these results demonstrate how LFs can reduce the efficacy of prey refugia. Mitigating such effects will require limiting or restoring LFs within prey refugia, although the effectiveness of mitigation efforts will depend upon spatial scale, which in turn will be influenced by the life-history traits of predator and prey. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Perspectives on large linear colliders
International Nuclear Information System (INIS)
Richter, B.
1987-11-01
Three main items in the design of large linear colliders are presented. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder who must design a machine to meet the needs of experimentl high energy physics rather than designing a machine for its own sake. An introduction is also given for linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder. The author also gives his impressions of the state of the technology available for building these kinds of machines within the next decade. The paper concludes with a brief recommendation for how we can all get on with the work faster, and hope to realize these machines sooner by working together. 10 refs., 9 figs
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
Perspectives on large Linear Colliders
International Nuclear Information System (INIS)
Richter, B.
1987-01-01
The accelerator community now generally agrees that the Linear Collider is the most cost-effective technology for reaching much higher energies in the center-of-mass than can be attained in the largest of the e + e - storage rings, LEP. Indeed, even as the first linear collider, the SLC at SLAC, is getting ready to begin operations groups, at SLAC, Novosibirsk, CERN and KEK are doing R and D and conceptual design studies on a next generation machine in the 1 TeV energy region. In this perspectives talk I do not want to restrict my comments to any particular design, and so I will talk about a high-energy machine as the NLC, which is shorthand for the Next Linear Collider, and taken to mean a machine with a center-of-mass energy someplace in the 0.5 to 2 TeV energy range with sufficient luminosity to carry out a meaningful experimental program. I want to discuss three main items with you. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder. Next, I will give an introduction to linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder.Then, I want to give my impressions of the state of the technology available for building these kinds of machines within the next decade
Beam dynamics in linear colliders
International Nuclear Information System (INIS)
Ruth, R.D.
1990-09-01
In this paper, we discuss some basic beam dynamics issues related to obtaining and preserving the luminosity of a next generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. 27 refs., 1 fig
Numerical solution of large sparse linear systems
International Nuclear Information System (INIS)
Meurant, Gerard; Golub, Gene.
1982-02-01
This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr
Parallel beam dynamics simulation of linear accelerators
International Nuclear Information System (INIS)
Qiang, Ji; Ryne, Robert D.
2002-01-01
In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies
MEMS linear and nonlinear statics and dynamics
Younis, Mohammad I
2011-01-01
MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of nume
Li, Jiaru; Joubert-Doriol, Loïc; Izmaylov, Artur F.
2017-08-01
We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.
Non-Linear Dynamics of Saturn's Rings
Esposito, L. W.
2016-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries
International Nuclear Information System (INIS)
Sumner, H.M.
1969-03-01
The KDF9/EGDON program ZIP MK 2 is the third of a series of programs for off-line digital computer analysis of dynamic systems: it has been designed specifically to cater for the needs of the design or control engineer in having an input scheme which is minimally computer-oriented. It uses numerical algorithms which are as near fool-proof as the author could discover or devise, and has comprehensive diagnostic sections to help the user in the event of faulty data or machine execution. ZIP MK 2 accepts mathematical models comprising first order linear differential and linear algebraic equations, and from these computes and factorises the transfer functions between specified pairs of output and input variables; if desired, the frequency response may be computed from the computed transfer function. The model input scheme is fully compatible with the frequency response programs FRP MK 1 and MK 2, except that, for ZIP MK 2, transport, or time-delays must be converted by the user to Pade or Bode approximations prior to input. ZIP provides the pole-zero plot, (or complex plane analysis), while FRP provides the frequency response and FIFI the time domain analyses. The pole-zero method of analysis has been little used in the past for complex models, especially where transport delays occur, and one of its primary purposes is as a research tool to investigate the usefulness of this method, for process plant, whether nuclear, chemical or other continuous processes. (author)
Nonlinear dynamics between linear and impact limits
Pilipchuk, Valery N; Wriggers, Peter
2010-01-01
This book examines nonlinear dynamic analyses based on the existence of strongly nonlinear but simple counterparts to the linear models and tools. Discusses possible application to periodic elastic structures with non-smooth or discontinuous characteristics.
SLAP, Large Sparse Linear System Solution Package
International Nuclear Information System (INIS)
Greenbaum, A.
1987-01-01
1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration
Dynamics and acceleration in linear structures
International Nuclear Information System (INIS)
Le Duff, J.
1985-06-01
Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ
Beam dynamics issues for linear colliders
International Nuclear Information System (INIS)
Ruth, R.D.
1987-09-01
In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set
Linear dynamic coupling in geared rotor systems
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
Correlated Levy Noise in Linear Dynamical Systems
International Nuclear Information System (INIS)
Srokowski, T.
2011-01-01
Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)
Single Particle Linear and Nonlinear Dynamics
Energy Technology Data Exchange (ETDEWEB)
Cai, Y
2004-06-25
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form.
Single Particle Linear and Nonlinear Dynamics
International Nuclear Information System (INIS)
Cai, Y
2004-01-01
I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form
Iterative solution of large linear systems
Young, David Matheson
1971-01-01
This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth
Non-Linear Dynamics and Fundamental Interactions
Khanna, Faqir
2006-01-01
The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.
Radiation protection in large linear accelerators
International Nuclear Information System (INIS)
Oliva, Jose de Jesus Rivero
2013-01-01
The electron linear accelerators can be used in industrial applications that require powerful sources of ionizing radiation. They have the important characteristic of not representing a radiation hazard when the accelerators remain electrically disconnected. With the plant in operation, a high reliability defense in depth reduces the risk of radiological accidents to extremely small levels. It is practically impossible that a person could enter into the radiation bunker with the accelerators connected. Aceletron Irradiacao Industrial, located in Rio de Janeiro, offers services of irradiation by means of two powerful electron linear accelerators, with 15 kW power and 10 MeV electron energy. Despite the high level of existing radiation safety, a simplified risk study is underway to identify possible sequences of radiological accidents. The study is based on the combined application of the event and fault trees techniques. Preliminary results confirm that there is a very small risk of entering into the irradiation bunker with the accelerators in operation, but the risk of an operator entering into the bunker during a process interruption and remaining there without notice after the accelerators were restarted may be considerably larger. Based on these results the Company is considering alternatives to reduce the likelihood of human error of this type that could lead to a radiological accident. The paper describes the defense in depth of the irradiation process in Aceletron Irradiacao Industrial, as well as the models and preliminary results of the ongoing risk analysis, including the additional safety measures which are being evaluated. (author)
Orbit dynamics for unstable linear motion
International Nuclear Information System (INIS)
Parzen, G.
1997-01-01
A treatment is given of the orbit dynamics for linear unstable motion that allows for the zeros in the beta function and makes no assumptions about the realness of the betatron and phase functions. The phase shift per turn is shown to be related to the beta function and the number of zeros the beta function goes through per turn. The solutions of the equations of motion are found in terms of the beta function
Orbit dynamics for unstable linear motion
International Nuclear Information System (INIS)
Parzen, G.
1996-04-01
A treatment is given of the orbit dynamics for linear unstable motion that allows for the zeros in the beta function and makes no assumption about the realness of the betatron and phase functions. The phase shift per turn is shown to be related to the beta function and the number of zeros the beta function goes through per turn. The solutions of the equations of motion are found in terms of the beta function
Nonoscillation of half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Matucci, S.; Řehák, Pavel
2010-01-01
Roč. 60, č. 5 (2010), s. 1421-1429 ISSN 0898-1221 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * (non)oscillation * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 1.472, year: 2010 http://www.sciencedirect.com/science/article/pii/S0898122110004384
Dynamical structure of linearized GL(4) gravities
International Nuclear Information System (INIS)
Aragone, C.; Restuccia, A.
1978-01-01
The physical content of the three more natural models of GL(4) gravity is analyzed, for the case of weak fields. It is shown that the first model is the linearized version of Yang's one-tensor-field gravity and is a scalar-tensor theory, with its scalar part contained in a symmetric tensor. The second and the third linearized models, which can both be derived from the fourth-order action postulated by Yang, are two-tensor decoupled systems. In both cases one of the tensors is the symmetric weak metric gravity tensor field. the second tensor appearing in these two models, representing the GL(4)-gauge field, is either a linearized symmetric affinity (in the second model) or a linearized but nonsymmetric affinity (for the third model). It is shown that in these last two cases the affinity contains a helicity-3 propagating field. Owing to the presence of helicity-3 fields it is shown that it is better to regard Yang's action as an action for a two-tensor system instead of trying to recover from a pure gravity (one-tensor-field) action. Finally, it is shown what is the dynamical structure of the second and third linearized two-tensor models which can be derived from Yang's action. (author)
Parameter identifiability of linear dynamical systems
Glover, K.; Willems, J. C.
1974-01-01
It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.
Non-linear dynamics in Parkinsonism
Directory of Open Access Journals (Sweden)
Olivier eDarbin
2013-12-01
Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.
Non Linear Beam Dynamics Studies at SPEAR
International Nuclear Information System (INIS)
Terebilo, A.; Pellegrini, C.; Cornacchia, M.; Corbett, J.; Martin, D.
2011-01-01
The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.
Large-scale linear programs in planning and prediction.
2017-06-01
Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...
Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver [Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock (Germany)
2015-06-28
Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.
Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations
International Nuclear Information System (INIS)
Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver
2015-01-01
Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom
A Dynamic Linear Modeling Approach to Public Policy Change
DEFF Research Database (Denmark)
Loftis, Matthew; Mortensen, Peter Bjerre
2017-01-01
Theories of public policy change, despite their differences, converge on one point of strong agreement. The relationship between policy and its causes can and does change over time. This consensus yields numerous empirical implications, but our standard analytical tools are inadequate for testing...... them. As a result, the dynamic and transformative relationships predicted by policy theories have been left largely unexplored in time-series analysis of public policy. This paper introduces dynamic linear modeling (DLM) as a useful statistical tool for exploring time-varying relationships in public...... policy. The paper offers a detailed exposition of the DLM approach and illustrates its usefulness with a time series analysis of U.S. defense policy from 1957-2010. The results point the way for a new attention to dynamics in the policy process and the paper concludes with a discussion of how...
Dynamic linearization system for a radiation gauge
International Nuclear Information System (INIS)
Panarello, J.A.
1977-01-01
The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged
Non-Linear Dynamics of Saturn’s Rings
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
A convex optimization approach for solving large scale linear systems
Directory of Open Access Journals (Sweden)
Debora Cores
2017-01-01
Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.
Estimation and Inference for Very Large Linear Mixed Effects Models
Gao, K.; Owen, A. B.
2016-01-01
Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...
Penalized Estimation in Large-Scale Generalized Linear Array Models
DEFF Research Database (Denmark)
Lund, Adam; Vincent, Martin; Hansen, Niels Richard
2017-01-01
Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...
Linearized dynamical approach to current algebra
International Nuclear Information System (INIS)
Scadron, M.D.
1995-07-01
We study the original motivations searching for a nonlinear chiral Lagrangian to replace the linear sigma model while manifesting all the successful properties of current algebra and partial conservation of axial currents (PCAC). (author). 26 refs
On the dynamic analysis of piecewise-linear networks
Heemels, W.P.M.H.; Camlibel, M.K.; Schumacher, J.M.
2002-01-01
Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks. In this paper, the object of study will be dynamic electrical circuits that can be recast as linear complementarity systems, i.e., as interconnections of linear time-invariant differential equatio...
An algorithm for the solution of dynamic linear programs
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation
Solution methods for large systems of linear equations in BACCHUS
International Nuclear Information System (INIS)
Homann, C.; Dorr, B.
1993-05-01
The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de
Planning under uncertainty solving large-scale stochastic linear programs
Energy Technology Data Exchange (ETDEWEB)
Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft
1992-12-01
For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.
Chaotic dynamics and diffusion in a piecewise linear equation
International Nuclear Information System (INIS)
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-01-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems
Chaotic dynamics and diffusion in a piecewise linear equation
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-03-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.
Design techniques for large scale linear measurement systems
International Nuclear Information System (INIS)
Candy, J.V.
1979-03-01
Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented
Linearized supergravity with a dynamical preferred frame
Marakulin, Arthur
2016-01-01
We study supersymmetric extension of the Einstein-aether gravitational model where local Lorentz invariance is broken down to the subgroup of spatial rotations by a vacuum expectation value of a timelike vector field. By restricting to the level of linear perturbations around Lorentz-violating vacuum and using the superfield formalism we construct the most general action invariant under the linearized supergravity transformations. We show that, unlike its non-supersymmetric counterpart, the model contains only a single free dimensionless parameter, besides the usual dimensionful gravitational coupling. This makes the model highly predictive. An analysis of the spectrum of physical excitations reveal superluminal velocity of gravitons. The latter property leads to the extension of the gravitational multiplet by additional fermonic and bosonic states with helicities $\\pm 3/2$ and $\\pm 1$. We outline the observational constraints on the model following from its low-energy phenomenology.
Behavioral modeling of the dominant dynamics in input-output transfer of linear(ized) circuits
Beelen, T.G.J.; Maten, ter E.J.W.; Sihaloho, H.J.; Eijndhoven, van S.J.L.
2010-01-01
We present a powerful procedure for determining both the dominant dynamics of the inputoutput transfer and the corresponding most influential circuit parameters of a linear(ized) circuit. The procedure consists of several steps in which a specific (sub)problem is solved and its solution is used in
Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems
International Nuclear Information System (INIS)
Bulgadaev, S.A.; Kusmartsev, F.V.
2005-01-01
Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures
Beam dynamics in stripline linear induction accelerators
International Nuclear Information System (INIS)
Adler, R.J.
1983-01-01
Stripline (parallel plate transmission line) pulsed power modules have been considered for application to advanced high current linear accelerators. Some advantages of the stripline designs include compact size, easy maintenance, and most importantly, the small number of switches required (one switch per 2 MeV). The principle drawback of stripline designs is that they impart a NET transverse force to particles in the gap. This is shown to result in randomized transverse momentum, and NET, constructive transverse guiding center motion. In this paper, a semi-quantitative analysis of several facets of the problem is presented
A linear model of population dynamics
Lushnikov, A. A.; Kagan, A. I.
2016-08-01
The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).
Dynamics of edge currents in a linearly quenched Haldane model
Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit
2018-03-01
In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.
Novel algorithm of large-scale simultaneous linear equations
International Nuclear Information System (INIS)
Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L
2010-01-01
We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.
Dynamics of elliptic breathers in saturable nonlinear media with linear anisotropy
International Nuclear Information System (INIS)
Liang, Guo; Guo, Qi; Shou, Qian; Ren, Zhanmei
2014-01-01
We have introduced a class of dynamic elliptic breathers in saturable nonlinear media with linear anisotropy. Two kinds of evolution behavior for the dynamic breathers, rotations and molecule-like librations, are both predicted by the variational approach, and confirmed in numerical simulations. The dynamic elliptic breathers can rotate even though they have no initial orbital angular momentum (OAM). As the media are linear anisotropic, OAM is no longer conserved, and hence the angular velocity is not constant but a periodic function of the propagation distance. When the linear anisotropy is large enough, the dynamic elliptic breathers librate like molecules. The dynamic elliptic breathers are present in media with not only saturable nonlinearity but also nonlocal nonlinearity; indeed, they are universal in nonlinear media with linear anisotropy. (paper)
Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time
Wang, Yu
1995-08-01
The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
Dynamical symmetries of semi-linear Schrodinger and diffusion equations
International Nuclear Information System (INIS)
Stoimenov, Stoimen; Henkel, Malte
2005-01-01
Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
Shear-transformation-zone theory of linear glassy dynamics.
Bouchbinder, Eran; Langer, J S
2011-06-01
We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.
A method for evaluating dynamical friction in linear ball bearings.
Fujii, Yusaku; Maru, Koichi; Jin, Tao; Yupapin, Preecha P; Mitatha, Somsak
2010-01-01
A method is proposed for evaluating the dynamical friction of linear bearings, whose motion is not perfectly linear due to some play in its internal mechanism. In this method, the moving part of a linear bearing is made to move freely, and the force acting on the moving part is measured as the inertial force given by the product of its mass and the acceleration of its centre of gravity. To evaluate the acceleration of its centre of gravity, the acceleration of two different points on it is measured using a dual-axis optical interferometer.
Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors
Chen, Liangyuan
2018-03-01
The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.
Input design for linear dynamic systems using maxmin criteria
DEFF Research Database (Denmark)
Sadegh, Payman; Hansen, Lars H.; Madsen, Henrik
1998-01-01
This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting...
Spin dynamics in storage rings and linear accelerators
International Nuclear Information System (INIS)
Irwin, J.
1994-04-01
The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included
Thermally driven molecular linear motors - A molecular dynamics study
DEFF Research Database (Denmark)
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence
2009-01-01
We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled by th...
Spin dynamics in storage rings and linear accelerators
Energy Technology Data Exchange (ETDEWEB)
Irwin, J. [Stanford Univ., CA (United States)
1994-12-01
The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.
Static and dynamic behaviour of antiferromagnetic linear chains
International Nuclear Information System (INIS)
Henkens, L.S.J.M.
1977-01-01
This thesis deals with an experimental study of the static and dynamic behaviour of s=1/2 heisenberg antiferromagnetic linear chains in the temperature range of 0,05K 4 , CuSeO 4 .5H 2 O, and CuBeF 4 .5H 2 O, all of which are isomorphic salts
Criteria for stability of linear dynamical systems with multiple delays ...
African Journals Online (AJOL)
In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...
Dynamic large eddy simulation: Stability via realizability
Mokhtarpoor, Reza; Heinz, Stefan
2017-10-01
The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.
Beam dynamics simulation of a double pass proton linear accelerator
Directory of Open Access Journals (Sweden)
Kilean Hwang
2017-04-01
Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
Perception of the dynamic visual vertical during sinusoidal linear motion.
Pomante, A; Selen, L P J; Medendorp, W P
2017-10-01
The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
Non-linear Dynamics of Speech in Schizophrenia
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Simonsen, Arndis; Weed, Ethan
(regularity and complexity) of speech. Our aims are (1) to achieve a more fine-grained understanding of the speech patterns in schizophrenia than has previously been achieved using traditional, linear measures of prosody and fluency, and (2) to employ the results in a supervised machine-learning process......-effects inference. SANS and SAPS scores were predicted using a 10-fold cross-validated multiple linear regression. Both analyses were iterated 1000 to test for stability of results. Results: Voice dynamics allowed discrimination of patients with schizophrenia from healthy controls with a balanced accuracy of 85...
Note: A high dynamic range, linear response transimpedance amplifier.
Eckel, S; Sushkov, A O; Lamoreaux, S K
2012-02-01
We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.
A variational formulation for linear models in coupled dynamic thermoelasticity
International Nuclear Information System (INIS)
Feijoo, R.A.; Moura, C.A. de.
1981-07-01
A variational formulation for linear models in coupled dynamic thermoelasticity which quite naturally motivates the design of a numerical scheme for the problem, is studied. When linked to regularization or penalization techniques, this algorithm may be applied to more general models, namely, the ones that consider non-linear constraints associated to variational inequalities. The basic postulates of Mechanics and Thermodynamics as well as some well-known mathematical techniques are described. A thorough description of the algorithm implementation with the finite-element method is also provided. Proofs for existence and uniqueness of solutions and for convergence of the approximations are presented, and some numerical results are exhibited. (Author) [pt
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
Iterative algorithms for large sparse linear systems on parallel computers
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics
Directory of Open Access Journals (Sweden)
J. Petrzela
2012-04-01
Full Text Available This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provided
Trust dynamics in a large system implementation
DEFF Research Database (Denmark)
Schlichter, Bjarne Rerup; Rose, Jeremy
2013-01-01
outcomes, but largely ignored the dynamics of trust relations. Giddens, as part of his study of modernity, theorises trust dynamics in relation to abstract social systems, though without focusing on information systems. We use Giddens’ concepts to investigate evolving trust relationships in a longitudinal......A large information systems implementation (such as Enterprise Resource Planning systems) relies on the trust of its stakeholders to succeed. Such projects impact diverse groups of stakeholders, each with their legitimate interests and expectations. Levels of stakeholder trust can be expected...... case analysis of a large Integrated Hospital System implementation for the Faroe Islands. Trust relationships suffered a serious breakdown, but the project was able to recover and meet its goals. We develop six theoretical propositions theorising the relationship between trust and project outcomes...
Pseudoinverse preconditioners and iterative methods for large dense linear least-squares problems
Directory of Open Access Journals (Sweden)
Oskar Cahueñas
2013-05-01
Full Text Available We address the issue of approximating the pseudoinverse of the coefficient matrix for dynamically building preconditioning strategies for the numerical solution of large dense linear least-squares problems. The new preconditioning strategies are embedded into simple and well-known iterative schemes that avoid the use of the, usually ill-conditioned, normal equations. We analyze a scheme to approximate the pseudoinverse, based on Schulz iterative method, and also different iterative schemes, based on extensions of Richardson's method, and the conjugate gradient method, that are suitable for preconditioning strategies. We present preliminary numerical results to illustrate the advantages of the proposed schemes.
Analytical study of dynamic aperture for storage ring by using successive linearization method
International Nuclear Information System (INIS)
Yang Jiancheng; Xia Jiawen; Wu Junxia; Xia Guoxing; Liu Wei; Yin Xuejun
2004-01-01
The determination of dynamic aperture is a critical issue in circular accelerator. In this paper, authors solved the equation of motion including non-linear forces by using successive linearization method and got a criterion for the determining of the dynamic aperture of the machine. Applying this criterion, a storage ring with FODO lattice has been studied. The results are agree well with the tracking results in a large range of linear turn (Q). The purpose is to improve our understanding of the mechanisms driving the particle motion in the presence of non-linear forces and got another mechanism driving instability of particle in storage ring-parametric resonance caused by 'fluctuating transfer matrices' at small amplification
Black hole dynamics at large D
CERN. Geneva
2016-01-01
We demonstrate that the classical dynamics of black holes can be reformulated as a dynamical problem of a codimension one membrane moving in flat space. This membrane - roughly the black hole event horizon - carries a conserved charge current and stress tensor which source radiation. This `membrane paradigm' may be viewed as a simplification of the equations of general relativity at large D, and suggests the possibility of using 1/D as a useful expansion parameter in the analysis of complicated four dimensional solutions of general relativity, for instance the collision between two black holes.
Scalable Molecular Dynamics for Large Biomolecular Systems
Directory of Open Access Journals (Sweden)
Robert K. Brunner
2000-01-01
Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.
Conserved linear dynamics of single-molecule Brownian motion
Serag, Maged F.
2017-06-06
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
Conserved linear dynamics of single-molecule Brownian motion
Serag, Maged F.; Habuchi, Satoshi
2017-06-01
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
Conserved linear dynamics of single-molecule Brownian motion
Serag, Maged F.; Habuchi, Satoshi
2017-01-01
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
Linear Dynamics Model for Steam Cooled Fast Power Reactors
Energy Technology Data Exchange (ETDEWEB)
Vollmer, H
1968-04-15
A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.
Dynamic logic architecture based on piecewise-linear systems
International Nuclear Information System (INIS)
Peng Haipeng; Liu Fei; Li Lixiang; Yang Yixian; Wang Xue
2010-01-01
This Letter explores piecewise-linear systems to construct dynamic logic architecture. The proposed schemes can discriminate the two input signals and obtain 16 kinds of logic operations by different combinations of parameters and conditions for determining the output. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations more simply and construct computing architecture with less logic cells. We also analyze the various performances of our schemes under different conditions and the characteristics of these schemes.
Feedback Linearized Aircraft Control Using Dynamic Cell Structure
Jorgensen, C. C.
1998-01-01
A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.
Simulation of dynamics of a permanent magnet linear actuator
DEFF Research Database (Denmark)
Yatchev, Ivan; Ritchie, Ewen
2010-01-01
Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads....
STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS
Directory of Open Access Journals (Sweden)
Pagliari Carmen
2013-07-01
Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to
A large superconducting accelerator project. International linear collider (ILC). Introduction
International Nuclear Information System (INIS)
Yamamoto, Akira
2013-01-01
The international linear collider (ILC) is proposed as the next-energy-frontier particle accelerator anticipated to be realized through global cooperation. The ILC accelerator is composed of a pair of electron and positron linear accelerators to realize head-on collision with a center-of-mass energy of 500 (250+250) GeV. It is based on superconducting radio-frequency (SCRF) technology, and the R and D and technical design have progressed in the technical design phase since 2007, and the technical design report (TDR) reached completion in 2012. This report reviews the ILC general design and technology. (author)
Simple estimating method of damages of concrete gravity dam based on linear dynamic analysis
Energy Technology Data Exchange (ETDEWEB)
Sasaki, T.; Kanenawa, K.; Yamaguchi, Y. [Public Works Research Institute, Tsukuba, Ibaraki (Japan). Hydraulic Engineering Research Group
2004-07-01
Due to the occurrence of large earthquakes like the Kobe Earthquake in 1995, there is a strong need to verify seismic resistance of dams against much larger earthquake motions than those considered in the present design standard in Japan. Problems exist in using nonlinear analysis to evaluate the safety of dams including: that the influence which the set material properties have on the results of nonlinear analysis is large, and that the results of nonlinear analysis differ greatly according to the damage estimation models or analysis programs. This paper reports the evaluation indices based on a linear dynamic analysis method and the characteristics of the progress of cracks in concrete gravity dams with different shapes using a nonlinear dynamic analysis method. The study concludes that if simple linear dynamic analysis is appropriately conducted to estimate tensile stress at potential locations of initiating cracks, the damage due to cracks would be predicted roughly. 4 refs., 1 tab., 13 figs.
Non-linear dynamic response of reactor containment
International Nuclear Information System (INIS)
Takemori, T.; Sotomura, K.; Yamada, M.
1975-01-01
A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented
Multimodal tuned dynamic absorber for split Stirling linear cryocooler
Veprik, A.; Tuito, A.
2017-02-01
Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.
Large Deformation Dynamic Bending of Composite Beams
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
On Numerical Stability in Large Scale Linear Algebraic Computations
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Liesen, J.
2005-01-01
Roč. 85, č. 5 (2005), s. 307-325 ISSN 0044-2267 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear algebraic systems * eigenvalue problems * convergence * numerical stability * backward error * accuracy * Lanczos method * conjugate gradient method * GMRES method Subject RIV: BA - General Mathematics Impact factor: 0.351, year: 2005
Pan, Hsuan-yu
2010-01-01
This research work aims on exploiting SiGe HBT technologies in high dynamic range wideband RF linear-in- dB envelope detectors and linear amplifiers. First, an improved all-npn broadband highly linear SiGe HBT differential amplifier is presented based on a variation of Caprio's Quad. A broadband linear amplifier with 46dBm OIP₃ at 20MHz, 34dBm OIP₃ at 1GHz, 6dB noise figure and 10.3dBm P₁dB is demonstrated. Second, an improved exact dynamic model of a fast-settling linear-in-dB Automatic Gain...
Dynamic slip of polydisperse linear polymers using partitioned plate
Ebrahimi, Marzieh; Konaganti, Vinod Kumar; Hatzikiriakos, Savvas G.
2018-03-01
The slip velocity of an industrial grade high molecular weight high-density polyethylene (HDPE) is studied in steady and dynamic shear experiments using a stress/strain controlled rotational rheometer equipped with a parallel partitioned plate geometry. Moreover, fluoroalkyl silane-based coating is used to understand the effect of surface energy on slip in steady and dynamic conditions. The multimode integral Kaye-Bernstein-Kearsley-Zapas constitutive model is applied to predict the transient shear response of the HDPE melt obtained from rotational rheometer. It is found that a dynamic slip model with a slip relaxation time is needed to adequately predict the experimental data at large shear deformations. Comparison of the results before and after coating shows that the slip velocity is largely affected by surface energy. Decreasing surface energy by coating increases slip velocity and decreases the slip relaxation time.
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Dynamic generalized linear models for monitoring endemic diseases
DEFF Research Database (Denmark)
Lopes Antunes, Ana Carolina; Jensen, Dan; Hisham Beshara Halasa, Tariq
2016-01-01
The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... and eradication programmes based on changes in PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes intrends...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...
Essential uncontrollability of discrete linear, time-invariant, dynamical systems
Cliff, E. M.
1975-01-01
The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.
Network Traffic Monitoring Using Poisson Dynamic Linear Models
Energy Technology Data Exchange (ETDEWEB)
Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-05-09
In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.
The dynamics of two linearly coupled Goodwin oscillators
Antonova, A. O.; Reznik, S. N.; Todorov, M. D.
2017-10-01
In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.
Non-linear calculation of PCRV using dynamic relaxation
International Nuclear Information System (INIS)
Schnellenbach, G.
1979-01-01
A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered
Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities
Directory of Open Access Journals (Sweden)
Y. N. Pavlov
2015-01-01
Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic
Modeling and analysis of linearized wheel-rail contact dynamics
International Nuclear Information System (INIS)
Soomro, Z.
2014-01-01
The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)
Computational approach to large quantum dynamical problems
International Nuclear Information System (INIS)
Friesner, R.A.; Brunet, J.P.; Wyatt, R.E.; Leforestier, C.; Binkley, S.
1987-01-01
The organizational structure is described for a new program that permits computations on a variety of quantum mechanical problems in chemical dynamics and spectroscopy. Particular attention is devoted to developing and using algorithms that exploit the capabilities of current vector supercomputers. A key component in this procedure is the recursive transformation of the large sparse Hamiltonian matrix into a much smaller tridiagonal matrix. An application to time-dependent laser molecule energy transfer is presented. Rate of energy deposition in the multimode molecule for systematic variations in the molecular intermode coupling parameters is emphasized
Solving large linear systems in an implicit thermohaline ocean model
de Niet, Arie Christiaan
2007-01-01
The climate on earth is largely determined by the global ocean circulation. Hence it is important to predict how the flow will react to perturbation by for example melting icecaps. To answer questions about the stability of the global ocean flow, a computer model has been developed that is able to
High Precision Survey and Alignment of Large Linear Accelerators
Prenting, J
2004-01-01
For the future linear accelerator TESLA the demanded accuracy for the alignment of the components is 0.5 mm horizontal and 0.2 mm vertical, both on each 600 m section. Other accelerators require similar accuracies. These demands can not be fulfilled with open-air geodetic methods, mainly because of refraction. Therefore the RTRS (Rapid Tunnel Reference Surveyor), a measurement train performing overlapping multipoint alignment on a reference network is being developed. Two refraction-free realizations of this concept are being developed at the moment: the first one (GeLiS) measures the horizontal co-ordinates using stretched wires, combined with photogrammetric split-image sensors in a distance measurement configuration. In areas of the tunnel where the accelerator is following the earth curvature GeLiS measures the height using a new hydrostatic leveling system. The second concept (LiCAS) is based on laser straightness monitors (LSM) combined with frequency scanning interferometry (FSI) in an evacuated system...
One testing method of dynamic linearity of an accelerometer
Directory of Open Access Journals (Sweden)
Lei Jing-Yu
2015-01-01
Full Text Available To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half –sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.
International Nuclear Information System (INIS)
Yurtsever, E.; Onal, E. D.; Calvo, F.
2011-01-01
The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.
Beam dynamics problems for next generation linear colliders
International Nuclear Information System (INIS)
Yokoya, Kaoru
1990-01-01
The most critical issue for the feasibility of high-energy e + e - linear colliders is obviously the development of intense microwave power sources. Remaining problems, however, are not trivial and in fact some of them require several order-of-magnitude improvement from the existing SLC parameters. The present report summarizes the study status of the beam dynamics problems of high energy linear colliders with an exaggeration on the beam-beam phenomenon at the interaction region. There are four laboratories having linear collider plans, SLAC, CERN, Novosibirsk-Protovino, and KEK. The parameters of these projects scatter in some range but seem to converge slowly if one recalls the status five years ago. The beam energy will be below 500GeV. The basic requirements to the damping ring are the short damping time and small equilibrium emittance. All the proposed designs make use of tight focusing optics and strong wiggler magnets to meet these requirements and seem to have no major problems at least compared with other problems in the colliders. One of the major problems in the linac is the transverse beam blow-up due to the wake field created by the head of the bunch and, in the case of multiple bunches per pulse, by the preceeding bunches. (N.K.)
Kaufmann, Anton; Walker, Stephan
2017-11-30
The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley
Energy Technology Data Exchange (ETDEWEB)
Oliva, Jose de Jesus Rivero, E-mail: rivero@con.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Sousa, Fernando Nuno Carneiro de, E-mail: fernandonunosousa@gmail.com [Aceletron Irradiacao lndustrial, Rio de Janeiro, RJ (Brazil)
2013-07-01
The electron linear accelerators can be used in industrial applications that require powerful sources of ionizing radiation. They have the important characteristic of not representing a radiation hazard when the accelerators remain electrically disconnected. With the plant in operation, a high reliability defense in depth reduces the risk of radiological accidents to extremely small levels. It is practically impossible that a person could enter into the radiation bunker with the accelerators connected. Aceletron Irradiacao Industrial, located in Rio de Janeiro, offers services of irradiation by means of two powerful electron linear accelerators, with 15 kW power and 10 MeV electron energy. Despite the high level of existing radiation safety, a simplified risk study is underway to identify possible sequences of radiological accidents. The study is based on the combined application of the event and fault trees techniques. Preliminary results confirm that there is a very small risk of entering into the irradiation bunker with the accelerators in operation, but the risk of an operator entering into the bunker during a process interruption and remaining there without notice after the accelerators were restarted may be considerably larger. Based on these results the Company is considering alternatives to reduce the likelihood of human error of this type that could lead to a radiological accident. The paper describes the defense in depth of the irradiation process in Aceletron Irradiacao Industrial, as well as the models and preliminary results of the ongoing risk analysis, including the additional safety measures which are being evaluated. (author)
Dose reduction using a dynamic, piecewise-linear attenuator
Energy Technology Data Exchange (ETDEWEB)
Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fleischmann, Dominik [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)
2014-02-15
Purpose: The authors recently proposed a dynamic, prepatient x-ray attenuator capable of producing a piecewise-linear attenuation profile customized to each patient and viewing angle. This attenuator was intended to reduce scatter-to-primary ratio (SPR), dynamic range, and dose by redistributing flux. In this work the authors tested the ability of the attenuator to reduce dose and SPR in simulations. Methods: The authors selected four clinical applications, including routine full field-of-view scans of the thorax and abdomen, and targeted reconstruction tasks for an abdominal aortic aneurysm and the pancreas. Raw data were estimated by forward projection of the image volume datasets. The dynamic attenuator was controlled to reduce dose while maintaining peak variance by solving a convex optimization problem, assuminga priori knowledge of the patient anatomy. In targeted reconstruction tasks, the noise in specific regions was given increased weighting. A system with a standard attenuator (or “bowtie filter”) was used as a reference, and used either convex optimized tube current modulation (TCM) or a standard TCM heuristic. The noise of the scan was determined analytically while the dose was estimated using Monte Carlo simulations. Scatter was also estimated using Monte Carlo simulations. The sensitivity of the dynamic attenuator to patient centering was also examined by shifting the abdomen in 2 cm intervals. Results: Compared to a reference system with optimized TCM, use of the dynamic attenuator reduced dose by about 30% in routine scans and 50% in targeted scans. Compared to the TCM heuristics which are typically used withouta priori knowledge, the dose reduction is about 50% for routine scans. The dynamic attenuator gives the ability to redistribute noise and variance and produces more uniform noise profiles than systems with a conventional bowtie filter. The SPR was also modestly reduced by 10% in the thorax and 24% in the abdomen. Imaging with the dynamic
Dynamics of large reflectors - Aerospatiale concepts
Flechais, A.; Picard, P.; Dauviau, C.; Truchi, C.
1992-08-01
An overview is presented of studies performed under an ESTEC contract and aimed at the identification of critical development areas of unfurlable reflectors and at the analysis of the dynamic interactions between reflectors and hosting spacecraft, in particular with respect to the design of the AOCS and antenna pointing mechanism (APM). Research and development performed by Aerospatiale since 1983 in the field of unfurlable mesh reflectors and supported by CNES are summarized. An analysis covering both the deployment phase and the deployed configuration is presented. The capabilities of classical AOCS and APM control laws for large reflectors are evaluated via simulations. It is shown that the baseline reflector under consideration is compatible with the PSDE mission and classical AOCS and APM control law designs.
Decentralised stabilising controllers for a class of large-scale linear ...
Indian Academy of Sciences (India)
subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...
Design of advanced materials for linear and nonlinear dynamics
DEFF Research Database (Denmark)
Frandsen, Niels Morten Marslev
to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple......The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... but general model of inhomogeneous structural materials with nonlinear material characteristics. The second material system is an “engineered” material in the sense that a classical structural element, a linear elastic and homogeneous rod, is “enhanced” by applying a mechanism on its surface, amplifying...
On modulated complex non-linear dynamical systems
International Nuclear Information System (INIS)
Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.
1999-01-01
This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed
Increasing Linear Dynamic Range of a CMOS Image Sensor
Pain, Bedabrata
2007-01-01
A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon
International Nuclear Information System (INIS)
Antoniadis, I A; Venetsanos, D T; Papaspyridis, F G
2013-01-01
Dielectric elastomer based generators (DEGs) offer some unique properties over energy generators based on other materials. These properties include high energy density, high efficiency over a broad range of frequencies, low compliance, the ability to produce high strain, large area, low cost films with no toxic materials and wide range environmental tolerance. As further shown in this paper, DEG materials can also exhibit a non-linear dynamic behavior, enhancing broad-band energy transfer. More specifically, dielectric elastomer (DE) energy generating synergetic structures (DIESYS) are considered as dynamic energy absorbers. Two elementary characteristic DIESYS design concepts are examined, leading to a typical antagonistic configuration for in-plane oscillations and a typical synagonistic configuration for out-of-plane oscillations. Originally, all the DE elements of the structure are assumed to be always in tension during all the phases of the harvesting cycle, conforming to the traditional concept of operation of DE structures. As shown in this paper, the traditional always-in-tension concept results in a linear dynamic system response, despite the fact that the implemented (DE) parts are considered to have been made of a non-linear (hyperelastic) material. In contrast, the proposed loose-part concept ensures the appearance of a non-linear broad-band system response, enhancing energy transfer from the environmental source. (paper)
Non linear dynamics of magnetic islands in fusion plasmas
International Nuclear Information System (INIS)
Meshcheriakov, D.
2012-10-01
In this thesis we investigate the issues of linear stability of the tearing modes in a presence of both curvature and diamagnetic rotation using the non linear full-MHD toroidal code XTOR-2F, which includes anisotropic heat transport, diamagnetic and geometrical effects. This analysis is applied to one of the fully non-inductive discharges on Tore-Supra. Such experiments are crucially important to demonstrate reactor scale steady state operation for the tokamak. The possibility of a full linear stabilization of the tearing modes by diamagnetic rotation in the presence of toroidal curvature is shown. The stabilization threshold does not follow the classical scaling law connecting the growth rate of islands to plasma conductivity, measured here by the Lundquist number (S). However, for numerical reasons, the conductivity used in the simulations is lower than that of the experiment, which raises the question of extrapolation of the obtained results to the experimental situation. The extrapolation of the obtained results requires simulations with several different conductivities. It predicts that the mode at q = 2 surface to be stable at value of diamagnetic frequency consistent with the experimental one at S = S(exp). In the linearly stable domain, the mode is metastable: saturation level depends on the seed island size. In the non linear regime, the saturation of n=1, m=2 mode is found to be strongly reduced by diamagnetic rotation and by Lundquist number. However, the extrapolation to the experimental situation shows that if the island is destabilized, it will saturate at a detectable level for the Tore Supra diagnostic. For a large plasma aspect ratio (i.e. weak curvature effects), the reduction of the saturated width by diamagnetic frequency takes the form of a jump reminiscent of multiple states evidenced in slab geometry case. The question of extrapolation of the obtained results towards future generation of fusion devices is also addressed. In particular, for
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Standardi, Laura; Edlund, Kristian
2014-01-01
This paper presents a warm-started Dantzig–Wolfe decomposition algorithm tailored to economic model predictive control of dynamically decoupled subsystems. We formulate the constrained optimal control problem solved at each sampling instant as a linear program with state space constraints, input...... limits, input rate limits, and soft output limits. The objective function of the linear program is related directly to the cost of operating the subsystems, and the cost of violating the soft output constraints. Simulations for large-scale economic power dispatch problems show that the proposed algorithm...... is significantly faster than both state-of-the-art linear programming solvers, and a structure exploiting implementation of the alternating direction method of multipliers. It is also demonstrated that the control strategy presented in this paper can be tuned using a weighted ℓ1-regularization term...
A simple method for identifying parameter correlations in partially observed linear dynamic models.
Li, Pu; Vu, Quoc Dong
2015-12-14
Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a
Dynamic analysis of the large deployable reflector
Calleson, Robert E.; Scott, A. Don
1987-01-01
The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.
The dynamic response of a linear brushless D.C. motor
Energy Technology Data Exchange (ETDEWEB)
Moghani, J.S.; Eastham, J.F. [Univ. of Bath (United Kingdom). School of Electrical and Electronic Engineering
1995-12-31
The paper describes the use of the Matlab Analogue Simulation Toolbox SIMULINK for the closed loop dynamic modeling of a linear brushless dc motor which is supplied from a delta-modulated inverter. The work is validated by experimental results taken from a large test rig. Linear version of all rotating machines are possible; a rotating machine can be notionally cut along a radial plane and unrolled to yield a linear version. The most popular form of linear machine, as judged by the quantities that have been produced is the linear induction motor. This has the advantage of first an inexpensive secondary that is often a simple iron backed conducting plate, and secondly the possibility of simple voltage control. The linear brushless synchronous motor is potentially more expensive to produce than its induction counterpart because of the permanent magnets which provide the excitation mmf and the necessity of an inverter supply. However the machine has a power factor efficiency product which can be double that of an induction motor together with about twice the tractive force per pole area.
Large linear magnetoresistance from neutral defects in Bi$_2$Se$_3$
Kumar, Devendra; Lakhani, Archana
2016-01-01
The chalcogenide Bi$_2$Se$_3$ can attain the three dimensional (3D) Dirac semimetal state under the influence of strain and microstrain. Here we report the presnece of large linear magnetoresistance in such a Bi$_2$Se$_3$ crystal. The magnetoresistance has quadratic form at low fields which crossovers to linear above 4 T. The temperature dependence of magnetoresistance scales with carrier mobility and the crossover field scales with inverse of mobility. Our analysis suggest that the linear ma...
Large scale dynamics of protoplanetary discs
Béthune, William
2017-08-01
Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from
Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations
International Nuclear Information System (INIS)
Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A
2009-01-01
The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.
Infeasible Interior-Point Methods for Linear Optimization Based on Large Neighborhood
Asadi, A.R.; Roos, C.
2015-01-01
In this paper, we design a class of infeasible interior-point methods for linear optimization based on large neighborhood. The algorithm is inspired by a full-Newton step infeasible algorithm with a linear convergence rate in problem dimension that was recently proposed by the second author.
Low-Rank Linear Dynamical Systems for Motor Imagery EEG.
Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo
2016-01-01
The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.
Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics
Energy Technology Data Exchange (ETDEWEB)
Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne
1988-12-01
The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).
Energy Technology Data Exchange (ETDEWEB)
Carey, G.F.; Young, D.M.
1993-12-31
The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.
Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.
An implicit iterative scheme for solving large systems of linear equations
International Nuclear Information System (INIS)
Barry, J.M.; Pollard, J.P.
1986-12-01
An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches
A lattice with no transition and large dynamic aperture
International Nuclear Information System (INIS)
Guignard, G.
1989-01-01
In the case of a one-ring high-energy scheme for an advanced hadron facility, beam losses can be reduced if the ring lattice accomodates the beam from injection to maximum energy without crossing the transition. Since there is no synchrotron booster in such a scheme and the injection energy is relatively low, this requirement implies a negative compaction factor and an imaginary transition energy. This can be achieved by making the horizontal dispersion negative in some regions of the arcs so that the average value taken in the dipoles is globally also negative. Such a modulation of the dispersion may result in an increasing difficulty to obtain a large enough dynamic aperture in the presence of sextupoles. A careful optimization is therefore necessary and the possibility of modifying the linear lattice in order to include the requirements associated with chromaticity adjustments has to be studied. This paper summarizes the work done along this line and based on previous searches for a race track lattice that can be used in a hadron facility main ring. It describes an alternative lattice design, which tends to minimize the effects of the nonlinear aberrations introduced by sextupoles and to achieve a large dynamic aperture, keeping the betatron amplitudes as low as possible. 7 refs., 6 figs., 1 tab
Computational challenges of large-scale, long-time, first-principles molecular dynamics
International Nuclear Information System (INIS)
Kent, P R C
2008-01-01
Plane wave density functional calculations have traditionally been able to use the largest available supercomputing resources. We analyze the scalability of modern projector-augmented wave implementations to identify the challenges in performing molecular dynamics calculations of large systems containing many thousands of electrons. Benchmark calculations on the Cray XT4 demonstrate that global linear-algebra operations are the primary reason for limited parallel scalability. Plane-wave related operations can be made sufficiently scalable. Improving parallel linear-algebra performance is an essential step to reaching longer timescales in future large-scale molecular dynamics calculations
Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer
Pai, P. F.; Lee, S.-Y.
2003-01-01
This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.
On the Convergence of Piecewise Linear Strategic Interaction Dynamics on Networks
Gharesifard, Bahman; Touri, Behrouz; Basar, Tamer; Shamma, Jeff S.
2015-01-01
We prove that the piecewise linear best-response dynamical systems of strategic interactions are asymptotically convergent to their set of equilibria on any weighted undirected graph. We study various features of these dynamical systems, including
A linear evolution for non-linear dynamics and correlations in realistic nuclei
International Nuclear Information System (INIS)
Levin, E.; Lublinsky, M.
2004-01-01
A new approach to high energy evolution based on a linear equation for QCD generating functional is developed. This approach opens a possibility for systematic study of correlations inside targets, and, in particular, inside realistic nuclei. Our results are presented as three new equations. The first one is a linear equation for QCD generating functional (and for scattering amplitude) that sums the 'fan' diagrams. For the amplitude this equation is equivalent to the non-linear Balitsky-Kovchegov equation. The second equation is a generalization of the Balitsky-Kovchegov non-linear equation to interactions with realistic nuclei. It includes a new correlation parameter which incorporates, in a model-dependent way, correlations inside the nuclei. The third equation is a non-linear equation for QCD generating functional (and for scattering amplitude) that in addition to the 'fan' diagrams sums the Glauber-Mueller multiple rescatterings
Non-linear optical studies of adsorbates: Spectroscopy and dynamics
International Nuclear Information System (INIS)
Zhu, Xiangdong.
1989-08-01
In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs
Non-linear optical studies of adsorbates: Spectroscopy and dynamics
Energy Technology Data Exchange (ETDEWEB)
Zhu, Xiangdong.
1989-08-01
In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.
Mid-frequency Band Dynamics of Large Space Structures
Coppolino, Robert N.; Adams, Douglas S.
2004-01-01
High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.
Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage
DEFF Research Database (Denmark)
Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani
2015-01-01
Distributed storage solutions have become widespread due to their ability to store large amounts of data reliably across a network of unreliable nodes, by employing repair mechanisms to prevent data loss. Conventional systems rely on static designs with a central control entity to oversee...... and control the repair process. Given the large costs for maintaining and cooling large data centers, our work proposes and studies the feasibility of a fully decentralized systems that can store data even on unreliable and, sometimes, unavailable mobile devices. This imposes new challenges on the design...... as the number of available nodes varies greatly over time and keeping track of the system's state becomes unfeasible. As a consequence, conventional erasure correction approaches are ill-suited for maintaining data integrity. In this highly dynamic context, random linear network coding (RLNC) provides...
Use of personal computers in performing a linear modal analysis of a large finite-element model
International Nuclear Information System (INIS)
Wagenblast, G.R.
1991-01-01
This paper presents the use of personal computers in performing a dynamic frequency analysis of a large (2,801 degrees of freedom) finite-element model. Large model linear time history dynamic evaluations of safety related structures were previously restricted to mainframe computers using direct integration analysis methods. This restriction was a result of the limited memory and speed of personal computers. With the advances in memory capacity and speed of the personal computers, large finite-element problems now can be solved in the office in a timely and cost effective manner. Presented in three sections, this paper describes the procedure used to perform the dynamic frequency analysis of the large (2,801 degrees of freedom) finite-element model on a personal computer. Section 2.0 describes the structure and the finite-element model that was developed to represent the structure for use in the dynamic evaluation. Section 3.0 addresses the hardware and software used to perform the evaluation and the optimization of the hardware and software operating configuration to minimize the time required to perform the analysis. Section 4.0 explains the analysis techniques used to reduce the problem to a size compatible with the hardware and software memory capacity and configuration
Non-linear dynamics of wind turbine wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2006-01-01
The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...
On the dynamic analysis of piecewise-linear networks
Heemels, WPMH; Camlibel, MK; Schumacher, JM
Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks.
Computing in Large-Scale Dynamic Systems
Pruteanu, A.S.
2013-01-01
Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data
Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report
Ahmad, Shahid
1991-01-01
An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons
Large linear magnetoresistance and magnetothermopower in layered SrZnSb$_2$
Wang, Kefeng; Petrovic, C.
2016-01-01
We report the large linear magnetoresistance ($\\sim 300\\%$ in 9 T field at 2 K) and magnetothermopower in layered SrZnSb$_2$ crystal with quasi-two-dimensional Sb layers. A crossover from the semiclassical parabolic field dependent magnetoresistance to linear field dependent magnetoresistance with increasing magnetic field is observed. The magnetoresistance behavior can be described very well by combining the semiclassical cyclotron contribution and the quantum limit magnetoresistance. Magnet...
International Nuclear Information System (INIS)
Kim, Jin Kyu; Kim, Dong Keon
2016-01-01
A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)
2016-09-15
A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.
Large deviations in the presence of cooperativity and slow dynamics
Whitelam, Stephen
2018-06-01
We study simple models of intermittency, involving switching between two states, within the dynamical large-deviation formalism. Singularities appear in the formalism when switching is cooperative or when its basic time scale diverges. In the first case the unbiased trajectory distribution undergoes a symmetry breaking, leading to a change in shape of the large-deviation rate function for a particular dynamical observable. In the second case the symmetry of the unbiased trajectory distribution remains unbroken. Comparison of these models suggests that singularities of the dynamical large-deviation formalism can signal the dynamical equivalent of an equilibrium phase transition but do not necessarily do so.
Dynamic Response Analysis of Linear Pulse Motor with Closed Loop Control
山本, 行雄; 山田, 一
1989-01-01
A linear pulse motor can translate digital signals into linear positions without a gear system. It is important to predict a dynamic response in order to the motor that has the good performance. In this report the maximum pulse rate and the maximum speed on the linear pulse motor are obtained by using the sampling theory.
Stability of large scale interconnected dynamical systems
International Nuclear Information System (INIS)
Akpan, E.P.
1993-07-01
Large scale systems modelled by a system of ordinary differential equations are considered and necessary and sufficient conditions are obtained for the uniform asymptotic connective stability of the systems using the method of cone-valued Lyapunov functions. It is shown that this model significantly improves the existing models. (author). 9 refs
Large linear magnetoresistance in topological crystalline insulator Pb_0_._6Sn_0_._4Te
International Nuclear Information System (INIS)
Roychowdhury, Subhajit; Ghara, Somnath; Guin, Satya N.; Sundaresan, A.; Biswas, Kanishka
2016-01-01
Classical magnetoresistance generally follows the quadratic dependence of the magnetic field at lower field and finally saturates when field is larger. Here, we report the large positive non-saturating linear magnetoresistance in topological crystalline insulator, Pb_0_._6Sn_0_._4Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. Magnetoresistance value as high as ∼200% was achieved at 3 K at magnetic field of 9 T. Linear magnetoresistance observed in Pb_0_._6Sn_0_._4Te is mainly governed by the spatial fluctuation carrier mobility due to distortions in the current paths in inhomogeneous conductor. - Graphical abstract: Large non-saturating linear magnetoresistance has been evidenced in topological crystalline insulator, Pb_0_._6Sn_0_._4Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. - Highlights: • Large non-saturating linear magnetoresistance was achieved in the topological crystalline insulator, Pb_0_._6Sn_0_._4Te. • Highest magnetoresistance value as high as ~200% was achieved at 3 K at magnetic field of 9 T. • Linear magnetoresistance in Pb_0_._6Sn_0_._4Te is mainly governed by the spatial fluctuation of the carrier mobility.
CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES
Energy Technology Data Exchange (ETDEWEB)
Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)
2016-09-01
To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the disk size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.
Large Negative Linear Compressibility in InH(BDC)₂ from Framework Hinging.
Zeng, Qingxin; Wang, Kai; Zou, Bo
2017-11-08
Materials with negative linear compressibility (NLC) counterintuitively expand along one specific direction coupled to the volume reduction when compressed uniformly. NLC with a large value is desired for compression and materials science. However, NLC is generally smaller than -20 TPa -1 . High-pressure X-ray diffraction experiments reveal that the β-quartz-like InH(BDC) 2 generates an extreme NLC (-62.4 TPa -1 ) by framework hinging. InH(BDC) 2 is much safer and lower-cost than Au + /Ag + and CN - -containing materials that dominated the fields of large NLC. This work reconfirms that a negative thermal expansion flexible framework could likely exhibit large NLC. Moreover, a large NLC could be anticipated to arise from β-quartz-like or related frameworks composed of rigid linear ligands and flexible framework angles.
International Nuclear Information System (INIS)
Gene Golub; Kwok Ko
2009-01-01
The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.
Robust estimation for partially linear models with large-dimensional covariates.
Zhu, LiPing; Li, RunZe; Cui, HengJian
2013-10-01
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.
Beam dynamics verification in linacs of linear colliders
International Nuclear Information System (INIS)
Seeman, J.T.
1989-01-01
The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs
Directory of Open Access Journals (Sweden)
Widowati
2012-07-01
Full Text Available The applicability of parameter varying reduced order controllers to aircraft model is proposed. The generalization of the balanced singular perturbation method of linear time invariant (LTI system is used to reduce the order of linear parameter varying (LPV system. Based on the reduced order model the low-order LPV controller is designed by using synthesis technique. The performance of the reduced order controller is examined by applying it to lateral-directional control of aircraft model having 20th order. Furthermore, the time responses of the closed loop system with reduced order LPV controllers and reduced order LTI controller is compared. From the simulation results, the 8th order LPV controller can maintain stability and to provide the same level of closed-loop systems performance as the full-order LPV controller. It is different with the reduced-order LTI controller that cannot maintain stability and performance for all allowable parameter trajectories.
Effective string dynamics in large N QCD
Energy Technology Data Exchange (ETDEWEB)
Iroshnikov, G.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Moskow Inst. of Physics and Technology, Moscow (Russian Federation)
1995-05-01
The semiclassical 1/N expansion in the strong coupling regime for spinor quarks was developed and the form of effective action was obtained. An extremum of the effective action that arises in the calculation of the hadronic correlation functions in the large N limit corresponds to a topologically non-trivial configuration of the gauge field. This configuration forms a chromoelectric Nambu string with additional spinor terms that contain in particular the Polyakov spinor factor. In the case when real quarks forming hadrons are replaced by scalar particles the above correlators yield the standard dual resonance amplitudes. (author). 10 refs, 1 fig.
Non-linear finite element analyses applicable for the design of large reinforced concrete structures
Engen, M; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik
2017-01-01
In order to make non-linear finite element analyses applicable during assessments of the ultimate load capacity or the structural reliability of large reinforced concrete structures, there is need for an efficient solution strategy with a low modelling uncertainty. A solution strategy comprises
Material model for non-linear finite element analyses of large concrete structures
Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.
2016-01-01
A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including
Directory of Open Access Journals (Sweden)
Jen-Yuan Chen
2014-01-01
Full Text Available Continuing from the works of Li et al. (2014, Li (2007, and Kincaid et al. (2000, we present more generalizations and modifications of iterative methods for solving large sparse symmetric and nonsymmetric indefinite systems of linear equations. We discuss a variety of iterative methods such as GMRES, MGMRES, MINRES, LQ-MINRES, QR MINRES, MMINRES, MGRES, and others.
Modeling containment of large wildfires using generalized linear mixed-model analysis
Mark Finney; Isaac C. Grenfell; Charles W. McHugh
2009-01-01
Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...
Tissue compensation using dynamic collimation on a linear accelerator
International Nuclear Information System (INIS)
Gaballa, Hani E.; Mitev, George; Zwicker, Robert D.; Ting, Joseph Y.; Tercilla, Oscar F.
1995-01-01
Purpose: The availability of computer-controlled collimators on some accelerators has led to techniques for dynamic beam modification, mainly to simulate beam wedge filters. This work addresses the practical aspects of dynamic tissue compensation in one dimension using available treatment-planning software. Methods and Materials: Data derived from the treatment-planning program is used with an iterative calculational routine to determine the monitor unit settings needed for the collimator-controlling computer. The method was first tested by simulating a 60 deg. physical wedge. Further studies were carried out on a specially fabricated plastic phantom that modeled the sagittal contour of the upper torso, neck, and lower head regions. Results: Dynamic wedge point doses generated by the planning program agreed within 1% with the values directly measured in a polystyrene phantom. In the patient phantom, dynamic collimation achieved calculated dose uniformity within 0.5% in a reference plane near the phantom midline. A comparison of computer-generated and measured point doses in this case showed agreement within 3%. Conclusions: Dynamic collimation can provide effective compensation for contours that vary primarily along one direction. A conventional treatment-planning program can be used to plan dynamic collimation and deliver a prescribed dose with reliable accuracy
Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems
DEFF Research Database (Denmark)
Knudsen, Morten
variance and confidence ellipsoid is demonstrated. The relation is based on a new theorem on maxima of an ellipsoid. The procedure for input signal design and physical parameter estimation is tested on a number of examples, linear as well as nonlinear and simulated as well as real processes, and it appears...
Estimation of failure probabilities of linear dynamic systems by ...
Indian Academy of Sciences (India)
An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold.
Colour dynamics in large psub(T) hadron production on nuclei
International Nuclear Information System (INIS)
Kopeliovich, B.Z.; Niedermayer, F.
1984-01-01
The color dynamics of hadron production with large transverse momentum (psub(T)) on nuclei is investigated. Retardation by colour forces of colour objects propagating through nuclear matter leads to considerable shadowing of hard processes inside the nucleus. This explains the weak A dependence of the production cross section for large psub(T) meson pairs. The small absorption of compressed hadronic configurations inside the nucleus explains the linear A dependence of pp-pair production
Phenomenological dynamics in QCD at large distances
International Nuclear Information System (INIS)
Gogohia, V.Sh.; Kluge, Gy.
1991-07-01
A gauge-invariant, nonperturbative approach to QCD at large distances in the context of the Schwinger-Dyson equations and corresponding Slavnov-Taylor identities in the quark sector is presented. Making only one widely accepted assumption that the full gluon propagator becomes an infrared singular like (q 2 ) -2 in the covariant gauge, we find three and only three confinement-type solutions for the quark propagator (quark confinement theorem.) The approach is free from ghost complications. Also show that multiplication by the quark infrared renormalization constant only, would make all the Green's functions infrared finite (multiplicative renormalizability). The bound-state problem in framework of Bethe-Salpeter equation is discussed as well. Some basic physical parameters of chiral QCD as pion decay constant and quark condensate, have been calculated within our approach. (author) 75 refs.; 14 figs
Short- and long-term variations in non-linear dynamics of heart rate variability
DEFF Research Database (Denmark)
Kanters, J K; Højgaard, M V; Agner, E
1996-01-01
OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... rate and describes mainly linear correlations. Non-linear predictability is correlated with heart rate variability measured as the standard deviation of the R-R intervals and the respiratory activity expressed as power of the high-frequency band. The dynamics of heart rate variability changes suddenly...
A dynamical theory for linearized massive superspin 3/2
International Nuclear Information System (INIS)
Gates, James S. Jr.; Koutrolikos, Konstantinos
2014-01-01
We present a new theory of free massive superspin Y=3/2 irreducible representation of the 4D, N=1 Super-Poincaré group, which has linearized non-minimal supergravity (superhelicity Y=3/2) as it’s massless limit. The new results will illuminate the underlying structure of auxiliary superfields required for the description of higher massive superspin systems
Calculations of beam dynamics in Sandia linear electron accelerators, 1984
International Nuclear Information System (INIS)
Poukey, J.W.; Coleman, P.D.
1985-03-01
A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table
Identification of linear error-models with projected dynamical systems
Czech Academy of Sciences Publication Activity Database
Krejčí, Pavel; Kuhnen, K.
2004-01-01
Roč. 10, č. 1 (2004), s. 59-91 ISSN 1387-3954 Keywords : identification * error models * projected dynamical systems Subject RIV: BA - General Mathematics Impact factor: 0.292, year: 2004 http://www.informaworld.com/smpp/content~db=all~content=a713682517
Reduction of Large Dynamical Systems by Minimization of Evolution Rate
Girimaji, Sharath S.
1999-01-01
Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.
On the large-N dynamics of gauge symmetry breaking
International Nuclear Information System (INIS)
Karchev, N.I.
1983-07-01
We consider a Gsub(W)xUsub(TC)(N) gauge theory. A method of colour singlet bilocal collective coordinates is proposed to show, large-N colour dynamics is responsible for the Gsub(W) gauge symmetry breaking if the large-N Schwinger-Dyson equation admits anomalous solutions. The dynamically generated mass matrix is computed through these solutions. The technicolour model is discussed. (author)
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
Energy Technology Data Exchange (ETDEWEB)
Castejon, F.; Eguilior, S.
2003-07-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
International Nuclear Information System (INIS)
Castejon, F.; Eguilior, S.
2003-01-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs
Calculation model of non-linear dynamic deformation of composite multiphase rods
Directory of Open Access Journals (Sweden)
Mishchenko Andrey Viktorovich
2014-05-01
Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.
The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.
Pang, Haotian; Liu, Han; Vanderbei, Robert
2014-02-01
We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.
Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image
Liu, Dia; Liu, Hui-tong; Dong, Hao; Liu, Xiao-bo
2015-08-01
To solve the geometric distortion problem of large FOV linear array whiskbroom image, a model of multi center central projection collinearity equation was founded considering its whiskbroom and linear CCD imaging feature, and the principle of distortion was analyzed. Based on the rectification method with POS, we introduced the angular position sensor data of the servo system, and restored the geometric imaging process exactly. An indirect rectification scheme aiming at linear array imaging with best scanline searching method was adopted, matrixes for calculating the exterior orientation elements was redesigned. We improved two iterative algorithms for this device, and did comparison and analysis. The rectification for the images of airborne imaging experiment showed ideal effect.
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
Quality of computerized blast load simulation for non-linear dynamic ...
African Journals Online (AJOL)
Quality of computerized blast load simulation for non-linear dynamic response ... commercial software system and a special-purpose, blast-specific software product to ... depend both on the analysis model of choice and the stand-off distances.
Beam dynamics in a TeV linear collider
International Nuclear Information System (INIS)
Yokoya, Kaoru
1984-01-01
The author's group at KEK has investigated the feasibility of an electron-positron linear collider of 1x1 TeV region using the Lasertron. In this report, three major problems are discussed. That is, beam-beam interaction; beam instability in the linac; and the damping ring. As the most important parameter, the luminosity of the linear collider is analyzed, taking into account the pinch effect and the beamstrahlung. The problems in the development of final focusing system are also considered. As for the wake field in the linac, the transverse wake field is more important than the longitudinal one. The misalignment of cavity is discussed as a cause of inducing the transverse wake field. Finally, the design requirement for the damping ring is considered, and the values of some important design parameters are given: These include energy, radius, bending radius, number of bunch, transverse damping time, natural emittance, vertical-horizontal coupling, the time constant of extraction kicker, and the structure of the FODO cell. (Aoki, K.)
A multi-dimensional dynamic linear model for monitoring slaughter pig production
DEFF Research Database (Denmark)
Jensen, Dan Børge; Cornou, Cecile; Toft, Nils
Scientists and farmers still lack an efficient way to unify the large number of different types of data series, which are increasingly being generated in relation to automatic herd monitoring. Such a unifying model should be able to account for the correlations between the various types of data......, feed-and water consumption), measured at different levels of detail (individual pig and double-pen level) and with different observational frequencies (weekly and daily), using series collected for the Danish PigIT project. The presented three-dimensional model serves as a proof of concept......, resulting in a model which could potentially yield more information than can be gained from the individual components separately. Here we present such a model for monitoring slaughter pig production, in the form of a multivariate dynamic linear model. This model unifies three types of data (live weight...
Ghosts in high dimensional non-linear dynamical systems: The example of the hypercycle
International Nuclear Information System (INIS)
Sardanyes, Josep
2009-01-01
Ghost-induced delayed transitions are analyzed in high dimensional non-linear dynamical systems by means of the hypercycle model. The hypercycle is a network of catalytically-coupled self-replicating RNA-like macromolecules, and has been suggested to be involved in the transition from non-living to living matter in the context of earlier prebiotic evolution. It is demonstrated that, in the vicinity of the saddle-node bifurcation for symmetric hypercycles, the persistence time before extinction, T ε , tends to infinity as n→∞ (being n the number of units of the hypercycle), thus suggesting that the increase in the number of hypercycle units involves a longer resilient time before extinction because of the ghost. Furthermore, by means of numerical analysis the dynamics of three large hypercycle networks is also studied, focusing in their extinction dynamics associated to the ghosts. Such networks allow to explore the properties of the ghosts living in high dimensional phase space with n = 5, n = 10 and n = 15 dimensions. These hypercyclic networks, in agreement with other works, are shown to exhibit self-maintained oscillations governed by stable limit cycles. The bifurcation scenarios for these hypercycles are analyzed, as well as the effect of the phase space dimensionality in the delayed transition phenomena and in the scaling properties of the ghosts near bifurcation threshold
Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling
2018-03-27
Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.
Three-point phase correlations: A new measure of non-linear large-scale structure
Wolstenhulme, Richard; Obreschkow, Danail
2015-01-01
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...
International Nuclear Information System (INIS)
Soltani, J.; Fath Abadi, A.M.
2003-01-01
This paper describes the application of static var compensators, on an electrical distribution network containing two large synchronous motors, one of which is excited via a three-phase thyristor bridge rectifier. The second machine is excited via a diode bridge rectifier. Based on linear optimization control, the measurable feedback signals are applied to the control system loops of static var compensators and the excitation control loop of the first synchronous motor. The phase equations method was used to develop a computer program to model the distribution network. Computer results were obtained to demonstrate the system performance for some abnormal modes of operation. These results show that employing static var compensators based on the linear optimization control design for electrical distribution networks containing large synchronous motors is beneficial and may be considered a first stage of the system design
Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy
Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel
2013-01-01
This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…
Dynamics and thermodynamics of linear quantum open systems.
Martinez, Esteban A; Paz, Juan Pablo
2013-03-29
We analyze the evolution of the quantum state of networks of quantum oscillators coupled with arbitrary external environments. We show that the reduced density matrix of the network always obeys a local master equation with a simple analytical solution. We use this to study the emergence of thermodynamical laws in the long time regime demonstrating two main results: First, we show that it is impossible to build a quantum absorption refrigerator using linear networks (thus, nonlinearity is an essential resource for such refrigerators recently studied by Levy and Kosloff [Phys. Rev. Lett. 108, 070604 (2012)] and Levy et al. [Phys. Rev. B 85, 061126 (2012)]). Then, we show that the third law imposes constraints on the low frequency behavior of the environmental spectral densities.
Evaluation of linear DC motor actuators for control of large space structures
Ide, Eric Nelson
1988-01-01
This thesis examines the use of a linear DC motor as a proof mass actuator for the control of large space structures. A model for the actuator, including the current and force compensation used, is derived. Because of the force compensation, the actuator is unstable when placed on a structure. Relative position feedback is used for actuator stabilization. This method of compensation couples the actuator to the mast in a feedback configuration. Three compensator designs are prop...
Dynamic response function and large-amplitude dissipative collective motion
International Nuclear Information System (INIS)
Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.
1993-05-01
Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)
Mathematical and Numerical Methods for Non-linear Beam Dynamics
International Nuclear Information System (INIS)
Herr, W
2014-01-01
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings
Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine
Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.
2010-01-01
This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a
Linear dynamics and control of a kinematic wobble-yoke Stirling engine
Alvarez Aguirre, A.; Garcia Canseco, E.; Scherpen, J.M.A.
2010-01-01
This paper presents a control systems approachfor the modeling and control of a kinematic wobbleyokeStirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by the authors in [1]. We show that the Stirling engine can be viewed as
Analysis of interactive fixed effects dynamic linear panel regression with measurement error
Nayoung Lee; Hyungsik Roger Moon; Martin Weidner
2011-01-01
This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.
Large scale Brownian dynamics of confined suspensions of rigid particles
Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar
2017-12-01
We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose
Several Families of Sequences with Low Correlation and Large Linear Span
Zeng, Fanxin; Zhang, Zhenyu
In DS-CDMA systems and DS-UWB radios, low correlation of spreading sequences can greatly help to minimize multiple access interference (MAI) and large linear span of spreading sequences can reduce their predictability. In this letter, new sequence sets with low correlation and large linear span are proposed. Based on the construction Trm1[Trnm(αbt+γiαdt)]r for generating p-ary sequences of period pn-1, where n=2m, d=upm±v, b=u±v, γi∈GF(pn), and p is an arbitrary prime number, several methods to choose the parameter d are provided. The obtained sequences with family size pn are of four-valued, five-valued, six-valued or seven-valued correlation and the maximum nontrivial correlation value is (u+v-1)pm-1. The simulation by a computer shows that the linear span of the new sequences is larger than that of the sequences with Niho-type and Welch-type decimations, and similar to that of [10].
Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities
Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred
2012-07-01
The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.
Gilra, Aditya; Gerstner, Wulfram
2017-11-27
The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.
Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.
Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan
2011-11-01
This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.
Linear flow dynamics near a T/NT interface
Teixeira, Miguel; Silva, Carlos
2011-11-01
The characteristics of a suddenly-inserted T/NT interface separating a homogeneous and isotropic shear-free turbulence region from a non-turbulent flow region are investigated using rapid distortion theory (RDT), taking full account of viscous effects. Profiles of the velocity variances, TKE, viscous dissipation rate, turbulence length scales, and pressure statistics are derived, showing very good agreement with DNS. The normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. In the non-turbulent region, where the flow is irrotational (except within a thin viscous boundary layer), the dissipation rate decays as z-6, where z is distance from the T/NT interface. The mean pressure exhibits a decrease towards the turbulence due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and dissipation rate display large maxima at the T/NT interface due to the existing inviscid discontinuities of the tangential velocity, and these maxima are quantitatively related to the thickness of the viscous boundary layer (VBL). At equilibrium, RDT suggests that the thickness of the T/NT interface scales on the Kolmogorov microscale. We acknowledge the financial support of FCT under Project PTDC/EME-MFE/099636/2008.
Beam dynamics simulation of the Spallation Neutron Source linear accelerator
International Nuclear Information System (INIS)
Takeda, H.; Billen, J.H.; Bhatia, T.S.
1998-01-01
The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac
A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.
Liu, Zitao; Hauskrecht, Milos
2015-01-01
Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS's hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs' spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets.
From 6D superconformal field theories to dynamic gauged linear sigma models
Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.
2017-09-01
Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.
Energy Technology Data Exchange (ETDEWEB)
Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)
2015-11-14
Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.
Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan
2016-01-01
In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite
Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan
2016-01-01
In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740
The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries
International Nuclear Information System (INIS)
Anderies, J M; Carpenter, S R; Steffen, Will; Rockström, Johan
2013-01-01
We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries. (letter)
The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries
Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan
2013-12-01
We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.
Minimization of Linear Functionals Defined on| Solutions of Large-Scale Discrete Ill-Posed Problems
DEFF Research Database (Denmark)
Elden, Lars; Hansen, Per Christian; Rojas, Marielba
2003-01-01
The minimization of linear functionals de ned on the solutions of discrete ill-posed problems arises, e.g., in the computation of con dence intervals for these solutions. In 1990, Elden proposed an algorithm for this minimization problem based on a parametric-programming reformulation involving...... the solution of a sequence of trust-region problems, and using matrix factorizations. In this paper, we describe MLFIP, a large-scale version of this algorithm where a limited-memory trust-region solver is used on the subproblems. We illustrate the use of our algorithm in connection with an inverse heat...
On non-linear dynamics of a coupled electro-mechanical system
DEFF Research Database (Denmark)
Darula, Radoslav; Sorokin, Sergey
2012-01-01
Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a......, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical...
Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn
2013-05-01
Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac
Eliasson, Peder
2008-01-01
The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Fina...
Ownership dynamics with large shareholders : An empirical analysis
Donelli, M.; Urzua Infante, F.; Larrain, B.
2013-01-01
We study the empirical determinants of corporate ownership dynamics in a market where large shareholders are prevalent. We use a unique, hand-collected 20-year dataset on the ownership structure of Chilean companies. Controllers’ blockholdings are on average high -as in continental Europe, for
Worst-Case-Optimal Dynamic Reinsurance for Large Claims
DEFF Research Database (Denmark)
Korn, Ralf; Menkens, Olaf; Steffensen, Mogens
2012-01-01
We control the surplus process of a non-life insurance company by dynamic proportional reinsurance. The objective is to maximize expected (utility of the) surplus under the worst-case claim development. In the large claim case with a worst-case upper limit on claim numbers and claim sizes, we fin...
Dynamic Modeling, Optimization, and Advanced Control for Large Scale Biorefineries
DEFF Research Database (Denmark)
Prunescu, Remus Mihail
with a complex conversion route. Computational fluid dynamics is used to model transport phenomena in large reactors capturing tank profiles, and delays due to plug flows. This work publishes for the first time demonstration scale real data for validation showing that the model library is suitable...
Construction of exact invariants of time-dependent linear nonholonomic dynamical systems
International Nuclear Information System (INIS)
Fu Jingli; Jimenez, Salvador; Tang Yifa; Vazquez, Luis
2008-01-01
In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out
Construction of exact invariants of time-dependent linear nonholonomic dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Fu Jingli [Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)], E-mail: sqfujingli@163.com; Jimenez, Salvador [Departamento de Matematica Aplicada TTII, E.T.S.I. Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Tang Yifa [State Key Laboratory of Scientific and Engineering Computing, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, PO Box 2719, Beijing 100080 (China); Vazquez, Luis [Departamento de Matematica Aplicada Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, 28850 Madrid (Spain)
2008-03-03
In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out.
Dynamical spin accumulation in large-spin magnetic molecules
Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej
2018-01-01
The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems
Antown, Fadi; Dragičević, Davor; Froyland, Gary
2018-03-01
The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.
Large N dynamics in QED in a magnetic field
International Nuclear Information System (INIS)
Gusynin, V.P.; Miransky, V.A.; Shovkovy, I.A.
2003-01-01
The expression for the dynamical mass of fermions in QED in a magnetic field is obtained for a large number of the fermion flavor N in the framework of 1/N expansion. The existence of a threshold value N thr , dividing the theories with essentially different dynamics, is established. For the number of flavors N thr , the dynamical mass is very sensitive to the value of the coupling constant α b , related to the magnetic scale μ=√(vertical bar eB vertical bar). For N of the order of N thr or larger, a dynamics similar to that in the Nambu-Jona-Lasinio model with a cutoff of the order of √(vertical bar eB vertical bar) and the dimensional coupling constant G∼1/(N vertical bar eB vertical bar) takes place. In this case, the value of the dynamical mass is essentially α b independent (the dynamics with an infrared stable fixed point). The value of N thr separates a weak coupling dynamics (with α-tilde b ≡Nα b b > or approx. 1) and is of the order of 1/α b
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R. K.
Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Application of Dynamic Systems Family for Synthesis of Fuzzy Control with Account of Non-linearities
Directory of Open Access Journals (Sweden)
Andriy Lozynskyy
2016-01-01
Full Text Available Dynamic system with nonlinearities has been considered. This system has been divided into a set of linear subsystems. A fuzzy controller of the considered system has been synthesized. It takes into account nonlinearities of the system and provides smooth switching between controllers of the linear subsystems. An unstable subsystem has been utilized, which provides better dynamic characteristics of the considered system. Comparison with traditional controller has been conducted. Corresponding qualitative and quantitative estimates have been provided. They testify the expediency of the proposed approach.
Directory of Open Access Journals (Sweden)
Baogui Xin
2015-04-01
Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.
Directory of Open Access Journals (Sweden)
Jan Vittek
2004-01-01
Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.
Study on non-linear bistable dynamics model based EEG signal discrimination analysis method.
Ying, Xiaoguo; Lin, Han; Hui, Guohua
2015-01-01
Electroencephalogram (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations generating from ionic current flows within the neurons of the brain. EEG signal is looked as one of the most important factors that will be focused in the next 20 years. In this paper, EEG signal discrimination based on non-linear bistable dynamical model was proposed. EEG signals were processed by non-linear bistable dynamical model, and features of EEG signals were characterized by coherence index. Experimental results showed that the proposed method could properly extract the features of different EEG signals.
Large mass hierarchies from strongly-coupled dynamics
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Department of Physics, University of Cyprus,B.O. Box 20537, 1678 Nicosia (Cyprus); Bennett, Ed [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Furo, Chikusa, Nagoya 464-8602 (Japan); Bergner, Georg [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Elander, Daniel [National Institute for Theoretical Physics, School of Physics andMandelstam Institute for Theoretical Physics, University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, Wits 2050 (South Africa); Lin, C.-J. David [Institute of Physics, National Chiao-Tung University,1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China); CNRS, Aix Marseille Université, Université de Toulon, Centre de Physique Théorique,UMR 7332, F-13288 Marseille (France); Lucini, Biagio; Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)
2016-06-20
Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover, our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.
Corticomuscular synchronization with small and large dynamic force output
Andrykiewicz, Agnieszka; Patino, Luis; Naranjo, Jose Raul; Witte, Matthias; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana
2007-01-01
Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study [1] that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC
Corticomuscular synchronization with small and large dynamic force output
Directory of Open Access Journals (Sweden)
Witte Matthias
2007-11-01
Full Text Available Abstract Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study 1 that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic generated by a manipulandum. The CMC, the cortical EEG spectral power (SP, the EMG SP and the errors in motor performance (as the difference between target and exerted force were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no
International Nuclear Information System (INIS)
Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David
2016-01-01
Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)
Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles
Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh
2017-11-01
We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.
Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.
2009-02-01
We present a detailed study of the statistical properties of the Agent Based Model introduced in paper I [Eur. Phys. J. B, DOI: 10.1140/epjb/e2009-00028-4] and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the stylized facts and their self-organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. We consider a linear approximation for the price dynamics which permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and self-organization of the stylized facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the stylized facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.
Efficient characterisation of large deviations using population dynamics
Brewer, Tobias; Clark, Stephen R.; Bradford, Russell; Jack, Robert L.
2018-05-01
We consider population dynamics as implemented by the cloning algorithm for analysis of large deviations of time-averaged quantities. We use the simple symmetric exclusion process with periodic boundary conditions as a prototypical example and investigate the convergence of the results with respect to the algorithmic parameters, focussing on the dynamical phase transition between homogeneous and inhomogeneous states, where convergence is relatively difficult to achieve. We discuss how the performance of the algorithm can be optimised, and how it can be efficiently exploited on parallel computing platforms.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jeongha; Kim, Jinseong; Baig, Chunggi, E-mail: cbaig@unist.ac.kr [Department of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)
2016-07-15
We present detailed results for the structural and rheological properties of unknotted and unconcatenated ring polyethylene (PE) melts under shear and elongation flows via direct atomistic nonequilibrium molecular dynamics simulations. Short (C{sub 78}H{sub 156}) and long (C{sub 400}H{sub 800}) ring PE melts were subjected to planar Couette flow (PCF) and planar elongational flow (PEF) across a wide range of strain rates from linear to highly nonlinear flow regimes. The results are analyzed in detail through a direct comparison with those of the corresponding linear polymers. We found that, in comparison to their linear analogs, ring melts possess rather compact chain structures at or near the equilibrium state and exhibit a considerably lesser degree of structural deformation with respect to the applied flow strength under both PCF and PEF. The large structural resistance of ring polymers against an external flow field is attributed to the intrinsic closed-loop configuration of the ring and the topological constraint of nonconcatenation between ring chains in the melt. As a result, there appears to be a substantial discrepancy between ring and linear systems in terms of their structural and rheological properties such as chain orientation, the distribution of chain dimensions, viscosity, flow birefringence, hydrostatic pressure, the pair correlation function, and potential interaction energies. The findings and conclusions drawn in this work would be a useful guide in future exploration of the characteristic dynamical and relaxation mechanisms of ring polymers in bulk or confined systems under flowing conditions.
Bünemann, Jörg; Seibold, Götz
2017-12-01
Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.
Large angle and high linearity two-dimensional laser scanner based on voice coil actuators
Wu, Xin; Chen, Sihai; Chen, Wei; Yang, Minghui; Fu, Wen
2011-10-01
A large angle and high linearity two-dimensional laser scanner with an in-house ingenious deflection angle detecting system is developed based on voice coil actuators direct driving mechanism. The specially designed voice coil actuators make the steering mirror moving at a sufficiently large angle. Frequency sweep method based on virtual instruments is employed to achieve the natural frequency of the laser scanner. The response shows that the performance of the laser scanner is limited by the mechanical resonances. The closed-loop controller based on mathematical model is used to reduce the oscillation of the laser scanner at resonance frequency. To design a qualified controller, the model of the laser scanner is set up. The transfer function of the model is identified with MATLAB according to the tested data. After introducing of the controller, the nonlinearity decreases from 13.75% to 2.67% at 50 Hz. The laser scanner also has other advantages such as large deflection mirror, small mechanical structure, and high scanning speed.
Rothacker, Karen M; Brown, Suzanne J; Hadlow, Narelle C; Wardrop, Robert; Walsh, John P
2016-03-01
The TSH-T4 relationship was thought to be inverse log-linear, but recent cross-sectional studies report a complex, nonlinear relationship; large, intra-individual studies are lacking. Our objective was to analyze the TSH-free T4 relationship within individuals. We analyzed data from 13 379 patients, each with six or more TSH/free T4 measurements and at least a 5-fold difference between individual median TSH and minimum or maximum TSH. Linear and nonlinear regression models of log TSH on free T4 were fitted to data from individuals and goodness of fit compared by likelihood ratio testing. Comparing all models, the linear model achieved best fit in 31% of individuals, followed by quartic (27%), cubic (15%), null (12%), and quadratic (11%) models. After eliminating least favored models (with individuals reassigned to best fitting, available models), the linear model fit best in 42% of participants, quartic in 43%, and null model in 15%. As the number of observations per individual increased, so did the proportion of individuals in whom the linear model achieved best fit, to 66% in those with more than 20 observations. When linear models were applied to all individuals and averaged according to individual median free T4 values, variations in slope and intercept indicated a nonlinear log TSH-free T4 relationship across the population. The log TSH-free T4 relationship appears linear in some individuals and nonlinear in others, but is predominantly linear in those with the largest number of observations. A log-linear relationship within individuals can be reconciled with a non-log-linear relationship in a population.
International Nuclear Information System (INIS)
Wichmann, K.
2009-01-01
Recently, Letters of Intent (LoI) for experiments at the International Linear Collider (ILC) have been submitted. Among the three proposals is the International Large Detector (ILD) concept which is at the focus of these studies. From various subjects addressed in the LoI, a wide spectrum of studies of SUSY particle properties is presented here. Most of them are benchmark reactions for the ILC and can be used both in physics studies and in work on detector design and optimization, respectively. All studies were performed with a full detector simulation using GEANT4, which is a great improvement compared to the previous results with much less detailed, so called f ast , simulation (SIMDET). The importance of this improved simulation is reflected in the results. The presented analyzes have been chosen to be the most challenging for the detector to study its performance and guide the detector development. Additionally an important problem of unavoidable beam induced backgrounds at linear colliders is addressed and ways of reducing its impact on physics studies are shown for an example SUSY analysis. (author)
International Nuclear Information System (INIS)
Kanamori, Takahiro; Kamata, Shouji; Ito, Shinichi.
1989-01-01
A prototype high energy X-ray CT (computed tomography) system has been developed which employs a linear accelerator as the X-ray source (max. photon energy: 12 MeV). One problem encountered in development of this CT system was to reduce the scattered photons from adjacent detectors, i.e. crosstalk, due to high energy X-rays. This crosstalk was reduced to 2% by means of detector shields using tungsten spacers. Spatial resolution was not affected by such small crosstalk as confirmed by numerical simulations. A second problem was to reduce the scattered photons from the test object. This was done using collimators. A third concern was to realize a wide dynamic range data processing which would allow applications to large and dense objects. This problem was solved by using a sample and hold data acquisition method to reduce the dark current of the photo detectors. The dynamic range of this system was experimentally confirmed over 60 dB. It was demonstrated that slits (width: 2 mm) in an iron object (diameter: 25 cm) could be imaged by this prototype CT system. (author)
Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing
International Nuclear Information System (INIS)
Kim, K.N.; Jung, S.J.; Lee, Y.J.; Yeom, G.Y.; Lee, S.H.; Lee, J.K.
2005-01-01
An internal-type linear inductive antenna, that is, a double-comb-type antenna, was developed for a large-area plasma source having the size of 1020 mmx830 mm, and high density plasmas on the order of 2.3x10 11 cm -3 were obtained with 15 mTorr Ar at 5000 W of inductive power with good plasma stability. This is higher than that for the conventional serpentine-type antenna, possibly due to the low impedance, resulting in high efficiency of power transfer for the double-comb antenna type. In addition, due to the remarkable reduction of the antenna length, a plasma uniformity of less than 8% was obtained within the substrate area of 880 mmx660 mm at 5000 W without having a standing-wave effect
Linear velocity fields in non-Gaussian models for large-scale structure
Scherrer, Robert J.
1992-01-01
Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.
Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic
González-Carbajal, Javier; Domínguez, Jaime
2017-11-01
This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.
Flexible non-linear predictive models for large-scale wind turbine diagnostics
DEFF Research Database (Denmark)
Bach-Andersen, Martin; Rømer-Odgaard, Bo; Winther, Ole
2017-01-01
We demonstrate how flexible non-linear models can provide accurate and robust predictions on turbine component temperature sensor data using data-driven principles and only a minimum of system modeling. The merits of different model architectures are evaluated using data from a large set...... of turbines operating under diverse conditions. We then go on to test the predictive models in a diagnostic setting, where the output of the models are used to detect mechanical faults in rotor bearings. Using retrospective data from 22 actual rotor bearing failures, the fault detection performance...... of the models are quantified using a structured framework that provides the metrics required for evaluating the performance in a fleet wide monitoring setup. It is demonstrated that faults are identified with high accuracy up to 45 days before a warning from the hard-threshold warning system....
Cosmological large-scale structures beyond linear theory in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)
2011-06-01
We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.
Enhanced 2D-DOA Estimation for Large Spacing Three-Parallel Uniform Linear Arrays
Directory of Open Access Journals (Sweden)
Dong Zhang
2018-01-01
Full Text Available An enhanced two-dimensional direction of arrival (2D-DOA estimation algorithm for large spacing three-parallel uniform linear arrays (ULAs is proposed in this paper. Firstly, we use the propagator method (PM to get the highly accurate but ambiguous estimation of directional cosine. Then, we use the relationship between the directional cosine to eliminate the ambiguity. This algorithm not only can make use of the elements of the three-parallel ULAs but also can utilize the connection between directional cosine to improve the estimation accuracy. Besides, it has satisfied estimation performance when the elevation angle is between 70° and 90° and it can automatically pair the estimated azimuth and elevation angles. Furthermore, it has low complexity without using any eigen value decomposition (EVD or singular value decompostion (SVD to the covariance matrix. Simulation results demonstrate the effectiveness of our proposed algorithm.
Hardy inequality on time scales and its application to half-linear dynamic equations
Directory of Open Access Journals (Sweden)
Řehák Pavel
2005-01-01
Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
Kasemsinsup, Y.; Romagnoli, R.; Heertjes, M.F.; Weiland, S.; Butler, H.
2017-01-01
In this work, we study a novel approach towards the reference-tracking feedforward control design for linear dynamical systems. By utilizing the superposition property and exploiting signal decomposition together with a quadratic optimization process, we obtain a feedforward design procedure for
On the dynamical mass generation in gauge-invariant non-linear σ-models
International Nuclear Information System (INIS)
Diaz, A.; Helayel-Neto, J.A.; Smith, A.W.
1987-12-01
We argue that external gauge fields coupled in a gauge-invariant way to both the bosonic and supersymmetric two-dimensional non-linear σ-models acquire a dynamical mass term whenever the target space is restricted to be a group manifold. (author). 11 refs
Peculiarities in power type comparison results for half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2012-01-01
Roč. 42, č. 6 (2012), s. 1995-2013 ISSN 0035-7596 R&D Projects: GA AV ČR KJB100190701 Institutional support: RVO:67985840 Keywords : half-linear dynamic equation * time scale * comparison theorem Subject RIV: BA - General Mathematics Impact factor: 0.389, year: 2012 http://projecteuclid.org/euclid.rmjm/1361800616
Dynamics of complexation of a charged dendrimer by linear polyelectrolyte: Computer modelling
Lyulin, S.V.; Darinskii, A.A.; Lyulin, A.V.
2007-01-01
Brownian-dynamics simulations have been performed for complexes formed by a charged dendrimer and a long oppositely charged linear polyelectrolyte when overcharging phenomenon is always observed. After a complex formation the orientational mobility of the individual dendrimer bonds, the fluctuations
Large-scale dynamo action due to α fluctuations in a linear shear flow
Sridhar, S.; Singh, Nishant K.
2014-12-01
We present a model of large-scale dynamo action in a shear flow that has stochastic, zero-mean fluctuations of the α parameter. This is based on a minimal extension of the Kraichnan-Moffatt model, to include a background linear shear and Galilean-invariant α-statistics. Using the first-order smoothing approximation we derive a linear integro-differential equation for the large-scale magnetic field, which is non-perturbative in the shearing rate S , and the α-correlation time τα . The white-noise case, τα = 0 , is solved exactly, and it is concluded that the necessary condition for dynamo action is identical to the Kraichnan-Moffatt model without shear; this is because white-noise does not allow for memory effects, whereas shear needs time to act. To explore memory effects we reduce the integro-differential equation to a partial differential equation, valid for slowly varying fields when τα is small but non-zero. Seeking exponential modal solutions, we solve the modal dispersion relation and obtain an explicit expression for the growth rate as a function of the six independent parameters of the problem. A non-zero τα gives rise to new physical scales, and dynamo action is completely different from the white-noise case; e.g. even weak α fluctuations can give rise to a dynamo. We argue that, at any wavenumber, both Moffatt drift and Shear always contribute to increasing the growth rate. Two examples are presented: (a) a Moffatt drift dynamo in the absence of shear and (b) a Shear dynamo in the absence of Moffatt drift.
Langevin dynamics simulations of large frustrated Josephson junction arrays
International Nuclear Information System (INIS)
Groenbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.
1991-01-01
Long-time Langevin dynamics simulations of large (N x N,N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: (1) Relaxation from an initially random flux configuration as a universal fit to a glassy stretched-exponential type of relaxation for the intermediate temperatures T(0.3 T c approx-lt T approx-lt 0.7 T c ), and an activated dynamic behavior for T ∼ T c ; (2) a glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response
Langevin dynamics simulations of large frustrated Josephson junction arrays
International Nuclear Information System (INIS)
Gronbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.
1991-01-01
Long-time Langevin dynamics simulations of large (N x N, N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: Relaxation from an initially random flux configuration as a ''universal'' fit to a ''glassy'' stretched-exponential type of relaxation for the intermediate temperatures T (0.3 T c approx-lt T approx-lt 0.7 T c ), and an ''activated dynamic'' behavior for T ∼ T c A glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response
Dynamic Soil-Pile Interaction for large diameter monopile foundations
DEFF Research Database (Denmark)
Zania, Varvara
2013-01-01
of the study is to analyse the dynamic interaction of the soil and a single pile embedded in it by accounting for the geometric and stiffness properties of the pile. In doing so, a semi – analytical approach is adopted based on the fundamental solution of horizontal pile vibration by Novak and Nogami (1977...... eigenfrequencies of the soil layer do not affect the soil – pile interaction. The decrease of the eigefrequency of the OWT depends on the aforementioned variation of the dynamic stiffness and the slenderness ratio of the monopile.......Monopile foundations have been used in a large extent to support offshore wind turbines (OWT), being considered as a reliable and cost effective design solution. The accurate estimation of their dynamic response characteristics is essential, since the design of support structures for OWTs has been...
International Nuclear Information System (INIS)
Khrennikov, A.
2005-01-01
We constructed the representation of contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function can be considered as Hilbert space projection of realistic dynamics in a pre space. The basic condition for representing the pre space-dynamics is the law of statistical conservation of energy-conservation of probabilities. The construction of the dynamical representation is an important step in the development of contextual statistical viewpoint of quantum processes. But the contextual statistical model is essentially more general than the quantum one. Therefore in general the Hilbert space projection of the pre space dynamics can be nonlinear and even irreversible (but it is always unitary). There were found conditions of linearity and reversibility of the Hilbert space dynamical projection. We also found conditions for the conventional Schrodinger dynamics (including time-dependent Hamiltonians). We remark that in general even the Schrodinger dynamics is based just on the statistical conservation of energy; for individual systems the law of conservation of energy can be violated (at least in our theoretical model)
Microscopic theory of dynamical subspace for large amplitude collective motion
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.
1986-01-01
A full quantum theory appropriate for describing large amplitude collective motion is proposed by exploiting the basic idea of the semi-classical theory so far developed within the time-depedent Hartree-Fock theory. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation specific for the collective subspace where the large amplitude collective motion is replicated as precisely as possible. As an extension of the semi-classical theory where the concept of an approximate integral surface played an important role, the collective subspace is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)
Secure Group Communications for Large Dynamic Multicast Group
Institute of Scientific and Technical Information of China (English)
Liu Jing; Zhou Mingtian
2003-01-01
As the major problem in multicast security, the group key management has been the focus of research But few results are satisfactory. In this paper, the problems of group key management and access control for large dynamic multicast group have been researched and a solution based on SubGroup Secure Controllers (SGSCs) is presented, which solves many problems in IOLUS system and WGL scheme.
Borjigin, Sumuya; Yang, Yating; Yang, Xiaoguang; Sun, Leilei
2018-03-01
Many researchers have realized that there is a strong correlation between stock prices and macroeconomy. In order to make this relationship clear, a lot of studies have been done. However, the causal relationship between stock prices and macroeconomy has still not been well explained. A key point is that, most of the existing research adopts linear and stable models to investigate the correlation of stock prices and macroeconomy, while the real causality of that may be nonlinear and dynamic. To fill this research gap, we investigate the nonlinear and dynamic causal relationships between stock prices and macroeconomy. Based on the case of China's stock prices and acroeconomy measures from January 1992 to March 2017, we compare the linear Granger causality test models with nonlinear ones. Results demonstrate that the nonlinear dynamic Granger causality is much stronger than linear Granger causality. From the perspective of nonlinear dynamic Granger causality, China's stock prices can be viewed as "national economic barometer". On the one hand, this study will encourage researchers to take nonlinearity and dynamics into account when they investigate the correlation of stock prices and macroeconomy; on the other hand, our research can guide regulators and investors to make better decisions.
On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics
Directory of Open Access Journals (Sweden)
Jun Wang
2011-01-01
Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.
Wang, Wenhong
2013-07-12
We report the observation of a large linear magnetoresistance (MR) and Shubnikov-de Hass (SdH) quantum oscillations in single crystals of YPdBi Heusler topological insulators. Owning to the successfully obtained the high-quality YPdBi single crystals, large non-saturating linear MR of as high as 350% at 5K and over 120% at 300K under a moderate magnetic field of 7T is observed. In addition to the large, field-linear MR, the samples exhibit pronounced SdH quantum oscillations at low temperature. Analysis of the SdH data manifests that the high-mobility bulk electron carriers dominate the magnetotransport and are responsible for the observed large linear MR in YPdBi crystals. These findings imply that the Heusler-based topological insulators have superiorities for investigating the novel quantum transport properties and developing the potential applications.
Wang, Wenhong; Du, Yin; Xu, Guizhou; Zhang, Xiaoming; Liu, Enke; Liu, Zhongyuan; Shi, Youguo; Chen, Jinglan; Wu, Guangheng; Zhang, Xixiang
2013-01-01
We report the observation of a large linear magnetoresistance (MR) and Shubnikov-de Hass (SdH) quantum oscillations in single crystals of YPdBi Heusler topological insulators. Owning to the successfully obtained the high-quality YPdBi single crystals, large non-saturating linear MR of as high as 350% at 5K and over 120% at 300K under a moderate magnetic field of 7T is observed. In addition to the large, field-linear MR, the samples exhibit pronounced SdH quantum oscillations at low temperature. Analysis of the SdH data manifests that the high-mobility bulk electron carriers dominate the magnetotransport and are responsible for the observed large linear MR in YPdBi crystals. These findings imply that the Heusler-based topological insulators have superiorities for investigating the novel quantum transport properties and developing the potential applications.
The large-scale gravitational bias from the quasi-linear regime.
Bernardeau, F.
1996-08-01
It is known that in gravitational instability scenarios the nonlinear dynamics induces non-Gaussian features in cosmological density fields that can be investigated with perturbation theory. Here, I derive the expression of the joint moments of cosmological density fields taken at two different locations. The results are valid when the density fields are filtered with a top-hat filter window function, and when the distance between the two cells is large compared to the smoothing length. In particular I show that it is possible to get the generating function of the coefficients C_p,q_ defined by _c_=C_p,q_ ^p+q-2^ where δ({vec}(x)) is the local smoothed density field. It is then possible to reconstruct the joint density probability distribution function (PDF), generalizing for two points what has been obtained previously for the one-point density PDF. I discuss the validity of the large separation approximation in an explicit numerical Monte Carlo integration of the C_2,1_ parameter as a function of |{vec}(x)_1_-{vec}(x)_2_|. A straightforward application is the calculation of the large-scale ``bias'' properties of the over-dense (or under-dense) regions. The properties and the shape of the bias function are presented in details and successfully compared with numerical results obtained in an N-body simulation with CDM initial conditions.
On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current
Directory of Open Access Journals (Sweden)
Dali Guo
2014-01-01
Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.
Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models
Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim
2015-01-01
This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.
Directory of Open Access Journals (Sweden)
Chun-Fu Chen
2014-03-01
Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.
Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models
Ait-El-Fquih, Boujemaa
2015-08-13
This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.
Parallel Quasi Newton Algorithms for Large Scale Non Linear Unconstrained Optimization
International Nuclear Information System (INIS)
Rahman, M. A.; Basarudin, T.
1997-01-01
This paper discusses about Quasi Newton (QN) method to solve non-linear unconstrained minimization problems. One of many important of QN method is choice of matrix Hk. to be positive definite and satisfies to QN method. Our interest here is the parallel QN methods which will suite for the solution of large-scale optimization problems. The QN methods became less attractive in large-scale problems because of the storage and computational requirements. How ever, it is often the case that the Hessian is space matrix. In this paper we include the mechanism of how to reduce the Hessian update and hold the Hessian properties.One major reason of our research is that the QN method may be good in solving certain type of minimization problems, but it is efficiency degenerate when is it applied to solve other category of problems. For this reason, we use an algorithm containing several direction strategies which are processed in parallel. We shall attempt to parallelized algorithm by exploring different search directions which are generated by various QN update during the minimization process. The different line search strategies will be employed simultaneously in the process of locating the minimum along each direction.The code of algorithm will be written in Occam language 2 which is run on the transputer machine
Extension of the linear nodal method to large concrete building calculations
International Nuclear Information System (INIS)
Childs, R.L.; Rhoades, W.A.
1985-01-01
The implementation of the linear nodal method in the TORT code is described, and the results of a mesh refinement study to test the effectiveness of the linear nodal and weighted diamond difference methods available in TORT are presented
Energy Dynamics of an Infinitely Large Offshore Wind Farm
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs; Barthelmie, R.J.; Pryor, S.C.
, particularly in the near-term, can be expected in the higher resource, moderate water depths of the North Sea rather than the Mediterranean. There should therefore be significant interest in understanding the energy dynamics of the infinitely large wind farm – how wakes behave and whether the extraction...... of energy by wind turbines over a large area has a significant and lasting impact on the atmospheric boundary layer. Here we focus on developing understanding of the infinite wind farm through a combination of theoretical considerations, data analysis and modeling. Initial evaluation of power losses due...... is of about the same magnitude as for the infinitely large wind farm. We will examine whether this can be proved theoretically or is indicated by data currently available. We will also evaluate whether energy extraction at the likely scale of development in European Seas can be expected to modulate...
Dynamics of Large Systems of Nonlinearly Evolving Units
Lu, Zhixin
The dynamics of large systems of many nonlinearly evolving units is a general research area that has great importance for many areas in science and technology, including biology, computation by artificial neural networks, statistical mechanics, flocking in animal groups, the dynamics of coupled neurons in the brain, and many others. While universal principles and techniques are largely lacking in this broad area of research, there is still one particular phenomenon that seems to be broadly applicable. In particular, this is the idea of emergence, by which is meant macroscopic behaviors that "emerge" from a large system of many "smaller or simpler entities such that...large entities" [i.e., macroscopic behaviors] arise which "exhibit properties the smaller/simpler entities do not exhibit." In this thesis we investigate mechanisms and manifestations of emergence in four dynamical systems consisting many nonlinearly evolving units. These four systems are as follows. (a) We first study the motion of a large ensemble of many noninteracting particles in a slowly changing Hamiltonian system that undergoes a separatrix crossing. In such systems, we find that separatrix-crossing induces a counterintuitive effect. Specifically, numerical simulation of two sets of densely sprinkled initial conditions on two energy curves appears to suggest that the two energy curves, one originally enclosing the other, seemingly interchange their positions. This, however, is topologically forbidden. We resolve this paradox by introducing a numerical simulation method we call "robust" and study its consequences. (b) We next study the collective dynamics of oscillatory pacemaker neurons in Suprachiasmatic Nucleus (SCN), which, through synchrony, govern the circadian rhythm of mammals. We start from a high-dimensional description of the many coupled oscillatory neuronal units within the SCN. This description is based on a forced Kuramoto model. We then reduce the system dimensionality by using
Nguyen, Hung T. T.; Galelli, Stefano
2018-03-01
Catchment dynamics is not often modeled in streamflow reconstruction studies; yet, the streamflow generation process depends on both catchment state and climatic inputs. To explicitly account for this interaction, we contribute a linear dynamic model, in which streamflow is a function of both catchment state (i.e., wet/dry) and paleoclimatic proxies. The model is learned using a novel variant of the Expectation-Maximization algorithm, and it is used with a paleo drought record—the Monsoon Asia Drought Atlas—to reconstruct 406 years of streamflow for the Ping River (northern Thailand). Results for the instrumental period show that the dynamic model has higher accuracy than conventional linear regression; all performance scores improve by 45-497%. Furthermore, the reconstructed trajectory of the state variable provides valuable insights about the catchment history—e.g., regime-like behavior—thereby complementing the information contained in the reconstructed streamflow time series. The proposed technique can replace linear regression, since it only requires information on streamflow and climatic proxies (e.g., tree-rings, drought indices); furthermore, it is capable of readily generating stochastic streamflow replicates. With a marginal increase in computational requirements, the dynamic model brings more desirable features and value to streamflow reconstructions.
DEFF Research Database (Denmark)
Yan, Wei
2015-01-01
We investigate the hydrodynamic theory of metals, offering systematic studies of the linear-response dynamics for an inhomogeneous electron gas. We include the quantum functional terms of the Thomas-Fermi kinetic energy, the von Weizsa¨cker kinetic energy, and the exchange-correlation Coulomb...... energies under the local density approximation. The advantages, limitations, and possible improvements of the hydrodynamic theory are transparently demonstrated. The roles of various parameters in the theory are identified. We anticipate that the hydrodynamic theory can be applied to investigate the linear...... response of complex metallic nanostructures, including quantum effects, by adjusting theory parameters appropriately....
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry; Kasimov, Aslan R.
2018-01-01
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry I.
2017-12-08
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry
2018-03-20
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.
2018-01-01
The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.
Large-scale dynamic compaction of natural salt
International Nuclear Information System (INIS)
Hansen, F.D.; Ahrens, E.H.
1996-01-01
A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m 3 of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10 -14 m 2 . This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
Challenges in parameter identification of large structural dynamic systems
International Nuclear Information System (INIS)
Koh, C.G.
2001-01-01
In theory, it is possible to determine the parameters of a structural or mechanical system by subjecting it to some dynamic excitation and measuring the response. Considerable research has been carried out in this subject area known as the system identification over the past two decades. Nevertheless, the challenges associated with numerical convergence are still formidable when the system is large in terms of the number of degrees of freedom and number of unknowns. While many methods work for small systems, the convergence becomes difficult, if not impossible, for large systems. In this keynote lecture, both classical and non-classical system identification methods for dynamic testing and vibration-based inspection are discussed. For classical methods, the extended Kalman filter (EKF) approach is used. On this basis, a substructural identification method has been developed as a strategy to deal with large structural systems. This is achieved by reducing the problem size, thereby significantly improving the numerical convergence and efficiency. Two versions of this method are presented each with its own merits. A numerical example of frame structure with 20 unknown parameters is illustrated. For non-classical methods, the Genetic Algorithm (GA) is shown to be applicable with relative ease due to its 'forward analysis' nature. The computational time is, however, still enormous for large structural systems due to the combinatorial explosion problem. A model GA method has been developed to address this problem and tested with considerable success on a relatively large system of 50 degrees of freedom, accounting for input and output noise effects. An advantages of this GA-based identification method is that the objective function can be defined in response measured. Numerical studies show that the method is relatively robust, as it does in response measured. Numerical studies show that the method is relatively robust, as it dos not require good initial guess and the
Nguyen, Nhan
2013-01-01
This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.
Prototyping a large field size IORT applicator for a mobile linear accelerator
Energy Technology Data Exchange (ETDEWEB)
Janssen, Rogier W J; Dries, Wim J F [Catharina-Hospital Eindhoven, PO Box 1350, 5602 ZA, Eindhoven (Netherlands); Faddegon, Bruce A [University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, CA 94115-1708 (United States)], E-mail: rogier.janssen@mac.com
2008-04-21
The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron (registered) is often complicated because of the limited field size of the primary collimator and the available applicators (max Oe100 mm). To circumvent this limitation a prototype rectangular applicator of 80 x 150 mm{sup 2} was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron (registered) treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 x 150 mm{sup 2} dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm.
Prototyping a large field size IORT applicator for a mobile linear accelerator
International Nuclear Information System (INIS)
Janssen, Rogier W J; Dries, Wim J F; Faddegon, Bruce A
2008-01-01
The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron (registered) is often complicated because of the limited field size of the primary collimator and the available applicators (max Oe100 mm). To circumvent this limitation a prototype rectangular applicator of 80 x 150 mm 2 was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron (registered) treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 x 150 mm 2 dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm
Large linear magnetoresistance in a new Dirac material BaMnBi2
Wang, Yi-Yan; Yu, Qiao-He; Xia, Tian-Long
2016-10-01
Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi2 and investigate the transport properties of the samples. BaMnBi2 is a metal with an antiferromagnetic transition at T N = 288 K. The temperature dependence of magnetization displays different behavior from CaMnBi2 and SrMnBi2, which suggests the possible different magnetic structure of BaMnBi2. The Hall data reveals electron-type carriers and a mobility μ(5 K) = 1500 cm2/V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi2. A crossover from semiclassical MR ˜ H 2 dependence in low field to MR ˜ H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi2. Project supported by the National Natural Science Foundation of China (Grant No. 11574391), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 14XNLQ07).
Large linear magnetoresistance in a new Dirac material BaMnBi2
International Nuclear Information System (INIS)
Wang Yi-Yan; Yu Qiao-He; Xia Tian-Long
2016-01-01
Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi 2 and investigate the transport properties of the samples. BaMnBi 2 is a metal with an antiferromagnetic transition at T N = 288 K. The temperature dependence of magnetization displays different behavior from CaMnBi 2 and SrMnBi 2 , which suggests the possible different magnetic structure of BaMnBi 2 . The Hall data reveals electron-type carriers and a mobility μ (5 K) = 1500 cm 2 /V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi 2 . A crossover from semiclassical MR ∼ H 2 dependence in low field to MR ∼ H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi 2 . (rapid communication)
Triple Z0-Boson Production in a Large Extra Dimensions Model at the International Linear Collider
International Nuclear Information System (INIS)
Jiang Ruo-Cheng; Li Xiao-Zhou; Ma Wen-Gan; Guo Lei; Zhang Ren-You
2012-01-01
We investigate the effects induced by the interactions of the Kaluza—Klein graviton with the standard model (SM) particles on the triple Z 0 -boson production process at the International Linear Collider in the framework of the large extra dimension (LED) model. We present the dependence of the integrated cross sections on the electron-positron colliding energy √s, and various kinematic distributions of final Z 0 bosons and their subsequential decay products in both the SM and the LED model. We also provide the relationship between the integrated cross section and the fundamental scale MS by taking the number of the extra dimensions (d) as 3, 4, 5, and 6, respectively. The numerical results show that the LED effect can induce an observable relative discrepancy for the integrated cross section (δ LED ). We find that the relative discrepancy of the LED effect can even reach a few dozen percent in the high transverse momentum area or the central rapidity region of the final Z 0 -bosons and muons
The linearly scaling 3D fragment method for large scale electronic structure calculations
Energy Technology Data Exchange (ETDEWEB)
Zhao Zhengji [National Energy Research Scientific Computing Center (NERSC) (United States); Meza, Juan; Shan Hongzhang; Strohmaier, Erich; Bailey, David; Wang Linwang [Computational Research Division, Lawrence Berkeley National Laboratory (United States); Lee, Byounghak, E-mail: ZZhao@lbl.go [Physics Department, Texas State University (United States)
2009-07-01
The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.
Vasilev, Aleksandr S.; Konyakhin, Igor A.; Timofeev, Alexander N.; Lashmanov, Oleg U.; Molev, Fedor V.
2015-05-01
The paper analyzes the construction matters and metrological parameters of the electrooptic converter to control linear displacements of the large structures of the buildings and facilities. The converter includes the base module, the processing module and a set of the reference marks. The base module is the main unit of the system, it includes the receiving optical system and the CMOS photodetector array that realizes the instrument coordinate system that controls the mark coordinates in the space. The methods of the frame-to-frame difference, adaptive threshold filtration, binarization and objects search by the tied areas to detect the marks against accidental contrast background is the basis of the algorithm. The entire algorithm is performed during one image reading stage and is based on the FPGA. The developed and manufactured converter experimental model was tested in laboratory conditions at the metrological bench at the distance between the base module and the mark 50±0.2 m. The static characteristic was read during the experiment of the reference mark displacement at the pitch of 5 mm in the horizontal and vertical directions for the displacement range 400 mm. The converter experimental model error not exceeding ±0.5 mm was obtained in the result of the experiment.
Low temperature diamond growth by linear antenna plasma CVD over large area
International Nuclear Information System (INIS)
Izak, Tibor; Babchenko, Oleg; Potocky, Stepan; Kromka, Alexander; Varga, Marian
2012-01-01
Recently, there is a great effort to increase the deposition area and decrease the process temperature for diamond growth which will enlarge its applications including use of temperature sensitive substrates. In this work, we report on the large area (20 x 30 cm 2 ) and low temperature (250 C) polycrystalline diamond growth by pulsed linear antenna microwave plasma system. The influence of substrate temperature varied from 250 to 680 C, as controlled by the table heater and/or by microwave power, is studied. It was found that the growth rate, film morphology and diamond to non-diamond phases (sp 3 /sp 2 carbon bonds) are influenced by the growth temperature, as confirmed by SEM and Raman measurements. The surface chemistry and growth processes were studied in terms of activation energies (E a ) calculated from Arrhenius plots. The activation energies of growth processes were very low (1.7 and 7.8 kcal mol -1 ) indicating an energetically favourable growth process from the CO 2 -CH 4 -H 2 gas mixture. In addition, from activation energies two different growth regimes were observed at low and high temperatures, indicating different growth mechanism. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)
1996-12-31
In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.
A fast and optimized dynamic economic load dispatch for large scale power systems
International Nuclear Information System (INIS)
Musse Mohamud Ahmed; Mohd Ruddin Ab Ghani; Ismail Hassan
2000-01-01
This paper presents Lagrangian Multipliers (LM) and Linear Programming (LP) based dynamic economic load dispatch (DELD) solution for large-scale power system operations. It is to minimize the operation cost of power generation. units subject to the considered constraints. After individual generator units are economically loaded and periodically dispatched, fast and optimized DELD has been achieved. DELD with period intervals has been taken into consideration The results found from the algorithm based on LM and LP techniques appear to be modest in both optimizing the operation cost and achieving fast computation. (author)
Novel developments in linear modal description of piping system dynamic behavior
International Nuclear Information System (INIS)
Revesz, Z.
1989-01-01
Novel developments in dynamic analysis of piping systems are described. The ASME BPV Codes, 1986 describes methods that are considered as adequate to analyze piping systems under dynamic loading, and also states that the method described in the codes are not the only acceptable ones. With straightforward application of the principles and methods laid down in the code novel numerical techniques can be developed. These techniques allow to obtain correct, conservative estimates of the piping system response and to reduce the computed stresses the same time. Beyond that, the particular algorithm which is presented is also suitable to analyze systems which include non-linear (viscous) damping elements
On the Convergence of Piecewise Linear Strategic Interaction Dynamics on Networks
Gharesifard, Bahman
2015-09-11
We prove that the piecewise linear best-response dynamical systems of strategic interactions are asymptotically convergent to their set of equilibria on any weighted undirected graph. We study various features of these dynamical systems, including the uniqueness and abundance properties of the set of equilibria and the emergence of unstable equilibria. We also introduce the novel notions of social equivalence and social dominance on directed graphs, and demonstrate some of their interesting implications, including their correspondence to consensus and chromatic number of partite graphs. Examples illustrate our results.
Dynamical simulation of a linear sigma model near the critical point
Energy Technology Data Exchange (ETDEWEB)
Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Hees, Hendrik van [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt (Germany)
2014-07-01
The intention of this study is the search for signatures of the chiral phase transition. To investigate the impact of fluctuations, e.g. of the baryon number, on the transition or a critical point, the linear sigma model is treated in a dynamical 3+1D numerical simulation. Chiral fields are approximated as classical fields, quarks are described by quasi particles in a Vlasov equation. Additional dynamic is implemented by quark-quark and quark-sigma-field interaction. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.
Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines
International Nuclear Information System (INIS)
Batygin, Y.
2004-01-01
A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented
Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines
Energy Technology Data Exchange (ETDEWEB)
Batygin, Y.
2004-10-28
A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.
Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method
International Nuclear Information System (INIS)
Goncalves Filho, O.J.A.
1978-11-01
The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)
Energy Technology Data Exchange (ETDEWEB)
Speck, Thomas [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz (Germany); Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut [Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany)
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces
DEFF Research Database (Denmark)
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.
Molecular Dynamics of a Linear Nanomotor Driven by Thermophoresis Harvey A. Zambrano1, Jens H. Walther1,2 and Richard L. Jaffe3 1Department of Mechanical Engineering, Fluid Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark; 2Computational Science and Engineering Laboratory, ETH...... future molecular machines a complete understanding of the friction forces involved on the transport process at the molecular level have to be addressed.18 In this work we perform Molecular Dynamics (MD) simulations using the MD package FASTTUBE19 to study a molecular linear motor consisting of coaxial...... the valence forces within the CNT using Morse, harmonic angle and torsion potentials.19We include a nonbonded carbon-carbon Lennard-Jones potential to describe the vdW interaction between the carbon atoms within the double wall portion of the system. We equilibrate the system at 300K for 0.1 ns, by coupling...
Robust control of uncertain dynamic systems a linear state space approach
Yedavalli, Rama K
2014-01-01
This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...
Self-consistent field theory based molecular dynamics with linear system-size scaling
Energy Technology Data Exchange (ETDEWEB)
Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)
2014-04-07
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators
International Nuclear Information System (INIS)
Qiang, J.; Ryne, R.D.; Habib, S.; Decky, V.
1999-01-01
In this paper, we present an object-oriented three-dimensional parallel particle-in-cell code for beam dynamics simulation in linear accelerators. A two-dimensional parallel domain decomposition approach is employed within a message passing programming paradigm along with a dynamic load balancing. Implementing object-oriented software design provides the code with better maintainability, reusability, and extensibility compared with conventional structure based code. This also helps to encapsulate the details of communications syntax. Performance tests on SGI/Cray T3E-900 and SGI Origin 2000 machines show good scalability of the object-oriented code. Some important features of this code also include employing symplectic integration with linear maps of external focusing elements and using z as the independent variable, typical in accelerators. A successful application was done to simulate beam transport through three superconducting sections in the APT linac design
On Feature Extraction from Large Scale Linear LiDAR Data
Acharjee, Partha Pratim
Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are
Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI
International Nuclear Information System (INIS)
Morakkabati-Spitz, N.; Leutner, C.; Schild, H.; Traeber, F.; Kuhl, C.
2005-01-01
The aim of this study was the evaluation of the diagnostic usefulness of ductal or segmental enhancement in dynamic breast MRI. Segmental and ductal enhancement have been established as the breast MRI hallmarks of intraductal breast cancer (DCIS); however, the positive predictive value of this imaging finding is still unknown. In our study, we analysed the overall prevalence of a segmental or a linear enhancement pattern on breast MRI for an unselected cohort of patients. The aim was to evaluate the diagnostic usefulness of segmental or linear enhancement. Second, we asked whether biopsy was necessary also in the absence of mammographic findings suggestive of DCIS. Prospective, consecutive evaluation of 1,003 patients undergoing bilateral dynamic breast MRI. Studies were interpreted by two experienced breast radiologists. A diagnostic or screening two-view mammogram was available for all patients. Biopsy or short-term breast MRI follow-up was recommended for patients showing a segmental or a linear enhancement pattern on breast MRI. The patients' final diagnoses were established by imaging guided excisional or core biopsy or by clinical plus conventional imaging follow-up for a period of 2 years. The prevalence of segmental or linear enhancement was determined for patients with a final diagnosis of benign breast disease compared with those with a diagnosis of breast cancer. One hundred twenty patients had invasive breast cancer, 24 patients had DCIS and 859 patients had unsuspicious breast MRI or benign breast disease. A segmental or a linear enhancement pattern was found for 50/1,003 (5%) patients (17 DCIS, 33 benign breast diseases). Accordingly, the positive predictive value of segmental and linear enhancement is 34% (17/50); the specificity of this criterion is 96% (826/859). For 4/24 (17%) patients, DCIS was visible as segmental or linear enhancement on dynamic breast MRI, whereas no abnormalities were visible on the corresponding mammogram. The overall
Dynamic stability of a vertically excited non-linear continuous system
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Fischer, Cyril
2015-01-01
Roč. 155, July (2015), s. 106-114 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : non-linear systems * auto-parametric systems * semi-trivial solution * dynamic stability * system recovery * post- critical response Subject RIV: JM - Building Engineering Impact factor: 2.425, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045794915000024
On the internal stability of non-linear dynamic inversion: application to flight control
Czech Academy of Sciences Publication Activity Database
Alam, M.; Čelikovský, Sergej
2017-01-01
Roč. 11, č. 12 (2017), s. 1849-1861 ISSN 1751-8644 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : flight control * non-linear dynamic inversion * stability Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 2.536, year: 2016 http://library.utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf
Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control
Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan
2013-01-01
This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...
Riccati inequality, disconjugacy, and reciprocity principle for linear Hamiltonian dynamic systems
Czech Academy of Sciences Publication Activity Database
Hilscher, R.; Řehák, Pavel
2003-01-01
Roč. 12, č. 1 (2003), s. 171-189 ISSN 1056-2176 R&D Projects: GA ČR GA201/01/0079; GA ČR GP201/01/P041 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : linear Hamiltonian dynamic systems * disconjugacy * Riccati inequality Subject RIV: BA - General Mathematics Impact factor: 0.256, year: 2002
A linear dynamic model for rotor-spun composite yarn spinning process
International Nuclear Information System (INIS)
Yang, R H; Wang, S Y
2008-01-01
A linear dynamic model is established for the stable rotor-spun composite yarn spinning process. Approximate oscillating frequencies in the vertical and horizontal directions are obtained. By suitable choice of certain processing parameters, the mixture construction after the convergent point can be optimally matched. The presented study is expected to provide a general pathway to understand the motion of the rotor-spun composite yarn spinning process
Planar dynamics of large-deformation rods under moving loads
Zhao, X. W.; van der Heijden, G. H. M.
2018-01-01
We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.
Honjo, Keita; Shiraki, Hiroto; Ashina, Shuichi
2018-01-01
After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan's NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers' electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%-6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2-2.26 MtCO2 (-4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan's electricity demand and CO2 emissions after the earthquake.
Chiral dynamics and partonic structure at large transverse distances
Energy Technology Data Exchange (ETDEWEB)
Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center
2009-12-30
In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲M_{π}/M_{N} and transverse distances b~1/M_{π}. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, R_{core}=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b^{2})_{q+q¯}>(b^{2})_{g}, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general N_{c}-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-N_{c} limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.
Robust control and linear parameter varying approaches application to vehicle dynamics
Gaspar, Peter; Bokor, József
2013-01-01
Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g. · proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design, · take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations, · manage interactions between various actuators to optimize the dynamic behavior of vehicles. This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on so...
Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac
Directory of Open Access Journals (Sweden)
Peder Eliasson
2008-05-01
Full Text Available The Compact Linear Collider (CLIC main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs, indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.
Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac
Eliasson, Peder
2008-05-01
The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
The Dynamics of Large-Amplitude Motion in Energized Molecules
Energy Technology Data Exchange (ETDEWEB)
Perry, David S. [Univ. of Akron, OH (United States). Dept. of Chemistry
2016-05-27
Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. This approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).
Abramov, Rafail V.
2011-01-01
Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation prop...
Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load
Kankam, M. David; Rauch, Jeffrey S.
1994-01-01
This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.
Modelling the influence of sensory dynamics on linear and nonlinear driver steering control
Nash, C. J.; Cole, D. J.
2018-05-01
A recent review of the literature has indicated that sensory dynamics play an important role in the driver-vehicle steering task, motivating the design of a new driver model incorporating human sensory systems. This paper presents a full derivation of the linear driver model developed in previous work, and extends the model to control a vehicle with nonlinear tyres. Various nonlinear controllers and state estimators are compared with different approximations of the true system dynamics. The model simulation time is found to increase significantly with the complexity of the controller and state estimator. In general the more complex controllers perform best, although with certain vehicle and tyre models linearised controllers perform as well as a full nonlinear optimisation. Various extended Kalman filters give similar results, although the driver's sensory dynamics reduce control performance compared with full state feedback. The new model could be used to design vehicle systems which interact more naturally and safely with a human driver.
Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.
Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S
2016-09-26
In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Borg, Michael; Hansen, Anders Melchior; Bredmose, Henrik
2016-01-01
Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads. (paper)
Statistics and Dynamics in the Large-scale Structure of the Universe
International Nuclear Information System (INIS)
Matsubara, Takahiko
2006-01-01
In cosmology, observations and theories are related to each other by statistics in most cases. Especially, statistical methods play central roles in analyzing fluctuations in the universe, which are seeds of the present structure of the universe. The confrontation of the statistics and dynamics is one of the key methods to unveil the structure and evolution of the universe. I will review some of the major statistical methods in cosmology, in connection with linear and nonlinear dynamics of the large-scale structure of the universe. The present status of analyses of the observational data such as the Sloan Digital Sky Survey, and the future prospects to constrain the nature of exotic components of the universe such as the dark energy will be presented
Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.
2015-01-01
Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.
Experimental simulations of beam propagation over large distances in a compact linear Paul trap
International Nuclear Information System (INIS)
Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Majeski, Richard
2006-01-01
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame of reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by similar equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes are equivalent to the axially oscillating magnetic fields applied in the AG system. Experiments concerning the quiescent propagation of intense beams over large distances can then be performed in a compact and flexible facility. An understanding and characterization of the conditions required for quiescent beam transport, minimum halo particle generation, and precise beam compression and manipulation techniques, are essential, as accelerators and transport systems demand that ever-increasing amounts of space charge be transported. Application areas include ion-beam-driven high energy density physics, high energy and nuclear physics accelerator systems, etc. One-component cesium plasmas have been trapped in PTSX that correspond to normalized beam intensities, s=ω p 2 (0)/2ω q 2 , up to 80% of the space-charge limit where self-electric forces balance the applied focusing force. Here, ω p (0)=[n b (0)e b 2 /m b ε 0 ] 1/2 is the on-axis plasma frequency, and ω q is the smooth-focusing frequency associated with the applied focusing field. Plasmas in PTSX with values of s that are 20% of the limit have been trapped for times corresponding to equivalent beam propagation over 10 km. Results are presented for experiments in which the amplitude of the quadrupole focusing lattice is modified as a function of time. It is found that instantaneous changes in lattice amplitude can be detrimental to transverse confinement of the charge bunch
Experimental simulations of beam propagation over large distances in a compact linear Paul trapa)
Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Majeski, Richard
2006-05-01
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame of reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by similar equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes are equivalent to the axially oscillating magnetic fields applied in the AG system. Experiments concerning the quiescent propagation of intense beams over large distances can then be performed in a compact and flexible facility. An understanding and characterization of the conditions required for quiescent beam transport, minimum halo particle generation, and precise beam compression and manipulation techniques, are essential, as accelerators and transport systems demand that ever-increasing amounts of space charge be transported. Application areas include ion-beam-driven high energy density physics, high energy and nuclear physics accelerator systems, etc. One-component cesium plasmas have been trapped in PTSX that correspond to normalized beam intensities, ŝ=ωp2(0)/2ωq2, up to 80% of the space-charge limit where self-electric forces balance the applied focusing force. Here, ωp(0)=[nb(0)eb2/mbɛ0]1/2 is the on-axis plasma frequency, and ωq is the smooth-focusing frequency associated with the applied focusing field. Plasmas in PTSX with values of ŝ that are 20% of the limit have been trapped for times corresponding to equivalent beam propagation over 10km. Results are presented for experiments in which the amplitude of the quadrupole focusing lattice is modified as a function of time. It is found that instantaneous changes in lattice amplitude can be detrimental to transverse confinement of the charge bunch.
Brain-heart linear and nonlinear dynamics during visual emotional elicitation in healthy subjects.
Valenza, G; Greco, A; Gentili, C; Lanata, A; Toschi, N; Barbieri, R; Sebastiani, L; Menicucci, D; Gemignani, A; Scilingo, E P
2016-08-01
This study investigates brain-heart dynamics during visual emotional elicitation in healthy subjects through linear and nonlinear coupling measures of EEG spectrogram and instantaneous heart rate estimates. To this extent, affective pictures including different combinations of arousal and valence levels, gathered from the International Affective Picture System, were administered to twenty-two healthy subjects. Time-varying maps of cortical activation were obtained through EEG spectral analysis, whereas the associated instantaneous heartbeat dynamics was estimated using inhomogeneous point-process linear models. Brain-Heart linear and nonlinear coupling was estimated through the Maximal Information Coefficient (MIC), considering EEG time-varying spectra and point-process estimates defined in the time and frequency domains. As a proof of concept, we here show preliminary results considering EEG oscillations in the θ band (4-8 Hz). This band, indeed, is known in the literature to be involved in emotional processes. MIC highlighted significant arousal-dependent changes, mediated by the prefrontal cortex interplay especially occurring at intermediate arousing levels. Furthermore, lower and higher arousing elicitations were associated to not significant brain-heart coupling changes in response to pleasant/unpleasant elicitations.
A high linearity current mode multiplier/divider with a wide dynamic range
International Nuclear Information System (INIS)
Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji
2012-01-01
A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)
Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation
International Nuclear Information System (INIS)
Kolesov, Andrei Yu; Rozov, Nikolai Kh
2002-01-01
For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied
International Nuclear Information System (INIS)
Gao, J.
1996-01-01
The research works presented in this memoir are oriented not only to the R and D programs towards future linear colliders, but also to the pedagogic purposes. The first part of this memoir (from Chapter 2 to Chapter 9) establishes an analytical framework of the disk-loaded slow wave accelerating structures with can be served as the advanced courses for the students who have got some basic trainings in the linear accelerator theories. The analytical formulae derived in this part describe clearly the properties of the disk-loaded accelerating structures, such as group velocity, shunt impedance, coupling coefficients κ and β, loss factors, and wake fields. The second part (from Chapter 11 to Chapter 13) gives the beam dynamics simulations and the final proposal of an S-Band Superconducting Linear Collider (SSLC) which is aimed to avoid the dark current problem in TESLA project. This memoir has not included all the works conducted since April 1992, such as beam dynamics simulations for CLIC Test Facility (CFT-2) and the design of High Charge Structures (HCS) (11π/12 mode) for CFT-2, in order to make this memoir more harmonious, coherent and continuous. (author)
Lightweight computational steering of very large scale molecular dynamics simulations
International Nuclear Information System (INIS)
Beazley, D.M.
1996-01-01
We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages
Dynamics of large rotors on spring supported foundations
Energy Technology Data Exchange (ETDEWEB)
Puttonen, J. [IVO Power Engineering Ltd., Vantaa (Finland)] Luukkanen, P. [Imatran Voima Oy, Vantaa (Finland)
1998-12-31
This article presents some case studies relating to the dynamics of the large machines on spring isolated foundations. The studies comprise both vibration calculations and measurements also introducing the accuracy of numerical methods available in practical engineering. A summary of the pros and cons of spring isolated foundations in power plants is included. The cases described are from the lately built power plants of the IVO-group. The auxiliary feed water pump analysed consists of an electric motor (7 MW), a gear and two pumps. During the trial runs, severe vibrations were observed calling for thorough vibration measurements. The modelling of the whole vibrating entity in the rotating machinery, including the shaft train, oil films of bearings and the foundation is demonstrated by a turbine generator set of 100 MW. Finally, some results of a test comparing the acoustic emission and traditional vibration measurements for recognizing the rub between the shaft and the hydrodynamic bearing are presented. (orig.) 6 refs.
Dynamics of large rotors on spring supported foundations
Energy Technology Data Exchange (ETDEWEB)
Puttonen, J. [IVO Power Engineering Ltd., Vantaa (Finland)] Luukkanen, P. [Imatran Voima Oy, Vantaa (Finland)
1997-12-31
This article presents some case studies relating to the dynamics of the large machines on spring isolated foundations. The studies comprise both vibration calculations and measurements also introducing the accuracy of numerical methods available in practical engineering. A summary of the pros and cons of spring isolated foundations in power plants is included. The cases described are from the lately built power plants of the IVO-group. The auxiliary feed water pump analysed consists of an electric motor (7 MW), a gear and two pumps. During the trial runs, severe vibrations were observed calling for thorough vibration measurements. The modelling of the whole vibrating entity in the rotating machinery, including the shaft train, oil films of bearings and the foundation is demonstrated by a turbine generator set of 100 MW. Finally, some results of a test comparing the acoustic emission and traditional vibration measurements for recognizing the rub between the shaft and the hydrodynamic bearing are presented. (orig.) 6 refs.
Large wood budget and transport dynamics on a large river using radio telemetry
Schenk, Edward R.; Moulin, Bertrand; Hupp, Cliff R.; Richte, Jean M.
2014-01-01
Despite the abundance of large wood (LW) river studies there is still a lack of understanding of LW transport dynamics on large low gradient rivers. This study used 290 radio frequency identification tagged (RFID) LW and 54 metal (aluminum) tagged LW, to quantify the percent of in-channel LW that moves per year and what variables play a role in LW transport dynamics. Aluminum tags were installed and monitored on LW in-transit during the rising limb of a flood, the mean distance traveled by those pieces during the week was 13.3 river kilometers (km) with a maximum distance of 72 km. RFID tagged LW moved a mean of 11.9 km/yr with a maximum observed at 101.1 km/yr. Approximately 41% of LW low on the bank moves per year. The high rate of transport and distance traveled is likely due to the lack of interaction between LW floating in the channel and the channel boundaries, caused primarily by the width of the channel relative to length of the LW. Approximately 80% of the RFID tags moved past a fixed reader during the highest 20% of river stage per year. LW transport and logjam dynamics are complicated at high flows as pieces form temporary jams that continually expand and contract. Unlike most other studies, key members that create a logjam were defined more by stability than jam size or channel/hydrologic conditions. Finally, using an existing geomorphic database for the river, and data from this study, we were able to develop a comprehensive LW budget showing that 5% of the in-channel LW population turns over each year (input from mass wasting and fluvial erosion equals burial, decomposition, and export out of system) and another 16% of the population moving within the system.
Blended particle filters for large-dimensional chaotic dynamical systems
Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.
2014-01-01
A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886
Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations
Directory of Open Access Journals (Sweden)
J. Xu
2007-01-01
Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.
Energy Technology Data Exchange (ETDEWEB)
Driessen, W. [Technischer Ueberwachungs-Verein Nord e.V., Hamburg (Germany)
2000-07-01
Because of modifications to a feed-water line of a power plant structural calculations of the pipework were performed. As a result of a linear (modal) analysis very high restraint forces on the supports were calculated. In order to reduce conservatisms in the calculation the model was optimized with regard to the support stiffnesses and nonlinear behavior of slide bearings, guides and shock absorbers were taken into account. The main result of the non-linear analysis, which was performed by methods of direct-integration, was that nonlinearity yields evident differences in structural frequencies and in energy dissipation (damping) in comparison to the linear analysis. The high restraint forces on the supports became smaller for most of the supports but at some points the forces of the non-linear analysis were even higher. So the conservatism of the linear analysis is not fully valid for the whole structure. The relevance of the non-linear effects in dynamic piping calculations is shown by comparing the calculation result with measurements which were performed on structures in the plant. (orig.) [German] Im Rahmen der Aenderung der Speisewasserleitung einer Kraftwerksanlage wurde die Struktur neu berechnet. Die Analysen mit einem linearen Modell (modal), das ueblicherweise verwendet wird, ergaben hohe Lasten an Halterungen. Zum Abbau von Konservativitaeten wurde eine realistischere Modellierung durch die Beruecksichtigung des nichtlinearen Verhaltens der in der Anlage befindlichen Gleitlager, Fuehrungen und Stossbremsen in der Berechnung vorgenommen. Die Untersuchungen haben ergeben, dass durch die Nichtlinearitaet das Frequenzverhalten der Struktur und die Dissipation von Energie durch Reibvorgaenge wesentlich beeinflusst werden. Des Weiteren ist festzustellen, dass aus linearen Analysen nicht uneingeschraenkt konservative Ergebnisse gewonnen werden. Die Relevanz der Beruecksichtigung des nichtlinearen Lagerverhaltens bei einer dynamischen Strukturberechnung wird
Impact of Cross-Axis Structural Dynamics on Validation of Linear Models for Space Launch System
Pei, Jing; Derry, Stephen D.; Zhou Zhiqiang; Newsom, Jerry R.
2014-01-01
A feasibility study was performed to examine the advisability of incorporating a set of Programmed Test Inputs (PTIs) during the Space Launch System (SLS) vehicle flight. The intent of these inputs is to provide validation to the preflight models for control system stability margins, aerodynamics, and structural dynamics. During October 2009, Ares I-X program was successful in carrying out a series of PTI maneuvers which provided a significant amount of valuable data for post-flight analysis. The resulting data comparisons showed excellent agreement with the preflight linear models across the frequency spectrum of interest. However unlike Ares I-X, the structural dynamics associated with the SLS boost phase configuration are far more complex and highly coupled in all three axes. This presents a challenge when implementing this similar system identification technique to SLS. Preliminary simulation results show noticeable mismatches between PTI validation and analytical linear models in the frequency range of the structural dynamics. An alternate approach was examined which demonstrates the potential for better overall characterization of the system frequency response as well as robustness of the control design.
Directory of Open Access Journals (Sweden)
O. О. Sudakov
2015-12-01
Full Text Available In present work the Ukrainian National Grid (UNG infrastructure was applied for investigation of synchronization in large networks of interacting neurons. This application is important for solving of modern neuroscience problems related to mechanisms of nervous system activities (memory, cognition etc. and nervous pathologies (epilepsy, Parkinsonism, etc.. Modern non-linear dynamics theories and applications provides powerful basis for computer simulations of biological neuronal networks and investigation of phenomena which mechanisms hardly could be clarified by other approaches. Cubic millimeter of brain tissue contains about 105 neurons, so realistic (Hodgkin-Huxley model and phenomenological (Kuramoto-Sakaguchi, FitzHugh-Nagumo, etc. models simulations require consideration of large neurons numbers.
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
A Solvable Dynamic Principal-Agent Model with Linear Marginal Productivity
Directory of Open Access Journals (Sweden)
Bing Liu
2018-01-01
Full Text Available We study how to design an optimal contract which provides incentives for agent to put forth the desired effort in a continuous time dynamic moral hazard model with linear marginal productivity. Using exponential utility and linear production, three different information structures, full information, hidden actions and hidden savings, are considered in the principal-agent model. Applying the stochastic maximum principle, we solve the model explicitly, where the agent’s optimization problem becomes the principal’s problem of choosing an optimal contract. The explicit solutions to our model allow us to analyze the distortion of allocations. The main effect of hidden actions is a reduction of effort, but the a smaller effect is on the consumption allocation. In the hidden saving case, the consumption distortion almost vanishes but the effort distortion is expanded. In our setting, the agent’s optimal effort is also reduced with the decline of marginal productivity.
Mixed integer linear programming model for dynamic supplier selection problem considering discounts
Directory of Open Access Journals (Sweden)
Adi Wicaksono Purnawan
2018-01-01
Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.
Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas
Energy Technology Data Exchange (ETDEWEB)
Zakir, U.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan); National Centre for Physics, Islamabad (Pakistan)
2013-05-15
The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of η{sub e}−mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of η{sub e}−mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.
Compression dynamics of quasi-spherical wire arrays with different linear mass profiles
International Nuclear Information System (INIS)
Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Grabovski, E. V.; Frolov, I. N.; Laukhin, Ya. N.; Oleinik, G. M.; Ol’khovskaya, O. G.
2016-01-01
Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m_l(θ) ∝ sin"–"1θ and m_l(θ) ∝ sin"–"2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m_l(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m_l(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.
Kinjo, Ken; Uchibe, Eiji; Doya, Kenji
2013-01-01
Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.
DEFF Research Database (Denmark)
Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan
This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...
Classical linear-control analysis applied to business-cycle dynamics and stability
Wingrove, R. C.
1983-01-01
Linear control analysis is applied as an aid in understanding the fluctuations of business cycles in the past, and to examine monetary policies that might improve stabilization. The analysis shows how different policies change the frequency and damping of the economic system dynamics, and how they modify the amplitude of the fluctuations that are caused by random disturbances. Examples are used to show how policy feedbacks and policy lags can be incorporated, and how different monetary strategies for stabilization can be analytically compared. Representative numerical results are used to illustrate the main points.
BEAMPATH: a program library for beam dynamics simulation in linear accelerators
International Nuclear Information System (INIS)
Batygin, Y.K.
1992-01-01
A structured programming technique was used to develop software for space charge dominated beams investigation in linear accelerators. The method includes hierarchical program design using program independent modules and a flexible combination of modules to provide a most effective version of structure for every specific case of simulation. A modular program BEAMPATH was developed for 2D and 3D particle-in-cell simulation of beam dynamics in a structure containing RF gaps, radio-frequency quadrupoles (RFQ), multipole lenses, waveguides, bending magnets and solenoids. (author) 5 refs.; 2 figs
A critical oscillation constant as a variable of time scales for half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2010-01-01
Roč. 60, č. 2 (2010), s. 237-256 ISSN 0139-9918 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scale * half-linear equation * (non)oscillation criteria * Hille-Nehari criteria * Kneser criteria * critical constant * oscillation constant * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0009-7
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
A linear model for estimation of neurotransmitter response profiles from dynamic PET data
Normandin, M.D.; Schiffer, W.K.; Morris, E.D.
2011-01-01
The parametric ntPET model (p-ntPET) estimates the kinetics of neurotransmitter release from dynamic PET data with receptor-ligand radiotracers. Here we introduce a linearization (lp-ntPET) that is computationally efficient and can be applied to single-scan data. lp-ntPET employs a non-invasive reference region input function and extends the LSRRM of Alpert et al. (2003) using basis functions to characterize the time course of neurotransmitter activation. In simulation studies, the temporal p...
Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.
2000-01-01
DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.
DEFF Research Database (Denmark)
Knudsen, Jesper Viese; Bendtsen, Jan Dimon; Andersen, Palle
2016-01-01
In this paper, a self-tuning linear quadratic supervisory regulator using a large-signal state estimator for a diesel driven generator set is proposed. The regulator improves operational efficiency, in comparison to current implementations, by (i) automating the initial tuning process and (ii...... throughout the operating range of the diesel generator....
Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam’s Window*
Onorante, Luca; Raftery, Adrian E.
2015-01-01
Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam’s window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods. PMID:26917859
Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window.
Onorante, Luca; Raftery, Adrian E
2016-01-01
Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam's window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods.
Directory of Open Access Journals (Sweden)
Ken eKinjo
2013-04-01
Full Text Available Linearly solvable Markov Decision Process (LMDP is a class of optimal control problem in whichthe Bellman’s equation can be converted into a linear equation by an exponential transformation ofthe state value function (Todorov, 2009. In an LMDP, the optimal value function and the correspondingcontrol policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunctionproblem in a continuous state using the knowledge of the system dynamics and the action, state, andterminal cost functions.In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in whichthe dynamics of the body and the environment have to be learned from experience. We first perform asimulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynam-ics model on the derived the action policy. The result shows that a crude linear approximation of thenonlinear dynamics can still allow solution of the task, despite with a higher total cost.We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robotplatform. The state is given by the position and the size of a battery in its camera view and two neck jointangles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servocontroller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state costfunctions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics modelperformed equivalently with the optimal linear quadratic controller (LQR. In the non-quadratic task, theLMDP controller with a linear dynamics model showed the best performance. The results demonstratethe usefulness of the LMDP framework in real robot control even when simple linear models are usedfor dynamics learning.
Directory of Open Access Journals (Sweden)
Keita Honjo
Full Text Available After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE. However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan's NDC (nationally determined contribution assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price. Our result clearly shows that consumers' electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%-6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2-2.26 MtCO2 (-4.5% on average compared to the zero-ECE case. The time-varying ECE is necessary for predicting Japan's electricity demand and CO2 emissions after the
Shiraki, Hiroto; Ashina, Shuichi
2018-01-01
After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan’s NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers’ electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%–6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2–2.26 MtCO2 (−4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan’s electricity demand and CO2 emissions after the
Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics
Directory of Open Access Journals (Sweden)
Daniel W.F. Alves
2017-10-01
Full Text Available We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.
International Nuclear Information System (INIS)
Lundsager, P.; Krenk, S.
1975-08-01
The static and dynamic response of a cylindrical/ spherical containment to a Boeing 720 impact is computed using 3 different linear elastic computer codes: FINEL, SAP and STARDYNE. Stress and displacement fields are shown together with time histories for a point in the impact zone. The main conclusions from this study are: - In this case the maximum dynamic load factors for stress and displacements were close to 1, but a static analysis alone is not fully sufficient. - More realistic load time histories should be considered. - The main effects seem to be local. The present study does not indicate general collapse from elastic stresses alone. - Further study of material properties at high rates is needed. (author)
Dynamics and control of quadcopter using linear model predictive control approach
Islam, M.; Okasha, M.; Idres, M. M.
2017-12-01
This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.
Spatiotemporal dynamics of Bose-Einstein condensates in linear- and circular-chain optical lattices
International Nuclear Information System (INIS)
Tsukada, N.
2002-01-01
We investigate the spatiotemporal dynamics of Bose-Einstein condensates in optical lattices that have a linear-or a circular-chain configuration with the tunneling couplings between nearest-neighbor lattice sites. A discrete nonlinear Schroedinger equation has been solved for various initial conditions and for a definite range of repulsive and attractive interatomic interactions. It is shown that the diversity of the spatiotemporal dynamics of the atomic population distribution such as a macroscopic self-trapping, bright and dark solitons, and symmetry breaking is derived from the positive and negative interatomic interactions. For the circular-chain configuration, two types of rotational modes are obtained as we introduce a definite relation for the initial phase conditions
A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar
Ma, Rui; Zheng, Hao; Zhu, Zhangming
2017-08-01
This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.
Rail Brake System Using a Linear Induction Motor for Dynamic Braking
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.
Directory of Open Access Journals (Sweden)
Chao Luo
Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.
Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach
Energy Technology Data Exchange (ETDEWEB)
Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)
2016-06-07
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.
Linear dynamical modes as new variables for data-driven ENSO forecast
Gavrilov, Andrey; Seleznev, Aleksei; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen
2018-05-01
A new data-driven model for analysis and prediction of spatially distributed time series is proposed. The model is based on a linear dynamical mode (LDM) decomposition of the observed data which is derived from a recently developed nonlinear dimensionality reduction approach. The key point of this approach is its ability to take into account simple dynamical properties of the observed system by means of revealing the system's dominant time scales. The LDMs are used as new variables for empirical construction of a nonlinear stochastic evolution operator. The method is applied to the sea surface temperature anomaly field in the tropical belt where the El Nino Southern Oscillation (ENSO) is the main mode of variability. The advantage of LDMs versus traditionally used empirical orthogonal function decomposition is demonstrated for this data. Specifically, it is shown that the new model has a competitive ENSO forecast skill in comparison with the other existing ENSO models.
Camus, Marine; Jensen, Dennis M.; Ohning, Gordon V.; Kovacs, Thomas O.; Ghassemi, Kevin A.; Jutabha, Rome; Machicado, Gustavo A.; Dulai, Gareth S.; Hines, Joel O.
2013-01-01
Background and study aims Cameron ulcers are a rare but clinically significant cause of severe upper gastrointestinal hemorrhage (SUGIH). Our aims were to describe (1) the diagnosis, treatment and outcomes of patients with Cameron ulcers causing hospitalization for SUGIH, (2) the differences between patients with occult vs. overt bleeding and (3) between patients treated surgically and medically. Patients and methods Over the past 17 years, all consecutive patients hospitalized in our two tertiary referral medical centers for severe UGIH or severe obscure GIH and entered into our large prospective databasis were screened for Cameron ulcer diagnosis. Results Cameron ulcers were diagnosed in 25 patients of 3960 patients with SUGIH (0.6%). 21 patients had follow-up (median [IQR] time of 20.4 months [8.5–31.8]). Patients were more often elderly females with chronic anemia, always had large hiatal hernias, and were usually referred for obscure SUGIH. Twelve (57.2%) patients were referred to surgery for rebleeding and recurrent blood loss while treated with high dose of proton pump inhibitors (PPI). 9 (42.8%) other patients continued PPI without any rebleeding during the follow-up. Patients with overt bleeding had significantly more prior hospitalizations for SUGIH, more often stigmata of hemorrhage on ulcers, and more red blood cell transfusions than patients with occult bleeding. However, there was no difference in rebleeding and mortality rates between the two groups. Conclusions Cameron ulcers in large hiatal hernias are an uncommon cause of SUGIH. Most of patients are referred for obscure GIH. The choice of medical vs. surgical therapy should be individualized. PMID:23616128
Valenza, Gaetano; Iozzia, Luca; Cerina, Luca; Mainardi, Luca; Barbieri, Riccardo
2018-05-01
There is a fast growing interest in the use of non-contact devices for health and performance assessment in humans. In particular, the use of non-contact videophotoplethysmography (vPPG) has been recently demonstrated as a feasible way to extract cardiovascular information. Nevertheless, proper validation of vPPG-derived heartbeat dynamics is still missing. We aim to an in-depth validation of time-varying, linear and nonlinear/complex dynamics of the pulse rate variability extracted from vPPG. We apply inhomogeneous pointprocess nonlinear models to assess instantaneous measures defined in the time, frequency, and bispectral domains as estimated through vPPG and standard ECG. Instantaneous complexity measures, such as the instantaneous Lyapunov exponents and the recently defined inhomogeneous point-process approximate and sample entropy, were estimated as well. Video recordings were processed using our recently proposed method based on zerophase principal component analysis. Experimental data were gathered from 60 young healthy subjects (age: 24±3 years) undergoing postural changes (rest-to-stand maneuver). Group averaged results show that there is an overall agreement between linear and nonlinear/complexity indices computed from ECG and vPPG during resting state conditions. However, important differences are found, particularly in the bispectral and complexity domains, in recordings where the subjects has been instructed to stand up. Although significant differences exist between cardiovascular estimates from vPPG and ECG, it is very promising that instantaneous sympathovagal changes, as well as time-varying complex dynamics, were correctly identified, especially during resting state. In addition to a further improvement of the video signal quality, more research is advocated towards a more precise estimation of cardiovascular dynamics by a comprehensive nonlinear/complex paradigm specifically tailored to the non-contact quantification. Schattauer GmbH.
Dynamic aspects of large woody debris in river channels
Vergaro, Alexandra; Caporali, Enrica; Becchi, Ignazio
2015-04-01
Large Woody Debris (LWD) are an integral component of the fluvial environment. They represent an environmental resource, but without doubt they represent also a risk factor for the amplification that could give to the destructive power of a flood event. While countless intervention in river channels have reintroduced wood in rivers with restoration and banks protection aims, during several flash flood events LWD have had a great part in catastrophic consequences, pointing out the urgency of an adequate risk assessment procedure. At present wood dynamics in rivers is not systematically considered within the procedures for the elaboration of hazard maps resulting in loss of prediction accuracy and underestimation of hazard impacts. The assessment inconsistency comes from the complexity of the question: several aspects in wood processes are not yet well known and the superposition of different physical phenomena results in great difficulty to predict critical scenarios. The presented research activity has been aimed to improve management skills for the assessment of the hydrologic risk associated to the presence of large woody debris in rivers, improving knowledge about LWD dynamic processes and proposing effective tools for monitoring and mapping river catchments vulnerability. Utilizing critical review of the published works, field surveys and experimental investigations LWD damaging potential has been analysed to support the identification of the exposed sites and the redaction of hazard maps, taking into account that a comprehensive procedure has to involve: a) Identification of the critical cross sections; b) Evaluation of wood availability in the river catchment; c) Prediction of hazard scenarios through the estimation of water discharge, wood recruitment and entrainment, wood transport and destination. Particularly, a survey sheets form for direct measurements has been implemented and tested in field to provide an investigation instruments for wood and river
Food-web dynamics in a large river discontinuum
Cross, Wyatt F.; Baxter, Colden V.; Rosi-Marshall, Emma J.; Hall, Robert O.; Kennedy, Theodore A.; Donner, Kevin C.; Kelly, Holly A. Wellard; Seegert, Sarah E.Z.; Behn, Kathrine E.; Yard, Michael D.
2013-01-01
Nearly all ecosystems have been altered by human activities, and most communities are now composed of interacting species that have not co-evolved. These changes may modify species interactions, energy and material flows, and food-web stability. Although structural changes to ecosystems have been widely reported, few studies have linked such changes to dynamic food-web attributes and patterns of energy flow. Moreover, there have been few tests of food-web stability theory in highly disturbed and intensely managed freshwater ecosystems. Such synthetic approaches are needed for predicting the future trajectory of ecosystems, including how they may respond to natural or anthropogenic perturbations. We constructed flow food webs at six locations along a 386-km segment of the Colorado River in Grand Canyon (Arizona, USA) for three years. We characterized food-web structure and production, trophic basis of production, energy efficiencies, and interaction-strength distributions across a spatial gradient of perturbation (i.e., distance from Glen Canyon Dam), as well as before and after an experimental flood. We found strong longitudinal patterns in food-web characteristics that strongly correlated with the spatial position of large tributaries. Above tributaries, food webs were dominated by nonnative New Zealand mudsnails (62% of production) and nonnative rainbow trout (100% of fish production). The simple structure of these food webs led to few dominant energy pathways (diatoms to few invertebrate taxa to rainbow trout), large energy inefficiencies (i.e., Below large tributaries, invertebrate production declined ∼18-fold, while fish production remained similar to upstream sites and comprised predominately native taxa (80–100% of production). Sites below large tributaries had increasingly reticulate and detritus-based food webs with a higher prevalence of omnivory, as well as interaction strength distributions more typical of theoretically stable food webs (i
Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations
Energy Technology Data Exchange (ETDEWEB)
Madshus, Christian
1997-07-01
in the laboratory tests. It was also found that models where the hysteretic non-linearity is approximated by any type of viscous or complex stiffness effect will severely overpredict the soil damping of the superimposed load component. The resonant response of dynamic systems with cyclically time-varying stiffness has been studied through numerical simulations and analytical derivations. The responses of these systems have been compared to numerically simulated responses of systems with real hysteretic non-linearity and comparable loading. It has been concluded that the time-varying systems reasonably well reproduce the resonant response of the non-linear systems for most situations. The time-varying system approach is proposed as a candidate method for linearization of dynamic platform foundation response analyses. The thesis recommends investigations for further validation of the findings made in the thesis before the approach may be utilized in platform design. Recommendations are also given on improved methods for platform foundation monitoring systems and for improving elasto-plastic constitutive soil models.
Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach
Akbarov, Surkay D
2015-01-01
This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.
Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.
2017-11-01
Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.
Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic
International Nuclear Information System (INIS)
Bediou, J.; Pasqualini, G.
1992-01-01
Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic
High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers
Directory of Open Access Journals (Sweden)
J.-M. Wu
2012-06-01
Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.
International Nuclear Information System (INIS)
Speliotopoulos, A.D.; Chiao, Raymond Y.
2004-01-01
The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a general laboratory frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves present (GWs), it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic deviation motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field N a , the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects, as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from N a that obey equations of the same form as Maxwell's equations. A gedankin gravitational Aharonov-Bohm-type experiment using N a to measure the interference of quantum test particles is presented
DEFF Research Database (Denmark)
Andreasen, Martin Møller; Christensen, Bent Jesper
This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...
A Linearized Large Signal Model of an LCL-Type Resonant Converter
Directory of Open Access Journals (Sweden)
Hong-Yu Li
2015-03-01
Full Text Available In this work, an LCL-type resonant dc/dc converter with a capacitive output filter is modeled in two stages. In the first high-frequency ac stage, all ac signals are decomposed into two orthogonal vectors in a synchronous rotating d–q frame using multi-frequency modeling. In the dc stage, all dc quantities are represented by their average values with average state-space modeling. A nonlinear two-stage model is then created by means of a non-linear link. By aligning the transformer voltage on the d-axis, the nonlinear link can be eliminated, and the whole converter can be modeled by a single set of linear state-space equations. Furthermore, a feedback control scheme can be formed according to the steady-state solutions. Simulation and experimental results have proven that the resulted model is good for fast simulation and state variable estimation.
Using a grid platform for solving large sparse linear systems over GF(2)
Kleinjung , Thorsten; Nussbaum , Lucas; Thomé , Emmanuel
2010-01-01
International audience; In Fall 2009, the final step of the factorization of rsa768 was carried out on several clusters of the Grid'5000 platform, leading to a new record in integer factorization. This step involves solving a huge sparse linear system defined over the binary field GF(2). This article aims at describing the algorithm used, the difficulties encountered, and the methodology which led to success. In particular, we illustrate how our use of the block Wiedemann algorithm led to a m...
Large Higgs energy region in Higgs associated top pair production at the Linear Collider
International Nuclear Information System (INIS)
Farrell, Cailin; Hoang, Andre H.
2005-01-01
The process e + e - →ttH is considered in the kinematic end point region where the Higgs energy is close to its maximal energy. In perturbative QCD, using the loop expansion, the amplitudes are plagued by Coulomb singularities that need to be resummed. We show that the QCD dynamics in this end point region is governed by nonrelativistic heavy quarkonium dynamics, and we use a nonrelativistic effective theory to compute the Higgs energy distribution at leading and next-to-leading-logarithmic approximation in the nonrelativistic expansion. Updated numbers for the total cross section including the summations in the Higgs energy end point region are presented
McCaskill, John
There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.
Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
International Nuclear Information System (INIS)
Lee, Hwang; Kok, Pieter; Dowling, Jonathan P.; Cerf, Nicolas J.
2002-01-01
We propose a method for preparing maximal path entanglement with a definite photon-number N, larger than two, using projective measurements. In contrast with the previously known schemes, our method uses only linear optics. Specifically, we exhibit a way of generating four-photon, path-entangled states of the form vertical bar 4,0>+ vertical bar 0,4>, using only four beam splitters and two detectors. These states are of major interest as a resource for quantum interferometric sensors as well as for optical quantum lithography and quantum holography
A large-scale linear complementarity model of the North American natural gas market
International Nuclear Information System (INIS)
Gabriel, Steven A.; Jifang Zhuang; Kiet, Supat
2005-01-01
The North American natural gas market has seen significant changes recently due to deregulation and restructuring. For example, third party marketers can contract for transportation and purchase of gas to sell to end-users. While the intent was a more competitive market, the potential for market power exists. We analyze this market using a linear complementarity equilibrium model including producers, storage and peak gas operators, third party marketers and four end-use sectors. The marketers are depicted as Nash-Cournot players determining supply to meet end-use consumption, all other players are in perfect competition. Results based on National Petroleum Council scenarios are presented. (Author)
Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang
2018-03-01
Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the
Definition of a reference metrology network for the positioning of a large linear accelerator
International Nuclear Information System (INIS)
Becker, F.
2003-12-01
This thesis is a study of the Compact Linear Collider (CLIC) alignment system, a project of linear accelerator of about 30 km long of the European Organization for Nuclear Research (CERN). The pre-alignment tolerance on the transverse positions of the components of the CLIC linacs is typically ten microns over distances of 200 m. This research is a consequence of 10 years work, where several sets of special sensors dedicated to metrology have been adapted for the CLIC project. Most of these sensors deliver measurements linked to geometric references sensitive to gravity fluctuation. An important part of this work is therefore dedicated to study the gravity disruptions as a high level of accuracy is required. The parameters to take into account in the use of the hydrostatic leveling have thus been highlighted. A proposal of configuration of the system alignment based on a selection of sensors has also been given in this research. Computer models of different possible configurations have been presented. As the existing computing software was inappropriate, a new object oriented software package has been developed, to ensure future upgrades. An optimized configuration of the network has been defined from a set of simulations. Finally, due to problems in the use of hydrostatic leveling systems, a solution based on the use of a long laser beam as an alternative solution is discussed. (author)
Spatiotemporal dynamics of large-scale brain activity
Neuman, Jeremy
Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some
Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection
Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng
2018-02-01
Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.
International Nuclear Information System (INIS)
Ma Huanfei; Lin Wei
2009-01-01
The existing adaptive synchronization technique based on the stability theory and invariance principle of dynamical systems, though theoretically proved to be valid for parameters identification in specific models, is always showing slow convergence rate and even failed in practice when the number of parameters becomes large. Here, for parameters update, a novel nonlinear adaptive rule is proposed to accelerate the rate. Its feasibility is validated by analytical arguments as well as by specific parameters identification in the Lotka-Volterra model with multiple species. Two adjustable factors in this rule influence the identification accuracy, which means that a proper choice of these factors leads to an optimal performance of this rule. In addition, a feasible method for avoiding the occurrence of the approximate linear dependence among terms with parameters on the synchronized manifold is also proposed.
Dynamic Modeling and Analysis of the Large-Scale Rotary Machine with Multi-Supporting
Directory of Open Access Journals (Sweden)
Xuejun Li
2011-01-01
Full Text Available The large-scale rotary machine with multi-supporting, such as rotary kiln and rope laying machine, is the key equipment in the architectural, chemistry, and agriculture industries. The body, rollers, wheels, and bearings constitute a chain multibody system. Axis line deflection is a vital parameter to determine mechanics state of rotary machine, thus body axial vibration needs to be studied for dynamic monitoring and adjusting of rotary machine. By using the Riccati transfer matrix method, the body system of rotary machine is divided into many subsystems composed of three elements, namely, rigid disk, elastic shaft, and linear spring. Multiple wheel-bearing structures are simplified as springs. The transfer matrices of the body system and overall transfer equation are developed, as well as the response overall motion equation. Taken a rotary kiln as an instance, natural frequencies, modal shape, and response vibration with certain exciting axis line deflection are obtained by numerical computing. The body vibration modal curves illustrate the cause of dynamical errors in the common axis line measurement methods. The displacement response can be used for further measurement dynamical error analysis and compensation. The response overall motion equation could be applied to predict the body motion under abnormal mechanics condition, and provide theory guidance for machine failure diagnosis.
Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider
Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A
2009-01-01
Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...
Directory of Open Access Journals (Sweden)
Paulo José Guimarães Da-Silva
Full Text Available Abstract Introduction In this work, the effect of a dynamic visual stimulation (DS protocol was used to induce egomotion, the center of pressure (COP displacement response. Methods DS was developed concerning the scenario structure (chessboard-pattern floor and furniture and luminance. To move the scenario in a discrete forward (or backward direction, the furniture is expanded (or reduced and the black and white background is reversed during floor translation while the luminance is increased (or reduced by steps of 2 cd/m2. This protocol was evaluated using COP signals from 29 healthy volunteers: standing on a force platform observing the virtual scene (1.72 × 1.16 m projected 1 m ahead (visual incidence angle: θl = 81.4° and θv = 60.2°, which moves with constant velocity (2 m/s during 250 ms. A set of 100 DS was applied in random order, interspersed by a 10 s of static scene. Results The Tukey post-hoc test (p < 0.001 indicated egomotion in the same direction of DS. COP displacement increased over stimulation (8.4 ± 1.7 to 22.6 ±5.3 mm, as well as time to recover stability (4.1 ± 0.4 to 7.2 ± 0.6 s. The peak of egomotion during DSF occurred 200 ms after DSB (Wilcoxon, p = 0.002. Conclusion The dynamic configuration of this protocol establishes virtual flow effects of linear egomotion dependent on the direction of the dynamic visual stimulation. This finding indicates the potential application of the proposed virtual dynamic stimulation protocol to investigate the cortical visual evoked response in postural control studies.
Imprint of non-linear effects on HI intensity mapping on large scales
Energy Technology Data Exchange (ETDEWEB)
Umeh, Obinna, E-mail: umeobinna@gmail.com [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)
2017-06-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.
Examining secular trend and seasonality in count data using dynamic generalized linear modelling
DEFF Research Database (Denmark)
Lundbye-Christensen, Søren; Dethlefsen, Claus; Gorst-Rasmussen, Anders
series regression model for Poisson counts. It differs in allowing the regression coefficients to vary gradually over time in a random fashion. Data In the period January 1980 to 1999, 17,989 incidents of acute myocardial infarction were recorded in the county of Northern Jutland, Denmark. Records were......Aims Time series of incidence counts often show secular trends and seasonal patterns. We present a model for incidence counts capable of handling a possible gradual change in growth rates and seasonal patterns, serial correlation and overdispersion. Methods The model resembles an ordinary time...... updated daily. Results The model with a seasonal pattern and an approximately linear trend was fitted to the data, and diagnostic plots indicate a good model fit. The analysis with the dynamic model revealed peaks coinciding with influenza epidemics. On average the peak-to-trough ratio is estimated...
Optimal Stochastic Control Problem for General Linear Dynamical Systems in Neuroscience
Directory of Open Access Journals (Sweden)
Yan Chen
2017-01-01
Full Text Available This paper considers a d-dimensional stochastic optimization problem in neuroscience. Suppose the arm’s movement trajectory is modeled by high-order linear stochastic differential dynamic system in d-dimensional space, the optimal trajectory, velocity, and variance are explicitly obtained by using stochastic control method, which allows us to analytically establish exact relationships between various quantities. Moreover, the optimal trajectory is almost a straight line for a reaching movement; the optimal velocity bell-shaped and the optimal variance are consistent with the experimental Fitts law; that is, the longer the time of a reaching movement, the higher the accuracy of arriving at the target position, and the results can be directly applied to designing a reaching movement performed by a robotic arm in a more general environment.
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.
2012-09-01
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)
2012-09-15
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
Normal form analysis of linear beam dynamics in a coupled storage ring
International Nuclear Information System (INIS)
Wolski, Andrzej; Woodley, Mark D.
2004-01-01
The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillation amplitude as in the uncoupled case. Application of this analysis to the online modeling of the PEP-II rings is also discussed
Approximating high-dimensional dynamics by barycentric coordinates with linear programming
Energy Technology Data Exchange (ETDEWEB)
Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Shiro, Masanori [Department of Mathematical Informatics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mathematical Neuroinformatics Group, Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, Nozomu; Mas, Paloma [Center for Research in Agricultural Genomics (CRAG), Consorci CSIC-IRTA-UAB-UB, Barcelona 08193 (Spain)
2015-01-15
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.
A Dynamic Linear Hashing Method for Redundancy Management in Train Ethernet Consist Network
Directory of Open Access Journals (Sweden)
Xiaobo Nie
2016-01-01
Full Text Available Massive transportation systems like trains are considered critical systems because they use the communication network to control essential subsystems on board. Critical system requires zero recovery time when a failure occurs in a communication network. The newly published IEC62439-3 defines the high-availability seamless redundancy protocol, which fulfills this requirement and ensures no frame loss in the presence of an error. This paper adopts these for train Ethernet consist network. The challenge is management of the circulating frames, capable of dealing with real-time processing requirements, fast switching times, high throughout, and deterministic behavior. The main contribution of this paper is the in-depth analysis it makes of network parameters imposed by the application of the protocols to train control and monitoring system (TCMS and the redundant circulating frames discarding method based on a dynamic linear hashing, using the fastest method in order to resolve all the issues that are dealt with.
Dynamic actuation of a novel laser-processed NiTi linear actuator
International Nuclear Information System (INIS)
Pequegnat, A; Daly, M; Wang, J; Zhou, Y; Khan, M I
2012-01-01
A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys. (paper)
Non-linear dynamics of the passivity breakdown of iron in acidic solutions
Sazou, D
2003-01-01
Breakdown of the iron passivity in acid solutions accompanied by current oscillations was investigated by using electrochemical techniques, which reveal the non-linear dynamical response of the system in the current-potential (I-E) and current-time (I-t) planes. Current oscillations of the Fe-electrolyte electrochemical system were studied in the (a) absence and (b) presence of chlorides. In case (a) two oscillatory regions were distinguished; one at low potentials associated with the formation-dissolution of a ferrous salt and another at higher potentials associated with the formation-breakdown of the oxide film. Chaotic oscillations appear in the former region whereas periodic oscillations of a relaxation type appear in the latter region. In case (b), complex periodic and aperiodic oscillations are induced by small amounts of chlorides due to pitting corrosion. Pitting corrosion is a multistage localized process of a great technological importance. It consists of a local breakdown of the passive oxide film ...
Non linear dynamics of memristor based 3rd order oscillatory system
Talukdar, Abdul Hafiz Ibne
2012-07-23
In this paper, we report for the first time the nonlinear dynamics of three memristor based phase shift oscillators, and consider them as a plausible solution for the realization of parametric oscillation as an autonomous linear time variant system. Sustained oscillation is reported through oscillating resistance while time dependent poles are present. The memristor based phase shift oscillator is explored further by varying the parameters so as to present the resistance of the memristor as a time varying parameter, thus potentially eliminating the need of external periodic forces in order for it to oscillate. Multi memristors, used simultaneously with similar and different parameters, are investigated in this paper. Mathematical formulas for analyzing such oscillators are verified with simulation results and are found to be in good agreement. © 2011 Elsevier Ltd. All rights reserved.
Modeling and comparison of superconducting linear actuators for highly dynamic motion
Directory of Open Access Journals (Sweden)
Bruyn B.J.H. de
2015-12-01
Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.
Approximating high-dimensional dynamics by barycentric coordinates with linear programming
International Nuclear Information System (INIS)
Hirata, Yoshito; Aihara, Kazuyuki; Suzuki, Hideyuki; Shiro, Masanori; Takahashi, Nozomu; Mas, Paloma
2015-01-01
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data
Approximating high-dimensional dynamics by barycentric coordinates with linear programming.
Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma
2015-01-01
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.
Simulations of fluid flow through porous media based on cellular automata and non-linear dynamics
Energy Technology Data Exchange (ETDEWEB)
Paulson, K V
1992-05-15
A study is being carried out to apply cellular automata and non-linear dynamics in the construction of efficient and accurate computer simulations of multiphase fluid flow through porous media, with the objective of application to reservoir modelling for hydrocarbon recovery. An algorithm based on Boolean operations has been developed which transforms a PC clone into a highly efficient vector processor capable of cellular automata simulation of single fluid flow through two-dimensional rock matrix models of varying porosities. Macroscopic flow patterns have been established through spatial and temporal averaging with no floating point operations. Permeabilities of the different models have been calculated. Hardware allows the algorithm to function on dual processors on a PC platform using a video recording and editing facility. Very encouraging results have been obtained. 4 figs.
Dynamical chaos in a linear 3. alpha. system. Dinamicheskij khaos v linejnoj 3. alpha. -sisteme
Energy Technology Data Exchange (ETDEWEB)
Bolotin, Yu L; Gonchar, V Yu; Chekanov, N A [AN Ukrainskoj SSR, Kharkov (Ukrainian SSR). Fiziko-Tekhnicheskij Inst.; Vinitskij, S I [Joint Inst. for Nuclear Research, Dubna (USSR)
1989-01-01
Classical dynamics of the motion of a molecular model of the carbon nucleus, which is a linear 3{alpha} system with realistic {alpha}{alpha} interaction is studied. Transition from a regular to a chaos motion in the nuclear molecule is shown to occur with growing energy more rapidly than in model problems with polynomial potentials. It is found that in a small region of the phase space the motion remains regular at energies higher than the 3{alpha}-system dissociation threshold. This is probably related to the C{sub 3v}-symmetry violation. Formulas for the quasiclassical spectrum of the 3{alpha} system are obtained with the use of the Birkhoff normal form.
Directory of Open Access Journals (Sweden)
Wen-Min Zhou
2013-01-01
Full Text Available This paper is concerned with the consensus problem of general linear discrete-time multiagent systems (MASs with random packet dropout that happens during information exchange between agents. The packet dropout phenomenon is characterized as being a Bernoulli random process. A distributed consensus protocol with weighted graph is proposed to address the packet dropout phenomenon. Through introducing a new disagreement vector, a new framework is established to solve the consensus problem. Based on the control theory, the perturbation argument, and the matrix theory, the necessary and sufficient condition for MASs to reach mean-square consensus is derived in terms of stability of an array of low-dimensional matrices. Moreover, mean-square consensusable conditions with regard to network topology and agent dynamic structure are also provided. Finally, the effectiveness of the theoretical results is demonstrated through an illustrative example.
Directory of Open Access Journals (Sweden)
M. de la Sen
2010-01-01
Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.
Directory of Open Access Journals (Sweden)
Tarasenko Alexandr
2016-01-01
Full Text Available The paper is aimed at determining the possibility of applying the simplified method proposed by the authors to calculate the tank seismic resistance in compliance with current regulations and scientific provisions. The authors propose a highly detailed numerical model for a common oil storage tank RVSPK-50000 that enables static operational loads and dynamic action of earthquakes to be calculated. Within the modal analysis the natural oscillation frequencies in the range of 0-10 Hz were calculated; the results are given for the first ten modes. The model takes into account the effect of impulsive and convective components of hydrodynamic pressure during earthquakes. Within the spectral analysis by generalized response spectra was calculated a general stress-strain state of a structure during earthquakes of 7, 8, 9 intensity degrees on the MSK-64 scale for a completely filled up, a half-filled up to the mark of 8.5 m and an empty RVSPK-50000 tank. The developed finite element model can be used to perform calculations of seismic resistance by the direct dynamic method, which will give further consideration to the impact of individual structures (floating roof, support posts, adjoined elements of added stiffness on the general stress-strain state of a tank.
Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators
Energy Technology Data Exchange (ETDEWEB)
Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-03-02
In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.
Jacobson, Daniel; Stratt, Richard M.
2014-05-01
Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.
Solving sparse linear least squares problems on some supercomputers by using large dense blocks
DEFF Research Database (Denmark)
Hansen, Per Christian; Ostromsky, T; Sameh, A
1997-01-01
technique is preferable to sparse matrix technique when the matrices are not large, because the high computational speed compensates fully the disadvantages of using more arithmetic operations and more storage. For very large matrices the computations must be organized as a sequence of tasks in each......Efficient subroutines for dense matrix computations have recently been developed and are available on many high-speed computers. On some computers the speed of many dense matrix operations is near to the peak-performance. For sparse matrices storage and operations can be saved by operating only...... and storing only nonzero elements. However, the price is a great degradation of the speed of computations on supercomputers (due to the use of indirect addresses, to the need to insert new nonzeros in the sparse storage scheme, to the lack of data locality, etc.). On many high-speed computers a dense matrix...
Palanisamy, Duraivelan; den Otter, Wouter K.
2018-05-01
We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.
Dynamic wedge, electron energy and beam profile Q.A. using an ionization chamber linear array
International Nuclear Information System (INIS)
Kenny, M.B.; Todd, S.P.
1996-01-01
Since the introduction of multi-modal linacs the quality assurance workload of a Physical Sciences department has increased dramatically. The advent of dynamic wedges has further complicated matters because of the need to invent accurate methods to perform Q.A. in a reasonable time. We have been using an ionization chamber linear array, the Thebes 7000 TM by Victoreen, Inc., for some years to measure X-ray and electron beam profiles. Two years ago we developed software to perform Q.A. on our dynamic wedges using the array and more recently included a routine to check electron beam energies using the method described by Rosenow, U.F. et al., Med. Phys. 18(1) 19-25. The integrated beam and profile management system has enabled us to maintain a comprehensive quality assurance programme on all our linaccs. Both our efficiency and accuracy have increased to the point where we are able to keep up with the greater number of tests required without an increase in staff or hours spent in quality assurance. In changing the processor from the Z80 of the Thebes console to the 486 of the PC we have also noticed a marked increase in the calibration stability of the array. (author)
Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.
Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen
2016-12-01
In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Welsch, Dominic Markus
2010-03-10
The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a
SAP-4, Static and Dynamic Linear System Stress Analysis for Various Structures
International Nuclear Information System (INIS)
Zawadzki, S.
1984-01-01
1 - Description of problem or function: SAP4 is a structural analysis program for determining the static and dynamic response of linear systems. The structural systems to be analyzed may be composed of combinations of a number of different structural elements. Currently the program contains the following element types - (a) three-dimensional truss element, (b) three-dimensional beam element, (c) plane stress and plane strain element, (d) two-dimensional axisymmetric solid, (e) three-dimensional solid, (f) variable-number nodes thick shell and three-dimensional element, (g) thin-plate or thin-shell element, (h) boundary element, and (i) pipe element (tangent and bend). 2 - Method of solution: The formation of the structure matrices is carried out in the same way in a static or dynamic analysis. The static analysis is continued by solving the equations of equilibrium followed by the computation of element stresses. In a dynamic analysis the choice is between frequency calculations only, frequency calculations followed by response history analysis, frequency calculations followed by response spectrum analysis, or response history analysis by direct integration. To obtain the frequencies and vibration mode shapes, solution routines are used which calculate the required eigenvalues and eigenvectors directly without a transformation of the structure stiffness matrix and mass matrix to a reduced form. To perform the direct integration an unconditionally stable scheme is used, which also operates on the original structure stiffness matrix and mass matrix. In this manner the program operation and input data required for a dynamic analysis are simple extensions of those needed for a static analysis. 3 - Restrictions on the complexity of the problem: The capacity of the program depends mainly on the total number of nodal points in the system, the number of eigenvalues needed in the dynamic analysis, and the computer used. There is practically no restriction on the number of
International Nuclear Information System (INIS)
Chandra, S.; Grimm, R.A.; Katz, R.; Thomas, J.D.
1996-01-01
The aim of this study was to better understand and characterize left atrial appendage flow in atrial fibrillation. Atrial fibrillation and flutter are the most common cardiac arrhythmias affecting 15% of the older population. The pulsed Doppler velocity profile data was recorded from the left atrial appendage of patients using transesophageal echocardiography. The data was analyzed using Fourier analysis and nonlinear dynamical tools. Fourier analysis showed that appendage mechanical frequency (f f ) for patients in sinus rhythm was always lower (around1 Hz) than that in atrial fibrillation (5-8 Hz). Among patients with atrial fibrillation spectral power below f f was significantly different suggesting variability within this group of patients. Results that suggested the presence of nonlinear dynamics were: a) the existence of two arbitrary peak frequencies f 1 , f 2 , and other peak frequencies as linear combinations thereof (mf 1 ±nf 2 ), and b) the similarity between the spectrum of patient data and that obtained using the Lorenz equation. Nonlinear analysis tools, including Phase plots and differential radial plots, were also generated from the velocity data using a delay of 10. In the phase plots, some patients displayed a torus-like structure, while others had a more random-like pattern. In the differential radial plots, the first set of patients (with torus-like phase plots) showed fewer values crossing an arbitrary threshold of 10 than did the second set (8 vs. 27 in one typical example). The outcome of cardioversion was different for these two set of patients. Fourier analysis helped to: differentiate between sinus rhythm and atrial fibrillation, understand the characteristics of the wide range of atrial fibrillation patients, and provide hints that atrial fibrillation could be a nonlinear process. Nonlinear dynamical tools helped to further characterize and sub-classify atrial fibrillation
International Nuclear Information System (INIS)
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Poor glycemic control impacts linear and non-linear dynamics of heart rate in DM type 2
Directory of Open Access Journals (Sweden)
Daniela Bassi
2015-08-01
Full Text Available INTRODUCTION: It is well known that type 2 diabetes mellitus (T2DM produces cardiovascular autonomic neuropathy (CAN, which may affect the cardiac autonomic modulation. However, it is unclear whether the lack of glycemic control in T2DM without CAN could impact negatively on cardiac autonomic modulation. Objective: To evaluate the relationship between glycemic control and cardiac autonomic modulation in individuals with T2DM without CAN. Descriptive, prospective and cross sectional study.METHODS: Forty-nine patients with T2DM (51±7 years were divided into two groups according to glycosylated hemoglobin (HbA1c: G1≤7% and G2>7.0%. Resting heart rate (HR and RR interval (RRi were obtained and calculated by linear (Mean iRR; Mean HR; rMSSD; STD RR; LF; HF; LF/HF, TINN and RR Tri, and non-linear (SD1; SD2; DFα1; DFα2, Shannon entropy; ApEn; SampEn and CD methods of heart rate variability (HRV. Insulin, HOMA-IR, fasting glucose and HbA1c were obtained by blood tests.RESULTS: G2 (HbA1c≤7% showed lower values for the mean of iRR; STD RR; RR Tri, TINN, SD2, CD and higher mean HR when compared with G1 (HbA1c > 7%. Additionally, HbA1c correlated negatively with mean RRi (r=0.28, p=0.044; STD RR (r=0.33, p=0.017; RR Tri (r=-0.35, p=0.013, SD2 (r=-0.39, p=0.004 and positively with mean HR (r=0.28, p=0.045. Finally, fasting glucose correlated negatively with STD RR (r=-0.36, p=0.010; RR Tri (r=-0.36, p=0.010; TINN (r=-0.33, p=0.019 and SD2 (r=-0.42, p=0.002.CONCLUSION: We concluded that poor glycemic control is related to cardiac autonomic modulation indices in individuals with T2DM even if they do not present cardiovascular autonomic neuropathy.
Modeling non-linear micromechanics of hydrogels using dissipative particle dynamics
Nikolov, Svetoslav; Fernandez-Nieves, Alberto; Alexeev, Alexander
In response to an appropriate external stimulus microgels are capable of undergoing large and reversible changes in volume (10-20 times) which has made them attractive as microscopic actuators and drug delivery agents. However, the mechanics of microgels is not well understood in part due to inhomogeneities within the network. Full-scale atomistic modeling of micrometer-sized gel networks is currently not possible due to the large length and time scales involved. We develop a mesoscale model based on dissipative particle dynamics to examine the mechanics of microgels in solvent. By varying the osmotic pressure of the gels we probe the changes in bulk modulus for different values of the Flory-Huggins parameter. We examine how the bulk modulus depends on inhomogeneities we introduce within the gel structure by altering the crosslink density and by embedding rigid nanoparticles. Financial support provided by NSF CAREER Award (DMR-1255288) and NSF Graduate Research Fellowship, Grant No. DGE-1650044.
Energy Technology Data Exchange (ETDEWEB)
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun
2018-05-01
In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.
International Nuclear Information System (INIS)
Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Crocker, N.A.; Kubota, S.; Heidbrink, W.W.; Yuh, H.
2011-01-01
The National Spherical Torus Experiment (NSTX, (Ono et al 2000 Nucl. Fusion 40 557)) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast /v Alfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
International Nuclear Information System (INIS)
Podesta, M.; Bell, R.E.; Crocker, N.A.; Fredrickson, E.D.; Gorelenkov, N.N.; Heidbrink, W.W.; Kubota, S.; LeBlanc, B.P.; Yu, H.
2011-01-01
The National Spherical Torus Experiment (NSTX, (M. Ono et al., Nucl. Fusion 40, 557 (2000))) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast /v Alfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
Energy Technology Data Exchange (ETDEWEB)
Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P
2011-04-26
The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
Souza, Naiara M; Giacon, Thais R; Pacagnelli, Francis L; Barbosa, Marianne P C R; Valenti, Vitor E; Vanderlei, Luiz C M
2016-10-01
Autonomic diabetic neuropathy is one of the most common complications of type 1 diabetes mellitus, and studies using heart rate variability to investigate these individuals have shown inconclusive results regarding autonomic nervous system activation. Aims To investigate the dynamics of heart rate in young subjects with type 1 diabetes mellitus through nonlinear and linear methods of heart rate variability. We evaluated 20 subjects with type 1 diabetes mellitus and 23 healthy control subjects. We obtained the following nonlinear indices from the recurrence plot: recurrence rate (REC), determinism (DET), and Shanon entropy (ES), and we analysed indices in the frequency (LF and HF in ms2 and normalised units - nu - and LF/HF ratio) and time domains (SDNN and RMSSD), through analysis of 1000 R-R intervals, captured by a heart rate monitor. There were reduced values (p<0.05) for individuals with type 1 diabetes mellitus compared with healthy subjects in the following indices: DET, REC, ES, RMSSD, SDNN, LF (ms2), and HF (ms2). In relation to the recurrence plot, subjects with type 1 diabetes mellitus demonstrated lower recurrence and greater variation in their plot, inter-group and intra-group, respectively. Young subjects with type 1 diabetes mellitus have autonomic nervous system behaviour that tends to randomness compared with healthy young subjects. Moreover, this behaviour is related to reduced sympathetic and parasympathetic activity of the autonomic nervous system.
Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method
International Nuclear Information System (INIS)
Sapienza, Alessio; Santamaria, Salvatore; Frazzica, Andrea; Freni, Angelo; Aristov, Yuri I.
2014-01-01
Highlights: • We have carried out a dynamic study of adsorbers. • Activity performed by new gravimetric version of the Large Temperature Jump method. • The kinetics measurements have been carried out under real operating conditions. • Results can support the design of adsorbers for adsorption cooling systems. - Abstract: This paper presents a new experimental setup devoted to measure the ad-/desorption kinetics of an Ad-HEX (adsorbent + heat exchanger) under typical boundary conditions of an Adsorption Heat Transformer (AHT) as well as the results of the first test campaign carried out. The experimental apparatus can be considered as a gravimetric version of the known Large Temperature Jump method. In fact, the dynamic evolution of the uptake during the isobaric ad-/desorption stages is directly measured by a weighing system suitable to work in the range of 5–600 g of sample mass (adsorbent + HEX) with the accuracy ±0.1 g and the time response shorter than 0.1 s The experimental campaign was conducted on an Ad-HEX composed of granules of a commercial SAPO-34 adsorbent placed on a flat type aluminum HEX, under operating conditions reproducing two different thermodynamic cycles (T h = 90 °C, T e = 10 °C, T c = 30 and 35 °C), typical for adsorption air conditioning. The influence of the grain size (ranging from 0.350 to 2.5 mm) on the adsorption dynamics both in monolayer and multilayer configurations at variable and constant “heat transfer surface/adsorbent mass” ratios (S/m) was studied. The results showed that, for the Ad-HEX configurations tested, the adsorption dynamics can be properly described by a modified Linear Driving Force approach by the use of a single temperature-invariant characteristic time τ. The invariance of the specific cooling power was revealed when the S/m ratio was kept constant (S/m = 1.23 m 2 /kg). This ratio is found to be a useful parameter for both assessment of the dynamic perfection and optimization of various Ad
A large dynamic range radiation-tolerant analog memory in a quarter- micron CMOS technology
Anelli, G; Rivetti, A
2001-01-01
An analog memory prototype containing 8*128 cells has been designed in a commercial quarter-micron CMOS process. The aim of this work is to investigate the possibility of designing large dynamic range mixed-mode switched capacitor circuits for high-energy physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant. The memory cells employ gate-oxide capacitors for storage, permitting a very high density. A voltage write-voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (the power supply voltage V/sub DD/ is equal to 2.5 V), with a linearity of almost 8 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is +or-0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after 1...
A large dynamic range radiation tolerant analog memory in a quarter micron CMOS technology
Anelli, G; Rivetti, A
2000-01-01
A 8*128 cell analog memory prototype has been designed in a commercial 0.25 jam CMOS process. The aim of this work was to investigate the possibility of designing large dynamic range mixed- mode switched capacitor circuits for High-Energy Physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant left bracket 1 right bracket . The memory cells employ gate-oxide capacitors for storage, allowing for a very high density. A voltage write - voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (V//D//D = 2.5 V), with a linearity of at least 7.5 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is plus or minus 0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after lOMrd (...
A Gossip-based Churn Estimator for Large Dynamic Networks
Giuffrida, C.; Ortolani, S.
2010-01-01
Gossip-based aggregation is an emerging paradigm to perform distributed computations and measurements in a large-scale setting. In this paper we explore the possibility of using gossip-based aggregation to estimate churn in arbitrarily large networks. To this end, we introduce a new model to compute
Pradanti, Paskalia; Hartono
2018-03-01
Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.
Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi
2017-10-11
We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.
Shimojo, Fuyuki; Hattori, Shinnosuke; Kalia, Rajiv K.; Kunaseth, Manaschai; Mou, Weiwei; Nakano, Aiichiro; Nomura, Ken-ichi; Ohmura, Satoshi; Rajak, Pankaj; Shimamura, Kohei; Vashishta, Priya
2014-05-01
We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at the peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 106-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques
International Nuclear Information System (INIS)
Shimojo, Fuyuki; Hattori, Shinnosuke; Kalia, Rajiv K.; Mou, Weiwei; Nakano, Aiichiro; Nomura, Ken-ichi; Rajak, Pankaj; Vashishta, Priya; Kunaseth, Manaschai; Ohmura, Satoshi; Shimamura, Kohei
2014-01-01
We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at the peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10 6 -atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of
Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J
2013-01-01
Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.
Large-Scale Spatial Dynamics of Intertidal Mussel (
Folmer, E.O.; Drent, J.; Troost, K.; Büttger, H.; Dankers, N.; Jansen, J.; van Stralen, M.; Millat, G.; Herlyn, M.; Philippart, C.J.M.
2014-01-01
Intertidal blue mussel beds are important for the functioning and community composition of coastal ecosystems. Modeling spatial dynamics of intertidal mussel beds is complicated because suitable habitat is spatially heterogeneously distributed and recruitment and loss are hard to predict. To get
Energy Technology Data Exchange (ETDEWEB)
Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K
1967-12-15
The numerical deconvolution of spectra is equivalent to the solution of a (large) system of linear equations with a matrix which is not necessarily a square matrix. The demand that the square sum of the residual errors shall be minimum is not in general sufficient to ensure a unique or 'sound' solution. Therefore other demands which may include the demand for minimum square errors are introduced which lead to 'sound' and 'non-oscillatory' solutions irrespective of the shape of the original matrix and of the determinant of the matrix of the normal equations.
Physical and dynamical properties of the anomalous comet 249P/LINEAR
Fernández, Julio A.; Licandro, Javier; Moreno, Fernando; Sosa, Andrea; Cabrera-Lavers, Antonio; de León, Julia; Birtwhistle, Peter
2017-10-01
Images and low-resolution spectra of the near-Earth Jupiter family comet (JFC) 249P/LINEAR in the visible range obtained with the instrument OSIRIS in the 10.4 m Gran Telescopio Canarias (GTC) (La Palma, Spain) on January 3, 4, 6 and February 6, 2016 are presented, together with a series of images obtained with the 0.4m telescope of the Great Shefford Observatory obtained on Oct. 22 and 27, and Nov. 1 and 24, 2006. The reflectance spectrum of 249P is similar to that of a B-type asteroid. The comet has an absolute (visual) nuclear magnitude HV = 17.0 ± 0.4 , which corresponds to a radius of about 1-1.3 km for a geometric albedo ∼ 0.04 - 0.07 . From the analysis of GTC images using a Monte Carlo dust tail code we find that the time of maximum dust ejection rate was around 1.6 days before perihelion. The analysis of the dust tails during the 2006 and 2016 perihelion approaches reveals that, during both epochs, the comet repeated the same dust ejection pattern, with a similar short-lived activity period of about 20 days (FWHM) around perihelion and a dust loss rate peaking at 145 ± 50 kg/s. The total dust mass ejected during its last perihelion passage was (2.5 ± 0.9) × 108 kg, almost all this mass being emitted before the first observation of January 3, 2016. The activity onset, duration, and total ejected mass were very similar during the 2006 perihelion passage. This amount of dust mass is very low as compared with that from other active JFCs. The past orbital evolution of 249P and 100 clones were also followed over a time scale of ∼ 5 × 104 yr. The object and more than 60% of the clones remained bound to the near-Earth region for the whole computed period, keeping its perihelion distance within the range q ≃ 0.4 - 1.1 au. The combination of photometric and spectroscopic observations and dynamical studies show that the near-Earth comet 249P/LINEAR has several peculiar features that clearly differentiate it from typical JFCs. We may be in front of a new
International Nuclear Information System (INIS)
Clarisse, J.M.
2007-01-01
A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)
Assessment of linear and nonlinear/complex heartbeat dynamics in subclinical depression (dysphoria).
Greco, Alberto; Messerotti Benvenuti, Simone; Gentili, Claudio; Palomba, Daniela; Scilingo, Enzo Pasquale; Valenza, Gaetano
2018-03-29
Depression is one of the leading causes of disability worldwide. Most previous studies have focused on major depression, and studies on subclinical depression, such as those on so-called dysphoria, have been overlooked. Indeed, dysphoria is associated with a high prevalence of somatic disorders, and a reduction of quality of life and life expectancy. In current clinical practice, dysphoria is assessed using psychometric questionnaires and structured interviews only, without taking into account objective pathophysiological indices. To address this problem, in this study we investigated heartbeat linear and nonlinear dynamics to derive objective autonomic nervous system biomarkers of dysphoria. Sixty undergraduate students participated in the study: according to clinical evaluation, 24 of them were dysphoric. Extensive group-wise statistics was performed to characterize the pathological and control groups. Moreover, a recursive feature elimination algorithm based on a K-NN classifier was carried out for the automatic recognition of dysphoria at a single-subject level. The results showed that the most significant group-wise differences referred to increased heartbeat complexity (particularly for fractal dimension, sample entropy and recurrence plot analysis) with regards to the healthy controls, confirming dysfunctional nonlinear sympatho-vagal dynamics in mood disorders. Furthermore, a balanced accuracy of 79.17% was achieved in automatically distinguishing dysphoric patients from controls, with the most informative power attributed to nonlinear, spectral and polyspectral quantifiers of cardiovascular variability. This study experimentally supports the assessment of dysphoria as a defined clinical condition with specific characteristics which are different both from healthy, fully euthymic controls and from full-blown major depression.
Statistical properties of the linear σ model used in dynamical simulations of DCC formation
International Nuclear Information System (INIS)
Randrup, J.
1997-01-01
The present work develops a simple approximate framework for initializing and interpreting dynamical simulations with the linear σ model exploring the formation of disoriented chiral condensates in high-energy collisions. By enclosing the system in a rectangular box with periodic boundary conditions, it is possible to decompose uniquely the chiral field into its spatial average (the order parameter) and its fluctuations (the quasiparticles) which can be treated in the Hartree approximation. The quasiparticle modes are then described approximately by Klein-Gordon dispersion relations containing an effective mass depending on both the temperature and the magnitude of the order parameter; their fluctuations are instrumental in shaping the effective potential governing the order parameter, and the emerging statistical description is thermodynamicially consistent. The temperature dependence of the statistical distribution of the order parameter is discussed, as is the behavior of the associated effective masses; as the system is cooled, the field fluctuations subside, causing a smooth change from the high-temperature phase in which chiral symmetry is approximately restored towards the normal phase. Of practical interest is the fact that the equilibrium field configurations can be sampled in a simple manner, thus providing a convenient means for specifying the initial conditions in dynamical simulations of the nonequilibrium relaxation of the chiral field; in particular, the correlation function is much more realistic than those emerging in previous initialization methods. It is illustrated how such samples remain approximately invariant under propagation by the unapproximated equation of motion over times that are long on the scale of interest, thereby suggesting that the treatment is sufficiently accurate to be of practical utility. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Culver, T.B.
1991-01-01
Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced
Seo, J.; Nakamura, F.; Chun, K.; Grant, G. E.
2011-12-01
In-stream large wood (LW) has a critical impact on the geomorphic and ecological character in river catchments, yet relatively little is known about variations in its dynamics and subsequent export in relation to different precipitation patterns and intensities. To understand these variations we used the annual volume of LW removed from 42 reservoirs in Japan and daily precipitation at or near the reservoir sites. Daily precipitation data were transformed into effective precipitation to evaluate trends in both current and antecedent precipitation, and these data were then used to explain basin variation in LW export. Model selection with generalized linear mixed models revealed that the precipitation pattern and intensity controlling LW export in small, intermediate, and large watersheds differed with latitude along the Japanese archipelago. LW export in small watersheds was well explained by effective precipitation greater than 120 mm, and showed little latitudinal variation. In contrast, LW export in intermediate and large watersheds was well explained by daily precipitation greater than 40 mm and 60 mm, respectively, and varied with latitude. In small watersheds with narrow channels and low stream discharges, mass movements (such as landslides and debris flows) are major factors in the production and transport of LW. Thus LW export in small watersheds appears to be regulated by the effective precipitation required to initiate mass movements, and shows little latitudinal change. In intermediate and large watersheds with wide channels and high stream discharges, heavy rainfall and subsequent floods regulate buoyant depth influencing the initiation of LW mobility, and thus control the amount of LW exported. In southern and central Japan, intense rainfall accompanying typhoons or localized torrential downpours lead to geomorphic disturbances, which produce massive amounts of LW delivery into channels. However, these pieces are constantly removed by high streamflows
International Nuclear Information System (INIS)
Bhattacharya, Deb Sankar; Majumdar, Nayana; Sarkar, S.; Bhattacharya, S.; Mukhopadhyay, Supratik; Bhattacharya, P.; Attie, D.; Colas, P.; Ganjour, S.; Bhattacharya, Aparajita
2016-01-01
The principal particle tracker at the International Linear Collider (ILC) is planned to be a large Time Projection Chamber (TPC) where different Micro Pattern Gaseous Detector (MPGDs) candidate as the gaseous amplifier. A Micromegas (MM) based TPC can meet the ILC requirement of continuous and precise pattern recognition. Seven MM modules, working as the end-plate of a Large Prototype TPC (LPTPC) installed at DESY, have been tested with a 5 GeV electron beam. Due to the grounded peripheral frame of the MM modules, at low drift, the electric field lines near the detector edge remain no longer parallel to the TPC axis. This causes signal loss along the boundaries of the MM modules as well as distortion in the reconstructed track. In presence of magnetic field, the distorted electric field introduces ExB effect
Study and realization of an electron linear accelerator. Dynamics of accelerated electrons
International Nuclear Information System (INIS)
Bernard, J.
1966-12-01
The theoretical characteristics of the electron linear accelerator are: 30 MeV for the energy W S and 250 mA for the peak current I c . The main utilization is the intense production of fast neutrons by the reactions (γ,n) and (γ,f) induced in a target of natural uranium by the accelerated electrons. In the first part of the thesis, relative to the study and the realization of the accelerator, a new equation of dispersion is established analytically when the guide is loaded with round-edged irises. The relation is compared with the equation established by CHU and Hansen, WALKINSHAW, KVASIL in the case of a guide loaded with flat-edged irises. The experimental and theoretical curves of dispersion are compared. The accuracy of every relation of dispersion is estimated. The second part of the thesis is relative to the theoretical study of the electrons dynamics in the guide; it allows the derivation of the parameters of the beam: dispersion of phase, energy, dispersion of energy and the relation W S = f (I c ). The results relative to the first experiments are given and compared with the theoretical expectations. (author) [fr
Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium
Energy Technology Data Exchange (ETDEWEB)
Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)
2016-02-15
Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.
Chun, Tae Yoon; Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho
2018-06-01
In this paper, we propose two multirate generalised policy iteration (GPI) algorithms applied to discrete-time linear quadratic regulation problems. The proposed algorithms are extensions of the existing GPI algorithm that consists of the approximate policy evaluation and policy improvement steps. The two proposed schemes, named heuristic dynamic programming (HDP) and dual HDP (DHP), based on multirate GPI, use multi-step estimation (M-step Bellman equation) at the approximate policy evaluation step for estimating the value function and its gradient called costate, respectively. Then, we show that these two methods with the same update horizon can be considered equivalent in the iteration domain. Furthermore, monotonically increasing and decreasing convergences, so called value iteration (VI)-mode and policy iteration (PI)-mode convergences, are proved to hold for the proposed multirate GPIs. Further, general convergence properties in terms of eigenvalues are also studied. The data-driven online implementation methods for the proposed HDP and DHP are demonstrated and finally, we present the results of numerical simulations performed to verify the effectiveness of the proposed methods.
Global dynamics for switching systems and their extensions by linear differential equations
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-01
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Role of size on the relative importance of fluid dynamic losses in linear cryocoolers
Kirkconnell, Carl; Ghavami, Ali; Ghiaasiaan, S. Mostafa; Perrella, Matthew
2017-12-01
Thermodynamic modeling results for a novel small satellite (SmallSat) Stirling Cryocooler, capable of delivering over 200 mW net cooling power at 80 K for less than 6 W DC input power, are used in this paper as the basis for related pulse tube computational fluid dynamics (CFD) analysis. Industry and government requirements for SmallSat infrared sensors are driving the development of ever-more miniaturized cryocooler systems. Such cryocoolers must be extremely compact and lightweight, a challenge met by this research team through operating a Stirling cryocooler at a frequency of approximately 300 Hz. The primary advantage of operating at such a high frequency is that the required compression and expansion swept volumes are reduced relative to linear coolers operating at lower frequencies, which evidently reduces the size of the motor mechanisms and the thermodynamic components. In the case of a pulse tube cryocooler, this includes a reduction in diameter of the pulse tube itself. This unfortunately leads to high boundary layer losses, as the presented results demonstrate. Using a Stirling approach with a mechanical moving expander piston eliminates this small pulse tube loss mechanism, but other challenges are introduced, such as maintaining very tight clearance gaps between moving and stationary elements. This paper focuses on CFD modelling results for a highly miniaturized pulse tube cooler.
Global dynamics for switching systems and their extensions by linear differential equations.
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-15
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro
2017-06-01
Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).
Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*
International Nuclear Information System (INIS)
Huang Li; Wu Xin; Huang Guo-Qing; Mei Li-Jie
2017-01-01
This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically. (paper)
Zero-dynamics principle for perfect quantum memory in linear networks
International Nuclear Information System (INIS)
Yamamoto, Naoki; James, Matthew R
2014-01-01
In this paper, we study a general linear networked system that contains a tunable memory subsystem; that is, it is decoupled from an optical field for state transportation during the storage process, while it couples to the field during the writing or reading process. The input is given by a single photon state or a coherent state in a pulsed light field. We then completely and explicitly characterize the condition required on the pulse shape achieving the perfect state transfer from the light field to the memory subsystem. The key idea to obtain this result is the use of zero-dynamics principle, which in our case means that, for perfect state transfer, the output field during the writing process must be a vacuum. A useful interpretation of the result in terms of the transfer function is also given. Moreover, a four-node network composed of atomic ensembles is studied as an example, demonstrating how the input field state is transferred to the memory subsystem and what the input pulse shape to be engineered for perfect memory looks like. (paper)
Zero-dynamics principle for perfect quantum memory in linear networks
Yamamoto, Naoki; James, Matthew R.
2014-07-01
In this paper, we study a general linear networked system that contains a tunable memory subsystem; that is, it is decoupled from an optical field for state transportation during the storage process, while it couples to the field during the writing or reading process. The input is given by a single photon state or a coherent state in a pulsed light field. We then completely and explicitly characterize the condition required on the pulse shape achieving the perfect state transfer from the light field to the memory subsystem. The key idea to obtain this result is the use of zero-dynamics principle, which in our case means that, for perfect state transfer, the output field during the writing process must be a vacuum. A useful interpretation of the result in terms of the transfer function is also given. Moreover, a four-node network composed of atomic ensembles is studied as an example, demonstrating how the input field state is transferred to the memory subsystem and what the input pulse shape to be engineered for perfect memory looks like.
Higher-Twist Dynamics in Large Transverse Momentum Hadron Production
International Nuclear Information System (INIS)
Francois, Alero
2009-01-01
A scaling law analysis of the world data on inclusive large-p # perpendicular# hadron production in hadronic collisions is carried out. A significant deviation from leading-twist perturbative QCD predictions at next-to-leading order is reported. The observed discrepancy is largest at high values of x # perpendicular# = 2p # perpendicular#/√s. In contrast, the production of prompt photons and jets exhibits the scaling behavior which is close to the conformal limit, in agreement with the leading-twist expectation. These results bring evidence for a non-negligible contribution of higher-twist processes in large-p # perpendicular# hadron production in hadronic collisions, where the hadron is produced directly in the hard subprocess rather than by gluon or quark jet fragmentation. Predictions for scaling exponents at RHIC and LHC are given, and it is suggested to trigger the isolated large-p # perpendicular# hadron production to enhance higher-twist processes.
Crouch, R.S.; Bennett, T.
2000-01-01
This paper presents results and observations from the use of a rigorous method of treating the dynamic far-field as part of a non-linear FE analysis. The technique de-veloped by Wolf and Song (referred to as the Scaled Boundary Finite-Element Method) is incorporated into a 3-D time-domain analysis
Guillemin, Ernst A
2013-01-01
An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.
SNAG AND LARGE WOODY DEBRIS DYNAMICS IN RIPARIAN FORESTS
Important components of riparian forests are snags and streamside large woody debris (LWD) because they are functional in maintaining water quality and providing habitat for numerous plants and animals. To effectively manage riparian forests, it is important to understand the dy...
Linear beam dynamics and ampere class superconducting RF cavities at RHIC
Calaga, Rama R.
The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half
Abramov, R. V.
2011-12-01
Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.
Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics
Directory of Open Access Journals (Sweden)
Dubljević Stevan
2003-01-01
Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.
Chen, Ying-Ying; Jin, Fei-Fei
2018-03-01
The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.
Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach
Haddad, Wassim M
2011-01-01
Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami
Fluid phonons, protoinflationary dynamics and large-scale gravitational fluctuations
Giovannini, Massimo
2013-01-01
We explore what can be said on the effective temperature and sound speed of a statistical ensemble of fluid phonons present at the onset of a conventional inflationary phase. The phonons are the actual normal modes of the gravitating and irrotational fluid that dominates the protoinflationary dynamics. The bounds on the tensor to scalar ratio result in a class of novel constraints involving the slow roll parameter, the sound speed of the phonons and the temperature of the plasma prior to the onset of inflation. If the current size of the Hubble radius coincides with the inflationary event horizon redshifted down to the present epoch, the sound speed of the phonons can be assessed from independent measurements of the tensor to scalar ratio and of the tensor spectral index.
International Nuclear Information System (INIS)
Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.
2014-01-01
Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times
Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System
DEFF Research Database (Denmark)
Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul
2015-01-01
wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...
Energy Technology Data Exchange (ETDEWEB)
Friedrich, R
1977-04-07
The invention concerns a magnetically levitated railway with common reaction rail for the linear motor drive and the electrical side guidance arrangement. While the electro-dynamic hovering process requires a high electrical conductivity of the reaction rails in order to reduce eddy current losses, these should show a relatively high resistance for the asynchronous linear motor to reduce losses of propelling force. These contradictory requirements can be fulfilled for a common reaction rail made of homogeneous material of high electrical conductivity according to the invention, by providing slits at right angles to the driving axis in the part of the reaction rail allocated to the linear motor. Thus the guidance system retains a low ohmic resistance, while the part of the reaction rail allocated to the windings of the linear motor has a relatively low ohmic secondary resistance, by which the border and end effects which reduce the propelling force can be appreciably reduced.
International Nuclear Information System (INIS)
Ascension, Yudy; Alfonso, Rodolfo; Silvestre, Ileana
2009-01-01
Once installed and accepted, a system for stereotactic radiosurgery / stereotactic radiotherapy (CERs / RTE) requires, before starting to be used clinically in patients undergoing a process of commissioning dosimetry, which evaluates all geometric parameters, physical, Dosimetric and technical impact on the precision and accuracy of treatment to administer, and therefore its effectiveness. This process includes training and familiarization of the multidisciplinary team (medical physicists, radiation oncologists, neurosurgeons, dosimetrists, biomedical engineers) with the equipment and techniques used, the quality assurance program and special radiation protection standards for this technology. The aim of this work is to prepare the pre-clinical dosimetric conditions to ensure the quality and radiation safety of treatment with CER RTE. Treatment with CER RTE INOR has a linear accelerator equipped with a micro-multileaf collimator dynamic tertiary (dMLC 3Dline). The system aceleradordMLC geometric and dosimetric was calibrated, using ionization chambers miniature, diode and film dosimetry. The immobilization of the patient and location of the lesion is made by both invasive stereotactic frames and relocatable. The computerized planning of the CER / TEN is done with the ERGO system, for which commissioning is designed test cases of increasing complexity, using planes and anthropomorphic dummies, which help assess the accuracy of the dosimetric calculations and accuracy of the system as a whole. We compared the results of the planning system with measurements, showing that the discrepancies are within tolerances, so it is concluded that from the standpoint of physical dosimetry, the system-under-ERGO accelerator MLC is eligible for clinical use. (author)
Non linear dynamic of Langmuir and electromagnetic waves in space plasmas
International Nuclear Information System (INIS)
Guede, Jose Ricardo Abalde
1995-11-01
The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the
A non-linear dynamical approach to belief revision in cognitive behavioral therapy
Kronemyer, David; Bystritsky, Alexander
2014-01-01
Belief revision is the key change mechanism underlying the psychological intervention known as cognitive behavioral therapy (CBT). It both motivates and reinforces new behavior. In this review we analyze and apply a novel approach to this process based on AGM theory of belief revision, named after its proponents, Carlos Alchourrón, Peter Gärdenfors and David Makinson. AGM is a set-theoretical model. We reconceptualize it as describing a non-linear, dynamical system that occurs within a semantic space, which can be represented as a phase plane comprising all of the brain's attentional, cognitive, affective and physiological resources. Triggering events, such as anxiety-producing or depressing situations in the real world, or their imaginal equivalents, mobilize these assets so they converge on an equilibrium point. A preference function then evaluates and integrates evidentiary data associated with individual beliefs, selecting some of them and comprising them into a belief set, which is a metastable state. Belief sets evolve in time from one metastable state to another. In the phase space, this evolution creates a heteroclinic channel. AGM regulates this process and characterizes the outcome at each equilibrium point. Its objective is to define the necessary and sufficient conditions for belief revision by simultaneously minimizing the set of new beliefs that have to be adopted, and the set of old beliefs that have to be discarded or reformulated. Using AGM, belief revision can be modeled using three (and only three) fundamental syntactical operations performed on belief sets, which are expansion; revision; and contraction. Expansion is like adding a new belief without changing any old ones. Revision is like adding a new belief and changing old, inconsistent ones. Contraction is like changing an old belief without adding any new ones. We provide operationalized examples of this process in action. PMID:24860491
Lee, S. H.; Shulika, Olga.; Kim, K. N.; Yeom, G. Y.; Lee, J. K.
2004-09-01
As the technology of plasma processing progresses, there is a continuing demand for higher plasma density, uniformity over large areas and greater control over plasma parameters to optimize the processes of etching, deposition and surface treatment. Traditionally, the external planar ICP sources with low pressure high density plasma have limited scale-up capabilities due to its high impedance accompanied by the large antenna size. Also due to the cost and thickness of their dielectric material in order to generate uniform plasma. In this study the novel internal-type linear inductive antenna system (1,020mm¡¿830mm¡¿437mm) with permanent magnet arrays are investigated to improve both the plasma density and the uniformity of LAPS (Large Area Plasma Source) for FPD processing. Generally plasma discharges are enhanced because the inductance of the novel antenna (termed as the double comb antenna) is lower than that of the serpentine-type antenna and also the magnetic confinement of electron increases the power absorption efficiency. The uniformity is improved by reducing the standing wave effect. The total length of antenna is comparable to the driving rf wavelength to cause the plasma nonuniformity. To describe the discharge phenomenon we have developed a magnetized two-dimensional fluid simulation. This work was supported by National Research Laboratory (NRL) Program of the Korea Ministry of Science and Technology. [References] 1. J.K.Lee, Lin Meng, Y.K.Shin, H,J,Lee and T.H.Chung, ¡°Modeling and Simulation of a Large-Area Plasma Source¡±, Jpn. J. Appl. Phys. Vol.36(1997) pp. 5714-5723 2. S.E.Park, B.U.Cho, Y.J.Lee*, and G.Y.Yeom*, and J.K.Lee, ¡°The Characteristics of Large Area Processing Plasmas¡±, IEEE Trans. Plasma Sci., Vol.31 ,No.4(2003) pp. 628-637
Some Fluid Dynamic Effects in Large-Scale MHD Generators
Energy Technology Data Exchange (ETDEWEB)
Hunt, J. C.R. [University of Warwick, Coventry (United Kingdom)
1966-10-15
At the present time we are unable to carry out a complete analysis of the fluid dynamics and electrodynamics of an MHD generator. However, various aspects of the behaviour of an MHD generator may be examined by the use of simplified models, for example: (1) one-dimensional gas dynamics (Louis et al. 1964); (2) the current distribution can be found if the velocity is assumed constant across the duct (Witalis, 1965); (3) the skin friction and heat transfer to the walls can be calculated by boundary layer analysis if the flow is assumed to be laminar (Kerrebrock, 1961), and (4) a complete description of the velocity and current distribution across the duct can be given if the flow is assumed to be uniform, laminar, incompressible and not varying in the flow direction (Hunt and Stewartson, 1965). Taken together, these and other models will enable us to describe most of the effects in an MHD generator. In this paper another simplification is considered in which the electromagnetic forces are assumed to be much larger than the inertial forces. The ratio of these two forces is measured by the parameter, S = aB{sup 2}{sub 0}d/pU, where o is the conductivity, B{sub 0} the magnetic field, d the width of the duct, p the density and U the mean velocity. Thus S >> 1. We also assume that the magnetic Reynolds number is very much less than one. In the largest experimental generators now being built S {approx} 2 . Thus, though the results of this model are not immediately applicable, they should indicate the effects of increasing the magnetic field strength and the size of MHD generators. When S >> 1, one can can consider the duct to be divided into 2 regions: (1) a core region where electromagnetic forces are balanced by the pressure gradient and where inertial as well as viscous forces are negligible, and (2) boundary layers on the walls where again inertial forces are negligible but where the viscous, electromagnetic and pressure forces are of the same order. We show how it is
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K
1968-09-15
From the point of view that no mathematical method can ever minimise or alter errors already made in a physical measurement, the classical least squares method has severe limitations which makes it unsuitable for the statistical analysis of many physical measurements. Based on the assumptions that the experimental errors are characteristic for each single experiment and that the errors must be properly estimated rather than minimised, a new method for solving large systems of linear equations is developed. The new method exposes the entire range of possible solutions before the decision is taken which of the possible solutions should be chosen as a representative one. The choice is based on physical considerations which (in two examples, curve fitting and unfolding of a spectrum) are presented in such a form that a computer is able to make the decision, A description of the computation is given. The method described is a tool for removing uncertainties due to conventional mathematical formulations (zero determinant, linear dependence) and which are not inherent in the physical problem as such. The method is therefore especially well fitted for unfolding of spectra.
International Nuclear Information System (INIS)
Nygaard, K.
1968-09-01
From the point of view that no mathematical method can ever minimise or alter errors already made in a physical measurement, the classical least squares method has severe limitations which makes it unsuitable for the statistical analysis of many physical measurements. Based on the assumptions that the experimental errors are characteristic for each single experiment and that the errors must be properly estimated rather than minimised, a new method for solving large systems of linear equations is developed. The new method exposes the entire range of possible solutions before the decision is taken which of the possible solutions should be chosen as a representative one. The choice is based on physical considerations which (in two examples, curve fitting and unfolding of a spectrum) are presented in such a form that a computer is able to make the decision, A description of the computation is given. The method described is a tool for removing uncertainties due to conventional mathematical formulations (zero determinant, linear dependence) and which are not inherent in the physical problem as such. The method is therefore especially well fitted for unfolding of spectra
Experimental study on dynamic behavior of large scale foundation, 1
International Nuclear Information System (INIS)
Hanada, Kazufumi; Sawada, Yoshihiro; Esashi, Yasuyuki; Ueshima, Teruyuki; Nakamura, Hideharu
1983-01-01
The large-sized, high performance vibrating table in the Nuclear Power Engineering Test Center is installed on a large-scale concrete foundation of length 90.9 m, width 44.8 m and maximum thickness 21 m, weighing 150,000 tons. Through the experimental study on the behavior of the foundation, which is set on gravel ground, useful information should be obtained on the siting of a nuclear power plant on the Quaternary stratum ground. The objective of research is to grasp the vibration characteristics of the foundation during the vibration of the table to evaluate the interaction between the foundation and the ground, and to evaluate an analytical method for numerically simulating the vibration behavior. In the present study, the vibration behavior of the foundation was clarified by measurement, and in order to predict the vibration behavior, the semi-infinite theory of elasticity was applied. The accuracy of this analytical method was demonstrated by comparison with the measured results. (Mori, K.)
Sagar, Rizwan Ur Rehman; Galluzzi, Massimiliano; Wan, Caihua; Shehzad, Khurram; Navale, Sachin T; Anwar, Tauseef; Mane, Rajaram S; Piao, Hong-Guang; Ali, Abid; Stadler, Florian J
2017-01-18
Here, we present the first observation of magneto-transport properties of graphene foam (GF) composed of a few layers in a wide temperature range of 2-300 K. Large room-temperature linear positive magnetoresistance (PMR ≈ 171% at B ≈ 9 T) has been detected. The largest PMR (∼213%) has been achieved at 2 K under a magnetic field of 9 T, which can be tuned by the addition of poly(methyl methacrylate) to the porous structure of the foam. This remarkable magnetoresistance may be the result of quadratic magnetoresistance. The excellent magneto-transport properties of GF open a way toward three-dimensional graphene-based magnetoelectronic devices.
Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash
2010-01-01
Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint.
Li, Xiaoniu; Yao, Zhiyuan; Yang, Mojian
2017-06-01
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint is proposed in this paper. The motor is comprised of a V-shaped transducer, a slider, a clamp, and a base. The V-shaped transducer consists of two piezoelectric beams connected through a flexible joint to form an appropriate coupling angle. The V-shaped motor is operated in the coupled longitudinal-bending mode. Longitudinal and bending movements are transferred by the flexible joint between the two beams. Compared with the coupled longitudinal-bending mode of the single piezoelectric beam or the symmetrical and asymmetrical modes of the previous V-shaped transducer, the coupled longitudinal-bending mode of the V-shaped transducer with a flexible joint provides higher vibration efficiency and more convenient mode conformance adjustment. A finite element model of the V-shaped transducer is created to numerically study the influence of geometrical parameters and to determine the final geometrical parameters. In this paper, three prototypes were then fabricated and experimentally investigated. The modal test results match well with the finite element analysis. The motor mechanical output characteristics of three different coupling angles θ indicate that V-90 (θ = 90°) is the optimal angle. The mechanical output experiments conducted using the V-90 prototype (Size: 59.4 mm × 30.7 mm × 4 mm) demonstrate that the maximum unloaded speed is 1.2 m/s under a voltage of 350 Vpp, and the maximum output force is 15 N under a voltage of 300 Vpp. The proposed novel V-shaped linear ultrasonic motor has a compact size and a simple structure with a large thrust-weight ratio (0.75 N/g) and high speed.
Impact parameter dynamics in quantum theory in large angle scattering
International Nuclear Information System (INIS)
Andriyanov, A.A.
1975-01-01
High energy behaviour of a free particle Green's function is studied for construction of the scattering amplitude. The main part of the Green's function is determined by eikonal scattering along the mean moment and by the total scattering along the transfered momentum. This ''impact'' approximation may be included as a first approximation in the iteration scheme for the scattering amplitude along the mean momentum, i.e. the ''impact'' perturbation theory. With the help of the ''impact'' approximation an expansion of the scattering amplitude in the impact parameter depending on interaction is obtained. These expansions are more correct than the eikonal expansions at large angle scattering. The results are illustrated grafically foe the exponential and the Yukawa potentials
DEFF Research Database (Denmark)
Borg, Michael; Hansen, Anders Melchior; Bredmose, Henrik
2016-01-01
to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations...