WorldWideScience

Sample records for large horseshoe shaped

  1. Intraspecific shape variation in horseshoe crabs: the importance of sexual and natural selection for local adaptation

    DEFF Research Database (Denmark)

    Faurby, Søren; Nielsen, Kasper Sauer Kollerup; Bussarawit, Somchai

    2011-01-01

    . Differences in shape variation between sexes were tested with F-tests, which showed lower intrapopulation morphometric variation in males than females. These results indicate a lower degree of local adaptation on body shape in C. rotundicauda and T. gigas than in L. polyphemus and a lower degree of local......A morphometric analysis of the body shape of three species of horseshoe crabs was undertaken in order to infer the importance of natural and sexual selection. It was expected that natural selection would be most intense, leading to highest regional differentiation, in the American species Limulus...... polyphemus, which has the largest climatic differences between different populations. Local adaptation driven by sexual selection was expected in males but not females because horseshoe crab mating behaviour leads to competition between males, but not between females. Three hundred fifty-nine horseshoe crabs...

  2. A dynamic ultrasonic emitter inspired by horseshoe bat noseleaves.

    Science.gov (United States)

    Fu, Yanqing; Caspers, Philip; Müller, Rolf

    2016-04-29

    The emission of biosonar pulses in horseshoe bats (family Rhinolophidae) differs from technical sonar in that it has dynamic features at the interface to the free field. When the horseshoe bats emit their biosonar pulses through the nostrils, the walls of a horn-shaped baffle (anterior leaf) are in motion while diffracting the outgoing ultrasonic wave packets. Here, biomimetic reproductions of the dynamic emission shapes of horseshoe bats have been studied for their ability to impose time-variant signatures onto the outgoing pulses. It was found that an elliptical sound outlet with rotating baffles that were attached along the direction of the major axis can be well suited for this purpose. Most importantly, concave baffle shapes were found to produce strongly time-dependent devices characteristics that could reach a root-mean-square-difference between beampatterns of almost 6 dB within a rotation angle of 10°. In contrast to this, a straight baffle shape needs to be rotated over 60° for a similar result. When continuously rotated in synchrony with the emitted pulses, the concave biomimetic baffles produced time-variant device characteristics that depended jointly on direction, frequency, and time. Since such device properties are so easily produced, it appears well worthwhile to explore their use in engineering.

  3. Horseshoeing: An Overview

    Directory of Open Access Journals (Sweden)

    A. S. Karle

    2010-06-01

    Full Text Available The horseshoeing is one of the oldest surviving traditional craft popularly known as “Farriery”. Shoeing was invented because even the best footed horses would become foot sore when traveling long distance or carrying heavy load. Physiological horseshoeing can be defined as the process that promotes a healthy functional foot, bio-mechanical efficiency and prevents lameness. A horse shoe is simply a bar of steel which is bent to the shape of the hoof and nailed to it. Different varieties of horses require different styles of shoeing. Shoe protects the foot from bruising, splitting and wearing, provides working comfort and also prevents sliping. Additionally, it is advocated in treatment of hoof defects. Assessment of horse shoeing includes measurement of hoof angle, position of hoof balance, tubular alignment of toe with heel, position of medio-lateral imbalance, tubular alignment of the toe alone, status of dorso-palmar balance along with hoof pastern axis and so also the hoof symmetry in contest to status of sole. Neglecting regular attention to a horse’s feet, whether shoed or not, can easily cause problems which can be hard to correct. [Vet. World 2010; 3(3.000: 148-151

  4. Complicated Horseshoe Kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Kim, S. R.; Cha, K. S.; Park, S. S. [Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2010-05-15

    Horseshoe kidney is an important urological anomaly when it is complicated or accompanied by other diseases. Recently we have experienced four cases of horseshoe kidney which were complicated with hydronephrosis, renal stone and adrenal pheochromocytoma. With review of literatures, we emphasize the importance of detection of these complications.

  5. Complicated Horseshoe Kidney

    International Nuclear Information System (INIS)

    Kim, K. S.; Kim, S. R.; Cha, K. S.; Park, S. S.

    2010-01-01

    Horseshoe kidney is an important urological anomaly when it is complicated or accompanied by other diseases. Recently we have experienced four cases of horseshoe kidney which were complicated with hydronephrosis, renal stone and adrenal pheochromocytoma. With review of literatures, we emphasize the importance of detection of these complications.

  6. Horseshoe lung with multiple congenital anomalies

    International Nuclear Information System (INIS)

    Hawass, N.D.; Badawi, M.G.; Fatani, J.A.; Meshari, A.A.; Edrees, Y.B.

    1987-01-01

    A detailed radiologic and anatomic study of a 20-week old fetus is presented. In addition to conventional radiography, various contrast medium injection techniques were used. The findings were followed up at autopsy. The fetus showed multiple congenital abnormalities comprising phocomelia, horseshoe lung, horseshoe kidney, urethral stenosis with megacystis, bilateral hydronephrosis, hydroureters, imperforate anus, and a single tracheo-esophageal tube (persistent esophago-trachea). The association of horseshoe lung with persistent esophago-trachea, microurethra, megacystis, bilateral hydroureters, hydronephrosis and phocomelia is, we believe, the first ever to have been recorded in the literature. Twenty-one cases of horseshoe lung have been reported in the literature. These cases were reviewed and a comparison with the present case is presented. The embryologic basis for these anomalies is also briefly discussed. (orig.)

  7. Multimodality imaging spectrum of complications of horseshoe kidney

    Directory of Open Access Journals (Sweden)

    Hardik U Shah

    2017-01-01

    Full Text Available Horseshoe kidney is the most common congenital renal fusion anomaly with an incidence of 1 in 400–600 individuals. The most common type is fusion at the lower poles seen in greater than 90% of the cases, with the rest depicting fusion at the upper poles, resulting in an inverted horseshoe kidney. Embryologically, there are two theories hypothesizing the genesis of horseshoe kidney – mechanical fusion theory and teratogenic event theory. As an entity, horseshoe kidney is an association of two anatomic anomalies, namely, ectopia and malrotation. It is also associated with other anomalies including vascular, calyceal, and ureteral anomalies. Horseshoe kidney is prone to a number of complications due to its abnormal position as well as due to associated vascular and ureteral anomalies. Complications associated with horseshoe kidney include pelviureteric junction obstruction, renal stones, infection, tumors, and trauma. It can also be associated with abnormalities of cardiovascular, central nervous, musculoskeletal and genitourinary systems, as well as chromosomal abnormalities. Conventional imaging modalities (plain films, intravenous urogram as well as advanced cross-sectional imaging modalities (ultrasound, computed tomography, and magnetic resonance imaging play an important role in the evaluation of horseshoe kidney. This article briefly describes the embryology and anatomy of the horseshoe kidney, enumerates appropriate imaging modalities used for its evaluation, and reviews cross-sectional imaging features of associated complications.

  8. [Traumatic rupture of a horseshoe kidney].

    Science.gov (United States)

    Pascual Samaniego, M; Bravo Fernández, I; Ruiz Serrano, M; Ramos Martín, J A; Lázaro Méndez, J; García González, A

    2006-04-01

    One-third to one-half of all patients with horseshoe kidney are asymptomatic and the condition is found incidentally. This congenital renal anomaly has shown as a predisponent condition for renal injury in blunt abdominal trauma, but often the degree of injury has a nonoperative therapy. Horseshoe kidney rupture is an exceptional pathology that require a complete diagnostic study to make an adequate management when surgical therapy is indicated. We present a fifteen-year-old male with previously unsuspected horseshoe kidney that suffered an atypical right upper-pole and mesorrenal kidney rupture after low-velocity-impact blunt abdominal trauma. A correct presurgical diagnose let a deferred surgical approach with right lower pole and horseshoe renal isthmus preservation. The trauma conditions, an excesive clinic manifestation, a clinical investigation about known congenital simultaneous anomallies and typical radiological signs, can suggest this infrequent patology. Computed tomography provides the best radiological information.

  9. Our percutaneous nephrolitotomy experience in patients with horseshoe kidney

    Directory of Open Access Journals (Sweden)

    Tufan Suelozgen

    2015-07-01

    Full Text Available Objectives: Horseshoe kidney is the most common renal congenital fusion anomaly. Kidney stone formation is more common in horseshoe kidneys and some of them requires surgical procedure. So we want to evaluate the results of PNL in patients with horseshoe kidney anomaly. Matherial and method: Between January 2009-January 2014 PNL operation was performed in 6 patients with horseshoe kidney anomaly in our clinic. Success of surgery and postoperative/peroperative complications were evalutaed retrospectively. Results: No severe complications occured in any patient caused by surgery. Three patients became stonefree. One patient had less than 4 mm. residual stone, two patients had more than 4 mm. residual stone. Conclusion: PNL is safe surgical method and it can be performed successfully in patients with horseshoe kidney anomaly.

  10. Epibiotic community of the horseshoe crab Tachypleus gigas

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    Horseshoe crabs act as moving substrata for simple to complex communities of small marine organisms. Amplexed adult pairs migrate for breeding once every 2 weeks from deep waters towards nearshore waters during highest high tide. Female horseshoe...

  11. A robotic reproduction of the dynamic sonar sensing in Horseshoe bats

    Science.gov (United States)

    Goodman, Brandon; Castro, Rebecca; Fu, Yanqing; Mueller, Rolf; Philen, Michael

    2014-04-01

    Horseshoe bats (family Rhinolophidae) are a group of bats with a particularly sophisticated biosonar system that allows them to navigate and pursue prey in dense and complex living areas. One conspicuous feature of horseshoe bat biosonar is that the pulses are emitted nasally and diffracted by a special baffle structure - the noseleaf - as the exit into the free field. Furthermore, the noseleaves can change their shapes while diffracting the outgoing ultrasonic waves. The aim of this research project is to determine the relationship between the deformation of the noseleaf during pulse emission and the ultrasonic field through experiments. 3D models of horseshoe bat noseleaf were obtained by tomographic imaging, reconstructed, and modified in the digital domain to meet the needs of additive manufacturing prototypes for an experimental setup. A data acquisition and instrument control system was developed and integrated with ultrasonic transducers to characterize the dynamic emission system acoustically, actuators for displacing the lower and top portion of bat noseleaf, and pan-tilt unit for orienting the noseleaf. A cone and tube waveguide was designed to match the loudspeaker to the nostrils of bat noseleaf. By using this system, it was possible to reproduce the dynamic effect of the noseleaf and characterize it as a basis for inspired dynamic acoustic devices. Future research will address the relationship between the deformations of the noseleaf and the acoustic field.

  12. Developmental ecology of the American horseshoe crab Limulus polyphemus

    Directory of Open Access Journals (Sweden)

    Mark L. BOTTON, Richard A. TANKERSLEY, Robert E. LOVELAND

    2010-10-01

    Full Text Available During spawning events, horseshoe crab eggs are released from the female’s oviducts, and fertilized by one or more males. Eggs are shaped by the female into discrete clutches deposited in nests at depths of 10-20 cm on intertidal estuarine beaches. Distinguishing between fresh eggs and the early developmental stages is obfuscated by the large amount of dense, opaque yolk. The first unambiguous confirmation of development is the formation of the rudimentary prosomatic appendages at the “limb bud” stage. Several days thereafter, the outer chorion is shed and the developing embryo expands and undergoes a series of molts within the clear inner egg membrane. The trilobite (first instar stage thus attained may remain within the beach sediments for several more weeks, until hatching is facilitated by environmental factors such as hydration, agitation, and osmotic shock that accompany the infiltration of seawater into the nests. Trilobites exhibit endogenous circatidal swimming rhythms that are entrained by mechanical agitation, suggesting that peaks in larval swimming are timed to coincide with periods of high water and the inundation of the nests. Larval swimming is limited and does not appear to result in long-distance dispersal. The limited dispersal of the larvae has important implications for the population dynamics of relatively isolated populations. The rate of larval development is highly plastic and is influenced by temperature, salinity, dissolved oxygen, and the presence of pollutants. The broad environmental tolerances of horseshoe crab embryos and larvae are important in understanding their current geographic distribution and their evolutionary persistence [Current Zoology 56 (5: 550–562, 2010].

  13. Giant hydronephrosis in horseshoe kidney

    International Nuclear Information System (INIS)

    Huesh, I-V. Malla; Zlatareva, D.; Milenova, V.; Krasteva, R.; Bogov, B.

    2016-01-01

    Horseshoe kidney, also known as ren arcuatus is a congenital anomaly with incidence 1 in 500 people and it is more common in males. Usually this anomaly is asymptomatic and most of the cases are undiagnosed. This condition may contribute to upper Gl tract dyspeptic syndrome, abdominal discomfort, nephrolithiasis and frequent infections of the urinary system. Horseshoe kidney may lead to complications such as renal obstruction, recurrent inflammatory conditions and malignant diseases. The authors describe the case of 58y.o. male who had suffered acute renal failure. The patient presented with pain in the lumbar area and abode the symphysis, reduction of diuresis and fever 38° C. The laboratory findings showed slight anemic syndrome and preserved renal function. The US examination revealed low positioned right kidney with enlarged sizes and numerous cysts. The left kidney was visualized as gigantic hydronephrosis. Color and Power Doppler didn't show signal from the vessels. MRT of the abdomen and pelvis was performed with intravenous application of contrast medium. The examination showed horseshoe kidney with excessive hydro-nephrosis with massive dilation of the pyelocalyceal system and reduced parenchyma

  14. Challenging case of horseshoe kidney double fracture

    Directory of Open Access Journals (Sweden)

    Francesco Cortese

    Full Text Available Introduction: Renal injuries occur in 10% of blunt abdominal traumas, 7% of these occur in kidneys with congenital or acquired disorders. Trauma of horseshoe kidney is an uncommon finding. Presentation of a case: We present the case of 31 year-old caucasian man with no remarkable personal records, who was brought to our Trauma Unit soon after being involved in a motorcycle collision. A Contrast Enhanced – Multi Detector Computed Tomography (ce-MDCT revealed a double disconnection of a horseshoe kidney. The patient was not aware of bearing such abnormality. Discussion: Trauma of horseshoe kidney is an uncommon finding. The abdominal ce-MDCT scan is the diagnostic tool of choice since the renal anatomy, injury grading and vascular or urinary tract abnormalities are well depicted and easily identified. The conservative management of these injuries is associated with a lower rate of nephrectomies and kidney failure while selective trans-catheter renal embolization is a challenging treatment option. However surgery can be a treatment of choice and should be aimed to preserve renal function. Conclusion: the interest in our case lies in the rarity and particular anatomical aspect of such injuries and the implication related to its management in an emergency setting. Keywords: Renal trauma, Horseshoe kidney, Renal anatomy

  15. Spontaneous, generalized lipidosis in captive greater horseshoe bats (Rhinolophus ferrumequinum).

    Science.gov (United States)

    Gozalo, Alfonso S; Schwiebert, Rebecca S; Metzner, Walter; Lawson, Gregory W

    2005-11-01

    During a routine 6-month quarantine period, 3 of 34 greater horseshoe bats (Rhinolophus ferrumequinum) captured in mainland China and transported to the United States for use in echolocation studies were found dead with no prior history of illness. All animals were in good body condition at the time of death. At necropsy, a large amount of white fat was found within the subcutis, especially in the sacrolumbar region. The liver, kidneys, and heart were diffusely tan in color. Microscopic examination revealed that hepatocytes throughout the liver were filled with lipid, and in some areas, lipid granulomas were present. renal lesions included moderate amounts of lipid in the cortical tubular epithelium and large amounts of protein and lipid within Bowman's capsules in the glomeruli. In addition, one bat had large lipid vacuoles diffusely distributed throughout the myocardium. The exact pathologic mechanism inducing the hepatic, renal, and cardiac lipidosis is unknown. The horseshoe bats were captured during hibernation and immediately transported to the United States. It is possible that the large amount of fat stored coupled with changes in photoperiod, lack of exercise, and/or the stress of captivity might have contributed to altering the normal metabolic processes, leading to anorexia and consequently lipidosis in these animals.

  16. Conservation status of the American horseshoe crab, (Limulus polyphemus): A regional assessment

    Science.gov (United States)

    Smith, David R.; Brockmann, H. Jane; Beekey, Mark A.; King, Timothy L.; Millard, Michael J.; Zaldívar-Rae, Jaime

    2017-01-01

    Horseshoe crabs have persisted for more than 200 million years, and fossil forms date to 450 million years ago. The American horseshoe crab (Limulus polyphemus), one of four extant horseshoe crab species, is found along the Atlantic coastline of North America ranging from Alabama to Maine, USA with another distinct population on the coasts of Campeche, Yucatán and Quintana Roo in the Yucatán Peninsula, México. Although the American horseshoe crab tolerates broad environmental conditions, exploitation and habitat loss threaten the species. We assessed the conservation status of the American horseshoe crab by comprehensively reviewing available scientific information on its range, life history, genetic structure, population trends and analyses, major threats, and conservation. We structured the status assessment by six genetically-informed regions and accounted for sub-regional differences in environmental conditions, threats, and management. The transnational regions are Gulf of Maine (USA), Mid-Atlantic (USA), Southeast (USA), Florida Atlantic (USA), Northeast Gulf of México (USA), and Yucatán Peninsula (México). Our conclusion is that the American horseshoe crab species is vulnerable to local extirpation and that the degree and extent of risk vary among and within the regions. The risk is elevated in the Gulf of Maine region due to limited and fragmented habitat. The populations of horseshoe crabs in the Mid-Atlantic region are stable in the Delaware Bay area, and regulatory controls are in place, but the risk is elevated in the New England area as evidenced by continuing declines understood to be caused by over-harvest. The populations of horseshoe crabs in the Southeast region are stable or increasing. The populations of horseshoe crabs in the Florida Atlantic region show mixed trends among areas, and continuing population reductions at the embayment level have poorly understood causes. Within the Northeast Gulf of Mexico, causes of population trends are

  17. [Laparoscopic pyeloplasty for hydronephrosis of horseshoe kidney].

    Science.gov (United States)

    Guliev, B G

    2016-11-01

    Horseshoe kidney is often associated with other congenital abnormalities and obstruction of pyeloureteral segment (PUS). The aim of our study was to evaluate the results of laparoscopic pyeloplasty (LP) in patients with hydronephrosis of horseshoe kidney. From February 2010 to March 2016, 130 patients underwent LP. Ten (7.7%) of them (6 men and 4 women) had a hydronephrosis of horseshoe kidney. Left and right PUS obstruction were diagnosed in 6 and 4 patients, respectively. All the patients underwent PL transperitoneally using the Anderson-Hynes method. In patients with left hydronephrosis, surgery was performed by transmesenteric access. There were no cases of conversion to open surgery and drainage urine leakage. Exacerbation of chronic pyelonephritis was observed in 2 cases. Operating time ranged from 125 to 160 minutes (median 130 minutes), time of performing pyeloureteral anastomosis - from 50 to 105 minutes. Patients were ambulated within the first day after surgery, the length of hospital stay was 3 - 4 days. One patient with recurrent strictures of PUS 8 months after the LP underwent retrograde endopyelotomy with the placement of endopyelotomy stent. The effectiveness of operations over a 6-38 month follow-up was 90%. LP is an effective and minimally invasive treatment for patients with hydronephrosis of horseshoe kidney. In a left PUS obstruction, pyeloplasty can be performed using transmesenteric access.

  18. Horseshoe kidney with growth retardation: Don't forget Turner syndrome.

    Science.gov (United States)

    Arslansoyu-Çamlar, Seçil; Soylu, Alper; Abacı, Ayhan; Türkmen, Mehmet Atilla; Ülgenalp, Ayfer; Kavukçu, Salih

    2016-01-01

    Horseshoe kidney is the most frequent renal fusion anomaly that is usually asymptomatic and isolated malformation. However it can be seen with various syndromes and chromosomal anomalies. It was reported that 15-35% of Turner syndrome cases (TS) also display horseshoe kidney condition. TS is a chromosomal anomaly that had been characterized by delayed puberty, short body height and gonadal dysgenesis. In this report a five-year-old girl with horseshoe kidney, which has growth retardation during follow-up as only symptom of Turner syndrome.

  19. Supernumerary Kidney Associated with Horseshoe Malformation: A Case Report and Review of Literature

    Directory of Open Access Journals (Sweden)

    Hassan Jamshidian

    2017-02-01

    Full Text Available We report a case of supernumerary kidney associated with horseshoe malformation. A 35-year-old man presented complaining of vague and intermittent left flank pain from few months ago. Ultrasonography of urinary tract showed bilateral hydronephrosis and was suggestive of the horseshoe anomaly. Further evaluation with Intravenous urography showed three renal moieties consisting of a horseshoe kidney and a malrotated right kidney cephalad to and fused with the right moiety of horseshoe kidney.

  20.  The diversity of horseshoe crabs - protecting an endangered resource

    DEFF Research Database (Denmark)

    Funch, Peter; Cong, Nguyen Van; Intanai, Itsara

    Horseshoe crabs are fascinating inhabitants of the sea represented by four living species, where three species live in Asia, while the fourth species lives on the East coast of North America. Ancient fossils, dating back to Ordovician 445 million years ago looks so similar to recent horseshoe crabs...... that people often call them "living fossils". Unfortunately, the existing populations are threatened by overfishing of the adults as well as by destruction and pollution of the beaches where they mate and deposit their eggs. All four extant species are on IUCN Red List of Threatened Species. The blue blood...... of the horseshoe crabs saves thousands of human lives every year. An extract from their blood are used worldwide to determine whether medicine, blood donations, and medical supplies are infected by bacteria or contain toxins. Horseshoe crabs are also fished for human consumption in Asia, are heavily used as bait...

  1. Horseshoes in a Chaotic System with Only One Stable Equilibrium

    Science.gov (United States)

    Huan, Songmei; Li, Qingdu; Yang, Xiao-Song

    To confirm the numerically demonstrated chaotic behavior in a chaotic system with only one stable equilibrium reported by Wang and Chen, we resort to Poincaré map technique and present a rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoes theory.

  2. Spontaneous adrenal hemorrhage during pregnancy: a case with horseshoe kidney

    Directory of Open Access Journals (Sweden)

    Mohadeseh Amini

    2017-11-01

    Full Text Available Spontaneous adrenal hemorrhage is an acute hemorrhage during pregnancy, which can be tragic for the mother and the baby. We report a unique spontaneous hemorrhage during pregnancy in a case with horseshoe kidney with separated adrenal, presented for the first time in the world. Computed tomography scan showed a horseshoe kidney fused with left normal kidney. Interestingly the adrenal gland was remained in right flank and separated from the horseshoe kidney, which prepares a probable physical stress for the hemorrhage. Diagnosis and surgery were done successfully and the case was fully recovered after several days.

  3. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    International Nuclear Information System (INIS)

    Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming

    2014-01-01

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes

  4. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)

    2014-04-15

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

  5. Present and future distributions of horseshoe crabs under predicted climate changes

    DEFF Research Database (Denmark)

    Funch, Peter; Obst, Matthias; Quevedo, Francisco

    The habitats of South East Asian horseshoe crabs span across the shallow waters of many countries and biogeographic regions in the Indo-Pacific. Such ubiquitous presence makes it difficult to obtain an up-to-date and overall picture of the current distribution, density and wealth of horseshoe crab...

  6. Restoration Potential of a Mining-Impacted Urban Stream: Horseshoe Branch of Lion Creek, Oakland, CA

    OpenAIRE

    Hackenjos, Bethany; Woelfle-Erskine, Cleo; Wood, Jacob

    2010-01-01

    Horseshoe Creek, located in the Oakland Hills of California, flows through a remnant oak and redwood forests in Horseshoe Canyon. From the 1880s through the 1930s, nearby Leona sulfur mine deposited massive tailings piles in the valleys east of Horseshoe Creek. During that time, clear-cut logging of redwoods denuded and destabilized the surrounding hillsides. Today, most of Horseshoe Creekʼs upper and middle reaches are either culverted or transformed into an engineered channel, and Merritt C...

  7. Horseshoe lung with multiple congenital anomalies. Case report and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Hawass, N.D.; Badawi, M.G.; Fatani, J.A.; Meshari, A.A.; Edrees, Y.B.

    A detailed radiologic and anatomic study of a 20-week old fetus is presented. In addition to conventional radiography, various contrast medium injection techniques were used. The findings were followed up at autopsy. The fetus showed multiple congenital abnormalities comprising phocomelia, horseshoe lung, horseshoe kidney, urethral stenosis with megacystis, bilateral hydronephrosis, hydroureters, imperforate anus, and a single tracheo-esophageal tube (persistent esophago-trachea). The association of horseshoe lung with persistent esophago-trachea, microurethra, megacystis, bilateral hydroureters, hydronephrosis and phocomelia is, we believe, the first ever to have been recorded in the literature. Twenty-one cases of horseshoe lung have been reported in the literature. These cases were reviewed and a comparison with the present case is presented. The embryologic basis for these anomalies is also briefly discussed.

  8. [Horseshoe kidney, stone disease and prostate cancer: a case presentation].

    Science.gov (United States)

    Hermida Pérez, J A; Bermejo Hernández, A; Hernández Guerra, J S; Sobenes Gutierrez, R J

    2013-01-01

    The horseshoe kidney is the most common congenital renal fusion anomalies. It occurs in 0.25% of the population, or 1 in every 400 people. It is more frequent in males (ratio 2:1). The most observed complication of horseshoe kidney is stone disease, although there may be others such as, abdominal pain, urinary infections, haematuria, hydronephrosis, trauma and tumours (most commonly associated with hypernephroma and Wilms tumour). We describe a case of a male patient with horseshoe kidney, stone disease and adenocarcinoma of the prostate. One carrier of this condition who suffered a transitional cell carcinoma of the prostate was found in a review of the literature. Copyright © 2012 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  9. Present and Potential Future Distributions of Asian Horseshoe Crabs Determine Areas for Conservation

    Directory of Open Access Journals (Sweden)

    Stine Vestbo

    2018-05-01

    Full Text Available Conservation of horseshoe crabs has recently received increasing attention as several populations are in decline. However, scarce information on their distributions in Southeast Asia is impairing conservation efforts. In this study, we sought to improve our understanding of the geographical range and distinct populations of the three Asian horseshoe crabs species in order to identify optimal conservation areas. We mapped the geographic range of Carcinoscorpius rotundicauda, Tachypleus gigas, and T. tridentatus using recent data from field work, literature, Global Biodiversity Information Facility (GBIF, and unpublished data from our scientific network. The data were correlated with 23 different environmental variables of potential ecological importance for horseshoe crabs using the openModeller webservices, including new tidal variables. Ecological niche models were generated using two algorithms, Maximum Entropy and support vector machine, for the three species under present conditions, and projected into a climate change scenario of 2050. The niches of the Asian horseshoe crabs were mostly determined by tidal regime, chlorophyll A concentrations, depth, distance to land, and sea surface temperature. According to our predictions, horseshoe crabs in Southeast Asia are not expected to experience any severe change in extent and distribution of suitable habitat in the future. In order to conserve Asian horseshoe crabs, we suggest establishing Marine Protected Areas at locations where distinct populations and several species occur, such as northern Vietnam, China, Borneo, and southern Japan.

  10. Using the horseshoe crab, Limulus Polyphemus, in vision research.

    Science.gov (United States)

    Liu, Jiahui S; Passaglia, Christopher L

    2009-07-03

    The American horseshoe crab, Limulus Polyphemus is one of the oldest creatures on earth, and the animal continues to play an indispensable role in biomedical research. Not only does their blood contain special cells that scientists use to detect bacteriotoxins in our medicines, but their eyes also contain a neural network that has provided much insight about physiological processes operating in our visual system, such as light adaptation and lateral inhibition. The horseshoe crab remains an attractive model for vision research because the animal is large and hardy for an invertebrate, its retinal neurons are big and easily accessible, its visual system is compact and extensively studied, and its visual behavior is well defined. Moreover, the structure and function of the eyes are modulated on a daily basis by a circadian clock in the animal s brain. In short, the visual system of horseshoe crabs is simple enough to be understood yet complex enough to be interesting. In this video we present three electrophysiological paradigms for investigating the neural basis of vision that can be performed in vivo with Limulus. They are electroretinogram recording, optic nerve recording, and intraretinal recording. Electroretinogram (ERG) recordings measure with a surface electrode the summed electrical response of all cells in the eye to a flash of light. They can be used to monitor the overall sensitivity of the eye for prolong periods of time. Optic nerve recordings measure the spiking activity of single nerve fibers with an extracellular microsuction electrode. They can be used to study visual messages conveyed from the eye to the brain as well as circadian-clock messages fed back from the brain to the eye. Intraretinal recordings measure with an intracellular microelectrode the voltage fluctuations induced by light in individual cells of the eye. They can be used to elucidate cellular mechanisms of retinal processing.

  11. Organ-Preserving Surgical Treatment of a Horseshoe Kidney Occupied by a Large Renal Cell Carcinoma with Extensive Venous Invasion: A Case Report.

    Science.gov (United States)

    Linxweiler, Johannes; Shayesteh-Kheslat, Roushanak; Fries, Peter; Schneider, Günther; Janssen, Martin; Ohlmann, Carsten H; Stöckle, Michael; Siemer, Stefan; Saar, Matthias

    2018-01-01

    The horseshoe kidney is one of the most common congenital disorders affecting the urogenital system. Following a fusion of the lower kidney poles, which in turn lead to the formation of an isthmus, this anatomical variation is accompanied by other characteristic properties like an incomplete ascension, ventral rotation of the pelvices as well as atypical vascular supply. Even though renal carcinoids and Wilms tumors are more common in horseshoe kidneys, the incidence of renal cell carcinomas seems to be unaffected. Here we report the case of a locally advanced renal cell carcinoma with extensive venous invasion occurring in a horseshoe kidney and its complex surgical management. The whole primary tumor as well as a majority of venous tumor thrombi could be removed by a combination of 2/3 nephrectomy and cavotomy with thrombectomy. During 1 year of follow-up, the patient neither suffered from a tumor relapse, nor did he require renal replacement therapy. Thus, we conclude that even in cases of RCC where advanced disease is associated with complex anatomical situations, organ-preserving surgical treatment should be pursued to achieve excellent functional and oncological results. © 2016 S. Karger AG, Basel.

  12. Biomaterial compounds and bioactivity of horseshoe crab Carsinoscorpius rotundicauda biomass harvested from the Madura Strait

    Science.gov (United States)

    Asih, Eka Nurrahema Ning; Kawaroe, Mujizat; Bengen, Dietriech G.

    2018-03-01

    Carsinoscorpius rotundicauda or horseshoe crab biomass has great potential in pharmaceutical aspects, one of them as an antibacterial substance. Information related to the benefits of Carsinoscorpius rotundicauda biomass such as meat and blood is essential because in fact, this species is considered a pest by fishermen, a low market value and has no legal protection in Indonesia. The purpose of this study was to determine the content of biomaterial compounds of meat and bioactivity of Carsinoscorpius rotundicauda plasma on bacterial inhibition from three different stations harvested from the waters in Madura Strait. The observation of the utilization of the potential from horseshoe crab biomass ie meat and plasma was performed by measuring the content of biomaterial compound in horseshoe crab meat by HPLC method and zone of inhibition test for gram-positive and gram-negative bacteria in horseshoe crab plasma. Analysis of the relationship between the two parameters used the Principal Component Analysis. The highest content of biomaterial compounds of monoterpenoid and zoosterol is found in horseshoe crab from Bangkalan waters, namely monoterpenoid (18.33 ppm) and zoosterol (22.67 ppm), while the smallest compound content obtained in horseshoe crab from Probolinggo waters, namely monoterpenoid (13.67) ppm and zoosterol (17.33 ppm). The bioactivity of Dark Blue Plasma (BDP) and Light Blue Plasma (LBP) samples of horseshoe crab obtained around the Madura Strait has the ability to inhibit gram-positive bacteria higher than gram-negative bacteria. The total average of DBP plasma inhibitory power on Staphylococcus aureus was 10.00 mm and 10.07 mm on Bacillus, while that in LBP sample, Staphylococcus aureus was 9.11 mm and Bacillus was 9.67 mm. The high biomaterial compound content of horseshoe crab is in line with the ability of horseshoe crab plasma to inhibit Bacillus and Staphylococcus aureus.

  13. Horseshoes in modified Chen's attractors

    International Nuclear Information System (INIS)

    Huang Yan; Yang Xiaosong

    2005-01-01

    In this paper we study dynamics of a class of modified Chen's attractors, we show that these attractors are chaotic by giving a rigorous verification for existence of horseshoes in these systems. We prove that the Poincare maps derived from these modified Chen's attractors are semi-conjugate to the 2-shift map

  14. Metabolic abnormalities associated with renal calculi in patients with horseshoe kidneys.

    Science.gov (United States)

    Raj, Ganesh V; Auge, Brian K; Assimos, Dean; Preminger, Glenn M

    2004-03-01

    Horseshoe kidneys are a complex anatomic variant of fused kidneys, with a 20% reported incidence of associated calculi. Anatomic causes such as high insertion of the ureter on the renal pelvis and obstruction of the ureteropelvic junction are thought to contribute to stone formation via impaired drainage, with urinary stasis, and an increased incidence of infection. In this multi-institutional study, we evaluated whether metabolic factors contributed to stone development in patients with horseshoe kidneys. A retrospective review of 37 patients with horseshoe kidneys was performed to determine if these patients had metabolic derangements that might have contributed to calculus formation. Stone compositions as well as 24-hour urine collections were examined. Specific data points of interest were total urine volume; urine pH; urine concentrations of calcium, sodium, uric acid, oxalate, and citrate; and number of abnormalities per patient per 24-hour urine collection. These data were compared with those of a group of 13 patients with stones in caliceal diverticula as well as 24 age-, race-, and sex-matched controls with stones in anatomically normal kidneys. Eleven (9 men and 2 women) of the 37 patients (30%) with renal calculi in horseshoe kidneys had complete metabolic evaluations available for review. All patients were noted to have at least one abnormality, with an average of 2.68 abnormalities per 24-hour urine collection (range 1-4). One patient had primary hyperparathyroidism and underwent a parathyroidectomy. Low urine volumes were noted in eight patients on at least one of the two specimens (range 350-1640 mL/day). Hypercalciuria, hyperoxaluria, hyperuricosuria, and hypocitraturia were noted in seven, three, six, and six patients, respectively. No patients were found to have gouty diathesis or developed cystine stones. Comparative metabolic analyses of patients with renal calculi in caliceal diverticula or normal kidneys revealed a distinct profile in patients

  15. Xantogranulomatous pyelonephritis in a horseshoe kidney: a case report

    International Nuclear Information System (INIS)

    Macedo Lemos, D. de; Albuquerque, S.C. de; Lemos, R.S. de; Cruz, F.J.B.; Coelho, J.P.

    1991-01-01

    A case of xanthogranulomatous pyelonephritis in a horseshoe kidney. The patient was a child, female, 8-year-old. In a recent review of the literature, xanthogranulomatous pyelonephritis occurs more often in the fourth and fifth decades. It is rare in children and no case has been reported of the association of horseshoe kidney and xanthogranulomatous pyelonephritis. The use of several image diagnosis methods and the need of correlation with clinical history and laboratory examinations have been emphasized as very important to the definitive diagnosis, in despite of in some cases it was only established after surgery and histopathologic study. (author)

  16. Pharmacokinetics of cefovecin (Convenia) in white bamboo sharks (Chiloscyllium plagiosum) and Atlantic horseshoe crabs (Limulus polyphemus).

    Science.gov (United States)

    Steeil, James C; Schumacher, Juergen; George, Robert H; Bulman, Frank; Baine, Katherine; Cox, Sherry

    2014-06-01

    Cefovecin was administered to six healthy adult white bamboo sharks (Chiloscyllium plagiosum) and six healthy adult Atlantic horseshoe crabs (Limulus polyphemus) to determine its pharmacokinetics in these species. A single dose of cefovecin at 8 mg/kg was administered subcutaneously in the epaxial region of the bamboo sharks and in the proximal articulation of the lateral leg of the horseshoe crabs. Blood and hemolymph samples were collected at various time points from bamboo sharks and Atlantic horseshoe crabs. High performance liquid chromatography was performed to determine plasma levels of cefovecin. The terminal halflife of cefovecin in Atlantic horseshoe crabs was 37.70 +/- 9.04 hr and in white bamboo sharks was 2.02 +/- 4.62 hr. Cefovecin concentrations were detected for 4 days in white bamboo sharks and for 14 days in Atlantic horseshoe crabs. No adverse effects associated with cefovecin administration were seen in either species.

  17. Concomitant Persistent Left Superior Vena Cava and Horseshoe Kidney

    Directory of Open Access Journals (Sweden)

    Faraz Jaffer

    2015-01-01

    Full Text Available Persistent left superior vena cava (PLSVC and horseshoe kidney (HSK are common congenital abnormalities; however presence of both in the same person is extremely rare. A patient with hepatitis C cirrhosis awaiting transplant presented with worsening liver dysfunction, diagnosed with acute renal failure secondary to hepatorenal syndrome, and required X-ray fluoroscopy guided tunneled venous catheter placement for hemodialysis. Review of imaging studies demonstrated coexistence of PLSVC and HSK. PLSVC in adulthood is usually incidental with the most common drainage pattern being without physiologic dysfunction. Isolated horseshoe kidney is still the most common of renal fusion anomalies; however etiology of coexistent PLSVC remains unknown.

  18. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    Science.gov (United States)

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  19. A new marine triclad ectoparasitic on Malaysian and Indonesian horseshoe crabs (Platyhelminthes, Turbellaria, Tricladida)

    NARCIS (Netherlands)

    Sluys, Ronald

    1983-01-01

    A new species of marine triclad, Ectoplana undata n. sp., ectoparasitic on the horseshoe crab Tachypleus gigas, is described. Cocoons of triclads were found on T. gigas as well as on the horseshoe crab Carcinoscorpius rotundicauda; since from the latter species no triclads were collected, it remains

  20. Prenatal diagnosis of horseshoe lung and esophageal atresia

    International Nuclear Information System (INIS)

    Goldberg, Shlomit; Ringertz, Hans; Barth, Richard A.

    2006-01-01

    We present a case of horseshoe lung (HL) and esophageal atresia suspected prenatally on US imaging and confirmed with fetal MRI. Prenatal diagnosis of HL and esophageal atresia allowed for prenatal counseling and informed parental decisions. (orig.)

  1. Prenatal diagnosis of horseshoe lung and esophageal atresia

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Shlomit; Ringertz, Hans [Stanford University School of Medicine, Radiology Department, Stanford, CA (United States); Barth, Richard A. [Stanford University School of Medicine, Radiology Department, Stanford, CA (United States); Lucile Packard Children' s Hospital, Radiology, Palo Alto, CA (United States)

    2006-09-15

    We present a case of horseshoe lung (HL) and esophageal atresia suspected prenatally on US imaging and confirmed with fetal MRI. Prenatal diagnosis of HL and esophageal atresia allowed for prenatal counseling and informed parental decisions. (orig.)

  2. Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc

    Science.gov (United States)

    Price, Daniel J.; Cuello, Nicolás; Pinte, Christophe; Mentiplay, Daniel; Casassus, Simon; Christiaens, Valentin; Kennedy, Grant M.; Cuadra, Jorge; Sebastian Perez, M.; Marino, Sebastian; Armitage, Philip J.; Zurlo, Alice; Juhasz, Attila; Ragusa, Enrico; Laibe, Guillaume; Lodato, Giuseppe

    2018-06-01

    We present 3D hydrodynamical models of the HD 142527 protoplanetary disc, a bright and well-studied disc that shows spirals and shadows in scattered light around a 100 au gas cavity, a large horseshoe dust structure in mm continuum emission, together with mysterious fast radial flows and streamers seen in gas kinematics. By considering several possible orbits consistent with the observed arc, we show that all of the main observational features can be explained by one mechanism - the interaction between the disc and the observed binary companion. We find that the spirals, shadows, and horseshoe are only produced in the correct position angles by a companion on an inclined and eccentric orbit approaching periastron - the `red' family from Lacour et al. Dust-gas simulations show radial and azimuthal concentration of dust around the cavity, consistent with the observed horseshoe. The success of this model in the HD 142527 disc suggests other mm-bright transition discs showing cavities, spirals, and dust asymmetries may also be explained by the interaction with central companions.

  3. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events.

    Science.gov (United States)

    Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi

    2017-10-06

    Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.

  4. Traumatic parenchymal laceration in a horseshoe kidney.

    LENUS (Irish Health Repository)

    Stunell, H

    2011-03-01

    An 18-year-old man was transferred to the authors\\' institution after a motor vehicle collision in which he was a restrained front seat passenger. The referring hospital performed contrast-enhanced computed tomography which revealed a previously undiagnosed horseshoe kidney with a laceration of the right lower pole moiety. On transfer, he was pale and mildly tachycardic but normotensive.

  5. Horseshoe lung - a case report with unusual bronchial and pleural anomalies and a proposed new classification

    International Nuclear Information System (INIS)

    Figa, F.H.; Yoo, S.J.; Burrows, P.E.; Turner-Gomes, S.; Freedom, R.M.

    1993-01-01

    One case of horseshoe lung with associated scimitar syndrome is presented. Unusual bronchial and pleural anomalies as delineated by CT and plain chest radiographic imaging are described. The presence of bilateal fissures led to a newly proposed classification of horseshoe lung based on pleural anatomy. (orig.)

  6. Horseshoe lung - a case report with unusual bronchial and pleural anomalies and a proposed new classification

    Energy Technology Data Exchange (ETDEWEB)

    Figa, F H [Dept. of Diagnostic Imaging and Division of Cardiology, Hospital for Sick Children, Toronto, ON (Canada); Yoo, S J; Burrows, P E [Dept. of Diagnostic Imaging and Division of Cardiology, Hospital for Sick Children, Toronto, ON (Canada); Turner-Gomes, S [McMaster Univ. Medical Center, Hamilton, ON (Canada); Freedom, R M [Dept. of Diagnostic Imaging and Division of Cardiology, Hospital for Sick Children, Toronto, ON (Canada)

    1993-03-01

    One case of horseshoe lung with associated scimitar syndrome is presented. Unusual bronchial and pleural anomalies as delineated by CT and plain chest radiographic imaging are described. The presence of bilateal fissures led to a newly proposed classification of horseshoe lung based on pleural anatomy. (orig.)

  7. A computer-assisted proof for the existence of horseshoe in a novel chaotic system

    International Nuclear Information System (INIS)

    Wu Wenjuan; Chen Zengqiang; Yuan Zhuzhi

    2009-01-01

    The dynamics of a novel chaotic system are studied, and a rigorous computer-assisted proof for existence of horseshoe in this system is given. A Poincare section is properly chosen to obtain the Poincare map, which is proved to be semi-conjugate to the 4-shift map by utilizing topological horseshoe theory. This implies the entropy of the system is no less than log 4, and the system definitely exhibits chaos.

  8. Successful en bloc transplantation of a horseshoe kidney without ...

    African Journals Online (AJOL)

    transplant surgeon may encounter, decision-making will be unique and dependent .... horseshoe kidneys as it may affect the quality of the graft. Despite the high ... kidneys, provided that careful attention is paid to the unique anatomy of each ...

  9. [An exceptional mimicker of ovarian tumors: cancer in a pelvic horseshoe kidney].

    Science.gov (United States)

    Ortiz-Mendoza, Carlos Manuel

    2013-01-01

    although the horseshoe kidney is a frequent congenital abnormality, the likelihood of it being the cause of a malignant tumor that looks like an ovarian neoplasm has not been reported. a 53-year-old female came to the hospital with a pelvic tumor. The patient had a history of a simple hysterectomy due to uterine myomatosis. At abdominal physical examination we identified a rounded hypogastric tumor, 20 cm diameter, firm, and fixed. On pelvic examination the mass was easily palpated through the vaginal fornix. The diagnosis of a probable ovarian neoplasm, caused by a residual ovary syndrome was made, therefore she was admitted to the gynecology service. Computed tomography scans showed a tumor located in the right side of a deformed pelvic kidney. Hence, the gynecology service sent the patient to the surgical oncology department, where the assumption was confirmed. The analysis of the RX studies showed a possible neoplasm from a pelvic horseshoe kidney. The patient underwent an exploratory abdominal surgery, and a 19 cm tumor was excised. The pathology department reported a chromophobe cell carcinoma. tumors in the pelvic horseshoe kidney may simulate an ovarian neoplasms in females.

  10. Morphometric characteristics in the horseshoe crab Tachypleus gigas (Arthropoda: Merostomata)

    Digital Repository Service at National Institute of Oceanography (India)

    Vijayakumar, R.; Das, S.; Chatterji, A.; Parulekar, A.H.

    comparative morphometry. This study also emphasizes that care must be taken to apply morphometric for a uniform size group of horseshoe crab populations. It is known that the changes in the form of an animal cannot be described satisfactorily...

  11. Minimally Invasive Pyeloplasty in Horseshoe Kidneys with Ureteropelvic Junction obstruction: A case series

    Directory of Open Access Journals (Sweden)

    Stephen Faddegon

    2013-04-01

    Full Text Available Background and Purpose Horseshoe kidney is an uncommon renal anomaly often associated with ureteropelvic junction (UPJ obstruction. Advanced minimally invasive surgical (MIS reconstructive techniques including laparoscopic and robotic surgery are now being utilized in this population. However, fewer than 30 cases of MIS UPJ reconstruction in horseshoe kidneys have been reported. We herein report our experience with these techniques in the largest series to date. Materials and Methods We performed a retrospective chart review of nine patients with UPJ obstruction in horseshoe kidneys who underwent MIS repair at our institution between March 2000 and January 2012. Four underwent laparoscopic, two robotic, and one laparoendoscopic single-site (LESS dismembered pyeloplasty. An additional two pediatric patients underwent robotic Hellstrom repair. Perioperative outcomes and treatment success were evaluated. Results Median patient age was 18 years (range 2.5-62 years. Median operative time was 136 minutes (range 109-230 min. and there were no perioperative complications. After a median follow-up of 11 months, clinical (symptomatic success was 100%, while radiographic success based on MAG-3 renogram was 78%. The two failures were defined by prolonged t1/2 drainage, but neither patient has required salvage therapy as they remain asymptomatic with stable differential renal function. Conclusions MIS repair of UPJ obstruction in horseshoe kidneys is feasible and safe. Although excellent short-term clinical success is achieved, radiographic success may be lower than MIS pyeloplasty in heterotopic kidneys, possibly due to inherent differences in anatomy. Larger studies are needed to evaluate MIS pyeloplasty in this population.

  12. Air quality environmental assessment of the Horseshoe Bay Terminal Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The proposed improvement project for British Columbia's Horseshoe Bay Ferry Terminal incorporates specific measures to protect the air quality of the area, the environment and public health. The ferry terminal handles over 2.5 million vehicles and 7 million passengers per year. The upgrades are intended to improve terminal operations, increase safety and reduce traffic congestion through residential and commercial portions of the Horseshoe Bay area as well as Highway 99 traffic. The toll booths will be relocated about 25 m further away from the nearby elementary school to further protect air quality at the school. A study was conducted in which vehicular emissions from the operation of the ferry terminal prior to the proposed improvement project were modelled to predict the effect of vehicular emissions on ambient air quality levels in the area and to ensure that maximum acceptable objectives are met for gaseous air pollutants, including carbon monoxide, carbon dioxide, nitrous oxides, as well as inhalable and fine particulates. The British Columbia Ferry Corp. will work jointly with the Greater Vancouver Regional District to install continuous monitors for at least one year after the project is completed. Based on the analysis of the report, the air quality in the Horseshoe Bay area would not suffer major adverse environmental or public health affects from the proposed improvement project.

  13. Proximate causes of sexual size dimorphism in horseshoe crabs (Limulus Polyphemus) of the Delaware Bay

    Science.gov (United States)

    Smith, D.R.; Mandt, M.T.; Macdonald, P.D.M.

    2009-01-01

    The unresolved status of the proximate cause for sexual size dimorphism in horseshoe crabs has practical consequence, because harvest recommendations rely on assumptions about sex-specific growth and maturity. We propose and evaluate competing hypotheses for the proximate cause of sexual size dimorphism in horseshoe crabs (Limulus polyphemus) by comparing size and estimated age frequencies from spring-captured juveniles (n = 9,075) and adults (n = 36,274) to predictions from the competing hypotheses. We found that the number of identifiable juvenile size distributions was greater for females than males and the probability of remaining a juvenile was higher for females than males among older juveniles. These findings are consistent with males maturing earlier than females. Molt increments and mean sizes were similar for male and female juveniles, which is not consistent with differential growth. Among adults, one size distribution accounted for ???90% of females regardless of carapace wear. Also, size ratio of adult females to males was 1.26, and size ratio of the largest adult to largest juvenile female was 1.28. These observations are not consistent with females continuing to molt as adults. Differential-maturity is the most parsimonious explanation for sexual size dimorphism in Delaware Bay horseshoe crabs. In addition, because of a low frequency of juvenile females >195 mm relative to adult females and male-biased sex ratios starting at 105 mm, we hypothesize that females, more than males, migrate as older juveniles and mature in the ocean. Management implications include that (1) minimum size limits, as previously suggested, would not allocate harvest to older adults as intended because size does not indicate age among adult horseshoe crabs in the Delaware Bay population, and (2) the Shuster Horseshoe Crab Reserve, which has reduced harvest on the continental shelf, could be protecting older juveniles and newly mature females from harvest prior to their first

  14. Anderson-Hynes pyeloplasty with isthmotomy and lateropexy in horseshoe kidneys with pelviureteric junction obstruction in children

    Directory of Open Access Journals (Sweden)

    Shasanka Shekhar Panda

    2014-01-01

    Full Text Available Objective: The objective of this study was to evaluate the results of Anderson-Hynes pyeloplasty with isthmotomy and lateropexy in horseshoe kidney with pelviureteric junction obstruction (PUJO. Materials and Methods: Medical records of patients of horseshoe kidney with PUJO operated in our institute between June 1998 and June 2012 were reviewed. Anderson-Hynes pyeloplasty with isthmotomy and lateropexy was performed in all patients. The surgical outcome was evaluated with emphasis on the changes in degree of hydronephrosis by ultrasonography, renal drainage and function assessed by diuretic renal scans. Results: We studied the records of eight children of horseshoe kidney having unilateral PUJO. Obstruction was caused by a crossing lower-pole vessel in two cases, a high ureteral insertion in three and narrowing of the PUJ in three cases. Post-operative follow-up (median 4.4 years, range 18 months to 10 years revealed improved renal function and good drainage in all cases. Hydronephrosis disappeared in 3, 4 showed Grade 1 and one showed Grade 2 hydronephrosis. All children are doing well and have no symptoms. Conclusion: Anderson-Hynes pyeloplasty with isthmotomy and lateropexy is a highly effective and safe procedure for treating PUJO in horseshoe kidney in children.

  15. On the analysis of local bifurcation and topological horseshoe of a new 4D hyper-chaotic system

    International Nuclear Information System (INIS)

    Zhou, Leilei; Chen, Zengqiang; Wang, Zhonglin; Wang, Jiezhi

    2016-01-01

    Highlights: • A new 4D smooth quadratic autonomous system with complex hyper-chaotic dynamics is presented. • The stability of equilibria is observed near the bifurcation points. • The Hopf bifurcation and pitchfork bifurcation are analyzed by using the center manifold theorem and bifurcation theory. • A horseshoe with two-directional expansions in the 4D hyper-chaotic system has been found, which rigorously proves the existence of hyper-chaos in theory. - Abstract: In this paper, a new four-dimensional (4D) smooth quadratic autonomous system with complex hyper-chaotic dynamics is presented and analyzed. The Lyapunov exponent (LE) spectrum, bifurcation diagram and various phase portraits of the system are provided. The stability, Hopf bifurcation and pitchfork bifurcation of equilibrium point are discussed by using the center manifold theorem and bifurcation theory. Numerical simulation results are consistent with the theoretical analysis. Besides, by combining the topological horseshoe theory with a computer-assisted method of Poincaré maps and utilizing the algorithm for finding horseshoes in 3D hyper-chaotic maps, a horseshoe with two-directional expansions in the 4D hyper-chaotic system is successfully found, which rigorously proves the existence of hyper-chaos in theory.

  16. Large-eddy simulations of unidirectional water flow over dunes

    Science.gov (United States)

    Grigoriadis, D. G. E.; Balaras, E.; Dimas, A. A.

    2009-06-01

    The unidirectional, subcritical flow over fixed dunes is studied numerically using large-eddy simulation, while the immersed boundary method is implemented to incorporate the bed geometry. Results are presented for a typical dune shape and two Reynolds numbers, Re = 17,500 and Re = 93,500, on the basis of bulk velocity and water depth. The numerical predictions of velocity statistics at the low Reynolds number are in very good agreement with available experimental data. A primary recirculation region develops downstream of the dune crest at both Reynolds numbers, while a secondary region develops at the toe of the dune crest only for the low Reynolds number. Downstream of the reattachment point, on the dune stoss, the turbulence intensity in the developing boundary layer is weaker than in comparable equilibrium boundary layers. Coherent vortical structures are identified using the fluctuating pressure field and the second invariant of the velocity gradient tensor. Vorticity is primarily generated at the dune crest in the form of spanwise "roller" structures. Roller structures dominate the flow dynamics near the crest, and are responsible for perturbing the boundary layer downstream of the reattachment point, which leads to the formation of "horseshoe" structures. Horseshoe structures dominate the near-wall dynamics after the reattachment point, do not rise to the free surface, and are distorted by the shear layer of the next crest. The occasional interaction between roller and horseshoe structures generates tube-like "kolk" structures, which rise to the free surface and persist for a long time before attenuating.

  17. Torsion of wandering spleen in patient with horseshoe kidney

    International Nuclear Information System (INIS)

    Molski, St.; Zurada, A.; Meder, G.; Lasek, W.

    2005-01-01

    Wandering spleen is rare pathology, mostly occurring in young women. Disease may be congenital or acquired. Absence or laxity of ligaments leads to spleen pathologic mobility and may cause torsion of its pedicle, resulting in ischemia or infarct even haemorrhagic shock and patients death. We report a case of young woman previously diagnosed (and treated nonoperative) with wandering spleen who presented acute abdomen after minor blunt trauma. She was evaluated with abdominal ultrasound (US) and spiral computed tomography (CT). Torsion of splenic pedicle and splenic rupture was diagnosed and a horseshoe kidney as well. Laparotomy followed by splenectomy confirmed the existence of an intrapelvic torsioned wandering spleen. The only definitive treatment of wandering spleen is operative since nonoperative treatment is associated with high complication rate. Earlier diagnosis of wandering spleen in asymptomatic patients lets to direct diagnosis when patient starts to present with acute abdomen. CT and abdominal US play most important role in diagnosing splenic pedicle torsion. To our knowledge this is a first case of torsion of splenic pedicle in patient with horseshoe kidney. We consider this coincidence to be a congenital defect as both conditions may develop in second month gestation. (author)

  18. Feeding behaviour and food selection in the horseshoe crab, Tachypleus gigas (Muller)

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A; Mishra, J.K.; Parulekar, A

    The Indian horseshoe crab, Tachypleus gigas, is a benthic feeder which subsists mainly on molluscs, decayed organic matter and polychaetes, in order of prevalence. A strong and positive preference was recorded for molluscs over other food organisms...

  19. Assessment and Mmanagement of North American horseshoe crab populations, with emphasis on a multispecies framework for Delaware Bay, U.S.A. populations: Chapter 24

    Science.gov (United States)

    Millard, Michael J.; Sweka, John A.; McGowan, Conor P.; Smith, David R.

    2015-01-01

    The horseshoe crab fishery on the US Atlantic coast represents a compelling fishery management story for many reasons, including ecological complexity, health and human safety ramifications, and socio-economic conflicts. Knowledge of stock status and assessment and monitoring capabilities for the species have increased greatly in the last 15 years and permitted managers to make more informed harvest recommendations. Incorporating the bioenergetics needs of migratory shorebirds, which feed on horseshoe crab eggs, into the management framework for horseshoe crabs was identified as a goal, particularly in the Delaware Bay region where the birds and horseshoe crabs exhibit an important ecological interaction. In response, significant effort was invested in studying the population dynamics, migration ecology, and the ecologic relationship of a key migratory shorebird, the Red Knot, to horseshoe crabs. A suite of models was developed that linked Red Knot populations to horseshoe crab populations through a mass gain function where female spawning crab abundance determined what proportion of the migrating Red Knot population reached a critical body mass threshold. These models were incorporated in an adaptive management framework wherein optimal harvest decisions for horseshoe crab are recommended based on several resource-based and value-based variables and thresholds. The current adaptive framework represents a true multispecies management effort where additional data over time are employed to improve the predictive models and reduce parametric uncertainty. The possibility of increasing phenologic asynchrony between the two taxa in response to climate change presents a potential challenge to their ecologic interaction in Delaware Bay.

  20. Pulmonary Vasculitis and a Horseshoe Kidney in Noonan Syndrome

    OpenAIRE

    Surasak Puvabanditsin; Rosanna Abellar; Adaora Madubuko; Rajeev Mehta; Lauren Walzer

    2018-01-01

    We report a term male neonate with congenital myeloproliferative disorder, thrombocytopenia, a horseshoe kidney, feeding difficulty secondary to dysphagia/foregut dysmotility, and respiratory failure. Prenatal molecular genetic analysis revealed a fetus carrying c.184T>G (p.Tyr62Asp) pathogenic variant in PTPN11. The infant eventually succumbed to respiratory failure. Bacterial and viral cultures/studies were all no growth/negative. Pulmonary capillaritis and vasculitis were noted at autopsy....

  1. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch's rule and potential causes.

    Science.gov (United States)

    Wu, Hui; Jiang, Tinglei; Huang, Xiaobin; Feng, Jiang

    2018-02-08

    Rensch's rule, stating that sexual size dimorphism (SSD) becomes more evident and male-biased with increasing body size, has been well supported for taxa that exhibit male-biased SSD. Bats, primarily having female-biased SSD, have so far been tested for whether SSD allometry conforms to Rensch's rule in only three studies. However, these studies did not consider phylogeny, and thus the mechanisms underlying SSD variations in bats remain unclear. Thus, the present study reviewed published and original data, including body size, baculum size, and habitat types in 45 bats of the family Rhinolophidae to determine whether horseshoe bats follow Rensch's rule using a phylogenetic comparative framework. We also investigated the potential effect of postcopulatory sexual selection and habitat type on SSD. Our findings indicated that Rensch's rule did not apply to Rhinolophidae, suggesting that SSD did not significantly vary with increasing size. This pattern may be attributable interactions between weak sexual selection to male body size and strong fecundity selection for on female body size. The degree of SSD among horseshoe bats may be attributed to a phylogenetic effect rather than to the intersexual competition for food or to baculum length. Interestingly, we observed that species in open habitats exhibited greater SSD than those in dense forests, suggesting that habitat types may be associated with variations in SSD in horseshoe bats.

  2. A freak twin trilobite larva of the Indian horseshoe crab Tachypleus gigas (Muller)

    Digital Repository Service at National Institute of Oceanography (India)

    Mishra, J.K.; Chatterji, A.; Parulekar, A.H.

    Early embryonic stages of a horseshoe crab Tachypleus gigas were studied using micrographs of live embryo. A freak egg showing two trilobite larvae bridged with each other was noticed on 38th day after fertilization. Morphology of this egg has been...

  3. 78 FR 29331 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Horseshoe Crabs; Application...

    Science.gov (United States)

    2013-05-20

    ... Coastal Fisheries Cooperative Management Act Provisions; Horseshoe Crabs; Application for Exempted Fishing... Atlantic Coastal Fisheries Cooperative Management Act (Atlantic Coastal Act). The EFP would allow for an exemption from the Reserve. Regulations under the Atlantic Coastal Act require publication of this...

  4. Laparoscopic resection aided by preoperative 3-D CT angiography for rectosigmoid colon cancer associated with a horseshoe kidney: A case report.

    Science.gov (United States)

    Maeda, Yoshiaki; Shinohara, Toshiki; Nagatsu, Akihisa; Futakawa, Noriaki; Hamada, Tomonori

    2014-11-01

    We herein report a case of laparoscopic high anterior resection with D3 lymph node dissection for rectosigmoid colon cancer with a horseshoe kidney. A 65-year-old Japanese man referred to our hospital for rectosigmoid colon cancer was found to have a horseshoe kidney on a CT scan. On 3-D CT angiography, an aberrant renal artery was visualized feeding the renal isthmus that arises from the aorta just below the root of the inferior mesenteric artery (IMA). Laparoscopic anterior rectal resection with D3 lymph node dissection was performed. During the operation, the IMA, left ureter, left gonadal vessels and hypogastric nerve plexus could be seen passing over the horseshoe kidney isthmus. With the aid of preoperative 3-D CT angiography, the root of the IMA was identified on the temporal side of the isthmus and divided safely just above the hypogastric nerve. As a horseshoe kidney is often accompanied by aberrant renal arteries and/or abnormal running of the ureter, 3-D CT angiography is useful for determining the location of these structures and avoiding intraoperative injury. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  5. Energy source in the developing eggs of the Indian horseshoe crab, Tachypleus gigas (Muller)

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Aguiar, Q.; Saldanha, C.

    Wet weight, dry weight, water content, ash weight, soluble and insoluble proteins, carbohydrates, lipids, and glycogen were determined from 0 to 40th day after fertilization of the developing eggs of the Indian horseshoe crab, Tachypleus gigas...

  6. Percutaneous Nephrolithotomy in Horseshoe Kidney: Our First Experience

    Directory of Open Access Journals (Sweden)

    Ercan Baş

    2015-03-01

    Full Text Available Objective To share our experience in percutaneous nephrolithotomy (PCNL procedures in patients with horseshoe kidney. Materials and Methods The data of 7 patients undergoing PCNL were analyzed retrospectively. Preoperative clinical and laboratory data of patients (including complete urinalysis, complete blood count, serum biochemistry, and coagulation tests were recorded. The stone surface area (mm2 was calculated by graph paper tracing of two dimensional projection of the stone on a plain film of the kidneys, ureters and bladder (KUB in the anteroposterior view by investigators. In addition, per-operative and post-operative findings were evaluated. Success and complication rates (according to the classification of Clavien were also determined. Results The mean stone surface area was 1234 (range 250-2460 mm2 mm2. Six patients were treated through a single tract, and one patient required additional access. Access was directed to the middle calyx (n=2, superior calyx (n=4, middle and inferior calyx (n=1 through the supracostal (n=2 and subcostal (n=5 areas. Mean operative time was 131 (range 70-215 minutes minutes. Stone-free rate after single session PCNL was 71% (n=5 and increased to 86% (n=6 with a post-operative secondary ureterorenoscopy procedure. Complications including bleeding necessitating blood transfusion (Clavien grade 2 and prolonged drainage (Clavien degree 3a were occurred in only 2 patients (24%. Conclusion PCNL is a safe and successful procedure in patients with horseshoe kidney and comparable with PNL procedures in patients with normal renal anatomy

  7. Pharmacokinetics of enrofloxacin and ciprofloxacin in Atlantic horseshoe crabs (Limulus polyphemus) after single injection.

    Science.gov (United States)

    Kirby, A; Lewbart, G A; Hancock-Ronemus, A; Papich, M G

    2018-04-01

    The pharmacokinetics of enrofloxacin and the metabolite ciprofloxacin were studied in horseshoe crabs after a single injection of 5 mg/kg. Twelve Atlantic horseshoe crabs (Limulus polyphemus) of undetermined age were injected with enrofloxacin into the dorsal cardiac sinus. Hemolymph samples were collected by syringe and needle at regular intervals for 120 hr. Samples were analyzed by high-pressure liquid chromatography and compartmental analysis performed on the results. Following injection, the elimination half-life (T½), peak concentration, area under the curve (AUC), and volume of distribution (VD) for enrofloxacin were 27.9 (29.13) hr, 8.98 (18.09) μg/ml, 367.38 (35.41) hr μg/ml, and 0.575 (20.48) L/kg, respectively (mean value, CV%). For ciprofloxacin, the elimination T½, peak concentration, and AUC were 61.36 (34.55) hr, 2.34 (24.11) μg/ml, and 304.46 (24.69) μg hr/ml. In these animals, the ciprofloxacin concentrations comprised an average of 45.8% of the total fluoroquinolone concentrations, which is substantial compared to other marine invertebrates. The total AUC produced (sum of enrofloxacin and ciprofloxacin) was 682.69 ± 180.61 μg hr/ml. Concentrations that were achieved after a single dose of 5 mg/kg horseshoe crabs were sufficient to treat bacteria susceptible to enrofloxacin and ciprofloxacin. © 2017 John Wiley & Sons Ltd.

  8. Cuticular proteins from the horseshoe crab, Limulus polyphemus

    DEFF Research Database (Denmark)

    Ditzel, Nicholas; Andersen, Svend Olav; Højrup, Peter

    2003-01-01

    Proteins were purified from the carapace cuticle of a juvenile horseshoe crab, Limulus polyphemus, and several of them were characterized by amino acid sequence determination. The proteins are small (7-16 kDa) and their isoelectric points range from 6.5 to 9.2. They have high contents of tyrosine......, ranging from 13.5 to 35.4%. Some of the proteins show sequence similarity to cuticular proteins from other arthropod groups, with the most pronounced similarity to proteins from the cuticle of the spider Araneus diadematus. Two proteins show sequence similarity to a hexamerin storage protein from Blaberus...

  9. Synchronous primary carcinoid tumor and primary adenocarcinoma arising within mature cystic teratoma of horseshoe kidney: a unique case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Perepletchikov Aleksandr M

    2009-06-01

    Full Text Available Abstract Background Malignant transformation of mature cystic teratoma is a rare complication. While any of the constituent tissues of a teratoma has the potential to undergo malignant transformation, squamous cell carcinoma is the most commonly associated malignancy. Renal carcinoid tumors are rare and frequently associated with horseshoe kidney and renal teratoma. Renal teratoma rarely presents together with carcinoid tumor or adenocarcinoma. To the best of our knowledge, there has never been a report of renal teratoma coexisting with both carcinoid tumor and adenocarcinoma. Methods Here, we present a unique and first case of synchronous primary carcinoid tumor and moderately differentiated adenocarcinoma arising within mature cystic teratoma of horseshoe kidney in a 50-year-old female. Lumbar spine X-ray, done for her complaint of progressive chronic low back pain, accidentally found a large calcification overlying the lower pole of the right kidney. Further radiologic studies revealed horseshoe kidney and a large multiseptated cystic lesion immediately anterior to the right renal pelvis with central calcification and peripheral enhancement. She underwent right partial nephrectomy. Results Macroscopically, the encapsulated complex solid and multiloculated cystic tumor with large calcification, focal thickened walls and filled with yellow-tan gelatinous material. Microscopically, the tumor showed coexistent mature cystic teratoma, moderately differentiated adenocarcinoma and carcinoid tumor. Immunohistochemically, alpha-methylacyl-coenzyme A-racemase, calretinin, CD10 and thyroid transcription factor-1 were negative in all the three components of the tumor. The teratomatous cysts lined by ciliated epithelium showed strong staining for cytokeratin 7 and pancytokeratin, and those lined by colonic-like epithelium showed strong staining for CDX2, cytokeratin 20 and pancytokeratin, but both were negative for calretinin. Additionally, the

  10. Spawning migration of the horseshoe crab, Tachypleus gigas (Muller), in relation to lunal cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Rathod, V.; Parulekar, A.H.

    Effects of lunar phases and tidal height on the spawning migration of the horseshoe crab, Tachypleus gigas, along the northeastern coast of India were studied. Mature pairs of crabs migrate towards the shore and build their nests in sandy beaches...

  11. Remnants of an Ancient Deltaretrovirus in the Genomes of Horseshoe Bats (Rhinolophidae).

    Science.gov (United States)

    Hron, Tomáš; Farkašová, Helena; Gifford, Robert J; Benda, Petr; Hulva, Pavel; Görföl, Tamás; Pačes, Jan; Elleder, Daniel

    2018-04-10

    Endogenous retrovirus (ERV) sequences provide a rich source of information about the long-term interactions between retroviruses and their hosts. However, most ERVs are derived from a subset of retrovirus groups, while ERVs derived from certain other groups remain extremely rare. In particular, only a single ERV sequence has been identified that shows evidence of being related to an ancient Deltaretrovirus , despite the large number of vertebrate genome sequences now available. In this report, we identify a second example of an ERV sequence putatively derived from a past deltaretroviral infection, in the genomes of several species of horseshoe bats (Rhinolophidae). This sequence represents a fragment of viral genome derived from a single integration. The time of the integration was estimated to be 11-19 million years ago. This finding, together with the previously identified endogenous Deltaretrovirus in long-fingered bats (Miniopteridae), suggest a close association of bats with ancient deltaretroviruses.

  12. Pulmonary Vasculitis and a Horseshoe Kidney in Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Surasak Puvabanditsin

    2018-01-01

    Full Text Available We report a term male neonate with congenital myeloproliferative disorder, thrombocytopenia, a horseshoe kidney, feeding difficulty secondary to dysphagia/foregut dysmotility, and respiratory failure. Prenatal molecular genetic analysis revealed a fetus carrying c.184T>G (p.Tyr62Asp pathogenic variant in PTPN11. The infant eventually succumbed to respiratory failure. Bacterial and viral cultures/studies were all no growth/negative. Pulmonary capillaritis and vasculitis were noted at autopsy. This report presents a new case of Noonan syndrome with unusual associated disorders and a review of the literature.

  13. Pulmonary Vasculitis and a Horseshoe Kidney in Noonan Syndrome.

    Science.gov (United States)

    Puvabanditsin, Surasak; Abellar, Rosanna; Madubuko, Adaora; Mehta, Rajeev; Walzer, Lauren

    2018-01-01

    We report a term male neonate with congenital myeloproliferative disorder, thrombocytopenia, a horseshoe kidney, feeding difficulty secondary to dysphagia/foregut dysmotility, and respiratory failure. Prenatal molecular genetic analysis revealed a fetus carrying c.184T>G (p.Tyr62Asp) pathogenic variant in PTPN11 . The infant eventually succumbed to respiratory failure. Bacterial and viral cultures/studies were all no growth/negative. Pulmonary capillaritis and vasculitis were noted at autopsy. This report presents a new case of Noonan syndrome with unusual associated disorders and a review of the literature.

  14. Long-term in vitro generation of amoebocytes from the Indian horseshoe crab Tachypleus gigas (Muller)

    Digital Repository Service at National Institute of Oceanography (India)

    Joshi, B.; Chatterji, A.; Bhonde, R.

    Amoebocyte is the single type of cell circulating in the horseshoe crab hemolymph, which plays a major role in the defense system of the animal. Granules present in these cells are sensitive to nanogram quantities of bacterial endotoxins, which form...

  15. Remnants of an Ancient Deltaretrovirus in the Genomes of Horseshoe Bats (Rhinolophidae

    Directory of Open Access Journals (Sweden)

    Tomáš Hron

    2018-04-01

    Full Text Available Endogenous retrovirus (ERV sequences provide a rich source of information about the long-term interactions between retroviruses and their hosts. However, most ERVs are derived from a subset of retrovirus groups, while ERVs derived from certain other groups remain extremely rare. In particular, only a single ERV sequence has been identified that shows evidence of being related to an ancient Deltaretrovirus, despite the large number of vertebrate genome sequences now available. In this report, we identify a second example of an ERV sequence putatively derived from a past deltaretroviral infection, in the genomes of several species of horseshoe bats (Rhinolophidae. This sequence represents a fragment of viral genome derived from a single integration. The time of the integration was estimated to be 11–19 million years ago. This finding, together with the previously identified endogenous Deltaretrovirus in long-fingered bats (Miniopteridae, suggest a close association of bats with ancient deltaretroviruses.

  16. Shape from focus for large image fields

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Hamarová, Ivana

    2015-01-01

    Roč. 54, č. 33 (2015), s. 9747-9751 ISSN 1559-128X R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : shape from focus * large image fields * optically rough surface Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.598, year: 2015

  17. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    Science.gov (United States)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  18. Comments for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit)

    Science.gov (United States)

    List of comments for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit: Massachusetts Plan Approval including nonattainment NSR Appendix A requirements).

  19. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    Science.gov (United States)

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  20. Sporadic wind wave horse-shoe patterns

    Directory of Open Access Journals (Sweden)

    S. Yu. Annenkov

    1999-01-01

    Full Text Available The work considers three-dimensional crescent-shaped patterns often seen on water surface in natural basins and observed in wave tank experiments. The most common of these 'horse-shoe-like' patterns appear to be sporadic, i.e., emerging and disappearing spontaneously even under steady wind conditions. The paper suggests a qualitative model of these structures aimed at explaining their sporadic nature, physical mechanisms of their selection and their specific asymmetric form. First, the phenomenon of sporadic horse-shoe patterns is studied numerically using the novel algorithm of water waves simulation recently developed by the authors (Annenkov and Shrira, 1999. The simulations show that a steep gravity wave embedded into widespectrum primordial noise and subjected to small nonconservative effects typically follows the simple evolution scenario: most of the time the system can be considered as consisting of a basic wave and a single pair of oblique satellites, although the choice of this pair tends to be different at different instants. Despite the effective low-dimensionality of the multimodal system dynamics at relatively sho ' rt time spans, the role of small satellites is important: in particular, they enlarge the maxima of the developed satellites. The presence of Benjamin-Feir satellites appears to be of no qualitative importance at the timescales under consideration. The selection mechanism has been linked to the quartic resonant interactions among the oblique satellites lying in the domain of five-wave (McLean's class II instability of the basic wave: the satellites tend to push each other out of the resonance zone due to the frequency shifts caused by the quartic interactions. Since the instability domain is narrow (of order of cube of the basic wave steepness, eventually in a generic situation only a single pair survives and attains considerable amplitude. The specific front asymmetry is found to result from the interplay of quartic

  1. Horseshoe kidney: a review of anatomy and pathology.

    Science.gov (United States)

    Natsis, Konstantinos; Piagkou, Maria; Skotsimara, Antonia; Protogerou, Vassilis; Tsitouridis, Ioannis; Skandalakis, Panagiotis

    2014-08-01

    Horseshoe kidney (HSK) is the most common renal fusion, which is characterized by three anatomic anomalies: ectopia, malrotation and vascular changes. Patients with HSK are prone to a variety of complications, genitourinary and non-genitourinary. In this paper, the anatomy of HSK is delineated with a great emphasis on its blood supply. After reviewing the literature, the arterial supply patterns found by each author were categorized according to the classification system proposed by Graves. The majority of HSKs were found to be supplied by renal arteries derived from the abdominal aorta below the isthmus or by vessels originating from the common iliac arteries. In addition, the abnormalities associated with HSK are highlighted and classified in anatomical variations, congenital anomalies as well as in pathologic conditions related to HSK.

  2. Arthroscopic repair of large U-shaped rotator cuff tears without margin convergence versus repair of crescent- or L-shaped tears.

    Science.gov (United States)

    Park, Jin-Young; Jung, Seok Won; Jeon, Seung-Hyub; Cho, Hyoung-Weon; Choi, Jin-Ho; Oh, Kyung-Soo

    2014-01-01

    For large-sized tears of the rotator cuff, data according to the tear shape have not yet been reported for repair methodology, configuration, and subsequent integrity. The retear rate after the repair of large mobile tears, such as crescent- or L-shaped tears, is believed to be lower compared with retear rates after the repair of large U-shaped tears that are accompanied by anterior or posterior leaves of the rotator cuff. Cohort study; Level of evidence, 3. Data were collected and analyzed from 95 consecutive patients with a large-sized rotator cuff tear who underwent arthroscopic suture-bridge repair. Patients were divided into 2 groups: those having crescent- or L-shaped tears (mobile tear group, 53 patients) and those having U-shaped tears (U-shaped tear group, 42 patients). The integrity of the repaired constructs was determined by ultrasonography at 4.5, 12, and 24 months. Moreover, clinical evaluations were performed by using the Constant score, the American Shoulder and Elbow Surgeons (ASES) score, and muscle strength at intervals of 3, 6, 12, and 24 months postoperatively. On ultrasonography at 4.5, 12, and 24 months, a retear was detected in 6, 2, and 1 patients in the mobile tear group and in 5, 2, and 1 patients in the U-shaped tear group, respectively. Significant differences in retear rates were not detected between the groups overall or at each time point. Moreover, clinical scores were similar between groups, except for the presence of a temporarily higher Constant score at 12 months in the mobile tear group. With regard to shoulder strength, between-group comparisons indicated no statistically significant difference, either in abduction or external rotation, except for the presence of temporarily higher external rotation strength at 3 months in the mobile tear group. Arthroscopic repair of large-sized rotator cuff tears yielded substantial improvements in shoulder function, regardless of tear retraction, during midterm follow-up. Moreover, the

  3. Effects of perivitelline fluid obtained from Horseshoe crab on the proliferation and genotoxicity of dental pulp stem cells

    Digital Repository Service at National Institute of Oceanography (India)

    Musa, M.; Ali, K.M.; Kannan, T.P.; Azlina, A.; Omar, N.S.; Chatterji, A.; Mokhtar, K.I.

    Perivitelline fluid (PVF) of the horseshoe crab embryo has been reported to possess an important role during embryogenesis by promoting cell proliferation. This study aims to evaluate the effect of PVF on the proliferation, chromosome aberration (CA...

  4. Mandibular and cranial modularity in the greater horseshoe bat Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae)

    OpenAIRE

    Jojic, Vida; Budinski, Ivana; Blagojevic, Jelena; Vujosevic, Mladen

    2015-01-01

    We report the first evaluation of mandibular and cranial modularity in the greater horseshoe bat (Rhinolophus ferrumequinum). Although some authors found no modular pattern of these morphological structures in mammals, we discovered that traits integration in R. ferrumequinum is not uniform throughout the mandible and cranium, but structured into two distinct modules. Allometry does not affect mandibular and cranial modularity in R. ferrumequinum probably as a result of the low fraction of sh...

  5. A vectorial description of electromagnetic scattering by large bodies of spherical shape

    International Nuclear Information System (INIS)

    Bourrely, C.; Lemaire, T.; Chiappetta, P.; Centre National de la Recherche Scientifique, 13 - Marseille

    1989-10-01

    We present a new method to obtain a vectorial solution of Helmholtz equation for large homogeneous scatterers having a cylindrical symmetry and a shape approximately spherical. Limitations of the method for arbitrarily shaped particles are discussed

  6. [Laparoscopic management of complex lithiasis in horseshoe kidneys].

    Science.gov (United States)

    Valdivia-Uria, J G; Abril Baquero, G; Monzón Alebesque, F; López López, J A; Lanchares Santamaría, E

    1994-05-01

    Based on the fact that the results obtained with extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy are uncertain in cases of complex lithiasis in horseshoe kidney, and counting on a wide laparoscopic experience as the most suitable solution in these cases, the authors present their initial experience in two cases of double lithiasis in right hemikidney. Approach was done through transperitoneal laparoscopy, after placement of a stent catheter and under the support of a radiological C-arc. After removal of the stones, the renal pelvis was closed with loose 4 zero reabsorbable suture with kots done intracorporeally. The post-operative had no complications with the exception of a transient leak of urine (5 days) that cause no further complications or subsequent sequelae. Monitoring at 6 months showed absence of residual lithiasis and good morphology and renal function of the sides operated.

  7. Modeling of non-ideal hard permanent magnets with an affine-linear model, illustrated for a bar and a horseshoe magnet

    Science.gov (United States)

    Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.

    2017-11-01

    This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.

  8. ALK-negative anaplastic large cell lymphoma mimicking a soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Rachel Hudacko

    2011-01-01

    Full Text Available Anaplastic lymphoma kinase protein (ALK-negative anaplastic large cell lymphoma (ALCL has a vast morphologic spectrum and may mimic many other types of malignancies both cytologically and histologically. There are only a few published case reports/series describing the cytomorphologic features of ALCL on fine-needle aspiration (FNA biopsy specimens. We describe a case of ALK-negative ALCL mimicking a high-grade soft tissue sarcoma of the thigh in a 62-year-old man. The characteristic morphologic findings on FNA and core biopsy along with the immunophenotypic profile are described and reviewed. The diagnosis of ALCL on FNA biopsy may be difficult, but can be done successfully with the use of ancillary tests. Therefore, it must be considered in the differential diagnosis of lesions with pleomorphism, anaplasia, and wreath-like or horseshoe-shaped nuclei to ensure that adequate material is obtained for ancillary studies.

  9. Phylogenetic relationships and evolutionary history of the greater horseshoe bat, Rhinolophus ferrumequinum, in Northeast Asia.

    Science.gov (United States)

    Liu, Tong; Sun, Keping; Park, Yung Chul; Feng, Jiang

    2016-01-01

    The greater horseshoe bat, Rhinolophus ferrumequinum , is an important model organism for studies on chiropteran phylogeographic patterns. Previous studies revealed the population history of R. ferrumequinum from Europe and most Asian regions, yet there continue to be arguments about their evolutionary process in Northeast Asia. In this study, we obtained mitochondrial DNA cyt b and D-loop data of R. ferrumequinum from Northeast China, South Korea and Japan to clarify their phylogenetic relationships and evolutionary process. Our results indicate a highly supported monophyletic group of Northeast Asian greater horseshoe bats, in which Japanese populations formed a single clade and clustered into the mixed branches of Northeast Chinese and South Korean populations. We infer that R. ferrumequinum in Northeast Asia originated in Northeast China and South Korea during a cold glacial period, while some ancestors likely arrived in Japan by flying or land bridge and subsequently adapted to the local environment. Consequently, during the warm Eemian interglaciation, the Korea Strait, between Japan and South Korea, became a geographical barrier to Japanese and inland populations, while the Changbai Mountains, between China and North Korea, did not play a significant role as a barrier between Northeast China and South Korea populations.

  10. A New Species of Horseshoe Bat of the Genus Rhinolophus from China (Chiroptera: Rhinolophidae)

    OpenAIRE

    Wu, Yi; Motokawa, Masaharu; Harada, Masashi

    2008-01-01

    A new species of the Rhinolophus philippinensis group (Chiroptera: Rhinolophidae) is described from Guangdong, Guangxi, and Jiangxi Provinces in China. Rhinolophus huananus n. sp. is characterized by the horseshoe, as well as by external and cranial characteristics that separate it at the species level from the other members of the philippinensis group. One of the small species of the philippinensis group, R. huananus is intermediate in size between smaller R. siamensis and larger R. macrotis.

  11. A new species of horseshoe bat of the genus Rhinolophus from China (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Wu, Yi; Motokawa, Masaharu; Harada, Masashi

    2008-04-01

    A new species of the Rhinolophus philippinensis group (Chiroptera: Rhinolophidae) is described from Guangdong, Guangxi, and Jiangxi Provinces in China. Rhinolophus huananus n. sp. is characterized by the horseshoe, as well as by external and cranial characteristics that separate it at the species level from the other members of the philippinensis group. One of the small species of the philippinensis group, R. huananus is intermediate in size between smaller R. siamensis and larger R. macrotis.

  12. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  13. The complete mitochondrial DNA genome of a greater horseshoe bat subspecies, Rhinolophus ferrumequinum quelpartis (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Yoon, Kwang Bae; Kim, Ji Young; Kim, Hye Ri; Cho, Jae Youl; Park, Yung Chul

    2013-02-01

    There are two subspecies of Rhinolophus ferrumequinum currently recognized in South Korea. The Korean greater horseshoe bat subspecies, Rhinolophus ferrumequinum quelpartis, is distributed only in Jeju Island. The complete mitochondrial genome of the island subspecies was determined and revealed 99.7% similarity to the mainland subspecies Rhinolophus ferrumequinum korai. If d-loop region is excluded, similarity of the two genomes was 99.9%.

  14. A Rare Case of a Renal Cell Carcinoma Confined to the Isthmus of a Horseshoe Kidney

    Directory of Open Access Journals (Sweden)

    Michael Kongnyuy

    2015-01-01

    Full Text Available Horseshoe kidney (HSK is the most common renal anomaly. Reports of the incidence of renal cell carcinoma (RCC in HSK are conflicting. Very few cases of isthmus-located RCC have been reported in the literature. We report a unique case of an isthmus-located RCC. Proper vascular and tumor imaging prior to surgery is key to successful tumor removal.

  15. Modeling the behaviour of shape memory materials under large deformations

    Science.gov (United States)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  16. Mapping UV properties throughout the Cosmic Horseshoe: lessons from VLT-MUSE

    Science.gov (United States)

    James, Bethan L.; Auger, Matt; Pettini, Max; Stark, Daniel P.; Belokurov, V.; Carniani, Stefano

    2018-05-01

    We present the first spatially resolved rest-frame ultraviolet (UV) study of the gravitationally lensed galaxy, the `Cosmic Horseshoe' (J1148+1930) at z = 2.38. Our gravitational lens model shows that the system is made up of four star-forming regions, each ˜4-8 kpc2 in size, from which we extract four spatially exclusive regional spectra. We study the interstellar and wind absorption lines, along with C III] doublet emission lines, in each region to investigate any variation in emission/absorption line properties. The mapped C III] emission shows distinct kinematical structure, with velocity offsets of ˜±50 km s-1 between regions suggestive of a merging system, and a variation in equivalent width that indicates a change in ionization parameter and/or metallicity between the regions. Absorption line velocities reveal a range of outflow strengths, with gas outflowing in the range -200 ≲ v (km s-1) ≲ -50 relative to the systemic velocity of that region. Interestingly, the strongest gas outflow appears to emanate from the most diffuse star-forming region. The star formation rates remain relatively constant (˜8-16 M⊙ yr-1), mostly due to large uncertainties in reddening estimates. As such, the outflows appear to be `global' rather than `locally' sourced. We measure electron densities with a range of log (Ne) = 3.92-4.36 cm-3, and point out that such high densities may be common when measured using the C III] doublet due to its large critical density. Overall, our observations demonstrate that while it is possible to trace variations in large-scale gas kinematics, detecting inhomogeneities in physical gas properties and their effects on the outflowing gas may be more difficult. This study provides important lessons for the spatially resolved rest-frame UV studies expected with future observatories, such as James Webb Space Telescope.

  17. Tri-spine horseshoe crab, Tachypleus tridentatus (L. in Sabah, Malaysia: the adult body sizes and population estimate

    Directory of Open Access Journals (Sweden)

    Azwarfarid Manca

    2017-09-01

    Full Text Available The dwindling number of the tri-spine horseshoe crab, Tachypleus tridentatus has been reported globally and its status in Malaysia is not much known. Study on dimorphism in adult body sizes and population size estimation were conducted using capture–mark–recapture method of adult T. tridentatus in Tawau, Sabah. Camry the estimated population sizes of T. tridentatus ranged from 182 to 1095 with 95% confident limits of 56–42,942 individuals (Schnabel formula. The multivariate discriminant Hotelling’s T2 test verifies the sexual size dimorphism among the adult T. tridentatus with 97.7% separation among sexes (Hotelling’s T2 = 778.49, F = 152.85, p < 0.001 with females being larger and heavier than the male individuals. The number estimated from the study is the first reported for T. tridentatus in Malaysia, particularly in Sabah. Even though this number may slightly overestimate the actual population size in the area owing to the low number of individuals recaptured, for now it could serve as baseline data for horseshoe crab management purpose.

  18. Dominant Glint Based Prey Localization in Horseshoe Bats: A Possible Strategy for Noise Rejection

    OpenAIRE

    Vanderelst, Dieter; Reijniers, Jonas; Firzlaff, Uwe; Peremans, Herbert

    2011-01-01

    Rhinolophidae or Horseshoe bats emit long and narrowband calls. Fluttering insect prey generates echoes in which amplitude and frequency shifts are present, i.e. glints. These glints are reliable cues about the presence of prey and also encode certain properties of the prey. In this paper, we propose that these glints, i.e. the dominant glints, are also reliable signals upon which to base prey localization. In contrast to the spectral cues used by many other bats, the localization cues in Rhi...

  19. First record of the Lesser Horseshoe bat, Rhinolophus hipposideros (Bechstein, 1800) (Rhinolophidae, Chiroptera) from Syria

    OpenAIRE

    Shehab, Adwan; Mamkhair, Inrahim; Amr, Zuhair

    2007-01-01

    Abstract The lesser horseshoe bat Rhinolophus hipposideros was recorded for the first time from Syria in 2005-06. Two solitary hibernating specimens (a male and a female) were collected from an underground cave in Basofan village, NW of Aleppo, and from Al Marqab Citadel, Banyas. External and cranial measurements are given for both specimens. The list of recorded species of bats of Syria includes 17 species. Riassunto&l...

  20. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  1. First amplification of Eimeria hessei DNA from the lesser horseshoe bat (Rhinolophus hipposideros) and its phylogenetic relationships with Eimeria species from other bats and rodents.

    Science.gov (United States)

    Afonso, Eve; Baurand, Pierre-Emmanuel; Tournant, Pierline; Capelli, Nicolas

    2014-04-01

    Although coccidian parasites of the genus Eimeria are among the best-documented parasites in bats, few Eimeria species found in bats have been characterised using molecular tools, and none of the characterised species are found in European countries. Phylogenetic relationships of Eimeria species that parasitise bats and rodents can be related to the morphology of oocysts, independently from host range, suggesting that these species are derived from common ancestors. In the present study, we isolated a partial sequence of the Eimeria hessei 18S rRNA gene from the lesser horseshoe bat (Rhinolophus hipposideros), a European bat species. Droppings from lesser horseshoe bats were collected from 11 maternity roosts located in France that were positive for the presence of the parasite. Through morphological characterisation, the oocysts detected in the lesser horseshoe bat droppings were confirmed to be E. hessei. The unique E. hessei sequence obtained through molecular analysis belonged to a clade that includes both rodent and bat Eimeria species. However, the E. hessei oocysts isolated from the bat droppings did not show morphological similarities to rodent Eimeria species. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Evolution of triaxial shapes at large isospin: Rh isotopes

    Directory of Open Access Journals (Sweden)

    A. Navin

    2017-04-01

    Full Text Available The rotational response as a function of neutron–proton asymmetry for the very neutron-rich isotopes of Rh (116–119Rh has been obtained from the measurement of prompt γ rays from isotopically identified fragments, produced in fission reactions at energies around the Coulomb barrier. The measured energy “signature” splitting of the yrast bands, when compared with the Triaxial Projected Shell Model (TPSM calculations, shows the need for large, nearly constant, triaxial deformations. The present results are compared with global predictions for the existence of non axial shapes in the periodic table in the case of very neutron-rich nuclei Rh isotopes. The predicted trend of a second local maximum for a triaxial shape around N∼74 is not found.

  3. Clinical dosimetry of large shaped 60Co irradiation fields

    International Nuclear Information System (INIS)

    Novotny, J.

    1979-01-01

    The determination is described of absorbed doses in the Alderson-Rando phantom by thermoluminescent dosemeters in patients irradiated with irregularly shaped large-surface fields of Co 60 . In a range of 3 to 5% the measured values correspond to the values calculated with the aid of relations presented by Bukowitz. Non-homogeneity of irradiation when two supradiaphragmatic fields are used and its improvement are discussed. (author)

  4. Complete mitochondrial genome of the big-eared horseshoe bat Rhinolophus macrotis (Chiroptera, Rhinolophidae).

    Science.gov (United States)

    Zhang, Lin; Sun, Keping; Feng, Jiang

    2016-11-01

    We sequenced and characterized the complete mitochondrial genome of the big-eared horseshoe bat, Rhinolophus macrotis. Total length of the mitogenome is 16,848 bp, with a base composition of 31.2% A, 25.3% T, 28.8% C and 14.7% G. The mitogenome consists of 13 protein-coding genes, 2 rRNA (12S and 16S rRNA) genes, 22 tRNA genes and 1 control region. It has the same gene arrangement pattern as those of typical vertebrate mitochondrial genome. The results will contribute to our understanding of the taxonomic status and evolution in the genus Rhinolophus bats.

  5. Recovery of a phytopathogenic bacterium Lonsdalea quercina from a lesser horseshoe bat in Moravian karst, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kováčová, V.; Kolařík, Miroslav; Banďouchová, H.; Bartonička, T.; Berková, Hana; Havelková, B.; Hrudová, E.; Kohoutová, L.; Martínková, Natália; Zukal, Jan; Pikula, J.

    2018-01-01

    Roč. 48, č. 1 (2018), č. článku e12379. ISSN 1437-4781 R&D Projects: GA ČR(CZ) GA17-20286S Institutional support: RVO:61388971 ; RVO:68081766 Keywords : plants * Lonsdalea quercina * horseshoe bat Subject RIV: EE - Microbiology, Virology; GJ - Animal Vermins ; Diseases, Veterinary Medicine (UBO-W) OBOR OECD: Microbiology; Zoology (UBO-W) Impact factor: 1.547, year: 2016

  6. Interplay of static and dynamic features in biomimetic smart ears.

    Science.gov (United States)

    Pannala, Mittu; Meymand, Sajjad Zeinoddini; Müller, Rolf

    2013-06-01

    Horseshoe bats (family Rhinolophidae) have sophisticated biosonar systems with outer ears (pinnae) that are characterized by static local shape features as well as dynamic non-rigid changes to their overall shapes. Here, biomimetic prototypes fabricated from elastic rubber sheets have been used to study the impact of these static and dynamic features on the acoustic device characteristics. The basic shape of the prototypes was an obliquely truncated horn augmented with three static local shape features: vertical ridge, pinna-rim incision and frontal flap (antitragus). The prototype shape was deformed dynamically using a one-point actuation mechanism to produce a biomimetic bending of the prototype's tip. In isolation, the local shape features had little impact on the device beampattern. However, strong interactions were observed between these features and the overall deformation. The further the prototype tip was bent down, the stronger the beampatterns associated with combinations of multiple features differed from the upright configuration in the prominence of sidelobes. This behavior was qualitatively similar to numerical predictions for horseshoe bats. Hence, the interplay between static and dynamic features could be a bioinspired principle for affecting large changes through the dynamic manipulations of interactions that are sensitive to small geometrical changes.

  7. Aspects of ecomorphology in the five European horseshoe bats (Chiroptera: Rhinolophidae) in the area of sympatry

    OpenAIRE

    Dietz, Christian

    2007-01-01

    Several ecomorphological aspects in the European horseshoe bats were studied. The analysis of the data allows to draw some conclusions about possible niche separating parameters. The thesis consists of seven parts, details can be found in the abstracts of each chapter. Verschiedene ökomorphologische Aspekte der europäischen Hufeisennasen-Fledermäuse wurden untersucht. Die Auswertung der Daten erlaubt Rückschlüsse auf mögliche Parameter, die eine Nischentrennung ermöglichen. Die Arbeit best...

  8. Arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears.

    Science.gov (United States)

    Jung, Sung-Weon; Kim, Dong-Hee; Kang, Seung-Hoon; Lee, Ji-Heon

    2017-07-01

    While a conventional single- or double-row repair technique could be applied for repair of C-shaped tears, a different surgical strategy should be considered for repair of U- or L-shaped tears because they typically have complex patterns with anterior, posterior, or both mobile leaves. This study was performed to examine the outcomes of the modified Mason-Allen technique for footprint restoration in the treatment of large U- or L-shaped rotator cuff tears. Thirty-two patients who underwent an arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears between January 2012 and December 2013 were included in this study. Margin convergence was first performed to reduce the tear gap and tension, and then, an arthroscopic Mason-Allen technique was performed to restore the rotator cuff footprint in a side-to-end repair fashion. All patients were evaluated preoperatively and for a minimum of 2 years of follow-up with a visual analog scale (VAS) for pain, Constant score, and ultrasonography. There was significant improvement in all VAS and Constant scores compared with the preoperative values (P rotator cuff in our data. Overall satisfactory results were achieved in most patients, with the exception of those with severe fatty degeneration. An arthroscopic modified Mason-Allen technique could be an effective and reliable alternative for patients with large U- or L-shaped rotator cuff tears. Case Series, Therapeutic Level IV.

  9. New record of the sympatric distribution of two Asian species of the horseshoe crab

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.

    distribution of two Asian species of the horses... http://www.ias.ac.in/currsci/sep25/articles14.htm 1 of 3 2/11/05 9:47 AM New record of the sympatric distribution of two Asian species of the horseshoe crab The geographical distribution of four extant species...... http://www.ias.ac.in/currsci/sep25/articles14.htm 2 of 3 2/11/05 9:47 AM This species was found breeding actively on relatively clean and sandy beaches. The other species (C. rotundicauda) was not reported in these areas.However, during the survey...

  10. Extinction of radiant energy by large atmospheric crystals with different shapes

    International Nuclear Information System (INIS)

    Shefer, Olga

    2016-01-01

    The calculated results of extinction characteristics of visible and infrared radiation for large semi-transparent crystals are obtained by hybrid technique, which is a combination of the geometric optics method and the physical optics method. Energy and polarization characteristics of the radiation extinction in terms of the elements of the extinction matrix for individual large crystals and ensemble of crystals are discussed. Influences of particle shapes, aspect ratios, parameters of size distribution, complex refractive index, orientation of crystals, wavelength, and the polarization state of an incident radiation on the extinction are illustrated. It is shown that the most expressive and stable features of energy and polarization characteristics of the extinction are observed in the midinfrared region, despite the fact that the ice particles significantly absorb the radiant energy of this spectrum. It is demonstrated that the polarized extinction characteristics can reach several tens of percent at IR wavelengths. For the large crystals, the conditions of occurrence of the spectral behavior of the extinction coefficient in the visible, near-IR, and mid-IR wavelength ranges are determined. - Highlights: • Method of physical optics is used at coherent sum of diffracted and refracted fields. • The extinction characteristics in terms of elements of extinction matrix are obtained. • Influence of shapes and sizes of large particles on the extinction is evaluated. • Conditions of occurrence of extinction features are determined.

  11. Environmental exposure of Atlantic horseshoe crab (Limulus polyphemus) early life stages to essential trace elements.

    Science.gov (United States)

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2016-12-01

    This study investigated the accumulation Co, Cu, Fe, Mn, Ni, Se, and Zn in Atlantic horseshoe crab (Limulus polyphemus) early life stages (egg, embryo and larvae) and compared the concentrations to the concentration of each element in sediment, pore water and overlying water for 5 sites across Long Island, NY. For the majority of the sites, all essential trace elements accumulated in the embryos and larvae. However, many of the embryos and larvae at specific sites presented different concentration patterns which had no apparent relationship with the local habitat sediment and water values. Generally, Cu, Fe, and Se sequentially increased from egg stage through larval stages for the majority of sites, while Co, Mn, and Ni only did for a few sites. Zinc also showed an increase across sites from embryo to larval stage, however was the only one to show a decrease in concentration from egg to embryo stage at all sites. Interestingly, Mn at Manhasset Bay presented embryo and larval stages to be 50 fold greater than all other sites while the egg stage showed similar values to other sites; this high degree of uptake could be due to a high concentration in the overlying water. All essential trace elements can be accumulated from the environment but greater concentrations may be influenced by abiotic factors and the predominant uptake route (aqueous versus diet) at each life stage. Future laboratory experiments are required to investigate factors that influence essential trace element accumulation and loss in horseshoe crab early life stages. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Bilateral renal cell carcinoma in a horseshoe kidney: preoperative assessment with MRI and digital subtraction angiography

    International Nuclear Information System (INIS)

    Schubert, R.A.; Soeldner, J.; Kaiser, W.A.; Steiner, T.; Schubert, J.

    1998-01-01

    Renal cell carcinoma in a horseshoe kidney is an unusual entity. To our knowledge, only 123 cases have been published to date. We report the first bilateral case of two clear-cell carcinomas in an asymmetrically fused kidney. Optimum preservation of renal function after radical tumor removal requires accurate preoperative imaging. Since the vascular supply in fusion anomalies is extremely variable, angiography is mandatory. Magnetic resonance imaging was most suitable to predict the tumor extent and localization, because it simultaneously gave the most comprehensive anatomical overview of the malformation. (orig.)

  13. Taxonomic Evaluation of the Greater Horseshoe Bat Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae) in Iran Inferred from the Mitochondrial D-Loop Gene.

    Science.gov (United States)

    Shahabi, Saeed; Akmali, Vahid; Sharifi, Mozafar

    2017-08-01

    To examine the level of genetic differentiation in the sequences of the mitochondrial D-loop gene of Rhinolophus ferrumequinum, and to evaluate the current taxonomic status of this species, 50 tissue samples of greater horseshoe bats were collected in 2011-2015 from 21 different localities in northwest, northeast, west, central, and south regions of Iran. Twenty-two published D-loop sequences from Europe (Switzerland, United Kingdom, Bulgaria, and Tunisia), and Anatolia (south, west, and east Turkey) were downloaded from GenBank. Molecular genetic analyses revealed remarkable variation among populations of R. ferrumequinum. Two major clades with strong support were identified within the greater horseshoe bat. One of these clades consists of individuals of R. ferrumequinum from Iran and eastern Turkey, and is further subdivided into two subclades. A second clade includes samples from western Turkey and Europe. The two subclades from Iran and Turkey and the second clade from western Turkey and Europe represent three diagnosable categories, which most probably warrant three subspecies for the species. Thus, based on genetic differences, it is clear that two subspecific populations are found in Iran: R. f. irani (southern Iran) and R. f. proximus (northern Iran).

  14. Characterization of Oita virus 296/1972 of Rhabdoviridae isolated from a horseshoe bat bearing characteristics of both lyssavirus and vesiculovirus.

    Science.gov (United States)

    Iwasaki, T; Inoue, S; Tanaka, K; Sato, Y; Morikawa, S; Hayasaka, D; Moriyama, M; Ono, T; Kanai, S; Yamada, A; Kurata, T

    2004-06-01

    Oita virus 296/1972 was isolated from the blood of a wild horseshoe bat, Rhinolophus cornutus (Temminck) in 1972. We investigated the pathogenicity of this virus in mice in relation to its histological, immunohistochemical and ultrastructural characteristics and the entire sequence of nucleoprotein gene. This virus caused lethal encephalitis in mice through intracerebral route. This susceptibility of mice was until 3 weeks of age. Immunohistochemical analysis using the convalescent sera obtained from survived adult mice after intracerebral inoculation revealed that many neurons were positive in the cytoplasm, besides no cross reactivity with normal and rabies virus-infected mouse brain tissues to this anti-sera. Ultrastructural analysis disclosed many bullet-shaped and enveloped virions in neurons. These morphological characteristics of the virions are consistent of that of viruses in the family Rhabdoviridae. Budding from endoplasmic membrane suggests that this virus has a similarity with lyssaviruses. Molecular analysis of cDNA coding a tentative nucleoprotein sequence revealed homology with those of viruses in the family Rhabdoviridae. Distance matrix analysis of this gene sequence with those of other rhabdoviruses isolated from mammals disclosed the discrete position of this virus in the phylogenic tree of rhabdoviridae infecting mammals and we renamed this virus as Oita rhabdovirus.

  15. A Novel Chimney Approach for Management of Horseshoe Kidney During EVAR

    Directory of Open Access Journals (Sweden)

    K. Sharma

    Full Text Available Introduction: Abdominal aortic aneurysms (AAAs with coexisting horseshoe kidney (HSK can be difficult to repair, with variable blood supply from the aorta and iliac/mesenteric vessels. Endovascular aneurysm repair (EVAR has become a popular, less invasive approach to aneurysm care, and a chimney approach to EVAR (ChEVAR has expanded its use to more complex anatomy. It is mandatory to maintain adequate perfusion to the HSK and visceral branches as part of the treatment of an AAA. Report: A 61-year-old male with an HSK was incidentally found to have an infrarenal AAA that measured 6 cm on a non-contrast computed tomography (CT scan performed originally for a urologic complaint. A diagnostic angiogram was performed to define arterial anatomy and he was found to have a large inferior mesenteric artery (IMA arising 1 cm above the level of the aneurysm. ChEVAR was performed to preserve the IMA and flow to the HSK with a completion angiogram revealing patent renal arteries, IMA, and no evidence of an endoleak. Follow-up CT imaging demonstrated a Type II endoleak that resolved upon partial nephrectomy for a right-sided transitional cell carcinoma with resection of the arterial blood supply feeding the Type II endoleak. Discussion: IMA preservation via ChEVAR is technically feasible and was crucial to preserve blood supply via the IMA to the HSK. Partial nephrectomy treated the transitional cell carcinoma and resolved the Type II endoleak requiring no additional endovascular intervention. A unique treatment course demonstrated the benefits of less invasive interventions when repairing AAA with an HSK. Keywords: EVAR, Abdominal aortic aneurysm, Inferior mesenteric artery, Snorkel, Chimney, Endoleak

  16. Method of making large area conformable shape structures for detector/sensor applications using glass drawing technique and postprocessing

    Science.gov (United States)

    Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, IN

    2012-01-24

    A method of making a large area conformable shape structure comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes of a predetermined shape. The cut drawn tubes have a first end and a second end along the longitudinal direction of the cut drawn tubes. The method further comprises conforming the first end of the cut drawn tubes into a predetermined curve to form the large area conformable shape structure, wherein the cut drawn tubes contain a material.

  17. A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint.

    Science.gov (United States)

    Li, Xiaoniu; Yao, Zhiyuan; Yang, Mojian

    2017-06-01

    A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint is proposed in this paper. The motor is comprised of a V-shaped transducer, a slider, a clamp, and a base. The V-shaped transducer consists of two piezoelectric beams connected through a flexible joint to form an appropriate coupling angle. The V-shaped motor is operated in the coupled longitudinal-bending mode. Longitudinal and bending movements are transferred by the flexible joint between the two beams. Compared with the coupled longitudinal-bending mode of the single piezoelectric beam or the symmetrical and asymmetrical modes of the previous V-shaped transducer, the coupled longitudinal-bending mode of the V-shaped transducer with a flexible joint provides higher vibration efficiency and more convenient mode conformance adjustment. A finite element model of the V-shaped transducer is created to numerically study the influence of geometrical parameters and to determine the final geometrical parameters. In this paper, three prototypes were then fabricated and experimentally investigated. The modal test results match well with the finite element analysis. The motor mechanical output characteristics of three different coupling angles θ indicate that V-90 (θ = 90°) is the optimal angle. The mechanical output experiments conducted using the V-90 prototype (Size: 59.4 mm × 30.7 mm × 4 mm) demonstrate that the maximum unloaded speed is 1.2 m/s under a voltage of 350 Vpp, and the maximum output force is 15 N under a voltage of 300 Vpp. The proposed novel V-shaped linear ultrasonic motor has a compact size and a simple structure with a large thrust-weight ratio (0.75 N/g) and high speed.

  18. Neutron flux shape effects in large fast reactor safety calculations

    International Nuclear Information System (INIS)

    Galati, A.; Loizzo, P.; Musco, A.

    1978-01-01

    Three classes of accidents in a large fast reactor were studied by the two-dimensional core dynamics code NADYP-2. A Modified version of the code, including a point kinetics module, allowed comparison between 2D and 0D power, reactivity and temperature histories. A strong shape effect was evidenced by these calculations in the boiling phase of LOF accidents as well as in the accident generated by control rod removal. Some future possibilities of by passing the consequences of this effect are indicated

  19. Horseshoes chaos and stability of a delayed van der Pol-Duffing oscillator under a bounded double well potential

    International Nuclear Information System (INIS)

    Kwuimy, C.A. Kitio; Woafo, P.

    2009-06-01

    In this paper a van der Pol-Duffing oscillator with a bounded double well potential and a delayed (positive and negative) position and velocity feedback is considered. Attention is focussed on the effects of time delay on stability, escape motion and horseshoes chaos. Using Forde and Nelson's theorem, harmonic balance and Melnikov criterion for chaos, the boundary conditions for such phenomena are derived. It appears that, time delay can be used as simple switch to avoid and/or create complex behavior of the model. (author)

  20. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.

    Science.gov (United States)

    Tian, B; Schnitzler, H U

    1997-04-01

    Echolocation signals of horseshoe bats (Rhinolophidae) consist of a relatively long component of constant frequency (CF) which is preceded by an initial frequency-modulated (iFM) component and followed by a terminal frequency-modulated (tFM) component. To examine the role of these components in echolocation, four bats were trained to fly from a perch to a landing bar. A dual camera system allowed reconstruction of the flight paths in three dimensions. Echolocation signals were recorded, analyzed, and correlated with the flight behavior of the bats. It was confirmed that during flight the bats compensate the Doppler shifts which are produced by their own flight movement. In free flight they emit per wing beat one single signal of long duration, with little variation in the three signal components. In approach flight the bats reduce pulse duration and interval with decreasing target range. The iFM is not varied with respect to target range, suggesting that this component plays little role in the processing of echolocating a target of interest. The bandwidth of the tFM component is increased while its duration is shortened in proportion to decreasing target range, so that the signal-echo overlap of the FM component is avoided down to a target distance of 15 cm. These concurrent changes suggest that the tFM component is used for ranging. During the last 60 cm of the approach the bats compensated for the increase of echo SPL by lowering the emission level of the CF component by 6-9 dB and that of the tFM component by 9-11 dB per halving of range. The specific signal structure of horseshoe bats is discussed as an adaptation for the hunting of fluttering insects in highly cluttered environments.

  1. Method of shaping fields of controlled extension in a resonator with a large electrical length

    International Nuclear Information System (INIS)

    Bomko, V.A.; Rudiak, B.I.

    A method is discussed for controlling the energy of particles accelerated in a linear accelerator consisting of a volume resonator with drift tubes. Results are described for experimental studies of problems with field shaping of controlled extension of fields in an accelerating structure having drift tubes and a large electrical length. The possibility of shaping the field in a resonator using a stabilizing system of the ''antipode'' type is considered

  2. Shape accuracy requirements on starshades for large and small apertures

    Science.gov (United States)

    Shaklan, Stuart B.; Marchen, Luis; Cady, Eric

    2017-09-01

    Starshades have been designed to work with large and small telescopes alike. With smaller telescopes, the targets tend to be brighter and closer to the Solar System, and their putative planetary systems span angles that require starshades with radii of 10-30 m at distances of 10s of Mm. With larger apertures, the light-collecting power enables studies of more numerous, fainter systems, requiring larger, more distant starshades with radii >50 m at distances of 100s of Mm. Characterization using infrared wavelengths requires even larger starshades. A mitigating approach is to observe planets between the petals, where one can observe regions closer to the star but with reduced throughput and increased instrument scatter. We compare the starshade shape requirements, including petal shape, petal positioning, and other key terms, for the WFIRST 26m starshade and the HABEX 72 m starshade concepts, over a range of working angles and telescope sizes. We also compare starshades having rippled and smooth edges and show that their performance is nearly identical.

  3. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    Science.gov (United States)

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Influence of turbulent horseshoe vortex and associated bed shear stress on sediment transport in front of a cylinder

    DEFF Research Database (Denmark)

    Li, Jinzhao; Qi, Meilan; Fuhrman, David R.

    2018-01-01

    -normal distribution for uniform channel-open flows. The comparisons of sediment transport rates where turbulent fluctuations in the bed shear stress are, or are not, taken into account show that the sediment transport rates calculated by the mean bed shear stress are under-predicted. Furthermore, a new sediment......This study concerns the flow and associated sediment transport in front of a cylinder in steady currents. The study comprises (i) flow characteristics induced by the turbulent horseshoe vortex (THV), (ii) bed shear stress within the THV region, and (iii) predicted sediment transport rates...

  5. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 2nd Report. Behavior of the interacting flow field controlled passively; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 2. Judo seigyosareta nagareba no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents the behavior of a passively controlled horseshoe vortex at the root of NACA0024 wing which is established on a turbulent boundary layer, A pair of vortex generators of half delta wing is installed upstream of the wing. The flow field of the optimally controlled horseshoe vortex both in case of Common Flow Up (CFUC) and Common Flow Down Configuration (CFDC) is carefully investigated by an X-array hot-wire. In case of CFUC, the horseshoe vortex is not shifted from the wing, because the longitudinal vortex is restrained. The interacted vortex presents a circular profile, in a optimally controlled case. In case of CFDC, the interacted vortex that has strong vorticity by the pairing process is shifted away from the wing. Then, the high momentum fluid flow penetrates between the wing and the vortex. (author)

  6. Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia)

    Science.gov (United States)

    Sallarès, Valentí; Martínez-Loriente, Sara; Prada, Manel; Gràcia, Eulàlia; Ranero, César; Gutscher, Marc-André; Bartolome, Rafael; Gailler, Audrey; Dañobeitia, Juan José; Zitellini, Nevio

    2013-03-01

    The Gorringe Bank is a gigantic seamount that separates the Horseshoe and Tagus abyssal plains offshore SW Iberia, in a zone that hosts the convergent boundary between the Africa and Eurasia plates. Although the region has been the focus of numerous investigations since the early 1970s, the lack of appropriate geophysical data makes the nature of the basement, and thus the origin of the structures, still debated. In this work, we present combined P-wave seismic velocity and gravity models along a transect that crosses the Gorringe Bank from the Tagus to the Horseshoe abyssal plains. The P-wave velocity structure of the basement is similar in the Tagus and Horseshoe plains. It shows a 2.5-3.0 km-thick top layer with a velocity gradient twice stronger than oceanic Layer 2 and an abrupt change to an underlying layer with a five-fold weaker gradient. Velocity and density is lower beneath the Gorringe Bank probably due to enhanced fracturing, that have led to rock disaggregation in the sediment-starved northern flank. In contrast to previous velocity models of this region, there is no evidence of a sharp crust-mantle boundary in any of the record sections. The modelling results indicate that the sediment overlays directly serpentinite rock, exhumed from the mantle with a degree of serpentinization decreasing from a maximum of 70-80% under the top of Gorringe Bank to less than 5% at a depth of ˜20 km. We propose that the three domains were originally part of a single serpentine rock band, of nature and possibly origin similar to the Iberia Abyssal Plain ocean-continent transition, which was probably generated during the earliest phase of the North Atlantic opening that followed continental crust breakup (Early Cretaceous). During the Miocene, the NW-SE trending Eurasia-Africa convergence resulted in thrusting of the southeastern segment of the exhumed serpentinite band over the northwestern one, forming the Gorringe Bank. The local deformation associated to plate

  7. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    Science.gov (United States)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  8. Channels with Different Fin Shapes

    Directory of Open Access Journals (Sweden)

    R. J. Goldstein

    1998-01-01

    Full Text Available The mass transfer (analogous to heat transfer and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF and two stepped-diameter circular fins (SDCF1 and SDCF2. Flow visualization using oil-lampblack reveals complex flow characteristics associated with the repeated production of horseshoe vortices and fin wakes, and the interactions among these. The SDCF1 and SDCF2 arrays show flow characteristics different from the UDCF array due to downflow from the steps. For all arrays tested, the near-endwall flow varies row by row in the initial rows until it reaches a stable pattern after the third row. The row-averaged Sherwood numbers obtained from the naphthalene sublimation experiment also show a row-by-row variation pattern similar to the flow results. While the SDCF2 array has the highest mass transfer rate, the SDCF1 array has the smallest pressure loss at the same approach-flow velocity. The fin surfaces have higher array-averaged Sherwood number than the endwall and the ratio between these changes with fin shape and Reynolds number. The performance of the pin-fin arrays is analyzed under two different constraints: the mass[heat transfer rate at fixed pumping power, and the mass/heat transfer area and pressure loss to fulfill fixed heat load at a fixed mass flow rate. In both cases, the SDCF2 array shows the best performance.

  9. Rejecting escape events in large volume Ge detectors by a pulse shape selection procedure

    International Nuclear Information System (INIS)

    Del Zoppo, A.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piattelli, P.; Santonocito, D.; Sapienza, P.

    1993-01-01

    The dependence of the response to γ-rays of a large volume Ge detector on the interval width of a selected initial rise pulse slope is investigated. The number of escape events associated with a small pulse slope is found to be greater than the corresponding number of full energy events. An escape event rejection procedure based on the observed correlation between energy deposition and pulse shape is discussed. Such a procedure seems particularly suited for the design of highly granular large volume Ge detector arrays. (orig.)

  10. Performance of long J-shaped coils in large and giant intracranial aneurysms: an in vitro study

    International Nuclear Information System (INIS)

    Tokunaga, K.; Tanaka, N.; Sugiu, K.; Levrier, O.; Martin, J.B.; Ruefenacht, D.A.

    2002-01-01

    We evaluated the performance of long straight coils (Detach-18 trademark J-shaped coils) in large and giant in-vitro aneurysms. The coils consisted of a distal semicircular part 7 or 15 mm in diameter and a proximal 70 cm straight part having three types of stiffness: soft, standard, and stiff. We first investigated the ease of passage through a microcatheter in a realistic cerebral vessel model. Second, we made silicone models simulating lateral-type aneurysms of various spherical dome diameters (12, 15, 20 and 30 mm) and neck sizes (3-10 mm; dome-to-neck ratio approximately 3:1) and connected them to a pulsating circulatory pump. We evaluated the anchoring and folding patterns of the coils, stability of the microcatheter and coils in the aneurysm, and smoothness of delivery and retrieval of coils. Third, we compared the conformability of a coil in a large, irregular aneurysm with that of a spiral coil. The long J-shaped coils were easily advanced and retrieved through a microcatheter in a tortuous vessel model. In 12 mm spherical aneurysms, each coil made a complex framework, and knot formation or damage to the coil during withdrawal was often observed. In 15 mm aneurysms, the coils were all easily delivered and retrieved; standard-stiffness coils adapted best to this size. In 20 mm aneurysms, frameworks were less complex but still good with a standard or stiff coil, but those with soft coil were unstable and changed significantly within 3 min of detachment due to gravity and pulsatile flow. In 30 mm aneurysms, soft coils filled only the lower part during introduction, whereas a stiff coil still made a favourable framework. Conformability of a long J-shaped coil was superior to that of a spiral coil in a large, irregular aneurysm. Long J-shaped coils conform well to various configurations of large and giant aneurysms and can shorten procedures since a larger implant volume can be delivered with a single coil. Their principle of action may promote more favourable

  11. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 1st Report. Potential for passive controlling by a pair of vortex generators; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 1. Ittsui no uzu hasseiki ni yoru judo seigyoho no teian

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H.; Takahashi, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ikeda, K. [Toshiba Corp., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents a potential for a passive control of a horseshoe vortex at the root of the wing. NACA0024 wing is established on a turbulent boundary layer. A pair of vortex generators of halt delta wing is installed upstream of the wing. The controlled horseshoe vortex is tested qualitatively by flow visualization technique. Also, the potential for controlling is quantitatively investigated by wall static pressure and total pressure. The horseshoe vortex is remarkably controlled in Common Flow Up Configuration (CFUC) of vortex generators. The distortion of the total pressure contours is diminished by 49% and the vortex is located closer to the wing. In case of Common Flow Down Configuration (CFDC), the mass flow averaged pressure loss is decreased by 29% compared with the case without a pair of vortex generators. (author)

  12. Paternity in horseshoe crabs when spawning in multiple-male groups.

    Science.gov (United States)

    Brockmann; Nguyen; Potts

    2000-12-01

    Unpaired or satellite male horseshoe crabs, Limulus polyphemus, are attracted to and often form a group around a pair (a female with an attached male) that is nesting in the high intertidal zone. These males are engaged in sperm competition. We observed nesting pairs and their associated satellites in the wild, collected and reared their eggs and used genetic markers to examine paternity. We found that the unpaired, satellite males are highly successful at fertilizing eggs; two satellites can leave the attached male with few fertilizations. Two satellites together are each as successful as one spawning with a pair. A satellite's location around the female greatly affects his success, and males compete for access to a position over the dorsal canal between the prosoma and opisthosoma of the female and under the front margin of the paired male where they are most likely to fertilize eggs. Although eggs and sperm retain their viability for some time after spawning, nearly all eggs are fertilized by the satellites that are around the nesting pair at the time of egg laying and by the attached male. A number of factors including beach current, female size and male behaviour affect the outcome of sperm competition in this externally fertilizing species. Copyright 2000 The Association for the Study of Animal Behaviour.

  13. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    Science.gov (United States)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  14. A six-bank multi-leaf system for high precision shaping of large fields

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der; Raaymakers, B W; Kotte, A N T J; Welleweerd, J; Lagendijk, J J W

    2004-01-01

    In this study, we present the design for an alternative MLC system that allows high precision shaping of large fields. The MLC system consists of three layers of two opposing leaf banks. The layers are rotated 60 deg. relative to each other. The leaves in each bank have a standard width of 1 cm projected at the isocentre. Because of the symmetry of the collimator set-up it is expected that collimator rotation will not be required, thus simplifying the construction considerably. A 3D ray tracing computer program was developed in order to simulate the fluence profile for a given collimator and used to optimize the design and investigate its performance. The simulations show that a six-bank collimator will afford field shaping of fields of about 40 cm diameter with a precision comparable to that of existing mini MLCs with a leaf width of 4 mm

  15. Extra-anatomic endovascular repair of an abdominal aortic aneurysm with a horseshoe kidney supplied by the aneurysmal aorta.

    Science.gov (United States)

    Rey, Jorge; Golpanian, Samuel; Yang, Jane K; Moreno, Enrique; Velazquez, Omaida C; Goldstein, Lee J; Chahwala, Veer

    2015-07-01

    Abdominal aortic aneurysm complicated by a horseshoe kidney (HSK, fused kidney) represents a unique challenge for repair. Renal arteries arising from the aneurysmal aorta can further complicate intervention. Reports exist describing the repair of these complex anatomies using fenestrated endografts, hybrid open repairs (debranching), and open aneurysmorrhaphy with preservation of renal circulation. We describe an extra-anatomic, fully endovascular repair of an abdominal aortic aneurysm with a HSK partially supplied by a renal artery arising from the aneurysm. We successfully applied aortouni-iliac endografting, femorofemoral bypass, and retrograde renal artery perfusion via the contralateral femoral artery to exclude the abdominal aortic aneurysm and preserve circulation to the HSK. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Geophysical Remote Sensing of North Carolina's Historic Cultural Landscapes: Studies at House in the Horseshoe State Historic Site

    Science.gov (United States)

    Turner, Jacob R.

    This dissertation is written in accordance with the three article option offered by the Geography Department at UNC Greensboro. It contains three manuscripts to be submitted for publication. The articles address specific research issues within the remote sensing process described by Jensen (2016) as they apply to subsurface geophysical remote sensing of historic cultural landscapes, using the buried architectural features of House in the Horseshoe State Historic Site in Moore County, North Carolina. The first article compares instrument detection capabilities by examining subsurface structure remnants as they appear in single band ground-penetrating radar (GPR), magnetic gradiometer, magnetic susceptibility and conductivity images, and also demonstrates how excavation strengthens geophysical image interpretation. The second article examines the ability of GPR to estimate volumetric soil moisture (VSM) in order to improve the timing of data collection, and also examines the visible effect of variable moisture conditions on the interpretation of a large historic pit feature, while including the relative soil moisture continuum concepts common to geography/geomorphology into a discussion of GPR survey hydrologic conditions. The third article examines the roles of scientific visualization and cartography in the production of knowledge and the presentation of maps using geophysical data to depict historic landscapes. This study explores visualization techniques pertaining to the private data exploration view of the expert, and to the simplified public facing view.

  17. Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany.

    Science.gov (United States)

    Briggs, Derek E G; Moore, Rachel A; Shultz, Jeffrey W; Schweigert, Günter

    2005-03-22

    A remarkable specimen of Mesolimulus from the Upper Jurassic (Kimmeridgian) of Nusplingen, Germany, preserves the musculature of the prosoma and associated microbes in three dimensions in calcium phosphate (apatite). The musculature of Mesolimulus conforms closely to that of modern horseshoe crabs. Associated with the muscles are patches of mineralized biofilm with spiral and coccoid forms. This discovery emphasizes the potential of soft-bodied fossils as a source for increasing our knowledge of the diversity of fossil microbes in particular settings.

  18. Principal shapes and squeezed limits in the effective field theory of large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov [Berkeley Center for Theoretical Physics, University of California, South Hall Road, Berkeley, CA, 94720 (United States)

    2016-11-01

    We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of the principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.

  19. On the efficient determination of most near neighbors horseshoes, hand grenades, web search and other situations when close is close enough

    CERN Document Server

    Manasse, Mark S

    2012-01-01

    The time-worn aphorism ""close only counts in horseshoes and hand-grenades"" is clearly inadequate. Close also counts in golf, shuffleboard, archery, darts, curling, and other games of accuracy in which hitting the precise center of the target isn't to be expected every time, or in which we can expect to be driven from the target by skilled opponents. This lecture is not devoted to sports discussions, but to efficient algorithms for determining pairs of closely related web pages -- and a few other situations in which we have found that inexact matching is good enough; where proximity suffices.

  20. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    International Nuclear Information System (INIS)

    Hou, Huilong; Stasak, Drew; Hasan, Naila Al; Takeuchi, Ichiro; Simsek, Emrah; Ott, Ryan; Cui, Jun; Qian, Suxin

    2017-01-01

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g −1 . Adiabatic compression on as-fabricated TiNi displays cooling Δ T as high as  −7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2 Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2 Ni precipitates is believed to be the origin of the unique superelasticity behavior. (paper)

  1. Ten-year Survivors After Contemporary Management of Advanced 'Horseshoe' Anterior Commissure Laryngeal Cancer.

    Science.gov (United States)

    Ampil, Federico; Caldito, Gloria; Vora, Moiz; Richards, Troy

    2016-06-01

    Combinations of treatment modalities for locally extensive carcinomas of the larynx constitute the standard of care. Advanced 'horseshoe' anterior commissure laryngeal cancer (HACLC) is a disease entity that has not received much attention in the literature. The aims of this study were to evaluate prolonged survival in patients after standard combined therapy for HACLC and to identify clinicopathological factors influential towards an extended outcome. Fourteen patients (10-year survivors) with stage III or IV laryngeal cancer involving the anterior commissure and both true vocal cords were treated with total laryngectomy (and postoperative radiotherapy in 11 individuals). During follow-up, ranging from 123 to 256 months, locoregional recurrent disease and distant metastasis were not observed. Complications after therapy were manageable and few. The long-term survivors were particularly difficult to characterize. The optimal treatment for advanced HACLC has not been clarified; however, in this study, total laryngectomy and the indicated use of postoperative radiotherapy, were successful in achieving long-term disease-free survival. Predictive factors for longevity were not detected in this limited experience. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Variability in echolocation call intensity in a community of horseshoe bats: a role for resource partitioning or communication?

    Science.gov (United States)

    Schuchmann, Maike; Siemers, Björn M

    2010-09-17

    Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may

  3. A smart car for the surface shape measurement of large antenna based on laser tracker

    Science.gov (United States)

    Gu, Yonggang; Hu, Jing; Jin, Yi; Zhai, Chao

    2012-09-01

    The geometric accuracy of the surface shape of large antenna is an important indicator of antenna’s quality. Currently, high-precision measurement of large antenna surface shape can be performed in two ways: photogrammetry and laser tracker. Photogrammetry is a rapid method, but its accuracy is not enough good. Laser tracker can achieve high precision, but it is very inconvenient to move the reflector (target mirror) on the surface of the antenna by hand during the measurement. So, a smart car is designed to carry the reflector in this paper. The car, controlled by wireless, has a small weight and a strong ability for climbing, and there is a holding bracket gripping the reflector and controlling reflector rise up and drop down on the car. During the measurement of laser tracker, the laser beam between laser tracker and the reflector must not be interrupted, so two high-precision three-dimensional miniature electronic compasses, which can real-time monitor the relative angle between the holding bracket and the laser tracker’s head, are both equipped on the car and the head of laser tracker to achieve automatic alignment between reflector and laser beam. With the aid of the smart car, the measurement of laser tracker has the advantages of high precision and rapidity.

  4. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    International Nuclear Information System (INIS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-01-01

    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures. (paper)

  5. Studies on a pulse shaping system for fast coincidence with very large volume HPGe detectors

    International Nuclear Information System (INIS)

    Bose, S.; Chatterjee, M.B.; Sinha, B.K.; Bhattacharya, R.

    1987-01-01

    A variant of the leading edge timing (LET) has been proposed which compensates the ''walk'' due to risetime spread in very large volume (∝100 cm 3 ) HPGe detectors. The method - shape compensated leading edge timing (SCLET) - can be used over a wide dynamic range of energies with 100% efficiency and has been compared with the LET and ARC methods. A time resolution of 10 ns fwhm and 21 ns fwtm has been obtained with 22 Na gamma rays and two HPGe detectors of 96 and 114 cm 3 volume. This circuit is easy to duplicate and use can be a low cost alternative to commercial circuits in experiments requiring a large number of detectors. (orig.)

  6. Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schöning, André; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-11-20

    A measurement of event shape variables is presented for large momentum transfer proton-proton collisions using the ATLAS detector at the Large Hadron Collider. Six event shape variables calculated using hadronic jets are studied in inclusive multi-jet events in 35 pb$^{-1}$ of integrated luminosity at a center-of-mass energy of $\\sqrt{s}$ = 7 TeV. These measurements are compared to predictions by three Monte Carlo event generators containing leading-logarithmic parton showers matched to leading order matrix elements for 2 $\\to$ 2 and 2 $\\to$ n (n=2,...6) scattering. Measurements of the third-jet resolution parameter, aplanarity, thrust, sphericity, and transverse sphericity are generally well described. The mean value of each event shape variable is evaluated as a function of the average momentum of the two leading jets pT1 and pT2, with a mean pT approaching 1 TeV.

  7. Nonlinear shaping of a two-dimensional ultrashort ionizing pulse

    International Nuclear Information System (INIS)

    Sergeev, A.; Vanin, E.; Stenflo, L.; Anderson, D.; Lisak, M.; Quiroga-Teixeiro, M.L.

    1992-01-01

    A theoretical description of ultrashort ionizing wave pulses is presented by means of two different models where the ionization rate increases or decreases, respectively, as a function of the electric field amplitude. We show that the pulse evolves either into a horse-shoe or a horn-type structure in the time-space domain. In some parameter regions the intensity of the pulse can also increase. (au)

  8. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    International Nuclear Information System (INIS)

    Tobushi, Hisaaki; Ejiri, Yoshihiro; Hayashi, Syunichi; Hoshio, Kazumasa

    2008-01-01

    In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-memory polymer element with a complex shape in a simple method. In the present study, the influence of the strain-holding conditions on the shape recovery and the irrecoverable strain control in polyurethane shape-memory polymer is investigated by tension test of a film and three-point bending test of a sheet. The higher the shape-holding temperature and the longer the shape-holding time, the higher the irrecoverable strain rate. The equation that expresses the characteristics of the irrecoverable strain control is formulated

  9. Twenty years of artificial directional selection have shaped the genome of the Italian Large White pig breed.

    Science.gov (United States)

    Schiavo, G; Galimberti, G; Calò, D G; Samorè, A B; Bertolini, F; Russo, V; Gallo, M; Buttazzoni, L; Fontanesi, L

    2016-04-01

    In this study, we investigated at the genome-wide level if 20 years of artificial directional selection based on boar genetic evaluation obtained with a classical BLUP animal model shaped the genome of the Italian Large White pig breed. The most influential boars of this breed (n = 192), born from 1992 (the beginning of the selection program of this breed) to 2012, with an estimated breeding value reliability of >0.85, were genotyped with the Illumina Porcine SNP60 BeadChip. After grouping the boars in eight classes according to their year of birth, filtered single nucleotide polymorphisms (SNPs) were used to evaluate the effects of time on genotype frequency changes using multinomial logistic regression models. Of these markers, 493 had a PBonferroni  selection program. The obtained results indicated that the genome of the Italian Large White pigs was shaped by a directional selection program derived by the application of methodologies assuming the infinitesimal model that captured a continuous trend of allele frequency changes in the boar population. © 2015 Stichting International Foundation for Animal Genetics.

  10. Molecular detection of Anaplasma phagocytophilum DNA in the lesser horseshoe bat (Rhinolophus hipposideros) guano.

    Science.gov (United States)

    Afonso, E; Goydadin, A-C

    2018-05-30

    Although bats are increasingly recognised as potential reservoir hosts of human zoonotic pathogens, bacteria in bats are still poorly studied. To investigate the DNA faecal prevalence of the bacterium Anaplasma phagocytophilum, we sampled 23 lesser horseshoe bat (Rhinolophus hipposideros) maternity colonies located in buildings (churches, barns) in rural villages of eastern France. A total of 552 faecal samples were collected from 278 individuals. Anaplasma phagocytophilum DNA was detected in the faeces of 63 individuals (22.7%). Such high prevalence might suggest persistent infection in bats and/or a frequent consumption of insect preys carrying bacteria. Faecal DNA prevalence varied highly among colonies but was not related to the colony size. Faecal DNA prevalence was the highest in the Jura Department, where the density of ticks is known to be the highest across the study area. Because the sampled bats live in close proximity to humans, we discuss how concerning the presence of A. phagocytophilum DNA in bat guano is for humans frequenting places of worship that shelter bats. We also advocate future research to understand what a high faecal DNA prevalence in bat guano really implicates in terms of bacteria transmission.

  11. Distance correlation methods for discovering associations in large astrophysical databases

    International Nuclear Information System (INIS)

    Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P.

    2014-01-01

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension, can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.

  12. 'Crescent'-shaped tokamak for compact ignition

    International Nuclear Information System (INIS)

    Yamazaki, K.; Reiersen, W.T.

    1985-12-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross-section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design dose not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  13. 'Crescent'-shaped tokamak for compact ignition

    International Nuclear Information System (INIS)

    Yamazaki, K.; Reiersen, W.T.

    1986-01-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design does not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  14. First record of the Lesser Horseshoe bat, Rhinolophus hipposideros (Bechstein, 1800 (Rhinolophidae, Chiroptera from Syria

    Directory of Open Access Journals (Sweden)

    Adwan Shehab

    2006-09-01

    Full Text Available Abstract The lesser horseshoe bat Rhinolophus hipposideros was recorded for the first time from Syria in 2005-06. Two solitary hibernating specimens (a male and a female were collected from an underground cave in Basofan village, NW of Aleppo, and from Al Marqab Citadel, Banyas. External and cranial measurements are given for both specimens. The list of recorded species of bats of Syria includes 17 species. Riassunto Prima segnalazione di Rinolofo minore Rhinolophus hipposideros (Bechstein, 1800 (Rhinolophidae, Chiroptera in Siria La specie è stata rinvenuta nel 2005-06 con il ritrovamento di due esemplari solitari ibernanti (un maschio e una femmina, rispettivamente in una grotta presso il paese di Basofan, NO di Aleppo e in Al Marqab, Banyas. Per entrambi gli esemplari sono riportate le misure craniali e esterne. Con il ritrovamento del Rinolofo minore la chirotterofauna della Siria è attualmente rappresentata da 17 specie.

  15. Morphological correlates of echolocation frequency in the endemic Cape horseshoe bat, Rhinolophus capensis (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Odendaal, Lizelle J; Jacobs, David S

    2011-05-01

    We investigated intraspecific variation in echolocation calls of the Cape horseshoe bat, Rhinolophus capensis, by comparing echolocation and associated morphological parameters among individuals from three populations of this species. The populations were situated in the center and at the western and eastern limits of the distribution of R. capensis. The latter two populations were situated in ecotones between vegetation biomes. Ecotone populations deviated slightly from the allometric relationship between body size and peak frequency for the genus, and there was no relationship between these variables within R. capensis. Nasal chamber length was the best predictor of peak frequency but not correlated with body size. The evolution of echolocation thus appears to have been uncoupled from body size in R. capensis. Furthermore, females used higher frequencies than males, which imply a potential social role for peak frequency. The differences in peak frequency may have originated from random founder effects and then compounded by genetic drift and/or natural selection. The latter may have acted directly on peak frequency altering skull parameters involved in echolocation independently of body size, resulting in the evolution of local acoustic signatures.

  16. Estimating tag loss of the Atlantic Horseshoe crab, Limulus polyphemus, using a multi-state model

    Science.gov (United States)

    Butler, Catherine Alyssa; McGowan, Conor P.; Grand, James B.; Smith, David

    2012-01-01

    The Atlantic Horseshoe crab, Limulus polyphemus, is a valuable resource along the Mid-Atlantic coast which has, in recent years, experienced new management paradigms due to increased concern about this species role in the environment. While current management actions are underway, many acknowledge the need for improved and updated parameter estimates to reduce the uncertainty within the management models. Specifically, updated and improved estimates of demographic parameters such as adult crab survival in the regional population of interest, Delaware Bay, could greatly enhance these models and improve management decisions. There is however, some concern that difficulties in tag resighting or complete loss of tags could be occurring. As apparent from the assumptions of a Jolly-Seber model, loss of tags can result in a biased estimate and underestimate a survival rate. Given that uncertainty, as a first step towards estimating an unbiased estimate of adult survival, we first took steps to estimate the rate of tag loss. Using data from a double tag mark-resight study conducted in Delaware Bay and Program MARK, we designed a multi-state model to allow for the estimation of mortality of each tag separately and simultaneously.

  17. Survival and development of horseshoe crab (Limulus polyphemus) embryos and larvae in hypersaline conditions.

    Science.gov (United States)

    Ehlinger, Gretchen S; Tankersley, Richard A

    2004-04-01

    The horseshoe crab Limulus polyphemus spawns in the mid- to upper intertidal zone where females deposit eggs in nests below the sediment surface. Although adult crabs generally inhabit subtidal regions of estuaries with salinities from 5 to 34 ppt, developing embryos and larvae within nests are often exposed to more extreme conditions of salinity and temperature during summer spawning periods. To test whether these conditions have a negative impact on early development and survival, we determined development time, survival, and molt cycle duration for L. polyphemus embryos and larvae raised at 20 combinations of salinity (range: 30-60 ppt) and temperature (range: 25-40 degrees C). Additionally, the effect of hyperosmotic and hypoosmotic shock on the osmolarity of the perivitelline fluid of embryos was determined at salinities between 5 and 90 ppt. The embryos completed their development and molted at salinities below 60 ppt, yet failed to develop at temperatures of 35 degrees C or higher. Larval survival was high at salinities of 10-70 ppt but declined significantly at more extreme salinities (i.e., 5, 80, and 90 ppt). Perivitelline fluid remained nearly isoosmotic over the range of salinities tested. Results indicate that temperature and salinity influence the rate of crab development, but only the extremes of these conditions have an effect on survival.

  18. Roll-to-roll hot embossing system with shape preserving mechanism for the large-area fabrication of microstructures

    Science.gov (United States)

    Peng, Linfa; Wu, Hao; Shu, Yunyi; Yi, Peiyun; Deng, Yujun; Lai, Xinmin

    2016-10-01

    Roll-to-roll (R2R) hot embossing is a promising approach to fulfilling the demands of high throughput fabrication of large-area polymeric components with micro-structure arrays which have been widely employed in the domains of optics, optoelectronics, biology, chemistry, etc. Nevertheless, the characteristic of continuous and fast forming for the R2R hot embossing process limits material flow during filling stage and results in significant springback during demolding stage. As a result, forming defects usually appear and the process window is very narrow which hinders the industrialization of this technology. This study developed a R2R hot embossing machine and proposed a shape preserving mechanism to extend the material filling time and realized the cooling effect during the demolding process. Comparative experiments were conducted on the R2R hot embossing process for micro-pyramid arrays to understand the effect of shape preserving mechanism. The influence of tension force and encapsulation angle to the forming quality was systematically analyzed. Furthermore, the influence of processing parameters has been investigated by using the one-variable-at-a-time method. Afterwards, a series of experiments based on the central composite design approach have been conducted for the analysis of variance and the establishment of empirical models of the R2R hot embossing process. As a result, the process window was extended by the shape preserving mechanism. More importantly, the feeding speed was improved from 0.5 m min-1 to 2.5 m min-1 for the large-area fabrication of micro-pyramid arrays, which is very attractive to the industrialization of this technology.

  19. Ultrastructure of book gill development in embryos and first instars of the horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura

    Directory of Open Access Journals (Sweden)

    Farley Roger D

    2012-03-01

    Full Text Available Abstract Background The transmission electron microscope (TEM is used for the first time to study the development of book gills in the horseshoe crab. Near the end of the nineteenth century the hypothesis was presented for homology and a common ancestry for horseshoe crab book gills and arachnid book lungs. The present developmental study and the author's recent ones of book gills (SEM and scorpion book lungs (TEM are intended to clarify early histological work and provide new ultrastructural details for further research and for hypotheses about evolutionary history and relationships. Results The observations herein are in agreement with earlier reports that the book gill lamellae are formed by proliferation and evagination of epithelial cells posterior to opisthosomal branchial appendages. A cartilage-like endoskeleton is produced in the base of the opisthosomal appendages. The lamellar precursor cells in the appendage base proliferate, migrate outward and secrete the lamellar cuticle from their apical surface. A series of external, posteriorly-directed lamellae is formed, with each lamella having a central channel for hemolymph and pillar-type space holders formed from cells of the opposed walls. This repeated, page-like pattern results also in water channels (without space holders between the sac-like hemolymph lamellae. Conclusions The developmental observations herein and in an earlier study (TEM of scorpion book lungs show that the lamellae in book gills and book lungs result from some similar activities and features of the precursor epithelial cells: proliferation, migration, alignment and apical/basal polarity with secretion of cuticle from the apical surface and the basal surface in contact with hemolymph. These cellular similarities and the resulting book-like structure suggest a common ancestry, but there are also substantial developmental differences in producing these organs for gas exchange in the different environments, aqueous

  20. Geographical Variation in Echolocation Call and Body Size of the Okinawan Least Horseshoe Bat, Rhinolophus pumilus(Mammalia: Rhinolophidae), on Okinawa-jima Island, Ryukyu Archipelago, Japan(Animal Diversity and Evolution)

    OpenAIRE

    Hajime, Yoshino; Sumiko, Matsumura; Kazumitsu, Kinjo; Hisao, Tamura; Hidetoshi, Ota; Masako, Izawa; Laboratory of Evolution and Ecology, Faculty of Science, University of the Ryukyus; Faculty of Science, Yamaguchi University; Department of Law, Okinawa International University; Asian Bat Research Institute; Tropical Biosphere Research Center, University of the Ryukyus; Laboratory of Evolution and Ecology, Faculty of Science, University of the Ryukyus

    2006-01-01

    The Okinawan least horseshoe bat, Rhinolophus pumilus, is a cave-dwelling species endemic to the central and southern Ryukyus, Japan. We analyzed variation in the constant frequency (CF) of the echolocation call and in forearm length (FAL) of this species on Okinawa-jima Island on the basis of data for 479 individuals from 11 caves scattered over the island. CF values in samples from six caves, all located in the southwestern half of Okinawa-jima, were significantly higher than those in sampl...

  1. Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with a Homologous X-shaped Flare

    Science.gov (United States)

    Jiang, Chaowei; Yan, Xiaoli; Feng, Xueshang; Duan, Aiying; Hu, Qiang; Zuo, Pingbing; Wang, Yi

    2017-11-01

    As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during a solar flare, and they are essential for magnetic energy dissipation in the solar corona because they enable magnetic reconnection. However, the static reconstruction of a CS is rare, possibly due to limitations that are inherent in the available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by the SDO/HMI vector magnetogram. The CS is associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration.This is evidenced by an ’X’ shape, formed from the field lines traced from the CS to the photosphere. This nearly reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS via reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of a data-constrained MHD model in reproducing a CS in the corona as well as providing insight into the magnetic mechanism of solar flares.

  2. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    Science.gov (United States)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  3. Additions to the Tanaidomorpha (Crustacea: Tanaidacea) from mud volcanoes and coral mounds of the Gulf of Cadiz and Horseshoe Continental Rise.

    Science.gov (United States)

    Esquete, Patricia; Cunha, Marina R

    2018-02-05

    The Tanaidacea collection from various research cruises carried out in the Gulf of Cadiz and Horseshoe Continental Rise between 2004 and 2012 yielded four species new to science that are described herein. Two belong to genera recorded for the first time since the original descriptions of their type species: Cetiopyge, described from the Gulf of Mexico and Gamboa from shallow waters of Macaronesia. The other two belong to the genera Collettea and Paragathotanais, both with a worldwide distribution. Additionally, specimens of Tumidochelia uncinata are described and illustrated to complete previous descriptions. Identification keys to all known genera of Nototanaidae, and the Eastern Atlantic species of Paragathotanais and Collettea are provided. This works raises the number of tanaidacean species known from the deep-sea habitats in the study region to a total of 22.

  4. Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes

    Science.gov (United States)

    Papadakis, Michael; Wong, See-Cheuk; Rachman, Arief; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for four wings and one wing with two simulated ice shapes. The wings tested include three 36-in. chord wings (MS(1)-317, GLC-305, and a NACA 652-415) and a 57-in. chord Twin Otter horizontal tail section. The simulated ice shapes were 22.5- and 45-min glaze ice shapes for the Twin Otter horizontal tail section generated using the LEWICE 2.2 ice accretion program. The impingement experiments were performed with spray clouds having median volumetric diameters of 11, 21, 79, 137, and 168 mm. Comparisons to the experimental data were generated which showed good agreement for the clean wings and ice shapes at lower drop sizes. For larger drop sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove and shadow regions of ice shapes.

  5. Electromagnetically induced transparency line shapes for large probe fields and optically thick media

    International Nuclear Information System (INIS)

    Pack, M. V.; Camacho, R. M.; Howell, J. C.

    2007-01-01

    We calculate the line shape and linewidths for electromagnetically induced transparency (EIT) in optically thick, Doppler broadened media (buffer gasses are also considered). In generalizing the definition of the EIT linewidth to optically thick media, we find two different linewidth definitions apply depending on whether the experiment is pulsed or continuous wave (cw). Using the cw definition for the EIT line shape we derive analytic expressions describing the linewidth as a function of optical depth. We also review the EIT line shapes in optically thin media and provide physical arguments for how the line shapes change as a function of various parameters

  6. Passive urethral resistance to dilation in healthy women

    DEFF Research Database (Denmark)

    Bagi, P; Thind, P; Nordsten, M

    1995-01-01

    significance for the pressure response, and the varying size of the response along the urethra is in accordance with the localization of the horseshoe-shaped rhabdosphincter, which quantitatively is the dominating circularly arranged structure around the female urethra. Functionally, the stress response...

  7. Horseshoe bats and Old World leaf-nosed bats have two discrete types of pinna motions.

    Science.gov (United States)

    Yin, Xiaoyan; Qiu, Peiwen; Yang, Lili; Müller, Rolf

    2017-05-01

    Horseshoe bats (Rhinolophidae) and the related Old World leaf-nosed bats (Hipposideridae) both show conspicuous pinna motions as part of their biosonar behaviors. In the current work, the kinematics of these motions in one species from each family (Rhinolophus ferrumequinum and Hipposideros armiger) has been analyzed quantitatively using three-dimensional tracking of landmarks placed on the pinna. The pinna motions that were observed in both species fell into two categories: In "rigid rotations" motions the geometry of the pinna was preserved and only its orientation in space was altered. In "open-close motions" the geometry of the pinna was changed which was evident in a change of the distances between the landmark points. A linear discriminant analysis showed that motions from both categories could be separated without any overlap in the analyzed data set. Hence, bats from both species have two separate types of pinna motions with apparently no transitions between them. The deformations associated with open-close pinna motions in Hipposideros armiger were found to be substantially larger compared to the wavelength associated with the largest pulse energy than in Rhinolophus ferrumequinum (137% vs 99%). The role of the two different motions in the biosonar behaviors of the animals remains to be determined.

  8. Performance of the BATMAN RF source with a large racetrack shaped driver

    Science.gov (United States)

    Kraus, W.; Schiesko, L.; Wimmer, C.; Fantz, U.; Heinemann, B.

    2017-08-01

    In the negative ion sources in neutral beam injection systems (NBI) of future fusion reactors the plasma is generated in up to eight cylindrical RF sources ("drivers") from which it expands into the main volume. For these large sources, in particular those used in the future DEMO NBI, a high RF efficiency and operational reliability is required. To achieve this it could be favorable to substitute each pair of drivers by one larger one. To investigate this option the cylindrical driver of the BATMAN source at IPP Garching has been replaced by a large source with a racetrack shaped base area and tested using the same extraction system. The main differences are a five times larger source volume and another position of the Cs oven which is mounted onto the driver`s back plate and not onto the expansion volume. The conditioning characteristics and the plasma symmetry in front of the plasma grid were very similar. The extracted H- current densities jex are comparable to that achieved with the small driver at the same power. Because no saturation of jex occurred at 0.6 Pa at high power and the source allows high power operation, a maximum value 45.1 mA/cm2 at 103 kW has been reached. Sputtered Cu from the walls of the expansion volume affected the performance at low pressure, particularly in deuterium. The experiments will be therefore continued with Mo coating of all inner walls.

  9. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    Science.gov (United States)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent

  10. The relationship between cross-sectional shapes and FTIR profiles in synthetic wig fibers and their discriminating abilities - An evidential value perspective.

    Science.gov (United States)

    Joslin Yogi, Theresa A; Penrod, Michael; Holt, Melinda; Buzzini, Patrick

    2018-02-01

    Wig fragments or fibers may occasionally be recognized as potential physical evidence during criminal investigations. While analytical methods traditionally adopted for the examination of textile fibers are utilized for the characterizations and comparisons of wig specimens, it is essential to understand in deeper detail the valuable contribution of features of these non-routine evidentiary materials as well as the relationship of the gathered analytical data. This study explores the dependence between the microscopic features of cross-sectional shapes and the polymer type gathered by Fourier transform infrared (FTIR) spectroscopy. The discriminating power of the two methods of cross-sectioning and FTIR spectroscopy was also investigated. Forty-one synthetic wigs varying in both quality and price were collected: twenty-three brown, twelve blondes and six black samples. The collected samples were observed using light microscopy methods (bright field illumination and polarized light), before obtaining cross-sections using the Joliff method and analyze them using FTIR spectroscopy. The forty-one samples were divided into ten groups based on one or more of the ten types of cross-sectional shapes that were observed. The majority of encountered cross-sectional shapes were defined as horseshoe, dog bone and lobular. Infrared spectroscopy confirmed modacrylic to be the most prevalent fiber type. Blends of modacrylic and polyvinyl chloride fibers were also observed as well as polypropylene wig samples. The Goodman and Kruskal lambda statistical test was used and showed that the cross-sectional shape and infrared profile were related. From an evidentiary value perspective, this finding has implications when addressing questions about a common source between questioned wig specimens and a wig reference sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  12. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Farzad Tahmasbi

    Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  13. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    Science.gov (United States)

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  14. Joint shape segmentation with linear programming

    KAUST Repository

    Huang, Qixing

    2011-01-01

    We present an approach to segmenting shapes in a heterogenous shape database. Our approach segments the shapes jointly, utilizing features from multiple shapes to improve the segmentation of each. The approach is entirely unsupervised and is based on an integer quadratic programming formulation of the joint segmentation problem. The program optimizes over possible segmentations of individual shapes as well as over possible correspondences between segments from multiple shapes. The integer quadratic program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape segmentation significantly outperforms single-shape segmentation techniques. © 2011 ACM.

  15. THE REDUCED CANINE PANCREAS TO STUDY THE EFFECTS OF INTRAOPERATIVE RADIOTHERAPY

    NARCIS (Netherlands)

    HEIJMANS, HJ; MEHTA, D; KLEIBEUKER, JH; SLUITER, WJ; HOEKSTRA, HJ

    1993-01-01

    A canine model is described to study the tolerance of the pancreas to intra-operative radiotherapy (IORT). The canine pancreas is a horseshoe-shaped organ. To create a homogeneous delivery of IORT to the whole pancreas surgical manipulation is necessary which may induce pancreatitis. A resection of

  16. Keeping Nerves: Central Nervous System of the Interstitial Acochlidiid Parhedyle cryptophthalma (Gastropoda, Opisthobranchia)

    DEFF Research Database (Denmark)

    Joerger, Katharina; Kristof, Alen; Klussmann-Kolb, Annette

    2008-01-01

    Unusually well-preserved fossils of a Halicyne-like cycloid crustacean frequently occur in the early Late Triassic lacustrine clay bed at Krasiejów in Opole Silesia, southern Poland. Its gill-like structures form a horseshoe-shaped pair of units composed of numerous calcified blades with reverse ...

  17. Perspectives in shape analysis

    CERN Document Server

    Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie

    2016-01-01

    This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...

  18. Numerical simulation of pseudoelastic shape memory alloys using the large time increment method

    Science.gov (United States)

    Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad

    2017-04-01

    The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.

  19. Variation in ectoparasite load in the Mehely's horseshoe bat, Rhinolophus mehelyi (Chiroptera: Rhinolophidae) in a nursery colony in western Iran.

    Science.gov (United States)

    Sharifi, Mozafar; Taghinezhad, Najmeh; Mozafari, Fatema; Vaissi, Somaye

    2013-06-01

    We studied variation of ectoparasite load in a free ranging populations of Mehely's horseshoe bat (Rhinolophus mehelyi) on five successive occasions in a nursery roost in western Iran. In total, 87 Rhinolophus mehelyi were captured. The patterns of abundance differed greatly among parasite species but total parasite load was markedly higher in pregnant females in spring and early summer and lower in solitary males. On average, 90% of bats were infested by Eyndhovenia sp. with a mean intensity of 13.79 individuals per bat. Penicillidia sp. and one species from Streblidae were found in 66.7% and 11.49% of bats with parasite load of 2.31 and 1.8 parasite per bat, respectively. Using ratio of forearm length to body mass as an indication of bat health the correlation coefficient between parasite load and the health indicator was 0.002 for males and 0.06 for females indicating that parasite load has no apparent impact on bat's health.

  20. ARE LARGE, COMETARY-SHAPED PROPLYDS REALLY (FREE-FLOATING) EVAPORATING GAS GLOBULES?

    International Nuclear Information System (INIS)

    Sahai, R.; Güsten, R.; Morris, M. R.

    2012-01-01

    We report the detection of strong and compact molecular line emission (in the CO J = 3-2, 4-3, 6-5, 7-6, 13 CO J = 3-2, HCN, and HCO + J = 4-3 transitions) from a cometary-shaped object (Carina-frEGG1) in the Carina star-forming region (SFR) previously classified as a photoevaporating protoplanetary disk (proplyd). We derive a molecular mass of 0.35 M ☉ for Carina-frEGG1, which shows that it is not a proplyd, but belongs to a class of free-floating evaporating gas globules (frEGGs) recently found in the Cygnus SFR by Sahai et al. Archival adaptive optics near-IR (Ks) images show a central hourglass-shaped nebula. The derived source luminosity (about 8-18 L ☉ ), the hourglass morphology, and the presence of collimated jets seen in Hubble Space Telescope images imply the presence of a jet-driving, young, low-mass star deeply embedded in the dust inside Carina-frEGG1. Our results suggest that the true nature of many or most such cometary-shaped objects seen in massive SFRs and previously labeled as proplyds has been misunderstood, and that these are really frEGGs.

  1. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  2. Stable isotope and pen feeding trial studies confirm the value of horseshoe crab Limulus polyphemus eggs to spring migrant shorebirds in Delaware Bay

    Science.gov (United States)

    Haramis, G.M.; Link, W.A.; Osenton, P.C.; Carter, Daniel B.; Weber, R.G.; Clark, N.A.; Teece, M.A.; Mizrahi, D.S.

    2007-01-01

    We used stable isotope (SI) methods in combination with pen feeding trials to determine the importance of eggs of the Atlantic horseshoe crab Limulus polyphemus to migratory fattening of red knots Calidris canutus rufa and ruddy turnstones Arenaria interpres morinella during spring stopover in Delaware Bay. By manifesting measurable fractionation (ca +3?) and rapid turnover, blood plasma *15 nitrogen proved a functional marker for SI diet tracking during the short 3-week stopover. Blood samples from free-ranging knots (3 data sets) and turnstones (1 data set) produced similar convergence of plasma *15 N signatures with increasing body mass that indicated highly similar diets. Asymptotes deviated slightly (0.3? to 0.7?) from that of captive shorebirds fed a diet of only crab eggs during stopover, thus confirming a strong crab egg-shorebird linkage. The plasma *15N crab-egg diet asymptote was enriched ca +4.5? and therefore readily discriminated from that of either blue mussels Mytilus edulis or coquina clams Donax variabilis, the most likely alternative prey of knots in Delaware Bay. Crab eggs were highly palatable to captive knots and turnstones which achieved rates of mass gain (3?11 g/d) comparable to that of free-ranging birds. Peak consumption rates during hyperphagic events were 23,940 and 19,360 eggs/bird/d, respectively. The empirical conversions of eggs consumed to body mass gained (5,017 eggs/g for knots and 4,320 eggs/g for turnstones) indicate the large quantities of crab eggs required for the maintenance of these shorebird populations during stopover.

  3. A Regional Spatial-Retrofitting Approach (RSRA to Geovisualise Regional Urban Growth: An application to the Golden Horseshoe in Canada

    Directory of Open Access Journals (Sweden)

    Eric Vaz

    2013-12-01

    Full Text Available Understanding urban change in particular for larger regions has been a great demur in both regional planning and geography. One of the main challenges has been linked to the potential of modelling urban change. The absence of spatial data and size of areas of study limit the traditional urban monitoring approaches, which also do not take into account visualization techniques that share information with the community. This is the case of the Golden Horseshoe in southern Ontario in Canada, one of the fastest growing regions in North America. An unprecedented change on the urban environment has been witnessed, leading to an increased importance of awareness for future planning in the region. With a population greater than 8 million, the Golden Horseshoe is steadily showing symptoms of becoming a mega-urban region, joining surrounding cities into a single and diversified urban landscape. However, little effort has been done to understand these changes, nor to share information with policy makers, stakeholders and investors. These players are in need of the most diverse information on urban land use, which is seldom available from a single source. The spatio-temporal effect of the growth of this urban region could very well be the birth of yet another North American megacity. Therefore, from a spatial perspective there is demand for joint collaboration and adoption of a regional science perspective including land cover and spatio-temporal configurations. This calls forth a novel technique that allows for assessment of urban and regional change, and supports decision-making without having the usual concerns of locational data availability. It is this sense, that we present a spatial-retrofitting model, with the objective of (i retrofitting spatial land use based on current land use and land cover, and assessing proportional change in the past, leading to four spatial timestamps of the Golden Horseshoe’s land use, while (ii integrating this in a

  4. Rhythms of locomotion expressed by Limulus polyphemus, the American horseshoe crab: I. Synchronization by artificial tides.

    Science.gov (United States)

    Chabot, Christopher C; Skinner, Stephen J; Watson, Winsor H

    2008-08-01

    Limulus polyphemus, the American horseshoe crab, has an endogenous clock that drives circatidal rhythms of locomotor activity. In this study, we examined the ability of artificial tides to entrain the locomotor rhythms of Limulus in the laboratory. In experiments one and two, the activity of 16 individuals of L. polyphemus was monitored with activity boxes and "running wheels." When the crabs were exposed to artificial tides created by changes in water depth, circatidal rhythms were observed in animals exposed to 12.4-h "tidal" cycles of either water depth changes (8 of 8 animals) or inundation (7 of 8 animals). In experiment three, an additional 8 animals were exposed to water depth changes under cyclic conditions of light and dark and then monitored for 10 days with no imposed artificial tides. Most animals (5) clearly synchronized their activity to the imposed artificial tidal cycles, and 3 of these animals showed clear evidence of entrainment after the artificial tides were terminated. Overall, these results demonstrate that the endogenous tidal clock that influences locomotion in Limulus can be entrained by imposed artificial tides. In the laboratory, these tidal cues override the influence of light/dark cycles. In their natural habitat, where both tidal and photoperiod inputs are typically always present, their activity rhythms are likely to be much more complex.

  5. Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: Uniform-diameter circular cylinder

    International Nuclear Information System (INIS)

    Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.

    2012-01-01

    Flow characteristics, around a short uniform-diameter circular cylinder in crossflow, are investigated experimentally. Extensive flow visualization using oil-lampblack and smoke-wire methods have been performed. Near-wake velocity measurements have been performed using a hotwire anemometer. Complex secondary flows are observed on and around the cylinder in crossflow. Multiple vortices are observed in the horseshoe vortex system near the cylinder–endwall junction. Based on this flow visualization and local mass transfer measurement results, a six-vortex secondary flow model has been proposed. - Highlights: ► Flow visualizations and velocity measurements for a short circular cylinder. ► Six vortices in the horseshoe vortex system upstream of the base of the cylinder. ► Cross-stream turbulence intensity profiles show a similarity in their shape.

  6. The interaction between liquid motion and mass transfer induced by single rising bubble via PIV/LIE

    International Nuclear Information System (INIS)

    Yoshimoto, Kenjo; Yamamoto, Manabu; Sone, Daiji; Saito, Takayuki

    2009-01-01

    Deep understanding of gas-liquid two phase flows is essential for safe operation and high efficiency of nuclear reactors, chemical reactors and so on. In this study, we focus on the process of mass transfer induced by a single rising bubble. The mass transfer process of a zigzag ascending single bubble is investigated via LIF (Laser Induced Fluorescence) and PIV (Particle Image Velocimetry). From these results, we discuss the relationship between the mass transfer and the surrounding liquid motion of the single bubble. We examined single CO 2 -bubbles of 2-3 mm in equivalent diameter, which shows zigzagging motion in rest water. To directly visualize the dynamic mass transfer of CO 2 from the bubble surface to the surrounding liquid, HPTS (8-hydroxypyrene-1, 3, 6-trisulfonic acid) was used as a fluorescent substance for LIF. From LIF results, it was observed that the CO 2 -rich regions were spread by advective flow in the rest water as horseshoe-like vortices. From LIF results combined with the PIV results, it was observed that the horseshoe-like vortices were transported by the fast upward flow (buoyancy driven flow). Especially, in the case of a larger-diameter bubble with large shape oscillations, the high turbulence intensity (in a strict sense, fluctuation intensity of the liquid-phase velocity) was observed. The CO 2 -rich regions spread over a wide range by the strong flow. As a result, it is considered that the high turbulence intensity which was caused by the shape oscillations enhances the mass transportation from the bubble to the surrounding liquid. (author)

  7. Study of shape evaluation for mask and silicon using large field of view

    Science.gov (United States)

    Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka

    2010-09-01

    We have developed a highly integrated method of mask and silicon metrology. The aim of this integration is evaluating the performance of the silicon corresponding to Hotspot on a mask. It can use the mask shape of a large field, besides. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and mask manufacture, and this has a big impact on the semiconductor market that centers on the mask business. As an optimal solution to these issues, we provide a DFM solution that extracts 2-dimensional data for a more realistic and error-free simulation by reproducing accurately the contour of the actual mask, in addition to the simulation results from the mask data. On the other hand, there is roughness in the silicon form made from a mass-production line. Moreover, there is variation in the silicon form. For this reason, quantification of silicon form is important, in order to estimate the performance of a pattern. In order to quantify, the same form is equalized in two dimensions. And the method of evaluating based on the form is popular. In this study, we conducted experiments for averaging method of the pattern (Measurement Based Contouring) as two-dimensional mask and silicon evaluation technique. That is, observation of the identical position of a mask and a silicon was considered. The result proved its detection accuracy and reliability of variability on two-dimensional pattern (mask and silicon) and is adaptable to following fields of mask quality management. •Discrimination of nuisance defects for fine pattern. •Determination of two-dimensional variability of

  8. Adding Curvature to Minimum Description Length Shape Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Ólafsdóttir, Hildur

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling seeks a compact description of a set of shapes in terms of the coordinates of marks on the shapes. It has been shown that the mark positions resulting from this optimisation to a large extent solve the so-called point correspondence...

  9. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    Directory of Open Access Journals (Sweden)

    Guo-Dung John Su

    2012-08-01

    Full Text Available Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young’s modulus and Poisson’s ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

  10. Structure and ultrastructure of eyes and brains of Thalia democratica (Thaliacea, Tunicata, Chordata).

    Science.gov (United States)

    Braun, Katrin; Stach, Thomas

    2017-10-01

    Salps are marine planktonic chordates that possess an obligatory alternation of reproductive modes in subsequent generations. Within tunicates, salps represent a derived life cycle and are of interest in considerations of the evolutionary origin of complex anatomical structures and life history strategies. In the present study, the eyes and brains of both the sexual, aggregate blastozooid and the asexual, solitary oozooid stage of Thalia democratica (Forskål, ) were digitally reconstructed in detail based on serial sectioning for light and transmission electron microscopy. The blastozooid stage of T. democratica possesses three pigment cup eyes, situated in the anterior ventral part of the brain. The eyes are arranged in a way that the optical axes of each eye point toward different directions. Each eye is an inverse eye that consists of two different cell types: pigment cells (pigc) and rhabdomeric photoreceptor cells (prcs). The oozooid stage of T. democratica is equipped with a single horseshoe-shaped eye, positioned in the anterior dorsal part of the brain. The opening of the horseshoe-shaped eye points anteriorly. Similar to the eyes of the blastozooid, the eye of the oozooid consists of pigment cells and rhabdomeric photoreceptor cells. The rhabdomeric photoreceptor cells possess apical microvilli that form a densely packed presumably photosensitive receptor part adjacent to the concave side of the pigc. We suggest correspondences of the individual eyes in the blastozooid stage to respective parts of the single horseshoe-shaped eye in the oozooid stage and hypothesize that the differences in visual structures and brain anatomies evolved as a result of the aggregate life style of the blastozooid as opposed to the solitary life style of the oozooid. © 2017 Wiley Periodicals, Inc.

  11. Lineage divergence and historical gene flow in the Chinese horseshoe bat (Rhinolophus sinicus.

    Directory of Open Access Journals (Sweden)

    Xiuguang Mao

    Full Text Available Closely related taxa living in sympatry provide good opportunities to investigate the origin of barriers to gene flow as well as the extent of reproductive isolation. The only two recognized subspecies of the Chinese rufous horseshoe bat Rhinolophus sinicus are characterized by unusual relative distributions in which R. s. septentrionalis is restricted to a small area within the much wider range of its sister taxon R. s. sinicus. To determine the history of lineage divergence and gene flow between these taxa, we applied phylogenetic, demographic and coalescent analyses to multi-locus datasets. MtDNA gene genealogies and microsatellite-based clustering together revealed three divergent lineages of sinicus, corresponding to Central China, East China and the offshore Hainan Island. However, the central lineage of sinicus showed a closer relationship with septentrionalis than with other lineages of R. s. sinicus, in contrary to morphological data. Paraphyly of sinicus could result from either past asymmetric mtDNA introgression between these two taxa, or could suggest septentrionalis evolved in situ from its more widespread sister subspecies. To test between these hypotheses, we applied coalescent-based phylogenetic reconstruction and Approximate Bayesian Computation (ABC. We found that septentrionalis is likely to be the ancestral taxon and therefore a recent origin of this subspecies can be ruled out. On the other hand, we found a clear signature of asymmetric mtDNA gene flow from septentrionalis into central populations of sinicus yet no nuclear gene flow, thus strongly pointing to historical mtDNA introgression. We suggest that the observed deeply divergent lineages within R. sinicus probably evolved in isolation in separate Pleistocene refugia, although their close phylogeographic correspondence with distinct eco-environmental zones suggests that divergent selection might also have promoted broad patterns of population genetic structure.

  12. Blocking of Goal-Location Learning Based on Shape

    Science.gov (United States)

    Alexander, Tim; Wilson, Stuart P.; Wilson, Paul N.

    2009-01-01

    Using desktop, computer-simulated virtual environments (VEs), the authors conducted 5 experiments to investigate blocking of learning about a goal location based on Shape B as a consequence of preliminary training to locate that goal using Shape A. The shapes were large 2-dimensional horizontal figures on the ground. Blocking of spatial learning…

  13. A large-stroke shape memory alloy spring actuator using double-coil configuration

    International Nuclear Information System (INIS)

    Kim, Seung-Won; An, Sungmin; Cho, Kyu-Jin; Lee, Jong-Gu; Cho, Maenghyo

    2015-01-01

    One way to increase the range of motion of shape memory alloy (SMA) actuators is to create displacements of the SMA associated with not only the deformation from straining but also rigid-body motion from translation and rotation. Rigid-body motion allows the SMA to create larger displacements without exceeding the maximum recovery strain so that the SMA actuators can have a larger shape recovery ratio. To improve the linear actuation stroke of SMA wire actuators, a novel SMA spring actuator is proposed that employs a double-coil geometry that allows the displacement of the SMA to be mainly induced by rigid-body motion. A double-coil SMA spring actuator is fabricated by coiling an SMA wire twice so that the double coiling results in a reduction of the initial length of the double-coil SMA spring actuator. The effects of the geometric parameters on the actuation characteristic of a double-coil SMA spring actuator are verified numerically by finite element analysis and experimentally according to a parametric study of the geometric parameters. The displacement-to-force profile of the double-coil SMA spring actuator is nonlinear, and the spring stiffness changes when the actuator transforms its configuration from a double-coil shape to a single-coil shape. According to the results of the parametric study, increasing the wire diameter increases both primary and secondary coil stiffness, and increasing the primary inner coil diameter decreases both primary and secondary coil stiffness, whereas increasing the secondary inner coil diameter decreases only the secondary coil stiffness. The result shows that one of the double-coil SMA spring actuators with an initial length of 8 mm has a recovery ratio of 1250%, while the recovery ratio of the single-coil SMA spring actuator with the same geometric parameters is 432%. (paper)

  14. Large scale testing of nitinol shape memory alloy devices for retrofitting of bridges

    International Nuclear Information System (INIS)

    Johnson, Rita; Emmanuel Maragakis, M; Saiid Saiidi, M; Padgett, Jamie E; DesRoches, Reginald

    2008-01-01

    A large scale testing program was conducted to determine the effects of shape memory alloy (SMA) restrainer cables on the seismic performance of in-span hinges of a representative multiple-frame concrete box girder bridge subjected to earthquake excitations. Another objective of the study was to compare the performance of SMA restrainers to that of traditional steel restrainers as restraining devices for reducing hinge displacement and the likelihood of collapse during earthquakes. The results of the tests show that SMA restrainers performed very well as restraining devices. The forces in the SMA and steel restrainers were comparable. However, the SMA restrainer cables had minimal residual strain after repeated loading and exhibited the ability to undergo many cycles with little strength and stiffness degradation. In addition, the hysteretic damping that was observed in the larger ground accelerations demonstrated the ability of the materials to dissipate energy. An analytical study was conducted to assess the anticipated seismic response of the test setup and evaluate the accuracy of the analytical model. The results of the analytical simulation illustrate that the analytical model was able to match the responses from the experimental tests, including peak stresses, strains, forces, and hinge openings

  15. [Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster

    KAUST Repository

    Alhilaly, Mohammad J.; Bootharaju, Megalamane Siddaramappa; Joshi, Chakra Prasad; Besong, Tabot M.D.; Emwas, Abdul-Hamid M.; Juarez-Mosqueda, Rosalba; Kaappa, Sami; Malola, Sami; Adil, Karim; Shkurenko, Aleksander; Hakkinen, Hannu; Eddaoudi, Mohamed; Bakr, Osman

    2016-01-01

    Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag-67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag-67(SPhMe2)(32)(PPh3)(8)](3+). The crystal structure shows an Ag-23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag-13, core was formed through an unprecedented centered cuboctahedron, i.e., Ag-13, unlike the common centered Ag-13 icosahedron geometry. Two types of ligand motifs, eight AgS3P and eight bridging thiols, were found to stabilize the whole cluster. The optical spectrum of this NC displayed highly structured multiple absorption peaks. The electronic structure and optical spectrum of Ag-67 were computed using time-dependent density functional theory (TDDFT) for both the full cluster [Ag-67(SPhMe2)(32)(PPh3)(8)](3+) and a reduced model [Ag-67(SH)(32)(PH3)(8)](3+). The lowest metal-to-metal transitions in the range 500-800 nm could be explained by considering the reduced model that shows almost identical electronic states to 32 free electrons in a jellium box. The successful synthesis of the large box-shaped Ag-67 NC facilitated by the combined use of phosphine and thiol paves the way for synthesizing other metal clusters with unprecedented shapes by judicious choice of thiols and phosphines.

  16. [Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster

    KAUST Repository

    Alhilaly, Mohammad J.

    2016-10-13

    Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag-67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag-67(SPhMe2)(32)(PPh3)(8)](3+). The crystal structure shows an Ag-23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag-13, core was formed through an unprecedented centered cuboctahedron, i.e., Ag-13, unlike the common centered Ag-13 icosahedron geometry. Two types of ligand motifs, eight AgS3P and eight bridging thiols, were found to stabilize the whole cluster. The optical spectrum of this NC displayed highly structured multiple absorption peaks. The electronic structure and optical spectrum of Ag-67 were computed using time-dependent density functional theory (TDDFT) for both the full cluster [Ag-67(SPhMe2)(32)(PPh3)(8)](3+) and a reduced model [Ag-67(SH)(32)(PH3)(8)](3+). The lowest metal-to-metal transitions in the range 500-800 nm could be explained by considering the reduced model that shows almost identical electronic states to 32 free electrons in a jellium box. The successful synthesis of the large box-shaped Ag-67 NC facilitated by the combined use of phosphine and thiol paves the way for synthesizing other metal clusters with unprecedented shapes by judicious choice of thiols and phosphines.

  17. Shape morphing Kirigami mechanical metamaterials.

    Science.gov (United States)

    Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-05

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  18. Risk factors for proximal sesamoid bone fractures associated with exercise history and horseshoe characteristics in Thoroughbred racehorses.

    Science.gov (United States)

    Anthenill, Lucy A; Stover, Susan M; Gardner, Ian A; Hill, Ashley E

    2007-07-01

    To assess individual and combined associations of high-speed exercise and horseshoe characteristics with risk of forelimb proximal sesamoid bone fractures and proximal sesamoid bone midbody fractures in Thoroughbred racehorses. 269 deceased Thoroughbred racehorses. A case-control study design was used to compare 121 horses with a fracture of at least 1 of 4 forelimb proximal sesamoid bones (75 horses had a midbody fracture) and 148 horses without a forelimb proximal sesamoid bone fracture. Univariable and multivariable logistic regression analyses were used to evaluate potential risk factors for association with proximal sesamoid bone fracture. Compared with horses that died without proximal sesamoid bone fractures, horses that died with proximal sesamoid bone fractures were more likely to be sexually intact males, spend more time in active trainingand racing, complete more events, train and race longer since their last layup, have higher exercise intensities during the 12 months prior to death, and have greater cumulative distances for their career. Horses with proximal sesamoid bone midbody fractures were more likely to be sexually intact males, train and race longer since their last layup, and have higher exercise intensities during the 12 months prior to death. Limitingexercise intensity and the continuous time spent in activity duringa horse's career may decrease the frequency of forelimb proximal sesamoid bone fractures in Thoroughbred horses.

  19. Nanofibers-based nanoweb promise superhydrophobic polyaniline: from star-shaped to leaf-shaped structures.

    Science.gov (United States)

    Fan, Haosen; Wang, Hao; Guo, Jing; Zhao, Ning; Xu, Jian

    2013-11-01

    Star-shaped and leaf-shaped polyaniline (PANI) hierarchical structures with interlaced nanofibers on the surface were successfully prepared by chemical polymerization of aniline in the presence of lithium triflate (LT). Chemical structure and composition of the star-like PANI obtained were characterized by FTIR and UV-vis spectra. PANI 2D architectures can be tailored from star-shaped to leaf-shaped structures by change the concentration of LT. The synthesized star-like and leaf-like polyaniline show good superhydrophobicity with water contact angles of both above 150° due to the combination of the rough nanoweb structure and the low surface tension of fluorinated chain of dopant. This method is a facile and applicable strategy for a large-scale fabrication of 2D PANI micro/nanostructures. Many potential applications such as self-cleaning and antifouling coating can be expected based on the superhydrophobic PANI micro/nanostructures. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  20. Exploration of continuous variability in collections of 3D shapes

    KAUST Repository

    Ovsjanikov, Maks; Li, Wilmot; Guibas, Leonidas J.; Mitra, Niloy J.

    2011-01-01

    As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. Exploration is particularly challenging for public shape repositories, which are often only loosely tagged and contain neither point-based nor part-based correspondences. In this paper, we present a method for discovering and exploring continuous variability in a collection of 3D shapes without correspondences. Our method is based on a novel navigation interface that allows users to explore a collection of related shapes by deforming a base template shape through a set of intuitive deformation controls. We also help the user to select the most meaningful deformations using a novel technique for learning shape variability in terms of deformations of the template. Our technique assumes that the set of shapes lies near a low-dimensional manifold in a certain descriptor space, which allows us to avoid establishing correspondences between shapes, while being rotation and scaling invariant. We present results on several shape collections taken directly from public repositories. © 2011 ACM.

  1. Exploration of continuous variability in collections of 3D shapes

    KAUST Repository

    Ovsjanikov, Maks

    2011-07-01

    As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. Exploration is particularly challenging for public shape repositories, which are often only loosely tagged and contain neither point-based nor part-based correspondences. In this paper, we present a method for discovering and exploring continuous variability in a collection of 3D shapes without correspondences. Our method is based on a novel navigation interface that allows users to explore a collection of related shapes by deforming a base template shape through a set of intuitive deformation controls. We also help the user to select the most meaningful deformations using a novel technique for learning shape variability in terms of deformations of the template. Our technique assumes that the set of shapes lies near a low-dimensional manifold in a certain descriptor space, which allows us to avoid establishing correspondences between shapes, while being rotation and scaling invariant. We present results on several shape collections taken directly from public repositories. © 2011 ACM.

  2. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  3. Shape coexistence, Lanczos techniques, and large-basis shell-model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W C [Washington Univ., Seattle, WA (United States). Dept. of Physics

    1992-08-01

    I discuss numerical many-body techniques based on the Lanczos algorithm and their applications to nuclear structure problems. Examples include shape coexistence, inclusive response functions, and weak interaction rates in {sup 16}O; weak-coupling descriptions of the O{sup +} bands in isotopes of Ge and Se; and the evaluation of the nuclear Green`s functions that arise in two-neutrino {beta}{beta} decay and in nuclear anapole and electric dipole moment calculations. (author). 11 refs., 2 tabs., 4 figs.

  4. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    Science.gov (United States)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  5. Shape prior modeling using sparse representation and online dictionary learning.

    Science.gov (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N

    2012-01-01

    The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.

  6. Fabrication of hexagonal star-shaped and ring-shaped patterns arrays by Mie resonance sphere-lens-lithography

    Science.gov (United States)

    Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui

    2018-05-01

    Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.

  7. Forming H-shaped and barrel-shaped nebulae with interacting jets

    Science.gov (United States)

    Akashi, Muhammad; Bear, Ealeal; Soker, Noam

    2018-04-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets with large opening angles launched from a binary stellar system into a previously ejected shell and show that the interaction can form barrel-like and H-like shapes in the descendant nebula. Such features are observed in planetary nebulae (PNe) and supernova remnants. Under our assumption, the dense shell is formed by a short instability phase of the giant star as it interacts with a stellar companion, and the jets are then launched by the companion as it accretes mass through an accretion disc from the giant star. We find that the H-shaped and barrel-shaped morphological features that the jets form evolve with time, and that there are complicated flow patterns, such as vortices, instabilities, and caps moving ahead along the symmetry axis. We compare our numerical results with images of 12 PNe, and show that jet-shell interaction that we simulate can account for the barrel-like or H-like morphologies that are observed in these PNe.

  8. Social Shaping of Innovation

    DEFF Research Database (Denmark)

    Buur, Jacob; Mack, Alexandra

    - in particular in a large corporation? This workshop explores how innovation is socially shaped in organizations. Based on our experiences with practices around innovation and collaboration, we start from three proposition about the social shaping of innovation: • Ideas don't thrive as text (i.e. we need...... to consider other media) • Ideas need socialization (ideas are linked to people, we need to be careful about how we support the social innovation context) • Ideas are local (ideas spring out of a local contingency, we need to take care in how we like them to travel)....

  9. Fabrication and analysis of awl-shaped serpentine microsprings for large out-of-plane displacement

    International Nuclear Information System (INIS)

    Chou, Hui-Min; Chen, Rongshun; Lin, Meng-Ju

    2015-01-01

    This work investigates a novel awl-shaped serpentine microspring for a suspension structure, with a lower spring constant under the same unit layout area in out-of-plane motion. Using Castigliano’s theorem, the spring constant of the microspring was theoretically derived and simulations were performed using COMSOL Multiphysics to verify the theoretical results. The proposed awl-shaped serpentine microspring was successfully fabricated using silicon-based micromachining. Experiments were conducted to compare the theoretical and numerical results, which were in close agreement. In addition, a parameter of spring constant to layout area ratio (K/A) is defined to be used as the index for comparing spring constants under the same unit area. Accordingly, the awl-shaped serpentine microspring has a lower K/A value than the traditional serpentine microspring with the same total effective length and folds. With a greater taper angle, more folds, a smaller beam width, and lower beam thickness, the awl-shaped serpentine microspring has a smaller K/A value. Using the proposed mathematical model, the spring constants of microsprings of various sizes and geometric structures can be calculated in out-of-plane motion before the microstructure is fabricated. Thus, it saves time when designing a microspring with a proper spring constant. (paper)

  10. Inverted U-shaped curve relationship between red blood cell distribution width and hypertension in a large health checkup population in China.

    Science.gov (United States)

    Jiang, Mingfei; Zha, Xiaojuan; Wu, Zewei; Zhu, Xinying; Li, Wenbo; Wu, Huan; Ma, Jun; Wang, Shuyi; Wen, Yufeng

    2018-03-10

    This study was aimed at investigating the relationship between red blood cell distribution width (RDW) and hypertension in a large health check up population in China. A population of 302,527 subjects from Wuhu was enrolled in this cross-sectional health check up study between 2011 and 2016. They consisted of 126,369 women (41.78%) and 176,158 men (58.23%) with mean age of 46.9 ± 13.4 and 48.1 ± 13.7 years, respectively. The investigations included information on demographic characteristics, physical examination, and laboratory testing. Inverted U-shape relationships were observed between RDW and hypertension with peak RDW values of 14.2 (women) and 15.2 (men). After stratification by sex and adjusted with body mass index, age, white blood cells, and high-density lipoprotein cholesterol, inverted U-shape relationships were also established between RDW and hypertension, systolic blood pressure, and diastolic blood pressure, with peak RDW of 14.2, 14.5, 14.5 in women and 14.2, 16.0, 14.5 in men. Inverted U-shape relationship exists between RDW and hypertension, systolic blood pressure, and diastolic blood pressure among the Chinese health check up population studied. Copyright © 2018 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  11. Dominant glint based prey localization in horseshoe bats: a possible strategy for noise rejection.

    Science.gov (United States)

    Vanderelst, Dieter; Reijniers, Jonas; Firzlaff, Uwe; Peremans, Herbert

    2011-12-01

    Rhinolophidae or Horseshoe bats emit long and narrowband calls. Fluttering insect prey generates echoes in which amplitude and frequency shifts are present, i.e. glints. These glints are reliable cues about the presence of prey and also encode certain properties of the prey. In this paper, we propose that these glints, i.e. the dominant glints, are also reliable signals upon which to base prey localization. In contrast to the spectral cues used by many other bats, the localization cues in Rhinolophidae are most likely provided by self-induced amplitude modulations generated by pinnae movement. Amplitude variations in the echo not introduced by the moving pinnae can be considered as noise interfering with the localization process. The amplitude of the dominant glints is very stable. Therefore, these parts of the echoes contain very little noise. However, using only the dominant glints potentially comes at a cost. Depending on the flutter rate of the insect, a limited number of dominant glints will be present in each echo giving the bat a limited number of sample points on which to base localization. We evaluate the feasibility of a strategy under which Rhinolophidae use only dominant glints. We use a computational model of the echolocation task faced by Rhinolophidae. Our model includes the spatial filtering of the echoes by the morphology of the sonar apparatus of Rhinolophus rouxii as well as the amplitude modulations introduced by pinnae movements. Using this model, we evaluate whether the dominant glints provide Rhinolophidae with enough information to perform localization. Our simulations show that Rhinolophidae can use dominant glints in the echoes as carriers for self-induced amplitude modulations serving as localization cues. In particular, it is shown that the reduction in noise achieved by using only the dominant glints outweighs the information loss that occurs by sampling the echo. © 2011 Vanderelst et al.

  12. Dominant glint based prey localization in horseshoe bats: a possible strategy for noise rejection.

    Directory of Open Access Journals (Sweden)

    Dieter Vanderelst

    2011-12-01

    Full Text Available Rhinolophidae or Horseshoe bats emit long and narrowband calls. Fluttering insect prey generates echoes in which amplitude and frequency shifts are present, i.e. glints. These glints are reliable cues about the presence of prey and also encode certain properties of the prey. In this paper, we propose that these glints, i.e. the dominant glints, are also reliable signals upon which to base prey localization. In contrast to the spectral cues used by many other bats, the localization cues in Rhinolophidae are most likely provided by self-induced amplitude modulations generated by pinnae movement. Amplitude variations in the echo not introduced by the moving pinnae can be considered as noise interfering with the localization process. The amplitude of the dominant glints is very stable. Therefore, these parts of the echoes contain very little noise. However, using only the dominant glints potentially comes at a cost. Depending on the flutter rate of the insect, a limited number of dominant glints will be present in each echo giving the bat a limited number of sample points on which to base localization. We evaluate the feasibility of a strategy under which Rhinolophidae use only dominant glints. We use a computational model of the echolocation task faced by Rhinolophidae. Our model includes the spatial filtering of the echoes by the morphology of the sonar apparatus of Rhinolophus rouxii as well as the amplitude modulations introduced by pinnae movements. Using this model, we evaluate whether the dominant glints provide Rhinolophidae with enough information to perform localization. Our simulations show that Rhinolophidae can use dominant glints in the echoes as carriers for self-induced amplitude modulations serving as localization cues. In particular, it is shown that the reduction in noise achieved by using only the dominant glints outweighs the information loss that occurs by sampling the echo.

  13. Divertor design through shape optimization

    International Nuclear Information System (INIS)

    Dekeyser, W.; Baelmans, M.; Reiter, D.

    2012-01-01

    Due to the conflicting requirements, complex physical processes and large number of design variables, divertor design for next step fusion reactors is a challenging problem, often relying on large numbers of computationally expensive numerical simulations. In this paper, we attempt to partially automate the design process by solving an appropriate shape optimization problem. Design requirements are incorporated in a cost functional which measures the performance of a certain design. By means of changes in the divertor shape, which in turn lead to changes in the plasma state, this cost functional can be minimized. Using advanced adjoint methods, optimal solutions are computed very efficiently. The approach is illustrated by designing divertor targets for optimal power load spreading, using a simplified edge plasma model (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Geographical variation in echolocation call and body size of the Okinawan least horseshoe bat, Rhinolophus pumilus (Mammalia: Rhinolophidae), on Okinawa-jima Island, Ryukyu Archipelago, Japan.

    Science.gov (United States)

    Yoshino, Hajime; Matsumura, Sumiko; Kinjo, Kazumitsu; Tamura, Hisao; Ota, Hidetoshi; Izawa, Masako

    2006-08-01

    The Okinawan least horseshoe bat, Rhinolophus pumilus, is a cave-dwelling species endemic to the central and southern Ryukyus, Japan. We analyzed variation in the constant frequency (CF) of the echolocation call and in forearm length (FAL) of this species on Okinawa-jima Island on the basis of data for 479 individuals from 11 caves scattered over the island. CF values in samples from six caves, all located in the southwestern half of Okinawa-jima, were significantly higher than those in samples from five caves in the northeastern half of the island. Also, FAL was significantly greater in the latter group than in the former group, although the ranges of variation in this character substantially overlapped between the two groups. These results suggest substantial differentiation between R. pumilus populations on Okinawa-jima. The implications of our findings for the conservation of this endangered bat species are briefly discussed.

  15. A Measurement of Jet Shapes in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Marshall, Zachary L

    2010-01-01

    A study of jet shapes is presented using 300 nb−1 of proton-proton collision data collected at a center of mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider. The analysis includes jets with rapidity |y| < 2.8 and with calibrated transverse momentum 40< pT <600 GeV. Results are compared with several tuned Monte Carlo programs. Jets are found to be wider than predicted, although the evolution of the jet shape with transverse momentum is well described.

  16. A Case with Mega Cisterna Magna Renal and Ear Anomalies: Is This a New Syndrome?

    Directory of Open Access Journals (Sweden)

    Çapan Konca

    2013-01-01

    Full Text Available Background. Extrarenal pathologies may be associated with renal position and fusion anomalies. According to the literature, our patient is the first horseshoe kidney case that had mega cisterna magna, arachnodactyly, and mild mental retardation. Case Report. A 9-year-old boy admitted because of the myoclonic jerks. He had a dysmorphic face, low-set and cup-shaped ears, arachnodactyly, and mild mental retardation. The patient’s laboratory findings were normal except for a mild leucocytosis and hypochromic microcytic anemia. His cerebrospinal fluid was cytologically and biochemically normal. Cranial MRI revealed 1.5 cm diametered mega cisterna magna in the retrocerebellar region. Although there were no significant epileptical discharges in the electroencephalography, there were slow wave discharges arising from the anterior regions of both hemispheres. Because he had stomachache, abdominal ultrasonography was performed, and horseshoe kidney was determined. Abdominal CT did not reveal any abnormalities except the horseshoe kidney. There were not any cardiac pathologies in echocardiography. He had normal 46XY karyotype and there were no repeated chromosomal derangements, but we could not evaluate for molecular and submicroscopic somatic changes. He was treated with valproic acid and myoclonic jerks did not repeat. Conclusion. We suggest that the presence of these novel findings may represent a newly recognized, separate syndrome.

  17. Large Scale Applications Using FBG Sensors: Determination of In-Flight Loads and Shape of a Composite Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Matthew J. Nicolas

    2016-06-01

    Full Text Available Technological advances have enabled the development of a number of optical fiber sensing methods over the last few years. The most prevalent optical technique involves the use of fiber Bragg grating (FBG sensors. These small, lightweight sensors have many attributes that enable their use for a number of measurement applications. Although much literature is available regarding the use of FBGs for laboratory level testing, few publications in the public domain exist of their use at the operational level. Therefore, this paper gives an overview of the implementation of FBG sensors for large scale structures and applications. For demonstration, a case study is presented in which FBGs were used to determine the deflected wing shape and the out-of-plane loads of a 5.5-m carbon-composite wing of an ultralight aerial vehicle. The in-plane strains from the 780 FBG sensors were used to obtain the out-of-plane loads as well as the wing shape at various load levels. The calculated out-of-plane displacements and loads were within 4.2% of the measured data. This study demonstrates a practical method in which direct measurements are used to obtain critical parameters from the high distribution of FBG sensors. This procedure can be used to obtain information for structural health monitoring applications to quantify healthy vs. unhealthy structures.

  18. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    Science.gov (United States)

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  19. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  20. What Makes a Beam Shaping Problem Difficult

    International Nuclear Information System (INIS)

    Romero, Louis; Dickey, Fred M.

    2000-01-01

    The authors have discussed the three factors that they believe are the most important in determining the difficulty of a beam shaping problem: scaling, smoothness, and coherence. The arguments have been almost completely based on considering how these factors influence beam shaping lenses that were designed using geometrical optics. However, they believe that these factors control the difficulty of beam shaping problems even if one does not base ones design strategy on geometrical optics. For example, they have shown that a lens designed using geometrical optics will not work well unless β is large. However, they have also shown that if β is small the uncertainty principle shows that it is impossible to do a good job of beam shaping no matter how one designs ones lens

  1. Periodic Cellular Structure Technology for Shape Memory Alloys

    Science.gov (United States)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  2. New fossil seeds of Eurya (Theaceae from East Asia and their paleobiogeographic implications

    Directory of Open Access Journals (Sweden)

    Hai Zhu

    2016-06-01

    Full Text Available Eurya has an excellent fossil record in Europe, but it has only a few fossil occurrences in East Asia though this vast area houses the highest modern diversity of the genus. In this study, three-dimensionally preserved fossil seeds of Eurya stigmosa (Ludwig Mai from the late Pliocene of northwestern Yunnan, southwestern China are described. The seeds are compressed and flattened, slightly campylotropous, and nearly circular to slightly angular in shape. The surface of the seeds is sculptured by a distinctive foveolate pattern, consisting of funnel-shaped and finely pitted cells. Each seed valve contains a reniform or horseshoe-shaped embryo cavity, a characteristic condyle structure and an internal raphe. These fossil seeds represent one of the few fossil records of Eurya in East Asia. This new finding therefore largely extends the distributional ranges of Eurya during Neogene. Fossil records summarized here show that Eurya persisted in Europe until the early Pleistocene, but disappeared thereafter. The genus might have first appeared in East Asia no later than the late Oligocene, and dispersed widely in regions such as Japan, Nepal, and southwestern China.

  3. A Condition Number for Non-Rigid Shape Matching

    KAUST Repository

    Ovsjanikov, Maks

    2011-08-01

    © 2011 The Author(s). Despite the large amount of work devoted in recent years to the problem of non-rigid shape matching, practical methods that can successfully be used for arbitrary pairs of shapes remain elusive. In this paper, we study the hardness of the problem of shape matching, and introduce the notion of the shape condition number, which captures the intuition that some shapes are inherently more difficult to match against than others. In particular, we make a connection between the symmetry of a given shape and the stability of any method used to match it while optimizing a given distortion measure. We analyze two commonly used classes of methods in deformable shape matching, and show that the stability of both types of techniques can be captured by the appropriate notion of a condition number. We also provide a practical way to estimate the shape condition number and show how it can be used to guide the selection of landmark correspondences between shapes. Thus we shed some light on the reasons why general shape matching remains difficult and provide a way to detect and mitigate such difficulties in practice.

  4. Shape coexistence in 72Kr at finite angular momentum

    International Nuclear Information System (INIS)

    Almehed, Daniel; Walet, Niels R.

    2004-01-01

    We investigate shape coexistence in a rotating nucleus. We concentrate on the case of 72 Kr which exhibits an interesting interplay between prolate and oblate shaped states as a function of angular momentum. The calculation uses the local harmonic version of the method of self-consistent adiabatic large-amplitude collective motion. We analyse how the collective behaviour of the system changes with angular momentum and we focus on the role of non-axial shapes

  5. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  6. Quantitative genetics of plastron shape in slider turtles (Trachemys scripta).

    Science.gov (United States)

    Myers, Erin M; Janzen, Fredric J; Adams, Dean C; Tucker, John K

    2006-03-01

    Shape variation is widespread in nature and embodies both a response to and a source for evolution and natural selection. To detect patterns of shape evolution, one must assess the quantitative genetic underpinnings of shape variation as well as the selective environment that the organisms have experienced. Here we used geometric morphometrics to assess variation in plastron shell shape in 1314 neonatal slider turtles (Trachemys scripta) from 162 clutches of laboratory-incubated eggs from two nesting areas. Multivariate analysis of variance indicated that nesting area has a limited role in describing plastron shape variation among clutches, whereas differences between individual clutches were highly significant, suggesting a prominent clutch effect. The covariation between plastron shape and several possible maternal effect variables (yolk hormone levels and egg dimensions) was assessed for a subset of clutches and found to be negligible. We subsequently employed several recently proposed methods for estimating heritability from shape variables, and generalized a univariate approach to accommodate unequal sample sizes. Univariate estimates of shape heritability based on Procrustes distances yielded large values for both nesting populations (h2 approximately 0.86), and multivariate estimates of maximal additive heritability were also large for both nesting populations (h2max approximately 0.57). We also estimated the dominant trend in heritable shape change for each nesting population and found that the direction of shape evolution was not the same for the two sites. Therefore, although the magnitude of shape evolution was similar between nesting populations, the manner in which plastron shape is evolving is not. We conclude that the univariate approach for assessing quantitative genetic parameters from geometric morphometric data has limited utility, because it is unable to accurately describe how shape is evolving.

  7. Spiral versus J-shaped coils for neurovascular embolisation - an in-vitro study

    International Nuclear Information System (INIS)

    Sugiu, K.; Tokunaga, K.; Mandai, S.; Martin, J.B.; Jean, B.; Ruefenacht, D.A.

    2003-01-01

    Our purpose was to compare the characteristics of J-shaped detachable platinum coils with those of spiral coils in in-vitro vascular models. J-shaped coils consist of distal semicircular and proximal straight segments, the latter extending for most of the length of the coil. Spiral coils have a helical shape memory and are thus limited in expansion. In in-vitro silicone vascular models simulating intracranial aneurysms and dural arteriovenous fistulae, we compared J-shaped and spiral coils with regard to ease of delivery, anchoring and folding patterns, and stability in various types of vascular lumen. Delivery and retrieval were comparable. In large and irregular aneurysms and venous sinuses, J-shaped coils could form a more complex basket which conformed to the shape of the vascular cavity. The J-shaped coil was always in contact with the vessel wall. In wide-necked aneurysms, coil protrusion was more frequent with J-shaped coils, while spiral coils tended to stay compact and circular. Arteries were occluded in a shorter segment with spiral coils. J-shaped coils were safe and superior for large and irregular aneurysms or sinuses. Spiral coils were preferable for spherical aneurysms and segmental occlusion of arteries. (orig.)

  8. Joint shape segmentation with linear programming

    KAUST Repository

    Huang, Qixing; Koltun, Vladlen; Guibas, Leonidas

    2011-01-01

    program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape

  9. Shape-dependent orientation of thermophoretic forces in microsystems

    KAUST Repository

    Li, Qi

    2013-09-24

    It is generally acknowledged that the direction of the thermophoretic force acting on microparticles is largely determined by the imposed temperature gradient, and the shape of the microparticle has little influence on its direction. We show that one type of thermophoretic force, emerged due to the advent of microfabrication techniques, is highly sensitive to object shape, and it is feasible to tune force orientation via proper shape design. We reveal the underlying mechanism by an asymptotic analysis of the Boltzmann equation and point out the reason why the classical thermophoretic force is insensitive to the particle shape, but the force in microsystems is. The discovered phenomenon could find its applications in methods for microparticle manipulation and separation.

  10. Shape-dependent orientation of thermophoretic forces in microsystems

    KAUST Repository

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2013-01-01

    It is generally acknowledged that the direction of the thermophoretic force acting on microparticles is largely determined by the imposed temperature gradient, and the shape of the microparticle has little influence on its direction. We show that one type of thermophoretic force, emerged due to the advent of microfabrication techniques, is highly sensitive to object shape, and it is feasible to tune force orientation via proper shape design. We reveal the underlying mechanism by an asymptotic analysis of the Boltzmann equation and point out the reason why the classical thermophoretic force is insensitive to the particle shape, but the force in microsystems is. The discovered phenomenon could find its applications in methods for microparticle manipulation and separation.

  11. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    Science.gov (United States)

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  12. Unique Turbinal Morphology in Horseshoe Bats (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Curtis, Abigail A; Simmons, Nancy B

    2017-02-01

    The mammalian nasal fossa contains a set of delicate and often structurally complex bones called turbinals. Turbinals and associated mucosae function in regulating respiratory heat and water loss, increasing surface area for olfactory tissue, and directing airflow within the nasal fossa. We used high-resolution micro-CT scanning to investigate a unique maxilloturbinal morphology in 37 species from the bat family Rhinolophidae, which we compared with those of families Hipposideridae, Megadermatidae, and Pteropodidae. Rhinolophids exhibit numerous structural modifications along the nasopharyngeal tract associated with emission of high duty cycle echolocation calls via the nostrils. In rhinolophids, we found that the maxilloturbinals and a portion of ethmoturbinal I form a pair of strand-like bony structures on each side of the nasal chamber. These structures project anteriorly from the transverse lamina and complete a hairpin turn to project posteriorly down the nasopharyngeal duct, and vary in length among species. The strand-like maxilloturbinals in Rhinolophidae were not observed in our outgroups and represent a synapomorphy for this family, and are unique in form among mammals. Within Rhinolophidae, maxilloturbinal size and cross-sectional shape were correlated with phylogeny. We hypothesize that strand-shaped maxilloturbinals may function to reduce respiratory heat and water loss without greatly impacting echolocation call transmission since they provide increased mucosal surface area for heat and moisture exchange but occupy minimal space. Alternatively, they may play a role in transmission of echolocation calls since they are located directly along the path sound travels between the larynx and nostrils during call emission. Anat Rec, 300:309-325, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    Science.gov (United States)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  14. Stability of multihelical tearing modes in shaped tokamaks

    International Nuclear Information System (INIS)

    Kerner, W.; Tasso, H.

    1982-03-01

    The stability of multihelical tearing modes in tokamaks with shaped cross-sections is determined numerically. The method allows inclusion of a large number of singular surfaces resolved with high accuracy. Poloidal and radial couplings are discussed and the convergence is well understood. High poloidal m number modes are found to be unstable for typical equilibria. Completely stable current distributions have been constructed for D-shaped plasmas. (orig.)

  15. An analytical model for shape memory alloy fiber-reinforced composite thin-walled beam undergoing large deflection

    Directory of Open Access Journals (Sweden)

    Yongsheng Ren

    2015-03-01

    Full Text Available The structural model of the thin-walled laminated beams with integral shape memory alloy active fibers and accounting for geometrically nonlinear is presented in this article. The structural modeling is split into two parts: a two-dimensional analysis over the cross section and a geometrically nonlinear analysis of a beam along the beam span. The variational asymptotic method is used to formulate the force–deformation relationship equations taking into account the presence of active shape memory alloy fibers distributed along the cross section of the beam. The geometrically nonlinear governing equations are derived using variational principle and based on the von Kármán-type nonlinear strain–displacement relations. The equations are then solved using Galerkin’s method and an incremental Newton–Raphson method. The validation for the proposed model has been carried out by comparison of the present results with those available in the literature. The results show that significant extension, bending, and twisting coupled nonlinear deflections occur during the phase transformation due to shape memory alloy actuation. The effects of the volume fraction of the shape memory alloy fiber and ply angle are also addressed.

  16. A fast large dynamic range shaping amplifier for particle detector front-end

    International Nuclear Information System (INIS)

    Rivetti, Angelo; Delaurenti, Paolo

    2007-01-01

    The paper describes a fast shaping amplifier with rail-to-rail output swing. The circuit is based on a CMOS operational amplifier with a class AB output stage. A baseline holder, incorporating a closed-loop unity gain buffer with slew rate limitation, performs the AC coupling with the preamplifier and guarantees a baseline shift smaller than 3 mV for unipolar output pulses of 3 V and 10 MHz rate

  17. SHAPE selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R

    2015-01-01

    transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES...

  18. Photonic shape memory polymer with stable multiple colors

    NARCIS (Netherlands)

    Moirangthem, M.; Engels, T.A.P.; Murphy, J.; Bastiaansen, C.W.M.; Schenning, A.P.H.J.

    2017-01-01

    A photonic shape memory polymer film that shows large color response (∼155 nm) in a wide temperature range has been fabricated from a semi-interpenetrating network of a cholesteric polymer and poly(benzyl acrylate). The large color response is achieved by mechanical embossing of the photonic film

  19. Heteroplasmy and ancient translocation of mitochondrial DNA to the nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus complex.

    Directory of Open Access Journals (Sweden)

    Xiuguang Mao

    Full Text Available The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2 and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.

  20. Constructal tree-shaped flow structures

    International Nuclear Information System (INIS)

    Bejan, A.; Lorente, S.

    2007-01-01

    This paper is an introduction to a new trend in the conceptual design of energy systems: the generation of flow configuration based on the 'constructal' principle that the global performance is maximized by balancing and arranging the various flow resistances (the irreversibilities) in a flow system that is free to morph. The paper focuses on distribution and collection, which are flows that connect one point (source, or sink) with an infinity of points (volume, area, curve). The flow configurations that emerge from this principle are tree-shaped, and the systems that employ them are 'vascularized'. The paper traces the most recent progress made on constructal vascularization. The direction is from large-scale applications toward microscales. The large-scale tree-shaped designs of electric power distribution systems and networks for natural gas and water are now invading small-scale designs such as fuel cells, heat exchangers and cooled packages of electronics. These flow configurations have several properties in common: freedom to morph, multiple scales, hierarchy, nonuniform (optimal) distribution of scales through the available volume, compactness and finite complexity

  1. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rockel, Beate [Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany); Schmaler, Tilo; Huang, Xiaohua [Division of Molecular Biology, Department of General, Visceral, Vascular and Thoracic Surgery, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany); Dubiel, Wolfgang, E-mail: Wolfgang.dubiel@charite.de [Division of Molecular Biology, Department of General, Visceral, Vascular and Thoracic Surgery, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany)

    2014-07-25

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with the 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts

  2. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    International Nuclear Information System (INIS)

    Rockel, Beate; Schmaler, Tilo; Huang, Xiaohua; Dubiel, Wolfgang

    2014-01-01

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with the 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts

  3. Ultrathin Shape Change Smart Materials.

    Science.gov (United States)

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-02-20

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  4. Implementation of a framework for multi-species, multi-objective adaptive management in Delaware Bay

    Science.gov (United States)

    McGowan, Conor P.; Smith, David R.; Nichols, James D.; Lyons, James E.; Sweka, John A.; Kalasz, Kevin; Niles, Lawrence J.; Wong, Richard; Brust, Jeffrey; Davis, Michelle C.; Spear, Braddock

    2015-01-01

    Decision analytic approaches have been widely recommended as well suited to solving disputed and ecologically complex natural resource management problems with multiple objectives and high uncertainty. However, the difference between theory and practice is substantial, as there are very few actual resource management programs that represent formal applications of decision analysis. We applied the process of structured decision making to Atlantic horseshoe crab harvest decisions in the Delaware Bay region to develop a multispecies adaptive management (AM) plan, which is currently being implemented. Horseshoe crab harvest has been a controversial management issue since the late 1990s. A largely unregulated horseshoe crab harvest caused a decline in crab spawning abundance. That decline coincided with a major decline in migratory shorebird populations that consume horseshoe crab eggs on the sandy beaches of Delaware Bay during spring migration. Our approach incorporated multiple stakeholders, including fishery and shorebird conservation advocates, to account for diverse management objectives and varied opinions on ecosystem function. Through consensus building, we devised an objective statement and quantitative objective function to evaluate alternative crab harvest policies. We developed a set of competing ecological models accounting for the leading hypotheses on the interaction between shorebirds and horseshoe crabs. The models were initially weighted based on stakeholder confidence in these hypotheses, but weights will be adjusted based on monitoring and Bayesian model weight updating. These models were used together to predict the effects of management actions on the crab and shorebird populations. Finally, we used a dynamic optimization routine to identify the state dependent optimal harvest policy for horseshoe crabs, given the possible actions, the stated objectives and our competing hypotheses about system function. The AM plan was reviewed, accepted and

  5. Possible evidence for shape isomeric γ-decay in μ- atoms of 238U

    International Nuclear Information System (INIS)

    Fromm, W.D.; Ortlepp, H.-G.; Polikanov, S.M.; Schmidt, U.; Zorin, G.N.; Arlt, R.; Musiol, G.

    1977-01-01

    A search for the γ-decay of the shape isomer in muonic 238 U excited by radiationless transitions has been performed. Seven delayed transitions in the energy region of 700 to 3200 keV have been observed with a large Ge(Li) detector. Two transitions with Esub(γ)=2215 and 3131 keV have been attributed to the decay of the shape isomeric state into levels in the first well. The isomeric shift of the second minimum Esub(II) approximately 600 keV in the presence of the muon and the decrease of the lifetime of the shape isomer to tau=12+-2 ns give arguments in favour of the connection of shape isomerism with large quadrupole deformations. (Auth.)

  6. Large Dumbbell-Shaped C1 Schwannoma Presenting as a Foramen Magnum Mass

    OpenAIRE

    Helms, Jody; Michael, Lattimore Madison

    2012-01-01

    Schwannomas involving the foramen magnum commonly originate from the lower cranial nerves, but they are rarely found arising from the first cervical root. To date, very few cases have been described in the literature. The majority involve either the intradural or extradural compartment but not both. We report the second case of a dumbbell-shaped schwannoma arising from the first cervical root. Our patient presented with hemisensory deficits secondary to brainstem compression at the level of t...

  7. Caldera formation at Volcán Colima, Mexico, by a large large holocene volcanic debris avalanche

    Science.gov (United States)

    Luhr, James F.; Prestegaard, Karen L.

    1988-12-01

    About 4,300 years ago, 10 km 3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km 2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40-75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km 3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude. Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de

  8. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  9. Classification of obstacle shape for generating walking path of humanoid robot

    International Nuclear Information System (INIS)

    Park, Chan Soo; Kim, Do Ik

    2013-01-01

    To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cast. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load

  10. Classification of obstacle shape for generating walking path of humanoid robot

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Soo; Kim, Do Ik [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-02-15

    To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cast. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.

  11. Oriented active shape models.

    Science.gov (United States)

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  12. Testing the Sensory Drive Hypothesis: Geographic variation in echolocation frequencies of Geoffroy's horseshoe bat (Rhinolophidae: Rhinolophus clivosus).

    Science.gov (United States)

    Jacobs, David S; Catto, Sarah; Mutumi, Gregory L; Finger, Nikita; Webala, Paul W

    2017-01-01

    Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature) on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy's horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455) significantly explained a proportion of the variation in resting frequency across sites (P < 0.05). Specifically, at higher relative humidity (around 60%) prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to decrease the

  13. Testing the Sensory Drive Hypothesis: Geographic variation in echolocation frequencies of Geoffroy's horseshoe bat (Rhinolophidae: Rhinolophus clivosus.

    Directory of Open Access Journals (Sweden)

    David S Jacobs

    Full Text Available Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy's horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455 significantly explained a proportion of the variation in resting frequency across sites (P < 0.05. Specifically, at higher relative humidity (around 60% prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to

  14. Otolith shape: a population marker for Atlantic herring Clupea harengus.

    Science.gov (United States)

    Libungan, L A; Óskarsson, G J; Slotte, A; Jacobsen, J A; Pálsson, S

    2015-04-01

    Otolith shape variation of seven Atlantic herring Clupea harengus populations from Canada, the Faroe Islands, Iceland, Ireland, Norway and Scotland, U.K., covering a large area of the species' distribution, was studied in order to see if otolith shape can be used to discriminate between populations. The otolith shape was obtained using quantitative shape analysis, transformed with Wavelet and analysed with multivariate methods. Significant differences were detected among the seven populations, which could be traced to three morphological structures in the otoliths. The differentiation in otolith shape between populations was not only correlated with their spawning time, indicating a strong environmental effect, but could also be due to differing life-history strategies. A model based on the shape differences discriminates with 94% accuracy between Icelandic summer spawners and Norwegian spring spawners, which are known to mix at feeding grounds. This study shows that otolith shape could become an accurate marker for C. harengus population discrimination. © 2015 The Fisheries Society of the British Isles.

  15. Magnetometric investigation of glaciers Southern and Northern Inylchek adjacent to the Merzbacher Lake

    Directory of Open Access Journals (Sweden)

    А. Shakirov

    2015-01-01

    Full Text Available Results of areal magnetometric investigation of glaciers South and North Enilchek located in the vicinity of the Merzbaher Lake are presented. These stud- ies resulted in finding of the bow-shaped rock bar (riegel under the South Enilchek Glacier that became one of causes to turn its right flows toward the Merz- bacher Lake. Under the North Enilchek glacier the horseshoe-shaped riegel ledge was also detected, and that one created a barrier to accumulation of bottom sediments and, thus, formed a distinctive soil alluvial dam, which promoted formation of rather wide interface between upper and lower parts of the Merz- bacher Lake. 

  16. Eye shape and the nocturnal bottleneck of mammals.

    Science.gov (United States)

    Hall, Margaret I; Kamilar, Jason M; Kirk, E Christopher

    2012-12-22

    Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal 'bottleneck' in the early evolution of crown mammals.

  17. A review on shape memory alloys with applications to morphing aircraft

    International Nuclear Information System (INIS)

    Barbarino, S; Saavedra Flores, E I; Ajaj, R M; Dayyani, I; Friswell, M I

    2014-01-01

    Shape memory alloys (SMAs) are a unique class of metallic materials with the ability to recover their original shape at certain characteristic temperatures (shape memory effect), even under high applied loads and large inelastic deformations, or to undergo large strains without plastic deformation or failure (super-elasticity). In this review, we describe the main features of SMAs, their constitutive models and their properties. We also review the fatigue behavior of SMAs and some methods adopted to remove or reduce its undesirable effects. SMAs have been used in a wide variety of applications in different fields. In this review, we focus on the use of shape memory alloys in the context of morphing aircraft, with particular emphasis on variable twist and camber, and also on actuation bandwidth and reduction of power consumption. These applications prove particularly challenging because novel configurations are adopted to maximize integration and effectiveness of SMAs, which play the role of an actuator (using the shape memory effect), often combined with structural, load-carrying capabilities. Iterative and multi-disciplinary modeling is therefore necessary due to the fluid–structure interaction combined with the nonlinear behavior of SMAs. (topical review)

  18. Testing for nonrandom shape similarity between sister cells using automated shape comparison

    Science.gov (United States)

    Guo, Monica; Marshall, Wallace F.

    2009-02-01

    Several reports in the biological literature have indicated that when a living cell divides, the two daughter cells have a tendency to be mirror images of each other in terms of their overall cell shape. This phenomenon would be consistent with inheritance of spatial organization from mother cell to daughters. However the published data rely on a small number of examples that were visually chosen, raising potential concerns about inadvertent selection bias. We propose to revisit this issue using automated quantitative shape comparison methods which would have no contribution from the observer and which would allow statistical testing of similarity in large numbers of cells. In this report we describe a first order approach to the problem using rigid curve matching. Using test images, we compare a pointwise correspondence based distance metric with a chamfer matching strategy and find that the latter provides better correspondence and smaller distances between aligned curves, especially when we allow nonrigid deformation of the outlines in addition to rotation.

  19. Visual field shape and foraging ecology in diurnal raptors.

    Science.gov (United States)

    Potier, Simon; Duriez, Olivier; Cunningham, Gregory B; Bonhomme, Vincent; O'Rourke, Colleen; Fernández-Juricic, Esteban; Bonadonna, Francesco

    2018-05-18

    Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single traits approach, and then exploring the shape of the binocular field with morphometric approaches. While the maximum binocular field width did not differ in species of different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency ( e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies. © 2018. Published by The Company of Biologists Ltd.

  20. gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison.

    Science.gov (United States)

    Yan, Xin; Li, Jiabo; Gu, Qiong; Xu, Jun

    2014-06-05

    Virtual screening of a large chemical library for drug lead identification requires searching/superimposing a large number of three-dimensional (3D) chemical structures. This article reports a graphic processing unit (GPU)-accelerated weighted Gaussian algorithm (gWEGA) that expedites shape or shape-feature similarity score-based virtual screening. With 86 GPU nodes (each node has one GPU card), gWEGA can screen 110 million conformations derived from an entire ZINC drug-like database with diverse antidiabetic agents as query structures within 2 s (i.e., screening more than 55 million conformations per second). The rapid screening speed was accomplished through the massive parallelization on multiple GPU nodes and rapid prescreening of 3D structures (based on their shape descriptors and pharmacophore feature compositions). Copyright © 2014 Wiley Periodicals, Inc.

  1. The equilibrium crystal shape of nickel

    International Nuclear Information System (INIS)

    Meltzman, Hila; Chatain, Dominique; Avizemer, Dan; Besmann, Theodore M.; Kaplan, Wayne D.

    2011-01-01

    Highlights: → The ECS of pure Ni is completely facetted with both dense and high-index planes. → The partial pressure of oxygen has a significant effect on the surface anisotropy. → The addition of Fe decreased the anisotropy and de-stabilized high-index planes. → During solid dewetting nucleation barriers prevent equilibration of the top facet. - Abstract: The crystal shape of Ni particles, dewetted in the solid state on sapphire substrates, was examined as a function of the partial pressure of oxygen (P(O 2 )) and iron content using scanning and transmission electron microscopy. The chemical composition of the surface was characterized by atom-probe tomography. Unlike other face-centered cubic (fcc) equilibrium crystal shapes, the Ni crystals containing little or no impurities exhibited a faceted shape, indicating large surface anisotropy. In addition to the {1 1 1}, {1 0 0} and {1 1 0} facets, which are usually present in the equilibrium crystal shape of fcc metals, high-index facets were identified such as {1 3 5} and {1 3 8} at low P(O 2 ), and {0 1 2} and {0 1 3} at higher P(O 2 ). The presence of iron altered the crystal shape into a truncated sphere with only facets parallel to denser planes. The issue of particle equilibration is discussed specifically for the case of solid-state dewetting.

  2. Shape descriptors for mode-shape recognition and model updating

    International Nuclear Information System (INIS)

    Wang, W; Mottershead, J E; Mares, C

    2009-01-01

    The most widely used method for comparing mode shapes from finite elements and experimental measurements is the Modal Assurance Criterion (MAC), which returns a single numerical value and carries no explicit information on shape features. New techniques, based on image processing (IP) and pattern recognition (PR) are described in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD), presented in this article, are the most popular shape descriptors having properties that include efficiency of expression, robustness to noise, invariance to geometric transformation and rotation, separation of local and global shape features and computational efficiency. The comparison of mode shapes is readily achieved by assembling the shape features of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the distances separating them.

  3. On the approximation of crack shapes found during inservice inspection

    International Nuclear Information System (INIS)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S.

    1997-01-01

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component

  4. On the approximation of crack shapes found during inservice inspection

    Energy Technology Data Exchange (ETDEWEB)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.

  5. Reversible Shaping of Microwells by Polarized Light Irradiation

    Directory of Open Access Journals (Sweden)

    Federica Pirani

    2017-01-01

    Full Text Available In the last years, stimuli-responsive polymeric materials have attracted great interest, due to their low cost and ease of structuration over large areas combined with the possibility to actively manipulate their properties. In this work, we propose a polymeric pattern of soft-imprinted microwells containing azobenzene molecules. The shape of individual elements of the pattern can be controlled after fabrication by irradiation with properly polarized light. By taking advantage of the light responsivity of the azobenzene compound, we demonstrate the possibility to reversibly modulate a contraction-expansion of wells from an initial round shape to very narrow slits. We also show that the initial shape of the microconcavities can be restored by flipping the polarization by 90°. The possibility to reversibly control the final shape of individual elements of structured surfaces offers the opportunity to engineer surface properties dynamically, thus opening new perspectives for several applications.

  6. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  7. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    Energy Technology Data Exchange (ETDEWEB)

    Akkan, C.K.; May, A. [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany); Hammadeh, M. [Department for Obstetrics, Gynecology and Reproductive Medicine, IVF Laboratory, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Abdul-Khaliq, H. [Clinic for Pediatric Cardiology, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Aktas, O.C., E-mail: cenk.aktas@inm-gmbh.de [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany)

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  8. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini

    Directory of Open Access Journals (Sweden)

    LA Nunes

    Full Text Available This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil. Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size variation and altitude, taking geographic distances into account, revealed that size (but not shape is largely influenced by altitude (r = 0.54 p < 0.01. These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.

  9. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini).

    Science.gov (United States)

    Nunes, L A; Passos, G B; Carvalho, C A L; Araújo, E D

    2013-11-01

    This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.

  10. Ti-Ni-based shape memory alloys as smart materials

    International Nuclear Information System (INIS)

    Otsuka, K.; Xu, Y.; Ren, X.

    2003-01-01

    Smart materials consist of three principal materials, ferroelectrics, shape memory alloys (SMA) and electro-active polymers (EAP). Among these SMAs, especially Ti-Ni-based alloys are important, since only they can provide large recoverable strains and high recovery stress. In the present paper the unique characteristics of Ti-Ni-based shape memory alloys are reviewed on an up-to-date basis with the aim of their applications to smart materials and structures. (orig.)

  11. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  12. Shape similarities and differences in the skulls of scavenging raptors.

    Science.gov (United States)

    Guangdi, S I; Dong, Yiyi; Ma, Yujun; Zhang, Zihui

    2015-04-01

    Feeding adaptations are a conspicuous feature of avian evolution. Bill and cranial shape as well as the jaw muscles are closely related to diet choice and feeding behaviors. Diurnal raptors of Falconiformes exhibit a wide range of foraging behaviors and prey preferences, and are assigned to seven dietary groups in this study. Skulls of 156 species are compared from the dorsal, lateral and ventral views, by using geometric morphometric techniques with those landmarks capturing as much information as possible on the overall shape of cranium, bill, orbits, nostrils and attachment area for different jaw muscles. The morphometric data showed that the skull shape of scavengers differ significantly from other raptors, primarily because of different feeding adaptations. As a result of convergent evolution, different scavengers share generalized common morphology, possessing relatively slender and lower skulls, longer bills, smaller and more sideward orbits, and more caudally positioned quadrates. Significant phylogenetic signals suggested that phylogeny also played important role in shape variation within scavengers. New World vultures can be distinguished by their large nostrils, narrow crania and small orbits; Caracaras typically show large palatines, crania and orbits, as well as short, deep and sharp bill.

  13. A contact-lens-shaped IC chip technology

    International Nuclear Information System (INIS)

    Liu, Ching-Yu; Yang, Frank; Teng, Chih-Chiao; Fan, Long-Sheng

    2014-01-01

    We report on novel contact-lens-shaped silicon integrated circuit chip technology for applications such as forming a conforming retinal prosthesis. This is achieved by means of patterning thin films of high residual stress on top of a shaped thin silicon substrate. Several strategies are employed to achieve curvatures of various amounts. Firstly, high residual stress on a thin film makes a thin chip deform into a designed three-dimensional shape. Also, a series of patterned stress films and ‘petal-shaped’ chips were fabricated and analyzed. Large curvatures can also be formed and maintained by the packaging process of bonding the chips to constraining elements such as thin-film polymer ring structures. As a demonstration, a complementary metal oxide semiconductor transistor (CMOS) image-sensing retina chip is made into a contact-lens shape conforming to a human eyeball 12.5 mm in radius. This non-planar and flexible chip technology provides a desirable device surface interface to soft tissues or non-planar bio surfaces and opens up many other possibilities for biomedical applications. (paper)

  14. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  15. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    International Nuclear Information System (INIS)

    Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed

  16. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  17. The development of complex tooth shape in reptiles

    Science.gov (United States)

    Zahradnicek, Oldrich; Buchtova, Marcela; Dosedelova, Hana; Tucker, Abigail S.

    2014-01-01

    Reptiles have a diverse array of tooth shapes, from simple unicuspid to complex multicuspid teeth, reflecting functional adaptation to a variety of diets and eating styles. In addition to cusps, often complex longitudinal labial and lingual enamel crests are widespread and contribute to the final shape of reptile teeth. The simplest shaped unicuspid teeth have been found in piscivorous or carnivorous ancestors of recent diapsid reptiles and they are also present in some extant carnivores such as crocodiles and snakes. However, the ancestral tooth shape for squamate reptiles is thought to be bicuspid, indicating an insectivorous diet. The development of bicuspid teeth in lizards has recently been published, indicating that the mechanisms used to create cusps and crests are very distinct from those that shape cusps in mammals. Here, we introduce the large variety of tooth shapes found in lizards and compare the morphology and development of bicuspid, tricuspid, and pentacuspid teeth, with the aim of understanding how such tooth shapes are generated. Next, we discuss whether the processes used to form such morphologies are conserved between divergent lizards and whether the underlying mechanisms share similarities with those of mammals. In particular, we will focus on the complex teeth of the chameleon, gecko, varanus, and anole lizards using SEM and histology to compare the tooth crown morphology and embryonic development. PMID:24611053

  18. The development of complex tooth shape in reptiles

    Directory of Open Access Journals (Sweden)

    Oldrich eZahradnicek

    2014-02-01

    Full Text Available Reptiles have a diverse array of tooth shapes, from simple unicuspid to complex multicuspid teeth, reflecting functional adaptation to a variety of diets and eating styles. In addition to cusps, often complex longitudinal labial and lingual enamel crests are widespread and contribute to the final shape of reptile teeth. The simplest shaped unicuspid teeth have been found in piscivorous or carnivorous ancestors of recent diapsid reptiles and they are also present in some extant carnivores such as crocodiles and snakes. However, the ancestral tooth shape for squamate reptiles is thought to be bicuspid, indicating an insectivorous diet. The development of bicuspid teeth in lizards has recently been published, indicating that the mechanisms used to create cusps and crests are very distinct from those that shape cusps in mammals. Here, we introduce the large variety of tooth shapes found in lizards and compare the morphology and development of bicuspid, tricuspid and pentacuspid teeth, with the aim of understanding how such tooth shapes are generated. Next, we discuss whether the processes used to form such morphologies are conserved between divergent lizards and whether the underlying mechanisms share similarities with those of mammals. In particular, we will focus on the complex teeth of the chameleon, gecko, varanus and anole lizards using SEM and histology to compare the tooth crown morphology and embryonic development.

  19. Factorization and shape-function effects in inclusive B-meson decays

    International Nuclear Information System (INIS)

    Bosch, S.W.; Lange, B.O.; Neubert, M.; Paz, G.

    2004-01-01

    Using methods of effective field theory, factorized expressions for arbitrary B-bar ->Xul-ν-bar decay distributions in the shape-function region of large hadronic energy and moderate hadronic invariant mass are derived. Large logarithms are resummed at next-to-leading order in renormalization-group improved perturbation theory. The operator product expansion is employed to relate moments of the renormalized shape function with HQET parameters such as mb, Λ-bar and λ1 defined in a new physical subtraction scheme. An analytic expression for the asymptotic behavior of the shape function is obtained, which reveals that it is not positive definite. Explicit expressions are presented for the charged-lepton energy spectrum, the hadronic invariant mass distribution, and the spectrum in the hadronic light-cone momentum P+=EH-|P->H|. A new method for a precision measurement of |Vub| is proposed, which combines good theoretical control with high efficiency and a powerful discrimination against charm background

  20. Melnikov's criteria, parametric control of chaos, and stationary chaos occurrence in systems with asymmetric potential subjected to multiscale type excitation.

    Science.gov (United States)

    Kwuimy, C A Kitio; Nataraj, C; Litak, G

    2011-12-01

    We consider the problems of chaos and parametric control in nonlinear systems under an asymmetric potential subjected to a multiscale type excitation. The lower bound line for horseshoes chaos is analyzed using the Melnikov's criterion for a transition to permanent or transient nonperiodic motions, complement by the fractal or regular shape of the basin of attraction. Numerical simulations based on the basins of attraction, bifurcation diagrams, Poincaré sections, Lyapunov exponents, and phase portraits are used to show how stationary dissipative chaos occurs in the system. Our attention is focussed on the effects of the asymmetric potential term and the driven frequency. It is shown that the threshold amplitude ∣γ(c)∣ of the excitation decreases for small values of the driven frequency ω and increases for large values of ω. This threshold value decreases with the asymmetric parameter α and becomes constant for sufficiently large values of α. γ(c) has its maximum value for asymmetric load in comparison with the symmetric load. Finally, we apply the Melnikov theorem to the controlled system to explore the gain control parameter dependencies.

  1. Influence of compressive load conditions and thickness on the two-way shape memory behavior in tube-shaped NiTi alloy

    International Nuclear Information System (INIS)

    Yoo, Young Ik; Shin, Dong Kil; Lee, Jung Ju; Lee, Chang Ho

    2012-01-01

    The two-way shape memory behavior of Ni 55 Ti 45 was investigated to develop a tube-shaped NiTi actuator which could generate a large amount of force. The two-way shape memory effect (TWSME) was induced by thermal cycling under various amounts of constant compressive stress. Six specimens with the same outer diameter and different thickness were used to apply the TWSME to an actuator. A fast saturation tendency of the recovery strain was shown through training at each level of constant stress, after which the two-way shape memory strain was quantitatively measured during thermal cycling for each level of applied stress. From the results, the maximum two-way strain value was obtained after training at a constant level of stress and then decreased thereafter. In addition, the two-way strain was found to depend on the thickness of the tube-shaped specimen. All specimens could be divided into two groups depending on the rate of increase in the two-way strain. After two-way strain was obtained, the two-way recovery stress was measured to verify the performance of the sample as an actuator. The results showed that the two-way recovery stress behavior was similar to the two-way strain; if the optimal thickness of the specimen and the stress applied for training are used for the development of the TWSME, tube-shaped NiTi using the TWSME can replace one-way shape memory alloys. (paper)

  2. Development and characterization of 10 microsatellite markers in the Cape horseshoe bat, Rhinolophus capensis (Chiroptera, Rhinolophidae) and cross-amplification in southern African Rhinolophus species.

    Science.gov (United States)

    Nesi, Nicolas; Jacobs, David S; Feldheim, Kevin; Bishop, Jacqueline M

    2015-09-26

    The Cape horseshoe bat, Rhinolophus capensis, is endemic to the Cape region of South Africa. Coalescent analysis of mitochondrial DNA sequence data suggests extensive historical gene flow between populations despite strong geographic variation of their echolocation call phenotype. Nevertheless the fine-scale genetic structure and evolutionary ecology of R. capensis remains poorly understood. Here we describe the development of 10 novel polymorphic microsatellite loci to investigate of the dispersal ecology of R. capensis and to facilitate taxonomic studies of Rhinolophus species in southern Africa. We report 10 microsatellite primer pairs that consistently amplify scorable and polymorphic loci across 12 African rhinolophid species. Initial analysis of two populations of R. capensis from South Africa revealed moderate to high levels of allelic variation with 4-14 alleles per locus and observed heterozygosities of 0.450-0.900. No evidence of linkage disequilibrium was observed and eight of the loci showed no departure from Hardy-Weinberg equilibrium. Cross-species utility of these markers revealed consistently amplifiable polymorphic loci in eleven additional rhinolophid species. The cross-amplification success of the microsatellites developed here provides a cost-effective set of population genetic marker for the study of rhinolophid evolutionary ecology and conservation in southern Africa.

  3. Conceptual design summary for modifying Doublet III to a large dee-shaped configuration

    International Nuclear Information System (INIS)

    Davis, L.G.; Gallix, R.; Luxon, J.L.; Mahdavi, M.A.; Puhn, F.A.; Rock, P.J.; Wesley, J.C.

    1983-05-01

    The Doublet III tokamak is to be reconfigured by replacing its indented (doublet) vacuum vessel with a larger one of a dee-shaped cross section. This change will permit significantly larger elongated plasmas than is presently possible and will allow higher plasma current (up to 5 MA) and anticipated longer confinement time. Reactor relevant values of stable beta and plasma pressure are predicted. This modification, while resulting in a significant change in capability, utilizes most of the existing coils, structure, systems and facility

  4. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  5. Optical fiber designs for beam shaping

    Science.gov (United States)

    Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka

    2014-03-01

    A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.

  6. Asteroid 16 Psyche: Radar Observations and Shape Model

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James E.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine R.; Males, Jared; Morzinski, Kathleen M.; Miller Close, Laird; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Warner, Brian D.; Harris, Alan W.

    2016-10-01

    We observed 16 Psyche, the largest M-class asteroid in the main belt, using the S-band radar at Arecibo Observatory. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image [Hanus et al. Icarus 226, 1045-1057, 2013] and three multi-chord occultations. Our shape model has dimensions 279 x 232 x 189 km (±10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves [Hanus et al., 2013]. Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ~50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kg m-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ~40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  7. A Data-Driven Approach to Realistic Shape Morphing

    KAUST Repository

    Gao, Lin; Lai, Yu-Kun; Huang, Qi-Xing; Hu, Shi-Min

    2013-01-01

    Morphing between 3D objects is a fundamental technique in computer graphics. Traditional methods of shape morphing focus on establishing meaningful correspondences and finding smooth interpolation between shapes. Such methods however only take geometric information as input and thus cannot in general avoid producing unnatural interpolation, in particular for large-scale deformations. This paper proposes a novel data-driven approach for shape morphing. Given a database with various models belonging to the same category, we treat them as data samples in the plausible deformation space. These models are then clustered to form local shape spaces of plausible deformations. We use a simple metric to reasonably represent the closeness between pairs of models. Given source and target models, the morphing problem is casted as a global optimization problem of finding a minimal distance path within the local shape spaces connecting these models. Under the guidance of intermediate models in the path, an extended as-rigid-as-possible interpolation is used to produce the final morphing. By exploiting the knowledge of plausible models, our approach produces realistic morphing for challenging cases as demonstrated by various examples in the paper. © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  8. A Data-Driven Approach to Realistic Shape Morphing

    KAUST Repository

    Gao, Lin

    2013-05-01

    Morphing between 3D objects is a fundamental technique in computer graphics. Traditional methods of shape morphing focus on establishing meaningful correspondences and finding smooth interpolation between shapes. Such methods however only take geometric information as input and thus cannot in general avoid producing unnatural interpolation, in particular for large-scale deformations. This paper proposes a novel data-driven approach for shape morphing. Given a database with various models belonging to the same category, we treat them as data samples in the plausible deformation space. These models are then clustered to form local shape spaces of plausible deformations. We use a simple metric to reasonably represent the closeness between pairs of models. Given source and target models, the morphing problem is casted as a global optimization problem of finding a minimal distance path within the local shape spaces connecting these models. Under the guidance of intermediate models in the path, an extended as-rigid-as-possible interpolation is used to produce the final morphing. By exploiting the knowledge of plausible models, our approach produces realistic morphing for challenging cases as demonstrated by various examples in the paper. © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  9. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  10. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  11. The consequences of climate change at an avian influenza 'hotspot'.

    Science.gov (United States)

    Brown, V L; Rohani, Pejman

    2012-12-23

    Avian influenza viruses (AIVs) pose significant danger to human health. A key step in managing this threat is understanding the maintenance of AIVs in wild birds, their natural reservoir. Ruddy turnstones (Arenaria interpres) are an atypical bird species in this regard, annually experiencing high AIV prevalence in only one location-Delaware Bay, USA, during their spring migration. While there, they congregate on beaches, attracted by the super-abundance of horseshoe crab eggs. A relationship between ruddy turnstone and horseshoe crab (Limulus polyphemus) population sizes has been established, with a declining horseshoe crab population linked to a corresponding drop in ruddy turnstone population sizes. The effect of this interaction on AIV prevalence in ruddy turnstones has also been addressed. Here, we employ a transmission model to investigate how the interaction between these two species is likely to be altered by climate change. We explore the consequences of this modified interaction on both ruddy turnstone population size and AIV prevalence and show that, if climate change leads to a large enough mismatch in species phenology, AIV prevalence in ruddy turnstones will increase even as their population size decreases.

  12. Soil efflux and total emission rates of magmatic CO2 at the horseshoe lake tree kill, mammoth mountain, California, 1995-1999

    Science.gov (United States)

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    2001-01-01

    We report the results of eight soil CO2 efflux surveys by the closed circulation chamber method at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain. The surveys were undertaken from 1995 to 1999 to constrain total HLTK CO2 emissions and to evaluate occasional efflux surveys as a surveillance tool for the tree kills. HLTK effluxes range from 1 to > 10,000 g m -2 day -1 (grams CO2 per square meter per day); they are not normally distributed. Station efflux rates can vary by 7-35% during the course of the 8- to 16-h surveys. Disturbance of the upper 2 cm of ground surface causes effluxes to almost double. Semivariograms of efflux spatial covariance fit exponential or spherical models; they lack nugget effects. Efflux contour maps and total CO2 emission rates based on exponential, spherical, and linear kriging models of survey data are nearly identical; similar results are also obtained with triangulation models, suggesting that the kriging models are not seriously distorted by the lack of normal efflux distributions. In addition, model estimates of total CO2 emission rates are relatively insensitive to the measurement precision of the efflux rates and to the efflux value used to separate magmatic from forest soil sources of CO2. Surveys since 1997 indicate that, contrary to earlier speculations, a termination of elevated CO2 emissions at the HLTK is unlikely anytime soon. The HLTK CO2 efflux anomaly fluctuated greatly in size and intensity throughout the 1995-1999 surveys but maintained a N-S elongation, presumably reflecting fault control of CO2 transport from depth. Total CO2 emission rates also fluctuated greatly, ranging from 46 to 136 t day-1 (metric tons CO2 per day) and averaging 93 t day-1. The large inter-survey variations are caused primarily by external (meteorological) processes operating on time scales of hours to days. The externally caused variations can mask significant changes occurring at depth; a striking example is

  13. Large Dumbbell-Shaped C1 Schwannoma Presenting as a Foramen Magnum Mass

    Science.gov (United States)

    Helms, Jody; Michael, Lattimore Madison

    2012-01-01

    Schwannomas involving the foramen magnum commonly originate from the lower cranial nerves, but they are rarely found arising from the first cervical root. To date, very few cases have been described in the literature. The majority involve either the intradural or extradural compartment but not both. We report the second case of a dumbbell-shaped schwannoma arising from the first cervical root. Our patient presented with hemisensory deficits secondary to brainstem compression at the level of the foramen magnum. The patient underwent a far lateral approach, and a gross total resection was achieved. Preoperative suspicion of the diagnosis is helpful in anticipating displacement and avoiding damage to the surrounding neurovascular structures. PMID:23946923

  14. The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.

    Science.gov (United States)

    Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E

    2018-05-01

    In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. EXCEPTIONALLY RARE VARIANTS OF THE URINARY SYSTEM ANOMALIES - ROENTGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Rade R. Babić

    2002-07-01

    Full Text Available The results of the radiological study of the urinary system anomalies are presented on the material consisting of 8,568 urographies done from 1990 to 2001 at the Institute for Radiology, Niš. The paper shows exceptionally rare anomalies of the urinary system: a horse-shoe shaped kidney with pyelocaliceal systems in its arms and isthmus, heterolateral ectopia of the kidney with fusion, abdominal-medial ectopia of the kidney with ventral malrotation and cup hyperplasia, hypoplastic cup, triple pyeolcaliceal system, M. Lenarduzzi and blind-ending of the Y-shaped urethra. The author concludes that, for the sake of performing every day professional work, it is necessary to possess detailed knowledge of the rarest urinary system anomalies.

  16. A universal representation of Rydberg spectral line shapes in plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.; Lisitsa, V. S.

    2001-01-01

    A universal representation of Rydberg atom line shapes in plasmas is obtained. It bases on analytical formulas for intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principle quantum numbers n, n'>>1, Δn=n-n'<< n and the frequency fluctuation model (FFM) for account of ion thermal motion effects. The line shapes are presented in a universal manner as functions of plasma temperatures and densities

  17. Wing shape variation associated with mimicry in butterflies.

    Science.gov (United States)

    Jones, Robert T; Le Poul, Yann; Whibley, Annabel C; Mérot, Claire; ffrench-Constant, Richard H; Joron, Mathieu

    2013-08-01

    Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color-pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark-based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing-shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  18. Shape of Aquatic Animals and Their Swimming Efficiency

    Directory of Open Access Journals (Sweden)

    I. Nesteruk

    2014-01-01

    Full Text Available The best swimmers have a streamlined shape that ensures an attached flow pattern and a laminar boundary layer at rather large values of the Reynolds number. Simple expressions may be obtained for the volumetric drag coefficient of an ideal body of revolution under laminar unseparated flow conditions together with estimations of a critical value of the Reynolds number. A measure, the capacity-efficiency factor, calculated for different organisms and underwater vehicles, shows that information about animal shapes and locomotion is of utmost biological interest and could be useful to improve robot fish and underwater vehicles as well.

  19. EVo: Net Shape RTM Production Line

    Directory of Open Access Journals (Sweden)

    Sven Torstrick

    2016-04-01

    Full Text Available EVo research platform is operated by the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade. Its objective is technology demonstration of a fully automated RTM (Resin Transfer Molding production line for composite parts in large quantities. Process steps include cutting and ply handling, draping, stacking, hot-forming, preform-trimming to net shape, resin injection, curing and demolding.

  20. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    Science.gov (United States)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  1. Why plants make puzzle cells, and how their shape emerges.

    Science.gov (United States)

    Sapala, Aleksandra; Runions, Adam; Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne Hk; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw; Smith, Richard S

    2018-02-27

    The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. © 2018, Sapala et al.

  2. Self-erecting shapes

    Science.gov (United States)

    Reading, Matthew W.

    2017-07-04

    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation of joining of the shape-memory members with the hub components.

  3. Pulse shape discrimination with silicon detectors using charge and current-sensitive preamplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H.; Rauly, E.; Blumenfeld, Y.; Borderie, B.; Chabot, M.; Edelbruck, P.; Lavergne, L.; Le Bris, J.; Le Neindre, N.; Richard, A.; Rivet, M.F.; Scarpaci, J.A.; Barbey, S.; Becheva, E.; Bzyl, F.R.; D' Esesquelles, P.; Galichet, E.; Lalu, G.; Martinet, G.; Pierre, S. [Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Legou, Th.; Tillier, J.; Bocage, F.; Bougault, R.; Carniol, B.; Cussol, D.; Etasse, D.; Grevy, S.; Lopez, O.; Tamain, B.; Vient, E. [Caen Univ., LPC, IN2P3-CNRS, ENSI, 14 - Caen (France); Galichet, E. [Conservatoire National des Arts et Metier, 75 - Paris (France); Guinet, D.; Lautesse, Ph. [Villeurbanne Univ., Institut de Physique Nucleaire, IN2P3-CNRS, 69 (France); Lanzalone, G. [Catania Univ., INFN, Laboratori Nazionali del Sud and Dipartimento di Fisica e Astronomia, (Italy); Politi, G. [Catania Univ., INFN, Sezione di Catania and Dipartimento di Fisica e Astronomia (Italy); Rosato, E. [Napoli, Univ., Dipt. di Scienze Fisiche e Sezione INFN (Italy)

    2003-07-01

    For the first time shapes of current pulses from light charged particles and carbon ions are presented. Capabilities for pulse shape discrimination techniques are demonstrated. In this work, charge and current-sensitive preamplifier prototypes for nuclear structure and dynamics experiments have been developed and tested with the aim of improving PSD (pulse shape discrimination) method by studying in detail current signal shapes from particles and ions over a large energy range. Note that current signal shapes have been recently used in atomic cluster studies to identify partitions of carbon cluster fragmentation. The paper is organized as follows. Section 2 is devoted to characterization of preamplifiers. In section 3, results of on beam tests will be presented, discussed and compared to a simple simulation.

  4. Cold Forming of Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, Kaung-Jau; Su, Jhe-Yung

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its further application, this study attempts to investigate the feasibility of cold forming its sheet blank especially under a bi-axial tensile stress state. Not only experiments but also a Finite Element Analysis (FEA) with DEFORM 2D was conducted in this study. The material data for FEA was accomplished by the tensile test. An Erichsen-like cupping test was performed as well to determine the process parameter for experiment setup. As a result of the study, the Ni-Ti shape memory alloy sheet has a low formability for cold forming and shows a relative large springback after releasing the forming load.

  5. Kirkwood-Buff integrals of finite systems: shape effects

    Science.gov (United States)

    Dawass, Noura; Krüger, Peter; Simon, Jean-Marc; Vlugt, Thijs J. H.

    2018-06-01

    The Kirkwood-Buff (KB) theory provides an important connection between microscopic density fluctuations in liquids and macroscopic properties. Recently, Krüger et al. derived equations for KB integrals for finite subvolumes embedded in a reservoir. Using molecular simulation of finite systems, KB integrals can be computed either from density fluctuations inside such subvolumes, or from integrals of radial distribution functions (RDFs). Here, based on the second approach, we establish a framework to compute KB integrals for subvolumes with arbitrary convex shapes. This requires a geometric function w(x) which depends on the shape of the subvolume, and the relative position inside the subvolume. We present a numerical method to compute w(x) based on Umbrella Sampling Monte Carlo (MC). We compute KB integrals of a liquid with a model RDF for subvolumes with different shapes. KB integrals approach the thermodynamic limit in the same way: for sufficiently large volumes, KB integrals are a linear function of area over volume, which is independent of the shape of the subvolume.

  6. Constitutive Models for Shape Memory Alloy Polycrystals

    Science.gov (United States)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  7. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity

    International Nuclear Information System (INIS)

    Yu Xiongjun; Zhou Shaobing; Zheng Xiaotong; Guo Tao; Xiao Yu; Song Botao

    2009-01-01

    This paper reports a kind of biodegradable nanocomposite which can show an excellent shape-memory property in hot water or in an alternating magnetic field with f = 20 kH and H = 6.8 kA m -1 . The nanocomposite is composed of crosslinked poly(ε-caprolactone) (c-PCL) and Fe 3 O 4 nanoparticles. The crosslinking reaction in PCL with linear molecular structure was realized using benzoyl peroxide (BPO) as an initiator. The biocompatible Fe 3 O 4 magnetite nanoparticles with an average size of 10 nm were synthesized according to a chemical coprecipitation method. The initial results from c-PCL showed crosslinking modification had brought about a large enhancement in shape-memory effect for PCL. Then a series of composites made of Fe 3 O 4 nanoparticles and c-PCL were prepared and their morphological properties, mechanical properties, thermodynamic properties and shape-memory effect were investigated in succession. Significantly, the photos of the shape-memory process confirmed the anticipatory magnetically responsive shape-recovery effect of the nanocomposites because inductive heat from Fe 3 O 4 can be utilized to actuate the c-PCL vivification from their frozen temporary shape. All the results imply a very feasible method to fabricate shape-memory PCL-based nanocomposites since just a simple modification is required. Additionally, this modification would endow an excellent shape-memory effect to all other kinds of polymers so that they could broadly serve in various fields, especially in medicine.

  8. Shapes and alignments at high spin in some rare-earth nuclei

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.; Macchiavelli, A.O.; Doessing, T.; Draper, J.E.; Dines, E.L.

    1985-01-01

    The structure of nuclei at high spins is dominated by an interplay between deformation and alignment effects. Cranking models predict various shapes but at the highest spins, there is a tendency towards large triaxial deformations and sometimes towards very large prolate deformations (superdeformations). Directly involved in the shape changes are aligned orbitals which come down to the Fermi level as the nucleus rotates more rapidly. At a certain frequency, they become populated and cause large alignments. The mechanism of these changes has been explored by looking at a series of rare earth quasirotational nuclei from Dy to W in the transition region around N = 90 neutrons. The continuum spectra, corrected for incomplete population (feeding) of the high spins, are directly proportional to dynamic effective moments of inertia which describe how much spin is generated at each rotational frequency

  9. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves

    2015-01-01

    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these shortc......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...... these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may...

  10. The ferromagnetic shape-memory effect in Ni-Mn-Ga

    International Nuclear Information System (INIS)

    Marioni, M.A.; O'Handley, R.C.; Allen, S.M.; Hall, S.R.; Paul, D.I.; Richard, M.L.; Feuchtwanger, J.; Peterson, B.W.; Chambers, J.M.; Techapiesancharoenkij, R.

    2005-01-01

    Active materials have long been used in the construction of sensors and devices. Examples are piezo-electric ceramics and shape memory alloys. The more recently developed ferromagnetic shape-memory alloys (FSMAs) have received considerable attention due to their large magnetic field-induced, reversible strains (up to 10%). In this article, we review the basic physical characteristics of the FSMA Ni-Mn-Ga (crystallography, thermal, mechanical and magnetic behavior). Also, we present some of the works currently under way in the areas of pulse-field and acoustic-assisted actuation, and vibration energy absorption

  11. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer

    Science.gov (United States)

    Liu, Ruoxuan; Li, Yunxin; Liu, Zishun

    2018-01-01

    The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.

  12. Horseshoe kidney and uretero-pelvic-junction obstruction in a pediatric patient. Laparoscopic vascular hitch: A valid alternative to dismembered pyeloplasty?

    Directory of Open Access Journals (Sweden)

    Cosimo Bleve

    2017-12-01

    Full Text Available Horseshoe kidney (HSK is a congenital defect of the urinary tract that occurs in 0.25% of the general population. Laparoscopic Vascular Hitch (LVH according to Hellstrom-Chapman represent an alternative approach in treatment of extrinsic hydronephrosis by crossing vessels (CV in pediatric age. In our Department from 2006 to 2016, 36 children with extrinsic-Uretero-Pelvic-Junction (UPJ-Obstruction (UPJO underwent laparoscopic vessels transposition. Over the last 4years, we have treated three patients with extrinsic hydronephrosis in HSK; two males and one female respectively of 6, 7 and 8years. The side affected was the left in all patients; symptoms of onset: recurrent abdominal pain, vomiting with associated intermittent hydronephrosis at ultrasonography. The preoperative examinations performed were: ultrasound/Doppler scan, MAG3-renogram, functional-magnetic-resonance-urography (fMRU. Mean operative time was 120’; median hospital stay 3- days. Intraoperative diuretic-test (DT confirmed an extrinsic-UPJO in all patients. No JJ-stents and drain were used and there were no perioperative complications. Clinical and ultrasound follow-up (18 months-4 years show resolution of symptoms and decrease in hydronephrosis grade in all patients. Our series is the largest in pediatric population by a revision of the literature. We believe that LVH is feasible in patients with symptomatic hydronephrosis by CV in HSK. Intraoperative-DT and the correct selection of patients are crucial to the success of the technique. According to us, this procedure is appropriate in those cases where the UPJ-anatomy is disadvantageous to a resection/re-anastomosis between ureter and renal pelvis. Our initial results are encouraging, although long-term follow- up and a more significant patient sample are required.

  13. Cold-Fluid Equilibrium of a Large-Aspect-Ratio Ellipse-Shaped Charged-Particle Beam in a Non-Axisymmetric Periodic Permanent Magnet Focusing Field

    CERN Document Server

    Zhou, Jing; Chen Chi Ping

    2005-01-01

    A new class of equilibrium is discovered for a large-aspect-ratio ellipse-shaped charged-particle beam in a non-axisymmetric periodic permanent magnet focusing field. A paraxial cold-fluid model is employed to derive the equilibrium flow properties and generalized envelope equations with negligibly small emittance. A periodic beam equilibrium solution is obtained numerically from the generalized envelope equations. It is shown that the beam edges are well confined in both transverse directions, and that the equilibrium beam exhibits a small-angle periodic wobble as it propagates. A two-dimensional particle-in-cell (PIC) code, PFB2D, is used to verify the theoretical predictions in the paraxial limit, and to establish validity under non-paraxial situations and the influence of the conductor walls of the beam tunnel.

  14. How We Got Here: Evolutionary Changes in Skull Shape in Humans & Their Ancestors

    Science.gov (United States)

    Price, Rebecca M.

    2012-01-01

    This activity uses inquiry to investigate how large changes in shape can evolve from small changes in the timing of development. Students measure skull shape in fetal, infant, juvenile, and adult chimpanzees and compare them to adult skulls of "Homo sapiens," "Homo erectus," and "Australopithecus afarensis." They conclude by re-interpreting their…

  15. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane

    2016-04-20

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  16. Comparative status and assessment of Limulus polyphemus with emphasis on the New England and Delaware Bay populations

    Science.gov (United States)

    Smith, David; Millard, Michael J.; Carmichael, Ruth H.

    2009-01-01

    Increases in harvest of the American horseshoe crab (Limulus polyphemus) during the 1990s, particularly for whelk bait, coupled with decreases in species that depend on their eggs has reduced horseshoe crab abundance, threatened their ecological relationships, and dictated precautionary management of the horseshoe crab resource. Accordingly, population assessments and monitoring programs have been developed throughout much of the horseshoe crab’s range. We review and discuss implications for several recent assessments of Delaware Bay and New England populations and a meta-analysis of region-specific trends. These assessments show that the western Atlantic distribution of the horseshoe crab is comprised of regional or estuarine-specific meta-populations, which exhibit distinct population dynamics and require management as separate units. Modeling of Delaware Bay and Cape Cod populations confirmed that overharvest caused declines, but indicated that some harvest levels are sustainable and consistent with population growth. Coast-wide harvest was reduced by 70% from 1998 to 2006, with the greatest reductions within Delaware Bay states. Harvest regulations in Delaware Bay starting in the late 1990s, such as harvest quotas, seasonal closures, male-only harvest, voluntary use of bait-saving devices, and establishment of the Carl N. Shuster Jr. Horseshoe Crab Reserve, were followed by stabilization and recent evidence of increase in abundance of horseshoe crabs in the region. However, decreased harvest of the Delaware Bay population has redirected harvest to outlying populations, particularly in New York and New England. While the recent Delaware Bay assessments indicate positive population growth, increased harvest elsewhere is believed to be unsustainable. Two important considerations for future assessments include (1) managing Delaware Bay horseshoe crab populations within a multi-species context, for example, to help support migratory shorebirds and (2

  17. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  18. Body size and allometric variation in facial shape in children.

    Science.gov (United States)

    Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt

    2018-02-01

    Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.

  19. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  20. Objective models of compressed breast shapes undergoing mammography

    Science.gov (United States)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  1. Objective models of compressed breast shapes undergoing mammography

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Steve Si Jia [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University and Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Patel, Bhavika [Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sechopoulos, Ioannis [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2013-03-15

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  2. Objective models of compressed breast shapes undergoing mammography

    International Nuclear Information System (INIS)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  3. Efficient adaptive retrieval and mining in large multimedia databases

    DEFF Research Database (Denmark)

    Assent, Ira

    for a variety of features such as color, shape or texture. Time series data is prevalent for sensor measurements, stock data, and may even be applied to shapes and other features as well. For these data types, effective adaptable similarity models are usually computationally far too complex for usage in large...

  4. Needle knife-assisted endoscopic polypectomy for a large inflammatory fibroid colon polyp by making its stalk into an omega shape using an endoloop.

    Science.gov (United States)

    Kim, Byung Chang; Cheon, Jae Hee; Lee, Sang Kil; Kim, Tae Il; Kim, Hoguen; Kim, Won Ho

    2008-08-30

    Colonic inflammatory fibroid polyp (IFP) is an uncommon benign polypoid lesion, which is composed of fibroblasts, numerous small vessels and edematous connective tissue with marked eosinophilic inflammatory cell infiltration. This condition is frequently detected in the stomach and small intestine, but uncommon in the colon. Although IFP is a benign lesion, surgical resections are performed in most colonic cases because the polyps are usually too large to resect endoscopically. Only three patients underwent endoscopic polypectomy in our literature reviews. Here, we present a case of IFP in the descending colon successful endoscopically resected using a novel technique of trapping its stalk with an endoloop, forming the stalk into an omega shape, and then dissecting the stalk with a needle knife.

  5. Performances of large BGO crystals below 20 MeV

    International Nuclear Information System (INIS)

    Burq, J.P.; Chemarin, M.; El Mamouni, H.

    1986-11-01

    This paper presents the performances of large tapered BGO crystals to low energy photons of 6 to 20 MeV. The read-out of the crystals was made with large area photodiodes associated to shaping amplifiers

  6. Application of 3D Zernike descriptors to shape-based ligand similarity searching.

    Science.gov (United States)

    Venkatraman, Vishwesh; Chakravarthy, Padmasini Ramji; Kihara, Daisuke

    2009-12-17

    The identification of promising drug leads from a large database of compounds is an important step in the preliminary stages of drug design. Although shape is known to play a key role in the molecular recognition process, its application to virtual screening poses significant hurdles both in terms of the encoding scheme and speed. In this study, we have examined the efficacy of the alignment independent three-dimensional Zernike descriptor (3DZD) for fast shape based similarity searching. Performance of this approach was compared with several other methods including the statistical moments based ultrafast shape recognition scheme (USR) and SIMCOMP, a graph matching algorithm that compares atom environments. Three benchmark datasets are used to thoroughly test the methods in terms of their ability for molecular classification, retrieval rate, and performance under the situation that simulates actual virtual screening tasks over a large pharmaceutical database. The 3DZD performed better than or comparable to the other methods examined, depending on the datasets and evaluation metrics used. Reasons for the success and the failure of the shape based methods for specific cases are investigated. Based on the results for the three datasets, general conclusions are drawn with regard to their efficiency and applicability. The 3DZD has unique ability for fast comparison of three-dimensional shape of compounds. Examples analyzed illustrate the advantages and the room for improvements for the 3DZD.

  7. Common Noctule Bats Are Sexually Dimorphic in Migratory Behaviour and Body Size but Not Wing Shape.

    Directory of Open Access Journals (Sweden)

    M Teague O'Mara

    Full Text Available Within the large order of bats, sexual size dimorphism measured by forearm length and body mass is often female-biased. Several studies have explained this through the effects on load carrying during pregnancy, intrasexual competition, as well as the fecundity and thermoregulation advantages of increased female body size. We hypothesized that wing shape should differ along with size and be under variable selection pressure in a species where there are large differences in flight behaviour. We tested whether load carrying, sex differential migration, or reproductive advantages of large females affect size and wing shape dimorphism in the common noctule (Nyctalus noctula, in which females are typically larger than males and only females migrate long distances each year. We tested for univariate and multivariate size and shape dimorphism using data sets derived from wing photos and biometric data collected during pre-migratory spring captures in Switzerland. Females had forearms that are on average 1% longer than males and are 1% heavier than males after emerging from hibernation, but we found no sex differences in other size, shape, or other functional characters in any wing parameters during this pre-migratory period. Female-biased size dimorphism without wing shape differences indicates that reproductive advantages of big mothers are most likely responsible for sexual dimorphism in this species, not load compensation or shape differences favouring aerodynamic efficiency during pregnancy or migration. Despite large behavioural and ecological sex differences, morphology associated with a specialized feeding niche may limit potential dimorphism in narrow-winged bats such as common noctules and the dramatic differences in migratory behaviour may then be accomplished through plasticity in wing kinematics.

  8. Efficient adaptive retrieval and mining in large multimedia databases

    DEFF Research Database (Denmark)

    Assent, Ira

    2009-01-01

    for a variety of features such as color, shape or texture. Time series data is prevalent for sensor measurements, stock data, and may even be applied to shapes and other features as well. For these data types, effective adaptable similarity 3 models are usually computationally far too complex for usage in large...

  9. Shapes of agglomerates in plasma etching reactors

    International Nuclear Information System (INIS)

    Huang, F.Y.; Kushner, M.J.

    1997-01-01

    Dust particle contamination of wafers in reactive ion etching (RIE) plasma tools is a continuing concern in the microelectronics industry. It is common to find that particles collected on surfaces or downstream of the etch chamber are agglomerates of smaller monodisperse spherical particles. The shapes of the agglomerates vary from compact, high fractal dimension structures to filamentary, low fractal dimension structures. These shapes are important with respect to the transport of particles in RIE tools under the influence electrostatic and ion drag forces, and the possible generation of polarization forces. A molecular dynamics simulation has been developed to investigate the shapes of agglomerates in plasma etching reactors. We find that filamentary, low fractal dimension structures are generally produced by smaller (<100s nm) particles in low powered plasmas where the kinetic energy of primary particles is insufficient to overcome the larger Coulomb repulsion of a compact agglomerate. This is analogous to the diffusive regime in neutral agglomeration. Large particles in high powered plasmas generally produce compact agglomerates of high fractal dimension, analogous to ballistic agglomeration of neutrals. copyright 1997 American Institute of Physics

  10. Powder metallurgy of NiTi-alloys with defined shape memory properties

    International Nuclear Information System (INIS)

    Bram, M.; Ahmad-Khanlou, A.; Buchkremer, H.P.; Stoever, D.

    2001-01-01

    The aim of the present work is the development of fabrication processes for NiTi shape memory alloys by powder metallurgical means. The starting materials used were prealloyed powders as well as elemental powder mixtures. Three techniques seem to be very promising for shaping of NiTi compacts. Hot Isostatic Pressing (HIP) has been examined for the production of dense semi-finished components. A promising technique for the production of dense and porous coatings with an increased wear resistance is Vacuum Plasma Spraying (VPS). Metal Injection Moulding (MIM) is especially suitable for near-net shape fabrication of small components with a complex geometry considering that large numbers of units have to be produced for compensating high tool and process costs. Subsequently, thermal treatments are required to establish defined shape memory properties. The reproducibility and stability of the shape memory effect are main aspects thinking about a production of NiTi components in an industrial scale. (author)

  11. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches.

    Science.gov (United States)

    Schmieder, Daniela A; Benítez, Hugo A; Borissov, Ivailo M; Fruciano, Carmelo

    2015-01-01

    External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera)--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.

  12. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches.

    Directory of Open Access Journals (Sweden)

    Daniela A Schmieder

    Full Text Available External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.

  13. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  14. Influences on particle shape in underwater pelletizing processes

    Energy Technology Data Exchange (ETDEWEB)

    Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  15. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.

    Science.gov (United States)

    Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-03-01

    Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  17. U-Shaped Interest in U-Shaped Development--and What It Means

    Science.gov (United States)

    Siegler, Robert S.

    2004-01-01

    Interest in U-shaped development has itself undergone a U-shaped progression. Twenty-five years ago, interest in U-shaped development was high. This interest was evident at a 1978 conference in Tel Aviv on "U-shaped Behavioral Growth" that resulted in the publication of a book of the same title 4 years later (Strauss, 1982). The breadth…

  18. First report of Potorolepis spassky, 1994 (Eucestoda: Hymenolepididae) from China, with description of a new species in bats (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Makarikova, Tatiana A; Makarikov, Arseny A

    2012-12-01

    Potorolepis gulyaevi sp. n. (Cestoda: Hymenolepididae) is described from the Chinese horseshoe bat, Rhinolophus sinicus Andersen (Chiroptera: Rhinolophidae), from southern China. The new species differs from known species of the genus by the shape, number and size of rostellar hooks, the relative position and length of the cirrus-sac and the morphology of gravid uterus. This is the first report of a member of the genus from non-marsupial mammals and the first record of a Potorolepis Spassky, 1994 from eastern Asia. The generic diagnosis of Potorolepis is amended.

  19. Arrested Handedness and Disordered Stacking in Crystals of the Pre-helical Molecule 7,8-Dioxa[6]helicene

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Faldt, André; Thorup, Niels

    1999-01-01

    A characteristic feature of many molecules of biological origin is their 'handedness' or enantiomorphism. L. Pasteur prepared and separated enantiomeric crystals in 1848.(1) Since then, manifestations of symmetry breaking have attracted much attention.(2,3) Simple models of the new horseshoe shaped...... molecule, 7,8-dioxa[6]helicene ( 1), indicated a low inversion barrier between helical enantiomers. A quasi-planar pi system capable of stack formation was also observed. The molecule in question is a so-called helicene. Aromatic helicenes and heteroaromatic helicenes constitute a class of molecules...

  20. Harmonic-hopping in Wallacea's bats.

    Science.gov (United States)

    Kingston, Tigga; Rossiter, Stephen J

    2004-06-10

    Evolutionary divergence between species is facilitated by ecological shifts, and divergence is particularly rapid when such shifts also promote assortative mating. Horseshoe bats are a diverse Old World family (Rhinolophidae) that have undergone a rapid radiation in the past 5 million years. These insectivorous bats use a predominantly pure-tone echolocation call matched to an auditory fovea (an over-representation of the pure-tone frequency in the cochlea and inferior colliculus) to detect the minute changes in echo amplitude and frequency generated when an insect flutters its wings. The emitted signal is the accentuated second harmonic of a series in which the fundamental and remaining harmonics are filtered out. Here we show that three distinct, sympatric size morphs of the large-eared horseshoe bat (Rhinolophus philippinensis) echolocate at different harmonics of the same fundamental frequency. These morphs have undergone recent genetic divergence, and this process has occurred in parallel more than once. We suggest that switching harmonics creates a discontinuity in the bats' perception of available prey that can initiate disruptive selection. Moreover, because call frequency in horseshoe bats has a dual function in resource acquisition and communication, ecological selection on frequency might lead to assortative mating and ultimately reproductive isolation and speciation, regardless of external barriers to gene flow.

  1. A Robust Shape Reconstruction Method for Facial Feature Point Detection

    Directory of Open Access Journals (Sweden)

    Shuqiu Tan

    2017-01-01

    Full Text Available Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the state-of-the-art methods.

  2. Automated mode shape estimation in agent-based wireless sensor networks

    Science.gov (United States)

    Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    Recent advances in wireless sensing technology have made it possible to deploy dense networks of sensing transducers within large structural systems. Because these networks leverage the embedded computing power and agent-based abilities integral to many wireless sensing devices, it is possible to analyze sensor data autonomously and in-network. In this study, market-based techniques are used to autonomously estimate mode shapes within a network of agent-based wireless sensors. Specifically, recent work in both decentralized Frequency Domain Decomposition and market-based resource allocation is leveraged to create a mode shape estimation algorithm derived from free-market principles. This algorithm allows an agent-based wireless sensor network to autonomously shift emphasis between improving mode shape accuracy and limiting the consumption of certain scarce network resources: processing time, storage capacity, and power consumption. The developed algorithm is validated by successfully estimating mode shapes using a network of wireless sensor prototypes deployed on the mezzanine balcony of Hill Auditorium, located on the University of Michigan campus.

  3. Prestin shows divergent evolution between constant frequency echolocating bats.

    Science.gov (United States)

    Shen, Bin; Avila-Flores, Rafael; Liu, Yang; Rossiter, Stephen J; Zhang, Shuyi

    2011-10-01

    The gene Prestin encodes a motor protein that is thought to confer the high-frequency sensitivity and selectivity that characterizes the mammalian auditory system. Recent research shows that the Prestin gene has undergone a burst of positive selection on the ancestral branch of the Old World horseshoe and leaf-nosed bats (Rhinolophidae and Hipposideridae, respectively), and also on the branch leading to echolocating cetaceans. Moreover, these two groups share a large number of convergent amino acid sequence replacements. Horseshoe and leaf-nosed bats exhibit narrowband echolocation, in which the emitted calls are based on the second harmonic of a predominantly constant frequency (CF) component, the frequency of which is also over-represented in the cochlea. This highly specialized form of echolocation has also evolved independently in the neotropical Parnell's mustached bat (Pteronotus parnellii). To test whether the convergent evolution of CF echolocation between lineages has arisen from common changes in the Prestin gene, we sequenced the Prestin coding region (~2,212 bp, >99% coverage) in P. parnellii and several related species that use broadband echolocation calls. Our reconstructed Prestin gene tree and amino acid tree showed that P. parnellii did not group together with Old World horseshoe and leaf-nosed bats, but rather clustered within its true sister species. Comparisons of sequences confirmed that P. parnellii shared most amino acid changes with its congeners, and we found no evidence of positive selection in the branch leading to the genus of Pteronotus. Our result suggests that the adaptive changes seen in Prestin in horseshoe and leaf-nosed bats are not necessary for CF echolocation in P. parnellii.

  4. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.

    Science.gov (United States)

    Jeon, Seog-Jin; Hauser, Adam W; Hayward, Ryan C

    2017-02-21

    The formation of well-defined and functional three-dimensional (3D) structures by buckling of thin sheets subjected to spatially nonuniform stresses is common in biological morphogenesis and has become a subject of great interest in synthetic systems, as such programmable shape-morphing materials hold promise in areas including drug delivery, biomedical devices, soft robotics, and biomimetic systems. Given their ability to undergo large changes in swelling in response to a wide variety of stimuli, hydrogels have naturally emerged as a key type of material in this field. Of particular interest are hybrid systems containing rigid inclusions that can define both the anisotropy and spatial nonuniformity of swelling as well as nanoparticulate additives that can enhance the responsiveness and functionality of the material. In this Account, we discuss recent progress in approaches to achieve well-defined shape morphing in hydrogel hybrids. First, we provide an overview of materials and methods that facilitate fabrication of such systems and outline the geometry and mechanics behind shape morphing of thin sheets. We then discuss how patterning of stiff inclusions within soft responsive hydrogels can be used to program both bending and swelling, thereby providing access to a wide array of complex 3D forms. The use of discretely patterned stiff regions to provide an effective composite response offers distinct advantages in terms of scalability and ease of fabrication compared with approaches based on smooth gradients within a single layer of responsive material. We discuss a number of recent advances wherein control of the mechanical properties and geometric characteristics of patterned stiff elements enables the formation of 3D shapes, including origami-inspired structures, concatenated helical frameworks, and surfaces with nonzero Gaussian curvature. Next, we outline how the inclusion of functional elements such as nanoparticles can enable unique pathways to programmable

  5. Next-to-next-leading order correction to 3-jet rate and event-shape ...

    Indian Academy of Sciences (India)

    portunity to test QCD by measuring the energy dependence of different ... event shape data was not satisfactory largely due to the scale uncertainty of the pertur- .... )3 d ¯C dy. + O. ( α4 s. ) . (5). Here the event-shape distribution is normalized to the ..... [1] A Gehrmann-De Ridder, T Gehrmann, E W N Glover and G Heinrich, J.

  6. Application of Shape Memory Alloys in Seismic Isolation: A Review

    Directory of Open Access Journals (Sweden)

    Shaghayegh Alvandi

    2014-12-01

    Full Text Available In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re-centering, high resistance to fatigue and corrosion and durability have made shape memory alloy an effective damping device or part of base isolators. A unique characteristic of shape memory alloys is in recovering residual deformations even after strong ground excitations. Seismic isolation is a device to lessen earthquake damage prospects. In the latest research studies, shape memory alloy is utilized in combination with seismic isolation system and their results indicate the effectiveness of the application of them to control the response of the structures. This paper reviews the findings of research studies on base isolation system implemented in the building and/or bridge structures by including the unique behavior of shape memory alloys. This study includes the primary information about the characteristic of the isolation system as well as the shape memory material. The efficiency and feasibility of the two mechanisms are also presented by few cases in point.

  7. Interspecific variation of ontogeny and skull shape among porpoises (Phocoenidae)

    DEFF Research Database (Denmark)

    Galatius-Jørgensen, Anders; Berta, Annalisa; Frandsen, Marie Michele Schou

    2011-01-01

    . dioptrica, for which large series were available, were further compared in terms of ontogeny of cranial shape by three-dimensional geometric morphometrics. Ph. dalli and P. dioptrica generally showed further development of cranial sutures than the other species. Postnatal skull shape development was similar...... was detected; in species with pelagic preference the position and orientation of the foramen magnum aligned the skull with the vertebral column; the rostrum showed less ventral inclination, and the facial region was larger and more concave in lateral aspect. J. Morphol., 2011. © 2010 Wiley-Liss, Inc....

  8. Fluidic Manufacture of Star-Shaped Gold Nanoparticles.

    Science.gov (United States)

    Silvestri, Alessandro; Lay, Luigi; Psaro, Rinaldo; Polito, Laura; Evangelisti, Claudio

    2017-07-21

    Star-shaped gold nanoparticles (StarAuNPs) are extremely attractive nanomaterials, characterized by localized surface plasmon resonance which could be potentially employed in a large number of applications. However, the lack of a reliable and reproducible synthetic protocols for the production of StarAuNPs is the major limitation to their spreading. For the first time, here we present a robust protocol to manufacture reproducible StarAuNPs by exploiting a fluidic approach. Star-shaped AuNPs have been synthesized by means of a seed-less protocol, employing ascorbic acid as reducing agent at room temperature. Moreover, the versatility of the bench-top microfluidic protocol has been exploited to afford hydrophilic, hydrophobic and solid-supported engineered StarAuNPs, by avoiding intermediate NP purifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Historical explanation of genetic variation in the Mediterranean horseshoe bat Rhinolophus euryale (Chiroptera: Rhinolophidae) inferred from mitochondrial cytochrome-b and D-loop genes in Iran.

    Science.gov (United States)

    Najafi, Nargess; Akmali, Vahid; Sharifi, Mozafar

    2018-04-26

    Molecular phylogeography and species distribution modelling (SDM) suggest that late Quaternary glacial cycles have portrayed a significant role in structuring current population genetic structure and diversity. Based on phylogenetic relationships using Bayesian inference and maximum likelihood of 535 bp mtDNA (D-loop) and 745 bp mtDNA (Cytb) in 62 individuals of the Mediterranean Horseshoe Bat, Rhinolophus euryale, from 13 different localities in Iran we identified two subspecific populations with differing population genetic structure distributed in southern Zagros Mts. and northern Elburz Mts. Analysis of molecular variance (AMOVA) obtained from D-loop sequences indicates that 21.18% of sequence variation is distributed among populations and 10.84% within them. Moreover, a degree of genetic subdivision, mainly attributable to the existence of significant variance among the two regions is shown (θCT = 0.68, p = .005). The positive and significant correlation between geographic and genetic distances (R 2  = 0.28, r = 0.529, p = .000) is obtained following controlling for environmental distance. Spatial distribution of haplotypes indicates that marginal population of the species in southern part of the species range have occupied this section as a glacial refugia. However, this genetic variation, in conjunction with results of the SDM shows a massive postglacial range expansion for R. euryale towards higher latitudes in Iran.

  10. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    Science.gov (United States)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  11. Intensive use of an intertidal mudflat by foraging adult American horseshoe crabs Limulus polyphemus in the Great Bay estuary, New Hampshire

    Directory of Open Access Journals (Sweden)

    Wan-Jean LEE

    2010-10-01

    Full Text Available Although concerns about harvesting levels of the American Horseshoe Crab, Limulus polyphemus have prompted increased research into its ecology, current understanding of the species’ foraging ecology is mostly limited to mid-Atlantic populations. This study elucidates the spatial and temporal pattern of Limulus foraging on an intertidal mudflat of a northern New England estuary. A novel survey method was used to monitor Limulus foraging activity without disturbing the sediment. A fixed 50 m´2 m transect was monitored with monthly surveys of the number of Limulus feeding pits from June to October 2009, May and June 2010. Snorkelling surveys were also carried out to observe individual behavior and examine the spatial scale of activity of individual animals. Results showed frequent and intensive use of the mudflat by foraging Limulus. Limulus were actively foraging within the survey area during all months surveyed. Foraging patterns exhibited a seasonal pattern with activity levels peaking in August 2009 and increased significantly towards the end of the study in June 2010. It was also shown that Limulus intertidal foraging persisted and peaked after the spring breeding season. Observations of foraging Limulus revealed that individual predators dig multiple pits within a single high tide, with little disturbance to the sediment in between. In addition to altering the perception of Limulus as a subtidal predator outside of the breeding season, findings from this study suggests a segregation of spawning and feeding habitats, thus underscoring the need to consider a wider range of critical habitats in the management of Limulus populations [Current Zoology 56 (5: 611–617, 2010].

  12. Analysis of reforming process of large distorted ring in final enlarging forging

    International Nuclear Information System (INIS)

    Miyazawa, Takeshi; Murai, Etsuo

    2002-01-01

    In the construction of reactors or pressure vessels for oil chemical plants and nuclear power stations, mono block open-die forging rings are often utilized. Generally, a large forged ring is manufactured by means of enlarging forging with reductions of the wall thickness. During the enlarging process the circular ring is often distorted and becomes an ellipse in shape. However the shape control of the ring is a complicated work. This phenomenon makes the matter still worse in forging of larger rings. In order to make precision forging of large rings, we have developed the forging method using a v-shape anvil. The v-shape anvil is geometrically adjusted to fit the distorted ring in the final circle and reform automatically the shape of the ring during enlarging forging. This paper has analyzed the reforming process of distorted ring by computer program based on F.E.M. and examined the effect on the precision of ring forging. (author)

  13. One-pot solvothermal route to self-assembly of cauliflower-shaped CdS microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Ge Ming [Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Cui Yao [Institute of New Energy Material Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China); Liu Lu, E-mail: liul@nankai.edu.cn [Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Zhou Zhen, E-mail: zhouzhen@nankai.edu.cn [Institute of New Energy Material Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China)

    2011-05-15

    Nearly monodispersed cauliflower-shaped CdS microspheres were prepared through a simple one-step solvothermal route on a large scale by employing sodium dodecyl sulfate (SDS) as the surfactant. Images by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) indicate that cauliflower-shaped CdS microspheres with diameters in the range from 1.3 to 4.5 {mu}m are assembled by nanoparticles with an average diameter of approximately 30 nm. The possible formation mechanism of the cauliflower-shaped CdS microspheres was also proposed. The photovoltaic activity of cauliflower-shaped CdS architectures has been investigated, indicating that the as-obtained CdS microspheres exhibited higher photovoltaic performance in comparison with CdS nanoparticles.

  14. Application of 3D Zernike descriptors to shape-based ligand similarity searching

    Directory of Open Access Journals (Sweden)

    Venkatraman Vishwesh

    2009-12-01

    Full Text Available Abstract Background The identification of promising drug leads from a large database of compounds is an important step in the preliminary stages of drug design. Although shape is known to play a key role in the molecular recognition process, its application to virtual screening poses significant hurdles both in terms of the encoding scheme and speed. Results In this study, we have examined the efficacy of the alignment independent three-dimensional Zernike descriptor (3DZD for fast shape based similarity searching. Performance of this approach was compared with several other methods including the statistical moments based ultrafast shape recognition scheme (USR and SIMCOMP, a graph matching algorithm that compares atom environments. Three benchmark datasets are used to thoroughly test the methods in terms of their ability for molecular classification, retrieval rate, and performance under the situation that simulates actual virtual screening tasks over a large pharmaceutical database. The 3DZD performed better than or comparable to the other methods examined, depending on the datasets and evaluation metrics used. Reasons for the success and the failure of the shape based methods for specific cases are investigated. Based on the results for the three datasets, general conclusions are drawn with regard to their efficiency and applicability. Conclusion The 3DZD has unique ability for fast comparison of three-dimensional shape of compounds. Examples analyzed illustrate the advantages and the room for improvements for the 3DZD.

  15. Remote Sensing of Crystal Shapes in Ice Clouds

    Science.gov (United States)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally

  16. Efficiency of swimming of micro-organism and singularity in shape space

    OpenAIRE

    Kawamura, Masako

    1996-01-01

    Micro-organisms can be classified into three different types according to their size. We study the efficiency of the swimming of micro-organism in two dimensional fluid as a device for helping the explanation of this hierarchy in the size. We show that the efficiency of flagellate becomes unboundedly large, whereas that of ciliate has the upper bound. The unboundedness is related to the curious feature of the shape space, that is, a singularity at the basic shape of flagellate.

  17. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.

    Science.gov (United States)

    Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc

    2015-11-06

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.

  18. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography

    International Nuclear Information System (INIS)

    Alayo, Nerea; Bausells, Joan; Pérez-Murano, Francesc; Conde-Rubio, Ana; Labarta, Amilcar; Batlle, Xavier; Borrisé, Xavier

    2015-01-01

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition. (paper)

  19. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    Science.gov (United States)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC

  20. The greenscape shapes surfing of resource waves in a large migratory herbivore.

    Science.gov (United States)

    Aikens, Ellen O; Kauffman, Matthew J; Merkle, Jerod A; Dwinnell, Samantha P H; Fralick, Gary L; Monteith, Kevin L

    2017-06-01

    The Green Wave Hypothesis posits that herbivore migration manifests in response to waves of spring green-up (i.e. green-wave surfing). Nonetheless, empirical support for the Green Wave Hypothesis is mixed, and a framework for understanding variation in surfing is lacking. In a population of migratory mule deer (Odocoileus hemionus), 31% surfed plant phenology in spring as well as a theoretically perfect surfer, and 98% surfed better than random. Green-wave surfing varied among individuals and was unrelated to age or energetic state. Instead, the greenscape, which we define as the order, rate and duration of green-up along migratory routes, was the primary factor influencing surfing. Our results indicate that migratory routes are more than a link between seasonal ranges, and they provide an important, but often overlooked, foraging habitat. In addition, the spatiotemporal configuration of forage resources that propagate along migratory routes shape animal movement and presumably, energy gains during migration. © 2017 John Wiley & Sons Ltd/CNRS.

  1. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  2. An examination of flame shape related to convection heat transfer in deep-fuel beds

    Science.gov (United States)

    Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney

    2010-01-01

    Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....

  3. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  4. Silver- and Zirconium-added ternary and quaternary TiAu based high temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wadood, A., E-mail: abdul.wadood@ist.edu.pk [High Temperature Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Department of Materials Science and Engineering, Institute of Space Technology (IST), Near Rawat Toll Plaza, Islamabad (Pakistan); Yamabe-Mitarai, Y. [High Temperature Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-10-15

    Low strength in B2 phase, incomplete shape memory effect and high cost of Au are obstacles for the use of Ti–50Au as a high temperature shape memory alloy. We investigated the effects of partial substitution of Ti with Zr and Au with Ag in Ti–Au on phase constitution, phase transformation, and high temperature thermo-mechanical and shape memory properties. Partial substitution of Ti with Zr in Ti–50Au and Ti–40Au–10Ag was found to improve the thermo-mechanical and shape memory effect. However, partial substitution of Au with Ag in Ti–50Au and Ti–50Au–10Zr was found to have negligible effects. Reasons for such different behavior of Zr- and Ag-added Ti–Au alloys are considered. - Highlights: • Au, Ag and Ti, Zr belong to same group. Effects of partial substitution of Au with Ag and Ti with Zr in Ti–Au are investigated. • Zr was found more effective than Ag in improving shape memory and mechanical properties. • Same atomic size of Au and Ag and large size misfit b/w Ti and Zr atoms. • Ag resulted large amount of precipitation in Ti–Au.

  5. The U-Shapes of Occupational Mobility

    DEFF Research Database (Denmark)

    Groes, Fane; Kircher, Philipp; Manovskii, Iourii

    Using administrative panel data on the entire Danish population we document a new set of facts characterizing occupational mobility. For most occupations, mobility is U-shaped and directional: both low and high wage earners within an occupation have a particularly large probability of leaving...... theories that are used to account for endogeneity in occupational choice, but it is shown analytically that the patterns are explained consistently within a theory of sorting under absolute advantage that includes learning about workers’ abilities....

  6. Review of properties of magnetic shape memory (MSM) alloys and MSM actuator designs

    International Nuclear Information System (INIS)

    Gabdullin, N; Khan, S H

    2015-01-01

    Magnetic shape memory alloys are a new group of ''smart'' materials that exhibit large strain of 6-12% when subjected to magnetic fields. This indicates their enormous potential to be used in different electromagnetic (EM) devices such as actuators, sensors, energy harvesters and dampers. Shape change in MSM materials is controlled by magnetic field and doesn't involve phase transformation, allowing it to overcome a number of disadvantages of conventional shape memory alloys (SMAs). MSM devices are capable of producing large force and stroke output in considerably small dimensions. At the same time they can have fast response and potentially very long lifetime. This paper discusses different modern designs and approaches to MSM actuator design with their advantages and disadvantages. An overview on characteristics of MSM alloys is also presented in order to highlight how different properties of the material influence the total output of a device

  7. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    Science.gov (United States)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures

  8. Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni

    Directory of Open Access Journals (Sweden)

    B.P. Crider

    2016-12-01

    Full Text Available Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z=28, N=40, the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0+ states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0+ states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions. The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons.

  9. Design, implementation and test of the XSC extreme shape controller in JET

    International Nuclear Information System (INIS)

    Albanese, R.; Ambrosino, G.; Ariola, M.; Cenedese, A.; Crisanti, F.; Tommasi, G. De; Mattei, M.; Piccolo, F.; Pironti, A.; Sartori, F.; Villone, F.

    2005-01-01

    A new model-based plasma current and shape controller has been set up and tested on the JET Tokamak with the existing active circuits and control. The installation has been carried out without causing any interference to the plasma operation and without requiring a long commissioning time. Eventually, the new controller was used on really extremely shaped internal transport barrier experiments at high poloidal beta and in the presence of quite large variations of the plasma current density profile (variation range Δβ pol up to 1.5 and Δl i up to 0.5). The extreme shape controller (XSC) controller architecture and philosophy also offer new interesting opportunities, e.g., the separatrix sweeping on the divertor plates without significantly affecting the overall plasma shape, and the possibility of improving the overall tokamak performance via combined control of plasma shape, current and profile. The adopted methodology constitutes also an important test bed for feedback control strategies of ITER relevance

  10. Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

    International Nuclear Information System (INIS)

    Sato, Koichi; Hinohara, Nobuo

    2011-01-01

    We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.

  11. The industrial applications of shape memory alloys in North America

    International Nuclear Information System (INIS)

    Mc Schetky D, L.

    2000-01-01

    Literature in the recent past on shape memory effect alloys dwelt principally on the physical metallurgy, crystallography and kinetics of the shape memory phenomenon. By contrast, we now have books and conference proceedings devoted to the engineering aspects of SMAs, their technology and application. The dominant role SMAs now play in the field of medical and orthodontic devices is well documented and will be reviewed by others in this conference. In this paper we will discuss the commercial applications for shape memory alloy devices in the North American market; applications which are in many cases also produced in European countries and Japan. The early success of shape memory alloy couplings for joining tubing and pipe in the late 1960's was not followed by other large volume applications until the advent of shape memory eyeglass frames, brassiere underwires and cellular phone antennas. Many other applications have now evolved into mature markets and these will be reviewed. In addition to the many commercial applications cited, there are a number of other fields in which shape memory alloys are destined to play a major role; these include smart materials and adaptive structures, MEMS devices, infrastructure systems and electrical power generation and distribution. These applications are being developed with private and government funding and will also be briefly discussed. (orig.)

  12. The industrial applications of shape memory alloys in North America

    Energy Technology Data Exchange (ETDEWEB)

    Mc Schetky D, L. [Memry Corp., Brookfield, CT (United States)

    2000-07-01

    Literature in the recent past on shape memory effect alloys dwelt principally on the physical metallurgy, crystallography and kinetics of the shape memory phenomenon. By contrast, we now have books and conference proceedings devoted to the engineering aspects of SMAs, their technology and application. The dominant role SMAs now play in the field of medical and orthodontic devices is well documented and will be reviewed by others in this conference. In this paper we will discuss the commercial applications for shape memory alloy devices in the North American market; applications which are in many cases also produced in European countries and Japan. The early success of shape memory alloy couplings for joining tubing and pipe in the late 1960's was not followed by other large volume applications until the advent of shape memory eyeglass frames, brassiere underwires and cellular phone antennas. Many other applications have now evolved into mature markets and these will be reviewed. In addition to the many commercial applications cited, there are a number of other fields in which shape memory alloys are destined to play a major role; these include smart materials and adaptive structures, MEMS devices, infrastructure systems and electrical power generation and distribution. These applications are being developed with private and government funding and will also be briefly discussed. (orig.)

  13. Prolate non-collective shape- a rare shape phase around Z = 50

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2009-01-01

    The search for rare shape-phase transition in hot and rotating nuclei is one of the very active field in nuclear physics research. According to universally known features of the evolution of equilibrium shapes with temperature and spin, heating a deformed nonrotating nucleus leads to a shape transition from deformed to spherical at a certain temperature. At high temperatures T≅ 2 MeV, the shell effects melt and the nucleus resembles a classical liquid drop. Rotation of the hot nucleus generates an oblate shape rotating noncollectively. But it has been shown by A. Goodman that nuclei with two critical temperatures can rotate with a rare non-collective prolate shape phase which has been caused directly by rotation at angular momentum values around (5-30h) which creates a residual quantum shell effect as shown by A. L. Goodman. Search for such exotic shape-phase around Z = 50 region is the aim of present work. We consider N = 60 isotones 108 Cd, 109 In, 110 Sn

  14. The dependence of granular plasticity on particle shape

    Science.gov (United States)

    Murphy, Kieran; Jaeger, Heinrich

    Granular materials plastically deform through reworking an intricate network of particle-particle contacts. Some particle rearrangements have only a fleeting effect before being forgotten while others set in motion global restructuring. How particle shape affects local interactions and how those, in turn, influence the nature of the aggregate's plasticity is far from clear, especially in three dimensions. Here we investigate the remarkably wide range of behaviors in the yielding regime, from quiescent flow to violent jerks, depending on particle shape. We study this complex dependence via uniaxial compression experiments on aggregates of 3D-printed particles, and complement stress-strain data with simultaneous x-ray videos and volumetric strain measurements. We find power law distributions of the slip magnitudes, and discuss their universality. Our data show that the multitude of small slips serves to gradually dilate the packing whereas the fewer large ones accompany significant compaction events. Our findings provide new insights into general features of granular materials during plastic deformation and highlight how small changes in particle shape can give rise to drastic differences in yielding behavior.

  15. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  16. An in situ neutron diffraction study of shape setting shape memory NiTi

    International Nuclear Information System (INIS)

    Benafan, O.; Padula, S.A.; Noebe, R.D.; Brown, D.W.; Clausen, B.; Vaidyanathan, R.

    2013-01-01

    A bulk polycrystalline Ni 49.9 Ti 50.1 (at.%) shape memory alloy specimen was shape set while neutron diffraction spectra were simultaneously acquired. The objective was to correlate internal stress, phase volume fraction, and texture measurements (from neutron diffraction spectra) with the macroscopic stress and shape changes (from load cell and extensometry measurements) during the shape setting procedure and subsequent shape recovery. Experimental results showed the evolution of the martensitic transformation (lattice strains, phase fractions and texture) against external constraints during both heating and cooling. Constrained heating resulted in a build-up of stresses during the martensite to austenite transformation, followed by stress relaxation due to thermal expansion, final conversion of retained martensite, and recovery processes. Constrained cooling also resulted in stress build-up arising from thermal contraction and early formation of martensite, followed by relaxation as the austenite fully transformed to martensite. Comparisons were also made between specimens pre-shape set and post-shape set with and without external constraints. The specimens displayed similar shape memory behavior consistent with the microstructure of the shape set sample, which was mostly unchanged by the shape setting process and similar to that of the as-received material

  17. Triple shape memory polymers by 4D printing

    Science.gov (United States)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2018-06-01

    This article aims at introducing triple shape memory polymers (SMPs) by four-dimensional (4D) printing technology and shaping adaptive structures for mechanical/bio-medical devices. The main approach is based on arranging hot–cold programming of SMPs with fused decomposition modeling technology to engineer adaptive structures with triple shape memory effect (SME). Experiments are conducted to characterize elasto-plastic and hyper-elastic thermo-mechanical material properties of SMPs in low and high temperatures at large deformation regime. The feasibility of the dual and triple SMPs with self-bending features is demonstrated experimentally. It is advantageous in situations either where it is desired to perform mechanical manipulations on the 4D printed objects for specific purposes or when they experience cold programming inevitably before activation. A phenomenological 3D constitutive model is developed for quantitative understanding of dual/triple SME of SMPs fabricated by 4D printing in the large deformation range. Governing equations of equilibrium are established for adaptive structures on the basis of the nonlinear Green–Lagrange strains. They are then solved by developing a finite element approach along with an elastic-predictor plastic-corrector return map procedure accomplished by the Newton–Raphson method. The computational tool is applied to simulate dual/triple SMP structures enabled by 4D printing and explore hot–cold programming mechanisms behind material tailoring. It is shown that the 4D printed dual/triple SMPs have great potential in mechanical/bio-medical applications such as self-bending gripers/stents and self-shrinking/tightening staples.

  18. Shape-Tailored Features and their Application to Texture Segmentation

    KAUST Repository

    Khan, Naeemullah

    2014-04-01

    Texture Segmentation is one of the most challenging areas of computer vision. One reason for this difficulty is the huge variety and variability of textures occurring in real world, making it very difficult to quantitatively study textures. One of the key tools used for texture segmentation is local invariant descriptors. Texture consists of textons, the basic building block of textures, that may vary by small nuisances like illumination variation, deformations, and noise. Local invariant descriptors are robust to these nuisances making them beneficial for texture segmentation. However, grouping dense descriptors directly for segmentation presents a problem: existing descriptors aggregate data from neighborhoods that may contain different textured regions, making descriptors from these neighborhoods difficult to group, leading to significant errors in segmentation. This work addresses this issue by proposing dense local descriptors, called Shape-Tailored Features, which are tailored to an arbitrarily shaped region, aggregating data only within the region of interest. Since the segmentation, i.e., the regions, are not known a-priori, we propose a joint problem for Shape-Tailored Features and the regions. We present a framework based on variational methods. Extensive experiments on a new large texture dataset, which we introduce, show that the joint approach with Shape-Tailored Features leads to better segmentations over the non-joint non Shape-Tailored approach, and the method out-performs existing state-of-the-art.

  19. Study of shape transition in the neutron-rich Os isotopes

    Directory of Open Access Journals (Sweden)

    John P.R.

    2014-03-01

    Full Text Available The neutron-rich isotopes of tungsten, osmium and platinum have different shapes in their ground states and present also shape transitions phenomena. Spectroscopic information for these nuclei is scarce and often limited to the gamma rays from the decay of isomeric states. For the neutron-rich even-even osmium isotopes 194Os and 198Os, a shape transition between a slightly prolate deformed to an oblate deformed ground state was deduced from the observed level schemes. For the even-even nucleus lying in between, 196Os, no gamma ray transition is known. In order to elucidate the shape transition and to test the nuclear models describing it, this region was investigated through gamma-ray spectroscopy using the AGATA demonstrator and the large acceptance heavy-ion spectrometer PRISMA at LNL, Italy. A two-nucleon transfer from a 198Pt target to a stable 82Se beam was utilized to populate medium-high spin states of 196Os. The analysis method and preliminary results, including the first life-time measurement of isomeric states with AGATA, are presented.

  20. The Hg region: Superdeformation and other shapes

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H.; Drigert, M.W.; Ye, D.; Beard, K.B.; Reviol, W.; Bearden, I.; Benet, P.; Daly, P.J.; Grabowski, Z.W.

    1990-01-01

    We shall first summarize the present experimental situation concerning 192 Hg, the nucleus regarded as the analog of 152 Dy 8 for this SD region in that shell gaps are calculated 5 to occur at large deformation for Z=80 and N=112. Proton and neutron excitations out of te 192 Hg core will then be reviewed with particular emphasis on 191 Hg and 193 Tl. The implications of the results for pairing at large deformations and the need to consider other degrees of freedom (such as octupole correlations) will be addressed. The presentation will conclude with a brief discussion on other shapes seen in this region, with a particular emphasis on 191 Hg

  1. The guidance of visual search by shape features and shape configurations.

    Science.gov (United States)

    McCants, Cody W; Berggren, Nick; Eimer, Martin

    2018-03-01

    Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Nonparametric Bayesian density estimation on manifolds with applications to planar shapes.

    Science.gov (United States)

    Bhattacharya, Abhishek; Dunson, David B

    2010-12-01

    Statistical analysis on landmark-based shape spaces has diverse applications in morphometrics, medical diagnostics, machine vision and other areas. These shape spaces are non-Euclidean quotient manifolds. To conduct nonparametric inferences, one may define notions of centre and spread on this manifold and work with their estimates. However, it is useful to consider full likelihood-based methods, which allow nonparametric estimation of the probability density. This article proposes a broad class of mixture models constructed using suitable kernels on a general compact metric space and then on the planar shape space in particular. Following a Bayesian approach with a nonparametric prior on the mixing distribution, conditions are obtained under which the Kullback-Leibler property holds, implying large support and weak posterior consistency. Gibbs sampling methods are developed for posterior computation, and the methods are applied to problems in density estimation and classification with shape-based predictors. Simulation studies show improved estimation performance relative to existing approaches.

  3. Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars

    International Nuclear Information System (INIS)

    Zhong Yuan; Gall, Ken; Zhu Ting

    2012-01-01

    Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a 〈1 1 0〉 – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase transformation and deformation twinning. We show that irreversible twinning arises owing to the dislocation pinning of twin boundaries, while hierarchically twinned microstructures facilitate the reversible twinning. The nanoscale size effects are manifested as the load serration, stress plateau and large hysteresis loop in stress–strain curves that result from the high stresses required to drive the nucleation-controlled phase transformation and deformation twinning in nanosized volumes. Our results underscore the importance of atomistically resolved modeling for understanding the phase and deformation reversibilities that dictate the pseudoelasticity and shape memory behavior in nanostructured shape memory alloys.

  4. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  5. Shape memory alloys as damping materials

    International Nuclear Information System (INIS)

    Humbeeck, J. van

    2000-01-01

    Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)

  6. KNOW-BLADE, task-3.2 report, tip shape study

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.; Johansen, J.; Conway, S.; Voutsinas, S.; Hansen, M.O.L.; Stuermer, A.

    2005-01-01

    For modern rotor blades with their very large aspect ratio, the blade tip is a very limited part of the overall rotor, and as such of limited importance for the overall aerodynamics of the rotor. Even though they may not be very important for the overall power production, the tip noise can be very important for the acoustics of the rotor [15], and the blade tips can as well be important for the aerodynamic damping properties of the rotor blades [13]. Unfortunately, not many options exists for predicting the aerodynamic behavior of blade tips using computational methods. Experimentally it is dicult to perform detailed measurements in the form of pressure and velocity measurements in natural wind conditions on modern large scale turbines due to the inherent unsteadiness in the natural wind. The present study describes the application of four different Navier-Stokes solvers to tip shape studies, and shows that these codes are well suited to study the flow around different tip shape geometries, and can predict the pressure distributions at the blade tip quite accurately. (au)

  7. Progress on large area GEMs (VCI 2010)

    CERN Document Server

    Villa, Marco; Alfonsi, Matteo; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; Taureg, Hans; van Stenis, Miranda

    2011-01-01

    The Gas Electron Multiplier (GEM) manufacturing technique has recently evolved to allow the production of large area GEMs. A novel approach based on single mask photolithography eliminates the mask alignment issue, which limits the dimensions in the traditional double mask process. Moreover, a splicing technique overcomes the limited width of the raw material. Stretching and handling issues in large area GEMs have also been addressed. Using the new improvements it was possible to build a prototype triple-GEM detector of ~ 2000 cm2 active area, aimed at an application for the TOTEM T1 upgrade. Further refinements of the single mask technique give great control over the shape of the GEM holes and the size of the rims, which can be tuned as needed. In this framework, simulation studies can help to understand the GEM behavior depending on the hole shape.

  8. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    Science.gov (United States)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  9. Nuclear structure and shapes from prompt gamma ray spectroscopy of fission products

    International Nuclear Information System (INIS)

    Ahmad, I.; Morss, L.R.; Durell, J.L.

    1996-01-01

    Many nuclear shape phenomena are predicted to occur in neutron-rich nuclei. The best source for the production of these nuclides is the spontaneous fission which produces practically hundreds of nuclides with yields of greater than 0.1 % per decay. Measurements of coincident gamma rays with large Ge arrays have recently been made to obtain information on nuclear structures and shapes of these neutron- rich nuclei. Among the important results that have been obtained from such measurements are octupole correlations in Ba isotopes, triaxial shapes in Ru nuclei, two-phonon vibrations in 106 Mo and level lifetimes and quadrupole moments in Nd isotopes and A=100 nuclei. These data have been used to test theoretical models

  10. Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern

    Science.gov (United States)

    Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio

    2012-01-01

    The Juno mission to Jupiter requires an antenna with a torus-shaped antenna pattern with approximately 6 dBic gain and circular polarization over the Deep Space Network (DSN) 7-GHz transmit frequency and the 8-GHz receive frequency. Given the large distances that accumulate en-route to Jupiter and the limited power afforded by the solar-powered vehicle, this toroidal low-gain antenna requires as much gain as possible while maintaining a beam width that could facilitate a +/-10deg edge of coverage. The natural antenna that produces a toroidal antenna pattern is the dipole, but the limited approx. = 2.2 dB peak gain would be insufficient. Here a shaped variation of the standard bicone antenna is proposed that could achieve the required gains and bandwidths while maintaining a size that was not excessive. The final geometry that was settled on consisted of a corrugated, shaped bicone, which is fed by a WR112 waveguide-to-coaxial- waveguide transition. This toroidal low-gain antenna (TLGA) geometry produced the requisite gain, moderate sidelobes, and the torus-shaped antenna pattern while maintaining a very good match over the entire required frequency range. Its "horn" geometry is also low-loss and capable of handling higher powers with large margins against multipactor breakdown. The final requirement for the antenna was to link with the DSN with circular polarization. A four-layer meander-line array polarizer was implemented; an approach that was fairly well suited to the TLGA geometry. The principal development of this work was to adapt the standard linear bicone such that its aperture could be increased in order to increase the available gain of the antenna. As one increases the aperture of a standard bicone, the phase variation across the aperture begins to increase, so the larger the aperture becomes, the greater the phase variation. In order to maximize the gain from any aperture antenna, the phase should be kept as uniform as possible. Thus, as the standard

  11. Microscopical approach of the shape coexistence phenomenon using Adiabatic SCC method

    International Nuclear Information System (INIS)

    Hinohara, Nobuo

    2005-01-01

    Using the multi-O(4) model as a simple model of oblate-prolate shape coexistence, we show that contribution from time-old components of mean field to mass parameter (inertia function) is very important for large amplitude collective motion. (author)

  12. Design and simulation of the surface shape control system for membrane mirror

    Science.gov (United States)

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  13. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  14. A water-responsive shape memory ionomer with permanent shape reconfiguration ability

    Science.gov (United States)

    Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin

    2018-04-01

    In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.

  15. Remote interferometry by digital holography for shape control

    Science.gov (United States)

    Baumbach, Torsten; Osten, Wolfgang; Falldorf, Claas; Jueptner, Werner P. O.

    2002-06-01

    Modern production requires more and more effective methods for the inspection and quality control at the production place. Outsourcing and globalization result in possible large distances between co-operating partners. This may cause serious problems with respect to the just-in-time exchange of information and the response to possible violations of quality standards. Consequently new challenges arise for optical measurement techniques especially in the field of industrial shape control. A possible solution for these problems can be delivered by a technique that stores optically the full 3D information of the objects to be compared and where the data can be transported over large distances. In this paper we describe the progress in implementing a new technique for the direct comparison of the shape and deformation of two objects with different microstructure where it is not necessary that both samples are located at the same place. This is done by creating a coherent mask for the illumination of the sample object. The coherent mask is created by Digital Holography to enable the instant access to the complete optical information of the master object at any wanted place. The transmission of the digital master holograms to this place can be done via digital telecommunication networks. The comparison can be done in a digital or analogue way. Both methods result in a disappearance of the object shape and the appearance of the shape or deformation difference between the two objects only. The analogue reconstruction of the holograms with a liquid crystal spatial light modulator can be done by using the light modulator as an intensity modulator or as an phase modulator. The reconstruction technique and the space bandwidth of the light modulator will influence the quality of the result. Therefore the paper describes the progress in applying modern spatial light modulators and digital cameras for the effective storage and optical reconstruction of coherent masks.

  16. A study on the improvement of shape optimization associated with the modification of a finite element

    International Nuclear Information System (INIS)

    Sung, Jin Il; Yoo, Jeong Hoon

    2002-01-01

    In this paper, we investigate the effect and the importance of the accuracy of finite element analysis in the shape optimization based on the finite element method and improve the existing finite element which has inaccuracy in some cases. And then, the shape optimization is performed by using the improved finite element. One of the main stream to improve finite element is the prevention of locking phenomenon. In case of bending dominant problems, finite element solutions cannot be reliable because of shear locking phenomenon. In the process of shape optimization, the mesh distortion is large due to the change of the structure outline. So, we have to raise the accuracy of finite element analysis for the large mesh distortion. We cannot guarantee the accurate result unless the finite element itself is accurate or the finite elements are remeshed. So, we approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two and three dimensional simple beam. Results show that the modified finite element has improved the optimization results

  17. The role of nuclear research and large-scale experiments in shaping public attitudes

    International Nuclear Information System (INIS)

    Rometsch, R.

    1991-01-01

    Public attitudes are of complex origin. Only a minor part is derived from natural science. The thinking of a majority of humans about nuclear energy e.g. employs imagery that can be traced back to a time long before the discovery of radioactivity, even back to archaic symbols and myths. Experiments help mainly to shape the attitude of the scientifically trained minority. Well planned to answer the essential questions and performed by people of internationally recognised qualification they tend to strengthen the self-confidence of the scientific community. Based on its own self-confidence the scientific community might be able to exert some influence on the silent majority and inspire to any human society or nation that amount of self-confidence which is a prerequisite to master complex problems of technical as well as socio-psychological nature

  18. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  19. Nonlinear Model of Pseudoelastic Shape Memory Alloy Damper Considering Residual Martensite Strain Effect

    Directory of Open Access Journals (Sweden)

    Y. M. Parulekar

    2012-01-01

    Full Text Available Recently, there has been increasing interest in using superelastic shape memory alloys for applications in seismic resistant-design. Shape memory alloys (SMAs have a unique property by which they can recover their original shape after experiencing large strains up to 8% either by heating (shape memory effect or removing stress (pseudoelastic effect. Many simplified shape memory alloy models are suggested in the past literature for capturing the pseudoelastic response of SMAs in passive vibration control of structures. Most of these models do not consider the cyclic effects of SMA's and resulting residual martensite deformation. Therefore, a suitable constitutive model of shape memory alloy damper which represents the nonlinear hysterical dynamic system appropriately is essential. In this paper a multilinear hysteretic model incorporating residual martensite strain effect of pseudoelastic shape memory alloy damper is developed and experimentally validated using SMA wire, based damper device. A sensitivity analysis is done using the proposed model along with three other simplified SMA models. The models are implemented on a steel frame representing an SDOF system and the comparison of seismic response of structure with all the models is made in the numerical study.

  20. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.

    Science.gov (United States)

    Karimi, Davood; Samei, Golnoosh; Kesch, Claudia; Nir, Guy; Salcudean, Septimiu E

    2018-05-15

    Most of the existing convolutional neural network (CNN)-based medical image segmentation methods are based on methods that have originally been developed for segmentation of natural images. Therefore, they largely ignore the differences between the two domains, such as the smaller degree of variability in the shape and appearance of the target volume and the smaller amounts of training data in medical applications. We propose a CNN-based method for prostate segmentation in MRI that employs statistical shape models to address these issues. Our CNN predicts the location of the prostate center and the parameters of the shape model, which determine the position of prostate surface keypoints. To train such a large model for segmentation of 3D images using small data (1) we adopt a stage-wise training strategy by first training the network to predict the prostate center and subsequently adding modules for predicting the parameters of the shape model and prostate rotation, (2) we propose a data augmentation method whereby the training images and their prostate surface keypoints are deformed according to the displacements computed based on the shape model, and (3) we employ various regularization techniques. Our proposed method achieves a Dice score of 0.88, which is obtained by using both elastic-net and spectral dropout for regularization. Compared with a standard CNN-based method, our method shows significantly better segmentation performance on the prostate base and apex. Our experiments also show that data augmentation using the shape model significantly improves the segmentation results. Prior knowledge about the shape of the target organ can improve the performance of CNN-based segmentation methods, especially where image features are not sufficient for a precise segmentation. Statistical shape models can also be employed to synthesize additional training data that can ease the training of large CNNs.

  1. The U-Shapes of Occupational Mobility

    DEFF Research Database (Denmark)

    Groes, Fane Naja; Kircher, Philipp; Manovskii, Iourii

    2015-01-01

    Using administrative panel data on the entire Danish population we document a new set of facts characterizing occupational mobility. For most occupations, mobility is U-shaped and directional: not only low but also high wage earners within an occupation have a particularly large probability...... to leave. The facts conflict with several existing theories that are used to account for endogeneity in occupational choice, but it is shown analytically that the patterns are explained consistently within a theory of vertical sorting under absolute advantage that includes learning about workers' abilities....

  2. Two-way shape memory behavior of shape memory polyurethanes with a bias load

    International Nuclear Information System (INIS)

    Hong, Seok Jin; Yu, Woong-Ryeol; Youk, Ji Ho

    2010-01-01

    Thermo-responsive shape memory polyurethane (SMPU) is a smart material that can respond to external heat by changing its macroscopic shape from a temporary configuration to a memorized permanent one. The temporary shape can be processed using mechanical forces above a certain temperature (the transition temperature) and can be maintained until the material acquires a certain thermal energy. Thereafter, the material will recover its memorized permanent shape. However, it is unclear what will occur if the thermal energy is then dissipated, i.e., the material temperature decreases. There are two possibilities: the material will respond to the dissipated energy, resulting in another macroscopic shape change; or nothing will happen beyond the thermal contraction. The former is called two-way shape memory (TWSM) behavior and the latter is called one-way shape memory behavior. This paper reports novel findings showing that TWSM behavior can be imparted to SMPUs using a thermo-mechanical treatment, i.e., imposing a constant stress on them after their temporary shaping. A series of experiments were carried out to characterize the TWSM behavior of SMPUs and to explain its mechanism

  3. Pressure Enhancement in Confined Fluids: Effect of Molecular Shape and Fluid-Wall Interactions.

    Science.gov (United States)

    Srivastava, Deepti; Santiso, Erik E; Gubbins, Keith E

    2017-10-24

    Recently, several experimental and simulation studies have found that phenomena that normally occur at extremely high pressures in a bulk phase can occur in nanophases confined within porous materials at much lower bulk phase pressures, thus providing an alternative route to study high-pressure phenomena. In this work, we examine the effect on the tangential pressure of varying the molecular shape, strength of the fluid-wall interactions, and pore width, for carbon slit-shaped pores. We find that, for multisite molecules, the presence of additional rotational degrees of freedom leads to unique changes in the shape of the tangential pressure profile, especially in larger pores. We show that, due to the direct relationship between the molecular density and the fluid-wall interactions, the latter have a large impact on the pressure tensor. The molecular shape and pore size have a notable impact on the layering of molecules in the pore, greatly influencing both the shape and scale of the tangential pressure profile.

  4. Pressing technology for large bottoms

    International Nuclear Information System (INIS)

    Jilek, L.

    1986-01-01

    The technology has been selected of a circular plate bent into the shape of a trough, for pressing bottoms of pressure vessels from a circular plate of large diameter. The initial sheet is first bent in the middle by heating with the edges remaining straight. These are then welded longitudinally by electroslag welding and the circular shape is flame cut. The result will be a plate with a straight surface in the middle with raised edges which may be pressed into the desired shape. In this manner it is also possible to press pressure vessel bottoms with tube couplings from plates which are thickened in the middle and drilled; additional welding is then eliminated. Deformation from heat treatment may be avoided by the use of a fixture in the shape of a ring with a groove into which is fixed the edge of the bottom. During hardening of the bottom it will be necessary to care for the withdrawal of vapours and gases which would hamper uniform cooling. Bottom hardening with the grill and the cupola downwards has been proven. Deformation which occurs during treatment may to a certain extent be removed by calibration which cannot, however, be made without special fixtures and instruments. (J.B.)

  5. Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity

    Science.gov (United States)

    Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott

    2008-01-01

    The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic

  6. Graphene nanoFlakes with large spin.

    Science.gov (United States)

    Wang, Wei L; Meng, Sheng; Kaxiras, Efthimios

    2008-01-01

    We investigate, using benzenoid graph theory and first-principles calculations, the magnetic properties of arbitrarily shaped finite graphene fragments to which we refer as graphene nanoflakes (GNFs). We demonstrate that the spin of a GNF depends on its shape due to topological frustration of the pi-bonds. For example, a zigzag-edged triangular GNF has a nonzero net spin, resembling an artificial ferrimagnetic atom, with the spin value scaling with its linear size. In general, the principle of topological frustration can be used to introduce large net spin and interesting spin distributions in graphene. These results suggest an avenue to nanoscale spintronics through the sculpting of graphene fragments.

  7. Two-phase, reciprocal, double trapdoor collapse at Hannegan caldera, North Cascades, Washington, USA

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, David S [Mount Baker Volcano Research Center Geology Department Western Washington University 516 High Street Bellingham, Washington 98225-9080 (United States)], E-mail: DaveTucker@mbvo.wwu.edu

    2008-10-01

    The intracaldera Hannegan volcanics were erupted during two collapse episodes of the Hannegan caldera in the North Cascade mountains of Washington State. The first eruption yielded a down-to-the-north trapdoor style collapse at 3.722 {+-} 0.020 Ma (40Ar/39Ar) that is bounded by a horseshoe-shaped ring fault. The second collapse, most probably also trapdoor style, followed a short period of sedimentation, and completed the elliptical ring fault around the southern margin of the caldera. Post caldera plutons, with U-Pb ages of 3.42 {+-} 0.10 and 3.36 {+-} 0.20 Ma, intruded the intracaldera ignimbrite.

  8. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    NARCIS (Netherlands)

    T.W. Winkler (Thomas W.); A.E. Justice (Anne); M.J. Graff (Maud J.L.); Barata, L. (Llilda); M.F. Feitosa (Mary Furlan); Chu, S. (Su); J. Czajkowski (Jacek); T. Esko (Tõnu); M. Fall (Magnus); T.O. Kilpeläinen (Tuomas); Y. Lu (Yingchang); R. Mägi (Reedik); E. Mihailov (Evelin); T.H. Pers (Tune); Rüeger, S. (Sina); A. Teumer (Alexander); G.B. Ehret (Georg); T. Ferreira (Teresa); N.L. Heard-Costa (Nancy); J. Karjalainen (Juha); V. Lagou (Vasiliki); A. Mahajan (Anubha); Neinast, M.D. (Michael D.); I. Prokopenko (Inga); J. Simino (Jeannette); T.M. Teslovich (Tanya M.); R. Jansen; H.J. Westra (Harm-Jan); C.C. White (Charles); D. Absher (Devin); T.S. Ahluwalia (Tarunveer Singh); S. Ahmad (Shafqat); E. Albrecht (Eva); A.C. Alves (Alexessander Couto); Bragg-Gresham, J.L. (Jennifer L.); A.J. de Craen (Anton); J.C. Bis (Joshua); A. Bonnefond (Amélie); G. Boucher (Gabrielle); G. Cadby (Gemma); Y.-C. Cheng (Yu-Ching); Chiang, C.W. (Charleston W K); G. Delgado; A. Demirkan (Ayşe); N. Dueker (Nicole); N. Eklund (Niina); G. Eiriksdottir (Gudny); J. Eriksson (Joel); B. Feenstra (Bjarke); K. Fischer (Krista); F. Frau (Francesca); T.E. Galesloot (Tessel); F. Geller (Frank); A. Goel (Anuj); M. Gorski (Mathias); T.B. Grammer (Tanja); S. Gustafsson (Stefan); Haitjema, S. (Saskia); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); A.U. Jackson (Anne); K.B. Jacobs (Kevin); A. Johansson (Åsa); M. Kaakinen (Marika); M.E. Kleber (Marcus); J. Lahti (Jari); I.M. Leach (Irene Mateo); Lehne, B. (Benjamin); Liu, Y. (Youfang); K.S. Lo; M. Lorentzon (Mattias); J. Luan (Jian'An); P.A. Madden (Pamela); M. Mangino (Massimo); B. McKnight (Barbara); Medina-Gomez, C. (Carolina); K.L. Monda (Keri); M.E. Montasser (May E.); G. Müller (Gabriele); M. Müller-Nurasyid (Martina); I.M. Nolte (Ilja); Panoutsopoulou, K. (Kalliope); L. Pascoe (Laura); L. Paternoster (Lavinia); N.W. Rayner (Nigel William); F. Renström (Frida); Rizzi, F. (Federica); L.M. Rose (Lynda); Ryan, K.A. (Kathy A.); P. Salo (Perttu); S. Sanna (Serena); H. Scharnagl (Hubert); Shi, J. (Jianxin); A.V. Smith (Albert Vernon); L. Southam (Lorraine); A. Stancáková (Alena); V. Steinthorsdottir (Valgerdur); R.J. Strawbridge (Rona); Sung, Y.J. (Yun Ju); I. Tachmazidou (Ioanna); T. Tanaka (Toshiko); G. Thorleifsson (Gudmar); S. Trompet (Stella); N. Pervjakova (Natalia); J.P. Tyrer (Jonathan); L. Vandenput (Liesbeth); S.W. Van Der Laan (Sander W.); N. van der Velde (Nathalie); J. van Setten (Jessica); J.V. van Vliet-Ostaptchouk (Jana); N. Verweij (Niek); E. Vlachopoulou (Efthymia); L. Waite (Lindsay); S.R. Wang (Sophie); Z. Wang (Zhaoming); S.H. Wild (Sarah); C. Willenborg (Christina); J.F. Wilson (James); A. Wong (Andrew); Yang, J. (Jian); L. Yengo (Loic); L.M. Yerges-Armstrong (Laura); Yu, L. (Lei); W. Zhang (Weihua); Zhao, J.H. (Jing Hua); E.A. Andersson (Ehm Astrid); S.J.L. Bakker (Stephan); D. Baldassarre (Damiano); Banasik, K. (Karina); Barcella, M. (Matteo); Barlassina, C. (Cristina); C. Bellis (Claire); P. Benaglio (Paola); J. Blangero (John); M. Blüher (Matthias); Bonnet, F. (Fabrice); L.L. Bonnycastle (Lori); H.A. Boyd (Heather); M. Bruinenberg (M.); Buchman, A.S. (Aron S.); H. Campbell (Harry); Y.D. Chen (Y.); P.S. Chines (Peter); S. Claudi-Boehm (Simone); J.W. Cole (John W.); F.S. Collins (Francis); E.J.C. de Geus (Eco); L.C.P.G.M. de Groot (Lisette); M. Dimitriou (Maria); J. Duan (Jubao); S. Enroth (Stefan); E. Eury (Elodie); A.-E. Farmaki (Aliki-Eleni); N.G. Forouhi (Nita); N. Friedrich (Nele); P.V. Gejman (Pablo); B. Gigante (Bruna); N. Glorioso (Nicola); A. Go (Attie); R.F. Gottesman (Rebecca); J. Gräßler (Jürgen); H. Grallert (Harald); N. Grarup (Niels); Gu, Y.-M. (Yu-Mei); L. Broer (Linda); A.C. Ham (Annelies); T. Hansen (T.); T.B. Harris (Tamara); C.A. Hartman (Catharina A.); Hassinen, M. (Maija); N. Hastie (Nick); A.T. Hattersley (Andrew); A.C. Heath (Andrew); A.K. Henders (Anjali); D.G. Hernandez (Dena); H.L. Hillege (Hans); O.L. Holmen (Oddgeir); G.K. Hovingh (Kees); J. Hui (Jennie); Husemoen, L.L. (Lise L.); Hutri-Kähönen, N. (Nina); P.G. Hysi (Pirro); T. Illig (Thomas); P.L. de Jager (Philip); S. Jalilzadeh (Shapour); T. Jorgensen (Torben); J.W. Jukema (Jan Wouter); Juonala, M. (Markus); S. Kanoni (Stavroula); M. Karaleftheri (Maria); K.T. Khaw; L. Kinnunen (Leena); T. Kittner (Thomas); W. Koenig (Wolfgang); I. Kolcic (Ivana); P. Kovacs (Peter); Krarup, N.T. (Nikolaj T.); W. Kratzer (Wolfgang); Krüger, J. (Janine); Kuh, D. (Diana); M. Kumari (Meena); T. Kyriakou (Theodosios); C. Langenberg (Claudia); L. Lannfelt (Lars); C. Lanzani (Chiara); V. Lotay (Vaneet); L.J. Launer (Lenore); K. Leander (Karin); J. Lindström (Jaana); A. Linneberg (Allan); Liu, Y.-P. (Yan-Ping); S. Lobbens (Stéphane); R.N. Luben (Robert); V. Lyssenko (Valeriya); S. Männistö (Satu); P.K. Magnusson (Patrik); W.L. McArdle (Wendy); C. Menni (Cristina); S. Merger (Sigrun); L. Milani (Lili); Montgomery, G.W. (Grant W.); A.P. Morris (Andrew); N. Narisu (Narisu); M. Nelis (Mari); K.K. Ong (Ken); A. Palotie (Aarno); L. Perusse (Louis); I. Pichler (Irene); M.G. Pilia (Maria Grazia); A. Pouta (Anneli); Rheinberger, M. (Myriam); Ribel-Madsen, R. (Rasmus); Richards, M. (Marcus); K.M. Rice (Kenneth); T.K. Rice (Treva K.); C. Rivolta (Carlo); V. Salomaa (Veikko); A.R. Sanders (Alan); M.A. Sarzynski (Mark A.); S. Scholtens (Salome); R.A. Scott (Robert); W.R. Scott (William R.); S. Sebert (Sylvain); S. Sengupta (Sebanti); B. Sennblad (Bengt); T. Seufferlein (Thomas); A. Silveira (Angela); P.E. Slagboom (Eline); J.H. Smit (Jan); T. Sparsø (Thomas); K. Stirrups (Kathy); R.P. Stolk (Ronald); H.M. Stringham (Heather); Swertz, M.A. (Morris A.); A.J. Swift (Amy); A.C. Syvänen; S.-T. Tan (Sian-Tsung); B. Thorand (Barbara); A. Tönjes (Anke); Tremblay, A. (Angelo); E. Tsafantakis (Emmanouil); P.J. van der Most (Peter); U. Völker (Uwe); M.-C. Vohl (Marie-Claude); J.M. Vonk (Judith); M. Waldenberger (Melanie); Walker, R.W. (Ryan W.); R. Wennauer (Roman); E. Widen; G.A.H.M. Willemsen (Gonneke); T. Wilsgaard (Tom); A.F. Wright (Alan); M.C. Zillikens (Carola); S. Van Dijk (Suzanne); N.M. van Schoor (Natasja); F.W. Asselbergs (Folkert); P.I.W. de Bakker (Paul); J.S. Beckmann (Jacques); J.P. Beilby (John); D.A. Bennett (David A.); R.N. Bergman (Richard); S.M. Bergmann (Sven); C.A. Böger (Carsten); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); S.R. Bornstein (Stefan); E.P. Bottinger (Erwin); C. Bouchard (Claude); J.C. Chambers (John); S.J. Chanock (Stephen); D.I. Chasman (Daniel); F. Cucca (Francesco); D. Cusi (Daniele); G.V. Dedoussis (George); J. Erdmann (Jeanette); K. Hagen (Knut); D. Evans; U. de Faire (Ulf); M. Farrall (Martin); L. Ferrucci (Luigi); I. Ford (Ian); L. Franke (Lude); P.W. Franks (Paul); P. Froguel (Philippe); R.T. Gansevoort (Ron); C. Gieger (Christian); H. Grönberg (Henrik); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); P. Hall (Per); A. Hamsten (Anders); P. van der Harst (Pim); C. Hayward (Caroline); M. Heliovaara (Markku); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hingorani (Aroon); A. Hofman (Albert); Hu, F. (Frank); H.V. Huikuri (Heikki); K. Hveem (Kristian); A. James (Alan); Jordan, J.M. (Joanne M.); A. Jula (Antti); M. Kähönen (Mika); E. Kajantie (Eero); S. Kathiresan (Sekar); L.A.L.M. Kiemeney (Bart); M. Kivimaki (Mika); P. Knekt; H. Koistinen (Heikki); J.S. Kooner (Jaspal S.); S. Koskinen (Seppo); J. Kuusisto (Johanna); W. Maerz (Winfried); N.G. Martin (Nicholas); M. Laakso (Markku); T.A. Lakka (Timo); T. Lehtimäki (Terho); G. Lettre (Guillaume); D.F. Levinson (Douglas); W.H.L. Kao (Wen); M.L. Lokki; Mäntyselkä, P. (Pekka); M. Melbye (Mads); A. Metspalu (Andres); B.D. Mitchell (Braxton); F.L. Moll (Frans); J.C. Murray (Jeffrey); A.W. Musk (Arthur); M.S. Nieminen (Markku); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); B.A. Oostra (Ben); C. Palmer (Cameron); J.S. Pankow (James); G. Pasterkamp (Gerard); N.L. Pedersen (Nancy); O. Pedersen (Oluf); B.W.J.H. Penninx (Brenda); M. Perola (Markus); A. Peters (Annette); O. Polasek (Ozren); P.P. Pramstaller (Peter Paul); Psaty, B.M. (Bruce M.); Qi, L. (Lu); T. Quertermous (Thomas); Raitakari, O.T. (Olli T.); T. Rankinen (Tuomo); R. Rauramaa (Rainer); P.M. Ridker (Paul); J.D. Rioux (John); F. Rivadeneira Ramirez (Fernando); J.I. Rotter (Jerome I.); I. Rudan (Igor); H.M. den Ruijter (Hester ); J. Saltevo (Juha); N. Sattar (Naveed); Schunkert, H. (Heribert); P.E.H. Schwarz (Peter); A.R. Shuldiner (Alan); J. Sinisalo (Juha); H. Snieder (Harold); T.I.A. Sørensen (Thorkild); T.D. Spector (Timothy); Staessen, J.A. (Jan A.); Stefania, B. (Bandinelli); U. Thorsteinsdottir (Unnur); M. Stumvoll (Michael); J.-C. Tardif (Jean-Claude); E. Tremoli (Elena); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); A.L.M. Verbeek; S.H.H.M. Vermeulen (Sita); J. Viikari (Jorma); Vitart, V. (Veronique); H. Völzke (Henry); P. Vollenweider (Peter); G. Waeber (Gérard); M. Walker (Mark); H. Wallaschofski (Henri); N.J. Wareham (Nick); H. Watkins (Hugh); E. Zeggini (Eleftheria); A. Chakravarti (Aravinda); Clegg, D.J. (Deborah J.); L.A. Cupples (Adrienne); P. Gordon-Larsen (Penny); C.E. Jaquish (Cashell); D.C. Rao (Dabeeru C.); Abecasis, G.R. (Goncalo R.); T.L. Assimes (Themistocles); I.E. Barroso (Inês); S.I. Berndt (Sonja); M. Boehnke (Michael); P. Deloukas (Panagiotis); C.S. Fox (Caroline); L. Groop (Leif); D. Hunter (David); E. Ingelsson (Erik); R.C. Kaplan (Robert); McCarthy, M.I. (Mark I.); K.L. Mohlke (Karen); J.R. O´Connell; Schlessinger, D. (David); D.P. Strachan (David); J-A. Zwart (John-Anker); C.M. van Duijn (Cornelia); J.N. Hirschhorn (Joel); C.M. Lindgren (Cecilia M.); I.M. Heid (Iris); K.E. North (Kari); I.B. Borecki (Ingrid); Z. Kutalik (Zoltán); R.J.F. Loos (Ruth)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ

  9. Motion and shape of snowplough sheets in coaxial accelerators

    International Nuclear Information System (INIS)

    Tsagas, N.F.; Mair, G.L.R.; Prinn, A.E.

    1978-01-01

    A long coaxial accelerator is filled with helium at initial gas pressure between 0.2 and 4 Torr. When connected to a large capacitor at < - 10 kV a discharge is started at one end; the central electrode has negative polarity. The velocity of the plasma sheet, the snowplough, and its shape have been derived from streak photographs for terminal currents between about 100 and 300 kA. The motion of the sheet has been analysed by balancing the electromagnetic driving force against the inertia of the mass of the gas swept up by a plane sheet taken to be impenetrable to gas atoms. The calculated positions and average sheet velocities, which involve simplifying assumptions, have been found to be in good agreement with observations at different positions and pressures. Also the shape of the sheet has been derived by allowing for the sheet's curvature in the linear momentum equation while net radial motions causing variations in profile have, at first, been excluded. The calculated shape of the sheet is very nearly that photographically observed. The axial velocity of a sheet element is evaluated under the assumption that the plasma is azimuthally uniform, free of spikes and that the vessel's wall does not affect the shape. (author)

  10. On new physics searches with multidimensional differential shapes

    Science.gov (United States)

    Ferreira, Felipe; Fichet, Sylvain; Sanz, Veronica

    2018-03-01

    In the context of upcoming new physics searches at the LHC, we investigate the impact of multidimensional differential rates in typical LHC analyses. We discuss the properties of shape information, and argue that multidimensional rates bring limited information in the scope of a discovery, but can have a large impact on model discrimination. We also point out subtleties about systematic uncertainties cancellations and the Cauchy-Schwarz bound on interference terms.

  11. Lattice density functional theory investigation of pore shape effects. I. Adsorption in single nonperiodic pores.

    Science.gov (United States)

    Malanoski, A P; van Swol, Frank

    2002-10-01

    A fully explicit in three dimensions lattice density functional theory is used to investigate adsorption in single nonperiodic pores. The effect of varying pore shape from the slits and cylinders that are normally simulated was our primary interest. A secondary concern was the results for pores with very large diameters. The shapes investigated were square pores with or without surface roughness, cylinders, right triangle pores, and trapezoidal pores. It was found that pores with very similar shape factors gave similar results but that the introduction of acute angled corners or very large side ratio lengths in rectangular pores gave results that were significantly different. Further, a rectangular pore going towards the limit of infinite side ratio does not approach the results of a slit pore. In all of these cases, the importance of features that are present for only a small portion of the pore is demonstrated.

  12. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  13. Recurring part arrangements in shape collections

    KAUST Repository

    Zheng, Youyi; Cohen-Or, Daniel; Averkiou, Melinos; Mitra, Niloy J.

    2014-01-01

    Extracting semantically related parts across models remains challenging, especially without supervision. The common approach is to co-analyze a model collection, while assuming the existence of descriptive geometric features that can directly identify related parts. In the presence of large shape variations, common geometric features, however, are no longer sufficiently descriptive. In this paper, we explore an indirect top-down approach, where instead of part geometry, part arrangements extracted from each model are compared. The key observation is that while a direct comparison of part geometry can be ambiguous, part arrangements, being higher level structures, remain consistent, and hence can be used to discover latent commonalities among semantically related shapes. We show that our indirect analysis leads to the detection of recurring arrangements of parts, which are otherwise difficult to discover in a direct unsupervised setting. We evaluate our algorithm on ground truth datasets and report advantages over geometric similarity-based bottom-up co-segmentation algorithms. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  14. Recurring part arrangements in shape collections

    KAUST Repository

    Zheng, Youyi

    2014-05-01

    Extracting semantically related parts across models remains challenging, especially without supervision. The common approach is to co-analyze a model collection, while assuming the existence of descriptive geometric features that can directly identify related parts. In the presence of large shape variations, common geometric features, however, are no longer sufficiently descriptive. In this paper, we explore an indirect top-down approach, where instead of part geometry, part arrangements extracted from each model are compared. The key observation is that while a direct comparison of part geometry can be ambiguous, part arrangements, being higher level structures, remain consistent, and hence can be used to discover latent commonalities among semantically related shapes. We show that our indirect analysis leads to the detection of recurring arrangements of parts, which are otherwise difficult to discover in a direct unsupervised setting. We evaluate our algorithm on ground truth datasets and report advantages over geometric similarity-based bottom-up co-segmentation algorithms. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  15. A Homogenized Free Energy Model for Hysteresis in Thin-film Shape Memory Alloys

    National Research Council Canada - National Science Library

    Massad, Jordan E; Smith, Ralph C

    2004-01-01

    Thin-film shape memory alloys (SMAs) have become excellent candidates for microactuator fabrication in MEMS due to their capability to achieve very high work densities, produce large deformations, and generate high stresses...

  16. Experimental investigations of the large deflection capabilities of a compliant parallel mechanism actuated by shape memory alloy wires

    International Nuclear Information System (INIS)

    Sreekumar, M; Nagarajan, T; Singaperumal, M

    2008-01-01

    This experimental study investigates the coupled effect of the force developed by the shape memory alloy (SMA) actuators and the force required for the large deflection of an elastica member in a compliant parallel mechanism. The compliant mechanism developed in house consists of a moving platform mounted on a superelastic pillar and three SMA wire actuators to manipulate the platform. A three-axis MEMS accelerometer has been mounted on the moving platform to measure its tilt angle. Three miniature force sensors have been designed and fabricated out of cantilever beams, each mounted with a pair of strain gauges, to measure the force developed by the respective actuators. The force sensors are highly sensitive and cost effective compared to commercially available miniature force sensors. Calibration of the force sensors has been accomplished with known weights, and for the three-axis MEMS accelerometer a rotary base has been considered which is usually used in optical applications. The calibration curves obtained, with R-squared values between 0.9997 and 1.0, show that both the tilt and force sensors considered are most appropriate for the respective applications. The mechanism fixed with the sensors and the drivers for the SMA actuators is integrated with a National Instrument's data acquisition system. The experimental results have been compared with the analytical results and it was found that the relative error is less than 2%. This is a preliminary study in the development of a mechanism for eye prosthesis and similar applications

  17. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    Science.gov (United States)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  18. Yarkovsky effect and V-shapes: New method to compute family ages

    Science.gov (United States)

    Spoto, F.; Milani, A.; Cellino, A.; Knezevic, Z.; Novakovic, B.; Paolicchi, P.

    2014-07-01

    The computation of family ages is a high-priority goal. As a matter of principle, it can be achieved by using V-shape plots for the families old enough to have the Yarkovsky effect dominating the spread of the proper a and large enough for a statistically significant analysis of the shape. By performing an asteroid family classification with a very enlarged dataset, the results are not just ''more families'', but there are interesting qualitative changes. These are due to the large-number statistics, but also to the larger fraction of smaller objects contained in recently numbered asteroids. We are convinced that our method is effective in adding many smaller asteroids to the core families. As a result, we have a large number of families with very well defined V-shapes, thus with a good possibility of age estimation. We have developed our method to compute ages, which we believe is better than those used previously because it is more objective. Since there are no models for error in absolute magnitude H and for albedo, we have also developed a model of the error in the inverse of the diameter and then we have performed a weighted least-squares fit. We report at least 5/6 examples of dynamical families for which the computation of the V-shape is possible. These examples show the presence of different internal structure of the families, e.g., in the dynamical family of (4) Vesta, we have found two collisional families. The main problem in estimating the ages is the calibration. The difficulty in the Yarkovsky calibration, due to the need to extrapolate from near-Earth asteroids (NEAs) with measured da/dt to main-belt asteroids, is in most cases the main limitation to the accuracy of the age estimation. We obtain an age estimation by scaling the results for the NEA for which there is the best Yarkovsky effect determination, namely (101955) Bennu.

  19. Martensitic phase transformation in shape-memory alloys

    International Nuclear Information System (INIS)

    Golestaneh, A.A.

    1979-01-01

    Isothermal studies are described of the shape-recovery phenomenon, stress-strain behavior, electrical resistivity and thermo-electric power associated with the martensite-parent phase reaction in the Ni-Ti shape-memory alloys. The energy-balance equation that links the reaction kinetics with the strain energy change during the cooling-deforming and heating cycle is analyzed. The strain range in which the Clausius-Clapeyron equation satisfactorily describes this reaction is determined. A large change in the Young's modulus of the specimen is found to be associated with the M → P reaction. A hysteresis loop in the resistivity-temperature plot is found and related to the anomaly in the athermal resistivity changes during cyclic M → P → M transformation. An explanation for the resistivity anomaly is offered. The M structure is found to be electrically negative relative to the P structure. A thermal emf of greater than or equal to 0.12 mV is found at the M-P interface

  20. 3D Shape Modeling Using High Level Descriptors

    DEFF Research Database (Denmark)

    Andersen, Vedrana

    features like thorns, bark and scales. Presented here is a simple method for easy modeling, transferring and editing that kind of texture. The method is an extension of the height-field texture, but incorporates an additional tilt of the height field. Related to modeling non-heightfield textures, a part...... of my work involved developing feature-aware resizing of models with complex surfaces consisting of underlying shape and a distinctive texture detail. The aim was to deform an object while preserving the shape and size of the features.......The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas...

  1. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  2. Creation and control of variably shaped plasmas in TCV

    International Nuclear Information System (INIS)

    Hofmann, F.; Lister, J.B.; Anton, M.

    1994-01-01

    During the first year of operation, the TCV tokamak has produced a large variety of plasma shapes and magnetic configurations, with 1.0≤B tor ≤1.46T, I p ≤800kA, k≤2.05, -0.7≤δ ≤0.7. A new shape control algorithm, based on a finite element reconstruction of the plasma current in real time, has been implemented. Vertical growth rates of 800 sec -1 , corresponding to a stability margin f=1.15, have been stabilized. Ohmic H-modes, with energy confinement times reaching 80ms, normalized beta (β tor aB/I p ) of 1.9 and τ E /ITER89-P of 2.4 have been obtained in single-null X-point deuterium discharges with the ion grad B drift towards the X-point. Limiter H-modes with maximum line averaged electron densities of 1.7x10 20 m -3 have been observed in D-shaped plasmas with 360kA≤I p ≤600kA. (Author)

  3. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture

    Science.gov (United States)

    Lindquist, Nathan C.; Johnson, Timothy W.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2013-05-01

    We demonstrate the design, fabrication and characterization of a near-field plasmonic nanofocusing probe with a hybrid tip-plus-aperture design. By combining template stripping with focused ion beam lithography, a variety of aperture-based near-field probes can be fabricated with high optical performance. In particular, the combination of large transmission through a C-shaped aperture aligned to the sharp apex (<10 nm radius) of a template-stripped metallic pyramid allows the efficient delivery of light--via the C-shaped aperture--while providing a nanometric hotspot determined by the sharpness of the tip itself.

  4. Optimization of negative central shear discharges in shaped cross sections

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Chu, M.S., Taylor, T.S., Casper, T.A., Rice, B.W.; Greene, J.M., Greenfield, C.M., La Haye, R.J., Lao, L.L., Lee, B.J.; Miller, R.L., Ren, C., Strait, E.J., Tritz, K.; Rettig, C.L., Rhodes, T.L.; Sauter, O.

    1996-10-01

    Magnetohydrodynamic (MHD) stability analyses of Negative Central Shear (NCS) equilibria have revealed a new understanding of the limiting MHD instabilities in NCS experiments. Ideal stability calculations show a synergistic effect between cross section shape and pressure profile optimization; strong shaping and broader pressure independently lead to moderately higher Β limits, but broadening of the pressure profile in a strongly dee-shaped cross- section leads to a dramatic increase in the ideal Β limit. Localized resistive interchange (RI) modes can be unstable in the negative shear region and are most restrictive for peaked pressure profiles. Resistive global modes can also be destabilized significantly below the ideal P limit. Experiments largely confirm the general trends, and diagnostic measurements and numerical stability calculations are found to be in good qualitative agreement. Observed disruptions in NCS discharges with L-mode edge and strongly peaked pressure, appear to be initiated by interactions between the RI, and the global ideal and resistive modes

  5. [Three dimensional structure of the connective tissue papillae of the tongue in Suncus murinus].

    Science.gov (United States)

    Kobayashi, K; Miyata, K; Iwasaki, S; Takahashi, K

    1989-08-01

    The surface structure of the connective tissue papillae (CP) of Suncus murinus tongue was observed by SEM after fixing with Karnovsky's fixative and removal of the epithelial cell layer with 3N or 8N HCl. On the surface of the slender conical tongue, there are densely distributed filiform papillae among which fungiform papillae are seen sporadically. A pair of vallate papillae are situated in the posterior region of the tongue. Filiform papillae appear somewhat different externally depending on the dorsal surface of the anterior tongue. At the tip of the tongue, filiform papillae are of a slender conical shape and have a slight depression in the anterior basal portion. The CP of these is seen as a spherical protrusion on which a shallow groove runs in the anteroposterior direction. In the middle region, somewhat large filiform papillae contain CP having one or two small round head-like structures on each spherical protrusion. These head-like structures are increased in number in the posterior region. In the most posterior region of the anterior tongue, there are distributed large filiform papillae having several slender protrusions that surround a basal anterior depression. These large branched filiform papillae have a glove finger like CP. Small conical filiform papillae are distributed in the posterior marginal region of the anterior tongue which have CP of a horse-shoe like protrusion that opens in the anterior direction. Spherical fungiform papillae have CP which are thick columnar in shape with many lateral thin folds running vertically and having a round depression on the top of each. CP of the vallate papillae appear as a beehive like structure.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel

    2015-01-01

    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  7. Shape memory polymer hybrids of SBS/dl-PLA and their shape memory effects

    International Nuclear Information System (INIS)

    Zhang, Heng; Chen, Zhi; Zheng, Zheng; Zhu, Xiaomin; Wang, Haitao

    2013-01-01

    The hybrids of styrene-butadiene-styrene tri-block copolymer (SBS) and amorphous poly(dl-lactic acid) (dl-PLA) are found to exhibit shape memory effects, which gives an example of a dual-domain shape memory system consisting of an elastic domain and a thermo-switch domain. The dual-domain manner in this hybrid is studied by means of differential scanning calorimetry (DSC) and scanning electron microscope (SEM). Subsequently, the tensile test clarifies the interactions of the two domains on shape memory effects. As an elastic domain, SBS offers good shape recovery when its content exceeds 50 wt%. As a thermo-switch domain, dl-PLA triggers the shape memory effect at ca. 55 °C and offers good shape fixing when the content exceeds 30 wt%. An easy-to-do and easy-to-know feature of the hybrid is that the optimization of shape memory effect can be achieved by generating bicontinous phases of SBS and dl-PLA, in which the dl-PLA content ranges from 30 to 70 wt%. -- Highlights: ► The composite materials of SBS and amorphous dl-PLA were prepared by blending. ► A continuous domain was observed with the increasing content of dl-PLA. ► The composites exhibited shape memory effects.

  8. Research in Shape Analysis

    CERN Document Server

    Leonard, Kathryn; Tari, Sibel; Hubert, Evelyne; Morin, Geraldine; El-Zehiry, Noha; Chambers, Erin

    2018-01-01

    Based on the second Women in Shape (WiSH) workshop held in Sirince, Turkey in June 2016, these proceedings offer the latest research on shape modeling and analysis and their applications. The 10 peer-reviewed articles in this volume cover a broad range of topics, including shape representation, shape complexity, and characterization in solving image-processing problems. While the first six chapters establish understanding in the theoretical topics, the remaining chapters discuss important applications such as image segmentation, registration, image deblurring, and shape patterns in digital fabrication. The authors in this volume are members of the WiSH network and their colleagues, and most were involved in the research groups formed at the workshop. This volume sheds light on a variety of shape analysis methods and their applications, and researchers and graduate students will find it to be an invaluable resource for further research in the area.

  9. Pair Potential That Reproduces the Shape of Isochrones in Molecular Liquids

    DEFF Research Database (Denmark)

    Veldhorst, Arno; Schrøder, Thomas; Dyre, Jeppe C.

    2016-01-01

    -dependent function of density, h(ρ), which for real liquids is well approximated by a power law, ργ. However, in simulations, a power law is not adequate when density changes are large; typical models, such as Lennard-Jones liquids, show that γ(ρ) ≡ d ln h(ρ)/d ln ρ is a decreasing function of density. This article...... presents results from computer simulations using a new pair potential that diverges at a nonzero distance and can be tuned to give a more realistic shape of γ(ρ). Our results indicate that the finite size of molecules is an important factor to take into account when modeling liquids over a large density......Many liquids have curves (isomorphs) in their phase diagrams along which structure, dynamics, and some thermodynamic quantities are invariant in reduced units. A substantial part of their phase diagrams is thus effectively one dimensional. The shapes of these isomorphs are described by a material...

  10. A shape adaptive airfoil for a wind turbine blade

    Science.gov (United States)

    Daynes, Stephen; Weaver, Paul M.

    2011-04-01

    The loads on wind turbine components are primarily from the blades. It is important to control these blade loads in order to avoid damaging the wind turbine. Rotor control technology is currently limited to controlling the rotor speed and the pitch of the blades. As blades increase in length it becomes less desirable to pitch the entire blade as a single rigid body, but instead there is a requirement to control loads more precisely along the length of the blade. This can be achieved with aerodynamic control devices such as flaps. Morphing technologies are good candidates for wind turbine flaps because they have the potential to create structures that have the conflicting abilities of being load carrying, light-weight and shape adaptive. A morphing flap design with a highly anisotropic cellular structure is presented which is able to undergo large deflections and high strains without a large actuation penalty. An aeroelastic analysis couples the work done by aerodynamic loads on the flap, the flap strain energy and the required actuation work to change shape. The morphing flap is experimentally validated with a manufactured demonstrator and shown to have reduced actuation requirements compared to a conventional hinged flap.

  11. Physical and chemical changes in the foreshore of an estuarine beach: Implications for viability and development of horseshoe crab Limulus polyphemus eggs

    Science.gov (United States)

    Jackson, N.L.; Smith, D.R.; Nordstrom, K.F.

    2008-01-01

    Knowledge of conditions that favor development of eggs is important for management of species whose population growth is sensitive to early life history survival. Viability and development of the eggs of horseshoe crabs Limulus polyphemus on a sand and gravel beach were evaluated using data gathered on Delaware Bay, USA, from 18 May to 19 June 2004. Eggs were transplanted to pouches and buried in the foreshore for up to 6 wk. Viability and developmental stage were estimated as a function of oxygen and temperature gradients across the foreshore. These gradients were related to the characteristics of the intertidal foreshore sediments, beach water table changes, and frequency of inundation due to tide and swash/backwash processes. Results demonstrate the importance of interstitial temperature for development to larvae and the passive role of sediment characteristics on moisture retention and temperature. Percentage of eggs remaining in egg stage was similar across the foreshore, but more eggs developed to embryos at 0.45 of foreshore width, where moisture and gravel content were greater and interstitial temperature was lower. More eggs developed to larvae at 0.60 and 0.75 of foreshore width, where moisture and gravel content were less but interstitial temperature was higher. The beach above 0.75 of foreshore width came under the influence of wave action or full tidal inundation only during high wave heights or spring tides, and pouches at 0.75 of foreshore width were inundated only 19% of the time. Periodic wetting at this elevation did not reduce overall viability of the eggs. High wave energy events resulted in sediment activation depths to pouches at 0.30 of foreshore width, where loss of eggs due to wave activation was the most important control on the development of eggs. ?? Inter-Research 2008.

  12. Polymorphic Ring-Shaped Molecular Clusters Made of Shape-Variable Building Blocks

    Directory of Open Access Journals (Sweden)

    Keitel Cervantes-Salguero

    2015-02-01

    Full Text Available Self-assembling molecular building blocks able to dynamically change their shapes, is a concept that would offer a route to reconfigurable systems. Although simulation studies predict novel properties useful for applications in diverse fields, such kinds of building blocks, have not been implemented thus far with molecules. Here, we report shape-variable building blocks fabricated by DNA self-assembly. Blocks are movable enough to undergo shape transitions along geometrical ranges. Blocks connect to each other and assemble into polymorphic ring-shaped clusters via the stacking of DNA blunt-ends. Reconfiguration of the polymorphic clusters is achieved by the surface diffusion on mica substrate in response to a monovalent salt concentration. This work could inspire novel reconfigurable self-assembling systems for applications in molecular robotics.

  13. The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ.

    Science.gov (United States)

    Compagnon, Julien; Barone, Vanessa; Rajshekar, Srivarsha; Kottmeier, Rita; Pranjic-Ferscha, Kornelija; Behrndt, Martin; Heisenberg, Carl-Philipp

    2014-12-22

    Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Shape control of slack space reflectors using modulated solar pressure.

    Science.gov (United States)

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R

    2015-07-08

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.

  15. The characterization of beam profile by modification of electrode shape

    International Nuclear Information System (INIS)

    Lee, Chan Young; Lee, Jae Sang

    2010-01-01

    Ion sources have been used for variety of industrial application over the past few decades and our research group has been studied about high current and large dimension ion source to meet the requirement from beam user. For a mass production in industry, a wide beam divergence and a beam profile of a broadly Gaussian shape is very needed. Generally, the production process like roll-to-roll or in-line system is need one-meter in diameter, ±5% in uniformity. Therefore it is difficult to apply with present system like 0.3-meter in diameter, ±20% in uniformity and needed new type ion source. In this study, it is approached with modification of electrode grid shape without fabrication of new type ion source. We modified from parallel type to hemispherical type electrode grid to secure large dimension ion beam and were discussed with respect to beam profile calculated with IGUN code simulation. Also, we identified beam profile before and after modification of electrode grid system(cathode, Acelldecel grid) with measurement of faraday cup

  16. Preliminary quantification of a shape model for etch-pits formed during natural weathering of olivine

    International Nuclear Information System (INIS)

    Nowicki, M. Anna; Velbel, Michael A.

    2011-01-01

    Many etch-pits on olivine grains occur as a pair of cone-shaped pits sharing a base, which consequently appear as diamond-shaped etch-pits in cross-section. Quantitative image analysis of back-scattered electron images establishes empirical dimensions of olivine etch-pits in naturally weathered samples from Hawaii and North Carolina. Images of naturally etched olivine were acquired from polished thin-sections by scanning electron microscopy. An average cone-radius-to-height ratio (r:h) of 1.78 was determined for diamond-shaped cross-sections of etch-pits occurring in naturally weathered olivine grains, largely consistent with previous qualitative results. Olivine etch-pit shape as represented by r:h varies from slightly more than half the average value to slightly more than twice the average. Etch-pit shape does not appear to vary systematically with etch-pit size.

  17. Characterization of NiTi shape memory alloys using dual kriging interpolation

    International Nuclear Information System (INIS)

    Trochu, F.; Sacepe, N.; Volkov, O.; Turenne, S.

    1999-01-01

    A large number of industrial applications could benefit from the remarkable properties of shape memory alloys (SMA). The development of a general material law is the first important step before reliable design calculations of shape memory devices can be carried out. This paper presents a new phenomenological constitutive law based on dual kriging, which is a powerful mathematical tool used here as interpolation method to simulate the macroscopic mechanical behavior of shape memory alloys. From a set of experimental strain-temperature curves at constant loads, two deformation surfaces are constructed in the stress, strain and temperature space which describe the cooling and heating behaviors of the material for any stress. The response of a specimen subjected to complex thermomechanical loading can be calculated by dual kriging form a general 3-dimensional parametric solid constructed inside the hysteretic domain delimited by the main cooling and heating deformation surfaces. This approach presents the advantage of yielding immediately the explicit equation of any partial cycle inside the main hysteretic domain, thus yielding a general material law for shape memory alloys. Preliminary validation for a set of simple examples demonstrates the potential of this new model that includes in a single formulation superelasticity, rubber-like behavior and shape memory effect. (orig.)

  18. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  19. Variation of flow separation over large bedforms during a tidal cycle

    DEFF Research Database (Denmark)

    Lefebvre, A.; Ferret, Y.; Paarlberg, A.J.

    2013-01-01

    This study characterizes the shape of the flow separation zone over natural compound bedforms during a tidal cycle and investigates how the flow separation zone depends on changing flow conditions, water levels and bathymetry. Field data collected during a full tidal cycle over large ebb-oriented......This study characterizes the shape of the flow separation zone over natural compound bedforms during a tidal cycle and investigates how the flow separation zone depends on changing flow conditions, water levels and bathymetry. Field data collected during a full tidal cycle over large ebb......, no flow separation developed over the gentle slope of the flood lee side (3 to 5° on average). However, a small flow separation zone is often recognized near the crest, where the slope is locally up to 15°. The shape of the FSZ is not influenced by changes in current velocities or water levels...

  20. The Role of Small Cities in Shaping Youth Employment Outcomes in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Growing workforce, internal migration The future of sustainable growth in several emerging markets rests on the ability of its young populations to find gainful ... from Indonesia will provide a richer analysis of the role of small cities in shaping youth employment outcomes in the region's large, middle-income economies.

  1. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    Lyn, M. Elizabeth; He Jibao; Koplitz, Brent

    2005-01-01

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C 60 , 22% C 70 ). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  2. Shape coexistence from lifetime and branching-ratio measurements in "6"8","7"0Ni

    International Nuclear Information System (INIS)

    Crider, B. P.; Prokop, C. J.; Liddick, S. N.; Al-Shudifat, M.; Ayangeakaa, A. D.

    2016-01-01

    Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near "6"8Ni (Z=28, N=40), the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0+ states. In "6"8","7"0Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0+ states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions. The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near "6"8Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons.

  3. The photon structure function at large Q2

    International Nuclear Information System (INIS)

    Cordier, A.

    1987-01-01

    LEP II offers the unique opportunity to measure the photon structure function over a large Q 2 range up to ∼ 2000 GeV 2 . Two crucial predictions of QCD can be tested in this experiment: the linear rise in log Q 2 as a consequence of asymptotic freedom, and the large renormalization O(1) of the shape of the structure function due to gluon bremsstrahlung, unperturbed by higher-twist effects

  4. Mode shape combination in a two-dimensional vibration energy harvester through mass loading structural modification

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan; Kumar, Prashant [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar; Abdelmoula, Hichem [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Adler, Jan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Institute of Dynamics and Vibration Research (IDS), Leibniz Universität, Hannover 30167 (Germany); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-07-18

    Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.

  5. Shape memory effect of Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals

    International Nuclear Information System (INIS)

    Inagaki, Hirosuke

    1992-01-01

    Factors affecting the shape memory effect in Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals were studied in detail. It was found that the shape memory effect in this alloy was most influenced by the amount of deformation. With increasing amount of deformation, the shape memory effect diminished appreciably. Although the fraction of the initial dimensional change that could be restored was about 45% in the specimen strained by 4%, only 21% of the initial dimensional change was recovered in the specimen strained by 9%. Temperatures of deformation were found to be also an important factor that affected the shape memory effect. The maximum shape memory effect was observed in the specimens strained at temperatures between the M s and M d temperatures. In this alloy, however, specimens strained at temperatures below the M s temperature indicated a relatively large shape memory effect, too. It was further found that the shape memory effect was appreciably intensified by repeated straining and annealing, especially when straining was performed at 500deg C. It was suggested that the shape memory effect in Fe base alloys was strongly influenced by the dislocation substructure present in the starting material. (orig.) [de

  6. Spatial beam shaping using a micro-structured optical fiber and all-fiber laser amplification system for large-scale laser facilities seeding

    International Nuclear Information System (INIS)

    Calvet, Pierre

    2014-01-01

    Spatial beam shaping is an important topic for the lasers applications. For various industrial areas (marking, drilling, laser-matter interaction, high-power laser seeding...) the optical beam has to be flattened. Currently, the state of the art of the beam shaping: 'free-space' solutions or highly multimode fibers, are not fully suitable. The first ones are very sensitive to any perturbations and the maintenance is challenging, the second ones cannot deliver a coherent beam. For this reason, we present in this manuscript a micro-structured optical single-mode fiber delivering a spatially flattened beam. This 'Top-Hat' fiber can shape any beam in a spatially coherent beam what is a progress with respect to the highly multimode fibers used in the state of the art. The optical fibers are easy to use and very robust, what is a strong benefit with respect to the 'free-space' solutions. Thanks to this fiber, we could realize an all-fiber multi-stage laser chain to amplify a 10 ns pulse to 100 μJ. Moreover the temporal, spectral and spatial properties were preserved. We adapted this 'Top-Hat' fiber to this multi-stage laser chain, we proved the capability and the interest of this fiber for the spatial beam shaping of the laser beams in highly performing and robust laser systems. (author) [fr

  7. A stochastic large deformation model for computational anatomy

    DEFF Research Database (Denmark)

    Arnaudon, Alexis; Holm, Darryl D.; Pai, Akshay Sadananda Uppinakudru

    2017-01-01

    In the study of shapes of human organs using computational anatomy, variations are found to arise from inter-subject anatomical differences, disease-specific effects, and measurement noise. This paper introduces a stochastic model for incorporating random variations into the Large Deformation...

  8. Magnetic properties of elliptical and stadium-shaped nanoparticles: Effect of the shape anisotropy

    International Nuclear Information System (INIS)

    Corona, R.M.; Altbir, D.; Escrig, J.

    2012-01-01

    Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems. - Highlights: ► Coercivity and remanence are strongly affected by the shape anisotropy of the particles. ► Coercivities for ellipses are nearly three times the obtained for stadium-shaped particles. ►Elliptical particles with δ≤0.6, the hystereses resemble the square loops of wires. ► An anhisteretic behavior appears for θ=90° for elliptical particles, which do not appear in stadium-shaped particles. ► Stadium-shaped particles have unique properties that allow us to suggest them for applications.

  9. [Shaping ability of two nickel-titanium rotary systems in simulated S-shaped canals].

    Science.gov (United States)

    Luo, Hong-xia; Huang, Ding-ming; Zhang, Fu-hua; Tan, Hong; Zhou, Xue-dong

    2008-01-01

    To evaluate the shaping ability of two nickel-titanium rotary systems (ProTaper and Hero642) in simulated S-shaped canals. Thirty simulated S-shaped canals were randomly divided into three groups and prepared by ProTaper, Hero642, ProTaper combined with Hero642 respectively. All the canals were scanned before and after instrumentation, and the amount of material removed in the inner and outer wall and the canal width after instrumentation were measured with a computer image analysis program. There was significant difference in the amount of material removed at the inner side of apical curvature and outer side of apex between ProTaper combined with Hero642 and ProTaper files (P Hero642, and the taper of canals were better than those prepared by Hero642. ProTaper combined with Hero 642 had better shaping ability to maintain the original shape and could create good taper canals in the simulated S-shaped canal model.

  10. Simple Impact Crater Shapes From Shadows - The Sequel

    Science.gov (United States)

    Chappelow, J. E.

    2008-12-01

    At the last LPSC meeting I presented the outline of a method for determining simple impact crater shapes from shadows. In theory the shadow cast within a simple crater provides enough information to derive its cross-sectional shape from shadow measurements, at least to the maximum depth to which the shadow extends. Under certain simple assumptions, this can be done analytically. If the crater is conic-section - shaped, then it can be shown that the down-sun bound of any shadow cast within it is elliptical, with one axis along the direction of illumination and the other (perpendicular to it) of semi-length D/2 (where D is diameter). The properties of this shadow-ellipse can be related to the parameters of the crater shape conic-section, thus measurements of the shadow-ellipse yield not only crater depth and diameter but also the approximate crater shape, in terms of conic sections. The method also does not depend upon the shadow crossing near the crater center, which avoids a pitfall of older shadow measurement methods. The technique is also amenable to computer implementation, which has already been largely completed. Once computerized, crater measurements can be made rapidly and repeatably. The program reads in an image, its resolution, and the solar elevation and azimuth. The user then defines the crater rim by 'clicking' on three points, and the shadow ellipse by clicking on two more. The program calculates and outputs the diameter, the depth, and parameters describing the crater's approximating conic-section. It is highly applicable to situations where only single-image photography is available, for example MESSENGER flybys of Mercury. At the meeting I will present the finished math for this method and give some examples of its use.

  11. Merging K-means with hierarchical clustering for identifying general-shaped groups.

    Science.gov (United States)

    Peterson, Anna D; Ghosh, Arka P; Maitra, Ranjan

    2018-01-01

    Clustering partitions a dataset such that observations placed together in a group are similar but different from those in other groups. Hierarchical and K -means clustering are two approaches but have different strengths and weaknesses. For instance, hierarchical clustering identifies groups in a tree-like structure but suffers from computational complexity in large datasets while K -means clustering is efficient but designed to identify homogeneous spherically-shaped clusters. We present a hybrid non-parametric clustering approach that amalgamates the two methods to identify general-shaped clusters and that can be applied to larger datasets. Specifically, we first partition the dataset into spherical groups using K -means. We next merge these groups using hierarchical methods with a data-driven distance measure as a stopping criterion. Our proposal has the potential to reveal groups with general shapes and structure in a dataset. We demonstrate good performance on several simulated and real datasets.

  12. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape

    Directory of Open Access Journals (Sweden)

    Dart Anna E

    2010-11-01

    Full Text Available Abstract Background Phagocytosis is the fundamental cellular process by which eukaryotic cells bind and engulf particles by their cell membrane. Particle engulfment involves particle recognition by cell-surface receptors, signaling and remodeling of the actin cytoskeleton to guide the membrane around the particle in a zipper-like fashion. Despite the signaling complexity, phagocytosis also depends strongly on biophysical parameters, such as particle shape, and the need for actin-driven force generation remains poorly understood. Results Here, we propose a novel, three-dimensional and stochastic biophysical model of phagocytosis, and study the engulfment of particles of various sizes and shapes, including spiral and rod-shaped particles reminiscent of bacteria. Highly curved shapes are not taken up, in line with recent experimental results. Furthermore, we surprisingly find that even without actin-driven force generation, engulfment proceeds in a large regime of parameter values, albeit more slowly and with highly variable phagocytic cups. We experimentally confirm these predictions using fibroblasts, transfected with immunoreceptor FcγRIIa for engulfment of immunoglobulin G-opsonized particles. Specifically, we compare the wild-type receptor with a mutant receptor, unable to signal to the actin cytoskeleton. Based on the reconstruction of phagocytic cups from imaging data, we indeed show that cells are able to engulf small particles even without support from biological actin-driven processes. Conclusions This suggests that biochemical pathways render the evolutionary ancient process of phagocytic highly robust, allowing cells to engulf even very large particles. The particle-shape dependence of phagocytosis makes a systematic investigation of host-pathogen interactions and an efficient design of a vehicle for drug delivery possible.

  13. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  14. The Hue of Shapes

    Science.gov (United States)

    Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo

    2013-01-01

    This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…

  15. Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria

    Science.gov (United States)

    Kitsunezaki, S.

    In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.

  16. Prediction of etching-shape anomaly due to distortion of ion sheath around a large-scale three-dimensional structure by means of on-wafer monitoring technique and computer simulation

    International Nuclear Information System (INIS)

    Kubota, Tomohiro; Ohtake, Hiroto; Araki, Ryosuke; Yanagisawa, Yuuki; Samukawa, Seiji; Iwasaki, Takuya; Ono, Kohei; Miwa, Kazuhiro

    2013-01-01

    A system for predicting distortion of a profile during plasma etching was developed. The system consists of a combination of measurement and simulation. An ‘on-wafer sheath-shape sensor’ for measuring the plasma-sheath parameters (sheath potential and thickness) on the stage of the plasma etcher was developed. The sensor has numerous small electrodes for measuring sheath potential and saturation ion-current density, from which sheath thickness can be calculated. The results of the measurement show reasonable dependence on source power, bias power and pressure. Based on self-consistent calculation of potential distribution and ion- and electron-density distributions, simulation of the sheath potential distribution around an arbitrary 3D structure and the trajectory of incident ions from the plasma to the structure was developed. To confirm the validity of the distortion prediction by comparing it with experimentally measured distortion, silicon trench etching under chlorine inductively coupled plasma (ICP) was performed using a sample with a vertical step. It was found that the etched trench was distorted when the distance from the step was several millimetres or less. The distortion angle was about 20° at maximum. Measurement was performed using the on-wafer sheath-shape sensor in the same plasma condition as the etching. The ion incident angle, calculated as a function of distance from the step, successfully reproduced the experimentally measured angle, indicating that the combination of measurement by the on-wafer sheath-shape sensor and simulation can predict distortion of an etched structure. This prediction system will be useful for designing devices with large-scale 3D structures (such as those in MEMS) and determining the optimum etching conditions to obtain the desired profiles. (paper)

  17. 3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints

    Science.gov (United States)

    Ghorpade, Vijaya K.; Checchin, Paul; Malaterre, Laurent; Trassoudaine, Laurent

    2017-12-01

    The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF) produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on object's surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the non-planar surface properties of the object. The performance of the novel shape signature is tested with object classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the new approach on RGB-D dataset and depth data.

  18. Magnetic properties of elliptical and stadium-shaped nanoparticles: Effect of the shape anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Corona, R.M. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Altbir, D. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems. - Highlights: Black-Right-Pointing-Pointer Coercivity and remanence are strongly affected by the shape anisotropy of the particles. Black-Right-Pointing-Pointer Coercivities for ellipses are nearly three times the obtained for stadium-shaped particles. Black-Right-Pointing-Pointer Elliptical particles with {delta}{<=}0.6, the hystereses resemble the square loops of wires. Black-Right-Pointing-Pointer An anhisteretic behavior appears for {theta}=90 Degree-Sign for elliptical particles, which do not appear in stadium-shaped particles. Black-Right-Pointing-Pointer Stadium-shaped particles have unique properties that allow us to suggest them for applications.

  19. On the shape memory of red blood cells

    Science.gov (United States)

    Cordasco, Daniel; Bagchi, Prosenjit

    2017-04-01

    Red blood cells (RBCs) undergo remarkably large deformations when subjected to external forces but return to their biconcave discoid resting shape as the forces are withdrawn. In many experiments, such as when RBCs are subjected to a shear flow and undergo the tank-treading motion, the membrane elements are also displaced from their original (resting) locations along the cell surface with respect to the cell axis, in addition to the cell being deformed. A shape memory is said to exist if after the flow is stopped the RBC regains its biconcave shape and the membrane elements also return to their original locations. The shape memory of RBCs was demonstrated by Fischer ["Shape memory of human red blood cells," Biophys. J. 86, 3304-3313 (2004)] using shear flow go-and-stop experiments. Optical tweezer and micropipette based stretch-relaxation experiments do not reveal the complete shape memory because while the RBC may be deformed, the membrane elements are not significantly displaced from their original locations with respect to the cell axis. Here we present the first three-dimensional computational study predicting the complete shape memory of RBCs using shear flow go-and-stop simulations. The influence of different parameters, namely, membrane shear elasticity and bending rigidity, membrane viscosity, cytoplasmic and suspending fluid viscosity, as well as different stress-free states of the RBC is studied. For all cases, the RBCs always exhibit shape memory. The complete recovery of the RBC in shear flow go-and-stop simulations occurs over a time that is orders of magnitude longer than that for optical tweezer and micropipette based relaxations. The response is also observed to be more complex and composed of widely disparate time scales as opposed to only one time scale that characterizes the optical tweezer and micropipette based relaxations. We observe that the recovery occurs in three phases: a rapid compression of the RBC immediately after the flow is stopped

  20. Interspecific variation of ontogeny and skull shape among porpoises (Phocoenidae).

    Science.gov (United States)

    Galatius, Anders; Berta, Annalisa; Frandsen, Marie Schou; Goodall, R Natalie P

    2011-02-01

    All extant members of Phocoenidae (porpoises) have been characterized as pedomorphic based on skeletal characters. To investigate the ontogenetic background for pedomorphosis and assess interspecific differences in ontogeny among phocoenids, samples of the six extant species were compared in terms of development of both epiphyseal and cranial suture fusion. Across all species, full maturity of the vertebral column was rare. Vertebral epiphyseal development did not progress so far in most Phocoena phocoena as in Phocoenoides dalli and Phocoena dioptrica. P. phocoena, Phocoena spinipinnis, Ph. dalli, and P. dioptrica, for which large series were available, were further compared in terms of ontogeny of cranial shape by three-dimensional geometric morphometrics. Ph. dalli and P. dioptrica generally showed further development of cranial sutures than the other species. Postnatal skull shape development was similar for all species studied; the majority of interspecific shape differences are present at parturition. Smaller species had a higher rate of shape development relative to growth in size than Ph. dalli and P. dioptrica, but they still showed less allometric development due to less postnatal growth. Interspecific shape differences indicate phylogenetic relationships similar to that proposed based on morphology or convergent evolution of the two pelagic species, Ph. dalli and P. dioptrica, under the scenarios suggested by recent molecular studies. A shape trend coinciding with habitat preference was detected; in species with pelagic preference the position and orientation of the foramen magnum aligned the skull with the vertebral column; the rostrum showed less ventral inclination, and the facial region was larger and more concave in lateral aspect. Copyright © 2010 Wiley-Liss, Inc.

  1. Stochastic basis for curve shape, RBE and temporal dependence

    International Nuclear Information System (INIS)

    Bond, V.P.

    1982-01-01

    This paper uses biophysical-microdosimetric quantities, measured in a physical surrogate or phantom cell, to explain the shape of absorbed dose-quantal cell response curves, the role of radiation quality and the influence of dose rate. Responses expected are explored first in simple autonomous cell systems, followed by increasingly-complex systems. Complications seen with increasingly-complex systems appear to be confined largely to the higher dose and dose rate ranges

  2. Brain shape in human microcephalics and Homo floresiensis.

    Science.gov (United States)

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M J; Sutikna, Thomas; Jatmiko; Saptomo, E Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

    2007-02-13

    Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm(3), some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an approximately 3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species.

  3. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).

    Science.gov (United States)

    Watters, Kyle E; Lucks, Julius B

    2016-01-01

    Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.

  4. Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks

    International Nuclear Information System (INIS)

    Roxin, Alex; Brunel, Nicolas; Hansel, David

    2005-01-01

    We study the effect of delays on the dynamics of large networks of neurons. We show that delays give rise to a wealth of bifurcations and to a rich phase diagram, which includes oscillatory bumps, traveling waves, lurching waves, standing waves arising via a period-doubling bifurcation, aperiodic regimes, and regimes of multistability. We study the existence and the stability of the various dynamical patterns analytically and numerically in a simplified rate model as a function of the interaction parameters. The results derived in that framework allow us to understand the origin of the diversity of dynamical states observed in large networks of spiking neurons

  5. Shape from touch

    NARCIS (Netherlands)

    Kappers, A.M.L.; Bergmann Tiest, W.M.

    2014-01-01

    The shape of objects cannot only be recognized by vision, but also by touch. Vision has the advantage that shapes can be seen at a distance, but touch has the advantage that during exploration many additional object properties become available, such as temperature (Jones, 2009), texture (Bensmaia,

  6. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    , not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  7. The effect of cloud shape on radiative characteristics

    International Nuclear Information System (INIS)

    Welch, R.M.; Zdunkowski, W.G.

    1981-01-01

    Cumulus cloud radiative characteristics are calculated using Monte-Carlo codes as a function of solar zenith angle for clouds approximated by hemispherical, cylindrical and combination-type geometries. Values of cloud reflectivity, transmissivity and absorptivity are compared with values computed from assuming cubic and rectangular geometries, the basis for most previous finite cloud calculations. Poor agreement is obtained at large cloud sizes and only marginal agreement is obtained at small cloud sizes. Two approximations based upon various scalings of cloud optical depth (extinction parameters) are also constructed, but with limited success in reproducing the values produced by the convex shaped clouds. Reasonable agreement among the various approximations occurs at large solar zenith angles, but extremely poor agreement may occur at small angles. (orig./WB) [de

  8. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  9. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    Science.gov (United States)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  10. Shape recovery mechanism observed in single crystals of shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Seiner, Hanuš; Sedlák, Petr; Landa, Michal

    2008-01-01

    Roč. 81, č. 6 (2008), s. 537-551 ISSN 0141-1594 Institutional research plan: CEZ:AV0Z20760514 Keywords : shape memory alloys * shape recovery process * martensitic microstructure * non-classical boundaries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.201, year: 2008

  11. ShapeTex : Implementing shape-changing structures in fabric for wearable actuation

    NARCIS (Netherlands)

    Du, Jiachun; Markopoulos, Panos; Wang, Qi; Toeters, Marina; Gong, Ting

    2018-01-01

    Research in smart textiles and garments has mostly focused on integrating sensing technology. In order to make garments that are truly interactive it is also essential to develop technologies for actuating smart garments and textiles. This paper introduces ShapeTex, a thermal shape changing fabric

  12. Universality of fragment shapes.

    Science.gov (United States)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  13. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    International Nuclear Information System (INIS)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon

    2010-01-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in intersection -shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  14. Shear or bending? Experimental results on large t-shaped prestressed conrete beams

    NARCIS (Netherlands)

    Ensink, S.W.H.; Van der Veen, C.; De Boer, A.

    2015-01-01

    Experimental results of four shear tests on two large prestressed concrete beams are compared to nonlinear analysis and design code calculations. The beams have a length of 12 m and a depth of 1.3 m and are reinforced with stirrups and pre-tensioning. The four tests consist of a single point load at

  15. The Effects of Low Dose-Rate Ionizing Radiation on the Shapes of Transients in the LM124 Operational Amplifier

    Science.gov (United States)

    Buchner, Stephen; McMorrow, Dale; Roche, Nicholas; Dusseau, Laurent; Pease, Ron L.

    2008-01-01

    Shapes of single event transients (SETs) in a linear bipolar circuit (LM124) change with exposure to total ionizing dose (TID) radiation. SETs shape changes are a direct consequence of TID-induced degradation of bipolar transistor gain. A reduction in transistor gain causes a reduction in the drive current of the current sources in the circuit, and it is the lower drive current that most affects the shapes of large amplitude SETs.

  16. A theory of shape identification

    CERN Document Server

    Cao, Frédéric; Morel, Jean-Michel; Musé, Pablo; Sur, Frédéric

    2008-01-01

    Recent years have seen dramatic progress in shape recognition algorithms applied to ever-growing image databases. They have been applied to image stitching, stereo vision, image mosaics, solid object recognition and video or web image retrieval. More fundamentally, the ability of humans and animals to detect and recognize shapes is one of the enigmas of perception. The book describes a complete method that starts from a query image and an image database and yields a list of the images in the database containing shapes present in the query image. A false alarm number is associated to each detection. Many experiments will show that familiar simple shapes or images can reliably be identified with false alarm numbers ranging from 10-5 to less than 10-300. Technically speaking, there are two main issues. The first is extracting invariant shape descriptors from digital images. The second is deciding whether two shape descriptors are identifiable as the same shape or not. A perceptual principle, the Helmholtz princi...

  17. 3D shape measurement system developed on mobile platform

    Science.gov (United States)

    Wu, Zhoujie; Chang, Meng; Shi, Bowen; Zhang, Qican

    2017-02-01

    Three-dimensional (3-D) shape measurement technology based on structured light has become one hot research field inspired by the increasing requirements. Many methods have been implemented and applied in the industry applications, but most of their equipments are large and complex, cannot be portable. Meanwhile, the popularity of the smart mobile terminals, such as smart phones, provides a platform for the miniaturization and portability of this technology. The measurement system based on phase-shift algorithm and Gray-code pattern under the Android platform on a mobile phone is mainly studied and developed, and it has been encapsulated into a mobile phone application in order to reconstruct 3-D shape data in the employed smart phone easily and quickly. The experimental results of two measured object are given in this paper and demonstrate the application we developed in the mobile platform is effective.

  18. The giant resonance and the shape of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, A; Camera, F; Million, B; Pignanelli, M [Milan Univ. (Italy). Ist. di Fisica; Gaardhoje, J J; Maj, A; Atac, A [Niels Bohr Inst., Copenhagen (Denmark)

    1992-08-01

    The gamma decay of the giant dipole resonance is a sensitive tool for investigating how nuclear shape changes with spin and excitation energy, but the information is coded in a subtle way, inasmuch as the shape and orientation of nuclei at finite temperature display large fluctuations. At the time of the conference, the three systems {sup 109-110}Sn, {sup 161-162}Yb and {sup 165-167}Er had recently been studied on the HECTOR spectrometer. The Sn nuclei are spherical in their ground states, and are expected to become oblate under the stress of rotation. The Yb and Er nuclei are prolate, and are expected to become first spherical, then oblate. While the patterns of the measured angular anisotropies are consistent with this general picture, many questions still remain open. 3 refs., 1 tab., 3 figs.

  19. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    as to help achieve defect free multi-layer components. The initial thickness ratio between the layers making the multi-layer has also significant effect on the extent of camber evolution depending on the material systems. During sintering of tubular bi-layer structures, tangential (hoop) stresses are very...... large compared to radial stresses. The maximum value of hoop stress, which can generate processing defects such as cracks and coating peel-offs, occurs at the beginning of the sintering cycle. Unlike most of the models defining material properties based on porosity and grain size only, the multi...... (firing). However, unintended features like shape instabilities of samples, cracks or delamination of layers may arise during sintering of multi-layer composites. Among these defects, macroscopic shape distortions in the samples can cause problems in the assembly or performance of the final component...

  20. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  1. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane

    2010-10-01

    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  2. Shape-controlled porous nanocarbons for high performance supercapacitors

    KAUST Repository

    Chén, Wěi

    2014-01-01

    Porous activated nanocarbons with well-controlled dimensionality and morphology (i.e. 0D activated carbon nanoparticles, 1D activated carbon nanotubes, and 2D activated carbon nanosheets) were derived successfully from different template-induced polyaniline nanostructures by facile carbonization and activation processes. The obtained nanocarbons show large specific surface areas (1332-2005 m2 g-1), good conductivities, and highly porous nanoscale architectures. The supercapacitors fabricated using the shape-controlled nanocarbons exhibit high specific capacitance, excellent rate capability, and superior long-term cycling stability in both aqueous and ionic liquid electrolytes. More importantly, a very high energy density of 50.5 W h kg-1 with a power density of 17.4 kW kg-1 can be obtained from the activated carbon nanotube based supercapacitors in an ionic liquid electrolyte (with a charge time of ∼10 s), making the shape-controlled nanocarbons promising candidates for high-performance energy storage devices. © 2014 the Partner Organisations.

  3. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    Science.gov (United States)

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  4. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    Science.gov (United States)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  5. Geometric Topology and Shape Theory

    CERN Document Server

    Segal, Jack

    1987-01-01

    The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.

  6. Obtaining the Bunch Shape in a Linac from Beam Spectrum Measurements

    International Nuclear Information System (INIS)

    Bane, Karl LF

    1999-01-01

    In linacs with high single-bunch charge, and tight tolerances for energy spread and emittance growth, controlling the short-range wakefield effects becomes extremely important. The effects of the wakefields, in turn, depend on the bunch length and also on the bunch shape. It was shown in the linac of the Stanford Linear Collider (SLC), for example, that by shaping the bunch, the final rms energy spread could be greatly reduced, compared to for the standard Gaussian bunch shape[1]. Therefore, in machines with high single-bunch charge, a method of measuring bunch shape can be an important beam diagnostic. In a linac with low single-bunch charge, the longitudinal bunch shape can be obtained relatively easily from a single measurement of the beam's final energy spectrum, provided that the final to initial energy ratio is large. One merely shifts the average phase of the beam, so that it rides off-crest sufficiently to induce an energy variation that is monotonic with longitudinal position. Then, by knowing the initial and final energies, the rf wave number, and the average beam phase, one can directly map the spectrum into the bunch shape. In a linac with high single-bunch charge, however, due to the effect of the longitudinal wakefield, this method either does not work at all, or it requires such a large shift in beam phase as to become impractical. In earlier work[2],[3] it was shown that, even when wakefields are important, if one measures the final beam spectrum for two different (properly chosen) values of beam phase, then one can again obtain the bunch shape, and--as a by-product--also the form of the wakefield induced voltage; this method was then illustrated using data from the linac of the SLC. These SLC measurements, however, had been performed with the machine in a special configuration, where the current was low; in addition, the noise the data was low and the measured spectra were smooth distributions. Under normal SLC conditions, however, the currents

  7. Comprehensive treatment in a case with advanced chronic periodontitis: a 15-year follow-up.

    Science.gov (United States)

    Zafiropoulos, Gregory-George; Rebbe, Jochen

    2010-01-01

    This case report describes the comprehensive treatment of generalized, advanced periodontal disease and full-mouth rehabilitation in an adult patient. Given the extensive periodontal tissue destruction, a systematic approach was needed to determine restoration possibilities and patient expectations. Subsequent oral rehabilitation was accomplished with fixed dentures in the mandible and a removable denture in the maxilla. In the maxilla, strategically important anchor teeth were replaced with implants and a palate-free horseshoe-shaped removable denture was fabricated, using telescopic crowns as abutments. This case indicates that long-term post-treatment periodontal stability can be ensured only by full patient cooperation and consistent periodontal maintenance.

  8. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  9. Nuclear shapes: from earliest ideas to multiple shape coexisting structures

    International Nuclear Information System (INIS)

    Heyde, K; Wood, J L

    2016-01-01

    The concept of the atomic nucleus being characterized by an intrinsic property such as shape came as a result of high precision hyperfine studies in the field of atomic physics, which indicated a non-spherical nuclear charge distribution. Herein, we describe the various steps taken through ingenious experimentation and bold theoretical suggestions that mapped the way for later work in the early 50s by Aage Bohr, Ben Mottelson and James Rainwater. We lay out a long and winding road that marked, in the period of 50s to 70s, the way shell-model and collective-model concepts were reconciled. A rapid increase in both accelerator and detection methods (70s towards the early 2000s) opened new vistas into nuclear shapes, and their coexistence, in various regions of the nuclear mass table. Next, we outline a possible unified view of nuclear shapes: emphasizing decisive steps taken as well as questions remaining, next to the theoretical efforts that could result in an emerging understanding of nuclear shapes, building on the nucleus considered as a strongly interacting system of nucleons as the microscopic starting point. (invited comment)

  10. The applications of carbon nanomaterials in fiber-shaped energy storage devices

    Science.gov (United States)

    Wu, Jingxia; Hong, Yang; Wang, Bingjie

    2018-01-01

    As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices. Project supported by the National Natural Science Foundation of China (Nos. 21634003, 21604012).

  11. Induction of L-form-like cell shape change of Bacillus subtilis under microculture conditions.

    Science.gov (United States)

    Shingaki, Ryuji; Kasahara, Yasuhiro; Iwano, Megumi; Kuwano, Masayoshi; Takatsuka, Tomomasa; Inoue, Tetsuyoshi; Kokeguchi, Susumu; Fukui, Kazuhiro

    2003-09-01

    A remarkable cell shape change was observed in Bacillus subtilis strain 168 under microculture conditions on CI agar medium (Spizizen's minimal medium supplemented with a trace amount of yeast extract and Casamino acids). Cells cultured under a cover glass changed in form from rod-shaped to spherical, large and irregular shapes that closely resembled L-form cells. The cell shape change was observed only with CI medium, not with Spizizen's minimum medium alone or other rich media. The whole-cell protein profile of cells grown under cover glass and cells grown on CI agar plates differed in several respects. Tandem mass analysis of nine gel bands which differed in protein expression between the two conditions showed that proteins related to nitrate respiration and fermentation were expressed in the shape-changed cells grown under cover glass. The cell shape change of CI cultures was repressed when excess KNO3 was added to the medium. Whole-cell protein analysis of the normal rod-shaped cells grown with 0.1% KNO3 and the shape-changed cells grown without KNO3 revealed that the expression of the branched-chain alpha-keto acid dehydrogenase complex (coded by the bfmB gene locus) was elevated in the shape-changed cells. Inactivation of the bfmB locus resulted in the repression of cell shape change, and cells in which bfmB expression was induced by IPTG did show changes in shape. Transmission electron microscopy of ultrathin sections demonstrated that the shape-changed cells had thin walls, and plasmolysis of cells fixed with a solution including 0.1 M sucrose was observed. Clarifying the mechanism of thinning of the cell wall may lead to the development of a new type of cell wall biosynthetic inhibitor.

  12. Five-Axis Milling of Large Spiral Bevel Gears: Toolpath Definition, Finishing, and Shape Errors

    Directory of Open Access Journals (Sweden)

    Álvaro Álvarez

    2018-05-01

    Full Text Available In this paper, a five-axis machining process is analyzed for large spiral-bevel gears, an interesting process for one-of-kind manufacturing. The work is focused on large sized spiral bevel gears manufacturing using universal multitasking machines or five-axis milling centers. Different machining strategies, toolpath patterns, and parameters are tested for both gear roughing and finishing operations. Machining time, tools’ wear, and gear surface are analyzed in order to determine which are the best strategies and parameters for large modulus gear manufacturing on universal machines. The case study results are discussed in the last section, showing the capacity of a universal five-axis milling for this niche. Special attention was paid to the possible affectations of the metal surfaces, since gear durability is very sensitive to thermo-mechanical damage, affected layers, and flank gear surface state.

  13. Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid

    OpenAIRE

    Cury , Claire; Glaunès , Joan Alexis; Chupin , Marie; Colliot , Olivier

    2014-01-01

    International audience; A common approach for the analysis of anatomical variability relies on the estimation of a representative template of the population, followed by the study of this population based on the parameters of the deformations going from the template to the population. The Large Deformation Diffeomorphic Metric Mapping framework is widely used for shape analysis of anatomical structures, but computing a template with such framework is computationally expensive. In this paper w...

  14. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    International Nuclear Information System (INIS)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-01-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy. (paper)

  15. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    Science.gov (United States)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-06-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy.

  16. Axisymmetric stability of vertically asymmetric Tokamaks at large beta poloidal

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Fishman, H.; Okabayashi, M. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1983-11-01

    The rigid-mode stability of high-..beta.. vertically asymmetric Tokamak equilibria with quasi-uniform current profile is investigated analytically using toroidicity-shaping double expansion method. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high-..beta.. Tokamak expansion leads to further destabilization. These analytic insights are qualitatively confirmed by numerical stability calculations using the PEST code with parabolic safety-factor profile.

  17. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao

    2013-05-01

    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented reality. Current tracking algorithms that determine precise shape can be roughly divided into two categories: 1) Global statistics partitioning methods, where the shape of the object is determined by discriminating global image statistics, and 2) Joint shape and appearance matching methods, where a template of the object from the previous frame is matched to the next image. The former is limited in cases of complex object appearance and cluttered background, where global statistics cannot distinguish between the object and background. The latter is able to cope w